WO2008124825A2 - An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications - Google Patents

An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications Download PDF

Info

Publication number
WO2008124825A2
WO2008124825A2 PCT/US2008/059909 US2008059909W WO2008124825A2 WO 2008124825 A2 WO2008124825 A2 WO 2008124825A2 US 2008059909 W US2008059909 W US 2008059909W WO 2008124825 A2 WO2008124825 A2 WO 2008124825A2
Authority
WO
WIPO (PCT)
Prior art keywords
blend
uhmwpe
consolidated
tocopherol
uhmwpe blend
Prior art date
Application number
PCT/US2008/059909
Other languages
French (fr)
Other versions
WO2008124825A3 (en
Inventor
Dirk Pletcher
Hallie E. Brinkerhuff
Werner Schneider
Ray Gsell
Toni Rowe
Alicia Rufner
John Knight
Original Assignee
Zimmer, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zimmer, Inc. filed Critical Zimmer, Inc.
Priority to CA2678459A priority Critical patent/CA2678459C/en
Priority to EP08745507A priority patent/EP2150285B1/en
Priority to AT08745507T priority patent/ATE544476T1/en
Priority to EP12167581.3A priority patent/EP2578248B1/en
Priority to AU2008236996A priority patent/AU2008236996B2/en
Priority to EP12167580.5A priority patent/EP2564882B1/en
Priority to ES08745507T priority patent/ES2378721T3/en
Priority to JP2010503206A priority patent/JP2010523805A/en
Publication of WO2008124825A2 publication Critical patent/WO2008124825A2/en
Publication of WO2008124825A3 publication Critical patent/WO2008124825A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8085Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with pliable or malleable elements or having a mesh-like structure, e.g. small strips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/505Stabilizers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/143Stabilizers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • Y10T428/315Surface modified glass [e.g., tempered, strengthened, etc.]

Definitions

  • the present invention relates to crosslinked ultra-high molecular weight polyethylene and, particularly, to antioxidant stabilized, crosslinked ultra-high molecular weight polyethylene.
  • Ultra-high molecular weight polyethylene is commonly utilized in medical device applications.
  • UHMWPE may be crosslinked.
  • UHMWPE may be subjected to electron beam irradiation, gamma irradiation, or x-ray irradiation, causing chain scissions of the individual polyethylene molecules as well as the breaking of C-H bonds to form free radicals on the polymer chains. While free radicals on adjacent polymer chains may bond together to form crosslinked UHMWPE, some free radicals may remain in the UHMWPE following irradiation, which could potentially combine with oxygen, causing oxidation of the UHMWPE.
  • UHMWPE may be melt annealed by heating the crosslinked UHMWPE to a temperature in excess of its melting point. By increasing the temperature of the UHMWPE above its melting point, the mobility of the individual polyethylene molecules is significantly increased, facilitating additional crosslinking of the polyethylene molecules and the quenching of free radicals.
  • melt annealing irradiated, crosslinked UHMWPE helps to eliminate free radicals and reduce the potential for later oxidation of the UHMWPE, the melt annealing could potentially reduce other mechanical properties of the UHMWPE.
  • the present invention relates to a crosslinked UHMWPE and, particularly, an antioxidant stabilized, crosslinked UHMWPE.
  • an antioxidant is combined with UHMWPE prior to subjecting the UHMWPE to crosslinking irradiation.
  • the antioxidant is tocopherol.
  • the resulting blend may be formed into slabs, bar stock, and/or incorporated into a substrate, such as a metal, for example.
  • the resulting product may then be subjected to crosslinking irradiation.
  • the UHMWPE blend is preheated prior to subjecting the same to crosslinking irradiation. Once irradiated, the UHMWPE blended product may be machined, packaged, and sterilized in accordance with conventional techniques.
  • the formed UHMWPE/antioxidant blend may be subjected to multiple passes of crosslinking irradiation.
  • the maximum dose of radiation received by the UHMWPE blend at any one time is lessened.
  • the maximum temperature of the UHMWPE blend reached during irradiation is correspondingly lessened. This allows for the UHMWPE to maintain a higher level of desirable mechanical properties and prevents substantial melting of the UHMWPE.
  • the UHMWPE is cooled after each individual pass of crosslinking irradiation.
  • the temperature at the time of subsequent irradiation is high enough to encourage the mobility of the individual polyethylene molecules, but is also low enough that the temperature increase experienced during irradiation is unlikely to substantially alter any desired material properties of the UHMWPE blend.
  • the UHMWPE may be stabilized without the need for post irradiation melt annealing or any other post-irradiation treatment to quench free radicals.
  • an antioxidant such as tocopherol
  • the amount of oxidized material that must be removed to form a final, implantable medical component is reduced.
  • the size of the stock material subjected to irradiation may be smaller in dimension, making it easier to handle and easier to manufacture into final medical components.
  • the UHMWPE blend may be integrally incorporated onto a substrate prior to irradiation.
  • the temperature of the UHMWPE blend at the UHMWPE/substrate interface remains low enough that separation of the UHMWPE blend and the substrate is substantially prevented.
  • some antioxidant remains unreacted within the UHMWPE blend, which may continue to quench free radicals throughout the lifetime of the medical component.
  • the antioxidant may continue to quench free radicals and further reduce the likelihood of additional oxidation.
  • the present invention provides method for processing UHMWPE for use in medical applications, the method including the steps of: combining UHMWPE with an antioxidant to form a blend having 0.01 to 3.0 weight percent of the antioxidant, the UHMWPE having a melting point; processing the blend to consolidate, the consolidated blend having a melting point; preheating the consolidated blend to a preheat temperature below the melting point of the consolidated blend; and irradiating the consolidated blend while maintaining the consolidated blend at a temperature below the melting point of the consolidated blend
  • the present invention provides a crosslinked UHMWPE blend for use in medical implants prepared by a process including the steps of: combining UHMWPE with an antioxidant to form a blend having 0.1 to 3.0 weight percent antioxidant; processing the blend to consolidate the blend, the consolidated blend having a melting point; preheating the consolidated blend to a preheat temperature below the melting point of the consolidated blend; and irradiating the consolidated blend with a total irradiation dose of at least 100 kGy while maintaining the consolidated blend at a temperature below the melting point of the consolidated blend.
  • FIG. 1 is schematic depicting exemplary processes for preparing and using the crosslinked UHMWPE blends of the present invention.
  • FIG. 2 is a perspective view of an exemplary medical implant formed form a UHMWPE blend and a substrate.
  • UHMWPE is combined with an antioxidant to create a UHMWPE/antioxidant blend (the "UHMWPE blend").
  • the UHMWPE blend may be processed to fabricate the same into a desired form. Once formed, the UHMWPE blend may be preheated and subjected to cross-linking irradiation. The crosslinked UHMWPE blend may then be subjected to machining, packaging, and sterilization.
  • any medical grade UHMWPE powder may be utilized.
  • GUR 1050 and GUR 1020 powders both commercially available from Ticona, having North American headquarters located in Florence, Kentucky, may be used.
  • any antioxidant such as Vitamin C, lycopene, honey, phenolic antioxidants, amine antioxidants, hydroquinone, beta-carotene, ascorbic acid, CoQ-enzyme, and derivatives thereof, may be used
  • the UHMWPE blend referred to herein is a UHMWPE/tocopherol, i.e., Vitamin E, blend.
  • any tocopherol may be used in conjunction with the present invention, such as d- ⁇ -tocopherol, d,l- ⁇ -tocopherol, or ⁇ -tocopherol acetate, unless otherwise specifically stated herein, the term "tocopherol" in its generic form refers to all tocopherols. However, the synthetic form, d,l- ⁇ -tocopherol, is the most commonly used.
  • any mechanism and/or process achieving a substantially homogenous blend of the components may be utilized.
  • solvent blending is utilized.
  • tocopherol is mixed with a volatile solvent to lower the viscosity of the tocopherol and facilitate homogenous blending of the tocopherol with the UHMWPE.
  • the tocopherol/solvent mixture may be combined with the UHMWPE, such as with a cone mixer. The solvent is then evaporated, leaving only the UHMWPE/tocopherol blend.
  • tocopherol may be blended with UHMWPE by precision coating or atomization.
  • tocopherol may be precision coated onto the UHMWPE powder using a MP-I MULTI-PROCESSORTM Fluid Bed connected to a laboratory module Precision Coater available from Niro Inc. of Columbia, Maryland.
  • MULTI-PROCESSORTM is a trademark of Niro Inc.
  • low intensity mixing may be used.
  • Low intensity i.e. low shear
  • mixing may be performed using a Diosna PlOO Granulator, available from Diosna GmbH of Osnabruck, Germany, a subsidiary of Multimixing S. A.
  • high shear mixing may be used. High shear mixing of UHMWPE and tocopherol may be achieved using a RV02E or a R05T High Intensity Mixer, both commercially available from Eirich Machines of Gurnee, Illinois. Alternatively, high shear mixing may be achieved using a Collette ULTIMAPROTM 75 One Pot Processor available from Niro, Inc. of Columbia, Maryland.
  • ULTIMAPROTM is a trademark of Niro, Inc. Based on the results of testing the above identified methods useful for combining UHMWPE and tocopherol, high shear mixing appears to provide favorable results, including an acceptable homogeneity and a low number of indications, i.e., areas of high tocopherol concentrations relative to the surrounding areas as determined by visual inspection under ultraviolet light or by chemical measurements, such as infrared spectroscopy or gas chromatography. Additionally, in other exemplary embodiments, the fluidized bed, emulsion polymerization, electrostatic precipitation, wetting or coating of particles, and/or master batch blending may be used to combine the UHMWPE and tocopherol.
  • the components are combined in ratios necessary to achieve a tocopherol concentration of between 0.01 weight percent (wt. %) and 3 wt. %.
  • the tocopherol concentration may be as low as 0.01 wt. %, 0.05 wt. %, and 0.1 wt. %, or as high as 0.6 wt. %, 0.8 wt. %, and 1.0 wt. %, for example.
  • two competing concerns exist.
  • the amount selected must be high enough to quench free radicals in the UHMWPE, but must also be low enough to allow sufficient crosslinking so as to maintain acceptable wear properties of the UHMWPE.
  • a range of tocopherol from 0.1 to 0.6 wt. % is used to successfully quench free radicals while still maintaining acceptable wear properties.
  • the UHMWPE blend is processed to consolidate the UHMWPE blend, as indicated at Step 12 of Fig. 1.
  • the UHMWPE blend may be processed by compression molding, net shape molding, injection molding, extrusion, monoblock formation, fiber, melt spinning, blow molding, solution spinning, hot isostatic pressing, high pressure crystallization, and films.
  • the UHMWPE blend is compression molded into the form of a slab.
  • the UHMWPE blend may be compression molded into a substrate, as described in further detail below.
  • the UHMWPE blend may be compression molded into a roughened surface by macroscopic mechanically interlocking the UHMWPE blend with features formed at the roughened surface of the substrate.
  • the UHMWPE blend may be molded into another polymer or another antioxidant stabilized polymer.
  • the UHMWPE blend may be net shape molded into the shape of the final orthopedic component at Step 15 of Fig. 1.
  • the UHMWPE blend is net shape molded into the substrate at Step 15 and is processed in the same manner as a UHMWPE blend compression molded into a substrate at Step 14, as described in detail below.
  • the UHMWPE blend is net shape molded at Step 15, but is not net shape molded into a substrate, the component is then processed in the same manner as a UHMWPE blend compression molded into a slab at Step 16, as described in detail below.
  • the substrate may be a highly porous biomaterial useful as a bone substitute, cell receptive material, tissue receptive material, an osteoconductive material, and/or an osteoinductive material.
  • a highly porous biomaterial may have a porosity as low as 55, 65, or 75 percent or as high as 80, 85, or 90 percent.
  • An example of such a material is produced using Trabecular MetalTM technology generally available from Zimmer, Inc., of Warsaw, Indiana. Trabecular MetalTM is a trademark of Zimmer Technology, Inc.
  • Such a material may be formed from a reticulated vitreous carbon foam substrate which is infiltrated and coated with a biocompatible metal, such as tantalum, etc., by a chemical vapor deposition ("CVD") process in the manner disclosed in detail in U.S. Patent No. 5,282,861, the entire disclosure of which is expressly incorporated herein by reference.
  • CVD chemical vapor deposition
  • all porous coating and other metals such as niobium, tivanium, cancellous structured titanium, or alloys of tantalum and niobium with one another or with other metals may also be used.
  • the UHMWPE blend may be heated to a temperature below the melting point of the UHMWPE blend to relieve any residual stresses that may have been formed during processing and to provide additional dimensional stability.
  • the melting point of the UHMWPE blend is determined according to standard methods using differential scanning calorimetry. Heating the UHMWPE blend below the melting point creates a more homogenous mixture and increases the final crystallinity.
  • the UHMWPE blend is heated to a temperature below its melting point, e.g., between 80° Celsius (C) and 14O 0 C, and held isothermally for six hours.
  • the UHMWPE may be heated to a temperature as low as 8O 0 C, 9O 0 C, 95 0 C, or 100 0 C or as high as HO 0 C, 115 0 C, 12O 0 C, and 126 0 C.
  • the temperature may be held for as short as 0.5 hours, 1.0 hours, 1.5 hours, or 2.0 hours or as long as 3.0 hours, 4.0 hours, 5.0 hours, or 6.0 hours.
  • the UHMWPE blend is heated after irradiation, described below, to provide similar benefits to the UHMWPE blend.
  • the processed UHMWPE blend is preheated at Steps 18, 20 of Fig. 1 in preparation for receiving crosslinking irradiation.
  • the processed UHMWPE blend may be preheated to any temperature between room temperature, approximately 23 0 C, up to the melting point of the UHMWPE blend, approximately 14O 0 C.
  • the UHMWPE blend is preheated to a temperature between 6O 0 C and 13O 0 C.
  • the UHMWPE blend may be heated to a temperature as low as 6O 0 C, 7O 0 C, 8O 0 C, 9O 0 C, or 100 0 C or as high as HO 0 C, 12O 0 C, 13O 0 C, 135 0 C, 14O 0 C.
  • a temperature as low as 6O 0 C, 7O 0 C, 8O 0 C, 9O 0 C, or 100 0 C or as high as HO 0 C, 12O 0 C, 13O 0 C, 135 0 C, 14O 0 C.
  • the material properties for a UHMWPE blend irradiated at a relatively cold, e.g., approximately 4O 0 C, temperature are substantially different than the material properties for a UHMWPE blend irradiated at a relatively warm, e.g., approximately 12O 0 C to approximately 14O 0 C, temperature.
  • a relatively cold temperature e.g., approximately 4O 0 C
  • a relatively warm temperature e.g., approximately 12O 0 C to approximately 14O 0 C, temperature.
  • the material properties of a UHMWPE blend irradiated at a lower temperature may be superior, the wear properties, fatigue properties, oxidation level, and free radical concentration are all negatively affected.
  • irradiation of a UHMWPE blend at a higher temperature may slightly diminish the material properties, it also results in a higher crosslinking efficiency due to higher chain mobility and adiabatic melting.
  • the temperature increase of the substrate should be taken into account when determining the preheat temperature of the UHMWPE blend and substrate.
  • a UHMWPE blend formed to a highly porous substrate manufactured using Trabecular MetalTM technology is preheated to a temperature between 4O 0 C and 12O 0 C prior to subjecting the substrate and UHMWPE blend to crosslinking irradiation.
  • a further consideration that may impact the preheat temperature is the material used to form any tooling that may contact the UHMWPE blend and substrate during irradiation. For example, a holder used to retain the UHMWPE blend and substrate in a desired position during irradiation may rapidly increase in temperature at a faster rate than the UHMWPE blend.
  • the tooling should have a heat capacity substantially equal to or greater than the heat capacity of the UHMWPE blend.
  • the UHMWPE blend has a heat capacity substantially between 1.9 J/g 0 C and 10 J/g 0 C.
  • polyether ether ketone for example, having a heat capacity of approximately 2.8 J/g 0 C, may be used to form the tooling.
  • Alternative materials that may be used to form the tooling also include carbon fiber and other composites.
  • crosslinking irradiation refers to exposing the UHMWPE blend to ionizing irradiation to form free radicals which may later combine to form crosslinks.
  • the irradiation may be performed in air at atmospheric pressure, in a vacuum chamber at a pressure substantially less then atmospheric pressure, or in an inert environment, i.e., in an argon environment, for example.
  • the irradiation is, in one exemplary embodiment, electron beam irradiation.
  • the irradiation is gamma irradiation.
  • steps 26, 28 do not require irradiation, but instead utilize silane crosslinking.
  • crosslinking is induced by exposing the UHMWPE blend to a total radiation dose between about 25 kGy and 1 ,000 kGy. In another exemplary embodiment, crosslinking is induced by exposing the UHMWPE blend to a total radiation dose between about 50 kGy and 250 kGy in air.
  • These doses are higher than doses commonly used to crosslink UHMWPE due to the presence of tocopherol in the UHMWPE blend. Specifically, the tocopherol reacts with some of the polyethylene chains that became free radicals during irradiation. As a result, a higher irradiation dose must be administered to the UHMWPE blend to achieve the same level of crosslinking that would occur at a lower dose in standard UHMWPE, i.e., UHMWPE absent an antioxidant.
  • the higher irradiation dose needed to crosslink the UHMWPE blend to the same level as UHMWPE absent an antioxidant may cause a greater temperature increase in the UHMWPE blend.
  • the UHMWPE blend may be heated above the melting point of the UHMWPE blend, approximately 14O 0 C, and result in melt annealing of the UHMWPE blend.
  • Steps 22, 24 a determination is made at Steps 22, 24 comparing the total crosslinking irradiation dose to be administered to the UHMWPE blend to the maximum individual dose of radiation that can be administered to the UHMWPE blend without raising the temperature of the UHMWPE blend near to and/or above its melting point.
  • the UHMWPE is irradiated and the total crosslinking irradiation dose identified at Steps 22, 24 is administered in air.
  • the maximum individual crosslinking dose is between about 50 kGy and 1000 kGy.
  • the maximum individual crosslinking dose is 150 kGy for the UHMWPE blend alone (Step 24) and is 100 kGy for the UHMWPE blend and substrate combination (Step 22).
  • the maximum individual crosslinking dose may be any dose that does not cause the UHMWPE blend to increase in temperature above the melting point of the UHMWPE blend. Additionally, the maximum individual crosslinking dose may be dependent on the type of irradiation used. Thus, the maximum individual crosslinking dose for electron beam irradiation may be different than the maximum individual crosslinking dose for gamma irradiation.
  • a heat sink may be attached to the substrate to dissipate heat therefrom and allow for the use of a higher individual irradiation dose, i.e., allow for a higher dose to be administered in a single pass. Further, in addition to the type of irradiation used, the dose rate, temperature at which the dose is administered, the amount of time between doses, and the level of tocopherol in the UHMWPE blend, may also affect the maximum individual crosslinking dose.
  • the total crosslinking dose for the UHMWPE blend is determined to exceed the maximum individual dose of approximately 150 kGy, multiple irradiation passes are required.
  • the total crosslinking dose for the UHMWPE blend and substrate exceeds the maximum individual dose of approximately 100 kGy, multiple irradiation passes are required.
  • the lower maximum individual dose for the UHMWPE blend and substrate results from the greater potential temperature increase of the substrate during irradiation. This potential temperature increase may be sufficient to melt or otherwise significantly alter the UHMWPE blend along the UHMWPE blend/substrate interface.
  • the preheat temperature and dose level per pass are interdependent variables that are controlled by the specific heat of the materials being irradiated.
  • the substrate material may heat to a significantly higher level than the polymer at the same irradiation dose level if the specific heat of the substrate is substantially lower than the specific heat of the polymer.
  • the final temperature of the materials achieved during the irradiation can be controlled by a judicious choice of dose level per pass and preheat temperature, so that temperatures are high enough to promote crosslinking in the presence of tocopherol, but low enough to prevent substantial melting of the UHMWPE blend. Further, while partial melting may, in some embodiments, be desired, the final temperature should be low enough to prevent substantial melting and yet be high enough that free radical levels are reduced below the levels that would be present if no heating during irradiation had occurred.
  • the propensity for cracking is most likely due to a combination of effects related to the weakness of the UHMWPE blend and expansion differences between the UHMWPE blend and substrate, whereas complete melting of the UHMWPE blend in the region near the substrate is due to overheating of the substrate.
  • the first dose of irradiation administered in Step 28 should be less than 150 kGy.
  • the total irradiation dose determined in Step 24 is divided into equal, individual irradiation doses, each less than 150 kGy.
  • the total irradiation dose determined in Step 24 is 200 kGy
  • individual doses of 100 kGy each may be administered.
  • at least two of the individual irradiation doses are unequal and all of the individual irradiation doses do not exceeded 150 kGy, e.g., a total crosslinking dose of 200 kGy is dividing into a first individual dose of 150 kGy and a second individual dose of 50 kGy.
  • the first dose of irradiation administered in Step 26 should be less than 100 kGy.
  • the total irradiation dose determined in Step 22 is divided into equal, individual irradiation doses, each less than 100 kGy.
  • the total irradiation dose determined in Step 22 is 150 kGy
  • individual doses of 75 kGy each may be administered.
  • at least two of the individual irradiation doses are unequal and all of the individual irradiation doses do not exceed 100 kGy, e.g., a total crosslinking dose of 150 kGy is divided into a first individual dose of 100 kGy and a second individual dose of 50 kGy.
  • the resulting UHMWPE blend has characteristics similar to an irradiated UHMWPE blend without the substrate and is generally suitable for normal applications.
  • the substrate first i.e., directing the electron beam to contact the substrate prior to contacting the UHMWPE blend
  • the resulting UHMWPE blend has characteristics that are substantially different than an irradiated UHMWPE blend without the substrate. Additionally, the differences, such as decreased crystallinity, are more pronounced near the UHMWPE blend/substrate interface and decrease as the UHMWPE blend moves away from the substrate.
  • the temperature of the UHMWPE blend or UHMWPE blend and substrate may be equilibrated to the preheat temperature in Steps 30, 32, between the administration of the individual doses.
  • immediately administering another individual irradiation dose may significantly alter the material properties of the UHMWPE blend, melt the UHMWPE, or cause other detrimental effects.
  • the UHMWPE blend or UHMWPE blend and substrate are removed and placed in an oven.
  • the oven is set to maintain the temperature at the preheat temperature, i.e., the temperature used in Steps 18, 20 as described in detail above, and the UHMWPE blend or UHMWPE blend and substrate are placed within the oven to slowly cool until reaching the preheat temperature. Once the preheat temperature is reached, the UHMWPE blend or UHMWPE blend and substrate are removed and the next individual irradiation dose administered. In the event further individual irradiation doses are required, the temperature equilibration process is repeated.
  • selective shielding is used to protect certain areas of the UHMWPE blend from exposure to the irradiation and substantially prevent or lessen the resulting temperature increase of the UHMWPE blend. Additionally, selective shielding may be used to help ensure that an even dose of irradiation is received by the UHMWPE blend.
  • a shield such as a metallic shield, is placed in the path of the irradiation to attenuate the radiation dose received in the shielded area, while allowing the full effect of the irradiation dose in areas where higher temperatures can be tolerated.
  • the use of selective shielding allows for the total crosslinking irradiation dose to be administered in a single pass, reducing the need to administer the total crosslinking irradiation dose over multiple passes.
  • selective shielding of the irradiation may be used to prevent the metallic substrate from excessive heating due to the differences in specific heats between the substrate and UHMWPE blend.
  • the shielding could, in one exemplary embodiment, be designed so that the UHMWPE blend receives a substantially full irradiation dose, while lessening the irradiation penetration so that a reduced dose is received at the substrate.
  • the temperature increase of the substrate due to irradiation absorption is decreased. This allows for the use of higher dose levels per pass, eliminating the need for multiple passes to achieve higher dose levels and thus higher levels of crosslinking.
  • single pass irradiation is advantageous since it is a more efficient manufacturing process, and the resulting mechanical properties of the crosslinked material may also be desirable.
  • Specific aspects and methods of irradiation shielding are disclosed in U.S. Patent No. 6,365,089, entitled METHOD FOR CROSSLINKING UHMWPE IN AN ORTHOPEDIC IMPLANT, issued on April 2, 2002, the entire disclosure of which is expressly incorporated by reference herein.
  • tocopherol is not added at Step 10, as discussed in detail above. Instead, tocopherol is diffused into the UHMWPE by placing the UHMWPE in a tocopherol bath after the UHMWPE has been irradiated in accordance with standard crosslinking irradiation techniques.
  • the present embodiment does not allow for the administration of a higher crosslinking irradiation dose, as discussed above.
  • the mechanical properties achieved by adding tocopherol prior to administering crosslinking irradiation appear to be superior to diffusing tocopherol into the UHMWPE after the crosslinking irradiation has been administered.
  • the UHMWPE blend may be machined in Step 34 into a medical product, such as an orthopedic implant, according to customary techniques, such as milling, boring, drilling, cutting, and CNC (Computer Numerical Control) machining.
  • the UHMWPE blend may be machined into a hip, knee, ankle, shoulder, elbow, finger, dental, or spinal implant.
  • the UHMWPE blend may be assembled to other components for form a medical device.
  • the UHMWPE blend is processed at Step 12 in Fig. 1 by net shape molding, which is identified above as a potential processing method, the need to machine the UHMWPE blend at Step 34 is substantially eliminated.
  • the UHMWPE blend is formed to the final shape, i.e., the shape of the desired medical product, at Step 12, which may then be assembled to other components to form the final medical device.
  • an exemplary medical implant 100 is shown including UHMWPE blend 102 and substrate 104. As shown in Fig.
  • UHMWPE blend 102 is interdigitated with substrate 104 in a similar manner as described in U.S. Patent Application Serial No. 11/055,322, entitled “MODULAR POROUS IMPLANT”, filed February 10, 2002, and U.S. Patent No. 6,087,553, entitled “IMPLANTABLE METALLIC OPEN-CELLED LATTICE/POLYETHYLENE COMPOSITE MATERIAL AND DEVICES", issued on July 11, 2000, the entire disclosures of which are expressly incorporated by reference herein.
  • the medical product may be packaged at Step 36 and sterilized at Step 38.
  • the medical product is sterilized using gas plasma.
  • the medical product is sterilized using ethylene oxide.
  • the medical product is sterilized using dry heat sterilization.
  • surface sterilization techniques such as gas plasma, dry heat, gamma radiation, ionizing radiation, autoclaving, supercritical fluid technique, and ethylene oxide, provide sufficient sterilization of the medical product, even if the UHMWPE blend is secured to a substrate.
  • the surface sterilization techniques have proven to sufficiently sterilize the UHMWPE blend/substrate interface.
  • gamma irradiation may be used to sterilize the medical product.
  • a higher tocopherol concentration would be necessary in order for enough tocopherol to be available to quench free radicals after the sterilization irradiation was performed.
  • irradiated UHMWPE blends are used, which have been irradiated according to one of three different irradiation methods.
  • differences in the irradiation conditions and techniques may affect the resulting material properties of the UHMWPE blend. Therefore, in order to properly analyze and compare the results set forth in the Examples and corresponding Tables, each of the irradiated UHMWPE blends used in the Examples are identified as having been irradiated according to the one of the methods set forth below in Table 2.
  • the electron beam source is calibrated by performing dosimetry at low irradiation doses and then parametrically determining the activation of the electron beam source needed to achieve higher doses. As a result, at higher irradiation doses, differences may exist between the actual dose and the parametrically determined dose, which may cause differences in the material properties of the irradiated UHMWPE blends.
  • ⁇ -tocopherol acetate was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands and medical grade UHMWPE powder GUR 1050 was obtained from Ticona, having North American headquarters located in Florence, Kentucky. Isopropanol was then added to the ⁇ -tocopherol acetate as a diluent and the ⁇ -tocopherol acetate was solvent blended with the UHMWPE powder. The blending continued until two different UHMWPE/ ⁇ -tocopherol acetate blends were obtained, one UHMWPE blend having 0.05 wt.
  • each UHMWPE blend was then compression molded to form four one-inch-thick pucks.
  • Two pucks of each UHMWPE blend i.e., two pucks of the UHMWPE blend having 0.05 wt. % ⁇ -tocopherol acetate and two pucks of the UHMWPE blend having 0.5 wt. % ⁇ -tocopherol acetate, were preheated to 120 0 C in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois. The pucks were held at 120 0 C for 8 hours.
  • the pucks were irradiated at 10 MeV, 50 kGy-m/min dose rate at 65 kGy and 100 kGy dose at Iotron Industries Canada Inc. located in Port Coquitlam, BC, Canada.
  • the remaining two pucks of each UHMWPE blend i.e., two pucks of the UHMWPE blend having 0.05 wt. % ⁇ -tocopherol acetate and two pucks of the UHMWPE blend having 0.5 wt. % ⁇ - tocopherol acetate, were heated to 40 0 C overnight.
  • the FTIR results revealed that the OI of the UHMWPE blend having 0.05 wt. % ⁇ - tocopherol acetate was generally higher than the OI of the UHMWPE blend having 0.50 wt. % ⁇ - tocopherol acetate. This is believed to be because these samples still contained ⁇ -tocopherol acetate after irradiation. As a result, the ⁇ -tocopherol acetate was still available in these samples to react with free radicals and reduce the oxidative degradation of the UHMWPE blend. Additionally, the FTIR results showed that virtually no ⁇ -tocopherol acetate was left after irradiation of the UHMWPE blend having 0.05 wt.
  • GUR 1050 and GUR 1020 medical grade UHMWPE powders were obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands.
  • the GUR 1050 and GUR 1020 were separately mechanically blended with the d/1- ⁇ -tocopherol by low intensity blending using a Diosna PlOO Granulator, available from Diosna GmbH of Osnabruck, Germany, a subsidiary of Multimixing S. A.
  • Both the GUR 1050 and the GUR 1020 resins were mixed with the d/1- ⁇ -tocopherol in several batches to create UHMWPE blends of both resin types having 0.2 wt.
  • % 0.5 wt. %, and 1.0 wt. % d/1- ⁇ -tocopherol.
  • Each batch of blended material was compression molded into a slab and cut into bars of various sizes. Each of the resulting bars was then preheated by heating to a preheat temperature in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois. The preheat temperature was selected from 40 0 C, 100 0 C, 110 0 C and 122.2°C, as set forth in TABLE 6 below.
  • the UHMWPE blend bars were electron beam irradiated according to Method C, set forth in TABLE 2 above, at a selected dose rate until a selected total irradiation dose was administered.
  • the dose rate was selected from 75 kGy-m/min, 155 kGy-m/min, and 240 kGy-m/min and the total irradiation dose was selected from 90 kGy, 120 kGy, 150 kGy, and 200 kGy.
  • the portion of each bar was then microtomed into 200 micron thick films. These films were then subjected to FTIR analysis on a Bruker Optics FTIR spectrometer, available from Bruker Optics of Billerica, Massachusetts.
  • the FTIR results were analyzed to determine the VEI, wt. % d/l- ⁇ - tocopherol, the OI, and the TVI.
  • the VEI and wt. % d/1- ⁇ -tocopherol were determined by calculating the ratio of the area under the d/1- ⁇ -tocopherol peak at 1275-1245 cm “1 on the resulting FTIR chart to the area under the polyethylene peak at 1392-1330 cm “1 and at 1985-1850 cm “1 .
  • the OI was determined by calculating the ratio of the area under the carbonyl peak on the FTIR chart at 1765-168OcIn "1 to the area of the polyethylene peak at 1392-1330 cm “1 .
  • the TVI was determined by calculating the ratio of the area on the FTIR chart under the vinyl peak at 980-947 cm "1 to the area under the polyethylene peak at 1392-1330 cm “1 .
  • the aged files were placed in boiling hexane and allowed to remain there for 24 hours to extract the d/1- ⁇ -tocopherol.
  • the aged films were again subjected to FTIR analysis on the Bruker Optics FTIR spectrometer.
  • the resulting FTIR chart was then analyzed to determine the OI in accordance with the method set forth above.
  • the additional FTIR analysis was performed to eliminate the d/1- ⁇ -tocopherol peak from interfering with the oxidation peaks.
  • the DOE evaluated five factors: preheat temperature, dose rate, irradiation dose, d/1- ⁇ -tocopherol concentration, and predetermined hold time, i.e., the time elapsed between removal of the UHMWPE blend from the oven until the initiation of electron beam irradiation.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands.
  • the GUR 1050 UHMWPE power was mechanically blended with the d/1- ⁇ -tocopherol by high intensity blending using an Eirich Mixer, available from Eirich Machines, Inc. of Gurnee, Illinois.
  • the GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol in several batches to create UHMWPE blends having between 0.14 and 0.24 wt. % d/1- ⁇ -tocopherol, as set forth below in TABLE 7.
  • Each of the UHMWPE blends were then compression molded into 2.5 inch diameter and 1 inch thick pucks.
  • Each of the resulting pucks was then preheated by heating in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature.
  • the preheat temperature was selected from between 85°C and 115°C, as set forth in TABLE 7 below.
  • the pucks were then removed from the convection oven and held for a predetermined period of time ranging between 7 minutes and 21 minutes, as set forth in TABLE 7 below. After the expiration of the predetermined hold time, the pucks were electron beam irradiated utilizing Method A of TABLE 2.
  • the pucks were irradiated at a dose rate selected from between 30 kGy-m/min and 75 kGy-m/min until a total dose selected from between 160 kGy and 190 kGy was administered, as set forth in TABLE 7 below. Cylindrical cores approximately 1 inch long were machined from the pucks. The cylindrical cores were then analyzed using a Bruker EMX/EPR (electron paramagnetic resonance) spectrometer, which has a detection limit of 0.01 X 10 15 spins/gram and is available from Bruker Optics of Billerica, Massachusetts.
  • a dose rate selected from between 30 kGy-m/min and 75 kGy-m/min until a total dose selected from between 160 kGy and 190 kGy was administered, as set forth in TABLE 7 below. Cylindrical cores approximately 1 inch long were machined from the pucks. The cylindrical cores were then analyzed using a Bruker EMX/EPR (ele
  • GUR 1050 and GUR 1020 medical grade UHMWPE powders were obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands.
  • the GUR 1050 and GUR 1020 were separately mechanically blended with the d/1- ⁇ -tocopherol by low intensity blending using a Diosna PlOO Granulator, available from Diosna GmbH of Osnabruck, Germany, a subsidiary of Multimixing S.A.
  • Both the GUR 1050 and the GUR 1020 resins were mixed with the d/1- ⁇ -tocopherol in several batches to create UHMWPE blends of both resin types having 0.2 wt.
  • % 0.5 wt. %, and 1.0 wt. % d/1- ⁇ -tocopherol.
  • Each batch of blended material was compression molded into a slab and cut into bars. Each of the resulting bars was then preheated by heating the bars in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature.
  • the preheat temperature was selected from 40 0 C, 100 0 C, 110 0 C and 122.2°C, as set forth in TABLE 8 below.
  • the UHMWPE blend bars were electron beam irradiated according to Method C, set forth in TABLE 2 above, at a selected dose rate until a selected total irradiation dose was administered.
  • the dose rate was selected from 75 kGy-m/min, 155 kGy-m/min, and 240 kGy-m/min and the total irradiation dose was selected from 90 kGy, 120 kGy, 150 kGy, 200 kGy, and 250 kGy.
  • Type V tensile specimens as defined by the American Society for Testing and Materials (ASTM) Standard D638, Standard Test Method for Tensile Properties of Plastics, were machined from each of the UHMWPE blend bars.
  • Type V tensile specimens were then subjected to ultimate tensile elongation, UTS, and YS testing in accordance with ASTM Standard D638.
  • Izod specimens were also machined from each of the UHMWPE blend bars and tested for izod impact strength according to ASTM Standard D256, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
  • Dynamic mechanical analysis (DMA) specimens were also machined from each of the UHMWPE blend bars and tested using a Model DMA 2980 Dynamic Mechanical Analyzer from TA Instruments of New Castle, Delaware.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands.
  • the GUR 1050 was mechanically mixed with the d/l- ⁇ - tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois.
  • the GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol in several batches to create UHMWPE blends having a selected wt. % of d/1- ⁇ -tocopherol.
  • the wt. % of d/1- ⁇ -tocopherol was selected from 0.14 wt.
  • % 0.19 wt. %, and 0.24 wt. % d/1- ⁇ -tocopherol.
  • Each of the blends were then consolidated and formed into 2.5 inch diameter and 1 inch thick pucks.
  • Each of the resulting pucks was then preheated by heating the pucks in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature.
  • the preheat temperature was selected from 85°C, 100 0 C, and 115°C, as set forth in TABLE 9 below.
  • the UHMWPE blend pucks were then removed from the convection oven for a cooling period.
  • the cooling period was selected from 7 minutes, 14 minutes, and 21 minutes, as set forth in TABLE 9 below.
  • the pucks were then electron beam irradiated according to Method A, set forth in TABLE 2 above, at a selected dose rate until a selected total irradiation dose was administered.
  • the dose rate was selected from 30 kGy-m/min, 52.5 kGy- m/min, and 75 kGy-m/min and the total irradiation dose was selected from 160 kGy, 175 kGy, and 190 kGy.
  • Pin-on-disc (POD) specimens in the form cylinders having a 9 mm diameter and 13 mm thickness were then machined from the UHMWPE blend pucks.
  • a bidirectional pin-on-disc wear tester was then used to measure the wear rate of UHMWPE pins articulating against polished cobalt- chrome discs lubricated by 100% bovine serum.
  • the bidirectional motion for the pin-on-disc wear tester was generated by a computer controlled XY table, available from the Compumotor Division of Parker Hannifin of Cleveland, Ohio, which was programmed to move in a 10 mm by 5 mm rectangular pattern. Affixed atop the XY table was a basin containing six cobalt-chrome discs polished to an implant quality finish. The XY table and basin were mounted on a servo-hydraulic MTS machine, available from MTS of Eden Prairie, Minnesota. The MTS machine then loaded the UHMWPE blend pin specimens against the polished cobalt-chrome discs.
  • the MTS machine was programmed to produce a Paul-type curve in synchronization with the motion of the XY table.
  • a Paul-type curve is explained in detail in Forces Transmitted By Joints in the Human Body by J.P. Paul and published by in the Proceedings Institution of Mechanical Engineers at Vol. 181, Part 37, pages 8-15, the entire disclosure of which is expressly incorporated by reference herein.
  • the peak load of the Paul-type loading curve corresponded to a peak contact pressure of 6.5 MPa between each of the UHMWPE pin specimens and the cobalt-chrome discs. Tests were conducted at 2 Hz to a total of 1.128 x 10 6 cycles.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having
  • d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands.
  • the GUR 1050 was mechanically blended with the d/1- ⁇ -tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois.
  • the GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol to create a UHMWPE blend having 0.2 wt. % d/1- ⁇ -tocopherol.
  • a portion of the UHMWPE blend was then compression molded into a block. Another portion of the UHMWPE blend was compression molded into a substrate to create a preform.
  • the substrate was a 70 mm diameter porous metal substrate in the form of a near-net shape acetabular shell.
  • the porous metal substrate was produced using Trabecular MetalTM technology generally available from Zimmer, Inc., of Warsaw, Indiana, and described in detail above. This process was repeated to create five different preforms.
  • the preforms were then individually heated to a preheat temperature in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois. The preheat temperature was selected from 100 0 C, 12O 0 C, and 125 0 C.
  • the preforms were irradiated using Method B, set forth in TABLE 2 above, until a total irradiation dose was received.
  • the total irradiation dose was selected from 50 kGy, 75 kGy, and 150 kGy.
  • the UHMWPE block was heated to a preheat temperature of 100 0 C and irradiated using Method B until a total irradiation dose of 150 kGy was received by the UHMWPE block.
  • the temperature of the preforms was measured at the UHMWPE blend/substrate interface, at a point in the UHMWPE blend adjacent to the UHMWPE blend/substrate interface, and at a point in the center of the UHMWPE blend.
  • Each of the temperature measures were taken using a Type J thermocouple.
  • the temperature at the center of the UHMWPE blend block was also measured using a Type J thermocouple. Based on the results, the presence of a porous substrate resulted in higher temperature readings in the UHMWPE blend. This is likely a result of substrate reaching a higher maximum temperature than the UHMWPE during irradiation.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands.
  • the GUR 1050 was mechanically blended with the d/l- ⁇ - tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois.
  • the GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol to create a UHMWPE blend having 0.5 wt. % d/1- ⁇ - tocopherol .
  • a portion of the UHMWPE blend was compression molded into a substrate to create a preform.
  • the substrate was a 70 mm diameter porous metal substrate in the form of a near-net shape acetabular shell.
  • the porous metal substrate was produced using Trabecular MetalTM technology generally available from Zimmer, Inc., of Warsaw, Indiana, and described in detail above. This process was repeated to create three different preforms. The preforms were then heated in a convection oven to a preheat temperature of 11O 0 C for a minimum of 12 hours.
  • Two of the preforms were then irradiated using Method A, as set forth in TABLE 2 above, with the substrate of one of the preforms facing the irradiation source and the substrate of the other preform facing away from the irradiation source. With the preforms in these positions, they were exposed to a first, 100 kGy dose of irradiation. The preforms were then allowed to sit in ambient air for 20 minutes. After the expiration of 20 minutes, the preforms were exposed to a second, 100 kGy dose of irradiation, for a total irradiation dose of 200 kGy.
  • the remaining preform was irradiated using Method B, as set forth in TABLE 2 above, with the substrate of the preform facing the irradiation source. With the preform in this position, the preform was exposed to a first, 100 kGy dose of irradiation. The preform was then placed in a convection oven which maintained a constant temperature of 11O 0 C. After the expiration of four hours, the preform was removed from the convection oven and exposed to a second, 100 kGy dose of irradiation, for a total irradiation dose of 200 kGy.
  • Each of the preforms was then cut through the center and the substrate removed.
  • the UHMWPE blend was then microtomed and subjected to FTIR analysis using a Bruker FTIR Spectrometer, available from Bruker Optics of Billerica, Massachusetts, to determine the TVI of the UHMWPE blend. This analysis was performed on the thickest part of the specimens.
  • a sample of the UHMWPE blend was then subjected to DSC using a TA Instruments QlOOO, available from TA Instruments of New Castle, Delaware, to determine the percent crystallinity of the UHMWPE blend. This analysis was repeated for samples of the UHMWPE blend taken from different locations.
  • the percent crystallinity decreased as the UHMWPE blend approached the interface with the substrate, with the percent crystallinity reaching 48% in the translucent region near the UHMWPE blend/substrate interface, as shown in TABLE 12 below.
  • the TVI of the UHMWPE blend was substantially more uniform throughout the UHMWPE blend and the percent crystallinity varied by only 2.2%. This may be a result of more uniform crosslinking occurring in the preform in which the substrate faced away from the irradiation source during irradiation.
  • Design Expert 6.0.10 software obtained from Stat- Ease, Inc. Minneapolis, MN, was utilized to setup a central composite response surface Design of Experiment (DOE). The DOE evaluated three different variables: d,l- ⁇ -tocopherol concentration, preheat temperature, total irradiation dose administered, and irradiation dose per pass.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands.
  • the GUR 1050 was mechanically mixed with the d/l- ⁇ - tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois.
  • the GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol in several batches to create UHMWPE blends having a selected wt. % of d/1- ⁇ -tocopherol.
  • the wt. % of d/1- ⁇ -tocopherol was selected from 0.10 wt.
  • the substrate was a 70 mm outer diameter porous metal substrate in the form of a near-net shape acetabular shell.
  • the porous metal substrate was produced using Trabecular MetalTM technology generally available from Zimmer, Inc., of Warsaw, Indiana, and described in detail above.
  • the resulting preforms were then placed inside a piece of expandable braided polyethylene terephthalate sleeving and vacuum sealed inside an aluminum-metallized plastic film pouch, such a pouch formed from a polyethylene terephthalate resin, such as Mylar®, which has been coated with a metal, such as aluminum, to reduce gas diffusion rates through the film.
  • Mylar is a registered trademark of DuPont Teijin Films U.S. Limited Partnership of Wilmington, Delaware.
  • the preforms remained in this condition until they were removed in preparation for exposing the preforms to irradiation.
  • each of the resulting preforms was preheated by heating the preforms in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature, which was held for a minimum of 12 hours.
  • the preheat temperature was selected from 60 0 C, 70 0 C, 85°C, 100 0 C, and 110 0 C, as set forth in TABLE 13 below.
  • the preforms were then exposed to a selected total irradiation dose according to Method B, as set forth above in TABLE 2.
  • the total irradiation dose was selected from 133 kGy, 150 kGy, 175 kGy, 200 kGy, and 217 kGy.
  • the total irradiation dose was divided and administered to the preforms in either two equal passes or three equal passes, which are combined to achieve the total irradiation dose.
  • the preforms indicated to be "Block 1" in TABLE 13 below received the total irradiation dose in two equal passes, while the preforms indicated to be “Block 2" in TABLE 13 received the total irradiation dose in three equal passes.
  • each of the UHMWPE blends was separated from the substrate and three Pin-on-Disc (POD) specimens in the shape of cylinders having a 9 mm diameter and 13 mm thickness were then machined from the UHMWPE blend pucks.
  • POD Pin-on-Disc
  • a bidirectional pin-on-disc wear tester was then used to measure the wear rate of UHMWPE pins articulating against polished cobalt- chrome discs lubricated by 100% bovine serum.
  • Affixed atop the XY table was a basin containing six cobalt-chrome discs polished to an implant quality finish.
  • the XY table and basin were mounted on a servo-hydraulic MTS machine, available from MTS of Eden Prairie, Minnesota. The MTS machine then loaded the UHMWPE blend pin specimens against the polished cobalt-chrome discs.
  • the MTS machine was programmed to produce a Paul-type curve [2] in synchronization with the motion of the XY table.
  • a Paul-type curve is explained in detail in Forces Transmitted By Joints in the Human Body by J.P. Paul and published in the Proceedings Institution of Mechanical Engineers at Vol. 181, Part 37, pages 8-15, the entire disclosure of which is expressly incorporated by reference herein.
  • the peak load of the Paul-type loading curve corresponded to a peak contact pressure of 6.5 MPa between each of the UHMWPE pin specimen and the cobalt-chrome discs. Tests were conducted at 2 Hz to a total of 1.128 x 10 6 cycles.
  • the post-aged films were placed in boiling hexane for 24 hours to extract any d/1- ⁇ -tocopherol remaining in the films.
  • the percentage of d/1- ⁇ -tocopherol extracted from the UHMWPE blend films was then determined.
  • the remaining UHMWPE blend from the monoblock was then machined into 1/16" flats and Type V tensile specimens, as defined by ASTM Standard D638, Standard Test Method for Tensile Properties of Plastics, were machined from the flats.
  • the amount of d/1- ⁇ -tocopherol eluted from UHMWPE blends formed into consolidated pucks was investigated over a period of 8 weeks.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands.
  • the GUR 1050 was mechanically mixed with the d/1- ⁇ -tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois.
  • the GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol to create a UHMWPE blend having 0.25 wt.
  • the UHMWPE blend was then compression molded into a series of 2.5 inch diameter and 1.5 inch thick pucks.
  • the pucks were preheated in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature. The preheat temperature was selected from 85 0 C and 115 0 C . Once preheated, the pucks were then exposed to a selected total irradiation dose according to Method A, as set forth above in TABLE 2. The total irradiation dose was selected from 160 kGy and 190 kGy.
  • One centimeter cubes were then machined from the pucks and placed in glass jars containing 100 ml of deionized water. The jars were then sealed using Teflon® seals and caps, available from E.I. DuPont Nemours and Company. Teflon® is a registered trademark of E. I. DuPont Nemours and Company of 1007 Market Street, Wilmington Delaware. [0083] Each of the glass jars was then placed in a water bath that was thermostatically held at a test temperature. The test temperature was selected from 37°C and 70 0 C.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands.
  • the GUR 1050 was mechanically blended with the d/l- ⁇ - tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois.
  • the GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol to create a UHMWPE blend having less than 0.5 wt. % d/1- ⁇ -tocopherol and was compression molded.
  • the compression molded UHMWPE blend was then sectioned and subjected to analysis with a spectrophotometer to determine the color of the UHMWPE blend. Additionally, consolidated UHMWPE powder absent tocopherol was also subjected to analysis with a spectrophotometer to determine the color of the consolidated UHMWPE absent tocopherol.
  • a Color Checker 545 Portable Spectrophotometer hand held unit available from X-Rite Incorporated of Grand Rapids, Michigan, was used to test the material samples.
  • This device uses a system illuminant D65 and has a degree observer, i.e., the placement of the device relative to the sample being tested, of 10 degrees. The device was calibrated using a calibration tile and the average results per reading were recorded for comparison with the test samples. Each of the samples were then subjected to analysis.
  • GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1- ⁇ -tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically blended with the d/l- ⁇ - tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1- ⁇ -tocopherol to create UHMWPE blends having 0.2, 0.5, or 1.0 weight percent d/1- ⁇ -tocopherol.
  • the UHMWPE blends were then compression molded to form pucks that were then machined to form cubes having 5 mm sides.
  • the UHMWPE cubes were then heated to a preheat temperature selected from 40 0 C, 100 0 C, and 110 0 C. Once heated to the selected preheat temperature, the UHMWPE blends were irradiated using Method C, set forth in TABLE 2 above, until a total irradiation dose was received.
  • the total irradiation dose was selected from of 90 kGy, 120 kGy, 150 kGy, and 200 kGy.
  • the swell ratio in stabilized o-xylene at 130 0 C was measured in the compression molded direction.
  • the results of the testing are set forth in TABLE 16 below. For example, it was found that a UHMWPE blend having nominally 1.0 % weight percent of d/l- ⁇ - tocopherol when preheated to nominally 40 0 C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a q s less than about 4.3, a ⁇ x more than about 0.090 and a M c less than about 11,142.
  • a UHMWPE blend having nominally 1.0 % weight percent of d/1- ⁇ -tocopherol when preheated to nominally 110 0 C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a q s less than about 3.6, a ⁇ x more than about 0.117 and a M c less than about 8,577.
  • a UHMWPE blend having nominally 0.5 % weight percent of d/l- ⁇ - tocopherol when preheated to nominally 40 0 C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a q s less than about 3.8, a ⁇ x more than about 0.119 and a M c less than about 8,421.
  • a UHMWPE blend having nominally 0.5 % weight percent of d/1- ⁇ -tocopherol when preheated to nominally 110 0 C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a q s less than about 3.6, a ⁇ x more than about 0.109 and a M c less than about 9,166.
  • a UHMWPE blend having nominally 0.2 % weight percent of d/1- ⁇ -tocopherol when preheated to nominally 40 0 C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a q s less than about 2.8, a ⁇ x more than about 0.187 and a M c less than about 5,351.
  • the UHMWPE blend having nominally 0.2 % weight percent of d/1- ⁇ -tocopherol when preheated to nominally 110 0 C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a q s less than about 3.0, a ⁇ x more than about 0.164 and a M c less than about 6,097.
  • the crosslinked UHMWPE blend exhibited a crosslink density of less than 0.200 moles/dm 3 .
  • the crosslinked UHMWPE blend having at least 0.1 weight percent antioxidant exhibited a crosslink density of less than 0.190 moles/dm 3 .
  • the crosslinked UHMWPE blend having at least 0.1 weight percent antioxidant exhibited a crosslink density of more than 0.200 moles/dm 3 and had a molecular weight between crosslinks of less than 11,200 daltons.

Abstract

An antioxidant combined with UHMWPE prior to subjecting the UHMWPE to crosslinking irradiation. In one exemplary embodiment, the antioxidant is tocopherol. After the antioxidant is combined with the UHMWPE, the resulting blend may be formed into slabs, bar stock, and/or incorporated into a substrate, such as a metal, for example. The resulting product may then be subjected to crosslinking irradiation. In one exemplary embodiment, the UHMWPE blend is preheated prior to subjecting the same to crosslinking irradiation. Once irradiated, the UHMWPE blended product may be machined, packaged, and sterilized in accordance with conventional techniques.

Description

AN ANTIOXIDANT STABILIZED CROSSLINKED ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE FOR MEDICAL DEVICE APPLICATIONS
Cross-Reference To Related Applications
[0001] This application claims the benefit under Title 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Serial No. 60/922,738, entitled AN ANTIOXIDANT STABILIZED CROSSLINKED ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE FOR MEDICAL DEVICE APPLICATIONS, filed on April 10, 2007, the entire disclosure of which is expressly incorporated by reference herein.
BACKGROUND
1. Field of the Invention.
[0002] The present invention relates to crosslinked ultra-high molecular weight polyethylene and, particularly, to antioxidant stabilized, crosslinked ultra-high molecular weight polyethylene.
2. Description of the Related Art.
[0003] Ultra-high molecular weight polyethylene (UHMWPE) is commonly utilized in medical device applications. In order to beneficially alter the material properties of UHMWPE and decrease its wear rate, UHMWPE may be crosslinked. For example, UHMWPE may be subjected to electron beam irradiation, gamma irradiation, or x-ray irradiation, causing chain scissions of the individual polyethylene molecules as well as the breaking of C-H bonds to form free radicals on the polymer chains. While free radicals on adjacent polymer chains may bond together to form crosslinked UHMWPE, some free radicals may remain in the UHMWPE following irradiation, which could potentially combine with oxygen, causing oxidation of the UHMWPE.
[0004] Oxidation detrimentally affects the material properties of UHMWPE and may also increase its wear rate. To help eliminate the free radicals that are formed during irradiation and that may continue to exist thereafter, UHMWPE may be melt annealed by heating the crosslinked UHMWPE to a temperature in excess of its melting point. By increasing the temperature of the UHMWPE above its melting point, the mobility of the individual polyethylene molecules is significantly increased, facilitating additional crosslinking of the polyethylene molecules and the quenching of free radicals.
[0005] While melt annealing irradiated, crosslinked UHMWPE helps to eliminate free radicals and reduce the potential for later oxidation of the UHMWPE, the melt annealing could potentially reduce other mechanical properties of the UHMWPE. SUMMARY
[0006] The present invention relates to a crosslinked UHMWPE and, particularly, an antioxidant stabilized, crosslinked UHMWPE. In one exemplary embodiment, an antioxidant is combined with UHMWPE prior to subjecting the UHMWPE to crosslinking irradiation. In one exemplary embodiment, the antioxidant is tocopherol. After the antioxidant is combined with the UHMWPE, the resulting blend may be formed into slabs, bar stock, and/or incorporated into a substrate, such as a metal, for example. The resulting product may then be subjected to crosslinking irradiation. In one exemplary embodiment, the UHMWPE blend is preheated prior to subjecting the same to crosslinking irradiation. Once irradiated, the UHMWPE blended product may be machined, packaged, and sterilized in accordance with conventional techniques.
[0007] In one exemplary embodiment, the formed UHMWPE/antioxidant blend may be subjected to multiple passes of crosslinking irradiation. By irradiating the blend in multiple passes, the maximum dose of radiation received by the UHMWPE blend at any one time is lessened. As a result, the maximum temperature of the UHMWPE blend reached during irradiation is correspondingly lessened. This allows for the UHMWPE to maintain a higher level of desirable mechanical properties and prevents substantial melting of the UHMWPE. In one exemplary embodiment, the UHMWPE is cooled after each individual pass of crosslinking irradiation. By allowing the UHMWPE blend to cool, the temperature at the time of subsequent irradiation is high enough to encourage the mobility of the individual polyethylene molecules, but is also low enough that the temperature increase experienced during irradiation is unlikely to substantially alter any desired material properties of the UHMWPE blend.
[0008] Advantageously, by incorporating an antioxidant, such as tocopherol, into the UHMWPE prior to subjecting the same to crosslinking irradiation, the UHMWPE may be stabilized without the need for post irradiation melt annealing or any other post-irradiation treatment to quench free radicals. Specifically, an antioxidant, such as tocopherol, acts as a free radical scavenger and, in particular, acts as an electron donor to stabilize free radicals. While tocopherol itself then becomes a free radical, tocopherol is a stable, substantially unreactive free radical. Additionally, because of the substantially reduced level of oxidation that occurs using a UHMWPE/antioxidant blend, the amount of oxidized material that must be removed to form a final, implantable medical component is reduced. As a result, the size of the stock material subjected to irradiation may be smaller in dimension, making it easier to handle and easier to manufacture into final medical components. [0009] Moreover, by subjecting the UHMWPE/antioxidant blend to multiple passes of irradiation, the UHMWPE blend may be integrally incorporated onto a substrate prior to irradiation. Specifically, as a result of separating the total radiation dose into a plurality of individual passes, the temperature of the UHMWPE blend at the UHMWPE/substrate interface remains low enough that separation of the UHMWPE blend and the substrate is substantially prevented. Further, even after irradiation, some antioxidant remains unreacted within the UHMWPE blend, which may continue to quench free radicals throughout the lifetime of the medical component. Thus, even after the medical component is implanted, the antioxidant may continue to quench free radicals and further reduce the likelihood of additional oxidation.
[0010] In one form thereof, the present invention provides method for processing UHMWPE for use in medical applications, the method including the steps of: combining UHMWPE with an antioxidant to form a blend having 0.01 to 3.0 weight percent of the antioxidant, the UHMWPE having a melting point; processing the blend to consolidate, the consolidated blend having a melting point; preheating the consolidated blend to a preheat temperature below the melting point of the consolidated blend; and irradiating the consolidated blend while maintaining the consolidated blend at a temperature below the melting point of the consolidated blend
[0011] In another form thereof, the present invention provides a crosslinked UHMWPE blend for use in medical implants prepared by a process including the steps of: combining UHMWPE with an antioxidant to form a blend having 0.1 to 3.0 weight percent antioxidant; processing the blend to consolidate the blend, the consolidated blend having a melting point; preheating the consolidated blend to a preheat temperature below the melting point of the consolidated blend; and irradiating the consolidated blend with a total irradiation dose of at least 100 kGy while maintaining the consolidated blend at a temperature below the melting point of the consolidated blend.
BRIEF DESCRIPTION OF THE DRAWING
[0012] The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
[0013] Fig. 1 is schematic depicting exemplary processes for preparing and using the crosslinked UHMWPE blends of the present invention; and
[0014] Fig. 2 is a perspective view of an exemplary medical implant formed form a UHMWPE blend and a substrate.
[0015] The exemplifications set out herein illustrate embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner. DETAILED DESCRIPTION
[0016] Referring to Fig. 1, UHMWPE is combined with an antioxidant to create a UHMWPE/antioxidant blend (the "UHMWPE blend"). Once combined, the UHMWPE blend may be processed to fabricate the same into a desired form. Once formed, the UHMWPE blend may be preheated and subjected to cross-linking irradiation. The crosslinked UHMWPE blend may then be subjected to machining, packaging, and sterilization.
[0017] To create the UHMWPE/antioxidant blend, any medical grade UHMWPE powder may be utilized. For example, GUR 1050 and GUR 1020 powders, both commercially available from Ticona, having North American headquarters located in Florence, Kentucky, may be used. Similarly, while any antioxidant, such as Vitamin C, lycopene, honey, phenolic antioxidants, amine antioxidants, hydroquinone, beta-carotene, ascorbic acid, CoQ-enzyme, and derivatives thereof, may be used, the UHMWPE blend referred to herein is a UHMWPE/tocopherol, i.e., Vitamin E, blend. Additionally, as any tocopherol may be used in conjunction with the present invention, such as d- α-tocopherol, d,l-α-tocopherol, or α-tocopherol acetate, unless otherwise specifically stated herein, the term "tocopherol" in its generic form refers to all tocopherols. However, the synthetic form, d,l- α-tocopherol, is the most commonly used.
[0018] In combining UHMWPE and tocopherol, any mechanism and/or process achieving a substantially homogenous blend of the components may be utilized. In one exemplary embodiment, solvent blending is utilized. In solvent blending, tocopherol is mixed with a volatile solvent to lower the viscosity of the tocopherol and facilitate homogenous blending of the tocopherol with the UHMWPE. Once the tocopherol is mixed with the solvent, the tocopherol/solvent mixture may be combined with the UHMWPE, such as with a cone mixer. The solvent is then evaporated, leaving only the UHMWPE/tocopherol blend. In another exemplary embodiment, tocopherol may be blended with UHMWPE by precision coating or atomization. For example, tocopherol may be precision coated onto the UHMWPE powder using a MP-I MULTI-PROCESSOR™ Fluid Bed connected to a laboratory module Precision Coater available from Niro Inc. of Columbia, Maryland. MULTI-PROCESSOR™ is a trademark of Niro Inc.
[0019] In another exemplary embodiment, low intensity mixing may be used. Low intensity, i.e. low shear, mixing may be performed using a Diosna PlOO Granulator, available from Diosna GmbH of Osnabruck, Germany, a subsidiary of Multimixing S. A. In another exemplary embodiment, high shear mixing may be used. High shear mixing of UHMWPE and tocopherol may be achieved using a RV02E or a R05T High Intensity Mixer, both commercially available from Eirich Machines of Gurnee, Illinois. Alternatively, high shear mixing may be achieved using a Collette ULTIMAPRO™ 75 One Pot Processor available from Niro, Inc. of Columbia, Maryland. ULTIMAPRO™ is a trademark of Niro, Inc. Based on the results of testing the above identified methods useful for combining UHMWPE and tocopherol, high shear mixing appears to provide favorable results, including an acceptable homogeneity and a low number of indications, i.e., areas of high tocopherol concentrations relative to the surrounding areas as determined by visual inspection under ultraviolet light or by chemical measurements, such as infrared spectroscopy or gas chromatography. Additionally, in other exemplary embodiments, the fluidized bed, emulsion polymerization, electrostatic precipitation, wetting or coating of particles, and/or master batch blending may be used to combine the UHMWPE and tocopherol.
[0020] Irrespective of the method used to combine the UHMWPE and tocopherol to form the UHMWPE blend, the components are combined in ratios necessary to achieve a tocopherol concentration of between 0.01 weight percent (wt. %) and 3 wt. %. In exemplary embodiments, the tocopherol concentration may be as low as 0.01 wt. %, 0.05 wt. %, and 0.1 wt. %, or as high as 0.6 wt. %, 0.8 wt. %, and 1.0 wt. %, for example. In determining the appropriate amount of tocopherol, two competing concerns exist. Specifically, the amount selected must be high enough to quench free radicals in the UHMWPE, but must also be low enough to allow sufficient crosslinking so as to maintain acceptable wear properties of the UHMWPE. In one exemplary embodiment, a range of tocopherol from 0.1 to 0.6 wt. % is used to successfully quench free radicals while still maintaining acceptable wear properties.
[0021] Once the UHMWPE blend is substantially homogenously blended and the amount of tocopherol is determined to be within an acceptable range, the UHMWPE blend is processed to consolidate the UHMWPE blend, as indicated at Step 12 of Fig. 1. The UHMWPE blend may be processed by compression molding, net shape molding, injection molding, extrusion, monoblock formation, fiber, melt spinning, blow molding, solution spinning, hot isostatic pressing, high pressure crystallization, and films. In one exemplary embodiment, as indicated at Step 16 of Fig. 1, the UHMWPE blend is compression molded into the form of a slab. In another exemplary embodiment, indicated at Step 14 of Fig. 1, the UHMWPE blend may be compression molded into a substrate, as described in further detail below. For example, the UHMWPE blend may be compression molded into a roughened surface by macroscopic mechanically interlocking the UHMWPE blend with features formed at the roughened surface of the substrate. Similarly, the UHMWPE blend may be molded into another polymer or another antioxidant stabilized polymer. Alternatively, the UHMWPE blend may be net shape molded into the shape of the final orthopedic component at Step 15 of Fig. 1. In this embodiment, if the final orthopedic component includes a substrate, the UHMWPE blend is net shape molded into the substrate at Step 15 and is processed in the same manner as a UHMWPE blend compression molded into a substrate at Step 14, as described in detail below. In contrast, if the UHMWPE blend is net shape molded at Step 15, but is not net shape molded into a substrate, the component is then processed in the same manner as a UHMWPE blend compression molded into a slab at Step 16, as described in detail below.
[0022] In one exemplary embodiment, the substrate may be a highly porous biomaterial useful as a bone substitute, cell receptive material, tissue receptive material, an osteoconductive material, and/or an osteoinductive material. A highly porous biomaterial may have a porosity as low as 55, 65, or 75 percent or as high as 80, 85, or 90 percent. An example of such a material is produced using Trabecular Metal™ technology generally available from Zimmer, Inc., of Warsaw, Indiana. Trabecular Metal™ is a trademark of Zimmer Technology, Inc. Such a material may be formed from a reticulated vitreous carbon foam substrate which is infiltrated and coated with a biocompatible metal, such as tantalum, etc., by a chemical vapor deposition ("CVD") process in the manner disclosed in detail in U.S. Patent No. 5,282,861, the entire disclosure of which is expressly incorporated herein by reference. In addition to tantalum, all porous coating and other metals such as niobium, tivanium, cancellous structured titanium, or alloys of tantalum and niobium with one another or with other metals may also be used.
[0023] After processing, the UHMWPE blend may be heated to a temperature below the melting point of the UHMWPE blend to relieve any residual stresses that may have been formed during processing and to provide additional dimensional stability. In one exemplary embodiment, the melting point of the UHMWPE blend is determined according to standard methods using differential scanning calorimetry. Heating the UHMWPE blend below the melting point creates a more homogenous mixture and increases the final crystallinity. In one exemplary embodiment, the UHMWPE blend is heated to a temperature below its melting point, e.g., between 80° Celsius (C) and 14O0C, and held isothermally for six hours. In other exemplary embodiments, the UHMWPE may be heated to a temperature as low as 8O0C, 9O0C, 950C, or 1000C or as high as HO0C, 1150C, 12O0C, and 1260C. In other exemplary embodiments the temperature may be held for as short as 0.5 hours, 1.0 hours, 1.5 hours, or 2.0 hours or as long as 3.0 hours, 4.0 hours, 5.0 hours, or 6.0 hours. In another exemplary embodiment, the UHMWPE blend is heated after irradiation, described below, to provide similar benefits to the UHMWPE blend.
[0024] Irrespective of whether the UHMWPE blend is heated to a temperature below the melting point of the UHMWPE blend to relieve any residual stress, the processed UHMWPE blend is preheated at Steps 18, 20 of Fig. 1 in preparation for receiving crosslinking irradiation. In one exemplary embodiment, the processed UHMWPE blend may be preheated to any temperature between room temperature, approximately 230C, up to the melting point of the UHMWPE blend, approximately 14O0C. In another exemplary embodiment, the UHMWPE blend is preheated to a temperature between 6O0C and 13O0C. In other exemplary embodiments, the UHMWPE blend may be heated to a temperature as low as 6O0C, 7O0C, 8O0C, 9O0C, or 1000C or as high as HO0C, 12O0C, 13O0C, 1350C, 14O0C. By preheating the processed UHMWPE blend before irradiation, the material properties of the resulting irradiated UHMWPE blend are affected. Thus, the material properties for a UHMWPE blend irradiated at a relatively cold, e.g., approximately 4O0C, temperature are substantially different than the material properties for a UHMWPE blend irradiated at a relatively warm, e.g., approximately 12O0C to approximately 14O0C, temperature. [0025] However, while the material properties of a UHMWPE blend irradiated at a lower temperature may be superior, the wear properties, fatigue properties, oxidation level, and free radical concentration are all negatively affected. In contrast, while irradiation of a UHMWPE blend at a higher temperature may slightly diminish the material properties, it also results in a higher crosslinking efficiency due to higher chain mobility and adiabatic melting. Additionally, by irradiating at a higher temperature, a greater number of crosslinks are formed. Thus, there are less free radicals in the UHMWPE blend and less tocopherol is consumed by reacting with the free radicals during irradiation and immediately thereafter. As a result, a greater amount of tocopherol remains in the blend that may react with free radicals during the UHMWPE blend's lifecycle, i.e., after irradiation. This, in turn, increases the overall oxidative stability of the UHMWPE blend. [0026] Referring specifically to Step 18, when the UHMWPE blend and its associated substrate are irradiated, the substrate may rapidly increase in temperature. Thus, the temperature increase of the substrate should be taken into account when determining the preheat temperature of the UHMWPE blend and substrate. In one exemplary embodiment, a UHMWPE blend formed to a highly porous substrate manufactured using Trabecular Metal™ technology is preheated to a temperature between 4O0C and 12O0C prior to subjecting the substrate and UHMWPE blend to crosslinking irradiation. A further consideration that may impact the preheat temperature is the material used to form any tooling that may contact the UHMWPE blend and substrate during irradiation. For example, a holder used to retain the UHMWPE blend and substrate in a desired position during irradiation may rapidly increase in temperature at a faster rate than the UHMWPE blend. In order to substantially eliminate this concern, the tooling should have a heat capacity substantially equal to or greater than the heat capacity of the UHMWPE blend. In one exemplary embodiment, the UHMWPE blend has a heat capacity substantially between 1.9 J/g 0C and 10 J/g 0C. Thus, polyether ether ketone, for example, having a heat capacity of approximately 2.8 J/g 0C, may be used to form the tooling. Alternative materials that may be used to form the tooling also include carbon fiber and other composites. [0027] After the desired preheat temperature of the UHMWPE blend is achieved, the UHMWPE blend is subsequently irradiated at Steps 26, 28 to induce crosslinking of the UHMWPE. Thus, as used herein, "crosslinking irradiation" refers to exposing the UHMWPE blend to ionizing irradiation to form free radicals which may later combine to form crosslinks. The irradiation may be performed in air at atmospheric pressure, in a vacuum chamber at a pressure substantially less then atmospheric pressure, or in an inert environment, i.e., in an argon environment, for example. The irradiation is, in one exemplary embodiment, electron beam irradiation. In another exemplary embodiment, the irradiation is gamma irradiation. In yet another exemplary embodiment, steps 26, 28 do not require irradiation, but instead utilize silane crosslinking. In one exemplary embodiment, crosslinking is induced by exposing the UHMWPE blend to a total radiation dose between about 25 kGy and 1 ,000 kGy. In another exemplary embodiment, crosslinking is induced by exposing the UHMWPE blend to a total radiation dose between about 50 kGy and 250 kGy in air. These doses are higher than doses commonly used to crosslink UHMWPE due to the presence of tocopherol in the UHMWPE blend. Specifically, the tocopherol reacts with some of the polyethylene chains that became free radicals during irradiation. As a result, a higher irradiation dose must be administered to the UHMWPE blend to achieve the same level of crosslinking that would occur at a lower dose in standard UHMWPE, i.e., UHMWPE absent an antioxidant.
[0028] However, the higher irradiation dose needed to crosslink the UHMWPE blend to the same level as UHMWPE absent an antioxidant may cause a greater temperature increase in the UHMWPE blend. Thus, if the entire irradiation dose is administered to the UHMWPE blend at once, the UHMWPE blend may be heated above the melting point of the UHMWPE blend, approximately 14O0C, and result in melt annealing of the UHMWPE blend. Therefore, prior to irradiating the UHMWPE blend, a determination is made at Steps 22, 24 comparing the total crosslinking irradiation dose to be administered to the UHMWPE blend to the maximum individual dose of radiation that can be administered to the UHMWPE blend without raising the temperature of the UHMWPE blend near to and/or above its melting point.
[0029] Thus, if the total crosslinking irradiation dose determined in Steps 22, 24 is less then the maximum individual crosslinking dose that can be administered without raising the temperature of the UHMWPE near to and/or above the melting point, the UHMWPE is irradiated and the total crosslinking irradiation dose identified at Steps 22, 24 is administered in air. In one exemplary embodiment, the maximum individual crosslinking dose is between about 50 kGy and 1000 kGy. In one exemplary embodiment, the maximum individual crosslinking dose is 150 kGy for the UHMWPE blend alone (Step 24) and is 100 kGy for the UHMWPE blend and substrate combination (Step 22). However, the maximum individual crosslinking dose may be any dose that does not cause the UHMWPE blend to increase in temperature above the melting point of the UHMWPE blend. Additionally, the maximum individual crosslinking dose may be dependent on the type of irradiation used. Thus, the maximum individual crosslinking dose for electron beam irradiation may be different than the maximum individual crosslinking dose for gamma irradiation. In one exemplary embodiment of the UHMWPE blend and substrate, a heat sink may be attached to the substrate to dissipate heat therefrom and allow for the use of a higher individual irradiation dose, i.e., allow for a higher dose to be administered in a single pass. Further, in addition to the type of irradiation used, the dose rate, temperature at which the dose is administered, the amount of time between doses, and the level of tocopherol in the UHMWPE blend, may also affect the maximum individual crosslinking dose.
[0030] If, at step 24, the total crosslinking dose for the UHMWPE blend is determined to exceed the maximum individual dose of approximately 150 kGy, multiple irradiation passes are required. Similarly, if, at Step 22, the total crosslinking dose for the UHMWPE blend and substrate exceeds the maximum individual dose of approximately 100 kGy, multiple irradiation passes are required. The lower maximum individual dose for the UHMWPE blend and substrate results from the greater potential temperature increase of the substrate during irradiation. This potential temperature increase may be sufficient to melt or otherwise significantly alter the UHMWPE blend along the UHMWPE blend/substrate interface. For example, as a result of the different coefficients of thermal expansion between the UHMWPE blend and the substrate, cracking may occur in the UHMWPE blend if irradiated at an individual dose in excess of the maximum individual dose. [0031] For electron beam irradiation, the preheat temperature and dose level per pass are interdependent variables that are controlled by the specific heat of the materials being irradiated. The substrate material may heat to a significantly higher level than the polymer at the same irradiation dose level if the specific heat of the substrate is substantially lower than the specific heat of the polymer. The final temperature of the materials achieved during the irradiation can be controlled by a judicious choice of dose level per pass and preheat temperature, so that temperatures are high enough to promote crosslinking in the presence of tocopherol, but low enough to prevent substantial melting of the UHMWPE blend. Further, while partial melting may, in some embodiments, be desired, the final temperature should be low enough to prevent substantial melting and yet be high enough that free radical levels are reduced below the levels that would be present if no heating during irradiation had occurred. The propensity for cracking is most likely due to a combination of effects related to the weakness of the UHMWPE blend and expansion differences between the UHMWPE blend and substrate, whereas complete melting of the UHMWPE blend in the region near the substrate is due to overheating of the substrate. [0032] If it is determined in Step 24 that multiple irradiation passes are required, as set forth above, then the first dose of irradiation administered in Step 28 should be less than 150 kGy. In one exemplary embodiment, the total irradiation dose determined in Step 24 is divided into equal, individual irradiation doses, each less than 150 kGy. For example, if the total irradiation dose determined in Step 24 is 200 kGy, individual doses of 100 kGy each may be administered. In another exemplary embodiment, at least two of the individual irradiation doses are unequal and all of the individual irradiation doses do not exceeded 150 kGy, e.g., a total crosslinking dose of 200 kGy is dividing into a first individual dose of 150 kGy and a second individual dose of 50 kGy. [0033] Similarly, if it is determined in Step 22 that multiple irradiation passes are required, then the first dose of irradiation administered in Step 26 should be less than 100 kGy. In one exemplary embodiment, the total irradiation dose determined in Step 22 is divided into equal, individual irradiation doses, each less than 100 kGy. For example if the total irradiation dose determined in Step 22 is 150 kGy, individual doses of 75 kGy each may be administered. In another exemplary embodiment, at least two of the individual irradiation doses are unequal and all of the individual irradiation doses do not exceed 100 kGy, e.g., a total crosslinking dose of 150 kGy is divided into a first individual dose of 100 kGy and a second individual dose of 50 kGy.
[0034] Further, in the UHMWPE blend/substrate embodiment, by irradiating the UHMWPE blend first, i.e., directing the electron beam to contact the UHMWPE blend prior to contacting the substrate, the resulting UHMWPE blend has characteristics similar to an irradiated UHMWPE blend without the substrate and is generally suitable for normal applications. In contrast, by irradiating the substrate first, i.e., directing the electron beam to contact the substrate prior to contacting the UHMWPE blend, the resulting UHMWPE blend has characteristics that are substantially different than an irradiated UHMWPE blend without the substrate. Additionally, the differences, such as decreased crystallinity, are more pronounced near the UHMWPE blend/substrate interface and decrease as the UHMWPE blend moves away from the substrate.
[0035] In the event multiple irradiation passes are required as described in detail above, the temperature of the UHMWPE blend or UHMWPE blend and substrate may be equilibrated to the preheat temperature in Steps 30, 32, between the administration of the individual doses. Specifically, as a result of the first individual irradiation dose increasing the temperature of the UHMWPE blend, immediately administering another individual irradiation dose may significantly alter the material properties of the UHMWPE blend, melt the UHMWPE, or cause other detrimental effects. In one exemplary embodiment, after the first individual irradiation dose is administered, the UHMWPE blend or UHMWPE blend and substrate are removed and placed in an oven. The oven is set to maintain the temperature at the preheat temperature, i.e., the temperature used in Steps 18, 20 as described in detail above, and the UHMWPE blend or UHMWPE blend and substrate are placed within the oven to slowly cool until reaching the preheat temperature. Once the preheat temperature is reached, the UHMWPE blend or UHMWPE blend and substrate are removed and the next individual irradiation dose administered. In the event further individual irradiation doses are required, the temperature equilibration process is repeated.
[0036] In another exemplary embodiment, selective shielding is used to protect certain areas of the UHMWPE blend from exposure to the irradiation and substantially prevent or lessen the resulting temperature increase of the UHMWPE blend. Additionally, selective shielding may be used to help ensure that an even dose of irradiation is received by the UHMWPE blend. In one embodiment, a shield, such as a metallic shield, is placed in the path of the irradiation to attenuate the radiation dose received in the shielded area, while allowing the full effect of the irradiation dose in areas where higher temperatures can be tolerated. In one embodiment, the use of selective shielding allows for the total crosslinking irradiation dose to be administered in a single pass, reducing the need to administer the total crosslinking irradiation dose over multiple passes.
[0037] Additionally, selective shielding of the irradiation may be used to prevent the metallic substrate from excessive heating due to the differences in specific heats between the substrate and UHMWPE blend. The shielding could, in one exemplary embodiment, be designed so that the UHMWPE blend receives a substantially full irradiation dose, while lessening the irradiation penetration so that a reduced dose is received at the substrate. As a result, the temperature increase of the substrate due to irradiation absorption is decreased. This allows for the use of higher dose levels per pass, eliminating the need for multiple passes to achieve higher dose levels and thus higher levels of crosslinking. In some embodiments, single pass irradiation is advantageous since it is a more efficient manufacturing process, and the resulting mechanical properties of the crosslinked material may also be desirable. Specific aspects and methods of irradiation shielding are disclosed in U.S. Patent No. 6,365,089, entitled METHOD FOR CROSSLINKING UHMWPE IN AN ORTHOPEDIC IMPLANT, issued on April 2, 2002, the entire disclosure of which is expressly incorporated by reference herein.
[0038] In another exemplary embodiment, tocopherol is not added at Step 10, as discussed in detail above. Instead, tocopherol is diffused into the UHMWPE by placing the UHMWPE in a tocopherol bath after the UHMWPE has been irradiated in accordance with standard crosslinking irradiation techniques. However, as a result of administering the crosslinking irradiation prior to the addition of tocopherol, the present embodiment does not allow for the administration of a higher crosslinking irradiation dose, as discussed above. Additionally, the mechanical properties achieved by adding tocopherol prior to administering crosslinking irradiation appear to be superior to diffusing tocopherol into the UHMWPE after the crosslinking irradiation has been administered. [0039] Once the total crosslinking irradiation dose has been administered to the UHMWPE blend, the UHMWPE blend may be machined in Step 34 into a medical product, such as an orthopedic implant, according to customary techniques, such as milling, boring, drilling, cutting, and CNC (Computer Numerical Control) machining. For example, the UHMWPE blend may be machined into a hip, knee, ankle, shoulder, elbow, finger, dental, or spinal implant. Additionally, the UHMWPE blend may be assembled to other components for form a medical device. However, if the UHMWPE blend is processed at Step 12 in Fig. 1 by net shape molding, which is identified above as a potential processing method, the need to machine the UHMWPE blend at Step 34 is substantially eliminated. Specifically, if the UHMWPE blend is processed by net shape molding, the UHMWPE blend is formed to the final shape, i.e., the shape of the desired medical product, at Step 12, which may then be assembled to other components to form the final medical device. Referring to Fig. 2, an exemplary medical implant 100 is shown including UHMWPE blend 102 and substrate 104. As shown in Fig. 2, UHMWPE blend 102 is interdigitated with substrate 104 in a similar manner as described in U.S. Patent Application Serial No. 11/055,322, entitled "MODULAR POROUS IMPLANT", filed February 10, 2002, and U.S. Patent No. 6,087,553, entitled "IMPLANTABLE METALLIC OPEN-CELLED LATTICE/POLYETHYLENE COMPOSITE MATERIAL AND DEVICES", issued on July 11, 2000, the entire disclosures of which are expressly incorporated by reference herein.
[0040] The medical product may be packaged at Step 36 and sterilized at Step 38. In one exemplary embodiment, the medical product is sterilized using gas plasma. In another exemplary embodiment, the medical product is sterilized using ethylene oxide. In yet another exemplary embodiment, the medical product is sterilized using dry heat sterilization. Additionally, testing has indicated that surface sterilization techniques, such as gas plasma, dry heat, gamma radiation, ionizing radiation, autoclaving, supercritical fluid technique, and ethylene oxide, provide sufficient sterilization of the medical product, even if the UHMWPE blend is secured to a substrate. Specifically, the surface sterilization techniques have proven to sufficiently sterilize the UHMWPE blend/substrate interface. In another exemplary embodiment, gamma irradiation may be used to sterilize the medical product. However, in this embodiment, it is believed that a higher tocopherol concentration would be necessary in order for enough tocopherol to be available to quench free radicals after the sterilization irradiation was performed.
[0041] While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Examples
[0042] The following non-limiting Examples illustrate various features and characteristics of the present invention, which is not to be construed as limited thereto. The following abbreviations are used throughout the Examples unless otherwise indicated.
TABLE 1 Abbreviations
Figure imgf000014_0001
Figure imgf000015_0001
[0043] Throughout the various Examples, irradiated UHMWPE blends are used, which have been irradiated according to one of three different irradiation methods. As set forth above, differences in the irradiation conditions and techniques may affect the resulting material properties of the UHMWPE blend. Therefore, in order to properly analyze and compare the results set forth in the Examples and corresponding Tables, each of the irradiated UHMWPE blends used in the Examples are identified as having been irradiated according to the one of the methods set forth below in Table 2. Additionally, the electron beam source is calibrated by performing dosimetry at low irradiation doses and then parametrically determining the activation of the electron beam source needed to achieve higher doses. As a result, at higher irradiation doses, differences may exist between the actual dose and the parametrically determined dose, which may cause differences in the material properties of the irradiated UHMWPE blends.
TABLE 2 Irradiation Methods
Figure imgf000015_0002
Example 1 Feasibility Study of α-Tocopherol Acetate
[0044] The feasibility of blending α-tocopherol acetate with UHMWPE was investigated, α- tocopherol acetate was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands and medical grade UHMWPE powder GUR 1050 was obtained from Ticona, having North American headquarters located in Florence, Kentucky. Isopropanol was then added to the α-tocopherol acetate as a diluent and the α-tocopherol acetate was solvent blended with the UHMWPE powder. The blending continued until two different UHMWPE/ α-tocopherol acetate blends were obtained, one UHMWPE blend having 0.05 wt. % α-tocopherol acetate and the other UHMWPE blend having 0.5 wt. % α-tocopherol acetate. Each of the UHMWPE blends were then compression molded to form four one-inch-thick pucks. Two pucks of each UHMWPE blend, i.e., two pucks of the UHMWPE blend having 0.05 wt. % α-tocopherol acetate and two pucks of the UHMWPE blend having 0.5 wt. % α-tocopherol acetate, were preheated to 1200C in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois. The pucks were held at 1200C for 8 hours. After the expiration of 8 hours, the pucks were irradiated at 10 MeV, 50 kGy-m/min dose rate at 65 kGy and 100 kGy dose at Iotron Industries Canada Inc. located in Port Coquitlam, BC, Canada. [0045] The remaining two pucks of each UHMWPE blend, i.e., two pucks of the UHMWPE blend having 0.05 wt. % α-tocopherol acetate and two pucks of the UHMWPE blend having 0.5 wt. % α- tocopherol acetate, were heated to 400C overnight. The next morning, the remaining two pucks of each UHMWPE blend were irradiated at 10 MeV, 50 kGy-m/min dose rate at 100 kGy dose at Iotron Industries Canada Inc. located in Port Coquitlam, BC, Canada.
[0046] After irradiation, all of the pucks were cut in half and a film was cut from the center of each puck. The films were then subjected to FTIR analysis using a Bruker Optics FTIR Spectrometer, available from Bruker Optics of Billerica, Massachusetts. Both halves of each puck were then machined into flat sheets approximately 1/8 inch thick. One half of the flat sheets were immediately subjected to FTIR. The other half of the flat sheets were then subjected to accelerated aging in accordance with the American Society for Testing and Materials (ASTM) Standard F-2003, Standard Practice for Accelerated Aging of Ultra- High Molecular Weight Polyethylene after Gamma Irradiation in Air. Tensile specimens formed from the flat sheets were subjected to accelerated aging and were then subjected to FTIR analysis. The OI and wt. % of α-tocopherol acetate were determined from the FTIR results, set forth below in TABLES 3 and 4. However, there were interference peaks in the FTIR results that prevented measurement of OI for the 0.5 wt. %, 65 kGy, unaged sample. TABLE 3 FTIR Results
Figure imgf000017_0002
TABLE 4 Oxidative Index of UHMWPE Blend with 0.50 Weight Percent α-Tocopherol Acetate
Oxidative Index
Figure imgf000017_0001
200 400 600 800 1000 1200 I4OO 1600
Depth (microns)
[0047] The FTIR results revealed that the OI of the UHMWPE blend having 0.05 wt. % α- tocopherol acetate was generally higher than the OI of the UHMWPE blend having 0.50 wt. % α- tocopherol acetate. This is believed to be because these samples still contained α-tocopherol acetate after irradiation. As a result, the α-tocopherol acetate was still available in these samples to react with free radicals and reduce the oxidative degradation of the UHMWPE blend. Additionally, the FTIR results showed that virtually no α-tocopherol acetate was left after irradiation of the UHMWPE blend having 0.05 wt. % α-tocopherol acetate and that about one-third of the α-tocopherol acetate was left after irradiation of the UHMWPE blend having 0.5 wt. % α-tocopherol acetate. Further, as shown in TABLE 5 below, tensile properties were similar for both the UHMWPE blends that were subjected to accelerated aging and the UHMWPE blends that were not subjected to accelerated aging. Finally, the FTIR results suggested that the UHMWPE blends containing α-tocopherol acetate have similar stabilization properties, i.e., a similar ability to prevent oxidative degeneration, as UHMWPE blends containing similar concentration of d,l-α-tocopherol.
TABLE 5 Mechanical Properties
Figure imgf000018_0001
Example 2
Chemical Properties of UHMWPE Blended with Tocopherol
[0048] The chemical properties of d/1-α-tocopherol mechanically blended with a UHMWPE powder which was slab molded into bars and electron beam irradiated were investigated. To perform this investigation, Design Expert 6.0.10 software, obtained from Stat-Ease, Inc. Minneapolis, MN, was utilized to setup a modified fractional factorial Design of Experiment (DOE). The DOE evaluated five different variables: UHMWPE resin type, wt. % of d/1-α-tocopherol, preheat temperature, dose rate, and irradiation dose.
[0049] GUR 1050 and GUR 1020 medical grade UHMWPE powders were obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands. The GUR 1050 and GUR 1020 were separately mechanically blended with the d/1-α-tocopherol by low intensity blending using a Diosna PlOO Granulator, available from Diosna GmbH of Osnabruck, Germany, a subsidiary of Multimixing S. A. Both the GUR 1050 and the GUR 1020 resins were mixed with the d/1-α-tocopherol in several batches to create UHMWPE blends of both resin types having 0.2 wt. %, 0.5 wt. %, and 1.0 wt. % d/1-α-tocopherol. Each batch of blended material was compression molded into a slab and cut into bars of various sizes. Each of the resulting bars was then preheated by heating to a preheat temperature in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois. The preheat temperature was selected from 400C, 1000C, 1100C and 122.2°C, as set forth in TABLE 6 below.
[0050] After being preheated, the UHMWPE blend bars were electron beam irradiated according to Method C, set forth in TABLE 2 above, at a selected dose rate until a selected total irradiation dose was administered. The dose rate was selected from 75 kGy-m/min, 155 kGy-m/min, and 240 kGy-m/min and the total irradiation dose was selected from 90 kGy, 120 kGy, 150 kGy, and 200 kGy. The portion of each bar was then microtomed into 200 micron thick films. These films were then subjected to FTIR analysis on a Bruker Optics FTIR spectrometer, available from Bruker Optics of Billerica, Massachusetts. The FTIR results were analyzed to determine the VEI, wt. % d/l-α- tocopherol, the OI, and the TVI. The VEI and wt. % d/1-α-tocopherol were determined by calculating the ratio of the area under the d/1-α-tocopherol peak at 1275-1245 cm"1 on the resulting FTIR chart to the area under the polyethylene peak at 1392-1330 cm"1 and at 1985-1850 cm"1. The OI was determined by calculating the ratio of the area under the carbonyl peak on the FTIR chart at 1765-168OcIn"1 to the area of the polyethylene peak at 1392-1330 cm"1. The TVI was determined by calculating the ratio of the area on the FTIR chart under the vinyl peak at 980-947 cm"1 to the area under the polyethylene peak at 1392-1330 cm"1.
[0051] After the initial VEI, wt. % d/1-α-tocopherol and TVI were determined from the FTIR analysis of the thin films, each of the thin films were accelerated aged according to ASTM Standard F-2003, Standard Practice for Accelerated Aging of Ultra-High Molecular Weight Polyethylene after Gamma Irradiation in Air. The accelerated aged films were again subjected to FTIR analysis on a Bruker Optics FTIR spectrometer, available from Bruker Optics of Billerica, Massachusetts. The resulting FTIR charts were analyzed to determine VEI, wt. % d/1-α-tocopherol, OI, and TVI according to the methods set forth above. Once subjected to FTIR analysis, the aged files were placed in boiling hexane and allowed to remain there for 24 hours to extract the d/1-α-tocopherol. After extraction of the d/1-α-tocopherol, the aged films were again subjected to FTIR analysis on the Bruker Optics FTIR spectrometer. The resulting FTIR chart was then analyzed to determine the OI in accordance with the method set forth above. The additional FTIR analysis was performed to eliminate the d/1-α-tocopherol peak from interfering with the oxidation peaks. An analysis of the results set forth in TABLE 6 below indicate that selecting a warmer preheat temperature may result in a lower OI and may also result in some of the d/1-α-tocopherol remaining in the UHMWPE after irradiation. TABLE 6 FTIR Results of Irradiated UHMWPE Blended with d/1-α-tocopherol
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Example 3
Free Radical Concentrations in UHMWPE Blended with d/1-α-tocopherol [0052] The impact of mechanically blending d/1-α-tocopherol with UHMWPE powder on free radical concentration of electron beam irradiated UHMWPE blend molded pucks was investigated. To perform this investigation, Design Expert 6.0.10 software, obtained from Stat-Ease, Inc. Minneapolis, MN, was utilized to setup a modified central composite Design of Experiment (DOE). The DOE evaluated five factors: preheat temperature, dose rate, irradiation dose, d/1-α-tocopherol concentration, and predetermined hold time, i.e., the time elapsed between removal of the UHMWPE blend from the oven until the initiation of electron beam irradiation.
[0053] GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands. The GUR 1050 UHMWPE power was mechanically blended with the d/1-α-tocopherol by high intensity blending using an Eirich Mixer, available from Eirich Machines, Inc. of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol in several batches to create UHMWPE blends having between 0.14 and 0.24 wt. % d/1-α-tocopherol, as set forth below in TABLE 7.
[0054] Each of the UHMWPE blends were then compression molded into 2.5 inch diameter and 1 inch thick pucks. Each of the resulting pucks was then preheated by heating in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature. The preheat temperature was selected from between 85°C and 115°C, as set forth in TABLE 7 below. The pucks were then removed from the convection oven and held for a predetermined period of time ranging between 7 minutes and 21 minutes, as set forth in TABLE 7 below. After the expiration of the predetermined hold time, the pucks were electron beam irradiated utilizing Method A of TABLE 2. The pucks were irradiated at a dose rate selected from between 30 kGy-m/min and 75 kGy-m/min until a total dose selected from between 160 kGy and 190 kGy was administered, as set forth in TABLE 7 below. Cylindrical cores approximately 1 inch long were machined from the pucks. The cylindrical cores were then analyzed using a Bruker EMX/EPR (electron paramagnetic resonance) spectrometer, which has a detection limit of 0.01 X 1015 spins/gram and is available from Bruker Optics of Billerica, Massachusetts. The resulting analysis indicated that preheat temperature, percent d/1-α-tocopherol, and dose level were all significant factors in determining the resulting free radical concentration of the UHMWPE blend. Specifically, preheat temperature and d/1-α-tocopherol concentration had a negative correlation with the free radical concentration, while the total dose had a positive correlation with the free radical concentration. TABLE 7
Figure imgf000024_0001
Example 4
Mechanical Properties of UHMWPE Blended with d/1-α-tocopherol
[0055] The mechanical properties of d/1-α-tocopherol mechanically blended with a UHMWPE powder which was slab molded into bars and electron beam irradiated were investigated. To perform this investigation, Design Expert 6.0.10 software, obtained from Stat-Ease, Inc. Minneapolis, MN, was utilized to setup a modified fractional factorial Design of Experiment (DOE). The DOE evaluated five different variables: UHMWPE resin type, weight percent of d/1-α-tocopherol, preheat temperature, dose rate, and irradiation dose.
[0056] GUR 1050 and GUR 1020 medical grade UHMWPE powders were obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd. of Geleen, Netherlands. The GUR 1050 and GUR 1020 were separately mechanically blended with the d/1-α-tocopherol by low intensity blending using a Diosna PlOO Granulator, available from Diosna GmbH of Osnabruck, Germany, a subsidiary of Multimixing S.A. Both the GUR 1050 and the GUR 1020 resins were mixed with the d/1-α-tocopherol in several batches to create UHMWPE blends of both resin types having 0.2 wt. %, 0.5 wt. %, and 1.0 wt. % d/1-α-tocopherol. Each batch of blended material was compression molded into a slab and cut into bars. Each of the resulting bars was then preheated by heating the bars in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature. The preheat temperature was selected from 400C, 1000C, 1100C and 122.2°C, as set forth in TABLE 8 below.
[0057] After being preheated, the UHMWPE blend bars were electron beam irradiated according to Method C, set forth in TABLE 2 above, at a selected dose rate until a selected total irradiation dose was administered. The dose rate was selected from 75 kGy-m/min, 155 kGy-m/min, and 240 kGy-m/min and the total irradiation dose was selected from 90 kGy, 120 kGy, 150 kGy, 200 kGy, and 250 kGy. Type V tensile specimens, as defined by the American Society for Testing and Materials (ASTM) Standard D638, Standard Test Method for Tensile Properties of Plastics, were machined from each of the UHMWPE blend bars. The Type V tensile specimens were then subjected to ultimate tensile elongation, UTS, and YS testing in accordance with ASTM Standard D638. Izod specimens were also machined from each of the UHMWPE blend bars and tested for izod impact strength according to ASTM Standard D256, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. Dynamic mechanical analysis (DMA) specimens were also machined from each of the UHMWPE blend bars and tested using a Model DMA 2980 Dynamic Mechanical Analyzer from TA Instruments of New Castle, Delaware. [0058] An analysis of the results indicates that the total irradiation dose had an influence on the izod impact strength, ultimate tensile elongation, and yield strength of the UHMWPE blends. Additionally, the preheat temperature had an influence on the ultimate tensile strength and yield strength. In contrast, the weight percent of d/1-α-tocopherol had an influence on ultimate tensile elongation and the dynamic mechanical analysis. Additional results from the testing are set forth below in TABLE 8.
TABLE 8 Mechanical Properties of UHMWPE Blended with d/1-α-tocopherol
Figure imgf000026_0001
Example 5
Wear Properties of UHMWPE Mixed with d,l-α-tocopherol
[0059] The wear properties of UHMWPE mechanically blended with d,l-α-tocopherol and exposed to electron beam irradiation was investigated. To perform this investigation, Design Expert 6.0.10 software, obtained from Stat-Ease, Inc. Minneapolis, MN, was utilized to setup a modified central composite Design of Experiment (DOE). The DOE evaluated five different variables: preheat temperature, dose rate, total dose administered, d,l-α-tocopherol concentration, and cooling period, i.e., the elapsed time from end of the preheat until initial exposure to irradiation. [0060] GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically mixed with the d/l-α- tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol in several batches to create UHMWPE blends having a selected wt. % of d/1-α-tocopherol. The wt. % of d/1-α-tocopherol was selected from 0.14 wt. %, 0.19 wt. %, and 0.24 wt. % d/1-α-tocopherol. Each of the blends were then consolidated and formed into 2.5 inch diameter and 1 inch thick pucks. Each of the resulting pucks was then preheated by heating the pucks in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature. The preheat temperature was selected from 85°C, 1000C, and 115°C, as set forth in TABLE 9 below.
[0061] After being preheated, the UHMWPE blend pucks were then removed from the convection oven for a cooling period. The cooling period was selected from 7 minutes, 14 minutes, and 21 minutes, as set forth in TABLE 9 below. The pucks were then electron beam irradiated according to Method A, set forth in TABLE 2 above, at a selected dose rate until a selected total irradiation dose was administered. The dose rate was selected from 30 kGy-m/min, 52.5 kGy- m/min, and 75 kGy-m/min and the total irradiation dose was selected from 160 kGy, 175 kGy, and 190 kGy.
[0062] Pin-on-disc (POD) specimens in the form cylinders having a 9 mm diameter and 13 mm thickness were then machined from the UHMWPE blend pucks. A bidirectional pin-on-disc wear tester was then used to measure the wear rate of UHMWPE pins articulating against polished cobalt- chrome discs lubricated by 100% bovine serum. These measurements were made in accordance with the teachings of Bragdon, C.R., et al., in A new pin-on-disk wear testing method for simulating wear of polyethylene on cobalt-chrome alloy in total hip arthroplasty, published in the Journal of Arthroplasty, Vol. 16, Issue 5, 2001, on pages 658-65, the entire disclosure of which is expressly incorporated by reference herein. The bidirectional motion for the pin-on-disc wear tester was generated by a computer controlled XY table, available from the Compumotor Division of Parker Hannifin of Cleveland, Ohio, which was programmed to move in a 10 mm by 5 mm rectangular pattern. Affixed atop the XY table was a basin containing six cobalt-chrome discs polished to an implant quality finish. The XY table and basin were mounted on a servo-hydraulic MTS machine, available from MTS of Eden Prairie, Minnesota. The MTS machine then loaded the UHMWPE blend pin specimens against the polished cobalt-chrome discs. [0063] The MTS machine was programmed to produce a Paul-type curve in synchronization with the motion of the XY table. A Paul-type curve is explained in detail in Forces Transmitted By Joints in the Human Body by J.P. Paul and published by in the Proceedings Institution of Mechanical Engineers at Vol. 181, Part 37, pages 8-15, the entire disclosure of which is expressly incorporated by reference herein. The peak load of the Paul-type loading curve corresponded to a peak contact pressure of 6.5 MPa between each of the UHMWPE pin specimens and the cobalt-chrome discs. Tests were conducted at 2 Hz to a total of 1.128 x 106 cycles. Analysis of the results indicated that the wear properties are affected by both the concentration of d/1-α-tocopherol and the total irradiation dose. Specifically, the results indicated that increasing the d/1-α-tocopherol concentration increased the wear rate of the UHMWPE blends, while increasing the total irradiation dose decreased the wear rate of the UHMWPE blends. Additionally, the results indicated that both dose rate and the cooling period had substantially no impact on the wear rate of the UHMWPE.
TABLE 9 Wear Properties of UHMWPE Mixed with d/1-α-tocopherol
Figure imgf000028_0001
Example 6
Temperature Variations at the UHMWPE Blend/Substrate Interface
[0064] GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having
North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically blended with the d/1-α-tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol to create a UHMWPE blend having 0.2 wt. % d/1-α-tocopherol.
[0065] A portion of the UHMWPE blend was then compression molded into a block. Another portion of the UHMWPE blend was compression molded into a substrate to create a preform. The substrate was a 70 mm diameter porous metal substrate in the form of a near-net shape acetabular shell. The porous metal substrate was produced using Trabecular Metal™ technology generally available from Zimmer, Inc., of Warsaw, Indiana, and described in detail above. This process was repeated to create five different preforms. The preforms were then individually heated to a preheat temperature in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois. The preheat temperature was selected from 1000C, 12O0C, and 1250C. Once heated to the selected preheat temperature, the preforms were irradiated using Method B, set forth in TABLE 2 above, until a total irradiation dose was received. The total irradiation dose was selected from 50 kGy, 75 kGy, and 150 kGy. Additionally, the UHMWPE block was heated to a preheat temperature of 1000C and irradiated using Method B until a total irradiation dose of 150 kGy was received by the UHMWPE block.
[0066] The temperature of the preforms was measured at the UHMWPE blend/substrate interface, at a point in the UHMWPE blend adjacent to the UHMWPE blend/substrate interface, and at a point in the center of the UHMWPE blend. Each of the temperature measures were taken using a Type J thermocouple. Additionally, the temperature at the center of the UHMWPE blend block was also measured using a Type J thermocouple. Based on the results, the presence of a porous substrate resulted in higher temperature readings in the UHMWPE blend. This is likely a result of substrate reaching a higher maximum temperature than the UHMWPE during irradiation. Example 7
Effect of Substrate Orientation on UHMWPE Blend
[0067] GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically blended with the d/l-α- tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol to create a UHMWPE blend having 0.5 wt. % d/1- α- tocopherol .
[0068] A portion of the UHMWPE blend was compression molded into a substrate to create a preform. The substrate was a 70 mm diameter porous metal substrate in the form of a near-net shape acetabular shell. The porous metal substrate was produced using Trabecular Metal™ technology generally available from Zimmer, Inc., of Warsaw, Indiana, and described in detail above. This process was repeated to create three different preforms. The preforms were then heated in a convection oven to a preheat temperature of 11O0C for a minimum of 12 hours. Two of the preforms were then irradiated using Method A, as set forth in TABLE 2 above, with the substrate of one of the preforms facing the irradiation source and the substrate of the other preform facing away from the irradiation source. With the preforms in these positions, they were exposed to a first, 100 kGy dose of irradiation. The preforms were then allowed to sit in ambient air for 20 minutes. After the expiration of 20 minutes, the preforms were exposed to a second, 100 kGy dose of irradiation, for a total irradiation dose of 200 kGy.
[0069] The remaining preform was irradiated using Method B, as set forth in TABLE 2 above, with the substrate of the preform facing the irradiation source. With the preform in this position, the preform was exposed to a first, 100 kGy dose of irradiation. The preform was then placed in a convection oven which maintained a constant temperature of 11O0C. After the expiration of four hours, the preform was removed from the convection oven and exposed to a second, 100 kGy dose of irradiation, for a total irradiation dose of 200 kGy.
[0070] Each of the preforms was then cut through the center and the substrate removed. The UHMWPE blend was then microtomed and subjected to FTIR analysis using a Bruker FTIR Spectrometer, available from Bruker Optics of Billerica, Massachusetts, to determine the TVI of the UHMWPE blend. This analysis was performed on the thickest part of the specimens. A sample of the UHMWPE blend was then subjected to DSC using a TA Instruments QlOOO, available from TA Instruments of New Castle, Delaware, to determine the percent crystallinity of the UHMWPE blend. This analysis was repeated for samples of the UHMWPE blend taken from different locations. [0071] In both of the monoblocks that were irradiated with the substrate facing the irradiation source, a band of discoloration, i.e., translucence, can be seen along the edge of the UHMWPE blend that interfaced with the substrate. As shown in TABLE 11 below, the FTIR analysis showed a substantial decline in the TVI of the UHMWPE blend at a point just past the interface between the UHMWPE blend and the substrate. Additionally, the percent crystallinity at a point in the center of the UHMWPE blend was approximately 59%. The percent crystallinity decreased as the UHMWPE blend approached the interface with the substrate, with the percent crystallinity reaching 48% in the translucent region near the UHMWPE blend/substrate interface, as shown in TABLE 12 below. In the preform that was irradiated with the substrate facing away from the irradiation source, the TVI of the UHMWPE blend was substantially more uniform throughout the UHMWPE blend and the percent crystallinity varied by only 2.2%. This may be a result of more uniform crosslinking occurring in the preform in which the substrate faced away from the irradiation source during irradiation.
TABLE I l Comparison of TVI in UHMWPE Blend
Figure imgf000031_0001
TABLE 12 Percent Crvstallinitv of UHMWPE Blend
Figure imgf000032_0001
Example 8
Effect of Irradiation Dose on UHMWPE Blend
[0072] Design Expert 6.0.10 software, obtained from Stat- Ease, Inc. Minneapolis, MN, was utilized to setup a central composite response surface Design of Experiment (DOE). The DOE evaluated three different variables: d,l-α-tocopherol concentration, preheat temperature, total irradiation dose administered, and irradiation dose per pass.
[0073] GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically mixed with the d/l-α- tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol in several batches to create UHMWPE blends having a selected wt. % of d/1-α-tocopherol. The wt. % of d/1-α-tocopherol was selected from 0.10 wt. %, 0.20 wt. %, 0.35 wt. %, 0.50 wt. %, and 0.60 wt. % d/1-α-tocopherol. Each of the blends was then compression molded into a substrate to create a preform. The substrate was a 70 mm outer diameter porous metal substrate in the form of a near-net shape acetabular shell. The porous metal substrate was produced using Trabecular Metal™ technology generally available from Zimmer, Inc., of Warsaw, Indiana, and described in detail above.
[0074] The resulting preforms were then placed inside a piece of expandable braided polyethylene terephthalate sleeving and vacuum sealed inside an aluminum-metallized plastic film pouch, such a pouch formed from a polyethylene terephthalate resin, such as Mylar®, which has been coated with a metal, such as aluminum, to reduce gas diffusion rates through the film. Mylar is a registered trademark of DuPont Teijin Films U.S. Limited Partnership of Wilmington, Delaware. The preforms remained in this condition until they were removed in preparation for exposing the preforms to irradiation. Prior to irradiation, each of the resulting preforms was preheated by heating the preforms in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature, which was held for a minimum of 12 hours. The preheat temperature was selected from 600C, 700C, 85°C, 1000C, and 1100C, as set forth in TABLE 13 below. [0075] The preforms were then exposed to a selected total irradiation dose according to Method B, as set forth above in TABLE 2. The total irradiation dose was selected from 133 kGy, 150 kGy, 175 kGy, 200 kGy, and 217 kGy. Additionally, the total irradiation dose was divided and administered to the preforms in either two equal passes or three equal passes, which are combined to achieve the total irradiation dose. Specifically, the preforms indicated to be "Block 1" in TABLE 13 below received the total irradiation dose in two equal passes, while the preforms indicated to be "Block 2" in TABLE 13 received the total irradiation dose in three equal passes.
[0076] After irradiation, each of the UHMWPE blends was separated from the substrate and three Pin-on-Disc (POD) specimens in the shape of cylinders having a 9 mm diameter and 13 mm thickness were then machined from the UHMWPE blend pucks. A bidirectional pin-on-disc wear tester was then used to measure the wear rate of UHMWPE pins articulating against polished cobalt- chrome discs lubricated by 100% bovine serum. These measurements were made in accordance with the teachings of Bragdon, C.R., et al., in A new pin-on-disk wear testing method for simulating wear of polyethylene on cobalt-chrome alloy in total hip arthroplasty, published in the Journal of Arthroplasty, Vol. 16, Issue 5, 2001, on pages 658-65, the entire disclosure of which is expressly incorporated by reference herein. The bidirectional motion for the pin-on-disc wear tester was generated by a computer controlled XY table, available from the Compumotor Division of Parker Hannifin of Cleveland, Ohio, which was programmed to move in a 10 mm by 5 mm rectangular pattern. Affixed atop the XY table was a basin containing six cobalt-chrome discs polished to an implant quality finish. The XY table and basin were mounted on a servo-hydraulic MTS machine, available from MTS of Eden Prairie, Minnesota. The MTS machine then loaded the UHMWPE blend pin specimens against the polished cobalt-chrome discs.
[0077] The MTS machine was programmed to produce a Paul-type curve [2] in synchronization with the motion of the XY table. A Paul-type curve is explained in detail in Forces Transmitted By Joints in the Human Body by J.P. Paul and published in the Proceedings Institution of Mechanical Engineers at Vol. 181, Part 37, pages 8-15, the entire disclosure of which is expressly incorporated by reference herein. The peak load of the Paul-type loading curve corresponded to a peak contact pressure of 6.5 MPa between each of the UHMWPE pin specimen and the cobalt-chrome discs. Tests were conducted at 2 Hz to a total of 1.128 x 106 cycles.
[0078] The remaining portions of the UHMWPE blends were cut in half to form microtome films that were subjected to FTIR analysis utilizing a Bruker Optics FTIR Spectrometer, available from Bruker Optics of Billerica, Massachusetts. The films were then accelerated aged according to ASTM Standard F2003, Standard Guide for Accelerated Aging of Ultra-High Molecular Weight Polyethylene. The OI of the post-aged films was then measured.
[0079] Once the measurements were taken, the post-aged films were placed in boiling hexane for 24 hours to extract any d/1-α-tocopherol remaining in the films. The percentage of d/1-α-tocopherol extracted from the UHMWPE blend films was then determined. The remaining UHMWPE blend from the monoblock was then machined into 1/16" flats and Type V tensile specimens, as defined by ASTM Standard D638, Standard Test Method for Tensile Properties of Plastics, were machined from the flats.
[0080] An analysis of the results, set forth below in TABLE 13, indicated that wear increased with a lower total irradiation dose or with a higher concentration of d/1-α-tocopherol. Additionally, the d/1-α-tocopherol concentration had a significant impact on ultimate tensile elongation. The yield strength was affected the most by the preheat temperature, whereas UTS was affected the most by the total irradiation dose and d/1-α-tocopherol concentration. The OI was decreased with higher preheat temperatures and higher concentration of d/1-α-tocopherol. Although the percentage of d/l-α- tocopherol decreased after irradiation and aging, a significant amount of d/1-α-tocopherol still remained in the UHMWPE blend after irradiation and aging.
TABLE 13 Effect of Irradiation Dose on UHMWPE Blend
Figure imgf000034_0001
Figure imgf000035_0001
Example 9
Elution in Deionized Water
[0081] The amount of d/1-α-tocopherol eluted from UHMWPE blends formed into consolidated pucks was investigated over a period of 8 weeks. GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically mixed with the d/1-α-tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol to create a UHMWPE blend having 0.25 wt. % of d/1-α-tocopherol. The UHMWPE blend was then compression molded into a series of 2.5 inch diameter and 1.5 inch thick pucks. [0082] The pucks were preheated in a Grieve convection oven, available from The Grieve Corporation of Round Lake, Illinois, to a preheat temperature. The preheat temperature was selected from 850C and 1150C . Once preheated, the pucks were then exposed to a selected total irradiation dose according to Method A, as set forth above in TABLE 2. The total irradiation dose was selected from 160 kGy and 190 kGy. One centimeter cubes were then machined from the pucks and placed in glass jars containing 100 ml of deionized water. The jars were then sealed using Teflon® seals and caps, available from E.I. DuPont Nemours and Company. Teflon® is a registered trademark of E. I. DuPont Nemours and Company of 1007 Market Street, Wilmington Delaware. [0083] Each of the glass jars was then placed in a water bath that was thermostatically held at a test temperature. The test temperature was selected from 37°C and 700C. At two week intervals, aliquots of extract solution were taken from each jar and assayed using 297 nm wavelength ultraviolet light to determine the concentration of d/1-α-tocopherol. Absorption measurements were made using 10 mm quartz cuvettes and deionized water as the reference material. Once the assay was completed, the test aliquots were returned to the glass jars. This analysis was repeated for a total of 53 days. As the results set forth below in TABLE 14 indicate, no eluted d/1-α-tocopherol was detected in the UHMWPE blend cubes that were soaked in deionized water maintained at 37°C. Additionally, no definitive elution of d/1-α-tocopherol was detected in the UHMWPE blend cubes that were soaked in deionized water maintained at 700C. For example, the results showed that the antioxidant leached from 2 grams of the crosslinked UHMWPE in 100 milliliters of 37 degree Celsius water after 53 days resulted in an extraction solution absorbance at 297 nanometers was no greater than 0.01 units from the reference water absorbance.
TABLE 14 Elution of d/1-α-tocopherol in Deionized Water
Solvent Sample 53 Day Water 53 Day Water
Group # Solvent Temperature ( C) Wt (g) - VoI (mL) Weight (g) Raw A @ 297 nm Net A @ 297 nm
A Water 37 100 1.91335 -0.0017 0.000
A Water 70 100 1.90159 0.0032 0.005
B Water 37 100 1.91722 -0.0012 0.000
B Water 70 100 1.91635 0.0043 0.006
C Water 37 100 1.90948 -0.0014 0.000
C Water 70 100 1.91114 0.0030 0.005
D Water 37 100 1.90083 -0.0016 0.000
D Water 70 100 1.92051 0.0036 0.005 r Water Blank A -0.0016
Example 10
Color Measurement of UHMWPE Blend Samples
[0084] GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically blended with the d/l-α- tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol to create a UHMWPE blend having less than 0.5 wt. % d/1-α-tocopherol and was compression molded. The compression molded UHMWPE blend was then sectioned and subjected to analysis with a spectrophotometer to determine the color of the UHMWPE blend. Additionally, consolidated UHMWPE powder absent tocopherol was also subjected to analysis with a spectrophotometer to determine the color of the consolidated UHMWPE absent tocopherol.
[0085] Specifically, a Color Checker 545 Portable Spectrophotometer hand held unit, available from X-Rite Incorporated of Grand Rapids, Michigan, was used to test the material samples. This device uses a system illuminant D65 and has a degree observer, i.e., the placement of the device relative to the sample being tested, of 10 degrees. The device was calibrated using a calibration tile and the average results per reading were recorded for comparison with the test samples. Each of the samples were then subjected to analysis.
[0086] The results of each individual analysis were displayed on the device using the L*a*b* (CIELAB) color space definition system. This system describes all colors visible to the human eye by providing the lightness of the color, the position of the color between red/magenta and green, and the position of the color between yellow and blue. These results are displayed as L*, having a value from 0, which corresponds to black, to 100, which corresponds to white, a*, where a negative value indicates green and a positive value indicates red/magenta, and b*, where a negative value indicates blue and a positive value indicates yellow.
[0087] Based on the results of the testing, set forth in TABLE 15 below, the UHMWPE blend having tocopherol exhibited a yellowish color.
TABLE 15 Color Measurements of UHMWPE and UHMWPE w/ Tocopherol
Figure imgf000037_0001
Example 11
Swell Ratio, Crosslink Density, and Molecular Weight Between Crosslinks [0088] GUR 1050 medical grade UHMWPE powder was obtained from Ticona, having North American headquarters in Florence, Kentucky, d/1-α-tocopherol was obtained from DSM Nutritional Products, Ltd of Geleen, Netherlands. The GUR 1050 was mechanically blended with the d/l-α- tocopherol using a High Intensity Mixer, available from Eirich Machines of Gurnee, Illinois. The GUR 1050 resin was mixed with the d/1-α-tocopherol to create UHMWPE blends having 0.2, 0.5, or 1.0 weight percent d/1-α-tocopherol. The UHMWPE blends were then compression molded to form pucks that were then machined to form cubes having 5 mm sides. The UHMWPE cubes were then heated to a preheat temperature selected from 40 0C, 100 0C, and 110 0C. Once heated to the selected preheat temperature, the UHMWPE blends were irradiated using Method C, set forth in TABLE 2 above, until a total irradiation dose was received. The total irradiation dose was selected from of 90 kGy, 120 kGy, 150 kGy, and 200 kGy.
[0089] The resulting UHMWPE blend cubes were then studied to investigate the polymer network parameters of the UHMWPE blend by measuring the materials' swell ratio (qs) with a Swell Ratio Tester (SRT), Cambridge Polymer Group (Boston, MA), in accordance with ASTM F-2214-02. Knowing qs, the Flory interaction parameter (χi), the molar volume of the solvent (φi), and the specific volume of the solvent ("P), the crosslink density (υx) and the molecular weight between crosslinks (Mc) of the material were calculated according the following equations:
Figure imgf000038_0001
Mc = Vvx
[0090] Additionally, the swell ratio in stabilized o-xylene at 130 0C was measured in the compression molded direction. The results of the testing are set forth in TABLE 16 below. For example, it was found that a UHMWPE blend having nominally 1.0 % weight percent of d/l-α- tocopherol when preheated to nominally 40 0C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a qs less than about 4.3, a υx more than about 0.090 and a Mc less than about 11,142. It was also found that a UHMWPE blend having nominally 1.0 % weight percent of d/1-α-tocopherol when preheated to nominally 110 0C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a qs less than about 3.6, a υx more than about 0.117 and a Mc less than about 8,577.
[0091] Also, it was found that a UHMWPE blend having nominally 0.5 % weight percent of d/l-α- tocopherol when preheated to nominally 40 0C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a qs less than about 3.8, a υx more than about 0.119 and a Mc less than about 8,421. It was also found that a UHMWPE blend having nominally 0.5 % weight percent of d/1-α-tocopherol when preheated to nominally 110 0C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a qs less than about 3.6, a υx more than about 0.109 and a Mc less than about 9,166.
[0092] Further, it was found that a UHMWPE blend having nominally 0.2 % weight percent of d/1-α-tocopherol when preheated to nominally 40 0C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a qs less than about 2.8, a υx more than about 0.187 and a Mc less than about 5,351. It was also found that the UHMWPE blend having nominally 0.2 % weight percent of d/1-α-tocopherol when preheated to nominally 110 0C and subsequently electron beam crosslinked with a total dose of nominally 200 kGy has a qs less than about 3.0, a υx more than about 0.164 and a Mc less than about 6,097.
[0093] Additionally, it was found that under some conditions the crosslinked UHMWPE blend exhibited a crosslink density of less than 0.200 moles/dm3. Under other conditions, the crosslinked UHMWPE blend having at least 0.1 weight percent antioxidant exhibited a crosslink density of less than 0.190 moles/dm3. Further, under certain conditions, the crosslinked UHMWPE blend having at least 0.1 weight percent antioxidant exhibited a crosslink density of more than 0.200 moles/dm3 and had a molecular weight between crosslinks of less than 11,200 daltons.
TABLE 16 Swell Ratio, Crosslink Density, and Molecular Weight Between Crosslinks
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000040_0002

Claims

WHAT IS CLAIMED IS:
1. A method for processing UHMWPE for use in medical applications, the method comprising the steps of: combining UHMWPE with an antioxidant to form a blend having 0.01 to 3.0 weight percent of the antioxidant; processing the blend to consolidate, the consolidated blend having a melting point; preheating the consolidated blend to a preheat temperature below the melting point of the consolidated blend; and irradiating the consolidated blend while maintaining the consolidated blend at a temperature below the melting point of the consolidated blend.
2. The method of Claim 1, wherein said combining step further comprises combining UHMWPE with an antioxidant to form a substantially homogenous UHMWPE blend having 0.01 to 3.0 weight percent of the antioxidant.
3. The method of Claim 1, wherein said combining step further comprises mixing the UHMWPE powder with tocopherol by at least one of solvent blending, high shear mixing, precision coating, fluidized bed, atomization, emulsion polymerization, electrostatic precipitation, wetting or coating of particles, and master batch blending.
4. The method of Claim 1, wherein said combining step further comprises mixing the UHMWPE powder with tocopherol by high shear mixing.
5. The method of Claim 1, wherein said combining step further comprises combining the UHMWPE with an antioxidant selected from the group consisting of tocopherol, Vitamin C, lycopene, honey, phenolic antioxidants, amine antioxidants, hydroquinone, beta-carotene, ascorbic acid, CoQ-enzyme, and derivatives thereof.
6. The method of Claim 1, wherein said combining step further comprises combining the UHMWPE with d,l-α-tocopherol.
7. The method of Claim 1, wherein said processing step further comprises processing the blend to consolidate the blend by at least one of compression molding, net shape molding, injection molding, extrusion, monoblock formation, fiber, melt spinning, blow molding, solution spinning, hot isostatic pressing, high pressure crystallization, and films.
8. The method of Claim 1, wherein said processing step further comprises processing the blend to consolidate by compression molding the blend to extend at least partially into a porous substrate.
9. The method of Claim 8, wherein the substrate comprises a highly porous biomaterial useful as at least one of a bone substitute, a cell receptive material, a tissue receptive material, an osteoconductive material, and an osteoinductive material.
10. The method of Claim 8, wherein the substrate comprises a highly porous biomaterial useful as at least one of a bone substitute, a cell receptive material, and a tissue receptive material having a porosity of at least 55 percent.
11. The method of Claim 1, wherein said processing step further comprises processing the blend to consolidate by compression molding the blend into a roughened surface on the substrate having macroscopic mechanically interlocking features.
12. The method of Claim 1, wherein the melting point of the consolidated blend is determined by differential scanning calorimetry.
13. The method of Claim 1, wherein said preheating step further comprises preheating the consolidated blend to a preheat temperature substantially between 70 degrees Celsius and 130 degrees Celsius.
14. The method of Claim 1, further comprising the additional step of machining the consolidated blend to form a medical product.
15. The method of Claim 1, further comprising the additional steps of: identifying a total crosslinking irradiation dose to be received by the consolidated blend; identifying a maximum individual irradiation dose to be received by the consolidated blend while maintaining the consolidated blend below the melting point of the consolidated blend; and wherein the step of irradiating the consolidated blend further comprises irradiating the consolidated blend with a first irradiation dose that is one of equal to and less than the maximum individual irradiation dose.
16. The method of Claim 15, further comprising the additional step of irradiating the consolidated blend with at least one subsequent irradiation dose that is one of equal to and less than the maximum individual irradiation dose.
17. The method of Claim 15, wherein said step of irradiating the consolidated blend further comprises irradiating the consolidated blend with at least one of electron beam irradiation, gamma irradiation, and x-ray irradiation.
18. The method of Claim 15, wherein the total crosslinking irradiation dose is substantially between 50 kGy and 1000 kGy.
19. The method of Claim 15, wherein the total crosslinking irradiation dose is substantially between 100 kGy and 250 kGy.
20. The method of Claim 15, further comprising, after said first irradiating step, the additional steps of: equilibrating the temperature of the consolidated blend to the preheat temperature; and irradiating the consolidated blend with a second irradiation dose that is one of equal to and less than the lesser of the difference between the total crosslinking irradiation dose and the first irradiation dose and the maximum individual irradiation dose for the consolidated blend.
21. The method of Claim 1, further comprising the additional step of sterilizing the UHMWPE blend by at least one of gas plasma sterilization, ethylene oxide sterilization, gamma sterilization, ionizing irradiation sterilization, autocalving, and supercritical fluid techniques.
22. The method of Claim 1, further comprising, after said irradiating step, the additional step of heat treating the consolidated blend.
23. The method of Claim 1, further comprising, before said irradiating step, the additional step of shielding at least a portion of the consolidated blend.
24. A crosslinked UHMWPE blend for use in medical implants prepared by a process comprising the steps of: combining UHMWPE with an antioxidant to form a blend having 0.1 to 3.0 weight percent antioxidant; processing the blend to consolidate the blend, the consolidated blend having a melting point; preheating the consolidated blend to a preheat temperature below the melting point of the consolidated blend; and irradiating the consolidated blend with a total irradiation dose of at least 100 kGy while maintaining the consolidated blend at a temperature below the melting point of the consolidated blend.
25. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has an ultimate tensile elongation of at least 250 percent.
26. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has a tensile yield strength of at least 21 mega pascals.
27. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has an ultimate tensile strength of at least 45 mega pascals.
28. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has a pin-on-disc wear rate of less than 2.75 mg/Mc.
29. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has an izod impact strength of at least 53 kJ/m2.
30. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend is molded into at least one of a substrate, a polymer, and a antioxidant stabilized polymer.
31. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has an oxidation index, the oxidation index remaining below 0.1 after accelerated aging for two weeks in an oxygen atmosphere at a pressure of 72 pounds per square inch and a temperature of 70 degrees Celsius.
32. The crosslinked UHMWPE blend of Claim 24, wherein the antioxidant leached from 2 grams of the crosslinked UHMWPE in 100 milliliters of 37 degree Celsius water after 53 days results in an extraction solution absorbance at 297 nanometers that is no greater than 0.01 units from the reference water absorbance.
33. The crosslinked UHMWPE blend of Claim 24, wherein the antioxidant leached from 2 grams of the crosslinked UHMWPE in 100 milliliters of 70 degree Celsius water after 53 days results in an extraction solution absorbance at 297 nanometers that is no greater than 0.01 units from the reference water absorbance.
34. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has an oxidation index, the oxidation index being less than 0.1 percent and the crosslinked UHMWPE blend has a free radical level measured by electron spin resonance that is less than 1 x 1017 spins per gram.
35. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has an oxidation index, the oxidation index being less than 0.1 percent, and wherein the crosslinked UHMWPE exhibits a crosslink density of more than 0.200 moles/dm3.
36. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has at least 0.1 weight percent antioxidant and exhibits a pin-on-disc wear rate of less than 2.0 mg/Mc.
37. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE exhibits a crosslink density of more than 0.200 moles/dm3.
38. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has at least 0.1 weight percent antioxidant and exhibits a crosslink density of more than 0.190 moles/dm3.
39. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has at least 0.1 weight percent antioxidant, exhibits a crosslink density of more than 0.200 moles/dm3, and has a molecular weight between crosslinks of less than 11,200 daltons.
40. The crosslinked UHMWPE blend of Claim 24, wherein the UHMWPE blend has an L* value, an a* value, and a b* value as measured by a colormeter, wherein the L* value is greater than 90, the a* value is greater than negative 6, and the b* value is greater than 17.
41. The crosslinked UHMWPE blend of Claim 24, wherein the process further comprises the additional step of molding the consolidated blend into at least one of a porous substrate, a polymer, and a polymer containing an antioxidant.
42. The crosslinked UHMWPE blend of Claim 24, wherein the crosslinked UHMWPE blend has a free radical level measured by electron spin resonance that is less than 1 x 1017 spins per gram.
PCT/US2008/059909 2007-04-10 2008-04-10 An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications WO2008124825A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2678459A CA2678459C (en) 2007-04-10 2008-04-10 An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
EP08745507A EP2150285B1 (en) 2007-04-10 2008-04-10 An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
AT08745507T ATE544476T1 (en) 2007-04-10 2008-04-10 ANTIOXIDANT STABILIZED CROSS-LINKED ULTRA HIGH MOLECULAR POLYETHYLENE FOR MEDICAL DEVICE APPLICATIONS
EP12167581.3A EP2578248B1 (en) 2007-04-10 2008-04-10 An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
AU2008236996A AU2008236996B2 (en) 2007-04-10 2008-04-10 An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
EP12167580.5A EP2564882B1 (en) 2007-04-10 2008-04-10 An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
ES08745507T ES2378721T3 (en) 2007-04-10 2008-04-10 Ultra high molecular weight crosslinked polyethylene stabilized by antioxidants for applications in medical devices
JP2010503206A JP2010523805A (en) 2007-04-10 2008-04-10 Antioxidant stabilized cross-linked ultra high molecular weight polyethylene for medical device applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92273807P 2007-04-10 2007-04-10
US60/922,738 2007-04-10

Publications (2)

Publication Number Publication Date
WO2008124825A2 true WO2008124825A2 (en) 2008-10-16
WO2008124825A3 WO2008124825A3 (en) 2009-12-17

Family

ID=39540499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/059909 WO2008124825A2 (en) 2007-04-10 2008-04-10 An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications

Country Status (8)

Country Link
US (6) US20080319137A1 (en)
EP (4) EP2564882B1 (en)
JP (1) JP2010523805A (en)
AT (1) ATE544476T1 (en)
AU (1) AU2008236996B2 (en)
CA (1) CA2678459C (en)
ES (2) ES2378721T3 (en)
WO (1) WO2008124825A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097412A2 (en) * 2008-01-30 2009-08-06 Zimmer, Inc. Othopedic component of low stiffness
WO2010136173A1 (en) * 2009-05-26 2010-12-02 Aesculap Ag Polyolefin doped with a stabilizer
US8470903B2 (en) 2005-08-18 2013-06-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US8546460B2 (en) 2007-09-04 2013-10-01 Smith & Nephew, Inc. Ultra high molecular weight polyethylene for bearing surfaces
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8669299B2 (en) 2007-04-10 2014-03-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
EP2921186A1 (en) * 2014-03-21 2015-09-23 Howmedica Osteonics Corp. Annealing method for cross-linked polyethylene
WO2016090084A1 (en) * 2014-12-03 2016-06-09 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US9745462B2 (en) 2008-11-20 2017-08-29 Zimmer Gmbh Polyethylene materials
AU2013274385B2 (en) * 2012-06-13 2017-11-30 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
US11267951B2 (en) 2010-12-13 2022-03-08 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
US11312043B2 (en) 2010-12-13 2022-04-26 Cytec Technology Corp. Processing additives and uses of same in rotational molding
WO2022171431A1 (en) * 2021-02-09 2022-08-18 Aesculap Ag Method for producing a sliding surface element, sliding surface element and knee joint endoprosthesis

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865788B2 (en) * 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US8563623B2 (en) 1996-02-13 2013-10-22 The General Hospital Corporation Radiation melt treated ultra high molecular weight polyethylene prosthetic devices
EP2664299A1 (en) * 2003-01-16 2013-11-20 Massachusetts General Hospital Methods For Making Oxidation Resistant Polymeric Material
BRPI0822692A2 (en) * 2008-05-13 2015-07-07 Smith & Nephew Orthopaedics Ag Highly cross-linked oxidation resistant Uhmwpe
US8133436B2 (en) 2008-08-05 2012-03-13 Howmedica Osteonics Corp. Polyethylene cross-linked with an anthocyanin
US8933145B2 (en) 2009-02-20 2015-01-13 The General Hospital Corporation High temperature melting
WO2010117752A1 (en) * 2009-03-31 2010-10-14 Zimmer, Inc. Surface modification of ultrahigh molecular weight polyethylene
US20120070600A1 (en) * 2009-05-20 2012-03-22 Muratoglu Orhun K Metods of preventing oxidation
AU2010318182B2 (en) * 2009-11-11 2014-07-24 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
GB0922339D0 (en) 2009-12-21 2010-02-03 Mcminn Derek J W Acetabular cup prothesis and introducer thereof
US20130199817A1 (en) * 2010-04-14 2013-08-08 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
US20120109301A1 (en) 2010-11-03 2012-05-03 Zimmer, Inc. Modified Polymeric Materials And Methods Of Modifying Polymeric Materials
US20140024736A1 (en) 2010-11-03 2014-01-23 Zimmer, Inc. Polymer articles having chemically bonded agents and methods of making the same
EP2578606B2 (en) * 2011-10-04 2019-08-28 Borealis AG Process for the production of polyolefins wherein an antioxidant is fed to the reaction mixture during the process
DE102013100529A1 (en) * 2013-01-18 2014-07-24 Bredent Gmbh & Co. Kg Anchoring element and method of manufacture
WO2015057943A2 (en) 2013-10-17 2015-04-23 The General Hospital Corporation Peroxide cross-linking and high temperature melting
WO2015095790A1 (en) * 2013-12-20 2015-06-25 The Brigham And Women's Hospital, Inc. Ductile crosslinked polymers and methods of making the same
CN107667137A (en) * 2015-03-25 2018-02-06 捷迈有限公司 The ultra-high molecular weight polyethylene of melt stability
CN105173970B (en) * 2015-09-29 2017-11-28 上海化工研究院有限公司 A kind of ultra-high molecular weight polyethylene elevator sliding guide shoe shoe guide and preparation method thereof
JP7341061B2 (en) 2016-11-22 2023-09-08 エレクトロファイ, インコーポレイテッド Particles containing therapeutic or diagnostic agents and their suspensions and methods of use
JP2018131533A (en) * 2017-02-15 2018-08-23 オリンパス株式会社 Paint for medical equipment, and medical equipment
JP6340448B1 (en) * 2017-03-21 2018-06-06 旭化成株式会社 Polyethylene polymer powder and method for producing the same
AU2018306303A1 (en) * 2017-07-25 2020-02-20 Elektrofi, Inc. Formation of particles including agents
US11667762B2 (en) 2017-08-29 2023-06-06 The General Hospital Corporation UV-initiated reactions in polymeric materials
CN108411495B (en) * 2018-02-07 2020-08-11 清华大学 Osteoinductive membrane and preparation method thereof
JP7131931B2 (en) * 2018-03-15 2022-09-06 三井化学株式会社 Method for producing olefin polymer
EP3917500A2 (en) 2019-01-31 2021-12-08 Elektrofi, Inc. Particle formation and morphology
CN114514035A (en) 2019-09-13 2022-05-17 伊勒卓菲公司 Compositions and methods for delivering therapeutic biologies for treatment of diseases

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080778A1 (en) * 2000-04-27 2001-11-01 The Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
WO2004064618A2 (en) * 2003-01-16 2004-08-05 Massachusetts General Hospital Methods for making oxidation resistant polymeric material
WO2004101009A1 (en) * 2003-05-19 2004-11-25 Klaus Lederer Crosslinked, ultrahigh molecular weight polyethylene (uhmw-pe)
WO2007019874A1 (en) * 2005-08-18 2007-02-22 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
WO2008113388A1 (en) * 2007-03-20 2008-09-25 Plus Orthopedics Ag Oxidation resistant highly-crosslinked uhmwpe

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS221405B1 (en) 1981-12-23 1983-04-29 Ludmila Adamirova Method of hygienically harmless stabilization of the polyolefine against degradation by ionizing radiation
CS221403B1 (en) 1981-12-23 1983-04-29 Bretislav Dolezel Method of hygienic faultless stabilization of the polyolefine against thermooxidation and photooxidation degradation
EP0371059A1 (en) 1986-01-14 1990-06-06 Raychem Corporation Conductive polymer composition
US5308549A (en) 1991-11-12 1994-05-03 Hoffmann-La Roche Inc. Stabilizers for thermo plastic materials
US5282861A (en) 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US5559167A (en) 1993-07-22 1996-09-24 General Electric Company Gamma irradiated thermoplastics and articles
WO1995006148A1 (en) 1993-08-20 1995-03-02 Smith & Nephew Richards, Inc. Self-reinforced ultra-high molecular weight polyethylene composites
DE69423661T2 (en) 1993-12-28 2000-11-23 Dainippon Printing Co Ltd Thermal transfer recording layer using a specific dye
TW317568B (en) 1994-04-13 1997-10-11 Ciba Sc Holding Ag
CA2166450C (en) * 1995-01-20 2008-03-25 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20050125074A1 (en) * 1995-01-20 2005-06-09 Ronald Salovey Crosslinking of polyethylene for low wear using radiation and thermal treatments
US5879398A (en) 1995-02-14 1999-03-09 Zimmer, Inc. Acetabular cup
US5577368A (en) * 1995-04-03 1996-11-26 Johnson & Johnson Professional, Inc. Method for improving wear resistance of polymeric bioimplantable components
US6087559A (en) 1995-06-07 2000-07-11 Pioneer Hi-Bred International, Inc. Plant cells and plants transformed with Streptococcus mutans genes encoding wild-type or mutant glucosyltransferase B enzymes
AU7333696A (en) * 1995-10-18 1997-05-07 Chisso Corporation Olefin (co)polymer composition, process for producing the same, catalyst for (co)polymerizing olefin, and process for producing the same
JP3270056B2 (en) * 1995-12-01 2002-04-02 チッソ株式会社 Resin molding
US5879400A (en) * 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US8563623B2 (en) * 1996-02-13 2013-10-22 The General Hospital Corporation Radiation melt treated ultra high molecular weight polyethylene prosthetic devices
US20020156536A1 (en) * 1996-02-13 2002-10-24 Harris William H. Polyethylene hip joint prosthesis with extended range of motion
US8865788B2 (en) * 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
NZ331107A (en) 1996-02-13 2000-04-28 Gen Hospital Corp Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US5753182A (en) * 1996-02-14 1998-05-19 Biomet, Inc. Method for reducing the number of free radicals present in ultrahigh molecular weight polyethylene orthopedic components
US5721334A (en) 1996-02-16 1998-02-24 Newyork Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Process for producing ultra-high molecular weight low modulus polyethylene shaped articles via controlled pressure and temperature and compositions and articles produced therefrom
US6087553A (en) * 1996-02-26 2000-07-11 Implex Corporation Implantable metallic open-celled lattice/polyethylene composite material and devices
EP1795212A3 (en) 1996-07-09 2007-09-05 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6228900B1 (en) * 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US5827904A (en) * 1996-09-27 1998-10-27 Hahn; David Medical implant composition
US6017975A (en) 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6231804B1 (en) * 1997-04-02 2001-05-15 Chisso Corporation Modified olefin (co)polymer composition, process for preparing the same, and modified olefin (co)polymer composition molding
JP4315261B2 (en) 1998-02-25 2009-08-19 ナカシマメディカル株式会社 Sliding member for artificial joint and manufacturing method
US6692679B1 (en) * 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
CN1308623A (en) 1998-07-06 2001-08-15 伊斯曼化学公司 Method of production of vitamin E
US6204257B1 (en) 1998-08-07 2001-03-20 Universtiy Of Kansas Water soluble prodrugs of hindered alcohols
EP0995449A1 (en) * 1998-10-21 2000-04-26 Sulzer Orthopädie AG UHMW-polyethylene for implants
SE9900519D0 (en) 1999-02-17 1999-02-17 Lars Lidgren A method for the preparation of UHMWPE doped with an antioxidant and an implant made thereof
ATE383364T1 (en) * 1999-05-27 2008-01-15 Monsanto Co BIOMATERIALS MODIFIED WITH SUPEROXIDE DISMUTASE MIMITATORS
US6627141B2 (en) * 1999-06-08 2003-09-30 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6245276B1 (en) * 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6432349B1 (en) * 1999-06-29 2002-08-13 Zimmer, Inc. Process of making an articulating bearing surface
US6184265B1 (en) * 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6365089B1 (en) 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
US6620198B2 (en) * 1999-10-07 2003-09-16 Exactech, Inc. Composite bearing inserts for total knee joints
US6664317B2 (en) * 2000-02-18 2003-12-16 Ciba Specialty Chemicals Corporation Stabilized gamma irradiated polyolefins
US6391390B1 (en) 2000-03-22 2002-05-21 Basf Corporation Curable coating composition with improved durability
US6503439B1 (en) * 2000-06-15 2003-01-07 Albert H. Burstein Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof
US6558794B1 (en) * 2000-06-26 2003-05-06 Technology Assessment & Transfer, Inc. Ceramic particulate reinforced orthopedic implants
AU2001287574A1 (en) 2000-06-30 2002-01-08 Ingenium Pharmaceuticals Ag Human g protein-coupled receptor igpcr20, and uses thereof
US6818172B2 (en) * 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
US7205339B2 (en) * 2000-12-12 2007-04-17 Massachusetts General Hospital Selective controlled manipulation of polymers
US6547828B2 (en) * 2001-02-23 2003-04-15 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
EP2045286B1 (en) * 2001-09-25 2013-04-24 ExxonMobil Chemical Patents Inc. Plasticised polyvinyl chloride
US8524884B2 (en) * 2001-10-30 2013-09-03 Colorado State University Research Foundation Outer layer material having entanglement of hydrophobic polymer hostblended with a maleated hydrophobic polymer co-host, and hydrophilic polymer guest
EP1467854A4 (en) 2001-12-12 2007-01-10 Depuy Products Inc Orthopaedic device and method for making same
AU2002334649B2 (en) * 2002-01-04 2007-12-06 Cambridge Polymer Group Inc. A high modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt
US7595074B2 (en) 2002-04-05 2009-09-29 University Of Massachusetts Lowell Polymeric antioxidants
AU2003262390A1 (en) * 2002-04-19 2003-11-03 Gammatron (Pty) Ltd Method of increasing the hydrostatic stress strength of a polymer
WO2004000159A2 (en) * 2002-06-21 2003-12-31 Massachusetts General Hospital Metal back or mesh crosslinking
WO2004009690A2 (en) * 2002-07-18 2004-01-29 Exxonmobil Chemical Patents Inc. Ultraviolet radiation stabilized polyolefins
US8337968B2 (en) 2002-09-11 2012-12-25 Boston Scientific Scimed, Inc. Radiation sterilized medical devices comprising radiation sensitive polymers
US6976999B2 (en) 2002-11-19 2005-12-20 Zimmer Technology, Inc. Prosthetic device and method of making the same
US6933026B2 (en) * 2003-02-06 2005-08-23 Aradgim Corporation Method to reduce damage caused by irradiation of halogenated polymers
US6853772B2 (en) * 2003-05-13 2005-02-08 3M Innovative Properties Company Fiber grating writing interferometer with continuous wavelength tuning and chirp capability
US7214764B2 (en) * 2003-06-30 2007-05-08 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
US20040265165A1 (en) 2003-06-30 2004-12-30 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
JP2005054145A (en) 2003-08-07 2005-03-03 Mitsubishi Gas Chem Co Inc (meth)acrylate resin cured material having gas barrier property, coating, adhesive and film
US7205051B2 (en) * 2003-09-30 2007-04-17 Depuy Products, Inc. Medical implant or medical implant part
US7034097B2 (en) * 2004-01-13 2006-04-25 Lexmark International, Inc. Polyurethane elastomers with combination of curatives
CA2554777C (en) * 2004-02-03 2012-10-09 Orhun K. Muratoglu Highly crystalline cross-linked oxidation-resistant polyethylene
EP1750614B1 (en) * 2004-05-11 2017-09-27 The General Hospital Corporation Methods for making oxidation resistant polymeric material
US7384430B2 (en) * 2004-06-30 2008-06-10 Depuy Products, Inc. Low crystalline polymeric material for orthopaedic implants and an associated method
US7344672B2 (en) * 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7235592B2 (en) * 2004-10-12 2007-06-26 Zimmer Gmbh PVA hydrogel
GB0422666D0 (en) 2004-10-12 2004-11-10 Benoist Girard Sas Prosthetic acetabular cups
US7335697B2 (en) * 2004-12-23 2008-02-26 Depuy Products, Inc. Polymer composition comprising cross-linked polyethylene and methods for making the same
US7435372B2 (en) * 2005-03-31 2008-10-14 Zimmer, Inc. Liquid bath annealing of polymers for orthopaedic implants
WO2006125082A2 (en) * 2005-05-18 2006-11-23 The General Hospital Corporation Dba Massachusetts General Hospital Hydrogels and hydrogel particles
AU2012203503B2 (en) 2005-08-18 2014-01-30 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
ES2372742T3 (en) * 2005-08-22 2012-01-26 The General Hospital Corporation Dba Massachusetts General Hospital HOMOGENEIZED POLYMER MATERIAL RESISTANT TO OXIDATION.
EP2441781A1 (en) 2005-08-22 2012-04-18 The General Hospital Corporation d/b/a Massachusetts General Hospital Highly crystalline polyethylene
CA2619869A1 (en) * 2005-08-22 2007-03-01 The General Hospital Corporation Dba Massachusetts General Hospital Highly cross-linked and wear-resistant polyethylene prepared below the melt
US20070077268A1 (en) * 2005-09-30 2007-04-05 Depuy Products, Inc. Hydrophobic carrier modified implants for beneficial agent delivery
WO2007050985A2 (en) 2005-10-27 2007-05-03 Polnox Corporation Macromolecular antioxidants based on stξrically hindered phenolic phosphites
US20070149660A1 (en) * 2005-10-27 2007-06-28 Vijayendra Kumar Stabilized polyolefin compositions
US7615075B2 (en) * 2005-11-04 2009-11-10 Rush University Medical Center Plastic implant impregnated with a degradation protector
US20070178133A1 (en) 2005-11-09 2007-08-02 Liquidia Technologies, Inc. Medical device, materials, and methods
US7635725B2 (en) 2006-02-21 2009-12-22 The Brigham And Women's Hospital, Inc. Crosslinked polymers
US20070232762A1 (en) * 2006-03-31 2007-10-04 Depuy Products, Inc. Bearing material of medical implant having reduced wear rate and method for reducing wear rate
US20070239283A1 (en) 2006-04-11 2007-10-11 Berger Richard A Acetabular cup conversion ring
US20070275030A1 (en) * 2006-05-25 2007-11-29 The General Hospital Corporation Dba Massachusetts General Hospital Anti-cross-linking agents and methods for inhibiting cross-linking of injectable hydrogel formulations
ITMI20061375A1 (en) * 2006-07-14 2008-01-15 Fabio Conteduca SYNTHETIC MAINTENANCE WITH REDUCED OXIDABILITY AND RELATIVE PREPARATION PROCESS
JP4902455B2 (en) 2006-08-01 2012-03-21 東レ東燃機能膜合同会社 Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
ATE481989T1 (en) 2006-08-25 2010-10-15 Depuy Products Inc MATERIAL FOR SUPPORTING A MEDICAL IMPLANT
JP2010508405A (en) 2006-10-30 2010-03-18 スミス アンド ネフュー オーソペディックス アーゲー Method involving polyethylene cross-linking or using cross-linked polyethylene
US7966043B2 (en) 2006-12-09 2011-06-21 Cisco Technology, Inc. Method for creating multiple-input-multiple-output channel with beamforming using signals transmitted from single transmit antenna
JP5535650B2 (en) 2007-01-25 2014-07-02 ザ・ジェネラル・ホスピタル・コーポレイション Method for producing oxidation-resistant crosslinked polymeric material
WO2008101134A1 (en) 2007-02-14 2008-08-21 Brigham And Women's Hospital, Inc. Crosslinked polymers and methods of making the same
US9441081B2 (en) * 2007-03-02 2016-09-13 The General Hospital Corp. Cross-linking of antioxidant-containing polymers
CA2678459C (en) 2007-04-10 2016-05-24 Zimmer, Inc. An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8641959B2 (en) * 2007-07-27 2014-02-04 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
JP6223653B2 (en) 2007-09-04 2017-11-01 スミス・アンド・ネフュー・オルソペディクス・アーゲー Ultra high molecular weight polyethylene for joint surfaces
US20100292374A1 (en) 2007-10-05 2010-11-18 Anuj Bellare Crosslinked polymers and methods of making the same
EP2207848B1 (en) 2007-11-06 2011-10-19 DSM IP Assets B.V. Process for producing high molecular weight polyethylene
JP5571580B2 (en) * 2008-01-30 2014-08-13 ジンマー,インコーポレイティド Low rigidity orthopedic parts
US7806064B2 (en) 2008-03-12 2010-10-05 Wellman John G Friction reducing pollution control system for marine vehicles
GB0812890D0 (en) 2008-07-11 2008-08-20 Smith & Nephew Orthopaedics Ag Compositions and methods of making compositions
WO2010057644A1 (en) * 2008-11-20 2010-05-27 Zimmer Gmbh Polyethylene materials
CA2760538A1 (en) 2009-05-04 2010-11-11 Smith & Nephew, Inc. Synergistic effects of blending multiple additives in uhmwpe
US20120070600A1 (en) 2009-05-20 2012-03-22 Muratoglu Orhun K Metods of preventing oxidation
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
EP2648772B8 (en) 2010-12-06 2019-06-12 Zimmer, Inc. Crosslinked polymers including one or more antioxidants, methods for making same and methods for selecting antioxidants
JP5735443B2 (en) 2012-03-06 2015-06-17 ジンマー ゲーエムベーハー Ultra high molecular weight polyethylene article and method of forming ultra high molecular weight polyethylene article
CA2942565A1 (en) 2014-03-12 2015-09-17 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
CN107207741B (en) 2014-12-03 2021-05-11 捷迈有限公司 Antioxidant-infused ultra-high molecular weight polyethylene
JP5969637B2 (en) 2015-01-30 2016-08-17 ジンマー ゲーエムベーハー Ultra high molecular weight polyethylene article and method of forming ultra high molecular weight polyethylene article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080778A1 (en) * 2000-04-27 2001-11-01 The Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
WO2004064618A2 (en) * 2003-01-16 2004-08-05 Massachusetts General Hospital Methods for making oxidation resistant polymeric material
WO2004101009A1 (en) * 2003-05-19 2004-11-25 Klaus Lederer Crosslinked, ultrahigh molecular weight polyethylene (uhmw-pe)
WO2007019874A1 (en) * 2005-08-18 2007-02-22 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
WO2008113388A1 (en) * 2007-03-20 2008-09-25 Plus Orthopedics Ag Oxidation resistant highly-crosslinked uhmwpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARTH M; AUST N; LEDERER K: "STUDIES ON THE EFFECT OF ELECTRON BEAM RADIATION ON THE MOLECULAR STRUCTURE OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE UNDER THE INFLUENCE OF ALPHA-TOCOPHEROL WITH RESPECT TO ITS APPLICATION IN MEDICAL IMPLANTS" JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE, CHAPMAN AND HALL, LONDON, GB, vol. 13, no. 10, 1 January 2002 (2002-01-01), pages 917-931, XP008053056 ISSN: 0957-4530 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470903B2 (en) 2005-08-18 2013-06-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US11015030B2 (en) 2005-08-18 2021-05-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US11001680B2 (en) 2005-08-18 2021-05-11 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US10556998B2 (en) 2007-04-10 2020-02-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9822224B2 (en) 2007-04-10 2017-11-21 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
EP2564882B1 (en) * 2007-04-10 2021-05-19 Zimmer, Inc. An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8669299B2 (en) 2007-04-10 2014-03-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
EP2578248B1 (en) * 2007-04-10 2021-05-19 Zimmer, Inc. An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9265545B2 (en) 2007-04-10 2016-02-23 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9277949B2 (en) 2007-04-10 2016-03-08 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9926432B2 (en) 2007-04-10 2018-03-27 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8546460B2 (en) 2007-09-04 2013-10-01 Smith & Nephew, Inc. Ultra high molecular weight polyethylene for bearing surfaces
US8652212B2 (en) 2008-01-30 2014-02-18 Zimmer, Inc. Orthopedic component of low stiffness
WO2009097412A3 (en) * 2008-01-30 2010-05-14 Zimmer, Inc. Othopedic component of low stiffness
WO2009097412A2 (en) * 2008-01-30 2009-08-06 Zimmer, Inc. Othopedic component of low stiffness
US9718241B2 (en) 2008-01-30 2017-08-01 Zimmer, Inc. Method of manufacturing an acetabular component
US9745462B2 (en) 2008-11-20 2017-08-29 Zimmer Gmbh Polyethylene materials
WO2010136173A1 (en) * 2009-05-26 2010-12-02 Aesculap Ag Polyolefin doped with a stabilizer
US11312043B2 (en) 2010-12-13 2022-04-26 Cytec Technology Corp. Processing additives and uses of same in rotational molding
US11267951B2 (en) 2010-12-13 2022-03-08 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
AU2013274385B2 (en) * 2012-06-13 2017-11-30 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
AU2015201384B2 (en) * 2014-03-21 2016-11-10 Howmedica Osteonics Corp. Annealing method for cross-linked polyethylene
EP2921186A1 (en) * 2014-03-21 2015-09-23 Howmedica Osteonics Corp. Annealing method for cross-linked polyethylene
US10265891B2 (en) 2014-12-03 2019-04-23 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
WO2016090084A1 (en) * 2014-12-03 2016-06-09 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
WO2022171431A1 (en) * 2021-02-09 2022-08-18 Aesculap Ag Method for producing a sliding surface element, sliding surface element and knee joint endoprosthesis

Also Published As

Publication number Publication date
CA2678459A1 (en) 2008-10-16
US20110133371A1 (en) 2011-06-09
ES2378721T3 (en) 2012-04-17
US8669299B2 (en) 2014-03-11
AU2008236996A1 (en) 2008-10-16
US20160145416A1 (en) 2016-05-26
AU2008236996B2 (en) 2012-11-08
US8129440B2 (en) 2012-03-06
EP2486948B1 (en) 2018-02-21
EP2564882B1 (en) 2021-05-19
EP2578248A1 (en) 2013-04-10
EP2150285B1 (en) 2012-02-08
US20120157591A1 (en) 2012-06-21
EP2150285A2 (en) 2010-02-10
US20140194935A1 (en) 2014-07-10
EP2564882A1 (en) 2013-03-06
ES2662102T3 (en) 2018-04-05
CA2678459C (en) 2016-05-24
US8178594B2 (en) 2012-05-15
US9265545B2 (en) 2016-02-23
US20080319137A1 (en) 2008-12-25
US20100029858A1 (en) 2010-02-04
ATE544476T1 (en) 2012-02-15
US9926432B2 (en) 2018-03-27
EP2578248B1 (en) 2021-05-19
EP2486948A1 (en) 2012-08-15
JP2010523805A (en) 2010-07-15
WO2008124825A3 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US9926432B2 (en) Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US10556998B2 (en) Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9962463B2 (en) Cross-linking of antioxidant-containing polymers
JP5571580B2 (en) Low rigidity orthopedic parts
RU2495054C2 (en) Oxidation-resistant highly cross-linked ultrahigh molecular weight polyethylene
EP2346941A1 (en) Polyethylene materials
Oral et al. High vitamin E content, impact resistant UHMWPE blend without loss of wear resistance
AU2013200780B2 (en) An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
AU2014274546B2 (en) An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
Oral et al. High temperature homogenization improves impact toughness of vitamin E‐diffused, irradiated UHMWPE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08745507

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008236996

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2678459

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2008236996

Country of ref document: AU

Date of ref document: 20080410

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010503206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008745507

Country of ref document: EP