WO2008129166A1 - Canula/optic fibre assembly and laser tool including said assembly - Google Patents

Canula/optic fibre assembly and laser tool including said assembly Download PDF

Info

Publication number
WO2008129166A1
WO2008129166A1 PCT/FR2008/000264 FR2008000264W WO2008129166A1 WO 2008129166 A1 WO2008129166 A1 WO 2008129166A1 FR 2008000264 W FR2008000264 W FR 2008000264W WO 2008129166 A1 WO2008129166 A1 WO 2008129166A1
Authority
WO
WIPO (PCT)
Prior art keywords
cannula
optical fiber
distal
assembly
fiber
Prior art date
Application number
PCT/FR2008/000264
Other languages
French (fr)
Inventor
Jaouad Zemmouri
Jean Ringot
Original Assignee
Optical System & Research For Industry And Science Osyris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical System & Research For Industry And Science Osyris filed Critical Optical System & Research For Industry And Science Osyris
Priority to JP2009551240A priority Critical patent/JP2010519947A/en
Priority to EP08775610A priority patent/EP2114279A1/en
Publication of WO2008129166A1 publication Critical patent/WO2008129166A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2244Features of optical fibre cables, e.g. claddings

Definitions

  • the present invention relates to a new assembly comprising an optical fiber introduced inside a cannula, and the use of this assembly cannula / optical fiber to produce a laser instrument for use in the medical field.
  • the liposuction technique of introducing a probe having a diameter of about 5 mm under the skin is used. of a patient and to suck the fat.
  • an ultrasound probe introduced under the skin of a patient to destroy the fat cell membrane. In the latter case, during the destruction of the membrane, a liquid escapes and must also be sucked.
  • the device comprises an optical fiber, which is positioned within a cannula, which is connected at its proximal end to a laser energy source and which emits a laser beam (electromagnetic radiation) at its distal end.
  • the cannula is constituted by a hollow needle, whose distal end is open and tapered, and reveals the distal end of the optical fiber.
  • the technique involves piercing the patient's skin, introducing the needle into a subcutaneous layer of fat cells of the patient, and irradiating said fat cell layer with the laser beam. Irradiation with the laser beam causes lipolysis of the fat layer and causes rupture of the adipose cell membrane, thereby transforming the cells into a liquid substance.
  • This liquid substance can be aspirated or is preferably left in the state to be drained by the lymphatic system and by the action of phagocytes.
  • the technique described in this document allows for uniform treatment of a layer of fat cells while eliminating bleeding problems of the patient and decreasing the size of the perforations in the skin of the patient. The bleeding of the patient is indeed eliminated thanks to the use of the energy of the laser beam to cauterize the blood vessels.
  • An optical fiber conventionally comprises three concentric parts:
  • a central part for example in S10 2 (doped or not), ensuring the guided propagation of electromagnetic radiation,
  • a very thin intermediate layer for example SiC 2 or polymer
  • adding surrounding the central part, and having a refractive index different from the central part, so as to confine the electromagnetic radiation in the central part, a thicker mechanical polymer protective sheath.
  • the term "core”, the central part and the middle layer (“cladding") of the optical fiber, and the term “sheath” means the mechanical protective sheath. supra.
  • the core of the optical fiber thus stripped is no longer protected at the distal end of the fiber by the mechanical protection sheath surrounding the core of the fiber.
  • the heart of the optical fiber is very fragile mechanically, which significantly increases the risk of rupture.
  • a second disadvantage is related to the immobilization of the optical fiber relative to the needle.
  • the optical fiber is immobilized with respect to the needle by means of a mechanical clamping system comprising an elastic ring, through which the optical fiber is passed, and a clamping screw.
  • This mechanical clamping system does not reliably immobilize the optical fiber relative to the needle. This results in practice, during the implementation of this device, a significant risk of sliding of the optical fiber relative to the needle, which increases the risk of rupture of the optical fiber inside the body of the device. patient.
  • a third disadvantage is related to the presence, between the optical fiber and the needle, of a gap allowing the penetration of tissue inside the needle.
  • the tissues that penetrate between the needle and the optical fiber are burned by the laser.
  • all or some of these burned tissues can detrimentally end up in inside the patient's body; on the other hand, they can damage the optical fiber.
  • the French patent application FR-A-2,875,122 describes a medical instrument applicable to vascular occlusion, and comprising, in an alternative embodiment, an optical fiber positioned inside a needle.
  • This variant needle / optical fiber has the three disadvantages described above for the device of the publication US 6 206 873.
  • Document FR-A-2,875,122 proposes another solution in which the optical fiber is replaced by a silica electromagnetic radiation guide, integral with the needle; more particularly, this guide is formed by a "dressing" of the interior of the needle.
  • This guide is formed by a "dressing" of the interior of the needle.
  • the technical concept of "dressing” is not explained in this document and is not clear.
  • the realization of such a guide inside a needle appears difficult to achieve; in addition, this type of device is not marketed to date, we can question its effectiveness.
  • US patent application US 2006/0078265 discloses a device consisting essentially of a laser energy source connected to a handpiece, and used to project a laser beam onto human tissues.
  • the handpiece includes an optical fiber and a cannula enclosing the optical fiber.
  • the distal portion of the optical fiber is this time entirely housed in the cannula.
  • the cannula is closed at its distal end, and a lateral opening is provided in the cannula for lateral diffusion of the laser beam.
  • the protective sheath of the optical fiber was partially removed on a distal portion of the fiber, thus revealing the core of the optical fiber.
  • the distal end of the sheath is abutted against three studs distributed over the periphery of the inner wall of the cannula, which allows a correct positioning of the distal end of the optical fiber relative to the lateral opening of the cannula allowing the diffusion of the laser beam.
  • US 2006/0078265 the problem of immobilization and maintenance of the optical fiber with respect to the cannula is not resolved.
  • the optical fiber can slide backwards; during the implementation of this device, the optical fiber is not properly immobilized and maintained in its distal portion, there is a risk of rupture of the core of the fiber at its distal end stripped.
  • the laser emission is lateral and not frontal, and it is essential to place a reflector inside the needle to deflect the laser beam and spread it through the lateral opening of the cannula.
  • the implementation of reflector complicates in a detrimental way the manufacture of the device.
  • the publication US 2002/0138073 discloses a laser surgical probe using an optical fiber whose distal emission portion is housed inside a cylindrical tip. This cylindrical end is closed at its end by a mirror and the cylindrical wall of this endpiece is made of a material passing the laser beam delivered at the end of the fiber. This cylindrical tip allows lateral diffusion of the electromagnetic radiation delivered by the optical fiber and does not allow frontal emission.
  • a diffusing medium is placed inside the cylindrical tip between the distal end of the optical fiber and the closed end of the tip.
  • the publication US 5,269,777 discloses a laser surgical probe using an optical fiber whose distal emission portion is inserted inside a silicone diffusion tip, which preferably has a length of 0.5 cm. and 5cm.
  • This diffusion tip is attached to the distal end of the heart of the fiber, and does not constitute a cannula.
  • a second inner layer diffusing is deposited inside the tip, for example by injection molding.
  • This diffusing inner layer contains diffusing particles, such as, for example, diamond dust, TiO 2 or alumina.
  • the electromagnetic radiation, which is guided by the optical fiber to its distal end, is no longer guided at the output of the optical fiber inside the diffusion tip, but is diffused in all directions by the layer internal scattering of the tip.
  • the present invention is aimed primarily at proposing a new cannula / optical fiber assembly, which allows frontal emission of electromagnetic radiation, which makes it possible to reduce the risks of rupture of the optical fiber, and which allows a reliable immobilization of the optical fiber with respect to the cannula.
  • the cannula / optical fiber assembly comprises a cannula, which comprises an opening at a distal end, and means for guiding an electromagnetic radiation.
  • These guiding means comprise an optical fiber introduced inside the cannula, and used to guide electromagnetic radiation to the distal opening of the cannula, so that this electromagnetic radiation is emitted frontally by said distal opening of the cannula.
  • the cannula Said optical fiber comprises a core surrounded by an outer protective sheath, the outer diameter (Di) of the protective sheath of the optical fiber being substantially equal to the inner diameter (d 2 ) of the cannula at least in a distal portion of said cannula .
  • the core of the optical fiber is stripped on a distal portion of the fiber, and the stripped distal portion of the optical fiber is housed entirely within the cannula.
  • substantially equal it is meant that said outer diameter of the sheath of the optical fiber is very slightly less than the inside diameter of the cannula, with a functional clearance between the sheath of the optical fiber and the cannula which is just sufficient to allow the optical fiber to slide inside the cannula during the fiber introduction operation.
  • the term "cannula” is taken in its most general acceptance and covers any elongated hollow support, curved or rectilinear, allowing the introduction and the guiding of the optical fiber in the human body.
  • the cannula may in particular comprise a hollow tube whose distal end is rounded and non-aggressive to the tissues; the cannula may also comprise a hollow needle whose distal end is beveled and allows the piercing of tissues.
  • the assembly of the invention comprises a cannula and means for guiding an electromagnetic radiation comprising an optical fiber which is introduced inside.
  • Cannula the cannula is crimped on the optical fiber.
  • the cannula can either be open at its distal end or be closed at its distal end and have in its distal part a lateral opening for the emission of electromagnetic radiation, in a manner comparable to the cannula / fiber assembly Optical described in US Publication 2006/0078265
  • the assembly of the invention comprises a cannula which is open at its distal end, and means for guiding radiation.
  • electromagnetic which comprise an optical fiber introduced into the interior of the cannula, and which guide electromagnetic radiation to the open distal end of the cannula, said optical fiber having a core surrounded by an outer protective sheath.
  • the core of the optical fiber is stripped at the distal end of the fiber; the distal portion of the optical fiber is housed entirely within the cannula, and the distal end of the optical fiber seals the distal opening of the cannula.
  • the cannula / optical fiber assembly has the following additional technical characteristics, taken separately or in combination: the cannula comprises in its distal part an insert hollow which has a through cavity, and the stripped distal portion of the core of the fiber is threaded into this hollow insert;
  • the sheath of the optical fiber is positioned in abutment inside the cannula; more particularly the sheath of the optical fiber is positioned in abutment against the insert;
  • the hollow insert is made of a thermally conductive material, and makes it possible to thermally protect the sheath of the optical fiber; the distal end of the heart of the optical fiber is flush with the distal opening of the cannula;
  • the stripped distal portion of the optical fiber closes the distal opening of the cannula, which advantageously makes it possible to prevent the penetration of foreign bodies into the cannula;
  • the means for guiding the electromagnetic radiation comprise an additional guide fixed to the cannula, and the distal end of the heart of the optical fiber is preferably in contact with said additional guide;
  • the additional electromagnetic radiation guide is flush with the distal opening of the cannula;
  • the additional electromagnetic radiation guide closes the distal opening of the cannula, which advantageously makes it possible to prevent the penetration of foreign bodies into the cannula.
  • the cannula is crimped on the sheath of the optical fiber, which allows a simple and effective immobilization of the optical fiber relative to the cannula.
  • Another object of the invention is a laser instrument comprising a laser source coupled to the optical fiber of an assembly of the invention, said assembly being able to conform to the first, second or third aspect mentioned above.
  • FIG. 2 is a sectional representation of a cannula / optical fiber assembly in a first embodiment of the invention
  • FIG. 3 is a sectional representation of a cannula / optical fiber assembly in a second embodiment of the invention.
  • - Figure 4 is a sectional representation of a cannula / optical fiber assembly in a third embodiment of the invention
  • - Figure 5 is a sectional representation of a cannula / optical fiber assembly in a fourth embodiment of the invention
  • FIG. 6 is a sectional representation of a cannula / optical fiber assembly in a fifth embodiment of the invention.
  • FIG. 7 is a sectional representation of a cannula / optical fiber assembly in a sixth embodiment of the invention.
  • FIGS. 8 to 11 are sectional representations of a cannula / optical fiber assembly corresponding respectively to a seventh, eighth, ninth and tenth embodiment variant of FIG. the invention.
  • FIG. 12 and 13 show an optical fiber in a cannula at the end of a first step of a first method of assembly
  • FIG. 14 and 15 show an optical fiber in a cannula at the end of a second step of said first method of assembly
  • FIGS. 16 and 17 show an optical fiber in a cannula at the end of a third step of said first method of assembly;
  • - Figures 18 and 19 show an optical fiber in a cannula at the end of a first step of a second method of assembly;
  • FIG. 20 and 21 show an optical fiber in a cannula at the end of a second step of said second method of assembly.
  • a laser instrument in accordance with the invention comprises a cannula / optical fiber assembly referenced E, on which is fitted a handpiece P, and a laser source S, which is coupled to the optical fiber of the invention. set E.
  • the handpiece P is known per se and facilitates the handling and manipulation of the assembly cannula / optical fiber E.
  • This laser instrument is intended to be used in the medical field, for any type laser treatment, and for example and non-limiting and non-exhaustive, for the treatment of varicose veins, for the treatment of adipose, for percutaneous diagnosis or in the field of ophthalmic surgery. It is up to the person skilled in the art to choose the laser source adapted to the uses of the laser instrument.
  • the assembly E comprises an optical fiber 1 which makes it possible to guide by total internal reflections the electromagnetic radiation (light) delivered by the laser source S, and whose distal part (opposite to the laser source) is introduced to the 2.
  • the distal portion of the optical fiber 1 introduced into the cannula 2 and a distal portion of the cannula 2 are shown.
  • the length of the cannula 2 may be more or less important depending on the applications.
  • the optical fiber 1 is known per se and comprises a core 10 for the guided propagation of the electromagnetic radiation delivered by the laser source, and a mechanical protection sheath 11, for example made of plastic, surrounding the core 10.
  • the The core of the optical fiber has a central portion for guided propagation of electromagnetic radiation and a thin intermediate layer, commonly referred to as "cladding", and surrounding the central portion for confining electromagnetic radiation in the central portion.
  • said central portion and said thin intermediate layer, which form the core of the optical fiber are not differentiated.
  • the optical fiber has a diameter D 1 (outer diameter of the sheath 11), and the core 10 of the fiber 1 has a diameter di.
  • the distal portion 100 of the core 10 of the fiber 1 is stripped, that is to say that the protective sheath 11 does not cover the heart 10 and thus leaves said distal portion 100 of the heart 10. This avoids the risks burning of the sheath 11 by the laser beam emitted at the distal end 101 of the heart 10.
  • the cannula 2 is constituted by a flexible tube opaque to electromagnetic radiation emitted by the laser source S, for example a flexible stainless steel tube. In the particular example illustrated, it comprises a cylindrical hollow body 20 extended by a substantially funnel-shaped hollow distal portion 21, said hollow body 20 and the hollow distal portion 21 defining a through internal cavity 22.
  • the outer face of the cannula 2 will be referenced 2a, and the inner face of the cannula 2 will be referenced 2b.
  • the inside diameter of the cavity 22 in the portion of the cannula 2 corresponding to the cylindrical hollow body 20 is referenced d 2
  • the outside diameter of the cannula 2 at the cylindrical hollow body 20 is referenced D 2 .
  • the aforementioned distal portion 21 of the cannula 2 comprises a substantially frustoconical first portion 21a, which extends the cylindrical body 20 of the cannula 2, and whose cross section decreases towards the second cylindrical portion 21b of smaller diameter than the body
  • the distal end 21c of the distal portion 21 of the cannula 2 is open (distal opening 210 aligned with the longitudinal axis of the cannula 2).
  • the diameter of the distal opening 210 of the cannula 2 is equal to the diameter of the cavity 22 of the cannula at the level of the second portion 21b mentioned above, and is referenced d d 3 in the following of the description.
  • the outer diameter of the cannula 2 at the second portion 21b is referenced D 3 .
  • the distal end 21c of the cannula 2 is rounded to limit the risks of tearing of the tissues of a patient during the introduction of the assembly E.
  • the outer diameter Di of the sheath 11 of the fiber 1 is substantially equal to the inside diameter d 2 of the cavity 22.
  • substantially equal it is meant that the outside diameter Di of the sheath 11 of the optical fiber 1 is very slightly less than the inside diameter d 2 of the cannula 2, with a functional clearance between the sheath 11 of the optical fiber 1 and the cannula 2 which is just sufficient to allow the sliding of the optical fiber 1 inside the cannula 2 during the operation of introducing the fiber.
  • the difference in diameter (d 2 -Di) is less than 100 ⁇ m and preferably less than 50 ⁇ m.
  • the distal portion of the optical fiber 1 is reliably held inside the cannula 2.
  • the stripped distal portion 100 of the optical fiber 1 is housed entirely inside the cannula 2.
  • the protective sheath 11 is abutted inside the cannula 2 against the inner face 2b of the first frustoconical portion 21a.
  • the distal end 101 of the bare core of the optical fiber is flush with the distal opening 210 of the cannula 2.
  • the diameter di of the core 10 of the fiber is substantially equal to the diameter ds of the distal opening 210 of the cannula 2.
  • the denuded fiber core 10 thus closes the opening distal 210 of the cannula 2, and advantageously prevents the penetration of foreign bodies inside the cannula 2, and in particular the penetration of tissue during the displacement of the cannula 2 and the optical fiber 1 in the human body .
  • the distal end of the fiber core may be glued within the distal end 21b of the cannula, for example by an activatable glue by ultraviolet radiation.
  • This adhesive makes it possible to ensure, between the stripped core of the fiber and the inner wall of the cannula, a perfect seal preventing any penetration of foreign bodies into the interior of the cannula 2 through the distal opening 210.
  • the totality of the electromagnetic radiation emitted by the laser source S is guided by total internal reflections by the optical fiber 1 to the open distal end 210 of the cannula 2, and all of this electromagnetic radiation is emitted frontal by this distal opening 210 of the cannula 2.
  • the distal portion 21 of the cannula 2 is substantially hemispherical.
  • This substantially hemispherical rounded portion of the distal portion 21 makes it possible to pass from a diameter d 2 of the cavity 22 to a smaller diameter.
  • the protective sheath 11 is abutted inside the cannula 2 against the inner wall 2b of the hemispherical distal portion 21.
  • the stripped distal portion 100 of the core 10 of the optical fiber is housed entirely in the cannula 2, and the distal end 101 of the core 10 of the fiber 1 is flush with and closes the distal opening 210 of the cannula 2.
  • the cannula 2 comprises a hollow cylindrical body
  • the insert 23 comprises a through internal cavity 230, and is fixed inside the hollow cylindrical body 20.
  • this insert 23 is more particularly made of a thermally conductive material, and thus makes it possible to discharge, in the direction of the cannula 2, the heat produced by the laser beam, and to prevent propagation of said heat in the direction of the sheath 11 of the optical fiber 1.
  • the insert 23 must be made of a heat-resistant material produced by the laser.
  • this insert 23 acts as a mechanical stop for the protective sheath 11 of the optical fiber 1, and thus facilitates the positioning of the optical fiber in the cannula 2.
  • the insert 23 is made of metal, particularly in stainless steel, and is welded into the hollow cylindrical body 20, by laser, brazing or gluing.
  • the insert 23 has an outside diameter D 3 and an inside diameter d 3 , and is housed entirely inside the hollow cylindrical body 20, so that the distal end 231 of said insert 23 is flush with the distal opening 210 of the hollow body 20.
  • the stripped distal portion 100 of the core 10 of the optical fiber 1 is housed entirely in the insert 23, the protective sheath 11 of the fiber 1 abuts inside the hollow body 20 against the insert 23.
  • the distal end 101 of the core 10 of the fiber 1 is flush with and closes the opening 232 of the distal end 231 of the insert 23.
  • the outer diameter D 3 of the insert 23 is substantially equal to the diameter d 2 of the cavity 22.
  • the inside diameter d3 of the insert is substantially equal to the diameter di of the core 10 of the fiber 1.
  • FIG. 5 shows a fourth variant of the invention that differs from the variant of FIG. 4 by implementing an insert 23 of different shape.
  • This hollow insert 23 has a first cylindrical portion 23a, and a second portion 23b, having a larger cross section and hereinafter referred to as the head of the insert 23.
  • the insert 23 is attached to the cylindrical hollow body 20 of the cannula 2 , so firstly that the tubular portion 23a of the insert 23 is housed entirely within the body 20, and secondly that the head 23b of the insert 23 abuts against the face of distal end 21c of the hollow body 20.
  • the stripped distal end 101 of the heart 10 of the optical fiber is projecting from the distal end face 21c of the hollow body 20, but is housed entirely in the insert 23 and is flush and closes the distal opening 232 of the head 23b of the insert 23.
  • the cannula 2 is constituted by a hollow body cylindrical 20 of outer diameter D 2 and inner diameter d 2 .
  • the optical fiber 1, of outer diameter Di is positioned inside the cavity 22 of the cannula 2 so that the distal end 101 stripped of the core of the fiber 1 is flush with the distal opening 210 of the cannula 2, without however closing off this distal opening 210.
  • FIG. 12 A first manufacturing method is illustrated in Figures 12 to 17, and a second manufacturing method is illustrated in Figures 18 to 21. These two methods will now be detailed. It should be noted that in these figures, the cannula 2 and the optical fiber 1 illustrated correspond to the variant of Figure 3. Those skilled in the art can easily transpose these processes for the manufacture of other variants of Figs 2, 4, 5 and 6.
  • a first step the cannula 2 is threaded onto the optical fiber 1, the core 10 of which has been previously stripped on a distal portion of the optical fiber, until the protective sheath 11 of the fiber is brought into abutment in the cannula.
  • the insert 23 has been previously fixed on the hollow body 20, and the stripped distal portion of the optical fiber is threaded into the insert 23, until the Protective sheath 11 of the fiber is brought into abutment against the insert 23.
  • a second step FIGS. 12 and 13
  • crimping of the cannula 2 is preferably carried out so as to firmly immobilize the fiber 1 with respect to the cannula 2.
  • the crimping allows the wall of the cannula 2 and the protective sheath 11 to be locally deformed so as to immobilize the sheath 11, and thus the fiber 1, in the cannula 2.
  • radial deformations 4 are visible on the outer wall 2a of the cannula 2.
  • These radial deformations 4 on the outer wall 2a of the cannula 2 cause deformations 4 'of the sheath 11 which block and prevent the sliding of the fiber 1 in the cannula 2.
  • a third step 2 (FIGS. 16 and 17) the core 10 of the optical fiber 1 is cut so that its distal end 101 is flush with the distal opening 210 of the cannula 2 [with the distal opening 232 of the insert 23 for the variant of Figure 5].
  • a second method consists in a first step (FIGS. 18 and 19) of stripping the optical fiber 1 for an appropriate length and inserting the optical fiber 1 into the cannula 2 so that the sheath 11 of the fiber abuts inside the cannula 2 and that the distal end 101 of the heart 10 of the fiber 1 is flush with the distal opening 210 of the cannula [or the distal opening 232 of the insert 23 for the variant of Figure 5]. Then, in a second step (FIGS. 20 and 21), the cannula 2 is crimped onto the sheath 11 to immobilize the fiber 1 in the cannula 2.
  • the crimping of the cannula 2 on the fiber 1 is carried out in an area upstream of the zone of introduction of the set E into the human body, that is to say in an area that is not intended to be introduced into the human body.
  • the cannula 2 is constituted by a tubular body 20 of external diameter D 2 and of internal diameter d 2 - an additional electromagnetic radiation guide 3, designated in the following light guide, is fixed inside and in the distal portion of the tubular body 20.
  • This light guide 3 is made of any transparent material in the wavelength range of the laser source S, and in the example illustrated flush the distal opening 210 of the body 20 and closes the distal opening 210.
  • the stripped distal portion 100 of the core 10 of the optical fiber 1 is preferably positioned in abutment with this guide 3.
  • the core 10 of the optical fiber, extended by the guide 3, forms with it a guide means for guiding by total internal reflection all the electromagnetic radiation emitted by the laser source S, up to the open distal end 210 of the body 20, and to emit frontally this electromagnetic radiation by the distal opening 210 of the cannula.
  • the distal end 101 of the stripped distal portion 100 of the core 10 of the optical fiber 1 could be positioned near the light guide 3, without touching it; in this case, the distance between the distal end 101 of the core 10 of the optical fiber 1 and the light guide 3 must be sufficiently small, so that the electromagnetic radiation at the output of the core 10 of the fiber 1 is transmitted to the guide of light 3, without significant loss.
  • FIGS. 8 to 11 show alternative embodiments of the invention, which are different from the aforementioned variant of FIG. 7, by the implementation of light guides 3 'having a geometry different from the guide. 3 of Figure 7.
  • the aforementioned solution for immobilizing the optical fiber 1 with respect to the cannula 2, by crimping the cannula 2 with the sheath 11 of the optical fiber 1, can also be implemented in the variant embodiments of FIGS. 7 to 11. .

Abstract

The assembly (E) of the invention includes a canula (2) that comprises an opening (210) at a so-called distal end (21c) and an electromagnetic radiation guiding means including an optic fibre (1) inserted into said canula (2) for guiding an electromagnetic radiation up to the distal opening (210) of the canula, so that the electromagnetic radiation is transmitted in a frontal manner by said distal opening (210) in the canula (2). The outer diameter (D1) of the protective sheath (11) of the optic fibre (1) is substantially equal to the inner diameter (d2) of the canula (29 at least in a distal portion of said canula. The core (10) of the optic fibre is exposed on a distal portion (100) of the fibre, and the exposed distal portion (1009 of the optic fibre is totally located inside the canula (2).

Description

ENSEMBLE CANULE/FIBRE OPTIQUE ET INSTRUMENT LASER CANNULA / FIBER OPTIC SET AND LASER INSTRUMENT
COMPORTANT LEDIT ENSEMBLECOMPRISING THIS ASSEMBLY
Domaine techniqueTechnical area
La présente invention concerne un nouvel ensemble comprenant une fibre optique introduite à l'intérieur d'une canule, et l'utilisation de cet ensemble canule/fibre optique pour réaliser un instrument laser destiné à être utilisé dans le domaine médical.The present invention relates to a new assembly comprising an optical fiber introduced inside a cannula, and the use of this assembly cannula / optical fiber to produce a laser instrument for use in the medical field.
Art antérieurPrior art
Dans le domaine médical, il est courant d'utiliser des aiguilles renfermant une fibre optique, la fibre optique permettant de transmettre un faisceau laser provenant d'une source d'énergie laser, pour traiter ou diagnostiquer des maladies. Ce type d'ensemble, utilisant une source d'énergie laser, peut être utilisé dans de nombreux domaines médicaux, notamment pour le traitement des varices, pour le traitement de l'adipose, pour des diagnostiques percutanés ou encore dans le domaine de la chirurgie ophtalmique. Les applications de ce type d'ensemble sont donc multiples de même que les contraintes liées à chaque application.In the medical field, it is common to use needles enclosing an optical fiber, the optical fiber for transmitting a laser beam from a laser energy source, for treating or diagnosing diseases. This type of assembly, using a laser energy source, can be used in many medical fields, in particular for the treatment of varicose veins, for the treatment of adipose, for percutaneous diagnosis or in the field of surgery. ophthalmic. The applications of this type of set are thus multiple as well as the constraints related to each application.
Par exemple, couramment, dans le cas du traitement et de la réduction de l'adipose ou des cellules adipeuses sous cutanées, on utilise la technique de la liposuccion qui consiste à introduire une sonde d'un diamètre d'environ 5 mm sous la peau d'un patient et à aspirer la graisse. Egalement, il est courant d'utiliser une sonde à ultrasons introduite sous la peau d'un patient pour détruire la membrane des cellules adipeuses. Dans ce dernier cas, lors de la destruction de la membrane, un liquide s'échappe et doit également être aspiré. Ces deux techniques présentent les inconvénients de manquer d'homogénéité au niveau des zones traitées, et de causer le saignement du patient notamment à cause de la taille des perforations réalisées dans la peau du patient.For example, commonly, in the case of treatment and reduction of adipose or subcutaneous fat cells, the liposuction technique of introducing a probe having a diameter of about 5 mm under the skin is used. of a patient and to suck the fat. Also, it is common to use an ultrasound probe introduced under the skin of a patient to destroy the fat cell membrane. In the latter case, during the destruction of the membrane, a liquid escapes and must also be sucked. These two techniques have the drawbacks of lack of homogeneity in the treated areas, and cause bleeding of the patient in particular because of the size of the perforations made in the skin of the patient.
Pour ces raisons, une nouvelle technique et un nouveau dispositif, décrits par exemple dans le document US 6 206 873, sont apparus. Le dispositif comprend une fibre optique, qui est positionnée à l'intérieur d'une canule, qui est reliée à son extrémité proximale à une source d'énergie laser et qui permet d'émettre un faisceau laser (rayonnement électromagnétique ) à son extrémité distale. La canule est constituée par une aiguille creuse, dont l'extrémité distale est ouverte et biseautée, et laisse apparaître l'extrémité distale de la fibre optique.For these reasons, a new technique and a new device, described for example in US 6 206 873, have appeared. The device comprises an optical fiber, which is positioned within a cannula, which is connected at its proximal end to a laser energy source and which emits a laser beam (electromagnetic radiation) at its distal end. The cannula is constituted by a hollow needle, whose distal end is open and tapered, and reveals the distal end of the optical fiber.
La technique consiste à percer la peau du patient, à introduire l'aiguille dans une couche sous cutanée de cellules adipeuses du patient et à irradier ladite couche de cellules adipeuses à l'aide du faisceau laser. L'irradiation avec le faisceau laser provoque la lipolyse de la couche adipeuse et entraine la rupture de la membrane des cellules adipeuses, transformant ainsi les cellules en une substance liquide. Cette substance liquide peut être aspirée ou est de préférence laissée en l'état pour être drainée par le système lymphatique et par l'action des phagocytes. La technique décrite dans ce document permet de réaliser un traitement uniforme d'une couche de cellules adipeuses tout en éliminant les problèmes de saignement du patient et en diminuant la taille des perforations dans la peau du patient. Le saignement du patient est en effet éliminé grâce à l'utilisation de l'énergie du faisceau laser pour cautériser les vaisseaux sanguins. L'ensemble aiguille/fibre optique décrit dans cette publication USThe technique involves piercing the patient's skin, introducing the needle into a subcutaneous layer of fat cells of the patient, and irradiating said fat cell layer with the laser beam. Irradiation with the laser beam causes lipolysis of the fat layer and causes rupture of the adipose cell membrane, thereby transforming the cells into a liquid substance. This liquid substance can be aspirated or is preferably left in the state to be drained by the lymphatic system and by the action of phagocytes. The technique described in this document allows for uniform treatment of a layer of fat cells while eliminating bleeding problems of the patient and decreasing the size of the perforations in the skin of the patient. The bleeding of the patient is indeed eliminated thanks to the use of the energy of the laser beam to cauterize the blood vessels. The needle / fiber optic assembly described in this US publication
6 206 873 présente les principaux inconvénients suivants.6,206,873 has the following main drawbacks.
Un premier inconvénient provient du fait que l'extrémité distale de la fibre optique dépasse de l'ouverture distale de l'aiguille. Il en résulte un risque de rupture de la fibre optique, lors de la mise en oeuvre du dispositif dans le corps humain, ce qui est extrêmement préjudiciable et peut s'avérer dangereux pour la santé du patient.A first disadvantage arises from the fact that the distal end of the optical fiber protrudes from the distal opening of the needle. This results in a risk of rupture of the optical fiber during the implementation of the device in the human body, which is extremely detrimental and can be dangerous for the health of the patient.
Une fibre optique comporte de manière usuelle trois parties concentriques :An optical fiber conventionally comprises three concentric parts:
- une partie centrale, par exemple en S1O2 (dopé ou non), assurant la propagation guidée d'un rayonnement électromagnétique,a central part, for example in S10 2 (doped or not), ensuring the guided propagation of electromagnetic radiation,
- une couche intermédiaire très fine (par exemple en SiC^ ou en polymère), généralement désignée « dadding », entourant la partie centrale, et présentant un indice de réfraction différent de la partie centrale, en sorte de confiner Ie rayonnement électromagnétique dans la partie centrale, - une gaine de protection mécanique en polymère, plus épaisse.a very thin intermediate layer (for example SiC 2 or polymer), generally referred to as "dadding", surrounding the central part, and having a refractive index different from the central part, so as to confine the electromagnetic radiation in the central part, a thicker mechanical polymer protective sheath.
Dans le présent texte, y compris dans les revendications, on désigne par le terme « cœur », la partie centrale et la couche intermédiaire («cladding ») de la fibre optique, et par le terme « gaine », la gaine de protection mécanique précitée. Pour améliorer l'émission du faisceau laser et éviter de brûler la gaine entourant le coeur de la fibre optique, il est préférable en pratique de dénuder le cœur de la fibre optique à son extrémité distale. Le cœur de la fibre optique ainsi dénudé n'est plus protégé à l'extrémité distale de la fibre par la gaine de protection mécanique entourant le cœur de la fibre. Or le coeur de la fibre optique est très fragile mécaniquement, ce qui augmente de manière importante les risques de rupture.In the present text, including in the claims, the term "core", the central part and the middle layer ("cladding") of the optical fiber, and the term "sheath" means the mechanical protective sheath. supra. To improve the emission of the laser beam and avoid burning the sheath surrounding the core of the optical fiber, it is preferable in practice to strip the core of the optical fiber at its distal end. The core of the optical fiber thus stripped is no longer protected at the distal end of the fiber by the mechanical protection sheath surrounding the core of the fiber. But the heart of the optical fiber is very fragile mechanically, which significantly increases the risk of rupture.
Un deuxième inconvénient est lié à l'immobilisation de la fibre optique par rapport à l'aiguille. Dans le dispositif de la publication précitéeA second disadvantage is related to the immobilization of the optical fiber relative to the needle. In the device of the aforementioned publication
US 6 206 873, la fibre optique est immobilisée par rapport à l'aiguille au moyen d'un système mécanique de serrage comportant un anneau élastique, à travers lequel est passée la fibre optique, et une vis de serrage.No. 6,206,873, the optical fiber is immobilized with respect to the needle by means of a mechanical clamping system comprising an elastic ring, through which the optical fiber is passed, and a clamping screw.
Ce système mécanique de serrage ne permet pas d'immobiliser de manière fiable la fibre optique par rapport à l'aiguille. Il en résulte en pratique, lors de la mise en œuvre de ce dispositif, un risque important de glissement de la fibre optique par rapport à l'aiguille, ce qui augmente les risques de rupture de la fibre optique à l'intérieur du corps du patient.This mechanical clamping system does not reliably immobilize the optical fiber relative to the needle. This results in practice, during the implementation of this device, a significant risk of sliding of the optical fiber relative to the needle, which increases the risk of rupture of the optical fiber inside the body of the device. patient.
Un troisième inconvénient est lié à la présence, entre la fibre optique et l'aiguille, d'un interstice permettant la pénétration de tissus à l'intérieur de l'aiguille. Or lors de la mise en oeuvre du laser, les tissus qui pénètrent entre l'aiguille et la fibre optique sont brûlés par le laser. D'une part, tout ou partie de ces tissus brûlés peuvent de manière préjudiciable se retrouver à l'intérieur du corps du patient ; d'autre part, ils peuvent endommager la fibre optique.A third disadvantage is related to the presence, between the optical fiber and the needle, of a gap allowing the penetration of tissue inside the needle. However, during the implementation of the laser, the tissues that penetrate between the needle and the optical fiber are burned by the laser. On the one hand, all or some of these burned tissues can detrimentally end up in inside the patient's body; on the other hand, they can damage the optical fiber.
La demande de brevet français FR-A-2 875 122 décrit un instrument médical applicable à l'occlusion vasculaire, et comprenant, dans une variante de réalisation, une fibre optique positionnée à l'intérieur d'une aiguille. Cette variante aiguille/fibre optique présente les trois inconvénients précédemment décrits pour le dispositif de la publication US 6 206 873.The French patent application FR-A-2,875,122 describes a medical instrument applicable to vascular occlusion, and comprising, in an alternative embodiment, an optical fiber positioned inside a needle. This variant needle / optical fiber has the three disadvantages described above for the device of the publication US 6 206 873.
Le document FR-A-2 875 122 propose une autre solution dans laquelle la fibre optique est remplacée par un guide de rayonnement électromagnétique en silice, solidaire de l'aiguille ; plus particulièrement, ce guide est formé par un « habillage » de l'intérieur de l'aiguille. La notion technique « d'habillage » n'est pas explicitée dans ce document et n'est pas claire. Toutefois, la réalisation d'un tel guide à l'intérieur d'une aiguille apparaît difficilement réalisable ; en outre, ce type de dispositif n'étant pas commercialisé à ce jour, on peut s'interroger sur son efficacité.Document FR-A-2,875,122 proposes another solution in which the optical fiber is replaced by a silica electromagnetic radiation guide, integral with the needle; more particularly, this guide is formed by a "dressing" of the interior of the needle. The technical concept of "dressing" is not explained in this document and is not clear. However, the realization of such a guide inside a needle appears difficult to achieve; in addition, this type of device is not marketed to date, we can question its effectiveness.
La demande de brevet américain US 2006/0078265 décrit un dispositif constitué essentiellement par une source d'énergie laser reliée à une pièce à main, et utilisée pour projeter un faisceau laser sur des tissus humains. La pièce à main comprend notamment une fibre optique et une canule renfermant la fibre optique. La partie distale de la fibre optique est cette fois entièrement logée dans la canule. La canule est fermée à son extrémité distale, et une ouverture latérale est ménagée dans la canule pour une diffusion latérale du faisceau laser.US patent application US 2006/0078265 discloses a device consisting essentially of a laser energy source connected to a handpiece, and used to project a laser beam onto human tissues. The handpiece includes an optical fiber and a cannula enclosing the optical fiber. The distal portion of the optical fiber is this time entirely housed in the cannula. The cannula is closed at its distal end, and a lateral opening is provided in the cannula for lateral diffusion of the laser beam.
La gaine protectrice de la fibre optique a été partiellement enlevée sur une portion distale de la fibre, laissant ainsi apparaître le cœur de la fibre optique. L'extrémité distale de la gaine est abutée contre trois plots, répartis sur la périphérie de la paroi interne de la canule, ce qui permet un positionnement correct de l'extrémité distale de la fibre optique par rapport à l'ouverture latérale de la canule permettant la diffusion du faisceau laser. Dans les dispositifs décrits dans cette publication US 2006/0078265, le problème d'immobilisation et de maintien de la fibre optique par rapport à la canule n'est pas résolu. Ainsi, bien que l'extrémité de la fibre optique soit en butée contre des plots internes, la fibre optique peut coulisser vers l'arrière ; lors de la mise en œuvre de ce dispositif, la fibre optique n'étant pas correctement immobilisée et maintenue dans sa partie distale, il y a un risque de rupture du cœur de la fibre à son extrémité distale dénudée.The protective sheath of the optical fiber was partially removed on a distal portion of the fiber, thus revealing the core of the optical fiber. The distal end of the sheath is abutted against three studs distributed over the periphery of the inner wall of the cannula, which allows a correct positioning of the distal end of the optical fiber relative to the lateral opening of the cannula allowing the diffusion of the laser beam. In the devices described in this publication US 2006/0078265, the problem of immobilization and maintenance of the optical fiber with respect to the cannula is not resolved. Thus, although the end of the optical fiber abuts against internal pads, the optical fiber can slide backwards; during the implementation of this device, the optical fiber is not properly immobilized and maintained in its distal portion, there is a risk of rupture of the core of the fiber at its distal end stripped.
En outre, il existe, comme dans les autres documents décrits précédemment, un interstice entre la fibre optique et la canule permettant la pénétration de tissus.In addition, there is, as in the other documents described above, a gap between the optical fiber and the cannula for the penetration of tissue.
Enfin, dans tous les dispositifs décrits dans cette publication US 2006/0078265, l'émission laser est latérale et n'est pas frontale, et il est indispensable de placer un réflecteur à l'intérieur de l'aiguille pour dévier le faisceau laser et le diffuser à travers l'ouverture latérale de la canule. La mise en oeuvre de réflecteur complique de manière préjudiciable la fabrication du dispositif. La publication US 2002/0138073 divulgue une sonde chirurgicale laser mettant en oeuvre une fibre optique dont la partie distale d'émission est logée à l'intérieur d'un embout cylindrique. Cet embout cylindrique est fermé à son extrémité par un miroir et la paroi cylindrique de cet embout est réalisée dans un matériau laissant passer le faisceau laser délivré à l'extrémité de la fibre. Cet embout cylindrique permet une diffusion latérale du rayonnement électromagnétique délivré par la fibre optique et ne permet pas une émission frontale. En outre, afin d'obtenir cette diffusion latérale du rayonnement électromagnétique, un milieu diffusant est placé à l'intérieur de l'embout cylindrique entre l'extrémité distale de la fibre optique et l'extrémité fermée de l'embout.Finally, in all the devices described in this publication US 2006/0078265, the laser emission is lateral and not frontal, and it is essential to place a reflector inside the needle to deflect the laser beam and spread it through the lateral opening of the cannula. The implementation of reflector complicates in a detrimental way the manufacture of the device. The publication US 2002/0138073 discloses a laser surgical probe using an optical fiber whose distal emission portion is housed inside a cylindrical tip. This cylindrical end is closed at its end by a mirror and the cylindrical wall of this endpiece is made of a material passing the laser beam delivered at the end of the fiber. This cylindrical tip allows lateral diffusion of the electromagnetic radiation delivered by the optical fiber and does not allow frontal emission. In addition, in order to obtain this lateral diffusion of the electromagnetic radiation, a diffusing medium is placed inside the cylindrical tip between the distal end of the optical fiber and the closed end of the tip.
La publication US 5 269 777 divulgue une sonde chirurgicale laser mettant en oeuvre une fibre optique dont la partie distale d'émission est insérée à l'intérieur d'un embout de diffusion en silicone, qui présente de préférence une longueur comprise en 0,5cm et 5cm. Cet embout de diffusion est fixé sur l'extrémité distale du cœur de la fibre, et ne constitue pas une canule. Après fixation de cet embout, une seconde couche interne diffusante est déposée à l'intérieur de l'embout, par exemple par injection- moulage. Cette couche interne diffusante contient des particules diffusantes, tel que par exemple de la poussière de diamant, du TÏO2 ou de l'alumine. Le rayonnement électromagnétique, qui est guidé par la fibre optique jusqu'à son extrémité distale, n'est plus guidé en sortie de la fibre optique à l'intérieur de l'embout de diffusion, mais est diffusé dans toutes les directions par la couche interne diffusante de l'embout.The publication US 5,269,777 discloses a laser surgical probe using an optical fiber whose distal emission portion is inserted inside a silicone diffusion tip, which preferably has a length of 0.5 cm. and 5cm. This diffusion tip is attached to the distal end of the heart of the fiber, and does not constitute a cannula. After fixing this tip, a second inner layer diffusing is deposited inside the tip, for example by injection molding. This diffusing inner layer contains diffusing particles, such as, for example, diamond dust, TiO 2 or alumina. The electromagnetic radiation, which is guided by the optical fiber to its distal end, is no longer guided at the output of the optical fiber inside the diffusion tip, but is diffused in all directions by the layer internal scattering of the tip.
Objectif de l'invention Selon un premier aspect, la présente invention vise principalement à proposer un nouvel ensemble canule/fibre optique, qui permet une émission frontale d'un rayonnement électromagnétique, qui permet de réduire les risques de rupture de la fibre optique, et qui permet une immobilisation fiable de la fibre optique par rapport à la canule.OBJECT OF THE INVENTION According to a first aspect, the present invention is aimed primarily at proposing a new cannula / optical fiber assembly, which allows frontal emission of electromagnetic radiation, which makes it possible to reduce the risks of rupture of the optical fiber, and which allows a reliable immobilization of the optical fiber with respect to the cannula.
Résumé de l'invention Selon ce premier aspect de l'invention, l'ensemble canule/fibre optique comporte une canule, qui comprend une ouverture à une extrémité dite distale, et des moyens de guidage d'un rayonnement électromagnétique. Ces moyens de guidage comportent une fibre optique introduite à l'intérieur de la canule, et permettent de guider un rayonnement électromagnétique jusqu'à l'ouverture distale de la canule, de telle sorte que ce rayonnement électromagnétique est émis frontalement par ladite ouverture distale de la canule. Ladite fibre optique comporte un cœur entouré d'une gaine protectrice externe, le diamètre extérieur (D-i) de la gaine protectrice de la fibre optique étant sensiblement égal au diamètre intérieur (d2) de la canule au moins dans une portion distale de ladite canule. Le cœur de la fibre optique est dénudé sur une partie distale de la fibre, et la partie distale dénudée de Ia fibre optique est logée entièrement à l'intérieur de la canule.SUMMARY OF THE INVENTION According to this first aspect of the invention, the cannula / optical fiber assembly comprises a cannula, which comprises an opening at a distal end, and means for guiding an electromagnetic radiation. These guiding means comprise an optical fiber introduced inside the cannula, and used to guide electromagnetic radiation to the distal opening of the cannula, so that this electromagnetic radiation is emitted frontally by said distal opening of the cannula. the cannula. Said optical fiber comprises a core surrounded by an outer protective sheath, the outer diameter (Di) of the protective sheath of the optical fiber being substantially equal to the inner diameter (d 2 ) of the cannula at least in a distal portion of said cannula . The core of the optical fiber is stripped on a distal portion of the fiber, and the stripped distal portion of the optical fiber is housed entirely within the cannula.
Par les termes « sensiblement égal », on signifie que ledit diamètre extérieur de la gaine de la fibre optique est très légèrement inférieur au diamètre intérieur de la canule, avec un jeu fonctionnel entre la gaine de la fibre optique et la canule qui est juste suffisant pour permettre le glissement de la fibre optique à l'intérieur de la canule lors de l'opération d'introduction de la fibre.By the terms "substantially equal", it is meant that said outer diameter of the sheath of the optical fiber is very slightly less than the inside diameter of the cannula, with a functional clearance between the sheath of the optical fiber and the cannula which is just sufficient to allow the optical fiber to slide inside the cannula during the fiber introduction operation.
Dans le présent texte, le terme « canule » est pris dans son acceptation la plus générale et couvre tout support creux longiligne, courbe ou rectiligne, permettant l'introduction et le guidage de la fibre optique dans le corps humain. La canule peut notamment comporter un tube creux dont l'extrémité distale est arrondie et non agressive pour les tissus ; la canule peut également comporter une aiguille creuse dont l'extrémité distale est biseautée et permet le percement des tissus.In the present text, the term "cannula" is taken in its most general acceptance and covers any elongated hollow support, curved or rectilinear, allowing the introduction and the guiding of the optical fiber in the human body. The cannula may in particular comprise a hollow tube whose distal end is rounded and non-aggressive to the tissues; the cannula may also comprise a hollow needle whose distal end is beveled and allows the piercing of tissues.
Selon un deuxième aspect de l'invention pouvant être mis en oeuvre indépendamment du premier aspect précité, l'ensemble de l'invention comporte une canule et des moyens de guidage d'un rayonnement électromagnétique comprenant une fibre optique qui est introduite à l'intérieur de la canule ; la canule est sertie sur la fibre optique. Selon ce deuxième aspect, la canule peut soit être ouverte à son extrémité distale, soit être fermée à son extrémité distale et comporter dans sa partie distale une ouverture latérale pour l'émission du rayonnement électromagnétique, de manière comparable à l'ensemble canule/fibre optique décrit dans la publication US 2006/0078265According to a second aspect of the invention that can be implemented independently of the first aforementioned aspect, the assembly of the invention comprises a cannula and means for guiding an electromagnetic radiation comprising an optical fiber which is introduced inside. Cannula the cannula is crimped on the optical fiber. According to this second aspect, the cannula can either be open at its distal end or be closed at its distal end and have in its distal part a lateral opening for the emission of electromagnetic radiation, in a manner comparable to the cannula / fiber assembly Optical described in US Publication 2006/0078265
Selon un troisième aspect de l'invention, pouvant être mis en oeuvre indépendamment des premier et deuxième aspects précités, l'ensemble de l'invention comporte une canule qui est ouverte à son extrémité dite distale, et des moyens de guidage d'un rayonnement électromagnétique, qui comportent une fibre optique introduite à l'intérieur de la canule, et qui permettent de guider un rayonnement électromagnétique jusqu'à l'extrémité distale ouverte de la canule, ladite fibre optique comportant un cœur entouré d'une gaine protectrice externe. Le cœur de la fibre optique est dénudé à l'extrémité distale de la fibre ; la partie distale de la fibre optique est logée entièrement à l'intérieur de la canule, et l'extrémité distale de la fibre optique obture l'ouverture distale de la canule. De préférence, mais de manière facultative selon l'invention, pour les trois aspects précités, l'ensemble canule/fibre optique comporte les caractéristiques techniques additionnelles ci-après, prises isolément ou en combinaison : - la canule comporte dans sa partie distale un insert creux qui comporte une cavité traversante, et la partie distale dénudée du cœur de la fibre est enfilée dans cet insert creux ;According to a third aspect of the invention, which can be implemented independently of the above-mentioned first and second aspects, the assembly of the invention comprises a cannula which is open at its distal end, and means for guiding radiation. electromagnetic, which comprise an optical fiber introduced into the interior of the cannula, and which guide electromagnetic radiation to the open distal end of the cannula, said optical fiber having a core surrounded by an outer protective sheath. The core of the optical fiber is stripped at the distal end of the fiber; the distal portion of the optical fiber is housed entirely within the cannula, and the distal end of the optical fiber seals the distal opening of the cannula. Preferably, but optionally according to the invention, for the three aforementioned aspects, the cannula / optical fiber assembly has the following additional technical characteristics, taken separately or in combination: the cannula comprises in its distal part an insert hollow which has a through cavity, and the stripped distal portion of the core of the fiber is threaded into this hollow insert;
- la gaine de la fibre optique est positionnée en butée à l'intérieur de la canule ; plus particulièrement la gaine de la fibre optique est positionnée en butée contre l'insert ;the sheath of the optical fiber is positioned in abutment inside the cannula; more particularly the sheath of the optical fiber is positioned in abutment against the insert;
- la partie distale dénudée du cœur de la fibre est logée entièrement dans l'insert creux ;- The stripped distal portion of the core of the fiber is housed entirely in the hollow insert;
- l'insert creux est réalisé dans un matériau thermiquement conducteur, et permet de protéger thermiquement la gaine de la fibre optique ; - l'extrémité distale du cœur de la fibre optique affleure l'ouverture distale de la canule ;the hollow insert is made of a thermally conductive material, and makes it possible to thermally protect the sheath of the optical fiber; the distal end of the heart of the optical fiber is flush with the distal opening of the cannula;
- la partie distale dénudée de la fibre optique obture l'ouverture distale de la canule, ce qui permet avantageusement de faire obstacle à la pénétration de corps étrangers dans la canule ; - les moyens de guidage du rayonnement électromagnétique comportent un guide supplémentaire fixé à la canule, et l'extrémité distale du cœur de la fibre optique est de préférence en contact avec ledit guide supplémentaire; le guide de rayonnement électromagnétique supplémentaire affleure l'ouverture distale de la canule ; le guide de rayonnement électromagnétique supplémentaire obture l'ouverture distale de la canule, ce qui permet avantageusement de faire obstacle à la pénétration de corps étrangers dans la canule.the stripped distal portion of the optical fiber closes the distal opening of the cannula, which advantageously makes it possible to prevent the penetration of foreign bodies into the cannula; the means for guiding the electromagnetic radiation comprise an additional guide fixed to the cannula, and the distal end of the heart of the optical fiber is preferably in contact with said additional guide; the additional electromagnetic radiation guide is flush with the distal opening of the cannula; the additional electromagnetic radiation guide closes the distal opening of the cannula, which advantageously makes it possible to prevent the penetration of foreign bodies into the cannula.
- la canule est sertie sur la gaine de la fibre optique, ce qui permet une immobilisation simple et efficace de la fibre optique par rapport à la canule. L'invention a également pour autre objet un instrument laser comportant une source laser couplée à la fibre optique d'un ensemble de l'invention, ledit ensemble pouvant être conforme au premier, deuxième ou troisième aspect précité. Brève description des figures- The cannula is crimped on the sheath of the optical fiber, which allows a simple and effective immobilization of the optical fiber relative to the cannula. Another object of the invention is a laser instrument comprising a laser source coupled to the optical fiber of an assembly of the invention, said assembly being able to conform to the first, second or third aspect mentioned above. Brief description of the figures
L'invention et ses avantages seront mieux compris à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et non exhaustif, et faite en se référant aux figures annexées parmi lesquelles : - la figure 1 représente un instrument laser conforme à l'invention,The invention and its advantages will be better understood on reading the description which will follow, given solely by way of non-limiting and non-exhaustive example, and with reference to the appended figures in which: FIG. laser according to the invention,
- la figure 2 est une représentation en coupe d'un ensemble canule/fibre optique dans une première variante de réalisation de l'invention ;- Figure 2 is a sectional representation of a cannula / optical fiber assembly in a first embodiment of the invention;
- la figure 3 est une représentation en coupe d'un ensemble canule/fibre optique dans une deuxième variante de réalisation de l'invention ;- Figure 3 is a sectional representation of a cannula / optical fiber assembly in a second embodiment of the invention;
- la figure 4 est une représentation en coupe d'un ensemble canule/fibre optique dans une troisième variante de réalisation de l'invention ; - la figure 5 est une représentation en coupe d'un ensemble canule/fibre optique dans une quatrième variante de réalisation de l'invention ;- Figure 4 is a sectional representation of a cannula / optical fiber assembly in a third embodiment of the invention; - Figure 5 is a sectional representation of a cannula / optical fiber assembly in a fourth embodiment of the invention;
- la figure 6 est une représentation en coupe d'un ensemble canule/fibre optique dans une cinquième variante de réalisation de l'invention ;- Figure 6 is a sectional representation of a cannula / optical fiber assembly in a fifth embodiment of the invention;
- la figure 7 est une représentation en coupe d'un ensemble canule/fibre optique dans une sixième variante de réalisation de l'invention ;- Figure 7 is a sectional representation of a cannula / optical fiber assembly in a sixth embodiment of the invention;
- les figures 8 à 11 sont des représentations en coupe d'un ensemble canule/fibre optique conforme respectivement à une septième, une huitième, une neuvième et une dixième variantes de réalisation de l'invention ;FIGS. 8 to 11 are sectional representations of a cannula / optical fiber assembly corresponding respectively to a seventh, eighth, ninth and tenth embodiment variant of FIG. the invention;
- les figures 12 et 13 représentent une fibre optique dans une canule à l'issue d'une première étape d'une première méthode d'assemblage ;- Figures 12 and 13 show an optical fiber in a cannula at the end of a first step of a first method of assembly;
- les figures 14 et 15 représentent une fibre optique dans une canule à l'issue d'une deuxième étape de ladite première méthode d'assemblage ;- Figures 14 and 15 show an optical fiber in a cannula at the end of a second step of said first method of assembly;
- les figures 16 et 17 représentent une fibre optique dans une canule à l'issue d'une troisième étape de ladite première méthode d'assemblage ; - les figures 18 et 19 représentent une fibre optique dans une canule à l'issue d'une première étape d'une deuxième méthode d'assemblage ;FIGS. 16 and 17 show an optical fiber in a cannula at the end of a third step of said first method of assembly; - Figures 18 and 19 show an optical fiber in a cannula at the end of a first step of a second method of assembly;
- les figures 20 et 21 représentent une fibre optique dans une canule à l'issue d'une deuxième étape de ladite deuxième méthode d'assemblage.- Figures 20 and 21 show an optical fiber in a cannula at the end of a second step of said second method of assembly.
Description détailléedetailed description
En référence à la figure 1 , un instrument laser conforme à l'invention comporte un ensemble canule/fibre optique référencé E, sur lequel est adapté une pièce à main P, et une source laser S, qui est couplée à la fibre optique de l'ensemble E. La pièce à main P est connue en soi et permet de faciliter la prise en main et la manipulation de l'ensemble canule/fibre optique E. Cet instrument laser est destiné à être utilisé dans le domaine médical, pour tout type de traitement par laser, et par exemple et de manière non limitative et non exhaustive, pour Ie traitement des varices, pour le traitement de l'adipose, pour des diagnostiques percutanés ou encore dans le domaine de la chirurgie ophtalmique. Il revient à l'homme du métier de choisir la source laser adaptée aux utilisations de l'instrument laser.With reference to FIG. 1, a laser instrument in accordance with the invention comprises a cannula / optical fiber assembly referenced E, on which is fitted a handpiece P, and a laser source S, which is coupled to the optical fiber of the invention. set E. The handpiece P is known per se and facilitates the handling and manipulation of the assembly cannula / optical fiber E. This laser instrument is intended to be used in the medical field, for any type laser treatment, and for example and non-limiting and non-exhaustive, for the treatment of varicose veins, for the treatment of adipose, for percutaneous diagnosis or in the field of ophthalmic surgery. It is up to the person skilled in the art to choose the laser source adapted to the uses of the laser instrument.
Différentes variantes de réalisation de l'ensemble canule/fibre optique E vont à présent être détaillées.Different embodiments of the assembly cannula / optical fiber E will now be detailed.
Dans une première variante de réalisation représentée à la figure 2, l'ensemble E comprend une fibre optique 1 qui permet de guider par réflexions totales internes le rayonnement électromagnétique (lumière) délivré par la source laser S, et dont la partie distale (à l'opposé de la source laser) est introduite à l'intérieur d'une canule 2. Sur la figure 2, seules la portion distale de la fibre optique 1 introduite dans la canule 2 et une partie distale de la canule 2 sont représentées. En outre, la longueur de la canule 2 peut être plus ou moins importante selon les applications.In a first variant embodiment shown in FIG. the assembly E comprises an optical fiber 1 which makes it possible to guide by total internal reflections the electromagnetic radiation (light) delivered by the laser source S, and whose distal part (opposite to the laser source) is introduced to the 2. In FIG. 2, only the distal portion of the optical fiber 1 introduced into the cannula 2 and a distal portion of the cannula 2 are shown. In addition, the length of the cannula 2 may be more or less important depending on the applications.
La fibre optique 1 est connue en soi et comprend un cœur 10 pour la propagation guidée du rayonnement électromagnétique délivré par la source laser, et une gaine de protection mécanique 11, par exemple en plastique, entourant le cœur 10. Tel que rappelé précédemment, le cœur de la fibre optique comporte une partie centrale pour la propagation guidée du rayonnement électromagnétique et une fine couche intermédiaire, communément désignée « cladding », et entourant la partie centrale, pour le confinement du rayonnement électromagnétique dans la partie centrale. Sur les figures annexées, ladite partie centrale et ladite fine couche intermédiaire, qui forment le cœur de la fibre optique, ne sont pas différenciées.The optical fiber 1 is known per se and comprises a core 10 for the guided propagation of the electromagnetic radiation delivered by the laser source, and a mechanical protection sheath 11, for example made of plastic, surrounding the core 10. As mentioned above, the The core of the optical fiber has a central portion for guided propagation of electromagnetic radiation and a thin intermediate layer, commonly referred to as "cladding", and surrounding the central portion for confining electromagnetic radiation in the central portion. In the appended figures, said central portion and said thin intermediate layer, which form the core of the optical fiber, are not differentiated.
La fibre optique a un diamètre D1 (diamètre extérieur de la gaine 11), et le cœur 10 de la fibre 1 un diamètre di. La partie distale 100 du cœur 10 de la fibre 1 est dénudée, c'est-à-dire que la gaine de protection 11 ne recouvre pas le cœur 10 et laisse ainsi apparente ladite partie distale 100 du cœur 10. On évite ainsi les risques de brûlure de la gaine 11 par le faisceau laser émis à l'extrémité distale 101 du coeur 10. La canule 2 est constituée par un tube flexible opaque au rayonnement électromagnétique émis par la source laser S, par exemple un tube flexible en acier inoxydable. Dans l'exemple particulier illustré, elle comprend un corps creux cylindrique 20 prolongé par une partie distale creuse 21 sensiblement en forme d'entonnoir, ledit corps creux 20 et la partie distale creuse 21 délimitant une cavité interne traversante 22. Dans la suite de la description, la face externe de la canule 2 sera référencée 2a, et la face interne de la canule 2 sera référencée 2b.The optical fiber has a diameter D 1 (outer diameter of the sheath 11), and the core 10 of the fiber 1 has a diameter di. The distal portion 100 of the core 10 of the fiber 1 is stripped, that is to say that the protective sheath 11 does not cover the heart 10 and thus leaves said distal portion 100 of the heart 10. This avoids the risks burning of the sheath 11 by the laser beam emitted at the distal end 101 of the heart 10. The cannula 2 is constituted by a flexible tube opaque to electromagnetic radiation emitted by the laser source S, for example a flexible stainless steel tube. In the particular example illustrated, it comprises a cylindrical hollow body 20 extended by a substantially funnel-shaped hollow distal portion 21, said hollow body 20 and the hollow distal portion 21 defining a through internal cavity 22. In the following description, the outer face of the cannula 2 will be referenced 2a, and the inner face of the cannula 2 will be referenced 2b.
Dans la suite de la description, Ie diamètre intérieur de la cavité 22 dans la partie de la canule 2 correspondant au corps creux cylindrique 20 est référencé d2 , et le diamètre extérieur de la canule 2, au niveau du corps creux cylindrique 20 est référencé D2.In the remainder of the description, the inside diameter of the cavity 22 in the portion of the cannula 2 corresponding to the cylindrical hollow body 20 is referenced d 2 , and the outside diameter of the cannula 2 at the cylindrical hollow body 20 is referenced D 2 .
La partie distale 21 précitée de la canule 2 comprend une première partie 21a sensiblement tronconique, qui prolonge le corps cylindrique 20 de la canule 2, et dont la section transversale est décroissante en direction de la deuxième partie 21b cylindrique de plus faible diamètre que le corps cylindrique 20. L'extrémité distale 21c de la partie distale 21 de la canule 2 est ouverte (ouverture distale 210 alignée sur l'axe longitudinal de la canule 2). Dans l'exemple particulier de la figure 2, le diamètre de l'ouverture distale 210 de la canule 2 est égal au diamètre de la cavité 22 de la canule au niveau de la deuxième partie 21b précitée, et est référencé d3 dans la suite de la description. Le diamètre extérieur de la canule 2 au niveau de la deuxième partie 21b est référencé D3.The aforementioned distal portion 21 of the cannula 2 comprises a substantially frustoconical first portion 21a, which extends the cylindrical body 20 of the cannula 2, and whose cross section decreases towards the second cylindrical portion 21b of smaller diameter than the body The distal end 21c of the distal portion 21 of the cannula 2 is open (distal opening 210 aligned with the longitudinal axis of the cannula 2). In the particular example of FIG. 2, the diameter of the distal opening 210 of the cannula 2 is equal to the diameter of the cavity 22 of the cannula at the level of the second portion 21b mentioned above, and is referenced d 3 in the following of the description. The outer diameter of the cannula 2 at the second portion 21b is referenced D 3 .
Avantageusement, l'extrémité distale 21c de la canule 2 est arrondie pour limiter les risques de déchirements des tissus d'un patient lors de l'introduction de l'ensemble E. Le diamètre extérieur Di de la gaine 11 de la fibre 1 est sensiblement égal au diamètre intérieur d2 de la cavité 22. Par les termes « sensiblement égal », on signifie que le diamètre extérieur Di de la gaine 11 de la fibre optique 1 est très légèrement inférieur au diamètre intérieur d2 de la canule 2, avec un jeu fonctionnel entre la gaine 11 de la fibre optique 1 et la canule 2 qui est juste suffisant pour permettre le glissement de la fibre optique 1 à l'intérieur de la canule 2 lors de l'opération d'introduction de la fibre. Typiquement, la différence de diamètre (d2-Di) est inférieure à 100μm et de préférence inférieure à 50μm. Il en résulte d'une part que la partie distale de la fibre optique 1 est maintenue de manière fiable à l'intérieur de la canule 2. D'autre part, il est facile d'immobiliser de manière fiable en translation la fibre optique 1 par rapport à la canule 2, par un serrage localisé de la canule 2 sur la gaine 11 de la fibre 1 , et par exemple, et tel que cela sera détaillé ultérieurement, par simple sertissage de la canule 2 sur la gaine 11 de la fibre optique 1.Advantageously, the distal end 21c of the cannula 2 is rounded to limit the risks of tearing of the tissues of a patient during the introduction of the assembly E. The outer diameter Di of the sheath 11 of the fiber 1 is substantially equal to the inside diameter d 2 of the cavity 22. By the terms "substantially equal", it is meant that the outside diameter Di of the sheath 11 of the optical fiber 1 is very slightly less than the inside diameter d 2 of the cannula 2, with a functional clearance between the sheath 11 of the optical fiber 1 and the cannula 2 which is just sufficient to allow the sliding of the optical fiber 1 inside the cannula 2 during the operation of introducing the fiber. Typically, the difference in diameter (d 2 -Di) is less than 100 μm and preferably less than 50 μm. As a result, on the one hand, the distal portion of the optical fiber 1 is reliably held inside the cannula 2. On the other hand, it is easy to reliably immobilize the optical fiber in translation 1 relative to the cannula 2, by localized clamping of the cannula 2 on the sheath 11 of the fiber 1, and for example, and as will be detailed later, by simply crimping the cannula 2 on the sheath 11 of the optical fiber 1.
Egalement, en référence à la figure 2, la partie distale dénudée 100 de la fibre optique 1 est logée entièrement à l'intérieur de la canule 2.Also, with reference to FIG. 2, the stripped distal portion 100 of the optical fiber 1 is housed entirely inside the cannula 2.
Plus particulièrement, la gaine de protection 11 est abutée à l'intérieur de la canule 2 contre la face interne 2b de la première partie tronconique 21 a.More particularly, the protective sheath 11 is abutted inside the cannula 2 against the inner face 2b of the first frustoconical portion 21a.
Plus particulièrement, tel qu'illustré sur la figure 2, l'extrémité distale 101 du cœur 10 dénudé de la fibre optique affleure l'ouverture distale 210 de la canule 2.More particularly, as shown in FIG. 2, the distal end 101 of the bare core of the optical fiber is flush with the distal opening 210 of the cannula 2.
Lors de l'introduction et de la manipulation de l'ensemble EWhen introducing and manipulating the set E
(canule/fibre) dans le corps humain, on évite ainsi avantageusement les risques de cassure de la partie distale 100 dénudée du coeur 10 de la fibre optique 1, laquelle partie distale 100 dénudée est plus fragile mécaniquement.(Cannula / fiber) in the human body, and advantageously avoids the risk of breakage of the stripped distal portion 100 of the core 10 of the optical fiber 1, which stripped distal portion 100 is more mechanically fragile.
Plus particulièrement encore, dans l'exemple de la figure 2, le diamètre di du cœur 10 de la fibre est sensiblement égal au diamètre ds de l'ouverture distale 210 de la canule 2. Le cœur de fibre dénudé 10 obture ainsi l'ouverture distale 210 de la canule 2, et fait avantageusement obstacle à la pénétration de corps étrangers à l'intérieur de la canule 2, et notamment à la pénétration de tissus lors du déplacement de la canule 2 et de la fibre optique 1 dans le corps humain.More particularly still, in the example of FIG. 2, the diameter di of the core 10 of the fiber is substantially equal to the diameter ds of the distal opening 210 of the cannula 2. The denuded fiber core 10 thus closes the opening distal 210 of the cannula 2, and advantageously prevents the penetration of foreign bodies inside the cannula 2, and in particular the penetration of tissue during the displacement of the cannula 2 and the optical fiber 1 in the human body .
Plus particulièrement, mais non nécessairement, au niveau de l'ouverture distale 210 de la canule 2, l'extrémité distale du cœur de la fibre peut être collée à l'intérieur de l'extrémité distale 21b de la canule, au moyen par exemple d'une colle activable par un rayonnement ultraviolet. Cette colle permet d'assurer, entre le cœur dénudé de la fibre et la paroi intérieure de la canule, une étanchéité parfaite empêchant toute pénétration de corps étrangers à l'intérieur de la canule 2 par l'ouverture distale 210. En fonctionnement, la totalité du rayonnement électromagnétique émis par la source laser S est guidé par réflexions totales internes par la fibre optique 1 jusqu'à l'extrémité distale ouverte 210 de la canule 2, et la totalité de ce rayonnement électromagnétique est émis de manière frontale par cette ouverture distale 210 de la canule 2.More particularly, but not necessarily, at the distal opening 210 of the cannula 2, the distal end of the fiber core may be glued within the distal end 21b of the cannula, for example by an activatable glue by ultraviolet radiation. This adhesive makes it possible to ensure, between the stripped core of the fiber and the inner wall of the cannula, a perfect seal preventing any penetration of foreign bodies into the interior of the cannula 2 through the distal opening 210. In operation, the totality of the electromagnetic radiation emitted by the laser source S is guided by total internal reflections by the optical fiber 1 to the open distal end 210 of the cannula 2, and all of this electromagnetic radiation is emitted frontal by this distal opening 210 of the cannula 2.
Dans une deuxième variante de réalisation de l'invention représentée à la figure 3, la partie distale 21 de la canule 2 est sensiblement hémisphérique. Cette portion arrondie sensiblement hémisphérique de la partie distale 21 permet de passer d'un diamètre d2 de la cavité 22 à un diamètre ûz plus faible. Ainsi, la gaine de protection 11 est abutée à l'intérieur de la canule 2 contre la paroi interne 2b de la partie distale 21 hémisphérique. Dans cette variante, de manière similaire à la première variante de la figure 2, la partie distale 100 dénudée du cœur 10 de la fibre optique est logée entièrement dans la canule 2, et l'extrémité distale 101 du cœur 10 de la fibre 1 affleure et obture l'ouverture distale 210 de la canule 2.In a second embodiment of the invention shown in Figure 3, the distal portion 21 of the cannula 2 is substantially hemispherical. This substantially hemispherical rounded portion of the distal portion 21 makes it possible to pass from a diameter d 2 of the cavity 22 to a smaller diameter. Thus, the protective sheath 11 is abutted inside the cannula 2 against the inner wall 2b of the hemispherical distal portion 21. In this variant, similarly to the first variant of FIG. 2, the stripped distal portion 100 of the core 10 of the optical fiber is housed entirely in the cannula 2, and the distal end 101 of the core 10 of the fiber 1 is flush with and closes the distal opening 210 of the cannula 2.
Dans une troisième variante de réalisation de l'invention représentée à la figure 4, la canule 2 comporte un corps cylindrique creuxIn a third embodiment of the invention shown in FIG. 4, the cannula 2 comprises a hollow cylindrical body
20 de diamètre extérieur D2 et de diamètre intérieur d2, et un insert creux cylindrique 23. L'insert 23 comprend une cavité interne traversante 230, et est fixé à l'intérieur du corps cylindrique creux 20.20 of outer diameter D 2 and inner diameter d 2 , and a cylindrical hollow insert 23. The insert 23 comprises a through internal cavity 230, and is fixed inside the hollow cylindrical body 20.
Dans cette variante, cet insert 23 est plus particulièrement réalisé dans un matériau thermiquement conducteur, et permet ainsi d'évacuer, en direction de la canule 2, la chaleur produite par le faisceau laser, et d'éviter une propagation de ladite chaleur en direction de la gaine 11 de la fibre optique 1. Bien entendu, l'insert 23 doit être réalisé dans un matériau résistant à la chaleur produite par le laser. De plus, cet insert 23 fait office de butée mécanique pour la gaine de protection 11 de la fibre optique 1, et facilite ainsi le positionnement de la fibre optique dans la canule 2. Par exemple, l'insert 23 est en métal, notamment en acier inoxydable, et est soudé dans le corps cylindrique creux 20, par laser, par brasage ou par collage. Plus particulièrement, l'insert 23 présente un diamètre extérieur D3 et un diamètre intérieur d3, et est logé entièrement à l'intérieur du corps cylindrique creux 20, de manière à ce que l'extrémité distale 231 dudit insert 23 affleure l'ouverture distale 210 du corps creux 20. La partie distale 100 dénudée du coeur 10 de la fibre optique 1 est logée entièrement dans l'insert 23, la gaine de protection 11 de la fibre 1 étant en butée à l'intérieur du corps creux 20 contre l'insert 23. Plus particulièrement, l'extrémité distale 101 du cœur 10 de la fibre 1 affleure et obture l'ouverture 232 de l'extrémité distale 231 de l'insert 23. Dans cette variante, le diamètre extérieur D3 de l'insert 23 est sensiblement égal au diamètre d2 de la cavité 22. De même, le diamètre intérieur d3 de l'insert est sensiblement égal au diamètre di du cœur 10 de la fibre 1. Bien entendu il est nécessaire de respecter certaines tolérances de jeu pour permettre l'introduction du cœur 10 dénudé de la fibre dans la cavité 230 de l'insert 23, et l'introduction de l'insert 23 dans la cavité 22 délimitée par le corps creux 20.In this variant, this insert 23 is more particularly made of a thermally conductive material, and thus makes it possible to discharge, in the direction of the cannula 2, the heat produced by the laser beam, and to prevent propagation of said heat in the direction of the sheath 11 of the optical fiber 1. Of course, the insert 23 must be made of a heat-resistant material produced by the laser. In addition, this insert 23 acts as a mechanical stop for the protective sheath 11 of the optical fiber 1, and thus facilitates the positioning of the optical fiber in the cannula 2. For example, the insert 23 is made of metal, particularly in stainless steel, and is welded into the hollow cylindrical body 20, by laser, brazing or gluing. More particularly, the insert 23 has an outside diameter D 3 and an inside diameter d 3 , and is housed entirely inside the hollow cylindrical body 20, so that the distal end 231 of said insert 23 is flush with the distal opening 210 of the hollow body 20. The stripped distal portion 100 of the core 10 of the optical fiber 1 is housed entirely in the insert 23, the protective sheath 11 of the fiber 1 abuts inside the hollow body 20 against the insert 23. More particularly, the distal end 101 of the core 10 of the fiber 1 is flush with and closes the opening 232 of the distal end 231 of the insert 23. In this variant, the outer diameter D 3 of the insert 23 is substantially equal to the diameter d 2 of the cavity 22. Similarly, the inside diameter d3 of the insert is substantially equal to the diameter di of the core 10 of the fiber 1. Of course it is necessary to respect certain tolerances of play to allow the i ntroduction of the bare core of the fiber in the cavity 230 of the insert 23, and the introduction of the insert 23 into the cavity 22 delimited by the hollow body 20.
On a représenté sur la figure 5, une quatrième variante de réalisation de l'invention qui se différencie de la variante de la figure 4, par la mise en œuvre d'un insert 23 de forme différente. Cet insert 23 creux comporte une première partie cylindrique 23a, et une seconde partie 23b, présentant une section transversale plus importante et désignée ci-après tête de l'insert 23. L'insert 23 est fixé au corps creux cylindrique 20 de la canule 2, de telle sorte d'une part que la partie tubulaire 23a de l'insert 23 est logée entièrement à l'intérieur du corps 20, et d'autre part que la tête 23b de l'insert 23 vient en butée contre la face d'extrémité distale 21c du corps creux 20. Dans cette variante, l'extrémité distale dénudée 101 du cœur 10 de la fibre optique est en saillie par rapport à la face d'extrémité distale 21c du corps creux 20, mais est logée entièrement dans l'insert 23 et affleure et obture l'ouverture distale 232 de la tête 23b de l'insert 23. Dans une cinquième variante de réalisation de l'invention représentée à la figure 6, la canule 2 est constituée par un corps creux cylindrique 20 de diamètre extérieur D2 et de diamètre intérieur d2. La fibre optique 1, de diamètre extérieur Di, est positionnée à l'intérieur de la cavité 22 de la canule 2 de manière à ce que l'extrémité distale 101 dénudée du cœur de la fibre 1 affleure l'ouverture distale 210 de la canule 2, sans toutefois obturer cette ouverture distale 210.FIG. 5 shows a fourth variant of the invention that differs from the variant of FIG. 4 by implementing an insert 23 of different shape. This hollow insert 23 has a first cylindrical portion 23a, and a second portion 23b, having a larger cross section and hereinafter referred to as the head of the insert 23. The insert 23 is attached to the cylindrical hollow body 20 of the cannula 2 , so firstly that the tubular portion 23a of the insert 23 is housed entirely within the body 20, and secondly that the head 23b of the insert 23 abuts against the face of distal end 21c of the hollow body 20. In this embodiment, the stripped distal end 101 of the heart 10 of the optical fiber is projecting from the distal end face 21c of the hollow body 20, but is housed entirely in the insert 23 and is flush and closes the distal opening 232 of the head 23b of the insert 23. In a fifth embodiment of the invention shown in Figure 6, the cannula 2 is constituted by a hollow body cylindrical 20 of outer diameter D 2 and inner diameter d 2 . The optical fiber 1, of outer diameter Di, is positioned inside the cavity 22 of the cannula 2 so that the distal end 101 stripped of the core of the fiber 1 is flush with the distal opening 210 of the cannula 2, without however closing off this distal opening 210.
Pour fabriquer les ensembles E (canule/ fibre optique) des figures 2 à 6, deux procédés de fabrication différents peuvent être mis en œuvre.To manufacture the sets E (cannula / optical fiber) of Figures 2 to 6, two different manufacturing processes can be implemented.
Un premier procédé de fabrication est illustré sur les figures 12 à 17, et un deuxième procédé de fabrication est illustré sur les figures 18 à 21. Ces deux procédés vont à présent être détaillés. Il convient de noter que sur ces figures, la canule 2 et la fibre optique 1 illustrées correspondent à la variante de la figure 3. L'homme du métier pourra facilement transposer ces procédés pour la fabrication des autres variantes des figues 2, 4, 5 et 6.A first manufacturing method is illustrated in Figures 12 to 17, and a second manufacturing method is illustrated in Figures 18 to 21. These two methods will now be detailed. It should be noted that in these figures, the cannula 2 and the optical fiber 1 illustrated correspond to the variant of Figure 3. Those skilled in the art can easily transpose these processes for the manufacture of other variants of Figs 2, 4, 5 and 6.
En référence aux figures 12 à 17, pour fabriquer l'ensemble E, dans une première étape (figures 12 et 13), on enfile la canule 2 sur la fibre optique 1, dont le coeur 10 a été préalablement dénudé sur une portion distale de la fibre optique, jusqu'à ce que la gaine protectrice 11 de la fibre soit amenée en butée dans la canule. Pour la variante de la figure 4 ou de la figure 5, l'insert 23 aura été préalablement fixé sur le corps creux 20, et la partie distale dénudée de la fibre optique est enfilé dans l'insert 23, jusqu'à ce que la gaine protectrice 11 de la fibre soit amenée en butée contre l'insert 23. Dans une deuxième étape (figures 14 et 15), on réalise de préférence un sertissage de la canule 2 de manière à immobiliser solidement la fibre 1 par rapport à la canule 2. Le sertissage permet de déformer localement la paroi de la canule 2 et la gaine de protection 11 de manière à immobiliser la gaine 11, et donc la fibre 1 , dans la canule 2. Lorsque le sertissage a été réalisé, des déformations radiales 4 sont visibles sur la paroi externe 2a de la canule 2. Ces déformations radiales 4 sur la paroi externe 2a de la canule 2 entraînent des déformations 4' de la gaine 11 qui permettent de bloquer et d'empêcher le coulissement de la fibre 1 dans la canule 2. Enfin, dans une troisième étape (figures 16 et 17) on coupe le cœur 10 de la fibre optique 1 de manière à ce que son extrémité distale 101 soit en affleurement avec l'ouverture distale 210 de la canule 2 [avec l'ouverture distale 232 de l'insert 23 pour la variante de la figure 5].With reference to FIGS. 12 to 17, in order to manufacture the assembly E, in a first step (FIGS. 12 and 13), the cannula 2 is threaded onto the optical fiber 1, the core 10 of which has been previously stripped on a distal portion of the optical fiber, until the protective sheath 11 of the fiber is brought into abutment in the cannula. For the variant of FIG. 4 or of FIG. 5, the insert 23 has been previously fixed on the hollow body 20, and the stripped distal portion of the optical fiber is threaded into the insert 23, until the Protective sheath 11 of the fiber is brought into abutment against the insert 23. In a second step (FIGS. 14 and 15), crimping of the cannula 2 is preferably carried out so as to firmly immobilize the fiber 1 with respect to the cannula 2. The crimping allows the wall of the cannula 2 and the protective sheath 11 to be locally deformed so as to immobilize the sheath 11, and thus the fiber 1, in the cannula 2. When the crimping has been performed, radial deformations 4 are visible on the outer wall 2a of the cannula 2. These radial deformations 4 on the outer wall 2a of the cannula 2 cause deformations 4 'of the sheath 11 which block and prevent the sliding of the fiber 1 in the cannula 2. Finally, in a third step 2 (FIGS. 16 and 17) the core 10 of the optical fiber 1 is cut so that its distal end 101 is flush with the distal opening 210 of the cannula 2 [with the distal opening 232 of the insert 23 for the variant of Figure 5].
Une deuxième méthode, représentée aux figures 18 à 21 , consiste dans une première étape (figures 18 et 19), à dénuder sur une longueur appropriée la fibre optique 1 et à insérer la fibre optique 1 dans la canule 2 de manière à ce que la gaine 11 de la fibre soit en butée à l'intérieur de la canule 2 et que l'extrémité distale 101 du cœur 10 de la fibre 1 affleure l'ouverture distale 210 de la canule [ou l'ouverture distale 232 de l'insert 23 pour la variante de la figure 5]. Puis, dans une deuxième étape (figures 20 et 21), on réalise le sertissage de la canule 2 sur la gaine 11 pour immobiliser la fibre 1 dans la canule 2.A second method, represented in FIGS. 18 to 21, consists in a first step (FIGS. 18 and 19) of stripping the optical fiber 1 for an appropriate length and inserting the optical fiber 1 into the cannula 2 so that the sheath 11 of the fiber abuts inside the cannula 2 and that the distal end 101 of the heart 10 of the fiber 1 is flush with the distal opening 210 of the cannula [or the distal opening 232 of the insert 23 for the variant of Figure 5]. Then, in a second step (FIGS. 20 and 21), the cannula 2 is crimped onto the sheath 11 to immobilize the fiber 1 in the cannula 2.
Dans les deux méthodes qui viennent d'être décrites, le sertissage de la canule 2 sur la fibre 1 est réalisé dans une zone en amont de la zone d'introduction de l'ensemble E dans le corps humain, c'est à dire dans une zone qui n'est pas destinée à être introduite dans le corps humain.In the two methods that have just been described, the crimping of the cannula 2 on the fiber 1 is carried out in an area upstream of the zone of introduction of the set E into the human body, that is to say in an area that is not intended to be introduced into the human body.
Dans une sixième variante de réalisation de l'invention représentée à la figure 7, la canule 2 est constituée par un corps tubulaire 20 de diamètre extérieur D2 et de diamètre intérieur d2- Un guide de rayonnement électromagnétique supplémentaire 3, désigné dans la suite guide de lumière, est fixé à l'intérieur et dans la partie distale du corps tubulaire 20. Ce guide de lumière 3 est réalisé dans tout matériau transparent dans la gamme de longueurs d'onde de la source laser S, et dans l'exemple illustré affleure l'ouverture distale 210 du corps 20 et obture cette ouverture distale 210.In a sixth variant embodiment of the invention shown in FIG. 7, the cannula 2 is constituted by a tubular body 20 of external diameter D 2 and of internal diameter d 2 - an additional electromagnetic radiation guide 3, designated in the following light guide, is fixed inside and in the distal portion of the tubular body 20. This light guide 3 is made of any transparent material in the wavelength range of the laser source S, and in the example illustrated flush the distal opening 210 of the body 20 and closes the distal opening 210.
La partie distale dénudée 100 du cœur 10 de la fibre optique 1 est positionnée de préférence en butée contre ce guide 3. Le coeur 10 de la fibre optique, prolongé par le guide 3, forme avec ce dernier un moyen de guidage permettant de guider par réflexion totales internes la totalité du rayonnement électromagnétique émis par la source laser S, jusqu'à l'extrémité distale ouverte 210 du corps 20, et d'émettre de manière frontale ce rayonnement électromagnétique par l'ouverture distale 210 de la canule. Dans une autre variante de réalisation, l'extrémité distale 101 de la partie distale dénudée 100 du cœur 10 de la fibre optique 1 pourrait être positionnée à proximité du guide de lumière 3, sans toutefois le toucher ; dans ce cas, la distance entre l'extrémité distale 101 du cœur 10 de la fibre optique 1 et le guide de lumière 3 doit être suffisamment faible, pour que le rayonnement électromagnétique en sortie du coeur 10 de la fibre 1 soit transmis au guide de lumière 3, sans perte importante.The stripped distal portion 100 of the core 10 of the optical fiber 1 is preferably positioned in abutment with this guide 3. The core 10 of the optical fiber, extended by the guide 3, forms with it a guide means for guiding by total internal reflection all the electromagnetic radiation emitted by the laser source S, up to the open distal end 210 of the body 20, and to emit frontally this electromagnetic radiation by the distal opening 210 of the cannula. In another alternative embodiment, the distal end 101 of the stripped distal portion 100 of the core 10 of the optical fiber 1 could be positioned near the light guide 3, without touching it; in this case, the distance between the distal end 101 of the core 10 of the optical fiber 1 and the light guide 3 must be sufficiently small, so that the electromagnetic radiation at the output of the core 10 of the fiber 1 is transmitted to the guide of light 3, without significant loss.
On a représenté sur les figures 8 à 11, d'autres variantes de réalisation de l'invention, qui se différencient de la variante précitée de la figure 7, par la mise en oeuvre de guides de lumière 3' présentant une géométrie différente du guide de lumière 3 de la figure 7.FIGS. 8 to 11 show alternative embodiments of the invention, which are different from the aforementioned variant of FIG. 7, by the implementation of light guides 3 'having a geometry different from the guide. 3 of Figure 7.
La solution précitée d'immobilisation de la fibre optique 1 par rapport à la canule 2, par sertissage de la canule 2 avec la gaine 11 de la fibre optique 1 , peut également être mise en œuvre dans les variantes de réalisation des figures 7 à 11.The aforementioned solution for immobilizing the optical fiber 1 with respect to the cannula 2, by crimping the cannula 2 with the sheath 11 of the optical fiber 1, can also be implemented in the variant embodiments of FIGS. 7 to 11. .
L'invention n'est pas limitée aux variantes des figures annexées, qui ont été décrites uniquement à titre d'exemples de réalisation. D'autres variantes de réalisation à la portée de l'homme du métier et couvertes par les revendications annexées peuvent être envisagées, sans pour autant sortir du cadre de l'invention. The invention is not limited to the variants of the appended figures, which have been described solely as exemplary embodiments. Other embodiments within the scope of those skilled in the art and covered by the appended claims may be envisaged, without departing from the scope of the invention.

Claims

REVENDICATIONS
1. Ensemble (E) comportant une canule (2) qui comprend une ouverture (210) à une extrémité (21c) dite distale, et des moyens de guidage d'un rayonnement électromagnétique, qui comportent une fibre optique (1) introduite à l'intérieur de la canule (2), et qui permettent de guider un rayonnement électromagnétique jusqu'à l'ouverture distale (210) de la canule, de telle sorte que ce rayonnement électromagnétique est émis frontalement par ladite ouverture distale (210) de la canule (2), ensemble dans lequel ladite fibre optique (1) comporte un cœur (10) entouré d'une gaine protectrice externe (11), le diamètre extérieur (Di) de la gaine protectrice (1 1) de la fibre optique (1) étant sensiblement égal au diamètre intérieur (d2) de la canule (2) au moins dans une portion distale de ladite canule, le cœur (10) de la fibre optique est dénudé sur une partie distale (100) de la fibre, et la partie distale dénudée (100) de la fibre optique est logée entièrement à l'intérieur de la canule (2).An assembly (E) comprising a cannula (2) which comprises an opening (210) at a distal end (21c), and means for guiding an electromagnetic radiation, which comprise an optical fiber (1) introduced to the the interior of the cannula (2), and which guide electromagnetic radiation to the distal opening (210) of the cannula, such that this electromagnetic radiation is emitted frontally by said distal opening (210) of the cannula cannula (2), together in which said optical fiber (1) comprises a core (10) surrounded by an outer protective sheath (11), the outer diameter (Di) of the protective sheath (1 1) of the optical fiber ( 1) being substantially equal to the inner diameter (d2) of the cannula (2) at least in a distal portion of said cannula, the heart (10) of the optical fiber is stripped on a distal portion (100) of the fiber, and the stripped distal portion (100) of the optical fiber is housed entirely at the i inside the cannula (2).
2. Ensemble selon la revendication 1 , caractérisé en ce que la canule (2) comporte dans sa partie distale (21) un insert creux (23) qui comporte une cavité traversante (230), et en ce que la partie distale dénudée (100) du cœur (10) de la fibre est enfilée dans cet insert creux (23).2. An assembly according to claim 1, characterized in that the cannula (2) has in its distal portion (21) a hollow insert (23) which has a through cavity (230), and in that the distal distal portion (100) ) of the core (10) of the fiber is threaded into this hollow insert (23).
3. Ensemble selon la revendication 1 ou 2, caractérisé en ce que la gaine (11) de la fibre optique (1) est positionnée en butée à l'intérieur de la canule (2). 3. An assembly according to claim 1 or 2, characterized in that the sheath (11) of the optical fiber (1) is positioned in abutment within the cannula (2).
4. Ensemble selon les revendications 2 et 3, caractérisé en ce que la gaine (11) de la fibre optique (1) est positionnée en butée contre l'insert (23).4. An assembly according to claims 2 and 3, characterized in that the sheath (11) of the optical fiber (1) is positioned in abutment against the insert (23).
5. Ensemble selon l'une des revendications 2 à 4, caractérisé en ce que la partie distale dénudée (100) du cœur (10) de la fibre est logée entièrement dans l'insert creux (23).5. An assembly according to one of claims 2 to 4, characterized in that the stripped distal portion (100) of the core (10) of the fiber is housed entirely in the hollow insert (23).
6. Ensemble selon l'une des revendications 2 à 5, caractérisé en ce que Pinsert creux (23) est réalisé dans un matériau thermiquement conducteur, et permet de protéger thermiquement la gaine (11) de la fibre optique.6. Assembly according to one of claims 2 to 5, characterized in that Hollow pinsert (23) is made of a thermally conductive material, and thermally protects the sheath (11) of the optical fiber.
7. Ensemble selon l'une des revendications 1 à 6, caractérisé en ce que l'extrémité distale (101) du cœur (10) de la fibre optique (1) affleure l'ouverture distale (210 ou 232) de la canule (2).7. Assembly according to one of claims 1 to 6, characterized in that the distal end (101) of the heart (10) of the optical fiber (1) is flush with the distal opening (210 or 232) of the cannula ( 2).
8. Ensemble selon l'une des revendications 1 à 7, caractérisé en ce que la partie distale dénudée (100) de la fibre optique obture l'ouverture distale (210 ou 232) de la canule (2). 8. Assembly according to one of claims 1 to 7, characterized in that the stripped distal portion (100) of the optical fiber closes the distal opening (210 or 232) of the cannula (2).
9. Ensemble selon la revendication 1, caractérisé en ce que les moyens de guidage d'un rayonnement électromagnétique comportent un guide (3) supplémentaire fixé à la canule (2). 9. The assembly of claim 1, characterized in that the means for guiding an electromagnetic radiation comprise an additional guide (3) attached to the cannula (2).
10. Ensemble selon la revendication 9, caractérisé en ce que le guide supplémentaire (3) affleure l'ouverture distale (210) de la canule (2). 10. The assembly of claim 9, characterized in that the additional guide (3) is flush with the distal opening (210) of the cannula (2).
11. Ensemble selon la revendication 9 ou 10, caractérisé en ce que le guide supplémentaire (3) obture l'ouverture distale (210) de la canule11. The assembly of claim 9 or 10, characterized in that the additional guide (3) closes the distal opening (210) of the cannula
(2). (2).
12. Ensemble selon Pune-des revendications 1 à 11, caractérisé en ce que la canule (2) est sertie sur la gaine (11) de la fibre optique (1). 12. The assembly according to Pune-claims 1 to 11, characterized in that the cannula (2) is crimped on the sheath (11) of the optical fiber (1).
13. Instrument laser, caractérisé en ce qu'il comporte un ensemble (E) visé à l'une des revendications 1 à 12, et une source laser (S) couplée à la fibre optique (1) de cet ensemble (E). 13. Laser instrument, characterized in that it comprises a set (E) according to one of claims 1 to 12, and a laser source (S) coupled to the optical fiber (1) of this set (E).
PCT/FR2008/000264 2007-03-02 2008-02-29 Canula/optic fibre assembly and laser tool including said assembly WO2008129166A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009551240A JP2010519947A (en) 2007-03-02 2008-02-29 Cannula / optical fiber device and laser instrument comprising said device
EP08775610A EP2114279A1 (en) 2007-03-02 2008-02-29 Canula/optic fibre assembly and laser tool including said assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR07/01513 2007-03-02
FR0701513A FR2913192B1 (en) 2007-03-02 2007-03-02 CANNULA / FIBER OPTIC ASSEMBLY AND LASER INSTRUMENT COMPRISING SAID ASSEMBLY.

Publications (1)

Publication Number Publication Date
WO2008129166A1 true WO2008129166A1 (en) 2008-10-30

Family

ID=38468877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000264 WO2008129166A1 (en) 2007-03-02 2008-02-29 Canula/optic fibre assembly and laser tool including said assembly

Country Status (5)

Country Link
US (1) US20080215041A1 (en)
EP (1) EP2114279A1 (en)
JP (1) JP2010519947A (en)
FR (1) FR2913192B1 (en)
WO (1) WO2008129166A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090182315A1 (en) * 2007-12-07 2009-07-16 Ceramoptec Industries Inc. Laser liposuction system and method
US20090326525A1 (en) * 2008-06-26 2009-12-31 Jessica Hixon Laser fiber capillary apparatus and method
EP2163218A1 (en) * 2008-09-16 2010-03-17 Osyris Medical Device for treating part of a human or animal body comprising an instrument for dispensing and/or an instrument for locally sucking up treatment doses and means for controlling dosimetry
EP2477530B1 (en) * 2009-09-17 2017-05-10 Mauna Kea Technologies A method, an optical probe and a confocal microscopy system for inspecting a solid organ
US8894636B2 (en) * 2010-03-09 2014-11-25 Henrick K. Gille Minimally invasive surgical system for CO2 lasers
US9314645B1 (en) * 2014-11-24 2016-04-19 Diotech Co., Ltd. Optical fiber for producing heat and method for manufacturing the same
FR3065087B1 (en) * 2017-04-05 2019-08-30 Daniel Ait Yahiatene HANDPIECE FOR DIRECTING A BRIGHT BEAM EMERGING FROM AN OPTICAL WAVEGUIDE
US11213426B2 (en) 2017-12-12 2022-01-04 Alcon Inc. Thermally robust multi-spot laser probe
BR112020011655A2 (en) 2017-12-12 2020-11-17 Alcon Inc. thermally robust laser probe assembly
WO2019116283A1 (en) 2017-12-12 2019-06-20 Novartis Ag Surgical probe with shape-memory material
JP2021505314A (en) 2017-12-12 2021-02-18 アルコン インコーポレイティド Multi-input coupled illuminated multi-spot laser probe
WO2020115843A1 (en) * 2018-12-05 2020-06-11 オリンパス株式会社 Light irradiation treatment tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514258A1 (en) * 1991-05-15 1992-11-19 S.L.T. Japan Co, Ltd. Laser light irradiation apparatus
US5269777A (en) * 1990-11-01 1993-12-14 Pdt Systems, Inc. Diffusion tip for optical fibers
US5343543A (en) * 1993-05-27 1994-08-30 Heraeus Surgical, Inc. Side-firing laser fiber with directional indicator and methods of use in determining the orientation of radiation to be emitted from the side-firing laser fiber
US5431647A (en) * 1994-07-13 1995-07-11 Pioneer Optics Company Fiberoptic cylindrical diffuser
WO1996018347A1 (en) * 1994-12-14 1996-06-20 Lee Brine Optical fibre laser delivery probe and use thereof
US6206873B1 (en) * 1996-02-13 2001-03-27 El. En. S.P.A. Device and method for eliminating adipose layers by means of laser energy
US20020138073A1 (en) * 2001-03-23 2002-09-26 Intintoli Alfred J. Light-dispersive probe
FR2875122A1 (en) * 2004-09-14 2006-03-17 Anastasie Bruno Medical endo-vascular instrument for laser treatment of varicose veins, comprises optical fiber with rigid support

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418688A (en) * 1981-07-06 1983-12-06 Laserscope, Inc. Microcatheter having directable laser and expandable walls
US4592353A (en) * 1984-05-22 1986-06-03 Surgical Laser Technologies Ohio, Inc. Medical and surgical laser probe
US4817601A (en) * 1985-03-06 1989-04-04 C. R. Bard, Inc. Catheter system for controlled removal by radiant energy of biological obstructions
US4660925A (en) * 1985-04-29 1987-04-28 Laser Therapeutics, Inc. Apparatus for producing a cylindrical pattern of light and method of manufacture
US4819630A (en) * 1987-03-20 1989-04-11 Laser Photonics, Inc. Flexible light transmissive apparatus and method
EP0311295A3 (en) * 1987-10-07 1990-02-28 University College London Improvements in surgical apparatus
JPH066131B2 (en) * 1989-01-11 1994-01-26 雅彦 星野 Laser therapy device shellfish
IL97130A (en) * 1990-02-07 1995-07-31 Coherent Inc Contact laser delivery system
US5196005A (en) * 1991-11-26 1993-03-23 Pdt Systems, Inc. Continuous gradient cylindrical diffusion tip for optical fibers and method for making
US6174424B1 (en) * 1995-11-20 2001-01-16 Cirrex Corp. Couplers for optical fibers
US5728092A (en) * 1996-03-07 1998-03-17 Miravant Systems, Inc. Light delivery catheter
US6845193B2 (en) * 2002-05-21 2005-01-18 Trimedyne, Inc. Laser channeling devices
US7766904B2 (en) * 2003-01-31 2010-08-03 Iridex Corporation Adjustable laser probe for use in vitreoretinal surgery
US20050113814A1 (en) * 2003-11-24 2005-05-26 Loeb Marvin P. Apparatus and method for limiting the re-use of fiber optic, laser energy delivery devices
US7492987B2 (en) * 2005-12-19 2009-02-17 Trimedyne, Inc. Fiber optic laser energy delivery devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269777A (en) * 1990-11-01 1993-12-14 Pdt Systems, Inc. Diffusion tip for optical fibers
EP0514258A1 (en) * 1991-05-15 1992-11-19 S.L.T. Japan Co, Ltd. Laser light irradiation apparatus
US5343543A (en) * 1993-05-27 1994-08-30 Heraeus Surgical, Inc. Side-firing laser fiber with directional indicator and methods of use in determining the orientation of radiation to be emitted from the side-firing laser fiber
US5431647A (en) * 1994-07-13 1995-07-11 Pioneer Optics Company Fiberoptic cylindrical diffuser
WO1996018347A1 (en) * 1994-12-14 1996-06-20 Lee Brine Optical fibre laser delivery probe and use thereof
US6206873B1 (en) * 1996-02-13 2001-03-27 El. En. S.P.A. Device and method for eliminating adipose layers by means of laser energy
US20020138073A1 (en) * 2001-03-23 2002-09-26 Intintoli Alfred J. Light-dispersive probe
FR2875122A1 (en) * 2004-09-14 2006-03-17 Anastasie Bruno Medical endo-vascular instrument for laser treatment of varicose veins, comprises optical fiber with rigid support

Also Published As

Publication number Publication date
US20080215041A1 (en) 2008-09-04
FR2913192B1 (en) 2010-02-26
JP2010519947A (en) 2010-06-10
FR2913192A1 (en) 2008-09-05
EP2114279A1 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
WO2008129166A1 (en) Canula/optic fibre assembly and laser tool including said assembly
US6893432B2 (en) Light-dispersive probe
EP3389777B1 (en) Device for optically stimulating the brain via an optical fiber
EP0375578B1 (en) Device for the cutting or vaporizing of material and different substances by using the laser effect
US5269777A (en) Diffusion tip for optical fibers
CA2573757C (en) Method of making a fiber optic probe tip for use in a medical device
EP3302687B1 (en) Device for deep electrical and optical brain stimulation
EP0935484B1 (en) Device for irradiating internal cavities of the body
EP0644742A1 (en) Cylindrical diffusion tips for optical fibers and method for making
EP0599955A1 (en) Laterally reflecting tip for laser transmitting fiber
FR2723305A1 (en) Hand instrument for laser surgery to nose
EP4054463A1 (en) Diffusing apparatus for laser therapy treatment
WO2019115909A1 (en) Implantable localised illuminating device with improved architecture
EP0935485B1 (en) Light diffusing device for photodynamic treatment of organs
FR3010321A1 (en) IMPLANTABLE DEVICE FOR OPTICAL BRAIN STIMULATION COMPRISING AN ENHANCEMENT FORMING A HOUSING CONNECTING THE FIRST AND SECOND PARTS
EP0588738A1 (en) Optical devices for laser transmission
FR2954087A1 (en) Medical probe for prostate disease of patient, has assembly melted to heat under controlled conditions on part of selected length, from front face of optical fiber for conferring bending to distal end with deviation angle of selected value
CN111867510A (en) Device for treating tissue of a body
FR3074691A1 (en) IMPLANTABLE LOCALIZED ILLUMINATION DEVICE WITH IMPROVED ARCHITECTURE
EP0620459A2 (en) Method of applying a reflective coating to the front face of an optic fibre
WO2012168590A1 (en) Device for irradiating light for applying a light beam onto or into a body, in particular a human body
WO2009024668A1 (en) Handpiece for a fibre optic or a cannula and fibre optic assembly
FR3074693A1 (en) IMPLANTABLE ILLUMINATION DEVICE WITH OPTICAL RETURN SYSTEM
FR3074692A1 (en) IMPLANTABLE ILLUMINATION DEVICE WITH CENTERING MEMBER
FR3065087A1 (en) HANDPIECE FOR DIRECTING A BRIGHT BEAM EMERGING FROM AN OPTICAL WAVEGUIDE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008775610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009551240

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE