WO2008141325A1 - Safety for mitral valve implant - Google Patents

Safety for mitral valve implant Download PDF

Info

Publication number
WO2008141325A1
WO2008141325A1 PCT/US2008/063568 US2008063568W WO2008141325A1 WO 2008141325 A1 WO2008141325 A1 WO 2008141325A1 US 2008063568 W US2008063568 W US 2008063568W WO 2008141325 A1 WO2008141325 A1 WO 2008141325A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart valve
valve implant
safety stop
shaft
spacer
Prior art date
Application number
PCT/US2008/063568
Other languages
French (fr)
Inventor
Kenneth Arden Eliasen
Steven Joseph Tallarida
Christopher William Maurer
Jonathan Edward Wilson
Original Assignee
Cardiosolutions, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiosolutions, Inc. filed Critical Cardiosolutions, Inc.
Priority to CA002687366A priority Critical patent/CA2687366A1/en
Priority to BRPI0810267A priority patent/BRPI0810267A2/en
Priority to EP08755426A priority patent/EP2150207A4/en
Publication of WO2008141325A1 publication Critical patent/WO2008141325A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/246Devices for obstructing a leak through a native valve in a closed condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac

Definitions

  • the present disclosure relates to the repair and/or correction of dysfunctional heart valves, and more particularly pertains to heart valve implants and systems and methods for delivery and implementation of the same.
  • a human heart has four chambers, the left and right atrium and the left and right ventricles.
  • the chambers of the heart alternately expand and contract to pump blood through the vessels of the body.
  • the cycle of the heart includes the simultaneous contraction of the left and right atria, passing blood from the atria to the left and right ventricles.
  • the left and right ventricles then simultaneously contract forcing blood from the heart and through the vessels of the body.
  • the heart also includes a check valve at the upstream end of each chamber to ensure that blood flows in the correct direction through the body as the heart chambers expand and contract. These valves may become damaged, or otherwise fail to function properly, resulting in their inability to properly close when the downstream chamber contracts. Failure of the valves to properly close may allow blood to flow backward through the valve resulting in decreased blood flow and lower blood pressure.
  • Mitral regurgitation is a common variety of heart valve dysfunction or insufficiency. Mitral regurgitation occurs when the mitral valve separating the left coronary atrium and the left ventricle fails to properly close. As a result, upon contraction of the left ventricle blood may leak or flow from the left ventricle back into the left atrium, rather than being forced through the aorta. Any disorder that weakens or damages the mitral valve can prevent it from closing properly, thereby causing leakage or regurgitation. Mitral regurgitation is considered to be chronic when the condition persists rather than occurring for only a short period of time. Regardless of the cause, mitral regurgitation may result in a decrease in blood flow through the body (cardiac output). Correction of mitral regurgitation typically requires surgical intervention.
  • Surgical valve repair or replacement is carried out as an open heart procedure.
  • the repair or replacement surgery may last in the range of about three to five hours, and is carried out with the patient under general anesthesia.
  • the nature of the surgical procedure requires the patient to be placed on a heart-lung machine. Because of the severity/complexity/danger associated with open heart surgical procedures, corrective surgery for mitral regurgitation is typically not recommended until the patient's ejection fraction drops below 60% and/or the left ventricle is larger than 45 mm at rest.
  • FIG. 1 is a perspective view of an embodiment of a mitral valve implant consistent with the present disclosure
  • FIG. 2a depicts an embodiment mitral valve implant consistent with the present disclosure implanted within a heart in an open position
  • FIG. 2b depicts an embodiment mitral valve implant consistent with the present disclosure implanted within a heart in a closed position
  • FIG. 3 is a perspective view of another embodiment of a mitral valve implant consistent with the present disclosure.
  • FIG. 4 depicts the mitral valve implant consistent with FIG. 3 implanted within a heart in an open position according to the present disclosure
  • FIG. 5 depicts a further embodiment of a mitral valve implant consistent with the present disclosure
  • FIG. 6 depicts yet another embodiment of a mitral valve implant consistent with the present disclosure
  • FIGS. 7-9 depict additionally embodiments of a mitral valve implant consistent with the present disclosure.
  • FIG. 10 depicts a mitral valve implant without a spacer consistent with the present disclosure.
  • mitral valve implant 10 may generally include a spacer or valve body portion 12 which may be coupled to a shaft 14.
  • the shaft 14 may be coupled to at least one anchor portion 16 configured to couple, attach, and/or otherwise secure the mitral valve implant 10 to native coronary tissue.
  • at least a portion of the spacer 12 may be configured to be disposed proximate a mitral valve such that the mitral valve implant 10 may interact and/or cooperate with at least a portion of the native mitral valve 18 to reduce and/or eliminate excessive regurgitation as illustrated in FIGS. 2.
  • the mitral valve implant 10, FIG. 1 may also include one or more safety stops 20.
  • the safety stops 20 may at least partially reduce, restrict and/or prevent the mitral valve implant 10 from moving away from the mitral valve 18 area in at least one direction should the anchor portion 16 become dislodged or allows excessive movement of the mitral valve implant 10.
  • the safety stops 20 may be configured to extend generally radially outwardly from the longitudinal axis L of mitral valve implant 10 beyond at least a portion of an outer perimeter of the spacer 12 such that the safety stops 20 may at least partially reduce, restrict and/or prevent the mitral valve implant 10 from moving away from the mitral valve 18 area in at least one direction.
  • the safety stops 20 may define an outer perimeter and/or cross-section that is larger in at least one direction than the mitral valve 18.
  • the safety stops 20 may define an outer perimeter and/or cross-section that is larger in at least one direction than the perimeter and/or cross-section of the spacer 14.
  • the safety stops 20 may be configured to reduce and/or prevent the mitral valve implant 10 from moving through the mitral valve 18 in at least one direction.
  • the safety stop 20 may allow a portion of the mitral valve implant 10 to move with respect to the mitral valve 18; however, the safety stop 20 may prevent, restrict and/or reduce the ability of the entire mitral valve implant 10 from passing through the mitral valve 18.
  • the safety stops 20 need only prevent, restrict and/or reduce the mitral valve implant 10 from passing through the mitral valve 18.
  • the safety stop 20 does not necessarily have to restrict the movement of the mitral valve implant 10 sufficiently to allow the mitral valve implant may to continue to interact and/or cooperate with the mitral valve leaflets 19 and reduce and/or eliminate excessive regurgitation.
  • the safety stop 20 may allow the mitral valve implant 10 to move such that the mitral valve implant 10 no longer interacts and/or cooperates with the mitral valve leaflets 19 and no longer reduces and/or eliminates excessive regurgitation.
  • the safety stop 20 need only prevent, restrict and/or reduce the mitral valve implant 10 from passing through the mitral valve 18.
  • the safety stops 20 may be configured to sufficiently reduce, restrict and/or prevent the movement of the mitral valve implant 10 (and in particular, the spacer 12) such that the spacer 12 may continue to interact and/or cooperate with at least a portion of the mitral valve 18 to reduce and/or eliminate excessive regurgitation.
  • the safety stops 20 do not necessarily have to be configured to prevent the mitral valve implant 10 from moving at all or from moving away from an original, preferred, or optimized position with respect to the mitral valve 18.
  • the safety stops 20 may allow the mitral valve implant 10 to move with respect to the mitral valve 18 as long as a minimum degree of interaction and/or cooperation exists between the mitral valve implant 10 and at least a portion of the mitral valve leaflets 19.
  • the minimum degree of interaction and/or cooperation between the mitral valve implant 10 and at least a portion of the mitral valve leaflets 19 may vary and may be determined experimentally.
  • the mitral valve implant 10 may include at least one safety stop 20 disposed generally above the spacer 12.
  • the mitral valve implant 10 may include a safety stop 20a extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 along at least a portion of the shaft 14.
  • the term "above" the spacer 12 refers to a portion of the mitral valve implant 10 between spacer 12 and a first end 23 of the mitral valve implant 10 which is intended to be disposed proximate the atrium (e.g., the left atrium 22).
  • the safety stop 20a may be disposed proximate the distal portion of the first end 23 of the shaft 14 as shown, however, the safety stop 20a may be disposed anywhere along the portion of the mitral valve implant 10 between spacer 12 and the distal portion of the first end 23 of the shaft 14. For example, the safety stop 20a may be disposed proximate the spacer 12. As shown in FIGS. 2, the safety stop 20a may be configured to be disposed generally within the left ventricle 24.
  • the mitral valve implant 10 may include at least one safety stop 20 disposed generally below the spacer 12.
  • the term “below” the spacer 12 refers to a portion of the mitral valve implant 10 between spacer 12 and a second end 24 of the mitral valve implant 10 which is intended to be disposed proximate the ventricle (e.g., the left ventricle 24).
  • the mitral valve implant 10 may include a safety stop 20b extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 along at least a portion of the shaft 14.
  • the safety stop 20b may be configured to be disposed generally within the left atrium 22. While the mitral valve implant 10 is shown having safety stops 20a, 20b disposed above and below the spacer 12, the mitral valve implant 10 may include only the safety stop 20b.
  • the mitral valve implant 10 may include a safety stop 20c, FIG. 5, extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 about the anchor portion 16.
  • the safety stop 20c may be disposed proximate the shaft 14, however, one or more safety stops 20c may be disposed along other positions of the anchor portion 16.
  • the mitral valve implant 10 may include only the safety stop 20c.
  • the mitral valve implant 10 may include at least one safety stop 2Od extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 along the spacer 12.
  • the safety stop 2Od may be disposed proximate either the first or the second ends 23, 24 of the mitral valve implant 10. Placing the safety stop 2Od proximate either the first or second ends 23, 24 of the mitral valve implant 10 may increase the surface available to the spacer 12 to interact and/or cooperate with the mitral valve leaflets 19 to reduce and/or eliminate excessive regurgitation and may reduce the likelihood of the safety stop 2Od from preventing the spacer 12 from interacting and/or cooperating with the mitral valve leaflets 19 to reduce and/or eliminate excessive regurgitation.
  • the mitral valve implant 10 may include one or more or a combination of two or more of the safety stops 20a-20d.
  • the safety stops 20 may reduce and/or prevent the mitral valve implant 10 from moving away from the mitral valve 18 area should the anchor portion 16 become dislodged or allows excessive movement of the mitral valve implant 10.
  • the safety stops 20 may define an outer perimeter and/or cross-section that is larger in at least one direction than the mitral valve 18.
  • the safety stop 20 may include a variety a configurations and/or geometries depending on the intended application.
  • the safety stop 20 may be shaped to facilitate the flow of blood from the left atrium 22 to the left ventricle 24 when the mitral valve 18 is open.
  • the safety stop 20 may have a generally streamlined shape, allowing the smooth flow of blood around the safety stop 20.
  • Other embodiments of the mitral valve implant 10 may provide less consideration for the flow characteristics of blood flowing around the safety stop 20.
  • the safety stop 20 may have a generally annular, ring-like shape and may define an outer perimeter extending approximately 360 degrees around the radius of the mitral valve implant 10.
  • the safety stop 20 may include a generally circular, oval, or elliptical outer perimeter as generally shown in FIGS. 1-6.
  • the outer perimeter of the safety stop 20 may be configured to restrict the movement of the mitral valve implant 10 through the mitral valve 18.
  • the safety stop 20 may be configured to be mounted, attached, coupled, or otherwise secured to the mitral valve implant 10 using one or more spokes, ribs, stringers, or supports 26. As such, the safety stop 20 may form a generally open, frame-like structure.
  • the safety stop 20 may be configured as a substantially solid geometry or shape.
  • the safety stop 20 may include a generally solid, disc-like structure.
  • the substantially solid geometry safety stop 20 may optionally include one or more apertures or openings that allow fluid to pass through the safety stop 20.
  • the safety stop 20 may also include one or more segments or components 30 extending generally radially outwardly from the mitral valve implant 10 as shown in FIGS. 7-9. Each segment 30 may extend generally outwardly less than 360 degrees along the radius of the mitral valve implant 10.
  • the safety stop 20 may include a single segment 30a as shown in FIG. 7.
  • the single segment 30a may extend generally radially outwardly less than 360 degrees along the radius of the mitral valve implant 10.
  • the single segment 30a may extend outwardly from mitral valve implant 10 in at least one direction such that an outer perimeter and/or cross- section of the mitral valve implant 10 is larger in at least one direction than the cross-section of the mitral valve 18.
  • the safety stop 20 may include a plurality of segments 30a- 30n as shown in FIGS. 8 and 9.
  • the plurality of segments 30a-30n may be spaced evenly and/or unevenly about the radial direction of the mitral valve implant 10. While each segment 30a-30n may extend less than 360 degrees along the radius of the mitral valve implant 10, the sum of the segments 30a-30n may be equal, less than, or greater than 360 degrees.
  • the plurality of segments 30a-30n may extend outwardly from mitral valve implant 10 in at least one direction such that an outer perimeter and/or cross-section of the mitral valve implant 10 is larger in at least one direction than the cross-section of the mitral valve 18.
  • the segments 30 may have a generally tear-drop like shape.
  • the segments 30 may include other shapes such as, but not limited to, circles, ovals, rectangles, triangles, and the like.
  • the segments 30 may form a generally wire-like frame as shown in FIGS. 7 and 8. The wire-like frame may facilitate the flow of fluid past the safety stop 20.
  • the segments 30 may also have a generally solid geometry or shape as shown in FIG. 9.
  • the solid segments 30 may optionally include one or more openings, apertures, or passageways 32 configured to allow fluid to pass through the solid segment 30.
  • the phrases "generally solid geometry”, “substantially solid geometry”, or the like are intended to mean a geometry having an outer surface that defines a substantially fixed or constant volume. That is, a volume of the segments 30 does not substantially change before and after implantation of the mitral valve implant 10.
  • a "generally solid geometry” may include, without limitation, a solid, semi-solid, or porous (e.g., micro- or nano-scale pores) material.
  • the safety stop 20 may be collapsible and/or reducible in volume to facilitate percutaneous and/or transluminal delivery of the mitral valve implant 10.
  • the safety stop 20 of the mitral valve implant 10 may be a collapsible member, which can be reduced in volume and/or reduced in maximum diameter during delivery to the heart and/or during placement and/or attachment of the anchor to native coronary tissue.
  • the safety stop 20 may be expanded, inflated, and/or otherwise increased in volume or size. Accordingly, the mitral valve implant 10 may be delivered to an implantation site via a smaller diameter catheter, and/or via smaller vessels, than would otherwise be required.
  • the at least partially deformable safety stop 20 may be collapsed to a reduced size, which may, for example, allow the mitral valve implant 10 to be loaded into a catheter delivery system.
  • a catheter delivery system may be suitable for transluminal delivery of a mitral valve implant 10, including the safety stop 20, to the heart.
  • the safety stop 20 may be deformed to facilitate loading into a catheter delivery system.
  • the safety stop 20 may be collapsed and may be rolled and/or folded to a generally cylindrical shape, allowing the safety stop 20 to be loaded in a catheter having a circular lumen.
  • a collapsed and/or rolled or folded safety stop 20 may be inflated, restoring the safety stop 20 to expanded configuration.
  • a collapsed and/or rolled or folded safety stop 20 may be inflated and restored to an expanded configuration once the mitral valve implant 10 has been delivered to the heart and deployed from a catheter delivery system.
  • Inflating the safety stop 20 may be carried out by introducing a fluid, such as saline, into the at least one cavity of the safety stop 20.
  • the safety stop 20 may be inflated with a setting or curable fluid.
  • the setting or curable fluid may set and/or be cured to a solid and/or semi-solid state within the cavity of the safety stop 20.
  • An example of such a material may be a thermoset polymer resin, a gel material, such as silicone gel, etc.
  • At least a portion of the safety stop 20 may also be constructed from a shape-memory material.
  • the safety stop 20 may include a shape-memory alloy such as, but not limited to, copper-zinc- aluminum, copper- aluminum-nickel, and nickel-titanium (NiTi) alloys.
  • the shape-memory alloy may include either one-way or two-way shape memory and may be introduced in to the delivery catheter lumen having a shape which does not exceed the interior dimensions of the delivery catheter lumen.
  • the safety stop 20 may have a generally elongated or generally helical shape. Upon delivery to proximate the mitral valve, the shape-memory safety stop 20 may be heated to cause the safety stop 20 to deform into the desired shape for installation.
  • the safety stop 20 may be formed from one or more separate segments 30 which are each no larger than the interior, radial dimensions of the delivery catheter lumen in at least one direction.
  • the segments 30 do not need to be expanded/inflated, but rather may be configured to be mounted, coupled, attached, or otherwise secured to the mitral valve implant 10 once delivered proximate the mitral valve.
  • the size and shape of the segments 30 may be varied by design and quantity such that the constructed safety stop 20 accommodates the patient's anatomy, etiology of valve regurgitation, as well as the physical limitations of the implant delivery system.
  • At least a portion of the safety stop 20 may also be coated or encapsulated with various compliant materials such as, but not limited to, porous synthetic materials (for example, polyesters) that promote cell growth to improve biocompatibility and improve attachment between the safety stop 20 and the native coronary tissue.
  • various compliant materials such as, but not limited to, porous synthetic materials (for example, polyesters) that promote cell growth to improve biocompatibility and improve attachment between the safety stop 20 and the native coronary tissue.
  • Other coating materials include non- reactive synthetics (for example, silicone/urethane composites) and xenograft (animal pericardium or collagen) materials.
  • the safety stop 20 has been shown extending generally 90 degrees radially outwardly from the mitral valve implant 10, one or more of the safety stops 20 may extend generally radially outwardly at one or more angles greater than or less than 90 degrees from the longitudinal axis L of the mitral valve implant 10. Additionally, the safety stops 20 may be located at a fixed position along the mitral valve implant 10 or may be movable along the longitudinal axis L of the mitral valve implant 10. Accordingly, the safety stop 20 may be positioned along the longitudinal axis L of the mitral valve implant 10 to minimize possible movement of the mitral valve insert 10 and/or to position the safety stop 20 to minimize potential interference with the surrounding tissue. For example, the safety stop 20 may include a ratchet- like mechanism. The safety stops 20 may also be located about a common, radial plane of the mitral valve implant 10 and/or may be located about two or more radial planes of the mitral valve implant 10.
  • the mitral valve implant 10 may optionally include only the shaft 14, the anchor portion 16, and one or more safety stops 20 as generally shown in FIG. 10. Additionally, at least a portion of the shaft 14 may include a substantially rigid shaft which is configured to be substantially self-supporting. Alternatively (or in addition), at least a portion of the shaft 14 may include a wire-like shaft. According to this aspect, the first and second ends 23, 24 of the shaft 14 may each include anchor portions 16.
  • the spacer 12 of the mitral valve implant 10 shown in FIGS. 1-9 may have any shape known to those skilled in the art. For example, as shown in FIG.
  • the spacer 12 may have a generally tapered shape, including a sidewall 17 tapering outwardly from a narrow portion 40 adjacent to one or more of the ends of the spacer 12 to an enlarged portion 42.
  • the taper of the sidewall 17 may have a flared or belled shape, providing an at least partially concave geometry.
  • the spacer 12 may include a sidewall 17 having a generally uniform taper, providing a straight profile.
  • the sidewall 17 of the spacer 12 may exhibit a convex taper, producing an at least somewhat bulging tapered profile.
  • the enlarged portion 42 of the spacer 12 may have an arcuate profile around the circumference of the proximal region of the enlarged portion 42.
  • the bottom 44 of the enlarged portion 42 may be provided having a flat and/or arcuate shape.
  • the bottom 44 of the proximal region may include convex and/or concave contours.
  • the spacer 12 may be slidably coupled to the shaft 14.
  • the spacer 12 may include an opening 46 extending from the bottom 44 of the enlarged portion 42, through the spacer 12, and to the narrow portion 40.
  • the opening 46 may extend generally axially through the spacer 12.
  • the opening 46 may be sized to slidably receive at least a portion of the shaft 14 therethrough.
  • the shaft 14 may include one or more stops 48, 50.
  • the stops 48, 50 may be sized and/or shaped to control and/or restrict translation of the spacer 12 along the shaft 14 beyond the respective stops 48, 50. In this manner, in the illustrated embodiment, translation of the spacer 12 along the shaft 14 may be restricted to the expanse of the shaft 14 between the stops 48, 50.
  • One or more of the stops 48, 50 may be integrally formed with the shaft 14. Furthermore, one or more of the stops 48, 50 may be provided as a separate member coupled to and/or formed on the shaft 14. In an embodiment in which one or more of the stops 48, 50 are integrally formed with the shaft 14, the spacer 12 may be slidably coupled to the shaft 14 by pressing the spacer 12 over at least one of the stops 48, 50, which may at least partially elastically deform the opening 46 to permit passage of at least one of the stops 48, 50. Once the one or more of the stops 48, 50 have been pressed through the opening 46, the opening 46 may at least partially elastically recover, thereby resisting passage of the one or more stops 48, 50 back through the opening 46.
  • Various other arrangements may be employed for providing stops on the shaft and/or for controlling and/or limiting translation of the spacer along the shaft.
  • the anchor portion 16 may include a helical member 52 coupled to the shaft 14. As shown, the helical member 52 may be loosely wound such that adjacent turns of the helical member 52 do not contact one another, for example resembling a corkscrew-type configuration.
  • the anchor portion 16 may be engaged with tissue by rotating the anchor portion 16 about the axis of the helical member 52, thereby advancing the anchor portion 16 into tissue. Consistent with such an embodiment, the anchor portion 16 may resist pulling out from the tissue.
  • the anchor portion 16 may be provided as an extension of the shaft 14 wound in a helical configuration. Consistent with related embodiments, the anchor portion 16 may be formed as a separate feature and may be coupled to the shaft 14, e.g., using mechanical fasteners, welding, adhesive, etc.
  • the anchor portion 16 may include various configurations capable of being coupled to and/or otherwise attached to native coronary tissue.
  • the anchor portion 16 may include one or more prongs adapted to pierce coronary tissue and to alone, or in conjunction with other features, resist removal of the anchor portion 16 from tissue.
  • the anchor portion 16 may include a plurality of prongs which may engage native coronary tissue.
  • the anchor portion 16 may include features that may facilitate attachment by suturing. Exemplary features to facilitate suturing may include rings or openings, suture penetrable tabs, etc.
  • Various other anchor portions 16 that may allow attachment or coupling to native coronary tissue may also suitably be employed in connection with the present disclosure.
  • the mitral valve implant 10 is shown implanted within a heart 102.
  • the mitral valve implant 10 may be disposed at least partially within the left ventricle 24 of the heart 102.
  • the anchor portion 16 may be engaged with native coronary tissue within and/or adjacent to the left ventricle 24.
  • the shaft 14, coupled to the anchor portion 16, may extend into the left ventricle 24.
  • the shaft 14 may further extend at least partially within the mitral valve 18, i.e., the shaft 14 may extend at least partially between the cusps or leaflets 19 of the mitral valve 18, and may also extend at least partially into the left atrium 22.
  • the spacer 12 of the mitral valve implant 10 may be positioned at least partially within the left ventricle 24 with the enlarged portion 42 within the left ventricle 24 and with the narrow portion 48 positioned at least partially within and/or pointed towards the left atrium 22.
  • FIGS. 2a and 4 depict the heart 102 in a condition in which the pressure of blood within the left atrium 22 is at equal to, or higher than, the pressure of blood within the left ventricle 24, e.g., during contraction of the left atrium 22.
  • the pressure of blood within the left atrium 22 is greater than or equal to the pressure of blood within the left ventricle 24
  • blood may flow from the left atrium 22 into the left ventricle 24.
  • the pressure differential and/or the flow of blood from the left atrium 22 to the left ventricle 24 may slidably translate the spacer 12 along the shaft 14 toward the left ventricle 24, in the direction of blood flow between the chambers.
  • Sliding translation of the spacer 12 along the shaft 14 may at least partially withdraw the spacer 12 from the mitral valve 18 to an open position, as shown.
  • a passage may be opened between the spacer 12 and the mitral valve 18, allowing blood to flow from the left atrium 22 to the left ventricle 24.
  • Translation of the spacer 12 away from the mitral valve 18 may be controlled and/or limited by the stop 50.
  • the stop 50 In the open position, the stop 50 may maintain the spacer 12 in general proximity to the mitral valve 18 while still permitting sufficient clearance between the mitral valve 18 and the spacer 12 to permit adequate blood flow from the left atrium 22 to the left ventricle 24.
  • the flow of blood from left atrium 22 to the left ventricle 24 may cause the mitral valve 18 to flare and/or expand outwardly away from the mitral valve implant 10, permitting blood flow between the implant 10 and the cusps 19 of the mitral valve 19.
  • the pressure of blood in the left ventricle 24 may increase such that the blood pressure in the left ventricle 24 is greater than the blood pressure in the left atrium 22. Additionally, as the pressure of the blood in the left ventricle 24 initially increases above the pressure of the blood in the left atrium 22, blood may begin to flow towards and/or back into the left atrium 22. The pressure differential and/or initial flow of blood from the left ventricle 24 into the left atrium 22 may act against the spacer 12 and may translate the spacer 12 toward the left atrium 104. For example, pressurized blood within the left ventricle 24 may act against the bottom 24 of the spacer 12 inducing sliding translation of the spacer 12 along the shaft 14 toward the left atrium 22.
  • the spacer 12 may be translated toward and/or at least partially into the left atrium 22. At least a portion of the spacer 12 may interact with, engage, and/or be positioned adjacent to at least a portion of the mitral valve 18. For example, at least a portion of at least one cusp 19 of the mitral valve 18 may contact at least a portion of the spacer 12. Engagement between the spacer 12 and the mitral valve 18 may restrict and/or prevent the flow of blood from the left ventricle 24 back into the left atrium 22.
  • the mitral valve 18 may also at least partially close around the spacer 12, thereby also restricting and/or preventing the flow of blood from the left ventricle 24 to the left atrium 22. For example, as mentioned above, at least a portion of one or both of the cusps 19 of the mitral valve 18 may contact at least a portion of the spacer 12. In some embodiments, as the pressure of the blood in the left ventricle 24 increases, the pressure against the bottom 44 of the spacer 12 may increase. The increase in pressure against the bottom 44 of the spacer 12 may, in turn, increase the engagement between the spacer 12 and the mitral valve 18.
  • Sliding translation of the spacer 12 toward the left atrium 22 may at least partially be controlled and/or limited by the stop 48 coupled to the shaft 14. Additionally, translation of the spacer 12 toward the left atrium 22 may be at least partially limited and/or controlled by engagement between the spacer 12 and the mitral valve 18. One or both of these restrictions on the translation of the spacer 12 may, in some embodiments, prevent the spacer 12 from passing fully into the left atrium 22. Furthermore, the diameter of the enlarged portion 20 of the spacer 12 may limit and/or restrict the movement of the spacer 12 into the left atrium 22.
  • the preceding embodiment may, therefore, provide a mitral valve implant that is slidably translatable relative to the mitral valve to reduce and/or eliminate regurgitation. Additional embodiments of a mitral valve implant are described in co-pending U.S. Patent Application Serial No. 11/258,828, entitled “Heart Valve Implant” filed on October 26, 2005, which is fully incorporated herein by reference.
  • the mitral valve implant may include a generally stationary spacer and may include more than one anchoring portions.
  • the implant herein has been disclosed above in the context of a mitral valve implant.
  • An implant consistent with the present disclosure may also suitably be employed in other applications, e.g., as an implant associated with one of the other valves of the heart, etc.
  • the present invention should not, therefore, be construed as being limited to use for reducing and/or preventing regurgitation of the mitral valve.
  • the present disclosure features a heart valve implant comprising a shaft extending generally along a longitudinal axis of the heart valve implant and a spacer coupled to the shaft between a first and a second end region of the shaft.
  • the spacer may be configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through the heart valve in a closed position.
  • At least one anchor may be configured to be coupled to the first end region of the shaft and at least one safety stop may extend generally radially outwardly from the longitudinal axis of the heart valve implant beyond at least a portion of an outer perimeter of the spacer.
  • the safety stop may be configured to at least partially restrict a movement of the heart valve implant with respect to the heart valve in at least one direction.
  • the present disclosure features a method of restricting movement of a heart valve implant with respect to a heart valve.
  • the method may comprise providing a heart valve implant comprising a shaft, a spacer coupled to the shaft between a first and a second end region of the shaft, at least one anchor configured to be coupled to the first end region of the shaft, and at least one safety stop extending generally radially outwardly from the heart valve implant beyond at least a portion of an outer perimeter of the spacer.
  • the heart valve implant may be at least partially collapsed and may be percutaneously inserted into a heart where it may be secured.
  • At least a portion of the collapsed heart valve implant may be expanded and the safety stop may be configured to at least partially restrict a movement of the heart valve implant with respect to the heart valve in at least one direction.
  • the present disclosure features a method of restricting the movement of a heart valve implant.
  • the method may comprise engaging an anchor into coronary tissue, providing a shaft coupled to the anchor and a spacer coupled to the shaft.
  • the spacer may be configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through the heart valve in a closed position.
  • At least one safety stop may be provided that extends generally radially outwardly from the heart valve implant beyond at least a portion of an outer perimeter of the spacer.
  • the safety stop may be configured to at least partially restrict a movement of the heart valve implant with respect to the heart valve in at least one direction.
  • an expandable and/or recoverably or solid safety stop may be configured for use as part of a valve implant including a stationary spacer.
  • valve implant embodiments including an expandable spacer and/or safety stops have been discussed in connection with transluminal and/or percutaneous delivery systems and/or procedures, such embodiments may also suitably be employed in connection with surgical delivery systems and/or methods.
  • other features and aspects of the various embodiments may also suitably be combined and/or modified consistent with the present disclosure. The present disclosure herein should not, therefore, be limited to any particular disclosed embodiment, and should be given full scope of the appended claims.

Abstract

A heart valve implant may include a shaft and a spacer coupled to the shaft between a first and a second end region of the shaft. The spacer may be configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through the heart valve in a closed position and at least one anchor may be configured to be coupled to the first end region of the shaft. At least one safety stop may extend generally radially outwardly from the longitudinal axis of the heart valve implant beyond at least a portion of an outer perimeter of the spacer. The safety stop may also be configured to at least partially restrict a movement of the heart valve implant with respect to the heart valve in at least one direction.

Description

SAFETY FOR MITRAL VALVE IMPLANT
CROSS-REFERENCE TO RELATED APPLICATION
The subject application is a continuation-in-part of co-pending U.S. Patent Application Serial No. 11/258,828, entitled "Heart Valve Implant" filed on October 26, 2005, which is hereby incorporated by reference.
FIELD
The present disclosure relates to the repair and/or correction of dysfunctional heart valves, and more particularly pertains to heart valve implants and systems and methods for delivery and implementation of the same.
BACKGROUND
A human heart has four chambers, the left and right atrium and the left and right ventricles. The chambers of the heart alternately expand and contract to pump blood through the vessels of the body. The cycle of the heart includes the simultaneous contraction of the left and right atria, passing blood from the atria to the left and right ventricles. The left and right ventricles then simultaneously contract forcing blood from the heart and through the vessels of the body. In addition to the four chambers, the heart also includes a check valve at the upstream end of each chamber to ensure that blood flows in the correct direction through the body as the heart chambers expand and contract. These valves may become damaged, or otherwise fail to function properly, resulting in their inability to properly close when the downstream chamber contracts. Failure of the valves to properly close may allow blood to flow backward through the valve resulting in decreased blood flow and lower blood pressure.
Mitral regurgitation is a common variety of heart valve dysfunction or insufficiency. Mitral regurgitation occurs when the mitral valve separating the left coronary atrium and the left ventricle fails to properly close. As a result, upon contraction of the left ventricle blood may leak or flow from the left ventricle back into the left atrium, rather than being forced through the aorta. Any disorder that weakens or damages the mitral valve can prevent it from closing properly, thereby causing leakage or regurgitation. Mitral regurgitation is considered to be chronic when the condition persists rather than occurring for only a short period of time. Regardless of the cause, mitral regurgitation may result in a decrease in blood flow through the body (cardiac output). Correction of mitral regurgitation typically requires surgical intervention. Surgical valve repair or replacement is carried out as an open heart procedure. The repair or replacement surgery may last in the range of about three to five hours, and is carried out with the patient under general anesthesia. The nature of the surgical procedure requires the patient to be placed on a heart-lung machine. Because of the severity/complexity/danger associated with open heart surgical procedures, corrective surgery for mitral regurgitation is typically not recommended until the patient's ejection fraction drops below 60% and/or the left ventricle is larger than 45 mm at rest.
BRIEF DESCRIPTION OF THE DRAWINGS
Features and advantage of the claimed subject matter will be apparent from the following description of embodiments consistent therewith, which description should be considered in conjunction with the accompanying drawings, wherein: FIG. 1 is a perspective view of an embodiment of a mitral valve implant consistent with the present disclosure;
FIG. 2a depicts an embodiment mitral valve implant consistent with the present disclosure implanted within a heart in an open position; FIG. 2b depicts an embodiment mitral valve implant consistent with the present disclosure implanted within a heart in a closed position;
FIG. 3 is a perspective view of another embodiment of a mitral valve implant consistent with the present disclosure;
FIG. 4 depicts the mitral valve implant consistent with FIG. 3 implanted within a heart in an open position according to the present disclosure;
FIG. 5 depicts a further embodiment of a mitral valve implant consistent with the present disclosure;
FIG. 6 depicts yet another embodiment of a mitral valve implant consistent with the present disclosure; FIGS. 7-9 depict additionally embodiments of a mitral valve implant consistent with the present disclosure; and
FIG. 10 depicts a mitral valve implant without a spacer consistent with the present disclosure.
DESCRIPTION
Referring to FIG. 1, a perspective view of one embodiment of a mitral valve implant 10 is depicted. As shown, mitral valve implant 10 may generally include a spacer or valve body portion 12 which may be coupled to a shaft 14. The shaft 14 may be coupled to at least one anchor portion 16 configured to couple, attach, and/or otherwise secure the mitral valve implant 10 to native coronary tissue. In general, at least a portion of the spacer 12 may be configured to be disposed proximate a mitral valve such that the mitral valve implant 10 may interact and/or cooperate with at least a portion of the native mitral valve 18 to reduce and/or eliminate excessive regurgitation as illustrated in FIGS. 2.
The mitral valve implant 10, FIG. 1 , may also include one or more safety stops 20. The safety stops 20 may at least partially reduce, restrict and/or prevent the mitral valve implant 10 from moving away from the mitral valve 18 area in at least one direction should the anchor portion 16 become dislodged or allows excessive movement of the mitral valve implant 10. The safety stops 20 may be configured to extend generally radially outwardly from the longitudinal axis L of mitral valve implant 10 beyond at least a portion of an outer perimeter of the spacer 12 such that the safety stops 20 may at least partially reduce, restrict and/or prevent the mitral valve implant 10 from moving away from the mitral valve 18 area in at least one direction. According to one aspect, the safety stops 20 may define an outer perimeter and/or cross-section that is larger in at least one direction than the mitral valve 18. For example, the safety stops 20 may define an outer perimeter and/or cross-section that is larger in at least one direction than the perimeter and/or cross-section of the spacer 14.
For example, the safety stops 20 may be configured to reduce and/or prevent the mitral valve implant 10 from moving through the mitral valve 18 in at least one direction. According to this embodiment, the safety stop 20 may allow a portion of the mitral valve implant 10 to move with respect to the mitral valve 18; however, the safety stop 20 may prevent, restrict and/or reduce the ability of the entire mitral valve implant 10 from passing through the mitral valve 18. It should be noted that the safety stops 20 need only prevent, restrict and/or reduce the mitral valve implant 10 from passing through the mitral valve 18. The safety stop 20 does not necessarily have to restrict the movement of the mitral valve implant 10 sufficiently to allow the mitral valve implant may to continue to interact and/or cooperate with the mitral valve leaflets 19 and reduce and/or eliminate excessive regurgitation. In other words, the safety stop 20 may allow the mitral valve implant 10 to move such that the mitral valve implant 10 no longer interacts and/or cooperates with the mitral valve leaflets 19 and no longer reduces and/or eliminates excessive regurgitation. The safety stop 20 according to this aspect need only prevent, restrict and/or reduce the mitral valve implant 10 from passing through the mitral valve 18. Additionally (or alternatively), the safety stops 20 may be configured to sufficiently reduce, restrict and/or prevent the movement of the mitral valve implant 10 (and in particular, the spacer 12) such that the spacer 12 may continue to interact and/or cooperate with at least a portion of the mitral valve 18 to reduce and/or eliminate excessive regurgitation. It should be noted that the safety stops 20 do not necessarily have to be configured to prevent the mitral valve implant 10 from moving at all or from moving away from an original, preferred, or optimized position with respect to the mitral valve 18. As such, the safety stops 20 may allow the mitral valve implant 10 to move with respect to the mitral valve 18 as long as a minimum degree of interaction and/or cooperation exists between the mitral valve implant 10 and at least a portion of the mitral valve leaflets 19. The minimum degree of interaction and/or cooperation between the mitral valve implant 10 and at least a portion of the mitral valve leaflets 19 may vary and may be determined experimentally.
As shown in FIG. 1, the mitral valve implant 10 may include at least one safety stop 20 disposed generally above the spacer 12. For example, the mitral valve implant 10 may include a safety stop 20a extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 along at least a portion of the shaft 14. As used herein, the term "above" the spacer 12 refers to a portion of the mitral valve implant 10 between spacer 12 and a first end 23 of the mitral valve implant 10 which is intended to be disposed proximate the atrium (e.g., the left atrium 22). The safety stop 20a may be disposed proximate the distal portion of the first end 23 of the shaft 14 as shown, however, the safety stop 20a may be disposed anywhere along the portion of the mitral valve implant 10 between spacer 12 and the distal portion of the first end 23 of the shaft 14. For example, the safety stop 20a may be disposed proximate the spacer 12. As shown in FIGS. 2, the safety stop 20a may be configured to be disposed generally within the left ventricle 24.
Referring to FIG. 3, the mitral valve implant 10 may include at least one safety stop 20 disposed generally below the spacer 12. As used herein, the term "below" the spacer 12 refers to a portion of the mitral valve implant 10 between spacer 12 and a second end 24 of the mitral valve implant 10 which is intended to be disposed proximate the ventricle (e.g., the left ventricle 24). For example, the mitral valve implant 10 may include a safety stop 20b extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 along at least a portion of the shaft 14. As shown in FIGS. 4, the safety stop 20b may be configured to be disposed generally within the left atrium 22. While the mitral valve implant 10 is shown having safety stops 20a, 20b disposed above and below the spacer 12, the mitral valve implant 10 may include only the safety stop 20b.
Alternatively (or in addition), the mitral valve implant 10 may include a safety stop 20c, FIG. 5, extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 about the anchor portion 16. The safety stop 20c may be disposed proximate the shaft 14, however, one or more safety stops 20c may be disposed along other positions of the anchor portion 16. Again, while the mitral valve implant 10 is shown having safety stops 20a, 20b disposed above and below the spacer 12, the mitral valve implant 10 may include only the safety stop 20c. Referring to FIG. 6, the mitral valve implant 10 may include at least one safety stop 2Od extending generally radially outwardly from the longitudinal axis L of mitral valve implant 10 along the spacer 12. According to one embodiment, the safety stop 2Od may be disposed proximate either the first or the second ends 23, 24 of the mitral valve implant 10. Placing the safety stop 2Od proximate either the first or second ends 23, 24 of the mitral valve implant 10 may increase the surface available to the spacer 12 to interact and/or cooperate with the mitral valve leaflets 19 to reduce and/or eliminate excessive regurgitation and may reduce the likelihood of the safety stop 2Od from preventing the spacer 12 from interacting and/or cooperating with the mitral valve leaflets 19 to reduce and/or eliminate excessive regurgitation. Those skilled in the art will recognize that while the mitral valve implant 10 in FIGS. 2-6 are shown in combination with the safety stop 20a disposed above the spacer 12, the mitral valve implant 10 does not necessarily have to include the safety stop 20a. The mitral valve implant 10 may include one or more or a combination of two or more of the safety stops 20a-20d.
As discussed above, the safety stops 20 may reduce and/or prevent the mitral valve implant 10 from moving away from the mitral valve 18 area should the anchor portion 16 become dislodged or allows excessive movement of the mitral valve implant 10. For example, the safety stops 20 may define an outer perimeter and/or cross-section that is larger in at least one direction than the mitral valve 18. As such, the safety stop 20 may include a variety a configurations and/or geometries depending on the intended application. The safety stop 20 may be shaped to facilitate the flow of blood from the left atrium 22 to the left ventricle 24 when the mitral valve 18 is open. The safety stop 20 may have a generally streamlined shape, allowing the smooth flow of blood around the safety stop 20. Other embodiments of the mitral valve implant 10 may provide less consideration for the flow characteristics of blood flowing around the safety stop 20.
According to one aspect, the safety stop 20 may have a generally annular, ring-like shape and may define an outer perimeter extending approximately 360 degrees around the radius of the mitral valve implant 10. For example, the safety stop 20 may include a generally circular, oval, or elliptical outer perimeter as generally shown in FIGS. 1-6. In any event, the outer perimeter of the safety stop 20 may be configured to restrict the movement of the mitral valve implant 10 through the mitral valve 18. The safety stop 20 may be configured to be mounted, attached, coupled, or otherwise secured to the mitral valve implant 10 using one or more spokes, ribs, stringers, or supports 26. As such, the safety stop 20 may form a generally open, frame-like structure. Alternatively (or in addition), the safety stop 20 may be configured as a substantially solid geometry or shape. According to one embodiment, the safety stop 20 may include a generally solid, disc-like structure. The substantially solid geometry safety stop 20 may optionally include one or more apertures or openings that allow fluid to pass through the safety stop 20.
The safety stop 20 may also include one or more segments or components 30 extending generally radially outwardly from the mitral valve implant 10 as shown in FIGS. 7-9. Each segment 30 may extend generally outwardly less than 360 degrees along the radius of the mitral valve implant 10. For example, the safety stop 20 may include a single segment 30a as shown in FIG. 7. The single segment 30a may extend generally radially outwardly less than 360 degrees along the radius of the mitral valve implant 10. The single segment 30a may extend outwardly from mitral valve implant 10 in at least one direction such that an outer perimeter and/or cross- section of the mitral valve implant 10 is larger in at least one direction than the cross-section of the mitral valve 18. Alternatively, the safety stop 20 may include a plurality of segments 30a- 30n as shown in FIGS. 8 and 9. The plurality of segments 30a-30n may be spaced evenly and/or unevenly about the radial direction of the mitral valve implant 10. While each segment 30a-30n may extend less than 360 degrees along the radius of the mitral valve implant 10, the sum of the segments 30a-30n may be equal, less than, or greater than 360 degrees. Again, the plurality of segments 30a-30n may extend outwardly from mitral valve implant 10 in at least one direction such that an outer perimeter and/or cross-section of the mitral valve implant 10 is larger in at least one direction than the cross-section of the mitral valve 18.
According to one embodiment, the segments 30 may have a generally tear-drop like shape. However, the segments 30 may include other shapes such as, but not limited to, circles, ovals, rectangles, triangles, and the like. The segments 30 may form a generally wire-like frame as shown in FIGS. 7 and 8. The wire-like frame may facilitate the flow of fluid past the safety stop 20.
The segments 30 may also have a generally solid geometry or shape as shown in FIG. 9. The solid segments 30 may optionally include one or more openings, apertures, or passageways 32 configured to allow fluid to pass through the solid segment 30. As used herein, the phrases "generally solid geometry", "substantially solid geometry", or the like are intended to mean a geometry having an outer surface that defines a substantially fixed or constant volume. That is, a volume of the segments 30 does not substantially change before and after implantation of the mitral valve implant 10. A "generally solid geometry" may include, without limitation, a solid, semi-solid, or porous (e.g., micro- or nano-scale pores) material.
At least a portion of the safety stop 20 may be collapsible and/or reducible in volume to facilitate percutaneous and/or transluminal delivery of the mitral valve implant 10. In such a manner, the safety stop 20 of the mitral valve implant 10 may be a collapsible member, which can be reduced in volume and/or reduced in maximum diameter during delivery to the heart and/or during placement and/or attachment of the anchor to native coronary tissue. After delivery to the heart, the safety stop 20 may be expanded, inflated, and/or otherwise increased in volume or size. Accordingly, the mitral valve implant 10 may be delivered to an implantation site via a smaller diameter catheter, and/or via smaller vessels, than would otherwise be required. The at least partially deformable safety stop 20 may be collapsed to a reduced size, which may, for example, allow the mitral valve implant 10 to be loaded into a catheter delivery system. Such a catheter delivery system may be suitable for transluminal delivery of a mitral valve implant 10, including the safety stop 20, to the heart. In addition to being collapsed, the safety stop 20 may be deformed to facilitate loading into a catheter delivery system. For example, the safety stop 20 may be collapsed and may be rolled and/or folded to a generally cylindrical shape, allowing the safety stop 20 to be loaded in a catheter having a circular lumen.
A collapsed and/or rolled or folded safety stop 20 may be inflated, restoring the safety stop 20 to expanded configuration. For example, a collapsed and/or rolled or folded safety stop 20 may be inflated and restored to an expanded configuration once the mitral valve implant 10 has been delivered to the heart and deployed from a catheter delivery system. Inflating the safety stop 20 may be carried out by introducing a fluid, such as saline, into the at least one cavity of the safety stop 20. In addition to a liquid, such as saline, the safety stop 20 may be inflated with a setting or curable fluid. The setting or curable fluid may set and/or be cured to a solid and/or semi-solid state within the cavity of the safety stop 20. An example of such a material may be a thermoset polymer resin, a gel material, such as silicone gel, etc.
At least a portion of the safety stop 20 may also be constructed from a shape-memory material. For example, at least a portion of the safety stop 20 may include a shape-memory alloy such as, but not limited to, copper-zinc- aluminum, copper- aluminum-nickel, and nickel-titanium (NiTi) alloys. The shape-memory alloy may include either one-way or two-way shape memory and may be introduced in to the delivery catheter lumen having a shape which does not exceed the interior dimensions of the delivery catheter lumen. For example, the safety stop 20 may have a generally elongated or generally helical shape. Upon delivery to proximate the mitral valve, the shape-memory safety stop 20 may be heated to cause the safety stop 20 to deform into the desired shape for installation.
According to another embodiment, the safety stop 20 may be formed from one or more separate segments 30 which are each no larger than the interior, radial dimensions of the delivery catheter lumen in at least one direction. The segments 30 do not need to be expanded/inflated, but rather may be configured to be mounted, coupled, attached, or otherwise secured to the mitral valve implant 10 once delivered proximate the mitral valve. The size and shape of the segments 30 may be varied by design and quantity such that the constructed safety stop 20 accommodates the patient's anatomy, etiology of valve regurgitation, as well as the physical limitations of the implant delivery system.
At least a portion of the safety stop 20 may also be coated or encapsulated with various compliant materials such as, but not limited to, porous synthetic materials (for example, polyesters) that promote cell growth to improve biocompatibility and improve attachment between the safety stop 20 and the native coronary tissue. Other coating materials include non- reactive synthetics (for example, silicone/urethane composites) and xenograft (animal pericardium or collagen) materials.
While the safety stop 20 has been shown extending generally 90 degrees radially outwardly from the mitral valve implant 10, one or more of the safety stops 20 may extend generally radially outwardly at one or more angles greater than or less than 90 degrees from the longitudinal axis L of the mitral valve implant 10. Additionally, the safety stops 20 may be located at a fixed position along the mitral valve implant 10 or may be movable along the longitudinal axis L of the mitral valve implant 10. Accordingly, the safety stop 20 may be positioned along the longitudinal axis L of the mitral valve implant 10 to minimize possible movement of the mitral valve insert 10 and/or to position the safety stop 20 to minimize potential interference with the surrounding tissue. For example, the safety stop 20 may include a ratchet- like mechanism. The safety stops 20 may also be located about a common, radial plane of the mitral valve implant 10 and/or may be located about two or more radial planes of the mitral valve implant 10.
It should be noted that while the mitral valve implant 10 has been described in combination with a spacer 12, the mitral valve implant 10 may optionally include only the shaft 14, the anchor portion 16, and one or more safety stops 20 as generally shown in FIG. 10. Additionally, at least a portion of the shaft 14 may include a substantially rigid shaft which is configured to be substantially self-supporting. Alternatively (or in addition), at least a portion of the shaft 14 may include a wire-like shaft. According to this aspect, the first and second ends 23, 24 of the shaft 14 may each include anchor portions 16. The spacer 12 of the mitral valve implant 10 shown in FIGS. 1-9 may have any shape known to those skilled in the art. For example, as shown in FIG. 1, the spacer 12 may have a generally tapered shape, including a sidewall 17 tapering outwardly from a narrow portion 40 adjacent to one or more of the ends of the spacer 12 to an enlarged portion 42. The taper of the sidewall 17 may have a flared or belled shape, providing an at least partially concave geometry. In various other embodiments, the spacer 12 may include a sidewall 17 having a generally uniform taper, providing a straight profile. In still other embodiments, the sidewall 17 of the spacer 12 may exhibit a convex taper, producing an at least somewhat bulging tapered profile.
The enlarged portion 42 of the spacer 12 may have an arcuate profile around the circumference of the proximal region of the enlarged portion 42. The bottom 44 of the enlarged portion 42 may be provided having a flat and/or arcuate shape. Furthermore, the bottom 44 of the proximal region may include convex and/or concave contours.
According to an embodiment, the spacer 12 may be slidably coupled to the shaft 14. The spacer 12 may include an opening 46 extending from the bottom 44 of the enlarged portion 42, through the spacer 12, and to the narrow portion 40. In one such embodiment, the opening 46 may extend generally axially through the spacer 12. The opening 46 may be sized to slidably receive at least a portion of the shaft 14 therethrough. The shaft 14 may include one or more stops 48, 50. The stops 48, 50 may be sized and/or shaped to control and/or restrict translation of the spacer 12 along the shaft 14 beyond the respective stops 48, 50. In this manner, in the illustrated embodiment, translation of the spacer 12 along the shaft 14 may be restricted to the expanse of the shaft 14 between the stops 48, 50.
One or more of the stops 48, 50 may be integrally formed with the shaft 14. Furthermore, one or more of the stops 48, 50 may be provided as a separate member coupled to and/or formed on the shaft 14. In an embodiment in which one or more of the stops 48, 50 are integrally formed with the shaft 14, the spacer 12 may be slidably coupled to the shaft 14 by pressing the spacer 12 over at least one of the stops 48, 50, which may at least partially elastically deform the opening 46 to permit passage of at least one of the stops 48, 50. Once the one or more of the stops 48, 50 have been pressed through the opening 46, the opening 46 may at least partially elastically recover, thereby resisting passage of the one or more stops 48, 50 back through the opening 46. Various other arrangements may be employed for providing stops on the shaft and/or for controlling and/or limiting translation of the spacer along the shaft.
The anchor portion 16 may include a helical member 52 coupled to the shaft 14. As shown, the helical member 52 may be loosely wound such that adjacent turns of the helical member 52 do not contact one another, for example resembling a corkscrew-type configuration. The anchor portion 16 may be engaged with tissue by rotating the anchor portion 16 about the axis of the helical member 52, thereby advancing the anchor portion 16 into tissue. Consistent with such an embodiment, the anchor portion 16 may resist pulling out from the tissue. The anchor portion 16 may be provided as an extension of the shaft 14 wound in a helical configuration. Consistent with related embodiments, the anchor portion 16 may be formed as a separate feature and may be coupled to the shaft 14, e.g., using mechanical fasteners, welding, adhesive, etc.
According to various alternative embodiments, the anchor portion 16 may include various configurations capable of being coupled to and/or otherwise attached to native coronary tissue. For example, the anchor portion 16 may include one or more prongs adapted to pierce coronary tissue and to alone, or in conjunction with other features, resist removal of the anchor portion 16 from tissue. For example, the anchor portion 16 may include a plurality of prongs which may engage native coronary tissue. According to various other embodiments, the anchor portion 16 may include features that may facilitate attachment by suturing. Exemplary features to facilitate suturing may include rings or openings, suture penetrable tabs, etc. Various other anchor portions 16 that may allow attachment or coupling to native coronary tissue may also suitably be employed in connection with the present disclosure.
Turning to FIGS. 2 and 4, the mitral valve implant 10 is shown implanted within a heart 102. The mitral valve implant 10 may be disposed at least partially within the left ventricle 24 of the heart 102. As shown, the anchor portion 16 may be engaged with native coronary tissue within and/or adjacent to the left ventricle 24. The shaft 14, coupled to the anchor portion 16, may extend into the left ventricle 24. The shaft 14 may further extend at least partially within the mitral valve 18, i.e., the shaft 14 may extend at least partially between the cusps or leaflets 19 of the mitral valve 18, and may also extend at least partially into the left atrium 22. The spacer 12 of the mitral valve implant 10 may be positioned at least partially within the left ventricle 24 with the enlarged portion 42 within the left ventricle 24 and with the narrow portion 48 positioned at least partially within and/or pointed towards the left atrium 22.
FIGS. 2a and 4 depict the heart 102 in a condition in which the pressure of blood within the left atrium 22 is at equal to, or higher than, the pressure of blood within the left ventricle 24, e.g., during contraction of the left atrium 22. As shown, when the pressure of blood within the left atrium 22 is greater than or equal to the pressure of blood within the left ventricle 24, blood may flow from the left atrium 22 into the left ventricle 24. The pressure differential and/or the flow of blood from the left atrium 22 to the left ventricle 24 may slidably translate the spacer 12 along the shaft 14 toward the left ventricle 24, in the direction of blood flow between the chambers. Sliding translation of the spacer 12 along the shaft 14 may at least partially withdraw the spacer 12 from the mitral valve 18 to an open position, as shown. When the spacer 12 is at least partially withdrawn from the mitral valve 18, a passage may be opened between the spacer 12 and the mitral valve 18, allowing blood to flow from the left atrium 22 to the left ventricle 24. Translation of the spacer 12 away from the mitral valve 18 may be controlled and/or limited by the stop 50. In the open position, the stop 50 may maintain the spacer 12 in general proximity to the mitral valve 18 while still permitting sufficient clearance between the mitral valve 18 and the spacer 12 to permit adequate blood flow from the left atrium 22 to the left ventricle 24. Additionally, the flow of blood from left atrium 22 to the left ventricle 24 may cause the mitral valve 18 to flare and/or expand outwardly away from the mitral valve implant 10, permitting blood flow between the implant 10 and the cusps 19 of the mitral valve 19.
As the left ventricle 24 contracts, the pressure of blood in the left ventricle 24 may increase such that the blood pressure in the left ventricle 24 is greater than the blood pressure in the left atrium 22. Additionally, as the pressure of the blood in the left ventricle 24 initially increases above the pressure of the blood in the left atrium 22, blood may begin to flow towards and/or back into the left atrium 22. The pressure differential and/or initial flow of blood from the left ventricle 24 into the left atrium 22 may act against the spacer 12 and may translate the spacer 12 toward the left atrium 104. For example, pressurized blood within the left ventricle 24 may act against the bottom 24 of the spacer 12 inducing sliding translation of the spacer 12 along the shaft 14 toward the left atrium 22.
In the closed position as shown in FIG. 2b, the spacer 12 may be translated toward and/or at least partially into the left atrium 22. At least a portion of the spacer 12 may interact with, engage, and/or be positioned adjacent to at least a portion of the mitral valve 18. For example, at least a portion of at least one cusp 19 of the mitral valve 18 may contact at least a portion of the spacer 12. Engagement between the spacer 12 and the mitral valve 18 may restrict and/or prevent the flow of blood from the left ventricle 24 back into the left atrium 22.
In addition to the translation of the spacer 12, the mitral valve 18 may also at least partially close around the spacer 12, thereby also restricting and/or preventing the flow of blood from the left ventricle 24 to the left atrium 22. For example, as mentioned above, at least a portion of one or both of the cusps 19 of the mitral valve 18 may contact at least a portion of the spacer 12. In some embodiments, as the pressure of the blood in the left ventricle 24 increases, the pressure against the bottom 44 of the spacer 12 may increase. The increase in pressure against the bottom 44 of the spacer 12 may, in turn, increase the engagement between the spacer 12 and the mitral valve 18.
Sliding translation of the spacer 12 toward the left atrium 22 may at least partially be controlled and/or limited by the stop 48 coupled to the shaft 14. Additionally, translation of the spacer 12 toward the left atrium 22 may be at least partially limited and/or controlled by engagement between the spacer 12 and the mitral valve 18. One or both of these restrictions on the translation of the spacer 12 may, in some embodiments, prevent the spacer 12 from passing fully into the left atrium 22. Furthermore, the diameter of the enlarged portion 20 of the spacer 12 may limit and/or restrict the movement of the spacer 12 into the left atrium 22.
The preceding embodiment may, therefore, provide a mitral valve implant that is slidably translatable relative to the mitral valve to reduce and/or eliminate regurgitation. Additional embodiments of a mitral valve implant are described in co-pending U.S. Patent Application Serial No. 11/258,828, entitled "Heart Valve Implant" filed on October 26, 2005, which is fully incorporated herein by reference. For example, the mitral valve implant may include a generally stationary spacer and may include more than one anchoring portions.
The implant herein has been disclosed above in the context of a mitral valve implant. An implant consistent with the present disclosure may also suitably be employed in other applications, e.g., as an implant associated with one of the other valves of the heart, etc. The present invention should not, therefore, be construed as being limited to use for reducing and/or preventing regurgitation of the mitral valve.
According to one aspect, the present disclosure features a heart valve implant comprising a shaft extending generally along a longitudinal axis of the heart valve implant and a spacer coupled to the shaft between a first and a second end region of the shaft. The spacer may be configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through the heart valve in a closed position. At least one anchor may be configured to be coupled to the first end region of the shaft and at least one safety stop may extend generally radially outwardly from the longitudinal axis of the heart valve implant beyond at least a portion of an outer perimeter of the spacer. The safety stop may be configured to at least partially restrict a movement of the heart valve implant with respect to the heart valve in at least one direction.
According to another aspect, the present disclosure features a method of restricting movement of a heart valve implant with respect to a heart valve. The method may comprise providing a heart valve implant comprising a shaft, a spacer coupled to the shaft between a first and a second end region of the shaft, at least one anchor configured to be coupled to the first end region of the shaft, and at least one safety stop extending generally radially outwardly from the heart valve implant beyond at least a portion of an outer perimeter of the spacer. The heart valve implant may be at least partially collapsed and may be percutaneously inserted into a heart where it may be secured. At least a portion of the collapsed heart valve implant may be expanded and the safety stop may be configured to at least partially restrict a movement of the heart valve implant with respect to the heart valve in at least one direction. According to yet another aspect, the present disclosure features a method of restricting the movement of a heart valve implant. The method may comprise engaging an anchor into coronary tissue, providing a shaft coupled to the anchor and a spacer coupled to the shaft. The spacer may be configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through the heart valve in a closed position. At least one safety stop may be provided that extends generally radially outwardly from the heart valve implant beyond at least a portion of an outer perimeter of the spacer. The safety stop may be configured to at least partially restrict a movement of the heart valve implant with respect to the heart valve in at least one direction.
While the depicted embodiments including expandable and/or recoverably deformable as well as solid safety stops have generally been shown configured as a safety stop consistent with a translating spacer, an expandable and/or recoverably or solid safety stop may be configured for use as part of a valve implant including a stationary spacer. Similarly, while the valve implant embodiments including an expandable spacer and/or safety stops have been discussed in connection with transluminal and/or percutaneous delivery systems and/or procedures, such embodiments may also suitably be employed in connection with surgical delivery systems and/or methods. Additionally, other features and aspects of the various embodiments may also suitably be combined and/or modified consistent with the present disclosure. The present disclosure herein should not, therefore, be limited to any particular disclosed embodiment, and should be given full scope of the appended claims.

Claims

What is claimed is:
1. A heart valve implant comprising: a shaft extending generally along a longitudinal axis of said heart valve implant; a spacer coupled to said shaft between a first and a second end region of said shaft, said spacer configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through said heart valve in a closed position; at least one anchor configured to be coupled to said first end region of said shaft; and at least one safety stop extending generally radially outwardly from said longitudinal axis of said heart valve implant beyond at least a portion of an outer perimeter of said spacer, said at least one safety stop configured to at least partially restrict a movement of said heart valve implant with respect to said heart valve in at least one direction.
2. A heart valve implant according to claim 1 , wherein a cross-section of said at least one safety stop is greater than a cross-section of said heart valve in at least one dimension.
3. A heart valve implant according to claim 1, wherein said at least one safety stop extends generally radially outwardly from said shaft between said spacer and said second end region of said shaft.
4. A heart valve implant according to claim 3, wherein said at least one safety stop is disposed proximate a distal most portion of said second end region of said shaft.
5. A heart valve implant according to claim 1, wherein said at least one safety stop extends generally radially outwardly from said shaft between said spacer and said first end region of said shaft.
6. A heart valve implant according to claim 1 , wherein said at least one safety stop includes a first safety stop extending generally radially outwardly from said shaft between said spacer and said second end region of said shaft and a second safety stop extending generally radially outwardly from said shaft between said spacer and said first end region of said shaft.
7. A heart valve implant according to claim 1, wherein said at least one safety stop extends generally radially outwardly from said at least one anchor.
8. A heart valve implant according to claim 1, wherein said at least one safety stop includes a first safety stop extending generally radially outwardly from said shaft between said spacer and said second end region of said shaft and a second safety stop extending generally radially outwardly from said at least one anchor.
9. A heart valve implant according to claim 1, wherein said at least one safety stop includes a generally circular outer perimeter.
10. A heart valve implant according to claim 9, wherein said at least one safety stop includes at least one spoke extending generally radially outwardly from said heart valve implant to said generally circular outer perimeter.
11. A heart valve implant according to claim 9, wherein said at least one safety stop includes a substantially solid, disc-like geometry.
12. A heart valve implant according to claim 11, wherein said at least one safety stop includes at least one openings configured to allow fluid to flow through said substantially solid, disc-like geometry.
13. A heart valve implant according to claim 1, wherein said at least one safety stop include at least one segment extending generally radially outwardly less than 360 degrees along a radius of said heart valve implant.
14. A heart valve implant according to claim 13, wherein said at least one safety stop includes a plurality of individual segments, wherein each segment extends generally radially outwardly less than 360 degrees along a radius of said heart valve implant.
15. A heart valve implant according to claim 13, wherein said at least one segment is no larger than the interior, radial dimensions of a delivery catheter lumen in at least one direction.
16. A heart valve implant according to claim 15 wherein said at least one segment is configured to be coupled to said heart valve implant upon delivery via said delivery catheter lumen.
17. A heart valve implant according to claim 1 wherein said at least one safety stop comprises an expandable portion.
18. A heart valve implant according to claim 17, wherein said expandable portion comprises an inflatable bladder.
19. A heart valve implant according to claim 17, wherein said expandable portion comprises a shape memory material configured to recoverably deform.
20. A heart valve implant according to claim 1 , wherein at least a portion of said at least one safety stop includes a coating material configured to promote cell growth between said at least one safety stop and at least a portion of tissue adjacent said heart valve implant.
21. A method of restricting movement of a heart valve implant with respect to a heart valve comprising: providing a heart valve implant comprising a shaft, a spacer coupled to said shaft between a first and a second end region of said shaft, at least one anchor configured to be coupled to said first end region of said shaft, and at least one safety stop extending generally radially outwardly from said heart valve implant beyond at least a portion of an outer perimeter of said spacer; at least partially collapsing said heart valve implant; percutaneously inserting said at least partially collapsed heart valve implant into a heart; securing said at least partially collapsed heart valve implant within said heart; expanding said collapsed heart valve implant, wherein said at least one safety stop is configured to at least partially restrict a movement of said heart valve implant with respect to said heart valve in at least one direction.
22. A method according to claim 21, wherein percutaneously inserting said collapsed heart valve implant comprises a catheterization intervention.
23. A method according to claim 22, wherein percutaneously inserting said at least partially collapsed heart valve implant comprises inserting said heart valve implant into a lumen of a catheter and delivering said heart valve implant to said left ventricle via said catheter.
24. A method according to claim 21, wherein said at least one safety stop comprises an expandable structure.
25. A method according to claim 24, wherein said at least one safety stop comprises a shape memory material, and expanding said heart valve implant comprises raising a temperature of said at least one safety stop to a temperature equal to, or greater than, an activation temperature of said shape memory material.
26. A method of restricting the movement of a heart valve implant comprising: engaging an anchor into coronary tissue; providing a shaft coupled to said anchor; providing a spacer coupled to said shaft, said spacer configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through said heart valve in a closed position; and providing at least one safety stop extending generally radially outwardly from said heart valve implant beyond at least a portion of an outer perimeter of said spacer, said at least one safety stop configured to at least partially restrict a movement of said heart valve implant with respect to said heart valve in at least one direction.
27. The method according to claim 26, wherein said at least one safety stop comprises an expandable portion.
28. A heart valve implant comprising: a shaft; a spacer coupled to said shaft between a first and a second end region of said shaft, said spacer configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through said heart valve in a closed position; at least one anchor configured to be coupled to said first end region of said shaft; and at least one safety stop extending generally radially outwardly from a longitudinal axis of said heart valve implant, wherein said at least one safety stop is configured to have a cross- section greater than a cross-section of said heart valve in at least one dimension.
29. A heart valve implant according to claim 28 wherein said at least one safety stop is configured to at least partially restrict a movement of said heart valve implant with respect to said heart valve in at least one direction.
PCT/US2008/063568 2007-05-14 2008-05-14 Safety for mitral valve implant WO2008141325A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002687366A CA2687366A1 (en) 2007-05-14 2008-05-14 Safety for mitral valve implant
BRPI0810267A BRPI0810267A2 (en) 2007-05-14 2008-05-14 "Heart valve implant and method to restrict movement of a heart valve implant"
EP08755426A EP2150207A4 (en) 2007-05-14 2008-05-14 Safety for mitral valve implant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/748,147 US8778017B2 (en) 2005-10-26 2007-05-14 Safety for mitral valve implant
US11/748,147 2007-05-14

Publications (1)

Publication Number Publication Date
WO2008141325A1 true WO2008141325A1 (en) 2008-11-20

Family

ID=40002912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/063568 WO2008141325A1 (en) 2007-05-14 2008-05-14 Safety for mitral valve implant

Country Status (5)

Country Link
US (1) US8778017B2 (en)
EP (1) EP2150207A4 (en)
BR (1) BRPI0810267A2 (en)
CA (1) CA2687366A1 (en)
WO (1) WO2008141325A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414823B2 (en) 2012-04-25 2016-08-16 Medtronic Ventor Technologies Ltd. Hole-closure device
US9526483B2 (en) 2010-07-15 2016-12-27 Medtronic Vascular Galway Apical closure system
US10765518B2 (en) 2016-12-21 2020-09-08 TriFlo Cardiovascular Inc. Heart valve support device and methods for making and using the same
US10842628B1 (en) 2019-05-22 2020-11-24 TriFlo Cardiovascular Inc. Heart valve support device
US11357629B1 (en) 2021-10-25 2022-06-14 Rainbow Medical Ltd. Diastolic heart failure treatment
US11395910B2 (en) 2020-05-20 2022-07-26 Rainbow Medical Ltd. Passive pump
US11484700B1 (en) 2021-10-25 2022-11-01 Yossi Gross Mechanical treatment of heart failure

Families Citing this family (260)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6610067B2 (en) 2000-05-01 2003-08-26 Arthrosurface, Incorporated System and method for joint resurface repair
US7163541B2 (en) 2002-12-03 2007-01-16 Arthrosurface Incorporated Tibial resurfacing system
US7678151B2 (en) 2000-05-01 2010-03-16 Ek Steven W System and method for joint resurface repair
US7713305B2 (en) * 2000-05-01 2010-05-11 Arthrosurface, Inc. Articular surface implant
EP2314257B9 (en) 2000-05-01 2013-02-27 ArthroSurface, Inc. System for joint resurface repair
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US7901408B2 (en) 2002-12-03 2011-03-08 Arthrosurface, Inc. System and method for retrograde procedure
US8388624B2 (en) 2003-02-24 2013-03-05 Arthrosurface Incorporated Trochlear resurfacing system and method
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
WO2005051231A2 (en) 2003-11-20 2005-06-09 Arthrosurface, Inc. Retrograde delivery of resurfacing devices
WO2006074321A2 (en) 2003-11-20 2006-07-13 Arthrosurface, Inc. System and method for retrograde procedure
US7951163B2 (en) * 2003-11-20 2011-05-31 Arthrosurface, Inc. Retrograde excision system and apparatus
US7534259B2 (en) 2004-05-05 2009-05-19 Direct Flow Medical, Inc. Nonstented heart valves with formed in situ support
AU2005260590A1 (en) 2004-06-28 2006-01-12 Arthrosurface, Inc. System for articular surface replacement
CA2583591C (en) 2004-10-02 2018-10-30 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US7828853B2 (en) 2004-11-22 2010-11-09 Arthrosurface, Inc. Articular surface implant and delivery system
WO2006133294A2 (en) 2005-06-07 2006-12-14 Direct Flow Medical, Inc. Stentless aortic valve replacement with high radial strength
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20070179608A1 (en) * 2005-07-29 2007-08-02 Arthrosurface, Inc. System and method for articular surface repair
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8852270B2 (en) 2007-11-15 2014-10-07 Cardiosolutions, Inc. Implant delivery system and method
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
US9259317B2 (en) * 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
WO2007140470A2 (en) 2006-06-01 2007-12-06 Edwards Lifesciences Corporation Prosthetic insert for improving heart valve function
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US8252036B2 (en) 2006-07-31 2012-08-28 Syntheon Cardiology, Llc Sealable endovascular implants and methods for their use
ATE556673T1 (en) 2006-09-08 2012-05-15 Edwards Lifesciences Corp INTEGRATED HEART VALVE DELIVERY SYSTEM
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
US8133213B2 (en) 2006-10-19 2012-03-13 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
AU2007332787A1 (en) 2006-12-11 2008-06-19 Arthrosurface Incorporated Retrograde resection apparatus and method
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US8480730B2 (en) 2007-05-14 2013-07-09 Cardiosolutions, Inc. Solid construct mitral spacer
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
CA2978267A1 (en) 2007-08-23 2009-02-23 Dfm, Llc Translumenally implantable heart valve with formed in place support
US8597347B2 (en) 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
HRP20211382T1 (en) 2007-12-14 2021-12-24 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
EP2265225B1 (en) 2008-02-29 2013-02-13 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
EP2262448A4 (en) 2008-03-03 2014-03-26 Arthrosurface Inc Bone resurfacing system and method
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
EP3799839A1 (en) 2008-06-06 2021-04-07 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8591460B2 (en) 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US8790387B2 (en) 2008-10-10 2014-07-29 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
WO2016154393A1 (en) 2009-04-17 2016-09-29 Arthrosurface Incorporated Glenoid repair system and methods of use thereof
AU2010236182A1 (en) 2009-04-17 2011-11-24 Arthrosurface Incorporated Glenoid resurfacing system and method
US9662126B2 (en) 2009-04-17 2017-05-30 Arthrosurface Incorporated Glenoid resurfacing system and method
US8475522B2 (en) 2009-07-14 2013-07-02 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
PL3335670T3 (en) 2010-03-05 2022-09-05 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
AU2011222404A1 (en) 2010-03-05 2012-09-27 Arthrosurface Incorporated Tibial resurfacing system and method
US8657872B2 (en) 2010-07-19 2014-02-25 Jacques Seguin Cardiac valve repair system and methods of use
EP2595569A4 (en) 2010-07-23 2016-02-24 Edwards Lifesciences Corp Retaining mechanisms for prosthetic valves
DK2624785T3 (en) 2010-10-05 2021-05-10 Edwards Lifesciences Corp Heart valve prosthesis
EP2478868A1 (en) 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9066716B2 (en) 2011-03-30 2015-06-30 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
CA2830828A1 (en) * 2011-04-04 2012-10-11 The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center Device and method for heart valve repair
EP2522307B1 (en) 2011-05-08 2020-09-30 ITSO Medical AB Device for delivery of medical devices to a cardiac valve
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
WO2013016618A2 (en) 2011-07-27 2013-01-31 The Cleveland Clinic Foundation Apparatus, system, and method for treating a regurgitant heart valve
US10799360B2 (en) 2011-07-27 2020-10-13 The Cleveland Clinic Foundation Systems and methods for treating a regurgitant heart valve
US9119716B2 (en) 2011-07-27 2015-09-01 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
CA3201836A1 (en) 2011-12-09 2013-06-13 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US8652145B2 (en) 2011-12-14 2014-02-18 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
WO2013096746A1 (en) 2011-12-22 2013-06-27 Arthrosurface Incorporated System and method for bone fixation
JP6049761B2 (en) 2012-01-31 2016-12-21 マイトラル・ヴァルヴ・テクノロジーズ・エス・アー・エール・エル Mitral valve docking device, system, and method
JP6222780B2 (en) 2012-02-22 2017-11-01 エドワーズ ライフサイエンシーズ カーディアック エルエルシー Actively controllable stent, stent graft, heart valve, and method for controlling them
US9474605B2 (en) 2012-05-16 2016-10-25 Edwards Lifesciences Corporation Devices and methods for reducing cardiac valve regurgitation
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
WO2014008126A1 (en) 2012-07-03 2014-01-09 Arthrosurface Incorporated System and method for joint resurfacing and repair
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) * 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US20140067048A1 (en) * 2012-09-06 2014-03-06 Edwards Lifesciences Corporation Heart Valve Sealing Devices
WO2014081796A1 (en) 2012-11-21 2014-05-30 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic heart valves
EP2943132B1 (en) 2013-01-09 2018-03-28 4Tech Inc. Soft tissue anchors
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
EP2967931B8 (en) 2013-03-14 2017-04-12 4Tech Inc. Stent with tether interface
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
US9492200B2 (en) 2013-04-16 2016-11-15 Arthrosurface Incorporated Suture system and method
US9763781B2 (en) * 2013-05-07 2017-09-19 George Kramer Inflatable transcatheter intracardiac devices and methods for treating incompetent atrioventricular valves
ES2908132T3 (en) 2013-05-20 2022-04-27 Edwards Lifesciences Corp Prosthetic Heart Valve Delivery Apparatus
JP6731339B2 (en) 2013-06-14 2020-07-29 カーディオソリューションズ インコーポレイテッドCardiosolutions, Inc. Mitral valve spacer and implantation system and method thereof
CA2920724A1 (en) 2013-08-12 2015-02-19 Mitral Valve Technologies Sarl Apparatus and methods for implanting a replacement heart valve
ES2864087T3 (en) 2013-08-14 2021-10-13 Mitral Valve Tech Sarl Replacement heart valve appliance
US10195028B2 (en) 2013-09-10 2019-02-05 Edwards Lifesciences Corporation Magnetic retaining mechanisms for prosthetic valves
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
WO2015063580A2 (en) 2013-10-30 2015-05-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
CN116158889A (en) 2013-11-11 2023-05-26 爱德华兹生命科学卡迪尔克有限责任公司 System and method for manufacturing a stent frame
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
DE102013224283A1 (en) * 2013-11-27 2015-06-11 Deutsches Herzzentrum Berlin Device for transcutaneous implantation of epicardial pacemaker electrodes
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US9901444B2 (en) 2013-12-17 2018-02-27 Edwards Lifesciences Corporation Inverted valve structure
SG11201508887SA (en) 2014-02-18 2015-11-27 Edwards Lifesciences Corp Flexible commissure frame
CA2938468C (en) 2014-02-20 2023-09-12 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
JP2017506119A (en) 2014-02-21 2017-03-02 マイトラル・ヴァルヴ・テクノロジーズ・エス・アー・エール・エル Devices, systems, and methods for delivering prosthetic mitral valves and anchor devices
US9861492B2 (en) 2014-03-07 2018-01-09 Arthrosurface Incorporated Anchor for an implant assembly
US11607319B2 (en) 2014-03-07 2023-03-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US10624748B2 (en) 2014-03-07 2020-04-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US10154904B2 (en) 2014-04-28 2018-12-18 Edwards Lifesciences Corporation Intravascular introducer devices
US10195025B2 (en) 2014-05-12 2019-02-05 Edwards Lifesciences Corporation Prosthetic heart valve
ES2908178T3 (en) 2014-06-18 2022-04-28 Polares Medical Inc Mitral valve implants for the treatment of valvular regurgitation
WO2015193728A2 (en) 2014-06-19 2015-12-23 4Tech Inc. Cardiac tissue cinching
ES2914153T3 (en) * 2014-06-24 2022-06-07 Polares Medical Inc Systems to anchor an implant
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US10383729B2 (en) 2014-09-29 2019-08-20 The Provost, Fellows Foundation Scholars, and The Other Members of the Board, of the College of The Holy and Undivided Trinity of Queen Elizabeth Near Dublin (TCD) Heart valve treatment device and method
US20160144156A1 (en) 2014-11-20 2016-05-26 Edwards Lifesciences Corporation Inflatable device with etched modifications
EP3284412A1 (en) 2014-12-02 2018-02-21 4Tech Inc. Off-center tissue anchors
EP3226810A4 (en) 2014-12-04 2018-08-15 Edwards Lifesciences Corporation Percutaneous clip for repairing a heart valve
CR20170245A (en) 2014-12-05 2017-09-14 Edwards Lifesciences Corp DIRIGIBLE CATETER WITH TRACTION CABLE
US10383726B2 (en) 2015-01-13 2019-08-20 George Kramer Implantable transcatheter intracardiac devices and methods for treating incompetent atrioventricular valves
US10231834B2 (en) 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US10327896B2 (en) 2015-04-10 2019-06-25 Edwards Lifesciences Corporation Expandable sheath with elastomeric cross sectional portions
US10792471B2 (en) 2015-04-10 2020-10-06 Edwards Lifesciences Corporation Expandable sheath
US10232564B2 (en) 2015-04-29 2019-03-19 Edwards Lifesciences Corporation Laminated sealing member for prosthetic heart valve
DE102015005933A1 (en) * 2015-05-12 2016-11-17 Coramaze Technologies Gmbh Implantable device for improving or eliminating heart valve insufficiency
US10517726B2 (en) 2015-05-14 2019-12-31 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US9974650B2 (en) 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
US10179046B2 (en) 2015-08-14 2019-01-15 Edwards Lifesciences Corporation Gripping and pushing device for medical instrument
US11026788B2 (en) 2015-08-20 2021-06-08 Edwards Lifesciences Corporation Loader and retriever for transcatheter heart valve, and methods of crimping transcatheter heart valve
US10588744B2 (en) 2015-09-04 2020-03-17 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US10314703B2 (en) 2015-09-21 2019-06-11 Edwards Lifesciences Corporation Cylindrical implant and balloon
US10350067B2 (en) 2015-10-26 2019-07-16 Edwards Lifesciences Corporation Implant delivery capsule
US11259920B2 (en) 2015-11-03 2022-03-01 Edwards Lifesciences Corporation Adapter for prosthesis delivery device and methods of use
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10321996B2 (en) 2015-11-11 2019-06-18 Edwards Lifesciences Corporation Prosthetic valve delivery apparatus having clutch mechanism
US10265169B2 (en) 2015-11-23 2019-04-23 Edwards Lifesciences Corporation Apparatus for controlled heart valve delivery
US11033387B2 (en) 2015-11-23 2021-06-15 Edwards Lifesciences Corporation Methods for controlled heart valve delivery
US10583007B2 (en) 2015-12-02 2020-03-10 Edwards Lifesciences Corporation Suture deployment of prosthetic heart valve
US10357351B2 (en) 2015-12-04 2019-07-23 Edwards Lifesciences Corporation Storage assembly for prosthetic valve
US11008676B2 (en) 2015-12-16 2021-05-18 Edwards Lifesciences Corporation Textured woven fabric for use in implantable bioprostheses
US11083558B2 (en) * 2015-12-31 2021-08-10 Lifetech Scientific (Shenzhen) Co. Ltd. Catcher
CN107684452B (en) * 2016-08-04 2021-05-07 先健科技(深圳)有限公司 Catching device
US10363130B2 (en) 2016-02-05 2019-07-30 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
US10179043B2 (en) 2016-02-12 2019-01-15 Edwards Lifesciences Corporation Prosthetic heart valve having multi-level sealing member
US10779941B2 (en) 2016-03-08 2020-09-22 Edwards Lifesciences Corporation Delivery cylinder for prosthetic implant
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799675B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Cam controlled multi-direction steerable handles
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
EP3432835A4 (en) 2016-03-24 2019-03-27 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
EP3439582A4 (en) * 2016-05-13 2019-11-27 Cardiosolutions, Inc. Heart valve implant and methods for delivering and implanting same
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
US10856981B2 (en) 2016-07-08 2020-12-08 Edwards Lifesciences Corporation Expandable sheath and methods of using the same
US10828150B2 (en) 2016-07-08 2020-11-10 Edwards Lifesciences Corporation Docking station for heart valve prosthesis
US11096781B2 (en) 2016-08-01 2021-08-24 Edwards Lifesciences Corporation Prosthetic heart valve
CR20190069A (en) 2016-08-26 2019-05-14 Edwards Lifesciences Corp Heart valve docking coils and systems
US10722359B2 (en) 2016-08-26 2020-07-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
US10357361B2 (en) 2016-09-15 2019-07-23 Edwards Lifesciences Corporation Heart valve pinch devices and delivery systems
US10575944B2 (en) 2016-09-22 2020-03-03 Edwards Lifesciences Corporation Prosthetic heart valve with reduced stitching
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
EP4218672A1 (en) 2016-12-16 2023-08-02 Edwards Lifesciences Corporation Deployment systems and tools for delivering an anchoring device for a prosthetic valve
US10813749B2 (en) 2016-12-20 2020-10-27 Edwards Lifesciences Corporation Docking device made with 3D woven fabric
CN114617677A (en) 2016-12-20 2022-06-14 爱德华兹生命科学公司 System and mechanism for deploying a docking device for replacing a heart valve
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
JP2020503958A (en) 2017-01-05 2020-02-06 ハーモニー デベロップメント グループ,インコーポレーテッド Inflatable device for improving physiological heart flow
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
USD867595S1 (en) 2017-02-01 2019-11-19 Edwards Lifesciences Corporation Stent
US10675017B2 (en) 2017-02-07 2020-06-09 Edwards Lifesciences Corporation Transcatheter heart valve leaflet plication
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3595587A4 (en) 2017-03-13 2020-11-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
ES2906137T3 (en) 2017-04-18 2022-04-13 Edwards Lifesciences Corp Heart valve sealing devices and delivery devices therefor
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10973634B2 (en) 2017-04-26 2021-04-13 Edwards Lifesciences Corporation Delivery apparatus for a prosthetic heart valve
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
US11135056B2 (en) 2017-05-15 2021-10-05 Edwards Lifesciences Corporation Devices and methods of commissure formation for prosthetic heart valve
CN114631913A (en) 2017-05-22 2022-06-17 爱德华兹生命科学公司 Valve anchors and methods of installation
WO2018217921A1 (en) 2017-05-23 2018-11-29 Harmony Development Group, Inc. Tethered implantable device having a vortical intracardiac velocity adjusting balloon
US20210401571A9 (en) 2017-05-31 2021-12-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10869759B2 (en) 2017-06-05 2020-12-22 Edwards Lifesciences Corporation Mechanically expandable heart valve
US11026785B2 (en) 2017-06-05 2021-06-08 Edwards Lifesciences Corporation Mechanically expandable heart valve
US10639152B2 (en) 2017-06-21 2020-05-05 Edwards Lifesciences Corporation Expandable sheath and methods of using the same
US10940002B2 (en) 2017-06-28 2021-03-09 Harmony Development Group, Inc. Force transducting inflatable implant system including a dual force annular transduction implant
AU2018291171B2 (en) 2017-06-30 2023-11-30 Edwards Lifesciences Corporation Lock and release mechanisms for trans-catheter implantable devices
SG11201912180QA (en) 2017-06-30 2020-01-30 Edwards Lifesciences Corp Docking stations transcatheter valves
US10857334B2 (en) 2017-07-12 2020-12-08 Edwards Lifesciences Corporation Reduced operation force inflator
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US11160663B2 (en) 2017-08-04 2021-11-02 Arthrosurface Incorporated Multicomponent articular surface implant
IL301081A (en) 2017-08-11 2023-05-01 Edwards Lifesciences Corp Sealing element for prosthetic heart valve
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10973628B2 (en) 2017-08-18 2021-04-13 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
USD890333S1 (en) 2017-08-21 2020-07-14 Edwards Lifesciences Corporation Heart valve docking coil
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10806573B2 (en) 2017-08-22 2020-10-20 Edwards Lifesciences Corporation Gear drive mechanism for heart valve delivery apparatus
US11141145B2 (en) 2017-08-25 2021-10-12 Edwards Lifesciences Corporation Devices and methods for securing a tissue anchor
US11051939B2 (en) 2017-08-31 2021-07-06 Edwards Lifesciences Corporation Active introducer sheath system
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11051940B2 (en) * 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11065117B2 (en) * 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11040174B2 (en) 2017-09-19 2021-06-22 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
CN111225634B (en) 2017-10-18 2022-06-24 爱德华兹生命科学公司 Catheter assembly
US11207499B2 (en) 2017-10-20 2021-12-28 Edwards Lifesciences Corporation Steerable catheter
US10799350B2 (en) 2018-01-05 2020-10-13 Edwards Lifesciences Corporation Percutaneous implant retrieval connector and method
EP3964175A1 (en) 2018-01-09 2022-03-09 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10076415B1 (en) 2018-01-09 2018-09-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10507109B2 (en) 2018-01-09 2019-12-17 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10105222B1 (en) 2018-01-09 2018-10-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
WO2019144121A1 (en) 2018-01-22 2019-07-25 Edwards Lifesciences Corporation Heart shape preserving anchor
CA3089782A1 (en) * 2018-02-09 2019-08-15 The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A heart valve therapeutic device
WO2019173385A1 (en) 2018-03-05 2019-09-12 Harmony Development Group, Inc. A force transducting implant system for the mitigation of atrioventricular pressure gradient loss and the restoration of healthy ventricular geometry
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
US11007061B2 (en) 2018-05-24 2021-05-18 Edwards Lifesciences Corporation Adjustable percutaneous heart valve repair system
US11844914B2 (en) 2018-06-05 2023-12-19 Edwards Lifesciences Corporation Removable volume indicator for syringe
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
CA3116003A1 (en) 2018-10-19 2020-04-23 Edwards Lifesciences Corporation Prosthetic heart valve having non-cylindrical frame
US11779728B2 (en) 2018-11-01 2023-10-10 Edwards Lifesciences Corporation Introducer sheath with expandable introducer
JP2022517224A (en) * 2019-01-14 2022-03-07 ヴァルフィックス メディカル リミテッド Anchors and locks for percutaneous valve implants
CN114206264A (en) 2019-02-14 2022-03-18 爱德华兹生命科学公司 Heart valve sealing device and delivery device thereof
GB2596006B (en) 2019-03-12 2022-11-30 Arthrosurface Inc Humeral and glenoid articular surface implant systems and methods
WO2020198273A2 (en) 2019-03-26 2020-10-01 Edwards Lifesciences Corporation Prosthetic heart valve
WO2021024183A1 (en) 2019-08-05 2021-02-11 Croivalve Ltd. Apparatus and methods for treating a defective cardiac valve
CN116194065A (en) 2020-06-18 2023-05-30 爱德华兹生命科学公司 Method for crimping
TW202214198A (en) 2020-08-24 2022-04-16 美商愛德華生命科學公司 Methods and systems for aligning a commissure of a prosthetic heart valve with a commissure of a native valve
CA3193292A1 (en) 2020-08-31 2022-03-03 Edwards Lifesciences Corporation Systems and methods for crimping and device preparation
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030139751A1 (en) * 2000-01-25 2003-07-24 Bacchus Vascular Inc. Apparatus and methods for clot dissolution
US20040044402A1 (en) * 2002-09-03 2004-03-04 M.I. Tech Co., Ltd. Stent and method for manufacturing the same
US20050033446A1 (en) * 1999-04-09 2005-02-10 Evalve, Inc. A California Corporation Methods and apparatus for cardiac valve repair
US20070093890A1 (en) * 2005-10-26 2007-04-26 Eliasen Kenneth A Heart valve implant

Family Cites Families (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549731A (en) * 1944-12-18 1951-04-17 Vincent E Wattley Flexible test prod
US2625967A (en) * 1949-12-19 1953-01-20 Illinois Tool Works Screw-holding and screw-driving tool
US3197788A (en) * 1962-04-23 1965-08-03 Inst Of Medical Sciences Prosthetic valve for cardiac surgery
US3445916A (en) * 1967-04-19 1969-05-27 Rudolf R Schulte Method for making an anatomical check valve
US3551913A (en) * 1968-04-02 1971-01-05 Donald P Shiley Heart valve prosthesis with guard structure
GB1268484A (en) 1968-06-28 1972-03-29 Brian John Bellhouse Improvements relating to non-return valves particularly as prosthetics
US3589392A (en) * 1969-05-05 1971-06-29 Louis C Meyer Split leaflet check valve for cardiac surgery and the like
US3586029A (en) * 1969-06-16 1971-06-22 Aero Flow Dynamics Inc Apparatus for automatically controlling fluid flow according to predetermined volumetric proportions
US3671979A (en) * 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
GB1264472A (en) 1969-09-25 1972-02-23
US3689942A (en) * 1969-11-28 1972-09-12 Richard K Rapp Prosthetic heart valve
US3739402A (en) * 1970-10-15 1973-06-19 Cutter Lab Bicuspid fascia lata valve
US3714671A (en) * 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3737919A (en) 1971-03-16 1973-06-12 Univ Minnesota Pivoted disc-type heart valve
US4291420A (en) * 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US3983581A (en) * 1975-01-20 1976-10-05 William W. Angell Heart valve stent
AR206762A1 (en) * 1976-01-01 1976-08-13 Pisanu A LOW PROFILE BIOPROTHESIS DERIVED FROM PORCINE HETEROLOGICAL AORTIC VALVE
US4084268A (en) * 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
US4297749A (en) * 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
AR221872A1 (en) * 1979-03-16 1981-03-31 Liotta Domingo S IMPROVEMENTS IN IMPANTABLE HEART VALVES
EP0125393B1 (en) 1980-11-03 1987-12-09 Shiley Incorporated Prosthetic heart valve
US4439185A (en) * 1981-10-21 1984-03-27 Advanced Cardiovascular Systems, Inc. Inflating and deflating device for vascular dilating catheter assembly
AU8398782A (en) * 1982-03-12 1983-10-24 Webster, Wilton W. Jr. Autoinflatable catheter
US4597767A (en) * 1982-12-15 1986-07-01 Andrew Lenkei Split leaflet heart valve
US4865030A (en) * 1987-01-21 1989-09-12 American Medical Systems, Inc. Apparatus for removal of objects from body passages
US4960424A (en) * 1988-06-30 1990-10-02 Grooters Ronald K Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
US5002067A (en) * 1989-08-23 1991-03-26 Medtronic, Inc. Medical electrical lead employing improved penetrating electrode
US5665100A (en) * 1989-12-05 1997-09-09 Yoon; Inbae Multifunctional instrument with interchangeable operating units for performing endoscopic procedures
US5797958A (en) * 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic grasping instrument with scissors
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
GB9012716D0 (en) * 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5397351A (en) * 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5217484A (en) * 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
DK0617594T3 (en) * 1991-12-12 1998-02-02 Target Therapeutics Inc Separate ejector body lock coil construction with interlocking coupling
US5261916A (en) * 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5222973A (en) * 1992-03-09 1993-06-29 Sharpe Endosurgical Corporation Endoscopic grasping tool surgical instrument
US5318589A (en) * 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5308357A (en) * 1992-08-21 1994-05-03 Microsurge, Inc. Handle mechanism for manual instruments
US5350397A (en) * 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US6283127B1 (en) 1992-12-03 2001-09-04 Wesley D. Sterman Devices and methods for intracardiac procedures
US5462527A (en) * 1993-06-29 1995-10-31 C.R. Bard, Inc. Actuator for use with steerable catheter
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US5611800A (en) * 1994-02-15 1997-03-18 Alphatec Manufacturing, Inc. Spinal fixation system
US5509428A (en) * 1994-05-31 1996-04-23 Dunlop; Richard W. Method and apparatus for the creation of tricuspid regurgitation
US5554185A (en) * 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US6217610B1 (en) * 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
US5582607A (en) * 1994-09-09 1996-12-10 Carbomedics, Inc. Heart valve prosthesis rotator with bendable shaft and drive mechanism
US5814062A (en) 1994-12-22 1998-09-29 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
AU6029696A (en) * 1995-06-07 1996-12-30 St. Jude Medical Inc. Adjustable sizing apparatus for heart annulus
WO1997001368A1 (en) * 1995-06-26 1997-01-16 Trimedyne, Inc. Therapeutic appliance releasing device
US5653712A (en) * 1995-10-02 1997-08-05 Stern; Howard G. Intramedullary bone groover
US5649949A (en) * 1996-03-14 1997-07-22 Target Therapeutics, Inc. Variable cross-section conical vasoocclusive coils
US5993474A (en) * 1996-06-11 1999-11-30 Asahi Kogaku Kogyo Kabushiki Kaisha Treatment accessory for endoscope
US5792179A (en) * 1996-07-16 1998-08-11 Sideris; Eleftherios B. Retrievable cardiac balloon placement
US5776075A (en) * 1996-08-09 1998-07-07 Symbiosis Corporation Endoscopic bioptome jaw assembly having three or more jaws and an endoscopic instrument incorporating same
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6406420B1 (en) 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US5928224A (en) * 1997-01-24 1999-07-27 Hearten Medical, Inc. Device for the treatment of damaged heart valve leaflets and methods of using the device
US6508825B1 (en) * 1997-02-28 2003-01-21 Lumend, Inc. Apparatus for treating vascular occlusions
US6090096A (en) * 1997-04-23 2000-07-18 Heartport, Inc. Antegrade cardioplegia catheter and method
US5957949A (en) * 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US20030105519A1 (en) * 1997-09-04 2003-06-05 Roland Fasol Artificial chordae replacement
US5957865A (en) * 1997-09-25 1999-09-28 Merit Medical Systems, Inc. Flexible catheter guidewire
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6808498B2 (en) 1998-02-13 2004-10-26 Ventrica, Inc. Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber
US6165183A (en) 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6152144A (en) * 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US6283995B1 (en) * 1999-04-15 2001-09-04 Sulzer Carbomedics Inc. Heart valve leaflet with scalloped free margin
US6287339B1 (en) * 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
ATE284651T1 (en) * 1999-07-19 2005-01-15 Uimberto Tramonte Silvano ENDOSSAL DENTAL IMPLANT
US8257428B2 (en) 1999-08-09 2012-09-04 Cardiokinetix, Inc. System for improving cardiac function
US6994092B2 (en) * 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6769434B2 (en) * 2000-06-30 2004-08-03 Viacor, Inc. Method and apparatus for performing a procedure on a cardiac valve
CN1404376A (en) 2000-01-27 2003-03-19 3F治疗有限公司 Prosthetic heart valve
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6797002B2 (en) * 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US20050070999A1 (en) 2000-02-02 2005-03-31 Spence Paul A. Heart valve repair apparatus and methods
US6478776B1 (en) 2000-04-05 2002-11-12 Biocardia, Inc. Implant delivery catheter system and methods for its use
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US7056294B2 (en) * 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
US6869444B2 (en) * 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US6419695B1 (en) * 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6440132B1 (en) * 2000-05-24 2002-08-27 Roger P. Jackson Open head bone screw closure with threaded boss
US6805711B2 (en) 2000-06-02 2004-10-19 3F Therapeutics, Inc. Expandable medical implant and percutaneous delivery
US6358277B1 (en) * 2000-06-21 2002-03-19 The International Heart Institute Of Montana Foundation Atrio-ventricular valvular device
DE20013905U1 (en) * 2000-08-12 2000-12-21 Stryker Trauma Gmbh Sleeve-shaped device for holding screws when screwing into an object, e.g. into a bone with the help of a screwdriver
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US7691144B2 (en) 2003-10-01 2010-04-06 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US7527646B2 (en) * 2000-09-20 2009-05-05 Ample Medical, Inc. Devices, systems, and methods for retaining a native heart valve leaflet
US6461382B1 (en) * 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US7070618B2 (en) 2000-10-25 2006-07-04 Viacor, Inc. Mitral shield
US6482228B1 (en) * 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US6746404B2 (en) * 2000-12-18 2004-06-08 Biosense, Inc. Method for anchoring a medical device between tissue
US6454798B1 (en) * 2000-12-21 2002-09-24 Sulzer Carbomedics Inc. Polymer heart valve with helical coaption surface
US7144409B2 (en) 2001-03-05 2006-12-05 Tyco Healthcare Group Lp Surgical grasping instrument
US7186264B2 (en) * 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
US20020188170A1 (en) * 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US6673100B2 (en) * 2001-05-25 2004-01-06 Cordis Neurovascular, Inc. Method and device for retrieving embolic coils
US6592606B2 (en) * 2001-08-31 2003-07-15 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US6824562B2 (en) * 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US20030144574A1 (en) * 2001-12-19 2003-07-31 Heilman Marlin S. Method and apparatus for providing limited back-flow in a blood pump during a non-pumping state
US20030144573A1 (en) 2001-12-19 2003-07-31 Heilman Marlin S. Back-flow limiting valve member
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
CA2643221A1 (en) * 2002-03-15 2003-09-25 Nmt Medical, Inc. Coupling system useful in placement of implants
US7572276B2 (en) * 2002-05-06 2009-08-11 Warsaw Orthopedic, Inc. Minimally invasive instruments and methods for inserting implants
AU2003247526A1 (en) 2002-06-12 2003-12-31 Mitral Interventions, Inc. Method and apparatus for tissue connection
AU2003248750A1 (en) 2002-06-27 2004-01-19 J. Luis Guerrero Ventricular remodeling for artioventricular valve regurgitation
US8348963B2 (en) * 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
AU2003282616B2 (en) * 2002-10-10 2006-06-29 The Cleveland Clinic Foundation Method and apparatus for replacing a mitral valve with a stentless bioprosthetic valve
US7247134B2 (en) 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7404824B1 (en) * 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
US7473266B2 (en) 2003-03-14 2009-01-06 Nmt Medical, Inc. Collet-based delivery system
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
DE602004023350D1 (en) * 2003-04-30 2009-11-12 Medtronic Vascular Inc Percutaneous inserted provisional valve
TW590007U (en) 2003-06-06 2004-06-01 Univ Tamkang Tri-leaflet mechanical heart valve
US7537592B2 (en) * 2003-06-20 2009-05-26 Plc Medical Systems, Inc. Endovascular tissue removal device
US7204255B2 (en) * 2003-07-28 2007-04-17 Plc Medical Systems, Inc. Endovascular tissue removal device
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US20050038509A1 (en) 2003-08-14 2005-02-17 Ashe Kassem Ali Valve prosthesis including a prosthetic leaflet
US20050090824A1 (en) 2003-10-22 2005-04-28 Endius Incorporated Method and surgical tool for inserting a longitudinal member
US7056286B2 (en) 2003-11-12 2006-06-06 Adrian Ravenscroft Medical device anchor and delivery system
US20050159810A1 (en) 2004-01-15 2005-07-21 Farzan Filsoufi Devices and methods for repairing cardiac valves
US7534259B2 (en) 2004-05-05 2009-05-19 Direct Flow Medical, Inc. Nonstented heart valves with formed in situ support
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
AU2005284739B2 (en) 2004-09-14 2011-02-24 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US7658757B2 (en) 2004-10-08 2010-02-09 Boston Scientific Scimed, Inc. Endoprosthesis delivery system
WO2009053952A2 (en) 2007-10-26 2009-04-30 Mednua Limited A medical device for use in treatment of a valve
IE20050841A1 (en) 2004-12-15 2006-10-04 Mednua Ltd A medical device suitable for use in treatment of a valve
US20070293943A1 (en) 2006-06-15 2007-12-20 Mednua Limited Medical device suitable for use in treatment of a valve
CA2597066C (en) 2005-02-07 2014-04-15 Evalve, Inc. Methods, systems and devices for cardiac valve repair
EP1866019B1 (en) 2005-02-22 2017-10-25 Cardiofocus, Inc. Deflectable sheath catheters
US8083793B2 (en) 2005-02-28 2011-12-27 Medtronic, Inc. Two piece heart valves including multiple lobe valves and methods for implanting them
US20060199995A1 (en) 2005-03-02 2006-09-07 Venkataramana Vijay Percutaneous cardiac ventricular geometry restoration device and treatment for heart failure
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US8002742B2 (en) 2005-04-22 2011-08-23 Accessclosure, Inc. Apparatus and methods for sealing a puncture in tissue
WO2006127509A2 (en) 2005-05-20 2006-11-30 Mayo Foundation For Medical Education And Research Devices and methods for reducing cardiac valve regurgitation
US20060293698A1 (en) 2005-06-28 2006-12-28 Medtronic Vascular, Inc. Retainer device for mitral valve leaflets
WO2007012046A2 (en) 2005-07-19 2007-01-25 Stout Medical Group, L.P. Anatomical measurement tool
US20070049980A1 (en) 2005-08-30 2007-03-01 Zielinski Todd M Trans-septal pressure sensor
US9259317B2 (en) 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
US8852270B2 (en) 2007-11-15 2014-10-07 Cardiosolutions, Inc. Implant delivery system and method
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
EP1951335A4 (en) 2005-11-10 2009-12-30 Phase One Medical Llc Catheter device
WO2007062054A2 (en) 2005-11-21 2007-05-31 The Brigham And Women's Hospital, Inc. Percutaneous cardiac valve repair with adjustable artificial chordae
US20080221566A1 (en) 2005-11-29 2008-09-11 Krishnan Subramaniam C Method and apparatus for detecting and achieving closure of patent foramen ovale
US8142470B2 (en) * 2005-12-01 2012-03-27 Atritech, Inc. Method for accessing the left atrial appendage with a balloon-tipped transeptal sheath
EP1968492A2 (en) 2005-12-15 2008-09-17 Georgia Technology Research Corporation Systems and methods to control the dimension of a heart valve
WO2007078772A1 (en) 2005-12-15 2007-07-12 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant valve
US20070167981A1 (en) 2005-12-22 2007-07-19 Nmt Medical, Inc. Catch members for occluder devices
US20070185571A1 (en) 2006-02-06 2007-08-09 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant valve
US20070198050A1 (en) 2006-02-22 2007-08-23 Phase One Medica, Llc Medical implant device
US7536228B2 (en) 2006-03-24 2009-05-19 Micardia Corporation Activation device for dynamic ring manipulation
WO2007140470A2 (en) 2006-06-01 2007-12-06 Edwards Lifesciences Corporation Prosthetic insert for improving heart valve function
US7657326B2 (en) 2006-11-08 2010-02-02 Cardiac Pacemakers, Inc. Cardiac lead with a retractable helix
US8337518B2 (en) 2006-12-20 2012-12-25 Onset Medical Corporation Expandable trans-septal sheath
US7753949B2 (en) 2007-02-23 2010-07-13 The Trustees Of The University Of Pennsylvania Valve prosthesis systems and methods
US8480730B2 (en) 2007-05-14 2013-07-09 Cardiosolutions, Inc. Solid construct mitral spacer
US20090105816A1 (en) 2007-10-19 2009-04-23 Olsen Daniel H System using a helical retainer in the direct plication annuloplasty treatment of mitral valve regurgitation
US8597347B2 (en) 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
US8591460B2 (en) 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033446A1 (en) * 1999-04-09 2005-02-10 Evalve, Inc. A California Corporation Methods and apparatus for cardiac valve repair
US20030139751A1 (en) * 2000-01-25 2003-07-24 Bacchus Vascular Inc. Apparatus and methods for clot dissolution
US20040044402A1 (en) * 2002-09-03 2004-03-04 M.I. Tech Co., Ltd. Stent and method for manufacturing the same
US20070093890A1 (en) * 2005-10-26 2007-04-26 Eliasen Kenneth A Heart valve implant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2150207A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526483B2 (en) 2010-07-15 2016-12-27 Medtronic Vascular Galway Apical closure system
US10575838B2 (en) 2010-07-15 2020-03-03 Medtronic Vascular Galway Apical closure system
US11666314B2 (en) 2010-07-15 2023-06-06 Medtronic Vascular Galway Method and apparatus for closing a hole in cardiac tissue
US9414823B2 (en) 2012-04-25 2016-08-16 Medtronic Ventor Technologies Ltd. Hole-closure device
US10765518B2 (en) 2016-12-21 2020-09-08 TriFlo Cardiovascular Inc. Heart valve support device and methods for making and using the same
US11833047B2 (en) 2016-12-21 2023-12-05 TriFlo Cardiovascular Inc. Heart valve support device and methods for making and using the same
US10842628B1 (en) 2019-05-22 2020-11-24 TriFlo Cardiovascular Inc. Heart valve support device
US11717406B2 (en) 2019-05-22 2023-08-08 TriFlo Cardiovascular Inc. Heart valve support device
US11395910B2 (en) 2020-05-20 2022-07-26 Rainbow Medical Ltd. Passive pump
US11357629B1 (en) 2021-10-25 2022-06-14 Rainbow Medical Ltd. Diastolic heart failure treatment
US11484700B1 (en) 2021-10-25 2022-11-01 Yossi Gross Mechanical treatment of heart failure

Also Published As

Publication number Publication date
BRPI0810267A2 (en) 2016-10-04
EP2150207A1 (en) 2010-02-10
US8778017B2 (en) 2014-07-15
CA2687366A1 (en) 2008-11-20
US20070265700A1 (en) 2007-11-15
EP2150207A4 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
US8778017B2 (en) Safety for mitral valve implant
US8480730B2 (en) Solid construct mitral spacer
US9232999B2 (en) Mitral spacer
EP1948087B1 (en) Heart valve implant
EP2150206B1 (en) Balloon mitral spacer
EP2982337B1 (en) Paravalvular leak detection, sealing, and prevention
EP2858599B1 (en) Device for percutaneous valve annuloplasty
US20170325949A1 (en) Heart Valve Implant And Methods For Delivering And Implanting Same
EP3998991B1 (en) Annuloplasty device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08755426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2687366

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008755426

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0810267

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091113