WO2008154612A1 - Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene - Google Patents

Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene Download PDF

Info

Publication number
WO2008154612A1
WO2008154612A1 PCT/US2008/066621 US2008066621W WO2008154612A1 WO 2008154612 A1 WO2008154612 A1 WO 2008154612A1 US 2008066621 W US2008066621 W US 2008066621W WO 2008154612 A1 WO2008154612 A1 WO 2008154612A1
Authority
WO
WIPO (PCT)
Prior art keywords
azeotrope
azeotropic
butene
hexafluoro
compositions
Prior art date
Application number
PCT/US2008/066621
Other languages
French (fr)
Inventor
Mark L. Robin
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN200880019944.6A priority Critical patent/CN101679841B/en
Priority to BR122018074407-3A priority patent/BR122018074407B1/en
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to BR122018074413-8A priority patent/BR122018074413B1/en
Priority to ES08770760.0T priority patent/ES2509882T3/en
Priority to BR122018074416-2A priority patent/BR122018074416B1/en
Priority to US12/598,038 priority patent/US7972525B2/en
Priority to JP2010512334A priority patent/JP5460586B2/en
Priority to CA2684290A priority patent/CA2684290C/en
Priority to KR1020107000495A priority patent/KR101434710B1/en
Priority to BR122018074418-9A priority patent/BR122018074418B1/en
Priority to BRPI0809736A priority patent/BRPI0809736B8/en
Priority to EP08770760.0A priority patent/EP2152833B1/en
Priority to BR122018074411-1A priority patent/BR122018074411B1/en
Priority to AU2008261695A priority patent/AU2008261695B2/en
Priority to CN201910999572.8A priority patent/CN110643328B/en
Priority to MX2009013465A priority patent/MX2009013465A/en
Publication of WO2008154612A1 publication Critical patent/WO2008154612A1/en
Priority to US13/112,043 priority patent/US8262924B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0028Liquid extinguishing substances
    • A62D1/0057Polyhaloalkanes
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0071Foams
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0092Gaseous extinguishing substances, e.g. liquefied gases, carbon dioxide snow
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/145Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/504Azeotropic mixtures containing halogenated solvents all solvents being halogenated hydrocarbons
    • C11D7/505Mixtures of (hydro)fluorocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/504Azeotropic mixtures containing halogenated solvents all solvents being halogenated hydrocarbons
    • C11D7/5054Mixtures of (hydro)chlorofluorocarbons and (hydro) fluorocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/5068Mixtures of halogenated and non-halogenated solvents
    • C11D7/5072Mixtures of only hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/5068Mixtures of halogenated and non-halogenated solvents
    • C11D7/5077Mixtures of only oxygen-containing solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/5068Mixtures of halogenated and non-halogenated solvents
    • C11D7/5077Mixtures of only oxygen-containing solvents
    • C11D7/5086Mixtures of only oxygen-containing solvents the oxygen-containing solvents being different from alcohols, e.g. mixtures of water and ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/04Aerosol, e.g. polyurethane foam spray
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons

Definitions

  • the present disclosure relates to azeotropic or azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene.
  • CFCs chlorofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • HFCs hydrofluorocarbons
  • the HFCs do not contribute to the destruction of stratospheric ozone, but are of concern due to their contribution to the "greenhouse effect", i.e., they contribute to global warming. As a result of their contribution to global warming, the HFCs have come under scrutiny, and their widespread use may also be limited in the future. Thus, there is a need for compositions that do not contribute to the destruction of stratospheric ozone and also have low global warming potentials (GWPs).
  • This application includes seven different types of azeotropic or azeotrope-like mixtures.
  • This disclosure provides a composition consisting essentially of (a) E-FC-1336mzz and (b) methyl formate; wherein the methyl formate is present in an effective amount to form an azeotrope-like mixture with E- FC-1336mzz.
  • This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) n-pentane; wherein the n-pentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
  • This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) 2-methylbutane (isopentane); wherein the isopentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
  • This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) trans-1,2-dichloroethylene; wherein the trans- 1,2-dichloroethylene is present in an effective amount to form an azeotrope-like mixture with E-FC-1336mzz.
  • This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) 1,1,1,3,3-pentafluoropropane (CF 3 CH 2 CF 2 H, HFC-245fa); wherein the HFC-245fa is present in an effective amount to form an azeotrope-like mixture with E-FC- 1336mzz.
  • the disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) n-butane; wherein the n-butane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E- FC-1336mzz.
  • the disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) 2-methyl-propane (isobutane); wherein the 2- methylpropane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
  • FIG. 1 - FIG. 1 is a graphical representation of azeotrope-like compositions consisting essentially of E-FC-1336mzz and methyl formate at a temperature of about 20.0 °C.
  • FIG. 2 - FIG. 2 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and n-pentane at a temperature of about 20.0 °C.
  • FIG. 3 - FIG. 3 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and isopentane at a temperature of about 20.0 °C.
  • FIG.4 - FIG.4 is a graphical representation of azeotrope-like compositions consisting essentially of E-FC-1336mzz and trans- 1,2- dichloroethylene at a temperature of about 20.0 °C.
  • FIG. 5 - FIG. 5 is a graphical representation of azeotrope-like compositions consisting essentially of E-FC-1336mzz and HFC-245fa at a temperature of about 20.0 °C.
  • FIG. 6 - FIG. 6 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and n-butane at a temperature of about 20.0 °C.
  • FIG. 7 - FIG. 7 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and isobutane at a temperature of about 20.0 °C.
  • a pure single component or an azeotropic or azeotrope-like mixture is desirable.
  • a blowing agent composition also known as foam expansion agents or foam expansion compositions
  • the composition may change during its application in the foam forming process. Such change in composition could detrimentally affect processing or cause poor performance in the application.
  • a refrigerant is often lost during operation through leaks in shaft seals, hose connections, soldered joints and broken lines. In addition, the refrigerant may be released to the atmosphere during maintenance procedures on refrigeration equipment.
  • the refrigerant is not a pure single component or an azeotropic or azeotrope-like composition
  • the refrigerant composition may change when leaked or discharged to the atmosphere from the refrigeration equipment.
  • the change in refrigerant composition may cause the refrigerant to become flammable or to have poor refrigeration performance.
  • FC-1336mzz may exist as one of two configurational isomers, E or Z.
  • FC-1336mzz as used herein refers to the isomers, Z-FC-1336mzz or E-FC-1336mzz, as well as any combinations or mixtures of such isomers.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • E-FC-1336mzz is a known compound, and its preparation method has been disclosed, for example, in Dawoodi, et. al., Journal of the Chemical Society, Chemical Communications (1982), (12), 696-8, hereby incorporated by reference in its entirety.
  • compositions comprising E-FC-1336mzz.
  • the composition consists essentially of (a) E-FC-1336mzz and (b) methyl formate; wherein the methyl formate is present in an effective amount to form an azeotrope-like mixture with E-FC- 1336mzz.
  • the composition consists essentially of (a) E-FC-1336mzz and (b) n-pentane; wherein the n-pentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
  • the composition consists essentially of (a) E-FC-1336mzz and (b) isopentane; wherein the isopentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
  • the composition consists essentially of (a) E-FC-1336mzz and (b) trans- 1,2-dichloroethylene; wherein the trans-1,2-dichloroethylene is present in an effective amount to form an azeotrope-like mixture with E-FC- 1336mzz.
  • the composition consists essentially of (a) E-FC-1336mzz and (b) HFC-245fa; wherein the HFC- 245fa is present in an effective amount to form an azeotrope-like mixture with E-FC-1336mzz.
  • the composition consists essentially of (a) E-FC-1336mzz and (b) n-butane; wherein the n-butane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
  • the composition consists essentially of (a) E-FC-1336mzz and (b) 2-methyl-propane (isobutane); wherein the 2-methylpropane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
  • effective amount is meant an amount, which, when combined with E-FC-1336mzz, results in the formation of an azeotropic or azeotrope-like mixture.
  • This definition includes the amounts of each component, which amounts may vary depending on the pressure applied to the composition so long as the azeotropic or azeotrope-like compositions continue to exist at the different pressures, but with possible different boiling points. Therefore, effective amount includes the amounts, such as may be expressed in weight or mole percentages, of each component of the compositions of the instant invention which form azeotropic or azeotrope-like compositions at temperatures or pressures other than as described herein.
  • an azeotropic composition is an admixture of two or more different components which, when in liquid form under a given pressure, will boil at a substantially constant temperature, which temperature may be higher or lower than the boiling temperatures of the individual components, and which will provide a vapor composition essentially identical to the overall liquid composition undergoing boiling, (see, e.g., M. F. Doherty and M.F. Malone, Conceptual Design of
  • an azeotropic composition may be defined in terms of the unique relationship that exists among the components or in terms of the compositional ranges of the components or in terms of exact weight percentages of each component of the composition characterized by a fixed boiling point at a specified pressure.
  • an azeotrope-like composition means a composition that behaves like an azeotropic composition (i.e., has constant boiling characteristics or a tendency not to fractionate upon boiling or evaporation). Hence, during boiling or evaporation, the vapor and liquid compositions, if they change at all, change only to a minimal or negligible extent. This is to be contrasted with non-azeotrope-like compositions in which during boiling or evaporation, the vapor and liquid compositions change to a substantial degree.
  • compositions with a difference in dew point pressure and bubble point pressure of less than or equal to 5 percent (based upon the bubble point pressure) is considered to be azeotrope-like.
  • Relative volatility is the ratio of the volatility of component 1 to the volatility of component 2.
  • the ratio of the mole fraction of a component in vapor to that in liquid is the volatility of the component.
  • a method known as the PTx method can be used. In this procedure, the total absolute pressure in a cell of known volume is measured at a constant temperature for various compositions of the two compounds.
  • Use of the PTx Method is described in detail in "Phase Equilibrium in Process Design", Wiley-lnterscience Publisher, 1970, written by Harold R. Null, on pages 124 to 126; hereby incorporated by reference. These measurements can be converted into equilibrium vapor and liquid compositions in the PTx cell by using an activity coefficient equation model, such as the Non-Random, Two-Liquid (NRTL) equation, to represent liquid phase nonidealities.
  • an activity coefficient equation such as the NRTL equation is described in detail in "The Properties of Gases and Liquids," 4th edition, published by McGraw Hill, written by
  • FIG. 2 The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/n-pentane mixture is shown in FIG. 2, which graphically illustrates the formation of an azeotropic and azeotrope-like composition consisting essentially of E-FC-1336mzz and n-pentane as indicated by a mixture of about 84.6 mole % E-1,1,1,4,4,4-hexafluoro-2- butene and 15.4 mole % n-pentane having the highest pressure over the range of compositions at this temperature.
  • E-FC-1336mzz and n-pentane form azeotropic compositions ranging from about 82.2 mole percent to about 95.3 mole percent E-FC-1336mzz and from about 17.8 mole percent to about 4.7 mole percent n-pentane (which form azeotropic compositions boiling at a temperature of from about -20 °C to about 80 °C and at a pressure of from about 4.5 psia (31 kPa) to about 139 psia (951 kPa)).
  • Some embodiments of azeotropic compositions are listed in Table 1.
  • azeotrope-like compositions containing E-FC-1336mzz and n- pentane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope-like compositions are listed in Table 2. Additional embodiments of azeotrope- like compositions are listed in Table 3.
  • FIG. 1 illustrates graphically the formation of azeotrope-like compositions consisting essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and methyl formate at 20.0 °C, as indicated by mixtures of about 83 mole % to about 99 mole % E-1,1,1,4,4,4-hexafluoro-2-butene and about 17 to about 1 mole % methyl formate.
  • azeotrope-like compositions Some embodiments of azeotrope-like compositions are listed in Table 4. Additional embodiments of azeotrope-like compositions are listed in Table 5.
  • E-FC- 1336mzz and isopentane form azeotropic compositions ranging from about 75.1 mole percent to about 95.4 mole percent E-FC-1336mzz and from about 24.9 mole percent to about 4.6 mole percent isopentane (which form azeotropic compositions boiling at a temperature of from about -40 °C to about 100 °C and at a pressure of from about 1.6 psia (11 kPa) to about 218 psia (1503 kPa)).
  • Some embodiments of azeotropic compositions are listed in Table 6.
  • azeotrope-like compositions containing E-FC-1336mzz and isopentane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope- like compositions are listed in Table 7. Additional embodiments of azeotrope-like compositions are listed in Table 8.
  • azeotrope-like compositions Some embodiments of azeotrope-like compositions are listed in Table 9. Additional embodiments of azeotrope-like compositions are listed in Table 10. Table 9. Azeotrope-like Compositions
  • the total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.
  • FIG. 5 The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/ HFC-245fa mixture is shown in FIG. 5, which illustrates graphically the formation of azeotrope-like compositions of E-
  • azeotrope-like compositions Some embodiments of azeotrope-like compositions are listed in Table 11. Additional embodiments of azeotrope-like compositions are listed in Table 12. Table 11. Azeotrope-like Compositions
  • FIG. 6 illustrates graphically the formation of an azeotropic composition of E- 1,1,1,4,4,4-hexafiuoro-2-butene and cyclopentane at 20.0 °C, as indicated by a mixture of about 38.1 mole % E- 1,1,1,4,4,4-hexafluoro-2-butene and 61.9 mole % n-butane having the highest pressure over the range of compositions at this temperature.
  • E-FC- 1336mzz and n-butane form azeotropic compositions ranging from about 29.5 mole percent to about 47.2 mole percent E-FC-1336mzz and from about 70.5 mole percent to about 52.8 mole percent n-butane (which form azeotropic compositions boiling at a temperature of from about -40 °C to about 100 °C and at a pressure of from about 3.0 psia (21 kPa) to about 277 psia (1910 kPa)).
  • Some embodiments of azeotropic compositions are listed in Table 13.
  • azeotrope-like compositions containing E-FC-1336mzz and n-butane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope- like compositions are listed in Table 14. Additional embodiments of azeotrope-like compositions are listed in Table 15.
  • FIG. 7 illustrates graphically the formation of an azeotropic composition of E- 1,1 ,1,4,4-hexafluoro-2-butene and cyclopentane at 20.0 °C, as indicated by a mixture of about 24.9 mole % E- 1,1,1,4,4,4-hexafluoro-2-butene and 75.1 mole % isobutane having the highest pressure over the range of compositions at this temperature.
  • E-FC- 1336mzz and isobutane form azeotropic compositions ranging from about 19.4 mole percent to about 32.4 mole percent E-FC-1336mzz and from about 80.6 mole percent to about 67.6 mole percent isobutane (which form azeotropic compositions boiling at a temperature of from about -40 °C to about 80 °C and at a pressure of from about 4.5 psia (31 kPa) to about 218 psia (1503 kPa)).
  • Some embodiments of azeotropic compositions are listed in Table 16.
  • azeotrope-like compositions containing E-FC-1336mzz and isobutane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope- like compositions are listed in Table 17. Additional embodiments of azeotrope-like compositions are listed in Table 18.
  • the azeotropic or azeotrope-like compositions of the present invention can be prepared by any convenient method including mixing or combining the desired amounts.
  • an azeotropic or azeotrope-like composition can be prepared by weighing the desired component amounts and thereafter combining them in an appropriate container.
  • the azeotropic or azeotrope-like compositions of the present invention can be used in a wide range of applications, including their use as aerosol propellants, refrigerants, solvents, cleaning agents, blowing agents (foam expansion agents) for thermoplastic and thermoset foams, heat transfer media, gaseous dielectrics, fire extinguishing and suppression agents, power cycle working fluids, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, and displacement drying agents.
  • One embodiment of this invention provides a process for preparing a thermoplastic or thermoset foam.
  • the process comprises using an azeotropic or azeotrope-like composition as a blowing agent, wherein said azeotropic or azeotrope-like composition consists essentially of E- 1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans-1,2- dichloroethylene, 1,1,1,3,3-pentafiuoropropane, n-butane and isobutane.
  • Another embodiment of this invention provides a process for producing refrigeration.
  • the process comprises condensing an azeotropic or azeotrope-like composition and thereafter evaporating said azeotropic or azeotrope-like composition in the vicinity of the body to be cooled, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans- 1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
  • Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as a solvent, wherein said azeotropic or azeotrope-like composition consists essentially of E- 1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans- 1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
  • Another embodiment of this invention provides a process for producing an aerosol product.
  • the process comprises using an azeotropic or azeotrope-like composition as a propellant, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4- hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans-1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
  • Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as a heat transfer media, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, 1 , trans- 1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
  • Another embodiment of this invention provides a process for extinguishing or suppressing a fire.
  • the process comprises using an azeotropic or azeotrope-like composition as a fire extinguishing or suppression agent, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2- methylbutane, trans-1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n- butane and isobutane.
  • Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as dielectrics, wherein said azeotropic or azeotrope-like composition consists essentially of E- 1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans-1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.

Abstract

Azeotropic or azeotrope-like compositions are disclosed. The azeotropic or azeotrope-like compositions are mixtures of E-1,1,1,4,4,4-hexafluoro-2-butene with methyl formate, n-pentane, 2-methylbutane,, trans-1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane or isobutane. Also disclosed is a process of preparing a thermoplastic or thermoset foam by using such azeotropic or azeotrope-like compositions as blowing agents. Also disclosed is a process of producing refrigeration by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as solvents. Also disclosed is a process of producing an aerosol product by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as heat transfer media. Also disclosed is a process of extinguishing or suppressing a fire by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as dielectrics.

Description

TITLE OF INVENTION
AZEOTROPIC AND AZEOTROPE-LIKE COMPOSITIONS OF
E-1,1,1,4,4,4-HEXAFLUORO-2-BUTENE
This application claims priority of U.S. Patent Applications 60/934199 and 60/934209 filed June 12, 2007, U.S. Patent Application 60/936082 filed June 18, 2007, U.S. Patent Application 60/937590 filed June 28, 2007, U.S. Patent Applications 60/970387 and 60/970384 filed September 6, 2007 , and U.S. Patent Application 60/993241 filed September 11 , 2007.
BACKGROUND OF THE INVENTION
Field of the Disclosure The present disclosure relates to azeotropic or azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene.
Description of Related Art
Many industries have been working for the past few decades to find replacements for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The CFCs and HCFCs have been employed in a wide range of applications, including their use as aerosol propellants, refrigerants, cleaning agents, expansion agents for thermoplastic and thermoset foams, heat transfer media, gaseous dielectrics, fire extinguishing and suppression agents, power cycle working fluids, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, and displacement drying agents. In the search for replacements for these versatile compounds, many industries have turned to the use of hydrofluorocarbons (HFCs). The HFCs do not contribute to the destruction of stratospheric ozone, but are of concern due to their contribution to the "greenhouse effect", i.e., they contribute to global warming. As a result of their contribution to global warming, the HFCs have come under scrutiny, and their widespread use may also be limited in the future. Thus, there is a need for compositions that do not contribute to the destruction of stratospheric ozone and also have low global warming potentials (GWPs). Certain hydrofiuoroolefins, such as 1,1,1,4,4,4-hexafluoro-2-butene (CF3CH=CHCF3, FC-1336mzz), are believed to meet both goals.
SUMMARY OF THE INVENTION
This application includes seven different types of azeotropic or azeotrope-like mixtures.
This disclosure provides a composition consisting essentially of (a) E-FC-1336mzz and (b) methyl formate; wherein the methyl formate is present in an effective amount to form an azeotrope-like mixture with E- FC-1336mzz. This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) n-pentane; wherein the n-pentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) 2-methylbutane (isopentane); wherein the isopentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) trans-1,2-dichloroethylene; wherein the trans- 1,2-dichloroethylene is present in an effective amount to form an azeotrope-like mixture with E-FC-1336mzz.
This disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) 1,1,1,3,3-pentafluoropropane (CF3CH2CF2H, HFC-245fa); wherein the HFC-245fa is present in an effective amount to form an azeotrope-like mixture with E-FC- 1336mzz.
The disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) n-butane; wherein the n-butane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E- FC-1336mzz. The disclosure also provides a composition consisting essentially of (a) E-FC-1336mzz and (b) 2-methyl-propane (isobutane); wherein the 2- methylpropane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
BRIEF SUMMARY OF THE DRAWINGS FIG. 1 - FIG. 1 is a graphical representation of azeotrope-like compositions consisting essentially of E-FC-1336mzz and methyl formate at a temperature of about 20.0 °C. FIG. 2 - FIG. 2 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and n-pentane at a temperature of about 20.0 °C.
FIG. 3 - FIG. 3 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and isopentane at a temperature of about 20.0 °C.
FIG.4 - FIG.4 is a graphical representation of azeotrope-like compositions consisting essentially of E-FC-1336mzz and trans- 1,2- dichloroethylene at a temperature of about 20.0 °C.
FIG. 5 - FIG. 5 is a graphical representation of azeotrope-like compositions consisting essentially of E-FC-1336mzz and HFC-245fa at a temperature of about 20.0 °C.
FIG. 6 - FIG. 6 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and n-butane at a temperature of about 20.0 °C. FIG. 7 - FIG. 7 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of E-FC-1336mzz and isobutane at a temperature of about 20.0 °C.
DETAILED DESCRIPTION OF THE INVENTION In many applications, the use of a pure single component or an azeotropic or azeotrope-like mixture is desirable. For example, when a blowing agent composition (also known as foam expansion agents or foam expansion compositions) is not a pure single component or an azeotropic or azeotrope-like mixture, the composition may change during its application in the foam forming process. Such change in composition could detrimentally affect processing or cause poor performance in the application. Also, in refrigeration applications, a refrigerant is often lost during operation through leaks in shaft seals, hose connections, soldered joints and broken lines. In addition, the refrigerant may be released to the atmosphere during maintenance procedures on refrigeration equipment. If the refrigerant is not a pure single component or an azeotropic or azeotrope-like composition, the refrigerant composition may change when leaked or discharged to the atmosphere from the refrigeration equipment. The change in refrigerant composition may cause the refrigerant to become flammable or to have poor refrigeration performance. Accordingly, there is a need for using azeotropic or azeotrope-like mixtures in these and other applications, for example azeotropic or azeotrope-like mixtures containing E-1,1,1,4,4,4-hexafluoro-2-butene (E-CF3CH=CHCF3, E-FC- 1336mzz).
Before addressing details of embodiments described below, some terms are defined or clarified.
FC-1336mzz may exist as one of two configurational isomers, E or Z. FC-1336mzz as used herein refers to the isomers, Z-FC-1336mzz or E-FC-1336mzz, as well as any combinations or mixtures of such isomers.
As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
Also, use of "a" or "an" are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety, unless a particular passage is cited. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
E-FC-1336mzz is a known compound, and its preparation method has been disclosed, for example, in Dawoodi, et. al., Journal of the Chemical Society, Chemical Communications (1982), (12), 696-8, hereby incorporated by reference in its entirety.
This application includes azeotropic or azeotrope-like compositions comprising E-FC-1336mzz. In some embodiments of this invention, the composition consists essentially of (a) E-FC-1336mzz and (b) methyl formate; wherein the methyl formate is present in an effective amount to form an azeotrope-like mixture with E-FC- 1336mzz.
In some embodiments of this invention, the composition consists essentially of (a) E-FC-1336mzz and (b) n-pentane; wherein the n-pentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
In some embodiments of this invention, the composition consists essentially of (a) E-FC-1336mzz and (b) isopentane; wherein the isopentane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
In some embodiments of this invention, the composition consists essentially of (a) E-FC-1336mzz and (b) trans- 1,2-dichloroethylene; wherein the trans-1,2-dichloroethylene is present in an effective amount to form an azeotrope-like mixture with E-FC- 1336mzz.
In some embodiments of this invention, the composition consists essentially of (a) E-FC-1336mzz and (b) HFC-245fa; wherein the HFC- 245fa is present in an effective amount to form an azeotrope-like mixture with E-FC-1336mzz.
In some embodiments of this invention, the composition consists essentially of (a) E-FC-1336mzz and (b) n-butane; wherein the n-butane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz.
In some embodiments of this invention, the composition consists essentially of (a) E-FC-1336mzz and (b) 2-methyl-propane (isobutane); wherein the 2-methylpropane is present in an effective amount to form an azeotropic or azeotrope-like mixture with E-FC-1336mzz. By effective amount is meant an amount, which, when combined with E-FC-1336mzz, results in the formation of an azeotropic or azeotrope-like mixture. This definition includes the amounts of each component, which amounts may vary depending on the pressure applied to the composition so long as the azeotropic or azeotrope-like compositions continue to exist at the different pressures, but with possible different boiling points. Therefore, effective amount includes the amounts, such as may be expressed in weight or mole percentages, of each component of the compositions of the instant invention which form azeotropic or azeotrope-like compositions at temperatures or pressures other than as described herein.
As recognized in the art, an azeotropic composition is an admixture of two or more different components which, when in liquid form under a given pressure, will boil at a substantially constant temperature, which temperature may be higher or lower than the boiling temperatures of the individual components, and which will provide a vapor composition essentially identical to the overall liquid composition undergoing boiling, (see, e.g., M. F. Doherty and M.F. Malone, Conceptual Design of
Distillation Systems, McGraw-Hill (New York), 2001, 185-186, 351-359). Accordingly, the essential features of an azeotropic composition are that at a given pressure, the boiling point of the liquid composition is fixed and that the composition of the vapor above the boiling composition is essentially that of the overall boiling liquid composition (i.e., no fractionation of the components of the liquid composition takes place). It is also recognized in the art that both the boiling point and the weight percentages of each component of the azeotropic composition may change when the azeotropic composition is subjected to boiling at different pressures. Thus, an azeotropic composition may be defined in terms of the unique relationship that exists among the components or in terms of the compositional ranges of the components or in terms of exact weight percentages of each component of the composition characterized by a fixed boiling point at a specified pressure.
For the purpose of this invention, an azeotrope-like composition means a composition that behaves like an azeotropic composition (i.e., has constant boiling characteristics or a tendency not to fractionate upon boiling or evaporation). Hence, during boiling or evaporation, the vapor and liquid compositions, if they change at all, change only to a minimal or negligible extent. This is to be contrasted with non-azeotrope-like compositions in which during boiling or evaporation, the vapor and liquid compositions change to a substantial degree.
Additionally, azeotrope-like compositions exhibit dew point pressure and bubble point pressure with virtually no pressure differential. That is to say that the difference in the dew point pressure and bubble point pressure at a given temperature will be a small value. In this invention, compositions with a difference in dew point pressure and bubble point pressure of less than or equal to 5 percent (based upon the bubble point pressure) is considered to be azeotrope-like.
It is recognized in this field that when the relative volatility of a system approaches 1.0, the system is defined as forming an azeotropic or azeotrope-like composition. Relative volatility is the ratio of the volatility of component 1 to the volatility of component 2. The ratio of the mole fraction of a component in vapor to that in liquid is the volatility of the component.
To determine the relative volatility of any two compounds, a method known as the PTx method can be used. In this procedure, the total absolute pressure in a cell of known volume is measured at a constant temperature for various compositions of the two compounds. Use of the PTx Method is described in detail in "Phase Equilibrium in Process Design", Wiley-lnterscience Publisher, 1970, written by Harold R. Null, on pages 124 to 126; hereby incorporated by reference. These measurements can be converted into equilibrium vapor and liquid compositions in the PTx cell by using an activity coefficient equation model, such as the Non-Random, Two-Liquid (NRTL) equation, to represent liquid phase nonidealities. Use of an activity coefficient equation, such as the NRTL equation is described in detail in "The Properties of Gases and Liquids," 4th edition, published by McGraw Hill, written by
Reid, Prausnitz and Poling, on pages 241 to 387, and in "Phase Equilibria in Chemical Engineering," published by Butterworth Publishers, 1985, written by Stanley M. Walas, pages 165 to 244. Both aforementioned references are hereby incorporated by reference. Without wishing to be bound by any theory or explanation, it is believed that the NRTL equation, together with the PTx cell data, can sufficiently predict the relative volatilities of the E-1,1,1,4,4,4-hexafluoro-2-butene-containing compositions of the present invention and can therefore predict the behavior of these mixtures in multi-stage separation equipment such as distillation columns.
It was found through experiments that E-FC-1336mzz and n- pentane form azeotropic or azeotrope-like compositions.
To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.
The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/n-pentane mixture is shown in FIG. 2, which graphically illustrates the formation of an azeotropic and azeotrope-like composition consisting essentially of E-FC-1336mzz and n-pentane as indicated by a mixture of about 84.6 mole % E-1,1,1,4,4,4-hexafluoro-2- butene and 15.4 mole % n-pentane having the highest pressure over the range of compositions at this temperature. Based upon these findings, it has been calculated that E-FC-1336mzz and n-pentane form azeotropic compositions ranging from about 82.2 mole percent to about 95.3 mole percent E-FC-1336mzz and from about 17.8 mole percent to about 4.7 mole percent n-pentane (which form azeotropic compositions boiling at a temperature of from about -20 °C to about 80 °C and at a pressure of from about 4.5 psia (31 kPa) to about 139 psia (951 kPa)). Some embodiments of azeotropic compositions are listed in Table 1.
Table 1 Azeotropic compositions
Figure imgf000011_0001
Additionally, azeotrope-like compositions containing E-FC-1336mzz and n- pentane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope-like compositions are listed in Table 2. Additional embodiments of azeotrope- like compositions are listed in Table 3.
Table 2 Azeotrope-like compositions
Figure imgf000011_0002
Figure imgf000012_0001
Table 3 Azeotrope-like compositions
Figure imgf000012_0002
It was found through experiments that E-FC-1336mzz and methyl formate form azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.
The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/methyl formate mixture is shown in FIG. 1, which illustrates graphically the formation of azeotrope-like compositions consisting essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and methyl formate at 20.0 °C, as indicated by mixtures of about 83 mole % to about 99 mole % E-1,1,1,4,4,4-hexafluoro-2-butene and about 17 to about 1 mole % methyl formate.
Some embodiments of azeotrope-like compositions are listed in Table 4. Additional embodiments of azeotrope-like compositions are listed in Table 5.
Table 4. Azeotrope-like Compositions
Figure imgf000013_0001
Table 5. Azeotrope-like Compositions
Figure imgf000013_0002
It was found through experiments that E-FC-1336mzz and isopentane form azeotropic or azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation. The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/ isopentane mixture is shown in FIG. 3, which illustrates graphically the formation of an azeotrope and azeotrope-like compositions of E- 1,1,1,4,4,4-hexafluoro-2-butene and isopentane at 20.0 °C, as indicated by a mixture of about 77.2 mole % E- 1,1,1,4,4,4- hexafluoro-2-butene and 22.8 mole % isopentane having the highest pressure over the range of compositions at this temperature.
Based upon these findings, it has been calculated that E-FC- 1336mzz and isopentane form azeotropic compositions ranging from about 75.1 mole percent to about 95.4 mole percent E-FC-1336mzz and from about 24.9 mole percent to about 4.6 mole percent isopentane (which form azeotropic compositions boiling at a temperature of from about -40 °C to about 100 °C and at a pressure of from about 1.6 psia (11 kPa) to about 218 psia (1503 kPa)). Some embodiments of azeotropic compositions are listed in Table 6.
Table 6 Azeotropic compositions
Figure imgf000014_0001
Additionally, azeotrope-like compositions containing E-FC-1336mzz and isopentane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope- like compositions are listed in Table 7. Additional embodiments of azeotrope-like compositions are listed in Table 8.
Table 7. Azeotrope-like Compositions
Figure imgf000015_0001
Table 8. Azeotrope-like Compositions
Figure imgf000015_0002
It was found through experiments that E-FC-1336mzz and trans- 1,2-dichloroethylene form azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation. The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/ trans-1,2-dichloroethylene mixture is shown in FIG. 4, which illustrates graphically the formation of azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene and trans-1,2- dichloroethylene at 20.0 °C, as indicated by mixtures comprised of about 84 mole % to about 99 mole % E-1336mzz and from about 16 to about 1 mole % trans- 1,2-dichloroethylene.
Some embodiments of azeotrope-like compositions are listed in Table 9. Additional embodiments of azeotrope-like compositions are listed in Table 10. Table 9. Azeotrope-like Compositions
Figure imgf000016_0001
Table 10. Azeotrope-like Compositions
Figure imgf000016_0002
It was found through experiments that E-FC-1336mzz and HFC-
245fa form azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used.
The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.
The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/ HFC-245fa mixture is shown in FIG. 5, which illustrates graphically the formation of azeotrope-like compositions of E-
1,1,1,4,4,4-hexafiuoro-2-butene and HFC-245fa at 20.0 °C, as indicated by mixtures of about 1 to 99 mole % E-1,1,1,4 ,4,4-hexafluoro-2-butene and about 99 to 1 mole % HFC-245fa.
Some embodiments of azeotrope-like compositions are listed in Table 11. Additional embodiments of azeotrope-like compositions are listed in Table 12. Table 11. Azeotrope-like Compositions
Figure imgf000017_0001
It was found through experiments that E-FC-1336mzz and n-butane form azeotropic or azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.
The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/n-butane mixture is shown in FIG. 6, which illustrates graphically the formation of an azeotropic composition of E- 1,1,1,4,4,4-hexafiuoro-2-butene and cyclopentane at 20.0 °C, as indicated by a mixture of about 38.1 mole % E- 1,1,1,4,4,4-hexafluoro-2-butene and 61.9 mole % n-butane having the highest pressure over the range of compositions at this temperature.
Based upon these findings, it has been calculated that E-FC- 1336mzz and n-butane form azeotropic compositions ranging from about 29.5 mole percent to about 47.2 mole percent E-FC-1336mzz and from about 70.5 mole percent to about 52.8 mole percent n-butane (which form azeotropic compositions boiling at a temperature of from about -40 °C to about 100 °C and at a pressure of from about 3.0 psia (21 kPa) to about 277 psia (1910 kPa)). Some embodiments of azeotropic compositions are listed in Table 13.
Table 13. Azeotropic Compositions
Figure imgf000018_0003
Additionally, azeotrope-like compositions containing E-FC-1336mzz and n-butane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope- like compositions are listed in Table 14. Additional embodiments of azeotrope-like compositions are listed in Table 15.
Table 14. Azeotrope-like Compositions
Figure imgf000018_0001
Table 15. Azeotrope-like Compositions
Figure imgf000018_0002
Figure imgf000019_0001
It was found through experiments that E-FC-1336mzz and isobutane form azeotropic or azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.
The vapor pressure measured versus the compositions in the PTx cell for E-FC-1336mzz/isobutane mixture is shown in FIG. 7, which illustrates graphically the formation of an azeotropic composition of E- 1,1 ,1,4,4,4-hexafluoro-2-butene and cyclopentane at 20.0 °C, as indicated by a mixture of about 24.9 mole % E- 1,1,1,4,4,4-hexafluoro-2-butene and 75.1 mole % isobutane having the highest pressure over the range of compositions at this temperature.
Based upon these findings, it has been calculated that E-FC- 1336mzz and isobutane form azeotropic compositions ranging from about 19.4 mole percent to about 32.4 mole percent E-FC-1336mzz and from about 80.6 mole percent to about 67.6 mole percent isobutane (which form azeotropic compositions boiling at a temperature of from about -40 °C to about 80 °C and at a pressure of from about 4.5 psia (31 kPa) to about 218 psia (1503 kPa)). Some embodiments of azeotropic compositions are listed in Table 16.
Table 16. Azeotropic Compositions
Figure imgf000019_0002
Figure imgf000020_0003
Additionally, azeotrope-like compositions containing E-FC-1336mzz and isobutane may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope- like compositions are listed in Table 17. Additional embodiments of azeotrope-like compositions are listed in Table 18.
Table 17. Azeotrope-like Compositions
Figure imgf000020_0001
Table 18. Azeotrope-like Compositions
Figure imgf000020_0002
The azeotropic or azeotrope-like compositions of the present invention can be prepared by any convenient method including mixing or combining the desired amounts. In one embodiment of this invention, an azeotropic or azeotrope-like composition can be prepared by weighing the desired component amounts and thereafter combining them in an appropriate container.
The azeotropic or azeotrope-like compositions of the present invention can be used in a wide range of applications, including their use as aerosol propellants, refrigerants, solvents, cleaning agents, blowing agents (foam expansion agents) for thermoplastic and thermoset foams, heat transfer media, gaseous dielectrics, fire extinguishing and suppression agents, power cycle working fluids, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, and displacement drying agents. One embodiment of this invention provides a process for preparing a thermoplastic or thermoset foam. The process comprises using an azeotropic or azeotrope-like composition as a blowing agent, wherein said azeotropic or azeotrope-like composition consists essentially of E- 1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans-1,2- dichloroethylene, 1,1,1,3,3-pentafiuoropropane, n-butane and isobutane.
Another embodiment of this invention provides a process for producing refrigeration. The process comprises condensing an azeotropic or azeotrope-like composition and thereafter evaporating said azeotropic or azeotrope-like composition in the vicinity of the body to be cooled, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans- 1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as a solvent, wherein said azeotropic or azeotrope-like composition consists essentially of E- 1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans- 1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
Another embodiment of this invention provides a process for producing an aerosol product. The process comprises using an azeotropic or azeotrope-like composition as a propellant, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4- hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans-1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane. Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as a heat transfer media, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, 1 , trans- 1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
Another embodiment of this invention provides a process for extinguishing or suppressing a fire. The process comprises using an azeotropic or azeotrope-like composition as a fire extinguishing or suppression agent, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2- methylbutane, trans-1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n- butane and isobutane.
Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as dielectrics, wherein said azeotropic or azeotrope-like composition consists essentially of E- 1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, , trans-1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.

Claims

1. A composition consisting essentially of:
(a) E-1,1,1,4,4,4 -hexafluoro-2-butene; and (b) methyl formate; wherein the methyl formate is present in an effective amount to form an azeotrope-like combination with the E- 1,1,1,4,4,4-hexafluoro-2-butene.
2. A composition consisting essentially of:
(a) E-1,1,1,4,4,4-hexafluoro-2-butene; and (b) n-pentane; wherein the n-pentane is present in an effective amount to form an azeotropic combination with the E-1,1,1,4,4,4- hexafluoro-2-butene.
3. A composition consisting essentially of: (a) E-1,1,1,4A4-hexafluoro-2-butene; and (b) n-pentane; wherein the n-pentane is present in an effective amount to form an azeotrope-like combination with the E-1,1,1,4,4,4- hexafluoro-2-butene.
4. A composition consisting essentially of: (a) E-1,1,1,4,4,4-hexafluoro-2-butene; and (b) 2-methylbutane; wherein the 2-methylbutane is present in an effective amount to form an azeotropic combination with the E-1,1,1,4,4,4- hexafluoro-2-butene.
5. A composition consisting essentially of: (a) E-1,1,1,4,4,4-hexafluoro-2-butene; and (b) 2-methylbutane; wherein the 2-methylbutane is present in an effective amount to form an azeotrope-like combination with the E-1,1,1,4,4,4-hexafluoro-2-butene.
6. A composition consisting essentially of:
(a) E-1,1,1,4,4,4-hexafluoro-2-butene; and (b) trans- 1,2-dichloroethylene; wherein the trans-1,2- dichloroethylene is present in an effective amount to form an azeotrope- like combination with the E-1,1,1,4,4,4-hexafluoro-2-butene.
7. A composition consisting essentially of: (a) E-1,1,1,4,4,4-hexafluoro-2-butene; and (b) 1,1,1,3,3-pentafluoropropane; wherein the 1,1,1,3,3- pentafluoropropane is present in an effective amount to form an azeotrope-like combination with the E-1,1,1,4,4,4-hexafluoro-2-butene.
8. A composition consisting essentially of: (a) E-1,1,1,4,4,4-hexafluoro-2-butene; and
(b) n-butane; wherein the n-butane is present in an effective amount to form an azeotropic combination with the E-1,1,1,4,4,4- hexafluoro-2-butene.
9. A composition consisting essentially of: (a) E-1,1,1,4 ,4,4-hexafluoro-2-butene; and
(b) n-butane; wherein the n-butane is present in an effective amount to form an azeotrope-like combination with the E-1,1,1, 4,4,4- hexafluoro-2-butene.
10. A composition consisting essentially of: (a) E-1,1,1,4,4,4-hexafluoro-2-butene; and
(b) isobutane; wherein the isobutane is present in an effective amount to form an azeotropic combination with the E-1,1,1,4,4,4- hexafluoro-2-butene.
11.A composition consisting essentially of: (a) E-1,1,1,4,4,4-hexafluoro-2-butene; and
(b) isobutane; wherein the isobutane is present in an effective amount to form an azeotrope-like combination with the E-1,1,1,4,4,4- hexafluoro-2-butene.
12. A process for preparing a thermoplastic or thermoset foam comprising using an azeotropic or azeotrope-like composition as a blowing agent, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2- butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, trans-1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
13. A process for producing refrigeration comprising condensing an azeotropic or azeotrope-like composition and thereafter evaporating said azeotropic or azeotrope-like composition in the vicinity of the body to be cooled, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4- hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, trans- 1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
14. A process comprising using an azeotropic or azeotrope-like composition as a solvent, wherein said azeotropic or azeotrope- like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2- butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, trans-1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
15.A process for producing an aerosol product comprising using an azeotropic or azeotrope-like composition as a propellant, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2- methylbutane, trans-1,2-dichloroethylene, 1,1,1,3,3- pentafluoropropane, n-butane and isobutane.
16. A process comprising using an azeotropic or azeotrope-like composition as a heat transfer media, wherein said azeotropic or azeotrope-like composition consists essentially of E- 1,1,1,4,4,4- hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, trans- 1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
17. A process for extinguishing or suppressing a fire comprising using an azeotropic or azeotrope-like composition as a fire extinguishing or suppression agent, wherein said azeotropic or azeotrope-like composition consists essentially of E-1,1,1,4,4,4- hexafluoro-2-butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, trans- 1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
18. A process comprising using an azeotropic or azeotrope-like composition as dielectrics, wherein said azeotropic or azeotrope- like composition consists essentially of E- 1,1,1,4,4,4-hexafluoro-2- butene and a component selected from the group consisting of methyl formate, n-pentane, 2-methylbutane, trans-1,2- dichloroethylene, 1,1,1,3,3-pentafluoropropane, n-butane and isobutane.
PCT/US2008/066621 2007-06-06 2008-06-12 Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene WO2008154612A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
BR122018074411-1A BR122018074411B1 (en) 2007-06-12 2008-06-12 COMPOSITION AND PROCESS TO PRODUCE COOLING
CA2684290A CA2684290C (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene
BR122018074413-8A BR122018074413B1 (en) 2007-06-12 2008-06-12 COMPOSITION AND PROCESS TO PRODUCE COOLING
ES08770760.0T ES2509882T3 (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
BR122018074416-2A BR122018074416B1 (en) 2007-06-12 2008-06-12 COMPOSITION AND PROCESS TO PRODUCE COOLING
US12/598,038 US7972525B2 (en) 2007-06-06 2008-06-12 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
JP2010512334A JP5460586B2 (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
CN200880019944.6A CN101679841B (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene
KR1020107000495A KR101434710B1 (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene
BRPI0809736A BRPI0809736B8 (en) 2007-06-12 2008-06-12 composition and process to produce refrigeration
BR122018074418-9A BR122018074418B1 (en) 2007-06-12 2008-06-12 COMPOSITION AND PROCESS TO PRODUCE COOLING
EP08770760.0A EP2152833B1 (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene
BR122018074407-3A BR122018074407B1 (en) 2007-06-12 2008-06-12 COMPOSITION AND PROCESS TO PRODUCE COOLING
AU2008261695A AU2008261695B2 (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
CN201910999572.8A CN110643328B (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4, 4-hexafluoro-2-butene
MX2009013465A MX2009013465A (en) 2007-06-12 2008-06-12 Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene.
US13/112,043 US8262924B2 (en) 2007-06-12 2011-05-20 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US93419907P 2007-06-12 2007-06-12
US93420907P 2007-06-12 2007-06-12
US60/934,199 2007-06-12
US60/934,209 2007-06-12
US93608207P 2007-06-18 2007-06-18
US60/936,082 2007-06-18
US93759007P 2007-06-28 2007-06-28
US60/937,590 2007-06-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/598,038 A-371-Of-International US7972525B2 (en) 2007-06-06 2008-06-12 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
US13/112,043 Continuation US8262924B2 (en) 2007-06-12 2011-05-20 Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene

Publications (1)

Publication Number Publication Date
WO2008154612A1 true WO2008154612A1 (en) 2008-12-18

Family

ID=39719144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/066621 WO2008154612A1 (en) 2007-06-06 2008-06-12 Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene

Country Status (12)

Country Link
US (2) US7972525B2 (en)
EP (1) EP2152833B1 (en)
JP (1) JP5460586B2 (en)
KR (1) KR101434710B1 (en)
CN (7) CN103980521B (en)
AU (1) AU2008261695B2 (en)
BR (6) BR122018074413B1 (en)
CA (1) CA2684290C (en)
ES (1) ES2509882T3 (en)
MX (1) MX2009013465A (en)
MY (1) MY149324A (en)
WO (1) WO2008154612A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034904A1 (en) * 2009-09-16 2011-03-24 E. I. Du Pont De Nemours And Company Chiller apparatus containing trans-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
US7972525B2 (en) 2007-06-06 2011-07-05 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
US7972524B2 (en) 2007-04-27 2011-07-05 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene
WO2011084553A2 (en) * 2009-12-16 2011-07-14 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
WO2011106652A1 (en) * 2010-02-25 2011-09-01 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene and ethylene oxide and uses thereof
WO2011084447A3 (en) * 2009-12-16 2011-10-06 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
US20110260093A1 (en) * 2010-04-26 2011-10-27 E.I. Du Pont De Nemours And Company azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene and 1-chloro-3,3,3-trifluoropropene
KR20120044965A (en) * 2009-06-03 2012-05-08 이 아이 듀폰 디 네모아 앤드 캄파니 Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
CN102449100A (en) * 2009-06-02 2012-05-09 纳幕尔杜邦公司 Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
WO2012069867A1 (en) 2010-11-25 2012-05-31 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
WO2012099844A3 (en) * 2011-01-19 2012-10-18 Honeywell International Inc. Azeotrope-like compositions of trans-1,1,1,4,4,4-hexafluoro-2-butene and water
US8299137B2 (en) 2007-11-29 2012-10-30 E I Du Pont De Nemours And Company Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based forms
JP2012531495A (en) * 2009-06-26 2012-12-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene, and a third component
US8558040B2 (en) 2005-11-01 2013-10-15 E I Du Pont De Nemours And Company Methods for making foams using blowing agents comprising unsaturated fluorocarbons
US8632703B2 (en) 2007-09-06 2014-01-21 E I Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,5,5,5-octafluoro-2-pentene
US8658708B2 (en) 2007-12-19 2014-02-25 E I Du Pont De Nemours And Company Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing Z-1,1,1,4,4,4-hexafluoro-2-butene and methyl formate and their uses in the preparation of polyisocyanate-based foams
US20140083119A1 (en) * 2011-07-01 2014-03-27 Arkema France Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
US8907145B2 (en) 2005-11-01 2014-12-09 E I Du Pont De Nemours And Company Aerosol propellants comprising unsaturated fluorocarbons
JP2015158361A (en) * 2009-07-28 2015-09-03 アルケマ フランス Heat transfer process
US9267066B2 (en) 2010-11-25 2016-02-23 Arkema France Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
US9514959B2 (en) 2012-10-30 2016-12-06 American Air Liquide, Inc. Fluorocarbon molecules for high aspect ratio oxide etch
US9909045B2 (en) 2012-04-04 2018-03-06 Arkema France Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene
US10150901B2 (en) 2010-12-03 2018-12-11 Arkema France Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene
WO2018236477A3 (en) * 2017-05-08 2019-04-11 Honeywell International Inc. Fire extinguishing compositions, systems and methods
WO2019104055A1 (en) * 2017-11-27 2019-05-31 The Chemours Company Fc, Llc Aerosol compositions
WO2022261267A1 (en) 2021-06-09 2022-12-15 The Chemours Company Fc, Llc Compositions comprising e-hfo-1336mzz and methyl formate and their use as expansion agents for thermoplastic foam

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948678B1 (en) * 2009-07-28 2011-10-14 Arkema France HEAT TRANSFER METHOD
EP2521757B1 (en) * 2009-09-16 2016-05-04 E. I. du Pont de Nemours and Company Apparatus comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and trans-1,2-dichloroethylene and methods of producing cooling therein
TW201139339A (en) * 2010-01-11 2011-11-16 Du Pont Azeotropic and azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene, and 1,1,1,3,3-pentafluorobutane
US9145480B2 (en) * 2010-10-28 2015-09-29 Honeywell International Inc. Mixtures containing 1,1,1,3,3,3-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene
KR102054779B1 (en) * 2011-08-19 2019-12-11 더 케무어스 컴퍼니 에프씨, 엘엘씨 Processes and compositions for organic rankine cycles for generating mechanical energy from heat
US8961808B2 (en) 2011-10-20 2015-02-24 E I Du Pont De Nemours And Company Azeotrope-like compositions of E-1-chloro-2,3,3,3-tetrafluoropropene and uses thereof
AU2013221529B2 (en) * 2012-02-17 2016-07-07 E. I. Du Pont De Nemours And Company Azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene and E-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
CN102675579A (en) * 2012-05-07 2012-09-19 南京宝新聚氨酯有限公司 Polyurethane reaction composition and method for preparing hard foam by using same
TW201413192A (en) * 2012-08-01 2014-04-01 Du Pont Use of E-1,1,1,4,4,4-hexafluoro-2-butene in heat pumps
US9234123B2 (en) * 2013-03-21 2016-01-12 Hsi Fire & Safety Group, Llc Compositions for totally non-flammable aerosol dusters
DE102014220985A1 (en) * 2014-07-03 2016-01-07 Siemens Aktiengesellschaft Apparatus and method for using 1,1,1,4,4,4-hexafluoro-2-butene as a gaseous, electrically insulating and / or arc-extinguishing medium
CA2955471A1 (en) * 2014-08-12 2016-02-18 The Chemours Company Fc, Llc Azeotropic and azeotrope-like compositions of hfo-e-1,3,4,4,4-pentafluoro-3-trifluoromethyl-1-butene and uses thereof
EP3253845B1 (en) 2015-02-06 2021-08-04 The Chemours Company FC, LLC Compositions comprising e-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
FR3040525B1 (en) * 2015-08-28 2017-08-11 Arkema France USE OF HEXAFLUOROBUTENES FOR THE INSULATION OR EXTINCTION OF ELECTRIC ARCS
US10712073B2 (en) * 2017-03-01 2020-07-14 Haier Us Appliance Solutions, Inc. Ternary natural refrigerant mixture that improves the energy efficiency of a refrigeration system
WO2018175367A1 (en) * 2017-03-20 2018-09-27 The Chemours Company Fc, Llc Compositions and uses of trans-1,1,1,4,4,4-hexafluoro-2-butene
JP2020521009A (en) * 2017-05-19 2020-07-16 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Fluorinated compounds useful as foam expanders
CN108359121B (en) * 2017-12-14 2019-03-15 浙江衢化氟化学有限公司 A kind of azeotropic and Azeotrope-like compositions
CA3099754A1 (en) * 2018-05-29 2019-12-05 Owens Corning Intellectual Capital, Llc Blowing agent compositions for insulating foams
WO2020041539A1 (en) * 2018-08-23 2020-02-27 The Chemours Company Fc, Llc Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluorobut-2-ene
KR20210110876A (en) * 2019-01-17 2021-09-09 더 케무어스 컴퍼니 에프씨, 엘엘씨 (E) azeotropes and azeotrope-like compositions comprising -1,1,1,4,4,4-hexafluorobut-2-ene
WO2021072015A1 (en) * 2019-10-10 2021-04-15 The Chemours Company Fc, Llc Azeotrope and azeotrope-like compositions comprising neopentane and isomers of hfo-1336mzz
CN112795372B (en) * 2021-04-08 2021-07-16 泉州宇极新材料科技有限公司 Azeotropic or azeotrope-like compositions comprising chain-like and cyclic fluorides
CN113789155B (en) * 2021-09-16 2022-06-28 珠海格力电器股份有限公司 Mixed refrigerant and air conditioning system
TW202346449A (en) * 2022-04-22 2023-12-01 美商科慕Fc有限責任公司 Fluorobutene compositions comprising e-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179043A (en) * 1991-11-18 1993-07-20 Daikin Ind Ltd Blowing agent comprising fluorobutene and production of plastic foam
EP0558763A1 (en) * 1991-09-25 1993-09-08 Daikin Industries, Ltd. Refrigerant and refrigerator
US20070007488A1 (en) * 2003-10-27 2007-01-11 Honeywell International, Inc. Compositions containing fluorine substituted olefins
US20070100011A1 (en) * 2005-11-01 2007-05-03 Creazzo Joseph A Blowing agents for forming foam comprising unsaturated fluorocarbons
US20070096051A1 (en) * 2005-11-01 2007-05-03 Nappa Mario J Fire extinguishing and fire suppression compositions comprising unsaturated fluorocarbons

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL121693C (en) 1959-05-22
DE1122697B (en) 1960-05-06 1962-01-25 Bayer Ag Process for the production of foams based on isocyanate
US3884828A (en) 1970-10-15 1975-05-20 Dow Corning Propellants and refrigerants based on trifluoropropene
US3723318A (en) 1971-11-26 1973-03-27 Dow Corning Propellants and refrigerants based on trifluoropropene
NL179914C (en) 1975-11-04 1986-12-01 Dow Chemical Co METHOD FOR MANUFACTURING A FOAM ARTICLE FROM A THERMOPLASTIC ALKENYL AROMATIC RESIN BY EXTRUSION.
US4394491A (en) 1980-10-08 1983-07-19 The Dow Chemical Company Addition polymerizable adduct of a polymeric monoahl and an unsaturated isocyanate
FR2523956A1 (en) 1982-03-26 1983-09-30 Ugine Kuhlmann BIS- (PERFLUOROALKYL) -1,2-ETHENES BRANCHED, THEIR PREPARATION AND THEIR USE AS OXYGEN TRANSPORTERS ELECTROMECHANICAL CONVERTER
GB8516826D0 (en) 1985-07-03 1985-08-07 Dow Chemical Nederland Precursor compositions of nitrogen-containing polyols
US4704410A (en) 1986-06-30 1987-11-03 The Dow Chemical Company Molded rigid polyurethane foams prepared from aminoalkylpiperazine-initiated polyols
DD253431A1 (en) 1986-10-21 1988-01-20 Petrolchemisches Kombinat METHOD FOR PRODUCING INSULATING OILS
DE68928010T2 (en) 1988-07-08 1997-11-20 Rhone Poulenc Chimie Cleaning and drying of electronic components
US4945119A (en) 1989-05-10 1990-07-31 The Dow Chemical Company Foaming system for rigid urethane and isocyanurate foams
FR2658532B1 (en) * 1990-02-20 1992-05-15 Atochem APPLICATION OF (PERFLUOROALKYL) -ETHYLENES AS CLEANING OR DRYING AGENTS, AND COMPOSITIONS FOR USE THEREOF.
US5037572A (en) 1990-10-03 1991-08-06 E. I. Du Pont De Nemours And Company Ternary azeotropic compositions of n-perfluorobutylethylene and trans-1,2-dichloroethylene with methanol or ethanol or isopropanol
JPH04277803A (en) * 1991-03-05 1992-10-02 Fujitsu Ten Ltd Program controller
US5204159A (en) 1991-03-29 1993-04-20 Tan Domingo K L Deformable, slip-free, anti-skid pads for snow and ice
US5164419A (en) 1991-05-20 1992-11-17 E. I. Du Pont De Nemours And Company Blowing agent and process for preparing polyurethane foam
US5194170A (en) * 1992-04-02 1993-03-16 E. I. Du Pont De Nemours And Company Binary azeotropic compositions of 1,1,2,2,3,3,4,4-octafluorobutane and either tran-1,2-dichloroethylene, cis 1,2-dichloroethylene, or 1-1 dichloroethane
US5332761A (en) 1992-06-09 1994-07-26 The Dow Chemical Company Flexible bimodal foam structures
DE69320059T2 (en) * 1992-11-20 1999-01-14 Daikin Ind Ltd METHOD FOR PRODUCING 1,1,1,4,4,4-HEXAFLUORO-2-BUTEN AND 1,1,1,4,4,4-HEXAFLUOROBUTANE
DE4305163A1 (en) 1993-02-19 1994-08-25 Bayer Ag Process for the preparation of hexafluorobutene
US5494601A (en) * 1993-04-01 1996-02-27 Minnesota Mining And Manufacturing Company Azeotropic compositions
US5578137A (en) * 1993-08-31 1996-11-26 E. I. Du Pont De Nemours And Company Azeotropic or azeotrope-like compositions including 1,1,1,2,3,4,4,5,5,5-decafluoropentane
US5977271A (en) 1994-09-02 1999-11-02 The Dow Chemical Company Process for preparing thermoset interpolymers and foams
FR2731436B1 (en) 1995-03-09 1997-04-30 Atochem Elf Sa USE OF HYDROFLUOROALCENES AS CLEANING AGENTS, AND COMPOSITIONS FOR USE THEREOF
US5674621A (en) * 1996-01-29 1997-10-07 Eastman Kodak Company Fuser members with an outermost layer of a fluorinated diamond like carbon
US5900185A (en) 1996-09-27 1999-05-04 University Of New Mexico Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants, foam blowing agents, solvents, aerosol propellants, and sterilants
HUP0002619A3 (en) 1997-06-11 2003-06-30 Dow Global Technologies Inc Mi Extruded thermoplastic foams with absorbing effect
EP0990006B1 (en) 1997-06-13 2002-01-30 Huntsman International Llc Isocyanate compositions for blown polyurethane foams
US5908822A (en) 1997-10-28 1999-06-01 E. I. Du Pont De Nemours And Company Compositions and processes for drying substrates
US6327866B1 (en) * 1998-12-30 2001-12-11 Praxair Technology, Inc. Food freezing method using a multicomponent refrigerant
US6610250B1 (en) 1999-08-23 2003-08-26 3M Innovative Properties Company Apparatus using halogenated organic fluids for heat transfer in low temperature processes requiring sterilization and methods therefor
MX234819B (en) 2000-10-24 2006-03-13 Dow Global Technologies Inc Preparation process for multimodal thermoplastic polymer foam.
DE10055084A1 (en) 2000-11-07 2002-06-13 Basf Ag Flexible, open-celled, microcellular polymer foams
US6991744B2 (en) * 2000-12-08 2006-01-31 E. I. Du Pont De Nemours And Company Refrigerant compositions containing a compatibilizer
US6524496B2 (en) * 2001-03-21 2003-02-25 Honeywell International Inc. Azeotrope-like composition of 1,1,1,3,3-pentafluoropropane and 1-chloro-1,1,3,3,3-pentafluoropropane
US7279451B2 (en) 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
DK2258404T3 (en) 2002-10-25 2017-11-13 Honeywell Int Inc METHOD OF STERILIZATION USING COMPOSITIONS CONTAINING FLUORO-SUBSTITUTED OLEFINES
US7161049B2 (en) * 2002-12-13 2007-01-09 E. I. Du Pont De Nemours And Company Process for purifying hydrofluoropropanes
ATE469923T1 (en) * 2002-12-20 2010-06-15 Exxonmobil Chem Patents Inc POLYMERS WITH NEW SEQUENCE DISTRIBUTIONS
US20040248756A1 (en) * 2003-06-04 2004-12-09 Honeywell International, Inc. Pentafluorobutane-based compositions
US6969701B2 (en) 2004-04-16 2005-11-29 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
US20080019926A1 (en) 2004-04-19 2008-01-24 Marie-Pierre Krafft Lung Surfactant Supplements
US7198728B2 (en) * 2004-06-29 2007-04-03 E.I. Du Pont De Nemours And Company 1-ethoxy-1,1,2,2,3,3,4,4,4,-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof
US20060242985A1 (en) * 2005-03-04 2006-11-02 Leck Thomas J Refrigeration/air-conditioning apparatus powered by an engine exhaust gas driven turbine
CN103462894A (en) 2005-03-16 2013-12-25 霍尼韦尔国际公司 Medicament delivery formulations, devices and methods
US20060245944A1 (en) * 2005-03-21 2006-11-02 Leck Thomas J Cooling apparatus powered by a ratioed gear drive assembly
US20060266975A1 (en) * 2005-05-27 2006-11-30 Nappa Mario J Compositions comprising 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexene
US20070077488A1 (en) 2005-10-04 2007-04-05 Kaimin Chen Power capability of a cathode
JP2009518460A (en) * 2005-11-01 2009-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions containing fluoroolefins and uses thereof
US20070098646A1 (en) 2005-11-01 2007-05-03 Nappa Mario J Aerosol propellants comprising unsaturated fluorocarbons
US20070100010A1 (en) 2005-11-01 2007-05-03 Creazzo Joseph A Blowing agents for forming foam comprising unsaturated fluorocarbons
US7708903B2 (en) 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
WO2007100885A2 (en) 2006-02-28 2007-09-07 E. I. Du Pont De Nemours And Company Azeotropic compositions comprising fluorinated compounds for cleaning applications
CA2671048A1 (en) * 2006-12-15 2008-06-26 E.I. Dupont De Nemours And Company Compositions comprising 1,2,3,3,3-pentafluoropropene with z- and e-isomer ratio optimized for refrigeration performance
US8618339B2 (en) 2007-04-26 2013-12-31 E I Du Pont De Nemours And Company High selectivity process to make dihydrofluoroalkenes
KR101903306B1 (en) * 2007-04-27 2018-10-01 이 아이 듀폰 디 네모아 앤드 캄파니 Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
BR122018074413B1 (en) 2007-06-12 2019-03-19 E. I. Du Pont De Nemours And Company COMPOSITION AND PROCESS TO PRODUCE COOLING
BRPI0813018A2 (en) 2007-07-20 2014-12-23 Du Pont "FOAM FORMING, POLYURETHANE POLYMER FOAM OR POLYISOCYANURATE COMPOSITION AND PROCESS FOR PRODUCING A FOAM"
EP2170980B1 (en) 2007-07-20 2013-08-21 E. I. du Pont de Nemours and Company Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams
JP5530929B2 (en) 2007-09-06 2014-06-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,5,5,5-octafluoro-2-pentene
CA2705271C (en) 2007-11-29 2016-04-05 E. I. Du Pont De Nemours And Company Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams
KR20160015399A (en) 2007-12-19 2016-02-12 이 아이 듀폰 디 네모아 앤드 캄파니 Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing z-1,1,1,4,4,4-hexafluoro-2-butene and their uses in the preparation of polyisocyanate-bsed foams

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558763A1 (en) * 1991-09-25 1993-09-08 Daikin Industries, Ltd. Refrigerant and refrigerator
JPH05179043A (en) * 1991-11-18 1993-07-20 Daikin Ind Ltd Blowing agent comprising fluorobutene and production of plastic foam
US20070007488A1 (en) * 2003-10-27 2007-01-11 Honeywell International, Inc. Compositions containing fluorine substituted olefins
US20070100011A1 (en) * 2005-11-01 2007-05-03 Creazzo Joseph A Blowing agents for forming foam comprising unsaturated fluorocarbons
US20070096051A1 (en) * 2005-11-01 2007-05-03 Nappa Mario J Fire extinguishing and fire suppression compositions comprising unsaturated fluorocarbons
US20070102021A1 (en) * 2005-11-01 2007-05-10 Nappa Mario J Solvent compositions comprising unsaturated fluorinated hydrocarbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199333, Derwent World Patents Index; AN 1993-261758, XP002494649 *

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907145B2 (en) 2005-11-01 2014-12-09 E I Du Pont De Nemours And Company Aerosol propellants comprising unsaturated fluorocarbons
US8633339B2 (en) 2005-11-01 2014-01-21 E I Du Pont De Nemours And Company Blowing agents for forming foam comprising unsaturated fluorocarbons
US8558040B2 (en) 2005-11-01 2013-10-15 E I Du Pont De Nemours And Company Methods for making foams using blowing agents comprising unsaturated fluorocarbons
US7972524B2 (en) 2007-04-27 2011-07-05 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene
US7972525B2 (en) 2007-06-06 2011-07-05 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
US8262924B2 (en) 2007-06-12 2012-09-11 E I Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
US8632703B2 (en) 2007-09-06 2014-01-21 E I Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,5,5,5-octafluoro-2-pentene
US8299137B2 (en) 2007-11-29 2012-10-30 E I Du Pont De Nemours And Company Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based forms
US8658708B2 (en) 2007-12-19 2014-02-25 E I Du Pont De Nemours And Company Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing Z-1,1,1,4,4,4-hexafluoro-2-butene and methyl formate and their uses in the preparation of polyisocyanate-based foams
CN102449100B (en) * 2009-06-02 2015-09-09 纳幕尔杜邦公司 Z-1,1, Isosorbide-5-Nitrae, the azeotropic of 4,4-hexafluoro-2-butylene and Azeotrope-like compositions
KR101731128B1 (en) 2009-06-02 2017-04-27 이 아이 듀폰 디 네모아 앤드 캄파니 Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
CN102449100A (en) * 2009-06-02 2012-05-09 纳幕尔杜邦公司 Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
JP2012528922A (en) * 2009-06-02 2012-11-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene
JP2012528926A (en) * 2009-06-03 2012-11-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Chiller containing cis-1,1,1,4,4,4-hexafluoro-2-butene and method for producing cooling in the apparatus
KR20120044965A (en) * 2009-06-03 2012-05-08 이 아이 듀폰 디 네모아 앤드 캄파니 Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
KR101685729B1 (en) 2009-06-03 2016-12-12 이 아이 듀폰 디 네모아 앤드 캄파니 Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
JP2012531495A (en) * 2009-06-26 2012-12-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene, and a third component
US10036285B2 (en) 2009-07-28 2018-07-31 Arkema France Heat transfer process
US10704428B2 (en) 2009-07-28 2020-07-07 Arkema France Heat transfer process
JP2015158361A (en) * 2009-07-28 2015-09-03 アルケマ フランス Heat transfer process
EP2478065B1 (en) 2009-09-16 2016-04-13 E. I. du Pont de Nemours and Company Chiller apparatus containing trans-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
KR101733256B1 (en) * 2009-09-16 2017-05-08 이 아이 듀폰 디 네모아 앤드 캄파니 Chiller apparatus containing trans-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
US9217100B2 (en) 2009-09-16 2015-12-22 The Chemours Company Fc, Llc Chiller apparatus containing trans-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
WO2011034904A1 (en) * 2009-09-16 2011-03-24 E. I. Du Pont De Nemours And Company Chiller apparatus containing trans-1,1,1,4,4,4-hexafluoro-2-butene and methods of producing cooling therein
KR101780500B1 (en) * 2009-12-16 2017-09-21 허니웰 인터내셔널 인코포레이티드 Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
KR20180094141A (en) * 2009-12-16 2018-08-22 허니웰 인터내셔널 인코포레이티드 Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
US9592413B2 (en) 2009-12-16 2017-03-14 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
US8846754B2 (en) 2009-12-16 2014-09-30 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
WO2011084553A2 (en) * 2009-12-16 2011-07-14 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
WO2011084447A3 (en) * 2009-12-16 2011-10-06 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
WO2011084553A3 (en) * 2009-12-16 2011-10-13 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
CN102741203A (en) * 2009-12-16 2012-10-17 霍尼韦尔国际公司 Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
US10556140B2 (en) 2009-12-16 2020-02-11 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
RU2568722C2 (en) * 2009-12-16 2015-11-20 Хонивелл Интернэшенел Инк. Azeotrope-like compositions cis-1,1,1,4,4,4-hexofluorine-2-butene
CN102741203B (en) * 2009-12-16 2015-11-25 霍尼韦尔国际公司 The Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
KR102023133B1 (en) 2009-12-16 2019-09-20 허니웰 인터내셔널 인코포레이티드 Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
WO2011106652A1 (en) * 2010-02-25 2011-09-01 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene and ethylene oxide and uses thereof
JP2013529233A (en) * 2010-04-26 2013-07-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
US20110260093A1 (en) * 2010-04-26 2011-10-27 E.I. Du Pont De Nemours And Company azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene and 1-chloro-3,3,3-trifluoropropene
US8821749B2 (en) 2010-04-26 2014-09-02 E I Du Pont De Nemours And Company Azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene and 1-chloro-3,3,3-trifluoropropene
US9157018B2 (en) 2010-11-25 2015-10-13 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US10407603B2 (en) 2010-11-25 2019-09-10 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US9528039B2 (en) 2010-11-25 2016-12-27 Arkema France Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
US9528038B2 (en) 2010-11-25 2016-12-27 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
WO2012069867A1 (en) 2010-11-25 2012-05-31 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US9267066B2 (en) 2010-11-25 2016-02-23 Arkema France Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
CN103228757B (en) * 2010-11-25 2016-02-17 阿克马法国公司 The composition of chlorine trifluoro propene and hexafluorobutene
EP3543311A1 (en) 2010-11-25 2019-09-25 Arkema France Use of compositions of chloro-trifluoropropene and hexafluorobutene
CN103228757A (en) * 2010-11-25 2013-07-31 阿克马法国公司 Compositions of chloro-rifluoropropene and hexafluorobutene
US9982178B2 (en) 2010-11-25 2018-05-29 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US10150901B2 (en) 2010-12-03 2018-12-11 Arkema France Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene
CN103370390A (en) * 2011-01-19 2013-10-23 霍尼韦尔国际公司 Azeotrope-like compositions of trans-1,1,1,4,4,4-hexafluoro-2-butene and water
WO2012099844A3 (en) * 2011-01-19 2012-10-18 Honeywell International Inc. Azeotrope-like compositions of trans-1,1,1,4,4,4-hexafluoro-2-butene and water
US9359541B2 (en) 2011-07-01 2016-06-07 Arkema France Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
US9145507B2 (en) * 2011-07-01 2015-09-29 Arkema France Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
US20140083119A1 (en) * 2011-07-01 2014-03-27 Arkema France Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
US9909045B2 (en) 2012-04-04 2018-03-06 Arkema France Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene
US9514959B2 (en) 2012-10-30 2016-12-06 American Air Liquide, Inc. Fluorocarbon molecules for high aspect ratio oxide etch
US10381240B2 (en) 2012-10-30 2019-08-13 American Air Liquide, Inc. Fluorocarbon molecules for high aspect ratio oxide etch
US11152223B2 (en) 2012-10-30 2021-10-19 American Air Liquide, Inc. Fluorocarbon molecules for high aspect ratio oxide etch
WO2018236477A3 (en) * 2017-05-08 2019-04-11 Honeywell International Inc. Fire extinguishing compositions, systems and methods
WO2019104055A1 (en) * 2017-11-27 2019-05-31 The Chemours Company Fc, Llc Aerosol compositions
GB2581732A (en) * 2017-11-27 2020-08-26 Chemours Co Fc Llc Aerosol compositions
WO2022261267A1 (en) 2021-06-09 2022-12-15 The Chemours Company Fc, Llc Compositions comprising e-hfo-1336mzz and methyl formate and their use as expansion agents for thermoplastic foam

Also Published As

Publication number Publication date
BRPI0809736A8 (en) 2018-12-04
CN106474649B (en) 2019-09-10
CN106474649A (en) 2017-03-08
BR122018074418B1 (en) 2019-03-26
BR122018074416B1 (en) 2019-03-19
ES2509882T3 (en) 2014-10-20
EP2152833B1 (en) 2014-07-23
CN110643328B (en) 2022-04-01
CN106634849A (en) 2017-05-10
US7972525B2 (en) 2011-07-05
BRPI0809736B1 (en) 2019-03-19
BR122018074413B1 (en) 2019-03-19
AU2008261695A1 (en) 2008-12-18
KR101434710B1 (en) 2014-08-26
BR122018074407B1 (en) 2019-03-19
CN106433563B (en) 2018-09-28
CN106634849B (en) 2018-03-09
CN101679841A (en) 2010-03-24
CN106433563A (en) 2017-02-22
US20110220832A1 (en) 2011-09-15
US8262924B2 (en) 2012-09-11
KR20100037591A (en) 2010-04-09
JP5460586B2 (en) 2014-04-02
US20100163776A1 (en) 2010-07-01
JP2010532395A (en) 2010-10-07
MY149324A (en) 2013-08-30
EP2152833A1 (en) 2010-02-17
CN110951463B (en) 2021-06-11
CA2684290C (en) 2016-09-06
CN103980521B (en) 2016-11-23
CN110643328A (en) 2020-01-03
CA2684290A1 (en) 2008-12-18
CN103980521A (en) 2014-08-13
BRPI0809736B8 (en) 2019-04-09
CN110951463A (en) 2020-04-03
MX2009013465A (en) 2010-01-15
BRPI0809736A2 (en) 2014-10-14
CN101679841B (en) 2014-07-02
AU2008261695B2 (en) 2013-05-30
BR122018074411B1 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
EP3461805B1 (en) Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
JP5460586B2 (en) Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
EP3095830B1 (en) Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4- hexafluoro-2-butene
EP2768893B1 (en) Azeotrope-like compositions of e-1-chloro-2,3,3,3-tetrafluoropropene and uses thereof
WO2009032983A1 (en) Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,5,5,5-octafluoro-2-pentene
CA2944302C (en) Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
AU2011245438B2 (en) Azeotropic and azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene
EP2670812A2 (en) Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof
WO2011085309A1 (en) Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene, and 1,1,1,3,3-pentafluorobutane
WO2014028697A1 (en) Azeotropic and azeotrope-like compositions of 2,3,3,4,4,4-hexafluoro-1-butene and 1,1,1,2,3,3-hexafluoropropane and uses thereof
AU2017201144B8 (en) Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
WO2014022638A1 (en) Azeotropic and azeotrope-like compositions of e-1,3,4,4,4-pentafluoro-3-trifluoromethyl-1-butene and z-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
WO2016025138A1 (en) Azeotropic and azeotrope-like compositions of hfo-e-1,3,4,4,4-pentafluoro-3-trifluoromethyl-1-butene and uses thereof
WO2012009411A1 (en) Azeotropic and azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene
WO2015130478A1 (en) Azeotropic and azeotrope-like compositions of e-1-chloro-3,3,3-trifluoropropene and a pentane and uses thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880019944.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08770760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008261695

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2684290

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12598038

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2008261695

Country of ref document: AU

Date of ref document: 20080612

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008770760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7536/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 09139917

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2009121795

Country of ref document: EG

Ref document number: MX/A/2009/013465

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010512334

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI 20094957

Country of ref document: MY

ENP Entry into the national phase

Ref document number: 20107000495

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0809736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091029