WO2009009036A1 - Multi-level tubular reactor with oppositely extending segments - Google Patents

Multi-level tubular reactor with oppositely extending segments Download PDF

Info

Publication number
WO2009009036A1
WO2009009036A1 PCT/US2008/008344 US2008008344W WO2009009036A1 WO 2009009036 A1 WO2009009036 A1 WO 2009009036A1 US 2008008344 W US2008008344 W US 2008008344W WO 2009009036 A1 WO2009009036 A1 WO 2009009036A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
header
reaction medium
segments
range
Prior art date
Application number
PCT/US2008/008344
Other languages
French (fr)
Inventor
Thomas Lloyd Yount
Bruce Roger Debruin
Michael Paul Ekart
Larry Cates Windes
David Allen Sliger
Original Assignee
Eastman Chemical Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Chemical Company filed Critical Eastman Chemical Company
Publication of WO2009009036A1 publication Critical patent/WO2009009036A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/242Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical

Definitions

  • This invention relates to reactors for processing liquid-containing reaction mediums.
  • the invention concerns polycondensation reactors used for melt-phase production of polyesters.
  • PET polyethylene terephthalate
  • PET is widely used in beverage, food, and other containers, as well as in synthetic fibers and resins. Advances in process technology coupled with increased demand have led to an increasingly competitive market for the production and sale of PET. Therefore, a low-cost, high-efficiency process for producing PET is desirable.
  • melt-phase polyester production facilities employ an esterification stage and a polycondensation stage.
  • esterification stage polymer raw materials (i.e., reactants) are converted to polyester monomers and/or oligomers.
  • polyester monomers exiting the esterification stage are converted into a polymer product having the desired final average chain length.
  • esterification and polycondensation are carried out in one or more mechanically agitated reactors, such as, for example, continuous stirred tank reactors (CSTRs).
  • CSTRs and other mechanically agitated reactors have a number of drawbacks that can result in increased capital, operating, and/or maintenance costs for the overall polyester production facility.
  • the mechanical agitators and various control equipment typically associated with CSTRs are complex, expensive, and can require extensive maintenance.
  • a process comprising subjecting a reaction medium to a chemical reaction in a reactor comprising a vertically elongated header, a first set of vertically spaced horizontally elongated reactor segments, and a second set of vertically spaced horizontally elongated reactor segments.
  • the first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. At least a portion of the reaction medium flows through the header and the first and second sets of reactor segments as the reaction medium travels through the reactor.
  • a process for making polyethylene terephthalate comprising: (a) introducing a polycondensation feed into a polycondensation reactor, wherein the polycondensation feed forms a reaction medium in the reactor, wherein the polycondensation feed comprises PET having an average chain length in the range of from about 5 to about 50; (b) subjecting the reaction medium to polycondensation in the reactor, wherein the reactor comprises a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated reactor segments, wherein the first and second sets of reactor segments are coupled to and extend outwardly from generally opposite sides of the header, wherein the reaction medium passes downwardly through the header as the reaction medium travels from an upper one of the reactor segments to a lower one of the reactor segments, wherein the upper and lower reactor segments comprise respective upper and lower elongated pipes and respective upper and lower internal trays
  • a reactor comprising a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated vertically spaced reactor segments.
  • the first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header.
  • FIG. 1 is a schematic depiction of a multi-level tubular reactor configured in accordance with one embodiment of the present invention and suitable for use as a polycondensation reactor in a melt-phase polyester production facility;
  • FIG. 1a is an enlarged side view depicting an alternative configuration for introducing a feed stream into the reactor of FIG. 1 ;
  • FIG. 1b is a top view of the alternative feed introduction system depicted in FIG. 1a;
  • FIG. 1c is a sectional end view of the alternative feed introduction system, taken along line 1c-1c in FIG. 1a; and
  • FIG. 2 is a schematic depiction of a multi-level tubular reactor configured in accordance with another embodiment of the present invention and suitable for use as a polycondensation reactor in a melt-phase polyester production facility.
  • FIGS. 1 and 2 illustrate exemplary multi-level tubular reactors configured in accordance with two embodiments of the present invention.
  • the configuration and operation of the reactors depicted in FIGS. 1 and 2 are described in detail below.
  • reactors configured in accordance with embodiments of the present invention may find application in a wide variety of chemical processes.
  • reactors configured in accordance with certain embodiments of the present invention may be advantageously employed in any process where chemical reactions take place in the liquid phase of a reaction medium and a vapor byproduct is produced as a result of the chemical reaction.
  • reactors configured in accordance with certain embodiments of the present invention may be advantageously employed in chemical processes where at least a portion of the reaction medium forms foam during processing.
  • a multi-level tubular reactor 10 is illustrated as generally comprising a vertically elongated header 12 and a group of horizontally elongated vertically spaced reactor segments 14 coupled to and extending outwardly from header 12.
  • Header 12 generally comprises an upright tubular shell 16, a pair of end caps 17a,b coupled to opposite ends of shell 16, and a plurality of flow diverters 18a,b,c disposed within the internal volume of header 12.
  • a first vapor gap 20a is defined between flow diverters 18a and 18b, while a second vapor gap 20b is defined between flow diverters 18b and 18c.
  • Header 12 defines a vapor outlet 22 in upper end cap 17a and a liquid product outlet 24 in lower end cap 17b.
  • One side of header 12 defines a plurality of vertically spaced openings that provide fluid communication between the internal volume of header 12 and the group of reactor segments 14 coupled to the side of header 12.
  • shell 16 of header 12 is a substantially vertical, substantially cylindrical pipe.
  • shell 16 can be a vertically elongated tubular member having a variety of cross-sectional configurations (e.g., rectangular, square, or oval). Further, shell 16 need not have a perfectly vertical orientation. For example, the central axis of elongation of shell 16 can extend within about 30, about 15, or 5 degrees of vertical.
  • header 12 has a maximum internal height (H) that is greater than its maximum internal width (W).
  • header 12 has a height-to-width (H:W) ratio in the range of from about 2:1 to about 20:1 , about 4:1 to about 15:1 , or 5:1 to 10:1.
  • H is in the range of from about 8 to about 100 feet, about 10 to about 75 feet, or 20 to 50 feet
  • W is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.
  • the group of reactor segments 14 is directly coupled to and extends generally outwardly from a common side of header 12.
  • the group of reactor segments 14 includes a trayless reactor segment 26, an uppermost trayed reactor segment 28a, an intermediate trayed reactor segment 28b, and a lowermost trayed reactor segment 28c.
  • Each reactor segment 26 and 28a, b,c presents a proximal end coupled in fluid communication with header 12 and a distal end spaced from header 12.
  • Trayless reactor segment 26 defines a feed inlet 30 near the distal end thereof and an outlet 32 near the proximal end thereof.
  • Trayless reactor segment 26 generally comprises a horizontally elongated tubular member 34 and an end cap 36.
  • Tubular member 34 is coupled to header 12 near the proximal end of trayless reactor segment 26, while end cap 36 is coupled to tubular member 34 near the distal end of trayless reactor segment 26.
  • a weir 38 can, optionally, be couple to and extend upwardly from the bottom of tubular member 34 near outlet 32 (as shown in FIG. 1) and/or multiple spaced-apart weirs (not shown) can be located along the length of tubular member 34.
  • Each trayed reactor segment 28a, b,c defines a respective reaction medium inlet 40a,b,c and a respective reaction medium outlet 42a, b,c.
  • Inlets 40a,b,c and outlets 42a,b,c are located near the proximal end of reactor segments 28a,b,c and are in fluid communication with the internal volume of header 12.
  • Each trayed reactor segment 28a,b,c generally comprises a horizontally elongated tubular member 44a, b,c, an end cap 46a,b,c, and a tray 48a, b,c.
  • Tubular members 44a, b,c are each directly coupled to header 12 near the proximal end of reactor segments 28a, b,c.
  • End caps 46a, b,c are coupled to tubular members 44a, b,c near the distal end of reactor segments 28a,b,c.
  • Trays 48a, b,c are disposed within respective tubular members 44a, b,c and extend along a substantial length of tubular members 44a, b,c.
  • Each tray 48a, b,c presents a proximal end coupled to a respective flow diverter 18a,b,c and a distal end located near the distal end of reactor segments 28a, b,c.
  • Each tray 48a, b,c can have a length that is at least about 0.5L, about 0.75L, or 0.9L, where L is the maximum length of the reactor segment 28a,b,c and/or tubular member 44a, b,c within which the respective tray 48a, b,c is received.
  • Each tray 48a, b,c divides the internal volume of the respective reactor segment 28a, b,c into an upper chamber 50a, b,c and a lower chamber 52a, b, c.
  • each tray 48a,b,c presents a substantially horizontal, substantially planar, upwardly facing flow surface across which liquids can flow.
  • each tray 48a,b,c can be spaced from the top and/or bottom of tubular members 44a, b, c by a vertical distance in the range of from about 0.1 D to about 0.9D, about 0.2D to about 0.8D, or 0.4D to 0.6D 1 where D is the maximum vertical dimension of the tubular member 44a, b,c within which the respective tray 48,a,b,c is received.
  • each tray 48a, b,c is spaced from end caps 46a, b,c so that a flow passageway 54a, b,c is defined by the gap between the distal end of each tray 48a,b,c and end caps 46a, b,c.
  • the distal end of each tray 48a, b, c can, optionally, be equipped with an upwardly extending weir 56a, b,c.
  • Each trayed reactor segment 28a, b,c can, optionally, be equipped with a weir 58a, b,c coupled to and extending upwardly from the bottom of tubular members 44a, b,c near outlets 42a, b,c. In the embodiment illustrated in FIG.
  • tubular members 34 and 44a,c,b of each reactor segment 26 and 28a, b,c are substantially horizontal pipes, and trays 48a, b,c are substantially flat, substantially horizontal, substantially rectangular plates rigidly and sealingly coupled to the inside walls of the pipe.
  • tubular members 34 and 44a, c,b of each reactor segment 26 and 28a, b,c can have a variety of cross- sectional shapes (e.g., rectangular, square, or oval).
  • tubular members 34 and 44a, c,b and trays 48a, b,c need not have a perfectly horizontal orientation.
  • the central axis of elongation of tubular members 34 and 44a,c,b can extend within about 30, about 15, or 5 degrees of horizontal.
  • trays 48a, b,c can be supported in tubular members 44a, b, c using a variety of support mechanisms such as, for example, welding to both sidewalls of tubular members 44a, b,c, support legs extending from the bottom of tubular members 44a, b,c, or suspension from the top of tubular members 44a, b, c.
  • each reactor segment 26 and 28a, b, c and/or each tubular member 34 and 44a, b,c has a maximum internal length (L) that is greater than its maximum internal diameter (D).
  • each reactor segment 26 and 28a, b,c and/or each tubular member 34 and 44a,b,c has a length-to-diameter (LD) ratio in the range of from about 2:1 to about 50:1, about 5:1 to about 20:1 , or 8:1 to 15:1.
  • L is in the range of from about 10 to about 200 feet, about 20 to about 100 feet, or 30 to 50 feet
  • D is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.
  • the ratio of the diameter (D) of one or more of reactor segments 26 and 28a,b,c to the maximum internal width of header (W) is in the range of from about 0.1 :1 to about 2:1 , about 0.25:1 to about 1 :1 , or 0.4:1 to 0.9:1.
  • each trayed reactor segment 28a, b,c has a substantially identical configuration.
  • reactor segments 28a,b,c can have different lengths, different diameters, and/or different orientations.
  • reactor 10 comprises one non- trayed reactor segment 26 and three trayed reactor segments 28a, b,c.
  • the number and configuration of reactor segments can be optimized to match the application for which reactor 10 is employed.
  • reactor 10 could employ only trayed reactor segments (i.e., no non-trayed reactor segments). In such a configuration, the uppermost trayed reactor segment would define a feed inlet near the header.
  • the reactor could employ one non-trayed reactor segment and two trayed reactor segments.
  • FIG. 1 illustrates feed inlet 30 as being located in end cap 36
  • the feed inlet can be defined in the side of tubular member 34 near, but spaced from, the distal end of non-trayed reactor segment 26.
  • FIGS. 1a-c illustrate an alternative feed introduction system 90 that introduces the reactor feed through the side of reactor segment 26.
  • side feed introduction system 90 includes an inlet opening 92 defined in the side of reactor segment 26, an internal feed distributor 94 extending into reactor segment 26, and a discharge opening 96 defined by feed distributor 94.
  • FIGS. 1 illustrates feed introduction system 90 that introduces the reactor feed through the side of reactor segment 26.
  • side feed introduction system 90 includes an inlet opening 92 defined in the side of reactor segment 26, an internal feed distributor 94 extending into reactor segment 26, and a discharge opening 96 defined by feed distributor 94.
  • feed distributor 94 is a substantially cylindrical conduit that is fixed to the sidewall of reactor segment 26 at inlet opening 92.
  • the distal end of feed distributor 94 defines discharge opening 96 at a location spaced from the side walls and the end of reactor segment 26.
  • discharge opening 96 can be formed by cutting the distal end of feed distributor 94 at a skewed angle so that discharge opening 96 faces at least partially towards the closed end of reactor segment 26. The location and orientation of discharge opening 96 can increase liquid circulation and help reduce or eliminate stagnant zones near the end of reactor segment 26.
  • a feed which can be in a predominately liquid form, is introduced into reactor 10 via feed inlet 30 of non-trayed reactor segment 26.
  • the feed forms a reaction medium 60 that flows generally horizontally on the bottom of tubular member 34 from the distal end of non-trayed reactor segment 26 to the proximal end of non-trayed reactor segment 26.
  • reaction medium 60 flows through non-trayed reactor segment 26
  • a chemical reaction takes place within reaction medium 60.
  • a vapor 62 can be formed in non-trayed reactor segment 26.
  • Vapor 62 can comprise a byproduct of the chemical reaction carried out in reactor segment 26 and/or a volatile component of the feed to reactor segment 26. At least a portion of vapor 62 is disengaged from and flows generally over reaction medium 60 as reaction medium 60 flows through non-trayed reactor segment 26.
  • the chemical reaction carried out in reactor 10 causes foaming of reaction medium 60, thereby producing a foam portion 64 and a predominately liquid portion 66 of reaction medium 60.
  • the chemical reaction can take place in the liquid of both foam portion 64 and predominately liquid portion 66.
  • the presence of foam can actually enhance certain chemical reactions, especially those reactions that are facilitated by increased liquid surface area and reduced pressure.
  • the internal volume and open flow area of the reactor segments are sufficiently large so that the maximum amount of foam formation is permitted.
  • the reaction medium 60 in the initial reactor segment may comprise more than 50, 75, or 90 volume percent gas, while the reaction medium 60 in the final reactor segment may comprise less than 20, 10, or 5 volume percent gas.
  • reaction medium 60 passes out of non-trayed reactor segment 26 via outlet 32.
  • reaction medium 60 flows over the top of, around the edges of, through openings in, and/or under weir 38 as it exits non-trayed reactor segment 26 and enters the internal volume of header 12.
  • vapor 62 flows upwardly into header 12.
  • vapor 62 from non-trayed reactor segment 26 can be combined with the vapor produced in trayed reactor segments 28a, b,c. The resulting combined vapor can exit header 12 via vapor outlet 22.
  • reaction medium 60 flows downwardly in header 12 and is directed by flow diverter 18a to inlet 40a of uppermost trayed reactor segment 28a.
  • reaction medium 60 flows generally horizontally across the upwardly facing surface of tray 48a and towards the distal end of reactor segment 28a.
  • reaction medium 60 is subjected to chemical reaction in reactor segment 28a, and the chemical reaction can cause the formation of a vapor byproduct and/or foam as reaction medium 60 flows across tray 48a.
  • the vapor can flow in upper chamber
  • reaction medium 60 enters upper chamber 50a through inlet 40a.
  • reaction medium 60 When reaction medium 60 reaches the terminal end of tray 48a, it falls downwardly through flow passageway 54a and onto the bottom of tubular member 44a. When the terminal end of tray 48a is equipped with weir 56a, reaction medium 60 flows over the top of, around the edges of, through openings in, and/or under weir 56a prior to entering flow passageway 54a. Reaction medium 60 then flows on the bottom of tubular member 44a from the distal end of reactor segment 28a to the proximal end of reactor segment 28a. When reaction medium 60 reaches the proximal end of reactor segment 28a, it exits reactor segment 28a via outlet 42a and enters header 12.
  • reaction medium 60 flows generally over reaction medium 60 and exits lower chamber 52a along with reaction medium 60 via outlet 42a.
  • weir 58a is provided at outlet 42a, at least a portion of reaction medium 60 flows over the top of, around the edges of, through openings in, and/or under weir 58a.
  • weirs 38, 56a, b,c, and 58a, b,c can be employed in reactor 10 to help maintain the desired depth of reaction medium 60 in reactor segments 26 and 28a, b, c.
  • the maximum depth reaction medium 60 in each reactor segment 26 and 28a, b,c is less than about 0.8D, less than about 0.4D, or less than 0.25D, where D is the maximum vertical dimension of the respective reactor segment 26 and 28 a,b,c.
  • reaction medium 60 passes out of uppermost trayed reactor segment 28a and flows downwardly in header 12, the vapor produced in trayed reactor segment 28a flows upwardly into header 12.
  • the vapor exiting lower chamber 52a of reactor segment 28a can pass through a vapor gap 20a defined by flow diverter 18b or between flow diverters 18a and 18b.
  • the vapor produced in reactor segment 28a can be combined in header 12 with the vapor produced in non-trayed reactor segment 26 and trayed reactor segments 28b, c.
  • the resulting combined vapor exits header 12 via vapor outlet 22.
  • reaction medium 60 flows downwardly in header 12 and is directed by flow diverter 18b to inlet 40b of intermediate trayed reactor segment 28b.
  • reaction medium 60 proceeds through trayed reactor segments 28a, b,c as follows: (a) reaction medium 60 is directed from header 12 to trayed reactor segments 28a, b,c by flow diverters 18a,b,c; (b) reaction medium 60 enters trayed reactor segments 28a, b,c via inlets 40a,b,c; (c) reaction medium 60 flows generally away from header 12 on trays 48a, b,c; (d) reaction medium 60 falls downwardly over a terminal end of trays 48a,b,c and onto the bottom of tubular members 44a, b,c; (e) reaction medium 60 flows back toward header 12 on the bottom of tubular members 44a, b,c; (e) reaction medium 60 exits trayed reactor segments 28a, b,c via outlets 42a, b,c; and (f
  • the reaction medium 60 exiting lowermost trayed reactor segment 28c flows into header 12 and collects in the bottom thereof. This final reaction medium 60 is withdrawn from header 12 as a predominately liquid product via liquid product outlet 24.
  • impingement plates can be employed in header 12 near one or more of vapor outlet 22, non-trayed reactor segment outlet 32, and trayed reactor segment outlets 42a, b,c. Such impingement plates can be located in the vapor flow paths so that liquid entrained in the flowing vapor hits, collects on, and falls downwardly off of the impingement plates. This helps ensure that only vapor exits vapor outlet 22 of header 12.
  • a second embodiment of a multi-level tubular reactor 100 is illustrated as generally comprising a header 102, a first set of trayed reactor segments 104a,b,c,d, and a second set of trayed reactor segments 106a,b,c,d.
  • first and second sets of reactor segments 104a,b,c,d and 106a,b,c,d extend outwardly from generally opposite sides of header 102.
  • the sets of reactor segments can extend from different sides of header 102 that are not necessarily opposite.
  • the two sets of reactor segments could extend outwardly from the header at a 45°, 60°, 75°, 90°, 105°, 130°, 145°, or 160° angle relative to one another.
  • reactor 100 could employ three sets of reactor segments circumferentially spaced around header 102 at 120° angles relative to one another.
  • header 102 defines a feed inlet 108 for receiving a feed, which can be in a predominately liquid form, a product outlet 110 for discharging a predominately liquid product, and a pair of vapor outlets 112a,b for discharging a vapor.
  • Header 102 generally comprises a flow splitter 114, a first set of flow diverters 116a,b,c, and a second set of flow diverters 118a,b,c.
  • First and second sets of reactor segments 104a,b,c,d and 106a,b,c,d can have substantially the same configuration as the trayed reactor segments described above with reference to FIG. 1. Thus, the specific configuration and operational details of trayed reactor segments 104a,b,c,d and 106a,b,c,d will not be re-described.
  • reactor 100 receives a feed, which can be in a predominately liquid form, via feed inlet 108.
  • Flow splitter 114 splits the feed into two substantially equal portions. Flow splitter 114 then directs one of the portions to the internal tray of uppermost first reactor segment 104a, and the other portion to the internal tray of uppermost second reactor segment 106a. Once the split feed portions enter the trayed reactor segments, flow through the trayed reactor segments can proceed in substantially the same manner as described above with respect for FIG.
  • reaction medium following a flow path that includes an outward portion (i.e., flow away from the header on the internal tray), a downward portion (i.e., flow from the tray to the bottom of the tubular member), and an inward portion (i.e., flow back toward the header on the bottom of the tubular member).
  • the reaction medium is then directed through the header by the flow diverters to the next lower reactor segment.
  • the reaction medium exits lowermost reactor segments 104d and 106d, the two portions of the reaction medium combine to form the predominately liquid product, which is withdrawn from header 102 via liquid product outlet 110.
  • Multi-level tubular reactors configured in accordance with certain embodiments of the present invention require little or no mechanical agitation of the reaction medium processed therein.
  • the reaction medium processed in the multi-level tubular reactor may be somewhat agitated by virtue of foaming, flowing through the reactor segments, and falling from one reactor segment to another, this foaming agitation, flow agitation, and gravitational agitation is not mechanical agitation.
  • less than about 50 percent, less than about 25 percent, less than about 10 percent, less than about 5 percent, or 0 percent of the total agitation of the reaction medium processed in the multi-level tubular reactor is provided by mechanical agitation.
  • reactors configured in accordance with certain embodiments of the present invention can operate without any mechanical mixing devices. This is in direct contrast to conventional continuous stirred tank reactors (CSTRs) which employ mechanical agitation almost exclusively.
  • CSTRs continuous stirred tank reactors
  • multi-level tubular reactors configured in accordance with embodiments of the present invention reactors can be used in a variety of chemical processes.
  • a multi-level tubular reactor configured in accordance with the present invention is employed in a melt-phase polyester production facility capable of producing any of a variety of polyesters from a variety of starting materials.
  • melt-phase polyesters examples include, but are not limited to, polyethylene terephthalate (PET), which includes homopolymers and copolymers of PET; fully aromatic or liquid crystalline polyesters; biodegradable polyesters, such as those comprising butanediol, terephthalic acid and adipic acid residues; poly(cyclohexane-dimethylene terephthalate) homopolymer and copolymers; and homopolymers and copolymers of 1 ,4-cyclohexane-dimethanol (CHDM) and cyclohexane dicarboxylic acid or dimethyl cyclohexanedicarboxylate.
  • PET polyethylene terephthalate
  • CHDM 1 ,4-cyclohexane-dimethanol
  • such copolymer can comprise at least 90, at least 91 , at least 92, at least 93, at least 94, at least 95, at least 96, at least 97, at least 98 mole percent of ethylene terephthalate repeat units and up to 10, up to 9, up to 8, up to 7, up to 6, up to 5, up to 4, up to 3, or up to 2 mole percent of added comonomer repeat units.
  • the comonomer repeat units can be derived from one or more comonomers selected from the group consisting of isophthalic acid, 2,6-naphthaline-dicarboxylic acid, CHDM, and diethylene glycol.
  • a polyester production process can comprise two main stages - an esterification stage and a polycondensation stage.
  • the polyester starting materials which can comprise at least one alcohol and at least one acid, are subjected to esterification to thereby produce polyester monomers and/or oligomers.
  • the polyester monomers and/or oligomers from the esterification stage are reacted into the final polyester product.
  • monomers have less than 3 chain lengths
  • oligomers have from about 7 to about 50 chain lengths (components with a chain length of 4 to 6 units can be considered monomer or oligomer)
  • polymers have greater than about 50 chain lengths.
  • a dimer for example, EG-TA-EG-TA-EG, has a chain length of 2, and a trimer 3, and so on.
  • the acid starting material employed in the esterification stage can be a dicarboxylic acid such that the final polyester product comprises at least one dicarboxylic acid residue having in the range of from about 4 to about 15 or from 8 to 12 carbon atoms.
  • dicarboxylic acids suitable for use in the present invention can include, but are not limited to, terephthalic acid, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, cyclohexanedicarboxylic acid, cyclohexanediacetic acid, diphenyl-4,4 1 - dicarboxylic acid, dipheny-3,4'-dicarboxylic acid, 2,2,-dimethyl-1 ,3-propandiol, dicarboxylic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and mixtures thereof.
  • the acid starting material can be a corresponding ester, such as dimethyl ter
  • the alcohol starting material employed in the esterification stage can be a diol such that the final polyester product can comprise at least one diol residue, such as, for example, those originating from cycloaliphatic diols having in the range of from about 3 to about 25 carbon atoms or 6 to 20 carbon atoms.
  • Suitable diols can include, but are not limited to, ethylene glycol (EG), diethylene glycol, triethylene glycol, 1 ,4-cyclohexane-dimethanol, propane-1 ,3-diol, butane-1 ,4-diol, pentane-1 ,5-diol, hexane-1 ,6-diol, neopentylglycol, 3-methylpentanediol-(2,4), 2-methylpentanediol-(1 ,4), 2,2,4- trimethylpentane-diol-(1 ,3), 2-ethylhexanediol-(1 ,3), 2,2-diethylpropane-diol- (1 ,3), hexanediol-(1 ,3), 1 ,4-di-(hydroxyethoxy)-benzene, 2,2-bis-(4- hydroxycyclohex
  • the starting materials can comprise one or more comonomers.
  • Suitable comonomers can include, for example, comonomers comprising terephthalic acid, dimethyl terephthalate, isophthalic acid, dimethyl isophthalate, dimethyl-2,6-naphthalenedicarboxylate, 2,6-naphthalene- dicarboxylic acid, ethylene glycol, diethylene glycol, 1 ,4-cyclohexane- dimethanol (CHDM), 1 ,4-butanediol, polytetramethyleneglyocl, trans-DMCD, trimellitic anhydride, dimethyl cyclohexane-1 ,4 dicarboxylate, dimethyl decalin-2,6 dicarboxylate, decalin dimethanol, decahydronaphthalane 2,6- dicarboxylate, 2,6-dihydroxymethyl-decahydronaphthalene, hydroquinone, hydroxybenzoic acid, and mixtures thereof.
  • Both the esterification stage and the polycondensation stage of a melt- phase polyester production process can include multiple steps.
  • the esterification stage can include an initial esterification step for producing a partially esterified product that is then further esterified in a secondary esterification step.
  • the polycondensation stage can include a prepolymerization step for producing a partially condensed product that is then subjected to a finishing step to thereby produce the final polymer product.
  • Reactors configured in accordance with certain embodiments of the present invention can be employed in a melt-phase polyester production system as a secondary esterification reactor for carrying out a secondary esterification step, as a prepolymer reactor for carrying out a prepolymerization step, and/or as a finisher reactor for carrying out a finishing step.
  • a detailed description of the process conditions for the present invention employed as an esterification reactor, a prepolymer reactor, and/or a finisher reactor is given below with reference to FIG. 1. It is understood that reactors configured in accordance with embodiments of the present invention can generally be employed as esterification reactors, prepolymer reactors, and/or finisher reactors and that these process conditions are not limited to the embodiment described in FIG. 1 ,
  • reactor 10 when reactor 10 is employed as a secondary esterification reactor in a melt-phase polyester production process (e.g., a process for making PET) 1 more than one chemical reaction can be carried out in reactor 10.
  • esterification may be the primary chemical reaction carried out in reactor 10
  • a certain amount of polycondensation may also occur in reactor 10.
  • the feed introduced into feed inlet 30 of reactor segment 26 can have a conversion in the range of from about 70 to about 95 percent, about 75 to about 90 percent, or 80 to 88 percent, while the predominately liquid product withdrawn from liquid product outlet 24 of header 12 can have a conversion of at least about 80 percent, at least about 90 percent, at least about 95 percent, or at least 98 percent.
  • the chemical reaction(s) carried out in reactor 10 can increase the conversion of reaction medium 60 by at least about 2 percentage points, at least about 5 percentage points, or at least 10 percentage points between feed inlet 30 and liquid product outlet 24.
  • the average chain length of the feed introduced into feed inlet 30 can be less than about 5, less than about 2 or less than 1
  • the predominately liquid product withdrawn from liquid product outlet 24 can have an average chain length in the range of from about 1 to about 20, about 2 to about 12, or 5 to 12.
  • the average chain length of reaction medium 60 can increase in the range of from about 1 to about 20, about 2 to about 15, or 5 to 12 between feed inlet 30 and liquid product outlet 24.
  • the feed to reactor 10 can enter feed inlet 30 at a temperature in the range of from about 180 to about 350 0 C, about 215 to about 305 0 C, or 260 to 290°C.
  • the predominately liquid product exiting liquid product outlet 24 can have a temperature within about 50 0 C, 25°C, or 10°C of the temperature of the feed entering feed inlet 30.
  • the temperature of the liquid product exiting liquid product outlet 24 can be in the range of from about 180 to about 350 0 C, about 215 to about 305 0 C, or 260 to 290°C.
  • the average temperature of reaction medium 60 in reactor 10 is in the range of from about 180 to about 35O 0 C, about 215 to about 305°C, or 260 to 290 0 C.
  • the average temperature of reaction medium 60 is the average of at least three temperature measurements taken at equal spacings along the primary flow path of reaction medium 60 through reactor 10, where the temperature measurements are each taken near the cross sectional centroid of predominately liquid portion 66 of reaction medium 60 (as opposed to near the wall of the reactor or near the upper surface of the predominately liquid portion).
  • reactor 10 When reactor 10 is employed as a secondary esterification reactor, the vapor space pressure in reactor 10 (measured at vapor outlet 22) can be maintained at less than about 70 psig, in the range of from about -4 to about 10 psig, or in the range of from 2 to 5 psig.
  • reactor 10 When reactor 10 is employed as a secondary esterification reactor, it may be desirable to heat the feed prior to introduction into reactor 10 and/or it may be desirable to heat reaction medium 60 as it flows through reactor 10.
  • the heating of the feed prior to introduction into reactor 10 can be carried out in a conventional heat exchanger such as, for example, a shell-and-tube heat exchanger.
  • the heating of reaction medium 60 in reactor 10 can be carried out by external heating devices that contact reactor 10, but do not extend into the interior of reactor 10.
  • Such external heat exchange devices include, for example, jacketing and/or heat-tracing.
  • the cumulative amount of heat added to the feed immediately upstream of reactor 10 plus the heat added to reaction medium 60 in reactor 10 can be in the range of from about 100 to about 5,000 BTU per pound of reaction medium (BTU/lb), in the range of from about 400 to about 2,000 BTU/lb, or in the range of from 600 to 1 ,500 BTU/lb.
  • reactor 10 when reactor 10 is employed as a prepolymer reactor in a melt-phase polyester production process (e.g., a process for making PET), more than one chemical reaction can be carried out in reactor 10.
  • a certain amount of esterification may also occur in reactor 10.
  • the average chain length of the feed introduced into feed inlet 30 can be in the range of from about 1 to about 20, about 2 to about 15, or 5 to 12, while the average chain length of the predominately liquid product withdrawn from liquid product outlet 24 can be in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30.
  • the chemical reaction carried out in reactor 10 can cause the average chain length of reaction medium 60 to increase by at least about 2, in the range of from about 5 to about 30, or in the range of from 8 to 20 between feed inlet 30 and liquid product outlet 24.
  • the feed can enter feed inlet 30 at a temperature in the range of from about 220 to about 350 0 C, about 265 to about 305 0 C, or 270 to 290°C.
  • the predominately liquid product exiting liquid product outlet 24 can have a temperature within about 5O 0 C, 25°C, or 10 0 C of the temperature of the feed entering feed inlet 30.
  • the temperature of the liquid product exiting liquid product outlet 24 is in the range of from about 220 to about 350°C, about 265 to about 305 0 C, or 270 to 290 0 C.
  • the average temperature of reaction medium 60 in reactor 10 is in the range of from about 220 to about 35O 0 C, about 265 to about 305 0 C, or 270 to 29O 0 C.
  • the vapor space pressure in reactor 10 (measured at vapor outlet 22) can be maintained in the range of from about 0 to about 300 torr, in the range of from about 1 to about 50 torr, or in the range of from 20 to 30 torr.
  • reactor 10 When reactor 10 is employed as a prepolymer reactor, it may be desirable to heat the feed prior to introduction into reactor 10 and/or it may be desirable to heat reaction medium 60 as it flows through reactor 10.
  • the cumulative amount of heat added to the feed immediately upstream of reactor 10 plus the heat added to reaction medium 60 in reactor 10 can be in the range of from about 100 to about 5,000 BTU/lb, in the range of from about 400 to about 2,000 BTU/lb, or in the range of from 600 to 1 ,500 BTU/lb.
  • the average chain length of the feed introduced into feed inlet 30 can be in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30, while the average chain length of the predominately liquid product withdrawn from liquid product outlet 24 can be in the range of from about 30 to about 210, about 40 to about 80, or 50 to 70.
  • the polycondensation carried out in reactor 10 can cause the average chain length of reaction medium 60 to increase by at least about 10, at least about 25, or at least 50 between feed inlet 30 and liquid product outlet 24.
  • the feed can enter feed inlet 30 at a temperature in the range of from about 220 to about 350 0 C, about 265 to about 305 0 C, or 270 to 290 0 C.
  • the predominately liquid product exiting liquid product outlet 24 can have a temperature within about 50 0 C, 25°C, or 10 0 C of the temperature of the feed entering feed inlet 30.
  • the temperature of the liquid product exiting liquid product outlet 24 is in the range of from about 220 to about 350°C, about 265 to about 305 0 C, or 270 to 290°C.
  • the average temperature of reaction medium 60 in reactor 10 is in the range of from about 220 to about 350°C, about 265 to about 305°C, or 270 to 290 0 C.
  • the vapor space pressure in reactor 10 (measured at vapor outlet 22) can be maintained in the range of from about 0 to about 30 torr, in the range of from about 1 to about 20 torr, or in the range of from 2 to 10 torr.
  • Reactors configured in accordance with embodiments of the present invention can provide numerous advantages when employed as reactors in the esterification and/or polycondensation stages of a polyester production process. Such reactors can be particularly advantageous when employed as secondary esterification, prepolymer, and/or finisher reactors in a process for making PET. Further, such reactors are well suited for use in commercial scale PET production facilities capable of producing PET at a rate of at least about 10,000 pounds per hours, at least about 100,000 pounds per hour, at least about 250,000 pounds per hour, or at least 500,000 pounds per hour.
  • a process comprising subjecting a reaction medium to a chemical reaction in a reactor comprising a vertically elongated header, a first set of vertically spaced horizontally elongated reactor segments, and a second set of vertically spaced horizontally elongated reactor segments.
  • the first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. At least a portion of the reaction medium flows through the header and the first and second sets of reactor segments as the reaction medium travels through the reactor.
  • the header extends substantially vertically (i.e., the central axis of elongation for the header is essentially vertical). Alternatively, the header can extend within about 30, about 15, or 5 degrees of vertical. In one example, the reactor segments extend essentially horizontally (i.e., the central axis of elongation of the reactor segments is essentially horizontal). Alternatively the reactor segments can extend within about 30, about 15, or 5 degrees of horizontal. In another example, the reactor comprises no mechanical mixing device.
  • the reactor can, for example, comprise at least two, at least three, at least four, at least five, at least six, at least seven, or more vertically spaced horizontally elongated reactor segments in the first set of reactor segments, in the second set of reactor segments, and/or in both sets of reactor segments.
  • the reactor segments can extend outwardly from different sides of the header.
  • the reactor may comprise a first set of at least two reactor segments and a second set of at least two reactor segments, wherein the first and second sets of reactor segments extend outwardly from generally opposite sides of the header.
  • the sets of reactor segments can extend from different sides of the header that are not necessarily opposite.
  • the two sets of reactor segments could extend outwardly from the header at a 45°, 60°, 75°, 90°, 105°, 130°, 145°, or 160° angle relative to one another.
  • the reactor can employ three sets of reactor segments circumferentially spaced around the header at 120° angles relative to one another.
  • the reaction medium flows through at least one of the reactor segments, along a flow path that includes an outward portion where the reaction medium flows generally away from the header and an inward portion where the reaction medium flows generally towards the header.
  • the outward and inward portions of the flow path can each extend at least one-half, or at least three-quarters, or at least nine-tenths the length of the at least one of the reactor segments.
  • At least one of the reactor segments comprises a substantially horizontal pipe and at least one tray disposed in the pipe, wherein at least a portion of the reaction medium flows on the tray as the reaction medium flows through the at least one of the reactor segments.
  • at least one of the reactor segments comprises a horizontally elongated tubular member and a tray disposed substantially within the tubular member, wherein the tray extends along at least one-half, at least three-quarters, or at least nine-tenths the length of the tubular member. The reaction medium flows on the tray when traveling along the outward portion of the flow path and on the bottom of the tubular member when traveling along the inward portion of the flow path.
  • the at least one of the reactor segments receives the reaction medium onto the tray from the header and discharges the reaction medium into the header from the bottom of the tubular member.
  • the at least one of the reactor segments also discharges a vapor byproduct of the chemical reaction into the header. The discharged vapor byproduct flows generally upwardly in the header while the discharged reaction medium flows generally downwardly in the header.
  • the reaction medium flows from a proximal end of the tray to a distal end of the tray when traveling along the outward flow path and flows over the distal end of the tray and onto the bottom of the tubular member.
  • the distal end of the tray comprises an upwardly extending weir over, around, through, and/or under which at least a portion of the reaction medium flows before passing to the bottom of the tubular member.
  • the at least one of the reactor segments comprises an end cap coupled to a distal end of the tubular member, wherein the distal end of the tray is horizontally spaced from the end cap to thereby form a flow passageway through which the reaction medium flows as it passes from the tray to the bottom of the tubular member.
  • the tubular member and the tray are substantially horizontally oriented.
  • the central axis of elongation for the tubular member can extend within about 30, about 15, or about 5 degrees of horizontal.
  • the tubular member is a pipe.
  • At least one of the reactor segments has a length-to- diameter (LD) ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1 , or 8:1 to 15:1.
  • L can be in the range of from about 10 to about 200 feet, about 20 to about 100 feet or 30 to 50 feet and D can be in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.
  • the reaction medium flows downwardly through the header as the reaction medium travels from an upper one to a lower one of the reactor segments.
  • the upper and lower reactor segments comprise respective upper and lower elongated tubular members and upper and lower internal trays disposed in the upper and lower tubular members respectively, wherein at least a portion of the reaction medium flows generally away from the header on the upper and lower trays and generally towards the header on the bottom of the upper and lower tubular members.
  • the reactor further comprises upper and lower flow diverters coupled to the upper and lower trays respectively, wherein the upper and lower flow diverters extend into the header and the lower flow diverter directs the reaction medium exiting the bottom of the upper tubular member downwardly through the header and onto the lower tray.
  • a vapor gap can be defined by the lower flow diverter or between the upper and lower flow diverters, wherein the vapor gap permits the flow of a vapor byproduct of the chemical reaction out of the lower reactor segment and generally upwardly through the header while the reaction medium exiting the upper reactor segment is directed generally downwardly through the header.
  • a vapor byproduct of the chemical reaction from at least two of the reactor segments is combined in the header and exits the reactor via a vapor outlet located near the top of the header.
  • a predominately liquid product of the chemical reaction exits the reactor via a liquid outlet located near the bottom of the header.
  • the header has a height-to-width (H:W) ratio in the range of from about 2:1 to about 20:1 , about 4:1 to about 15:1 , or 5:1 to 10:1 and at least one of the reactor segments has an L: D ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1 , or 8:1 to 15:1.
  • the reaction medium comprises a liquid within which the chemical reaction is carried out.
  • the reaction medium comprises a foam portion and a predominately liquid portion, each comprising the liquid.
  • a portion of the reaction medium located in an uppermost one of the reactor segments comprises at least 50 volume percent vapor and a portion of the reaction medium located in a lowermost one of the reactor segments comprises less than 20 volume percent vapor.
  • the chemical reaction comprises polycondensation wherein the average chain length of the reaction medium increases by at least about 10, at least about 25, or at least 50 in the reactor.
  • the reaction medium comprises a polyester polymer or copolymer that is at least partly formed by the polycondensation.
  • the polyester polymer or copolymer can comprise polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • the process can comprise introducing a polycondensation feed into the feed inlet of the reactor, wherein the polycondensation feed forms the reaction medium in the reactor.
  • the polycondensation feed can have an average chain length in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30.
  • a process comprising subjecting a reaction medium to an esterification and/or polycondensation reaction in a reactor comprising a vertically elongated header, a first set of vertically spaced horizontally elongated reactor segments, and a second set of vertically spaced horizontally elongated reactor segments.
  • the first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. At least a portion of the reaction medium flows through the header and the first and second sets of reactor segments as the reaction medium travels through the reactor.
  • FIG. 1 reactor 10 employed as a second stage esterification, prepolymerization, and/or finisher reactor given above applies to this example of the present invention.
  • the feed characteristics e.g., conversion and/or chain length
  • temperature, pressure, conversion increase, average chain length increase, product characteristics, and any heat input all apply to this example of the present invention.
  • a product is removed from a product outlet of the reactor, wherein the reaction medium forms the product in the reactor.
  • the product can be a polycondensation product.
  • the It.V. of the product or polycondensation product can be in the range of from about 0.3 to about 1.2, about 0.35 to about 0.6, or 0.4 to 0.5 dl_/g.
  • It.V. of the product or polycondensation product is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or 0.15 to 0.35 dl_/g.
  • a feed is introduced to a feed inlet of the reactor to form the reaction medium and the It.V.
  • Intrinsic viscosity (It.V.) values are set forth in dl_/g units as calculated from the inherent viscosity measured at 25°C in 60% phenol and 40% 1 ,1 ,2,2-tetrachloroethane by weight. Polymer samples can be dissolved in the solvent at a concentration of 0.25 g/50 ml_. The viscosity of the polymer solutions can be determined, for example, using a Rheotek Glass Capillary viscometer. A description of the operating principle of this viscometer can be found in ASTM D 4603. The inherent viscosity is calculated from the measured solution viscosity. The following equations describe such solution viscosity measurements and subsequent calculations to Ih.V. and from Ih.V. to It.V:
  • ⁇ in h Inherent viscosity at 25 0 C at a polymer concentration of 0.5 g/ 100 ml_ of 60% phenol and 40% 1,1,2,2- tetrachloroethane by weight
  • the intrinsic viscosity is the limiting value at infinite dilution of the specific viscosity of a polymer. It is defined by the following equation:
  • the intrinsic viscosity (It.V. or ⁇ int ) may be estimated using the Billmeyer equation as follows:
  • the reference for estimating intrinsic viscosity is J. Polymer Sci., 4, pp. 83-86 (1949).
  • the viscosity of the polymer solutions can also be determined using a Viscotek Modified Differential Viscometer (a description of the operating principle of the differential pressure viscometers can be found in ASTM D 5225) or other methods known to one skilled in the art.
  • a process for making polyethylene terephthalate comprising: (a) introducing a polycondensation feed into a polycondensation reactor, wherein the polycondensation feed forms a reaction medium in the reactor, wherein the polycondensation feed comprises PET having an average chain length in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30; (b) subjecting the reaction medium to polycondensation in the reactor, wherein the reactor comprises a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated reactor segments, wherein the first and second sets of reactor segments are coupled to and extend outwardly from generally
  • the reaction medium passes downwardly through the header as the reaction medium travels from an upper one of the reactor segments to a lower one of the reactor segments, wherein the upper and lower reactor segments comprise respective upper and lower elongated pipes and respective upper and lower internal trays disposed in the upper and lower pipes respectively, wherein the upper and lower pipes and trays are substantially horizontally oriented, wherein the reaction medium flows on the upper and lower trays generally away from the header, wherein the reaction medium flows on the bottom of the upper and lower pipes generally toward the header; and (c) recovering a predominately liquid polycondensation product from the reactor, wherein the polycondensation product comprises PET having an average chain length that is at least about 10, at least about 25, or at least 50 greater than the average chain length of the PET in the polycondensation feed.
  • each of the upper and lower pipes has a length-to- diameter (LD) ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1 , or 8:1 to 15:1 and each of the upper and lower trays has a length that is at least about 0.5L, at least about 0.75L, or at least 0.9L 1 relative to the upper and lower pipes respectively.
  • the upper and lower trays present an upwardly facing flow surface that is spaced at least about 0.1 D, at least about 0.2D 1 or at least 0.4D from the top and/or bottom of the upper and lower pipes. In another example, the upwardly facing surface is spaced about
  • the maximum depth of the reaction medium on each tray and/or the bottom of each tubular member is less than about 0.8D 1 less than about 0.4D 1 or less than 0.25D.
  • the maximum depth of the reaction medium on each tray and/or the bottom of each tubular member can be about 1 to about 40 inches, about 1 to about 32 inches, or 1 to 24 inches.
  • the polycondensation causes the formation of a vapor byproduct and the vapor byproduct is discharged from the reactor via a vapor outlet located near the top of the header.
  • the polycondensation product is recovered from a liquid outlet located near the bottom of the header.
  • the polycondensation feed comprises PET having an average chain length in the range of from about 8 to about 40 wherein the polycondensation product comprises PET having an average chain length that is at least about 25 greater than the average chain length of the PET in the polycondensation feed.
  • the temperature of the polycondensation feed to the polycondensation reactor is maintained in the range of from about 220 to about 35O 0 C 1 about 265 to about 305 0 C, or 270 to 290 0 C wherein the vapor space pressure in the polycondensation reactor is maintained in the range of from about 0 to about 30 torr, about 1 to about 20 torr, or 2 to 10 torr.
  • the It.V. of the polycondensation feed is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or about 0.15 to about 0.35 dUg. In one example, the It.V. of or polycondensation product is in the range of from about 0.3 to about 1.2, about 0.35 to about 0.6, or 0.4 to 0.5 dL/g.
  • a reactor comprising a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated vertically spaced reactor segments. The first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. In one example, the first and second sets of reactor segments extend outwardly from generally opposite sides of the header.
  • At least one of the reactor segments comprises a horizontally elongated tubular member and an internal tray disposed substantially within the tubular member, wherein the tray extends along at least one-half, at least three-quarters, or at least nine-tenths the length of the tubular member.
  • the at least one of the reactor segments additionally has a proximal end coupled to the header and a distal end spaced from the header, wherein the tray divides the interior of the tubular member into upper and lower chambers, wherein the upper and lower chambers are in fluid communication with the header at the proximal end.
  • the at least one of the reactor segments can define an internal flow passageway proximate the distal end, wherein the internal flow passageway permits fluid communication between the upper and lower chambers.
  • the at least one of the reactor segments additionally comprises an end cap coupled to the tubular member at the distal end, wherein the tray does not extend all the way to the end cap so that the internal flow passageway is defined by the gap formed between the tray and the end cap.
  • the at least one of the reactor segments comprises an upwardly extending weir coupled to the tray proximate the internal flow passageway.
  • the tubular member and the tray are substantially horizontally oriented.
  • the tubular member is a pipe.
  • each of the reactor segments has a length-to-diameter (L: D) ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1, or 8:1 to 15:1 , wherein the header has a height-to-width (H :W) ratio in the range of from about 2:1 to about 20:1, about 4:1 to about 15:1, or 5:1 to 20:1.
  • L: D length-to-diameter
  • H :W height-to-width
  • the diameter-to-width (D:W) ratio of the reactor is in the range of from about 0.1:1 to about 2:1 , about 0.25:1 to about 1:1 , or 0.4:1 to 0.9:1.
  • the LD ratio of each of the reactor segments is in the range of from about 2:1 to about 50:1, about 5:1 to about 20:1 , or 8:1 to 15:1 , wherein L is in the range of from about 10 to about 200 feet, about 20 to about 100 feet, or 30 to 50 feet and D is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet wherein H is in the range of from about 8 to about 100 feet, about 10 to about 75 feet, or 20 to 50 feet and W is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.
  • each of the sets of reactor segments includes upper and lower reactor segments, wherein each of the upper and lower reactor segments comprises respective upper and lower pipes and respective upper and lower trays at least partly disposed in the upper and lower pipes respectively, wherein the reactor further comprises upper and lower flow diverters extending in the header, wherein the upper flow diverter is coupled to the upper tray of the first set of reactor segments, wherein the lower flow diverter is coupled to the lower tray of the first set of reactor segments.
  • a vapor gap is defined in the lower flow diverter or between the upper and lower flow diverters at an elevation above the elevation of the lower reactor segment of the first set of reactor segments.
  • Numerical Ranges The present description uses numerical ranges to quantify certain parameters relating to the invention. It should be understood that when numerical ranges are provided, such ranges are to be construed as providing literal support for claim limitations that only recite the lower value of the range, as well as claim limitations that only recite the upper value of the range. For example, a disclosed numerical range of 10 to 100 provides literal support for a claim reciting "greater than 10" (with no upper bounds) and a claim reciting "less than 100" (with no lower bounds). Definitions
  • agitation refers to work dissipated into a reaction medium causing fluid flow and/or mixing.
  • the term "and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • average chain length means the average number of repeating units in the polymer.
  • average chain length means the number of repeating acid and alcohol units.
  • Average chain length is synonymous with number average degree of polymerization (DP).
  • the average chain length can be determined by various means known to those skilled in the art. For example, 1 H-NMR can be used to directly determine the chain length based upon end group analysis, and light scattering can be used to measure the weight average molecular weight with correlations used to determine the chain length. Chain length is often calculated based upon correlations with gel permeation chromotagraphy (GPC) measurements and/or viscosity measurements.
  • GPC gel permeation chromotagraphy
  • the terms “comprising,” “comprises,” and “comprise” are open-ended transition terms used to transition from a subject recited before the term to one or more elements recited after the term, where the element or more elements listed after the transition term are not necessarily the only elements that make up the subject.
  • the terms “containing,” “contains,” and “contain” have the same open-ended meaning as “comprising,” “comprises,” and “comprise,” provided below.
  • conversion is used to describe a property of the liquid phase of a stream that has been subjected to esterification, wherein the conversion of the esterified stream indicates the percentage of the original acid end groups that have been converted (i.e., esterified) to ester groups. Conversion can be quantified as the number of converted end groups (i.e., alcohol end groups) divided by the total number of end groups (i.e., alcohol plus acid end groups), expressed as a percentage.
  • directly coupled refers to a manner of coupling two vessels in fluid flow communication with one another without the use of an intermediate connector having a substantially narrower diameter than the two vessels.
  • esterification refers to both esterification and ester exchange reactions.
  • the term “horizontally elongated” means that the maximum horizontal dimension is larger than the maximum vertical dimension.
  • the terms “including,” “includes,” and “include” have the same open-ended meaning as “comprising,” “comprises,” and “comprise,” provided above.
  • mechanical agitation refers to agitation of a reaction medium caused by physical movement of a rigid or flexible element(s) against or within the reaction medium.
  • open flow area refers to the open area available for fluid flow, where the open area is measured along a plane that is perpendicular to the direction of flow through the opening.
  • pipe refers to a substantially straight elongated tubular member having a generally cylindrical sidewall.
  • polyethylene terephthalate and PET include PET homopolymers and PET copolymers.
  • polyethylene terephthalate copolymer and “PET copolymer” mean PET that has been modified by up to 10 mole percent with one or more added comonomers.
  • PET copolymer and “PET copolymer” include PET modified with up to 10 mole percent isophthalic acid on a 100 mole percent carboxylic acid basis.
  • polyethylene terephthalate copolymer and “PET copolymer” include PET modified with up to 10 mole percent 1 ,4- cyclohexane dimethanol (CHDM) on a 100 mole percent diol basis.
  • CHDM 1,4- cyclohexane dimethanol
  • polyester refers not only to traditional polyesters, but also includes polyester derivatives, such as, for example, polyetheresters, polyester amides, and polyetherester amides.
  • predominately liquid means more than 50 volume percent liquid.
  • reaction medium refers to any medium subjected to chemical reaction.
  • the term “residue” refers to the moiety that is the resulting product of the chemical species in a particular reaction scheme or subsequent formulation or chemical product, regardless of whether the moiety is actually obtained from the chemical species.
  • the term “vapor byproduct” includes the vapor generated by a desired chemical reaction (i.e., a vapor coproduct) and any vapor generated by other reactions (i.e., side reactions) of the reaction medium.
  • vertical elongated means that the maximum vertical dimension is larger than the maximum horizontal dimension.

Abstract

A multi-level tubular reactor operable to facilitate a chemical reaction in a reaction medium flowing therethrough. The tubular reactor can include a plurality of horizontally elongated and vertically spaced reactor segments coupled to and extending outwardly from a common header. One or more of the reactor segments can contain a tray that divides the internal volume of the reactor segment into upper and lower chambers. The reaction medium can flow away from the header in the upper chambers and back to the header in the lower chambers.

Description

MULTI-LEVEL TUBULAR REACTOR WITH OPPOSITELY EXTENDING SEGMENTS
BACKGROUND OF THE INVENTION 1. Field of the Invention
This invention relates to reactors for processing liquid-containing reaction mediums. In another aspect, the invention concerns polycondensation reactors used for melt-phase production of polyesters. 2. Description of the Prior Art
Melt-phase polymerization can be used to produce a variety of polyesters, such as, for example, polyethylene terephthalate (PET). PET is widely used in beverage, food, and other containers, as well as in synthetic fibers and resins. Advances in process technology coupled with increased demand have led to an increasingly competitive market for the production and sale of PET. Therefore, a low-cost, high-efficiency process for producing PET is desirable.
Generally, melt-phase polyester production facilities, including those used to make PET, employ an esterification stage and a polycondensation stage. In the esterification stage, polymer raw materials (i.e., reactants) are converted to polyester monomers and/or oligomers. In the polycondensation stage, polyester monomers exiting the esterification stage are converted into a polymer product having the desired final average chain length.
In many conventional melt-phase polyester production facilities, esterification and polycondensation are carried out in one or more mechanically agitated reactors, such as, for example, continuous stirred tank reactors (CSTRs). However, CSTRs and other mechanically agitated reactors have a number of drawbacks that can result in increased capital, operating, and/or maintenance costs for the overall polyester production facility. For example, the mechanical agitators and various control equipment typically associated with CSTRs are complex, expensive, and can require extensive maintenance. Thus, a need exists for a high efficiency polyester process that minimizes capital, operational, and maintenance costs while maintaining or enhancing product quality.
SUMMARY OF THE INVENTION
In one embodiment of the present invention, there is provided a process comprising subjecting a reaction medium to a chemical reaction in a reactor comprising a vertically elongated header, a first set of vertically spaced horizontally elongated reactor segments, and a second set of vertically spaced horizontally elongated reactor segments. The first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. At least a portion of the reaction medium flows through the header and the first and second sets of reactor segments as the reaction medium travels through the reactor. In another embodiment of the present invention, there is provided, a process for making polyethylene terephthalate (PET), the process comprising: (a) introducing a polycondensation feed into a polycondensation reactor, wherein the polycondensation feed forms a reaction medium in the reactor, wherein the polycondensation feed comprises PET having an average chain length in the range of from about 5 to about 50; (b) subjecting the reaction medium to polycondensation in the reactor, wherein the reactor comprises a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated reactor segments, wherein the first and second sets of reactor segments are coupled to and extend outwardly from generally opposite sides of the header, wherein the reaction medium passes downwardly through the header as the reaction medium travels from an upper one of the reactor segments to a lower one of the reactor segments, wherein the upper and lower reactor segments comprise respective upper and lower elongated pipes and respective upper and lower internal trays disposed in the upper and lower pipes respectively, wherein the upper and lower pipes and trays are substantially horizontally oriented, wherein the reaction medium flows on the upper and lower trays generally away from the header, wherein the reaction medium flows on the bottom of the upper and lower pipes generally toward the header; and (c) recovering a predominately liquid polycondensation product from the reactor, wherein the polycondensation product comprises PET having an average chain length that is at least about 10 greater than the average chain length of the PET in the polycondensation feed.
In still another embodiment of the present invention, there is provided a reactor comprising a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated vertically spaced reactor segments. The first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header.
BRIEF DESCRIPTION OF THE DRAWINGS Certain embodiments of the present invention are described in detail below with reference to the enclosed figures, wherein:
FIG. 1 is a schematic depiction of a multi-level tubular reactor configured in accordance with one embodiment of the present invention and suitable for use as a polycondensation reactor in a melt-phase polyester production facility;
FIG. 1a is an enlarged side view depicting an alternative configuration for introducing a feed stream into the reactor of FIG. 1 ;
FIG. 1b is a top view of the alternative feed introduction system depicted in FIG. 1a; FIG. 1c is a sectional end view of the alternative feed introduction system, taken along line 1c-1c in FIG. 1a; and
FIG. 2 is a schematic depiction of a multi-level tubular reactor configured in accordance with another embodiment of the present invention and suitable for use as a polycondensation reactor in a melt-phase polyester production facility. DETAILED DESCRIPTION
FIGS. 1 and 2 illustrate exemplary multi-level tubular reactors configured in accordance with two embodiments of the present invention. The configuration and operation of the reactors depicted in FIGS. 1 and 2 are described in detail below. Although certain portions of the following description relate primarily to reactors employed in a melt-phase polyester production process, reactors configured in accordance with embodiments of the present invention may find application in a wide variety of chemical processes. For example, reactors configured in accordance with certain embodiments of the present invention may be advantageously employed in any process where chemical reactions take place in the liquid phase of a reaction medium and a vapor byproduct is produced as a result of the chemical reaction. Further, reactors configured in accordance with certain embodiments of the present invention may be advantageously employed in chemical processes where at least a portion of the reaction medium forms foam during processing.
Referring now to FIG. 1 , one embodiment of a multi-level tubular reactor 10 is illustrated as generally comprising a vertically elongated header 12 and a group of horizontally elongated vertically spaced reactor segments 14 coupled to and extending outwardly from header 12.
Header 12 generally comprises an upright tubular shell 16, a pair of end caps 17a,b coupled to opposite ends of shell 16, and a plurality of flow diverters 18a,b,c disposed within the internal volume of header 12. A first vapor gap 20a is defined between flow diverters 18a and 18b, while a second vapor gap 20b is defined between flow diverters 18b and 18c. Header 12 defines a vapor outlet 22 in upper end cap 17a and a liquid product outlet 24 in lower end cap 17b. One side of header 12 defines a plurality of vertically spaced openings that provide fluid communication between the internal volume of header 12 and the group of reactor segments 14 coupled to the side of header 12.
In the embodiment illustrated in FIG. 1 , shell 16 of header 12 is a substantially vertical, substantially cylindrical pipe. In an alternative embodiment, shell 16 can be a vertically elongated tubular member having a variety of cross-sectional configurations (e.g., rectangular, square, or oval). Further, shell 16 need not have a perfectly vertical orientation. For example, the central axis of elongation of shell 16 can extend within about 30, about 15, or 5 degrees of vertical.
In the embodiment illustrated in FIG. 1 , header 12 has a maximum internal height (H) that is greater than its maximum internal width (W). In one embodiment, header 12 has a height-to-width (H:W) ratio in the range of from about 2:1 to about 20:1 , about 4:1 to about 15:1 , or 5:1 to 10:1. In one embodiment, H is in the range of from about 8 to about 100 feet, about 10 to about 75 feet, or 20 to 50 feet, and W is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.
In the embodiment illustrated in FIG. 1 , the group of reactor segments 14 is directly coupled to and extends generally outwardly from a common side of header 12. The group of reactor segments 14 includes a trayless reactor segment 26, an uppermost trayed reactor segment 28a, an intermediate trayed reactor segment 28b, and a lowermost trayed reactor segment 28c. Each reactor segment 26 and 28a, b,c presents a proximal end coupled in fluid communication with header 12 and a distal end spaced from header 12. Trayless reactor segment 26 defines a feed inlet 30 near the distal end thereof and an outlet 32 near the proximal end thereof. Trayless reactor segment 26 generally comprises a horizontally elongated tubular member 34 and an end cap 36. Tubular member 34 is coupled to header 12 near the proximal end of trayless reactor segment 26, while end cap 36 is coupled to tubular member 34 near the distal end of trayless reactor segment 26. A weir 38 can, optionally, be couple to and extend upwardly from the bottom of tubular member 34 near outlet 32 (as shown in FIG. 1) and/or multiple spaced-apart weirs (not shown) can be located along the length of tubular member 34. Each trayed reactor segment 28a, b,c defines a respective reaction medium inlet 40a,b,c and a respective reaction medium outlet 42a, b,c. Inlets 40a,b,c and outlets 42a,b,c are located near the proximal end of reactor segments 28a,b,c and are in fluid communication with the internal volume of header 12. Each trayed reactor segment 28a,b,c generally comprises a horizontally elongated tubular member 44a, b,c, an end cap 46a,b,c, and a tray 48a, b,c. Tubular members 44a, b,c are each directly coupled to header 12 near the proximal end of reactor segments 28a, b,c. End caps 46a, b,c are coupled to tubular members 44a, b,c near the distal end of reactor segments 28a,b,c.
Trays 48a, b,c are disposed within respective tubular members 44a, b,c and extend along a substantial length of tubular members 44a, b,c. Each tray 48a, b,c presents a proximal end coupled to a respective flow diverter 18a,b,c and a distal end located near the distal end of reactor segments 28a, b,c. Each tray 48a, b,c can have a length that is at least about 0.5L, about 0.75L, or 0.9L, where L is the maximum length of the reactor segment 28a,b,c and/or tubular member 44a, b,c within which the respective tray 48a, b,c is received. Each tray 48a, b,c divides the internal volume of the respective reactor segment 28a, b,c into an upper chamber 50a, b,c and a lower chamber 52a, b, c. In the embodiment illustrated in FIG. 1 , each tray 48a,b,c presents a substantially horizontal, substantially planar, upwardly facing flow surface across which liquids can flow. In order to provide sufficiently large upper and lower chambers 50a,b,c and 52a, b,c, the upwardly facing flow surface of each tray 48a,b,c can be spaced from the top and/or bottom of tubular members 44a, b, c by a vertical distance in the range of from about 0.1 D to about 0.9D, about 0.2D to about 0.8D, or 0.4D to 0.6D1 where D is the maximum vertical dimension of the tubular member 44a, b,c within which the respective tray 48,a,b,c is received.
The distal end of each tray 48a, b,c is spaced from end caps 46a, b,c so that a flow passageway 54a, b,c is defined by the gap between the distal end of each tray 48a,b,c and end caps 46a, b,c. The distal end of each tray 48a, b, c can, optionally, be equipped with an upwardly extending weir 56a, b,c. Each trayed reactor segment 28a, b,c can, optionally, be equipped with a weir 58a, b,c coupled to and extending upwardly from the bottom of tubular members 44a, b,c near outlets 42a, b,c. In the embodiment illustrated in FIG. 1 , tubular members 34 and 44a,c,b of each reactor segment 26 and 28a, b,c are substantially horizontal pipes, and trays 48a, b,c are substantially flat, substantially horizontal, substantially rectangular plates rigidly and sealingly coupled to the inside walls of the pipe. In an alternative embodiment, tubular members 34 and 44a, c,b of each reactor segment 26 and 28a, b,c can have a variety of cross- sectional shapes (e.g., rectangular, square, or oval). Further, tubular members 34 and 44a, c,b and trays 48a, b,c need not have a perfectly horizontal orientation. For example, the central axis of elongation of tubular members 34 and 44a,c,b can extend within about 30, about 15, or 5 degrees of horizontal. In addition, trays 48a, b,c can be supported in tubular members 44a, b, c using a variety of support mechanisms such as, for example, welding to both sidewalls of tubular members 44a, b,c, support legs extending from the bottom of tubular members 44a, b,c, or suspension from the top of tubular members 44a, b, c.
In the embodiment illustrated in FIG. 1 , each reactor segment 26 and 28a, b, c and/or each tubular member 34 and 44a, b,c has a maximum internal length (L) that is greater than its maximum internal diameter (D). In one embodiment, each reactor segment 26 and 28a, b,c and/or each tubular member 34 and 44a,b,c has a length-to-diameter (LD) ratio in the range of from about 2:1 to about 50:1, about 5:1 to about 20:1 , or 8:1 to 15:1. In one embodiment, L is in the range of from about 10 to about 200 feet, about 20 to about 100 feet, or 30 to 50 feet, and D is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet. In one embodiment, the ratio of the diameter (D) of one or more of reactor segments 26 and 28a,b,c to the maximum internal width of header (W) is in the range of from about 0.1 :1 to about 2:1 , about 0.25:1 to about 1 :1 , or 0.4:1 to 0.9:1. In the embodiment illustrated in FIG. 1 , each trayed reactor segment 28a, b,c has a substantially identical configuration. In an alternative embodiment, reactor segments 28a,b,c can have different lengths, different diameters, and/or different orientations. In the embodiment illustrated in FIG. 1 , reactor 10 comprises one non- trayed reactor segment 26 and three trayed reactor segments 28a, b,c. However, it should be noted that the number and configuration of reactor segments can be optimized to match the application for which reactor 10 is employed. For example, reactor 10 could employ only trayed reactor segments (i.e., no non-trayed reactor segments). In such a configuration, the uppermost trayed reactor segment would define a feed inlet near the header. In another example, the reactor could employ one non-trayed reactor segment and two trayed reactor segments. In another example, the reactor could employ one non-trayed reactor segment and four trayed reactor segments. Although FIG. 1 illustrates feed inlet 30 as being located in end cap 36, in an alternative embodiment, the feed inlet can be defined in the side of tubular member 34 near, but spaced from, the distal end of non-trayed reactor segment 26. FIGS. 1a-c illustrate an alternative feed introduction system 90 that introduces the reactor feed through the side of reactor segment 26. As perhaps best illustrated in the top view of FIG. 1b and the end view of FIG. 1c, side feed introduction system 90 includes an inlet opening 92 defined in the side of reactor segment 26, an internal feed distributor 94 extending into reactor segment 26, and a discharge opening 96 defined by feed distributor 94. In the embodiment illustrated in FIGS. 1a-c, feed distributor 94 is a substantially cylindrical conduit that is fixed to the sidewall of reactor segment 26 at inlet opening 92. The distal end of feed distributor 94 defines discharge opening 96 at a location spaced from the side walls and the end of reactor segment 26. As shown in FIGS. 1b and 1c, discharge opening 96 can be formed by cutting the distal end of feed distributor 94 at a skewed angle so that discharge opening 96 faces at least partially towards the closed end of reactor segment 26. The location and orientation of discharge opening 96 can increase liquid circulation and help reduce or eliminate stagnant zones near the end of reactor segment 26.
Referring again to FIG. 1, in operation, a feed, which can be in a predominately liquid form, is introduced into reactor 10 via feed inlet 30 of non-trayed reactor segment 26. In non-trayed reactor segment 26, the feed forms a reaction medium 60 that flows generally horizontally on the bottom of tubular member 34 from the distal end of non-trayed reactor segment 26 to the proximal end of non-trayed reactor segment 26. As reaction medium 60 flows through non-trayed reactor segment 26, a chemical reaction takes place within reaction medium 60. A vapor 62 can be formed in non-trayed reactor segment 26. Vapor 62 can comprise a byproduct of the chemical reaction carried out in reactor segment 26 and/or a volatile component of the feed to reactor segment 26. At least a portion of vapor 62 is disengaged from and flows generally over reaction medium 60 as reaction medium 60 flows through non-trayed reactor segment 26.
As depicted in FIG. 1 , in one embodiment of the present invention, the chemical reaction carried out in reactor 10 causes foaming of reaction medium 60, thereby producing a foam portion 64 and a predominately liquid portion 66 of reaction medium 60. The chemical reaction can take place in the liquid of both foam portion 64 and predominately liquid portion 66. In fact, the presence of foam can actually enhance certain chemical reactions, especially those reactions that are facilitated by increased liquid surface area and reduced pressure. Thus, in one embodiment of the present invention, the internal volume and open flow area of the reactor segments are sufficiently large so that the maximum amount of foam formation is permitted. In applications where large amounts of foaming occur throughout a substantial portion of the reactor, it may be desired to have two or more initial non-trayed reactor segments and fewer trayed reactor segments in order to provide sufficient space within the reactor segments for maximum foam formation. Alternatively, larger trayed reactor segments can be employed to provide the necessary volume and open flow area to promote foam formation. As illustrated in FIGS. 1 and 2, the amount of foam produced by the reaction may decrease as the reaction progresses through the reactor. Thus, the reaction medium 60 in the initial reactor segment may comprise more than 50, 75, or 90 volume percent gas, while the reaction medium 60 in the final reactor segment may comprise less than 20, 10, or 5 volume percent gas. Referring again to FIG. 1 , after flowing through non-trayed reactor segment 26, reaction medium 60 passes out of non-trayed reactor segment 26 via outlet 32. If weir 38 is employed, reaction medium 60 flows over the top of, around the edges of, through openings in, and/or under weir 38 as it exits non-trayed reactor segment 26 and enters the internal volume of header 12. As reaction medium 60 passes out of non-trayed reactor segment 26 and flows downwardly into header 12, vapor 62 flows upwardly into header 12. In header 12, vapor 62 from non-trayed reactor segment 26 can be combined with the vapor produced in trayed reactor segments 28a, b,c. The resulting combined vapor can exit header 12 via vapor outlet 22. Upon exiting non- trayed reactor segment 26, reaction medium 60 flows downwardly in header 12 and is directed by flow diverter 18a to inlet 40a of uppermost trayed reactor segment 28a.
In uppermost trayed reactor segment 28a, reaction medium 60 flows generally horizontally across the upwardly facing surface of tray 48a and towards the distal end of reactor segment 28a. As discussed above, reaction medium 60 is subjected to chemical reaction in reactor segment 28a, and the chemical reaction can cause the formation of a vapor byproduct and/or foam as reaction medium 60 flows across tray 48a. When a vapor is produced reaction medium 60 flowing on tray 48a, the vapor can flow in upper chamber
50a countercurrent to the direction of flow of reaction medium 60 in upper chamber 50a. The vapor byproduct can exit upper chamber 50a out through inlet 40a as reaction medium 60 enters upper chamber 50a through inlet 40a.
When reaction medium 60 reaches the terminal end of tray 48a, it falls downwardly through flow passageway 54a and onto the bottom of tubular member 44a. When the terminal end of tray 48a is equipped with weir 56a, reaction medium 60 flows over the top of, around the edges of, through openings in, and/or under weir 56a prior to entering flow passageway 54a. Reaction medium 60 then flows on the bottom of tubular member 44a from the distal end of reactor segment 28a to the proximal end of reactor segment 28a. When reaction medium 60 reaches the proximal end of reactor segment 28a, it exits reactor segment 28a via outlet 42a and enters header 12. When a vapor is produced in lower chamber 52a, the vapor flows generally over reaction medium 60 and exits lower chamber 52a along with reaction medium 60 via outlet 42a. When weir 58a is provided at outlet 42a, at least a portion of reaction medium 60 flows over the top of, around the edges of, through openings in, and/or under weir 58a.
Weirs 38, 56a, b,c, and 58a, b,c can be employed in reactor 10 to help maintain the desired depth of reaction medium 60 in reactor segments 26 and 28a, b, c. In one embodiment of the present invention, the maximum depth reaction medium 60 in each reactor segment 26 and 28a, b,c is less than about 0.8D, less than about 0.4D, or less than 0.25D, where D is the maximum vertical dimension of the respective reactor segment 26 and 28 a,b,c.
As reaction medium 60 passes out of uppermost trayed reactor segment 28a and flows downwardly in header 12, the vapor produced in trayed reactor segment 28a flows upwardly into header 12. The vapor exiting lower chamber 52a of reactor segment 28a can pass through a vapor gap 20a defined by flow diverter 18b or between flow diverters 18a and 18b. As mentioned above, the vapor produced in reactor segment 28a can be combined in header 12 with the vapor produced in non-trayed reactor segment 26 and trayed reactor segments 28b, c. The resulting combined vapor exits header 12 via vapor outlet 22. Upon exiting trayed reactor segment 28a, reaction medium 60 flows downwardly in header 12 and is directed by flow diverter 18b to inlet 40b of intermediate trayed reactor segment 28b. The flow of reaction medium 60 through the intermediate and lowermost trayed reactors segments 28b and 28c can proceed substantially the same as describe above with reference to flow through uppermost trayed reactor segment 28a. In summary, reaction medium 60 proceeds through trayed reactor segments 28a, b,c as follows: (a) reaction medium 60 is directed from header 12 to trayed reactor segments 28a, b,c by flow diverters 18a,b,c; (b) reaction medium 60 enters trayed reactor segments 28a, b,c via inlets 40a,b,c; (c) reaction medium 60 flows generally away from header 12 on trays 48a, b,c; (d) reaction medium 60 falls downwardly over a terminal end of trays 48a,b,c and onto the bottom of tubular members 44a, b,c; (e) reaction medium 60 flows back toward header 12 on the bottom of tubular members 44a, b,c; (e) reaction medium 60 exits trayed reactor segments 28a, b,c via outlets 42a, b,c; and (f) reaction medium 60 falls downwardly in header 12 to the next level of processing.
The reaction medium 60 exiting lowermost trayed reactor segment 28c flows into header 12 and collects in the bottom thereof. This final reaction medium 60 is withdrawn from header 12 as a predominately liquid product via liquid product outlet 24.
Although not illustrated in FIG. 1 , impingement plates can be employed in header 12 near one or more of vapor outlet 22, non-trayed reactor segment outlet 32, and trayed reactor segment outlets 42a, b,c. Such impingement plates can be located in the vapor flow paths so that liquid entrained in the flowing vapor hits, collects on, and falls downwardly off of the impingement plates. This helps ensure that only vapor exits vapor outlet 22 of header 12.
Referring now to FIG. 2, a second embodiment of a multi-level tubular reactor 100 is illustrated as generally comprising a header 102, a first set of trayed reactor segments 104a,b,c,d, and a second set of trayed reactor segments 106a,b,c,d. In the configuration illustrated in FIG. 2, first and second sets of reactor segments 104a,b,c,d and 106a,b,c,d extend outwardly from generally opposite sides of header 102. However, in an alternative embodiment, the sets of reactor segments can extend from different sides of header 102 that are not necessarily opposite. For example, the two sets of reactor segments could extend outwardly from the header at a 45°, 60°, 75°, 90°, 105°, 130°, 145°, or 160° angle relative to one another. In another example, reactor 100 could employ three sets of reactor segments circumferentially spaced around header 102 at 120° angles relative to one another. Referring again to FIG. 2, header 102 defines a feed inlet 108 for receiving a feed, which can be in a predominately liquid form, a product outlet 110 for discharging a predominately liquid product, and a pair of vapor outlets 112a,b for discharging a vapor. Header 102 generally comprises a flow splitter 114, a first set of flow diverters 116a,b,c, and a second set of flow diverters 118a,b,c. First and second sets of reactor segments 104a,b,c,d and 106a,b,c,d can have substantially the same configuration as the trayed reactor segments described above with reference to FIG. 1. Thus, the specific configuration and operational details of trayed reactor segments 104a,b,c,d and 106a,b,c,d will not be re-described.
In operation, reactor 100 receives a feed, which can be in a predominately liquid form, via feed inlet 108. Flow splitter 114 splits the feed into two substantially equal portions. Flow splitter 114 then directs one of the portions to the internal tray of uppermost first reactor segment 104a, and the other portion to the internal tray of uppermost second reactor segment 106a. Once the split feed portions enter the trayed reactor segments, flow through the trayed reactor segments can proceed in substantially the same manner as described above with respect for FIG. 1 , with the reaction medium following a flow path that includes an outward portion (i.e., flow away from the header on the internal tray), a downward portion (i.e., flow from the tray to the bottom of the tubular member), and an inward portion (i.e., flow back toward the header on the bottom of the tubular member). After flowing through each reactor segment, the reaction medium is then directed through the header by the flow diverters to the next lower reactor segment. Referring again to FIG. 2, when the reaction medium exits lowermost reactor segments 104d and 106d, the two portions of the reaction medium combine to form the predominately liquid product, which is withdrawn from header 102 via liquid product outlet 110. Multi-level tubular reactors configured in accordance with certain embodiments of the present invention require little or no mechanical agitation of the reaction medium processed therein. Although the reaction medium processed in the multi-level tubular reactor may be somewhat agitated by virtue of foaming, flowing through the reactor segments, and falling from one reactor segment to another, this foaming agitation, flow agitation, and gravitational agitation is not mechanical agitation. In one embodiment of the present invention, less than about 50 percent, less than about 25 percent, less than about 10 percent, less than about 5 percent, or 0 percent of the total agitation of the reaction medium processed in the multi-level tubular reactor is provided by mechanical agitation. Thus, reactors configured in accordance with certain embodiments of the present invention can operate without any mechanical mixing devices. This is in direct contrast to conventional continuous stirred tank reactors (CSTRs) which employ mechanical agitation almost exclusively.
As indicated above, multi-level tubular reactors configured in accordance with embodiments of the present invention reactors can be used in a variety of chemical processes. In one embodiment, a multi-level tubular reactor configured in accordance with the present invention is employed in a melt-phase polyester production facility capable of producing any of a variety of polyesters from a variety of starting materials. Examples of melt-phase polyesters that can be produced in accordance with embodiments of the present invention include, but are not limited to, polyethylene terephthalate (PET), which includes homopolymers and copolymers of PET; fully aromatic or liquid crystalline polyesters; biodegradable polyesters, such as those comprising butanediol, terephthalic acid and adipic acid residues; poly(cyclohexane-dimethylene terephthalate) homopolymer and copolymers; and homopolymers and copolymers of 1 ,4-cyclohexane-dimethanol (CHDM) and cyclohexane dicarboxylic acid or dimethyl cyclohexanedicarboxylate. When a PET copolymer is produced, such copolymer can comprise at least 90, at least 91 , at least 92, at least 93, at least 94, at least 95, at least 96, at least 97, at least 98 mole percent of ethylene terephthalate repeat units and up to 10, up to 9, up to 8, up to 7, up to 6, up to 5, up to 4, up to 3, or up to 2 mole percent of added comonomer repeat units. Generally, the comonomer repeat units can be derived from one or more comonomers selected from the group consisting of isophthalic acid, 2,6-naphthaline-dicarboxylic acid, CHDM, and diethylene glycol. In general, a polyester production process according to certain embodiments of the present invention can comprise two main stages - an esterification stage and a polycondensation stage. In the esterification stage, the polyester starting materials, which can comprise at least one alcohol and at least one acid, are subjected to esterification to thereby produce polyester monomers and/or oligomers. In the polycondensation stage, the polyester monomers and/or oligomers from the esterification stage are reacted into the final polyester product. As used herein with respect to PET, monomers have less than 3 chain lengths, oligomers have from about 7 to about 50 chain lengths (components with a chain length of 4 to 6 units can be considered monomer or oligomer), and polymers have greater than about 50 chain lengths. A dimer, for example, EG-TA-EG-TA-EG, has a chain length of 2, and a trimer 3, and so on.
The acid starting material employed in the esterification stage can be a dicarboxylic acid such that the final polyester product comprises at least one dicarboxylic acid residue having in the range of from about 4 to about 15 or from 8 to 12 carbon atoms. Examples of dicarboxylic acids suitable for use in the present invention can include, but are not limited to, terephthalic acid, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, cyclohexanedicarboxylic acid, cyclohexanediacetic acid, diphenyl-4,41- dicarboxylic acid, dipheny-3,4'-dicarboxylic acid, 2,2,-dimethyl-1 ,3-propandiol, dicarboxylic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and mixtures thereof. In one embodiment, the acid starting material can be a corresponding ester, such as dimethyl terephthalate instead of terephthalic acid.
The alcohol starting material employed in the esterification stage can be a diol such that the final polyester product can comprise at least one diol residue, such as, for example, those originating from cycloaliphatic diols having in the range of from about 3 to about 25 carbon atoms or 6 to 20 carbon atoms. Suitable diols can include, but are not limited to, ethylene glycol (EG), diethylene glycol, triethylene glycol, 1 ,4-cyclohexane-dimethanol, propane-1 ,3-diol, butane-1 ,4-diol, pentane-1 ,5-diol, hexane-1 ,6-diol, neopentylglycol, 3-methylpentanediol-(2,4), 2-methylpentanediol-(1 ,4), 2,2,4- trimethylpentane-diol-(1 ,3), 2-ethylhexanediol-(1 ,3), 2,2-diethylpropane-diol- (1 ,3), hexanediol-(1 ,3), 1 ,4-di-(hydroxyethoxy)-benzene, 2,2-bis-(4- hydroxycyclohexyl)-propane, 2,4-dihydroxy-1 , 1.S.S-tetramethyl-cyclobutane, 2,2,4,4tetramethyl-cyclobutanediol, 2,2-bis-(3-hydroxyethoxyphenyl)-propane, 2,2-bis-(4-hydroxy-propoxyphenyl)-propane, isosorbide, hydroquinone, BDS- (2,2-(sulfonylbis)4,1-phenyleneoxy))bis(ethanol), and mixtures thereof. In addition, the starting materials can comprise one or more comonomers. Suitable comonomers can include, for example, comonomers comprising terephthalic acid, dimethyl terephthalate, isophthalic acid, dimethyl isophthalate, dimethyl-2,6-naphthalenedicarboxylate, 2,6-naphthalene- dicarboxylic acid, ethylene glycol, diethylene glycol, 1 ,4-cyclohexane- dimethanol (CHDM), 1 ,4-butanediol, polytetramethyleneglyocl, trans-DMCD, trimellitic anhydride, dimethyl cyclohexane-1 ,4 dicarboxylate, dimethyl decalin-2,6 dicarboxylate, decalin dimethanol, decahydronaphthalane 2,6- dicarboxylate, 2,6-dihydroxymethyl-decahydronaphthalene, hydroquinone, hydroxybenzoic acid, and mixtures thereof. Both the esterification stage and the polycondensation stage of a melt- phase polyester production process can include multiple steps. For example, the esterification stage can include an initial esterification step for producing a partially esterified product that is then further esterified in a secondary esterification step. Also, the polycondensation stage can include a prepolymerization step for producing a partially condensed product that is then subjected to a finishing step to thereby produce the final polymer product.
Reactors configured in accordance with certain embodiments of the present invention can be employed in a melt-phase polyester production system as a secondary esterification reactor for carrying out a secondary esterification step, as a prepolymer reactor for carrying out a prepolymerization step, and/or as a finisher reactor for carrying out a finishing step. A detailed description of the process conditions for the present invention employed as an esterification reactor, a prepolymer reactor, and/or a finisher reactor is given below with reference to FIG. 1. It is understood that reactors configured in accordance with embodiments of the present invention can generally be employed as esterification reactors, prepolymer reactors, and/or finisher reactors and that these process conditions are not limited to the embodiment described in FIG. 1 ,
Referring again to FIG. 1 , when reactor 10 is employed as a secondary esterification reactor in a melt-phase polyester production process (e.g., a process for making PET)1 more than one chemical reaction can be carried out in reactor 10. For example, although esterification may be the primary chemical reaction carried out in reactor 10, a certain amount of polycondensation may also occur in reactor 10. When reactor 10 is employed as a secondary esterification reactor, the feed introduced into feed inlet 30 of reactor segment 26 can have a conversion in the range of from about 70 to about 95 percent, about 75 to about 90 percent, or 80 to 88 percent, while the predominately liquid product withdrawn from liquid product outlet 24 of header 12 can have a conversion of at least about 80 percent, at least about 90 percent, at least about 95 percent, or at least 98 percent. When reactor 10 is employed as a secondary esterification reactor, the chemical reaction(s) carried out in reactor 10 can increase the conversion of reaction medium 60 by at least about 2 percentage points, at least about 5 percentage points, or at least 10 percentage points between feed inlet 30 and liquid product outlet 24. Further, the average chain length of the feed introduced into feed inlet 30 can be less than about 5, less than about 2 or less than 1 , while the predominately liquid product withdrawn from liquid product outlet 24 can have an average chain length in the range of from about 1 to about 20, about 2 to about 12, or 5 to 12. Generally, when reactor 10 is employed as a secondary esterification reactor, the average chain length of reaction medium 60 can increase in the range of from about 1 to about 20, about 2 to about 15, or 5 to 12 between feed inlet 30 and liquid product outlet 24.
When reactor 10 is employed as a secondary esterification reactor, the feed to reactor 10 can enter feed inlet 30 at a temperature in the range of from about 180 to about 3500C, about 215 to about 3050C, or 260 to 290°C. The predominately liquid product exiting liquid product outlet 24 can have a temperature within about 500C, 25°C, or 10°C of the temperature of the feed entering feed inlet 30. In one embodiment, the temperature of the liquid product exiting liquid product outlet 24 can be in the range of from about 180 to about 3500C, about 215 to about 3050C, or 260 to 290°C. In one embodiment, the average temperature of reaction medium 60 in reactor 10 is in the range of from about 180 to about 35O0C, about 215 to about 305°C, or 260 to 2900C. The average temperature of reaction medium 60 is the average of at least three temperature measurements taken at equal spacings along the primary flow path of reaction medium 60 through reactor 10, where the temperature measurements are each taken near the cross sectional centroid of predominately liquid portion 66 of reaction medium 60 (as opposed to near the wall of the reactor or near the upper surface of the predominately liquid portion). When reactor 10 is employed as a secondary esterification reactor, the vapor space pressure in reactor 10 (measured at vapor outlet 22) can be maintained at less than about 70 psig, in the range of from about -4 to about 10 psig, or in the range of from 2 to 5 psig. When reactor 10 is employed as a secondary esterification reactor, it may be desirable to heat the feed prior to introduction into reactor 10 and/or it may be desirable to heat reaction medium 60 as it flows through reactor 10. The heating of the feed prior to introduction into reactor 10 can be carried out in a conventional heat exchanger such as, for example, a shell-and-tube heat exchanger. The heating of reaction medium 60 in reactor 10 can be carried out by external heating devices that contact reactor 10, but do not extend into the interior of reactor 10. Such external heat exchange devices include, for example, jacketing and/or heat-tracing. Generally, the cumulative amount of heat added to the feed immediately upstream of reactor 10 plus the heat added to reaction medium 60 in reactor 10 can be in the range of from about 100 to about 5,000 BTU per pound of reaction medium (BTU/lb), in the range of from about 400 to about 2,000 BTU/lb, or in the range of from 600 to 1 ,500 BTU/lb.
Referring again to FIG. 1 , when reactor 10 is employed as a prepolymer reactor in a melt-phase polyester production process (e.g., a process for making PET), more than one chemical reaction can be carried out in reactor 10. For example, although polycondensation may be the predominate chemical reaction carried out in reactor 10, a certain amount of esterification may also occur in reactor 10. When reactor 10 is employed as a prepolymer reactor, the average chain length of the feed introduced into feed inlet 30 can be in the range of from about 1 to about 20, about 2 to about 15, or 5 to 12, while the average chain length of the predominately liquid product withdrawn from liquid product outlet 24 can be in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30. When reactor 10 is employed as a prepolymerization reactor, the chemical reaction carried out in reactor 10 can cause the average chain length of reaction medium 60 to increase by at least about 2, in the range of from about 5 to about 30, or in the range of from 8 to 20 between feed inlet 30 and liquid product outlet 24.
When reactor 10 is employed as a prepolymer reactor, the feed can enter feed inlet 30 at a temperature in the range of from about 220 to about 3500C, about 265 to about 3050C, or 270 to 290°C. The predominately liquid product exiting liquid product outlet 24 can have a temperature within about 5O0C, 25°C, or 100C of the temperature of the feed entering feed inlet 30. In one embodiment, the temperature of the liquid product exiting liquid product outlet 24 is in the range of from about 220 to about 350°C, about 265 to about 3050C, or 270 to 2900C. In one embodiment, the average temperature of reaction medium 60 in reactor 10 is in the range of from about 220 to about 35O0C, about 265 to about 3050C, or 270 to 29O0C. When reactor 10 is employed as a prepolymer reactor, the vapor space pressure in reactor 10 (measured at vapor outlet 22) can be maintained in the range of from about 0 to about 300 torr, in the range of from about 1 to about 50 torr, or in the range of from 20 to 30 torr.
When reactor 10 is employed as a prepolymer reactor, it may be desirable to heat the feed prior to introduction into reactor 10 and/or it may be desirable to heat reaction medium 60 as it flows through reactor 10. Generally, the cumulative amount of heat added to the feed immediately upstream of reactor 10 plus the heat added to reaction medium 60 in reactor 10 can be in the range of from about 100 to about 5,000 BTU/lb, in the range of from about 400 to about 2,000 BTU/lb, or in the range of from 600 to 1 ,500 BTU/lb.
Referring again to FIG. 1 , when reactor 10 is employed as a finisher reactor in a melt-phase polyester production process (e.g., a process for making PET), the average chain length of the feed introduced into feed inlet 30 can be in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30, while the average chain length of the predominately liquid product withdrawn from liquid product outlet 24 can be in the range of from about 30 to about 210, about 40 to about 80, or 50 to 70. Generally, the polycondensation carried out in reactor 10 can cause the average chain length of reaction medium 60 to increase by at least about 10, at least about 25, or at least 50 between feed inlet 30 and liquid product outlet 24.
When reactor 10 is employed as a finisher reactor, the feed can enter feed inlet 30 at a temperature in the range of from about 220 to about 3500C, about 265 to about 3050C, or 270 to 2900C. The predominately liquid product exiting liquid product outlet 24 can have a temperature within about 500C, 25°C, or 100C of the temperature of the feed entering feed inlet 30. In one embodiment, the temperature of the liquid product exiting liquid product outlet 24 is in the range of from about 220 to about 350°C, about 265 to about 3050C, or 270 to 290°C. In one embodiment, the average temperature of reaction medium 60 in reactor 10 is in the range of from about 220 to about 350°C, about 265 to about 305°C, or 270 to 2900C. When reactor 10 is employed as a finisher reactor, the vapor space pressure in reactor 10 (measured at vapor outlet 22) can be maintained in the range of from about 0 to about 30 torr, in the range of from about 1 to about 20 torr, or in the range of from 2 to 10 torr.
Reactors configured in accordance with embodiments of the present invention can provide numerous advantages when employed as reactors in the esterification and/or polycondensation stages of a polyester production process. Such reactors can be particularly advantageous when employed as secondary esterification, prepolymer, and/or finisher reactors in a process for making PET. Further, such reactors are well suited for use in commercial scale PET production facilities capable of producing PET at a rate of at least about 10,000 pounds per hours, at least about 100,000 pounds per hour, at least about 250,000 pounds per hour, or at least 500,000 pounds per hour.
In one embodiment of the present invention, there is provided a process comprising subjecting a reaction medium to a chemical reaction in a reactor comprising a vertically elongated header, a first set of vertically spaced horizontally elongated reactor segments, and a second set of vertically spaced horizontally elongated reactor segments. The first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. At least a portion of the reaction medium flows through the header and the first and second sets of reactor segments as the reaction medium travels through the reactor.
In one example, the header extends substantially vertically (i.e., the central axis of elongation for the header is essentially vertical). Alternatively, the header can extend within about 30, about 15, or 5 degrees of vertical. In one example, the reactor segments extend essentially horizontally (i.e., the central axis of elongation of the reactor segments is essentially horizontal). Alternatively the reactor segments can extend within about 30, about 15, or 5 degrees of horizontal. In another example, the reactor comprises no mechanical mixing device.
The reactor can, for example, comprise at least two, at least three, at least four, at least five, at least six, at least seven, or more vertically spaced horizontally elongated reactor segments in the first set of reactor segments, in the second set of reactor segments, and/or in both sets of reactor segments. The reactor segments can extend outwardly from different sides of the header. For example, the reactor may comprise a first set of at least two reactor segments and a second set of at least two reactor segments, wherein the first and second sets of reactor segments extend outwardly from generally opposite sides of the header. In another example, the sets of reactor segments can extend from different sides of the header that are not necessarily opposite. For example, the two sets of reactor segments could extend outwardly from the header at a 45°, 60°, 75°, 90°, 105°, 130°, 145°, or 160° angle relative to one another. In another example, the reactor can employ three sets of reactor segments circumferentially spaced around the header at 120° angles relative to one another.
In one example of the present invention, the reaction medium flows through at least one of the reactor segments, along a flow path that includes an outward portion where the reaction medium flows generally away from the header and an inward portion where the reaction medium flows generally towards the header. The outward and inward portions of the flow path can each extend at least one-half, or at least three-quarters, or at least nine-tenths the length of the at least one of the reactor segments.
In another example, at least one of the reactor segments comprises a substantially horizontal pipe and at least one tray disposed in the pipe, wherein at least a portion of the reaction medium flows on the tray as the reaction medium flows through the at least one of the reactor segments. In another example, at least one of the reactor segments comprises a horizontally elongated tubular member and a tray disposed substantially within the tubular member, wherein the tray extends along at least one-half, at least three-quarters, or at least nine-tenths the length of the tubular member. The reaction medium flows on the tray when traveling along the outward portion of the flow path and on the bottom of the tubular member when traveling along the inward portion of the flow path. In another example, the at least one of the reactor segments receives the reaction medium onto the tray from the header and discharges the reaction medium into the header from the bottom of the tubular member. In another example the at least one of the reactor segments also discharges a vapor byproduct of the chemical reaction into the header. The discharged vapor byproduct flows generally upwardly in the header while the discharged reaction medium flows generally downwardly in the header.
In one example, the reaction medium flows from a proximal end of the tray to a distal end of the tray when traveling along the outward flow path and flows over the distal end of the tray and onto the bottom of the tubular member. In one example, the distal end of the tray comprises an upwardly extending weir over, around, through, and/or under which at least a portion of the reaction medium flows before passing to the bottom of the tubular member. In another example, the at least one of the reactor segments comprises an end cap coupled to a distal end of the tubular member, wherein the distal end of the tray is horizontally spaced from the end cap to thereby form a flow passageway through which the reaction medium flows as it passes from the tray to the bottom of the tubular member. In one example, the tubular member and the tray are substantially horizontally oriented. In another example, the central axis of elongation for the tubular member can extend within about 30, about 15, or about 5 degrees of horizontal. In one example, the tubular member is a pipe.
In one example, at least one of the reactor segments has a length-to- diameter (LD) ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1 , or 8:1 to 15:1. Additionally, L can be in the range of from about 10 to about 200 feet, about 20 to about 100 feet or 30 to 50 feet and D can be in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.
In one example, as the reaction medium travels through the reactor the reaction medium flows downwardly through the header as the reaction medium travels from an upper one to a lower one of the reactor segments. In one example, the upper and lower reactor segments comprise respective upper and lower elongated tubular members and upper and lower internal trays disposed in the upper and lower tubular members respectively, wherein at least a portion of the reaction medium flows generally away from the header on the upper and lower trays and generally towards the header on the bottom of the upper and lower tubular members. In another example, the reactor further comprises upper and lower flow diverters coupled to the upper and lower trays respectively, wherein the upper and lower flow diverters extend into the header and the lower flow diverter directs the reaction medium exiting the bottom of the upper tubular member downwardly through the header and onto the lower tray. Additionally, a vapor gap can be defined by the lower flow diverter or between the upper and lower flow diverters, wherein the vapor gap permits the flow of a vapor byproduct of the chemical reaction out of the lower reactor segment and generally upwardly through the header while the reaction medium exiting the upper reactor segment is directed generally downwardly through the header. In one example, a vapor byproduct of the chemical reaction from at least two of the reactor segments is combined in the header and exits the reactor via a vapor outlet located near the top of the header. In another example, a predominately liquid product of the chemical reaction exits the reactor via a liquid outlet located near the bottom of the header. In one example, the header has a height-to-width (H:W) ratio in the range of from about 2:1 to about 20:1 , about 4:1 to about 15:1 , or 5:1 to 10:1 and at least one of the reactor segments has an L: D ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1 , or 8:1 to 15:1.
In one example, the reaction medium comprises a liquid within which the chemical reaction is carried out. In another example the reaction medium comprises a foam portion and a predominately liquid portion, each comprising the liquid. In one example, a portion of the reaction medium located in an uppermost one of the reactor segments comprises at least 50 volume percent vapor and a portion of the reaction medium located in a lowermost one of the reactor segments comprises less than 20 volume percent vapor.
In one example, the chemical reaction comprises polycondensation wherein the average chain length of the reaction medium increases by at least about 10, at least about 25, or at least 50 in the reactor. In one example, the reaction medium comprises a polyester polymer or copolymer that is at least partly formed by the polycondensation. The polyester polymer or copolymer can comprise polyethylene terephthalate (PET), Additionally, the process can comprise introducing a polycondensation feed into the feed inlet of the reactor, wherein the polycondensation feed forms the reaction medium in the reactor. The polycondensation feed can have an average chain length in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30.
In one example of the present invention, there is provided a process comprising subjecting a reaction medium to an esterification and/or polycondensation reaction in a reactor comprising a vertically elongated header, a first set of vertically spaced horizontally elongated reactor segments, and a second set of vertically spaced horizontally elongated reactor segments. The first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. At least a portion of the reaction medium flows through the header and the first and second sets of reactor segments as the reaction medium travels through the reactor. The detailed description of FIG. 1 reactor 10 employed as a second stage esterification, prepolymerization, and/or finisher reactor given above applies to this example of the present invention. Specifically the feed characteristics (e.g., conversion and/or chain length), temperature, pressure, conversion increase, average chain length increase, product characteristics, and any heat input all apply to this example of the present invention.
In one example, a product is removed from a product outlet of the reactor, wherein the reaction medium forms the product in the reactor. Additionally, when the chemical reaction comprises polycondensation, the product can be a polycondensation product. The It.V. of the product or polycondensation product can be in the range of from about 0.3 to about 1.2, about 0.35 to about 0.6, or 0.4 to 0.5 dl_/g. In one example, It.V. of the product or polycondensation product is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or 0.15 to 0.35 dl_/g. In one example, a feed is introduced to a feed inlet of the reactor to form the reaction medium and the It.V. of the feed is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or 0.15 to 0.35 dL/g. The Intrinsic viscosity (It.V.) values are set forth in dl_/g units as calculated from the inherent viscosity measured at 25°C in 60% phenol and 40% 1 ,1 ,2,2-tetrachloroethane by weight. Polymer samples can be dissolved in the solvent at a concentration of 0.25 g/50 ml_. The viscosity of the polymer solutions can be determined, for example, using a Rheotek Glass Capillary viscometer. A description of the operating principle of this viscometer can be found in ASTM D 4603. The inherent viscosity is calculated from the measured solution viscosity. The following equations describe such solution viscosity measurements and subsequent calculations to Ih.V. and from Ih.V. to It.V:
ηinh = [In (ts/to)]/C
where ηinh = Inherent viscosity at 250C at a polymer concentration of 0.5 g/ 100 ml_ of 60% phenol and 40% 1,1,2,2- tetrachloroethane by weight
In = Natural logarithm ts = Sample flow time through a capillary tube to = Solvent-blank flow time through a capillary tube
C = Concentration of polymer in grams per 100 ml_ of solvent (0.50%)
The intrinsic viscosity is the limiting value at infinite dilution of the specific viscosity of a polymer. It is defined by the following equation:
ηint= lim (ηsp/C) = lim (In ηr)/C
C→0 C→O
where ηint = Intrinsic viscosity ηr = Relative viscosity = Vt0 ηsp = Specific viscosity = ηr - 1
The intrinsic viscosity (It.V. or ηint) may be estimated using the Billmeyer equation as follows:
ηin,= 0.5 [e 0 5 x lh V - 1] + (0.75 x Ih.V.)
The reference for estimating intrinsic viscosity (Billmeyer relationship) is J. Polymer Sci., 4, pp. 83-86 (1949). The viscosity of the polymer solutions can also be determined using a Viscotek Modified Differential Viscometer (a description of the operating principle of the differential pressure viscometers can be found in ASTM D 5225) or other methods known to one skilled in the art. In another embodiment of the present invention, there is provided, a process for making polyethylene terephthalate (PET), the process comprising: (a) introducing a polycondensation feed into a polycondensation reactor, wherein the polycondensation feed forms a reaction medium in the reactor, wherein the polycondensation feed comprises PET having an average chain length in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30; (b) subjecting the reaction medium to polycondensation in the reactor, wherein the reactor comprises a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated reactor segments, wherein the first and second sets of reactor segments are coupled to and extend outwardly from generally
, opposite sides of the header, wherein the reaction medium passes downwardly through the header as the reaction medium travels from an upper one of the reactor segments to a lower one of the reactor segments, wherein the upper and lower reactor segments comprise respective upper and lower elongated pipes and respective upper and lower internal trays disposed in the upper and lower pipes respectively, wherein the upper and lower pipes and trays are substantially horizontally oriented, wherein the reaction medium flows on the upper and lower trays generally away from the header, wherein the reaction medium flows on the bottom of the upper and lower pipes generally toward the header; and (c) recovering a predominately liquid polycondensation product from the reactor, wherein the polycondensation product comprises PET having an average chain length that is at least about 10, at least about 25, or at least 50 greater than the average chain length of the PET in the polycondensation feed. In one example, each of the upper and lower pipes has a length-to- diameter (LD) ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1 , or 8:1 to 15:1 and each of the upper and lower trays has a length that is at least about 0.5L, at least about 0.75L, or at least 0.9L1 relative to the upper and lower pipes respectively. Additionally, the upper and lower trays present an upwardly facing flow surface that is spaced at least about 0.1 D, at least about 0.2D1 or at least 0.4D from the top and/or bottom of the upper and lower pipes. In another example, the upwardly facing surface is spaced about
5 to about 50 inches, about 10 to about 40 inches, or 15 to 30 inches from the top and/or bottom of the tubular member. In one example, the maximum depth of the reaction medium on each tray and/or the bottom of each tubular member is less than about 0.8D1 less than about 0.4D1 or less than 0.25D. The maximum depth of the reaction medium on each tray and/or the bottom of each tubular member can be about 1 to about 40 inches, about 1 to about 32 inches, or 1 to 24 inches.
In one example, the polycondensation causes the formation of a vapor byproduct and the vapor byproduct is discharged from the reactor via a vapor outlet located near the top of the header. In another example, the polycondensation product is recovered from a liquid outlet located near the bottom of the header.
In one example, the polycondensation feed comprises PET having an average chain length in the range of from about 8 to about 40 wherein the polycondensation product comprises PET having an average chain length that is at least about 25 greater than the average chain length of the PET in the polycondensation feed.
In one example, the temperature of the polycondensation feed to the polycondensation reactor is maintained in the range of from about 220 to about 35O0C1 about 265 to about 3050C, or 270 to 2900C wherein the vapor space pressure in the polycondensation reactor is maintained in the range of from about 0 to about 30 torr, about 1 to about 20 torr, or 2 to 10 torr.
In one example, the It.V. of the polycondensation feed is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or about 0.15 to about 0.35 dUg. In one example, the It.V. of or polycondensation product is in the range of from about 0.3 to about 1.2, about 0.35 to about 0.6, or 0.4 to 0.5 dL/g. In still another embodiment of the present invention, there is provided a reactor comprising a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated vertically spaced reactor segments. The first and second sets of reactor segments are coupled to and extend outwardly from different sides of the header. In one example, the first and second sets of reactor segments extend outwardly from generally opposite sides of the header.
In one example, at least one of the reactor segments comprises a horizontally elongated tubular member and an internal tray disposed substantially within the tubular member, wherein the tray extends along at least one-half, at least three-quarters, or at least nine-tenths the length of the tubular member. In another example, the at least one of the reactor segments additionally has a proximal end coupled to the header and a distal end spaced from the header, wherein the tray divides the interior of the tubular member into upper and lower chambers, wherein the upper and lower chambers are in fluid communication with the header at the proximal end. Additionally, the at least one of the reactor segments can define an internal flow passageway proximate the distal end, wherein the internal flow passageway permits fluid communication between the upper and lower chambers. In another example, the at least one of the reactor segments additionally comprises an end cap coupled to the tubular member at the distal end, wherein the tray does not extend all the way to the end cap so that the internal flow passageway is defined by the gap formed between the tray and the end cap. In one example, the at least one of the reactor segments comprises an upwardly extending weir coupled to the tray proximate the internal flow passageway.
In one example, the tubular member and the tray are substantially horizontally oriented. In another example, the tubular member is a pipe. In one example, each of the reactor segments has a length-to-diameter (L: D) ratio in the range of from about 2:1 to about 50:1 , about 5:1 to about 20:1, or 8:1 to 15:1 , wherein the header has a height-to-width (H :W) ratio in the range of from about 2:1 to about 20:1, about 4:1 to about 15:1, or 5:1 to 20:1. In 008/008344
another example, in addition to the LD ratios and H:W ratios given here above, the diameter-to-width (D:W) ratio of the reactor is in the range of from about 0.1:1 to about 2:1 , about 0.25:1 to about 1:1 , or 0.4:1 to 0.9:1.
In one example, the LD ratio of each of the reactor segments is in the range of from about 2:1 to about 50:1, about 5:1 to about 20:1 , or 8:1 to 15:1 , wherein L is in the range of from about 10 to about 200 feet, about 20 to about 100 feet, or 30 to 50 feet and D is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet wherein H is in the range of from about 8 to about 100 feet, about 10 to about 75 feet, or 20 to 50 feet and W is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.
In one example, each of the sets of reactor segments includes upper and lower reactor segments, wherein each of the upper and lower reactor segments comprises respective upper and lower pipes and respective upper and lower trays at least partly disposed in the upper and lower pipes respectively, wherein the reactor further comprises upper and lower flow diverters extending in the header, wherein the upper flow diverter is coupled to the upper tray of the first set of reactor segments, wherein the lower flow diverter is coupled to the lower tray of the first set of reactor segments. In another example, a vapor gap is defined in the lower flow diverter or between the upper and lower flow diverters at an elevation above the elevation of the lower reactor segment of the first set of reactor segments.
Numerical Ranges The present description uses numerical ranges to quantify certain parameters relating to the invention. It should be understood that when numerical ranges are provided, such ranges are to be construed as providing literal support for claim limitations that only recite the lower value of the range, as well as claim limitations that only recite the upper value of the range. For example, a disclosed numerical range of 10 to 100 provides literal support for a claim reciting "greater than 10" (with no upper bounds) and a claim reciting "less than 100" (with no lower bounds). Definitions
As used herein, the terms "a," "an," "the," and "said" means one or more. As used herein, the term "agitation" refers to work dissipated into a reaction medium causing fluid flow and/or mixing.
As used herein, the term "and/or," when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
As used herein, the term "average chain length" means the average number of repeating units in the polymer. For a polyester, average chain length means the number of repeating acid and alcohol units. Average chain length is synonymous with number average degree of polymerization (DP). The average chain length can be determined by various means known to those skilled in the art. For example, 1 H-NMR can be used to directly determine the chain length based upon end group analysis, and light scattering can be used to measure the weight average molecular weight with correlations used to determine the chain length. Chain length is often calculated based upon correlations with gel permeation chromotagraphy (GPC) measurements and/or viscosity measurements. As used herein, the terms "comprising," "comprises," and "comprise" are open-ended transition terms used to transition from a subject recited before the term to one or more elements recited after the term, where the element or more elements listed after the transition term are not necessarily the only elements that make up the subject. As used herein, the terms "containing," "contains," and "contain" have the same open-ended meaning as "comprising," "comprises," and "comprise," provided below. As used herein, the term "conversion" is used to describe a property of the liquid phase of a stream that has been subjected to esterification, wherein the conversion of the esterified stream indicates the percentage of the original acid end groups that have been converted (i.e., esterified) to ester groups. Conversion can be quantified as the number of converted end groups (i.e., alcohol end groups) divided by the total number of end groups (i.e., alcohol plus acid end groups), expressed as a percentage.
As used herein, the term "directly coupled" refers to a manner of coupling two vessels in fluid flow communication with one another without the use of an intermediate connector having a substantially narrower diameter than the two vessels.
As used herein, the term "esterification" refers to both esterification and ester exchange reactions.
As used herein, the terms "having," "has," and "have" have the same open-ended meaning as "comprising," "comprises," and "comprise," provided above.
As used herein, the term "horizontally elongated" means that the maximum horizontal dimension is larger than the maximum vertical dimension. As used herein, the terms "including," "includes," and "include" have the same open-ended meaning as "comprising," "comprises," and "comprise," provided above.
As used herein, the term, "mechanical agitation" refers to agitation of a reaction medium caused by physical movement of a rigid or flexible element(s) against or within the reaction medium.
As used herein, the term "open flow area" refers to the open area available for fluid flow, where the open area is measured along a plane that is perpendicular to the direction of flow through the opening.
As used herein, the term "pipe" refers to a substantially straight elongated tubular member having a generally cylindrical sidewall.
As used herein, the terms "polyethylene terephthalate" and "PET" include PET homopolymers and PET copolymers. As used herein, the terms "polyethylene terephthalate copolymer" and "PET copolymer" mean PET that has been modified by up to 10 mole percent with one or more added comonomers. For example, the terms "polyethylene terephthalate copolymer" and "PET copolymer" include PET modified with up to 10 mole percent isophthalic acid on a 100 mole percent carboxylic acid basis. In another example, the terms "polyethylene terephthalate copolymer" and "PET copolymer" include PET modified with up to 10 mole percent 1 ,4- cyclohexane dimethanol (CHDM) on a 100 mole percent diol basis.
As used herein, the term "polyester" refers not only to traditional polyesters, but also includes polyester derivatives, such as, for example, polyetheresters, polyester amides, and polyetherester amides.
As used herein, "predominately liquid" means more than 50 volume percent liquid.
As used herein, the term "reaction medium" refers to any medium subjected to chemical reaction.
As used herein, the term "residue" refers to the moiety that is the resulting product of the chemical species in a particular reaction scheme or subsequent formulation or chemical product, regardless of whether the moiety is actually obtained from the chemical species. As used herein, the term "vapor byproduct" includes the vapor generated by a desired chemical reaction (i.e., a vapor coproduct) and any vapor generated by other reactions (i.e., side reactions) of the reaction medium.
As used herein, the term "vertically elongated" means that the maximum vertical dimension is larger than the maximum horizontal dimension.
Claims Not Limited to Disclosed Embodiments
The exemplary embodiments of the invention described above are to be used as illustration only, and should not be used in a limiting sense to interpret the scope of the claimed invention. Various modifications to the above-described exemplary embodiments could be readily made by those skilled in the art without departing from the scope of the invention as set forth in the following claims.

Claims

What is claimed is:
1. A process comprising: subjecting a reaction medium to a chemical reaction in a reactor comprising a vertically elongated header, a first set of vertically spaced horizontally elongated reactor segments, and a second set of vertically spaced horizontally elongated reactor segments, wherein said first and second sets of reactor segments are coupled to and extend outwardly from different sides of said header, wherein at least a portion of said reaction medium flows through said header and said first and second sets of reactor segments as said reaction medium travels through said reactor.
2. The process of claim 1 , wherein said reactor segments comprise elongated pipes, wherein said reaction medium passes downwardly through said header as said reaction medium travels from an upper one of said reactor segments to a lower one of said reactor segments, wherein said upper and lower reactor segments comprise respective upper and lower elongated pipes and respective upper and lower internal trays disposed in said upper and lower pipes respectively, wherein said upper and lower pipes and trays are substantially horizontally oriented, wherein said reaction medium flows on said upper and lower trays generally away from said header, wherein said reaction medium flows on the bottom of said upper and lower pipes generally toward said header, wherein said reaction medium enters and exits at least one of said reactor segments through said header.
3. The process of claims 1-2, wherein said reaction medium comprises a polycondensation feed, wherein said polycondensation feed comprises PET having an average chain length in the range of from 5 to 50.
4. The process of claims 1-3, wherein a vapor byproduct of said chemical reaction from at least two of said reactor segments is combined in said header and exits said reactor via a vapor outlet located near the top of said header.
5. The process of claims 1-4, wherein a predominately liquid product of said chemical reaction exits said reactor via a liquid outlet located near the bottom of said header.
6. The process of claims 1-5, wherein said header has a height-to- width (H:W) ratio in the range of from 2:1 to 20:1 , wherein at least one of said reactor segments has an LD ratio in the range of from 2:1 to 50:1 , and wherein L is in the range of from 3.05 to 61 meters (10 to 200 feet) and D is in the range of from 0.31 to 6.1 meters (1 to 20 feet).
7. The process of claims 1-6, wherein said reaction medium comprises a liquid within which said chemical reaction is carried out and said liquid comprises a foam portion and a predominately liquid portion.
8. The process of claims 1-7, wherein said chemical reaction comprises polycondensation, wherein the average chain length of said reaction medium increases by at least 10 in said reactor.
9. The process of claims 1-8, wherein a portion of said reaction medium located in an uppermost one of said reactor segments comprises at least 50 volume percent vapor and a portion of said reaction medium located in a lowermost one of said reactor segments comprises less than 20 volume percent vapor.
10. The process of claims 1-9, wherein PET is produced by said reactor.
11. The process of claims 3-10, wherein said PET is a PET copolymer comprising at least 90 mole percent ethylene terephthalate repeat units and up to 10 percent of added comonomer repeat units.
12. The process of claim 11 , wherein said added comonomer repeat units are derived from an added comonomer selected from the group consisting of isophthalic acid, 2,6-naphthaline-dicarboxylic acid, 1 ,4-cyclohexane- dimethanol, diethylene glycol, and combinations of two or more thereof.
13. The process of claim 12, wherein said added comonomer comprises isophthalic acid.
14. The process of claims 3-13, wherein said feed has an average chain length in the range of from 1 to 20.
15. The process of claims 3-14, wherein said feed is maintained at a temperature in the range of from 220 to 35O0C, wherein the vapor space pressure in said reactor is maintained in the range of from 0 to 39996 Pa (0 to 300 torr).
16. The process of claims 3-15, further comprising recovering a predominately liquid polycondensation product from said reactor, wherein said polycondensation product comprises PET having an average chain length that is at least 10 greater than the average chain length of the PET in said polycondensation feed.
17. The process of claims 3-16, further comprising removing a product from a product outlet of said reactor, wherein said reaction medium forms said product in said reactor, wherein the It.V. of said product is in the range of from 0.3 to 1.2 dUg.
18. A reactor comprising: a vertically elongated header, a first set of horizontally elongated vertically spaced reactor segments, and a second set of horizontally elongated vertically spaced reactor segments, wherein said first and second sets of reactor segments are coupled to and extend outwardly from different sides of said header.
PCT/US2008/008344 2007-07-12 2008-07-07 Multi-level tubular reactor with oppositely extending segments WO2009009036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/776,598 2007-07-12
US11/776,598 US7847053B2 (en) 2007-07-12 2007-07-12 Multi-level tubular reactor with oppositely extending segments

Publications (1)

Publication Number Publication Date
WO2009009036A1 true WO2009009036A1 (en) 2009-01-15

Family

ID=39791119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/008344 WO2009009036A1 (en) 2007-07-12 2008-07-07 Multi-level tubular reactor with oppositely extending segments

Country Status (2)

Country Link
US (1) US7847053B2 (en)
WO (1) WO2009009036A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117414798A (en) * 2023-12-19 2024-01-19 成都赢纳环保科技有限公司 Reation kettle that environment-friendly medicament production was used

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943094B2 (en) * 2006-12-07 2011-05-17 Grupo Petrotemex, S.A. De C.V. Polyester production system employing horizontally elongated esterification vessel
US7868130B2 (en) * 2007-07-12 2011-01-11 Eastman Chemical Company Multi-level tubular reactor with vertically spaced segments
US7872089B2 (en) * 2007-07-12 2011-01-18 Eastman Chemical Company Multi-level tubular reactor with internal tray

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787479A (en) * 1970-03-05 1974-01-22 Inventa Ag Process for the continuous transesterification of dicarboxylic acid alkyl esters with diols
US3841836A (en) * 1972-08-10 1974-10-15 Eastman Kodak Co Apparatus for the production of condensation polymers
GB2020194A (en) * 1978-05-05 1979-11-14 Eastman Kodak Co Polymerization reactor
US4200145A (en) * 1978-01-12 1980-04-29 The Badger Company, Inc. Method of preheating a liquid reaction mass of polyolefin dissolved in liquid monomer
WO1995029752A1 (en) * 1994-05-02 1995-11-09 Eastman Chemical Company Split flow reactor trays for vertical staged polycondensation reactors
WO2004111104A1 (en) * 2003-06-06 2004-12-23 Eastman Chemical Company Polyester process using a pipe reactor

Family Cites Families (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905707A (en) 1959-09-22 Production of bis
US272882A (en) * 1883-02-27 Susan a
US1422182A (en) 1919-06-05 1922-07-11 Union Carbide Corp Treating gaseous hydrocarbon mixtures
US2361717A (en) 1940-09-12 1944-10-31 Du Pont Process for making polyamides
US2614648A (en) 1948-04-02 1952-10-21 Maloney Crawford Tank & Mfg Co Horizontal oil and gas separator
US2753249A (en) 1950-10-06 1956-07-03 Exxon Research Engineering Co Catalytic polymerization apparatus
US2709642A (en) * 1951-12-03 1955-05-31 Exxon Research Engineering Co Chemical reactor
US2727882A (en) 1952-10-14 1955-12-20 Du Pont Process and apparatus for the continuous polymerization of bis-2-hydroxyethyl terephthalate
US2820815A (en) * 1954-04-08 1958-01-21 Exxon Research Engineering Co Synthetic lubricating compositions and process for their preparation
NL89292C (en) 1954-08-16
NL89785C (en) 1955-02-09
US2973341A (en) * 1956-01-25 1961-02-28 Glanzstoff Ag Continuous process for production of a polyethylene terephthalate condensate
BE564025A (en) 1957-01-17
US2829153A (en) * 1957-03-04 1958-04-01 Du Pont Continuous ester interchange process
BE570443A (en) 1957-09-28
US3254965A (en) * 1958-11-28 1966-06-07 Phillips Petroleum Co Polymerization control apparatus
US3113843A (en) 1959-01-27 1963-12-10 Du Pont Apparatus for separating a vapor from a viscous material such as molten polymer
US3192184A (en) * 1959-03-19 1965-06-29 Du Pont Prepolymerization process
NL255414A (en) * 1959-08-31
DE1128657B (en) 1960-02-20 1962-04-26 Glanzstoff Ag Device for the continuous polycondensation of diol esters of terephthalic acid
US3052711A (en) 1960-04-20 1962-09-04 Du Pont Production of di(beta-hydroxyethyl) terephthalate
US3110547A (en) 1961-07-26 1963-11-12 Du Pont Polymerization process
US3161710A (en) 1961-07-27 1964-12-15 Du Pont Polymerization process for polyester films
GB988548A (en) * 1961-08-30 1965-04-07 Goodyear Tire & Rubber Method for preparing polyester resins
US3250747A (en) * 1961-12-07 1966-05-10 Eastman Kodak Co Polyesterification in two evacuated zones separated by a liquid seal
NL292245A (en) * 1962-05-11
NL294427A (en) * 1962-06-23
LU44479A1 (en) 1962-09-24 1963-11-21
GB1013034A (en) 1963-01-29 1965-12-15 Goodyear Tire & Rubber Process for preparing resin
NL130338C (en) 1963-06-11 1900-01-01
US3241926A (en) * 1963-11-15 1966-03-22 Monsanto Co Apparatus for continuously polycondensing polymethylene glycol esters of aromatic dicarboxylic acids
LU48718A1 (en) * 1964-06-01 1965-12-01
DE1240286B (en) 1965-01-02 1967-05-11 Basf Ag Process for the continuous emulsion polymerization of olefinically unsaturated compounds
US3438942A (en) * 1965-06-01 1969-04-15 Vickers Zimmer Ag Continuous polyester process
FR1450577A (en) 1965-06-09 1966-06-24 Rhone Poulenc Sa New stage reactor
NL131998C (en) * 1965-06-09
US3442868A (en) 1965-07-20 1969-05-06 Teijin Ltd Novel process for the preparation of polyester
GB1055918A (en) 1965-11-03 1967-01-18 Metallgesellschaft Ag A method of polycondensing bis(2-hydroxyethyl)-terephthalate and apparatus for performing the same
CH487345A (en) 1965-11-11 1970-03-15 Karl Fischer App Und Rohrleitu Process for conveying a vaporous substance and application of this process
US3534082A (en) 1965-12-22 1970-10-13 Du Pont Production of bis(2 - hydroxyethyl) terephthalate through ester interchange
ES337977A1 (en) 1966-03-23 1968-03-16 Fiber Industries Inc A procedure for the production of linear polymers of low molecular weight of tereftal acid and ethylenglicol. (Machine-translation by Google Translate, not legally binding)
GB1122538A (en) 1966-03-31 1968-08-07 Fischer Karl Process for the esterification of terephthalic acid with glycols
US3496220A (en) * 1966-04-04 1970-02-17 Mobil Oil Corp Esterification process
GB1111815A (en) 1966-04-22 1968-05-01 Ici Ltd Polyester preparation
CH465875A (en) * 1966-09-16 1968-11-30 Inventa Ag Process for the continuous production of polyesters
US3590072A (en) * 1966-11-18 1971-06-29 Monsanto Co Method for direct esterification of terephthalic acid with ethylene glycol
US3497473A (en) * 1966-11-29 1970-02-24 American Enka Corp Process for the preparation of polyethylene terephthalate
US3509203A (en) * 1966-12-16 1970-04-28 Engels Chemiefaserwerk Veb Transesterification of dicarboxylic alkyl esters with glycols
NL6717446A (en) * 1966-12-30 1968-07-01
US3487049A (en) 1967-01-04 1969-12-30 Du Pont Process for producing polyethylene terephthalate
US3496159A (en) * 1967-03-27 1970-02-17 Spence & Green Chem Co Esterification of fatty acids of tall oil in a horizontal distillation column and condenser
US3522214A (en) 1967-04-13 1970-07-28 Mobil Oil Corp Process and apparatus for polymerizing liquids
GB1154538A (en) 1967-04-19 1969-06-11 Mobil Oil Corp Esterifying Viscous Reaction Mixtures
US3595846A (en) 1967-05-02 1971-07-27 Michelin & Cie Continuous chemical reactions
US3496146A (en) * 1967-08-23 1970-02-17 Du Pont Preparation of glycol terephthalate linear polyester by direct esterification of terephthalic acid
US4020049A (en) * 1967-09-14 1977-04-26 The Goodyear Tire & Rubber Company Process for preparing polyester resin
US3551396A (en) 1968-01-05 1970-12-29 Gulf Oil Canada Ltd Continuous vinyl polymerization process
NL6809754A (en) * 1968-04-11 1969-10-14
US3609125A (en) 1968-04-24 1971-09-28 Asahi Chemical Ind Polyesterification process and apparatus
FR1583867A (en) 1968-05-15 1969-12-05
US3590070A (en) * 1968-06-03 1971-06-29 Celanese Corp Recycle of terephthalic acid in the production of a bis(2-hydroxyalkyl) terephthalate
US3651125A (en) * 1968-08-12 1972-03-21 Eastman Kodak Co Continuous method for formation of a liquid monomer for a condensation polymer
US3676485A (en) 1968-08-12 1972-07-11 Eastman Kodak Co Method for use in a continuous flow reaction for producing a monomer and or a protopolymer
US3646102A (en) * 1968-08-28 1972-02-29 Idemitsu Kosan Co Method for continuously preparing polycarbonate oligomer
NL160174C (en) * 1968-12-12 1979-10-15 Snia Viscosa DEVICE FOR THE VOLUMETRIC DISCHARGE OF A VISCOUS LIQUID FROM A ROOM FOR THE CONTINUOUS TREATMENT OF POLYMERS.
CH521400A (en) * 1969-01-24 1972-04-15 Inventa Ag Process and device for the continuous production of polylactams
US3697579A (en) 1969-09-18 1972-10-10 Allied Chem Method of esterifying a polycarboxylic acid with a glycol
US3689461A (en) 1969-09-18 1972-09-05 Allied Chem Process for the preparation of linear condensation polyesters
DE1957458B2 (en) 1969-11-15 1973-04-19 Chemische Werke Hüls AG, 4370 Mari DEVICE FOR THE CONTINUOUS PERFORMANCE OF CHEMICAL REPRODUCTIONS IN THE LIQUID PHASE
BE759208A (en) * 1969-11-22 1971-05-21 Basf Ag CONTINUOUS PREPARATION PROCESS FOR
GB1277376A (en) 1970-02-02 1972-06-14 Schwarza Chemiefaser A process and a device for the continuous esterification of di-carboxylic acids with alcohols
US3927982A (en) 1970-03-18 1975-12-23 Du Pont Recirculating apparatus for continuous esterification reactions
US3644096A (en) * 1970-03-30 1972-02-22 Eastman Kodak Co Apparatus for use in a continuous flow reaction for producing a monomer and/or a protopolymer
US3684459A (en) 1970-08-20 1972-08-15 Phillips Fibers Corp Plug metered evaporative reaction tube
NL7016364A (en) 1970-10-21 1972-04-25
GB1380266A (en) 1971-05-21 1975-01-08 Agfa Gevaert Process for the semi-continuous preparation of high-molecular weight linear polyesters
DE2145761C3 (en) 1971-09-14 1978-06-15 Davy International Ag, 6000 Frankfurt Process for introducing pulverulent terephthalic acid into a reaction mixture of terephthalic acid partially esterified with diols
US3740267A (en) * 1971-09-22 1973-06-19 Allied Chem Method of cleaning apparatus used in processing polyethylene terephthalate
US3819585A (en) 1971-09-30 1974-06-25 Monsanto Co Polyester esterification under two different pressures
GB1395551A (en) * 1971-12-29 1975-05-29 Kanebo Ltd Method of producing polyesters
DE2200832A1 (en) 1972-01-08 1973-07-12 Schwarza Chemiefaser Bis-(beta-hydroxyethyl) terephthalate oligomers prodn - by continuous reaction in stirred still and flow tube
FR2168990A1 (en) 1972-01-28 1973-09-07 Schwarza Chemiefaser Bis-(beta-hydroxyethyl) terephthalate oligomers prodn - by continuous reaction in stirred still and flow tube
BE780142A (en) 1972-03-02 1972-09-04 Sandoz Sa Polyester prepn - by solid phase condensation in heated tubular reactors under vacuum with opt heated transport screws
DE2227091A1 (en) * 1972-06-03 1973-12-13 Davy Ashmore Ag PROCESS FOR THE PRODUCTION OF HIGH POLYMER, IN PARTICULAR SPINNABLE, POLYESTER COMPOUNDS
US4100142A (en) 1972-09-13 1978-07-11 Fiber Industries, Inc. Polyester process and product
US4019866A (en) * 1973-03-05 1977-04-26 Du Pont Of Canada Limited Recirculating reaction apparatus for continuous preparation of a polyamide
GB1474524A (en) * 1973-07-06 1977-05-25
US3927983A (en) 1973-09-19 1975-12-23 Monsanto Co Continuous staged isobaric stirred polymerization apparatus
GB1486409A (en) 1973-11-06 1977-09-21 Agfa Gevaert Process for the preparation of high-molecular weight polyesters
CA1024294A (en) * 1974-02-27 1978-01-10 Baden M. Pinney Control in preparing polyamides by continuous polymerization
US4077945A (en) * 1974-03-23 1978-03-07 Zimmer Aktiengesellschaft Process for making linear polyesters from ethylene glycol and terephthalic acid
DE2443566A1 (en) 1974-09-12 1976-04-01 Basf Ag PROCESS FOR CONTINUOUS PRODUCTION OF POLYAMIDES
DE2449162A1 (en) 1974-10-16 1976-04-22 Basf Ag PROCESS FOR CONTINUOUS MANUFACTURING OF LINEAR POLYESTERS
DE2504258A1 (en) 1975-02-01 1976-08-05 Dynamit Nobel Ag PROCESS AND APPARATUS FOR THE MANUFACTURING OF OLIGOMERIC ALKYLENE TEREPHTHALATES
US4148693A (en) * 1975-02-26 1979-04-10 Williamson William R Horizontal cylindrical distillation apparatus
FR2302778A1 (en) 1975-03-05 1976-10-01 Rhone Poulenc Ind Discontinuous polyester mfg. appts. - having stirred lower zone with gas inlet, heated upper zone, recirculating central zone
DE2514116C3 (en) 1975-03-29 1983-03-17 Basf Ag, 6700 Ludwigshafen Process for the continuous production of linear, high molecular weight polybutylene terephthalates
JPS51127031A (en) * 1975-04-23 1976-11-05 Fuji Photo Film Co Ltd Preparation of polyethylene terephthalate
US4028307A (en) * 1975-05-30 1977-06-07 Fiber Industries, Inc. Preparation of polyesters using salts of substituted quaternary ammonium bases
US4032563A (en) * 1975-09-02 1977-06-28 Standard Oil Company Process for the recovery of high purity diesters of terephthalic or isophthalic acids
US4118582A (en) 1975-10-28 1978-10-03 E. I. Du Pont De Nemours And Company Purification of spent ethylene glycol
DE2559290B2 (en) 1975-12-31 1979-08-02 Davy International Ag, 6000 Frankfurt Process for the continuous production of high molecular weight polyethylene terephthalate
DD125798A1 (en) 1976-05-26 1977-05-18
US4079046A (en) * 1976-06-03 1978-03-14 Monsanto Company, St. Louis, Missouri Multiple polyesterification process
JPS52150496A (en) 1976-06-09 1977-12-14 Mitsubishi Gas Chem Co Inc Preparation of polycaronate oligomers
US4046718A (en) 1976-06-17 1977-09-06 The Dow Chemical Company Polymerization method employing tubular reactor
DD126073A1 (en) 1976-06-18 1977-06-15
US4089888A (en) * 1976-07-12 1978-05-16 Idemitsu Petrochemical Co. Ltd. Method for producing a polycarbonate oligomer
US4097468A (en) 1977-03-15 1978-06-27 Allied Chemical Corporation Process for preparing polyesters
US4146729A (en) * 1977-04-07 1979-03-27 E. I. Du Pont De Nemours And Company Process for preparing poly(ethylene terephthalate)
US4110316A (en) 1977-04-14 1978-08-29 E. I. Du Pont De Nemours And Company Improved process for preparing poly(ethylene terephthalate)
GB1558910A (en) 1977-05-04 1980-01-09 Bayer Ag Continuous process for the production of polybutylene terephthalates
DE2719967A1 (en) 1977-05-04 1978-11-09 Bayer Ag CONTINUOUS PROCEDURE FOR CARRYING OUT SUBSTANCE TRANSPORT-RELATED REACTIONS
IT1097584B (en) 1977-08-24 1985-08-31 Basf Ag PROCESS AND APPARATUS FOR THE PREPARATION OF LINERAI MACRONOLECULAR POLYESTERS
US4365078A (en) 1977-12-16 1982-12-21 The Goodyear Tire & Rubber Company Process for charging dry terephthalic acid into a reactor
CA1115446A (en) 1977-12-16 1981-12-29 Lawrence E. Shelley Process
US4230818A (en) 1979-03-01 1980-10-28 The Goodyear Tire & Rubber Company Reduction of glycol ethers in polyesters
US4254246A (en) * 1979-03-26 1981-03-03 Davy International Ag Column system process for polyester plants
PL127634B1 (en) 1979-05-23 1983-11-30 Inst Chemii Przemyslowej Continuous process for manufacturing polyesters and apparatus therefor
US4238593B1 (en) 1979-06-12 1994-03-22 Goodyear Tire & Rubber Method for production of a high molecular weight polyester prepared from a prepolymer polyester having an optional carboxyl content
US4223124A (en) 1979-06-22 1980-09-16 The Goodyear Tire & Rubber Company Method for producing polyesters containing low amounts of ether by-products
JPS5645704A (en) 1979-09-21 1981-04-25 Hitachi Ltd Method and apparatus for removal of volatile substances from high-viscous substance
DD146298A1 (en) 1979-09-27 1981-02-04 Wolfgang Haeussler PROCESS FOR PREPARING HIGH PRESSURE POLYAETHYLENE WITH IMPROVED PROPERTIES
BR7906279A (en) 1979-10-01 1981-04-07 Nippon Ester Co Ltd APPLICATION IN CONTINUOUS PROCESS TO PRODUCE POLYESTER AND IN PROCESS TO PRODUCE A SPINNED FIBER FROM POLY POLYMER (ETHYLENE TEREFTALATE)
US4452956A (en) 1979-11-09 1984-06-05 Union Carbide Corporation Discrete spiral flow imparting device
SU973552A1 (en) 1980-02-12 1982-11-15 Всесоюзный научно-исследовательский институт синтетических волокон Continuous process for producing polyethyleneterephthalate
US4289871A (en) 1980-03-27 1981-09-15 Allied Chemical Corporation Method to increase reactor capacity for polycondensation of polyesters
JPS57101A (en) * 1980-06-04 1982-01-05 Mitsui Petrochem Ind Ltd Method and apparatus for polymerization
DE3025574A1 (en) 1980-07-05 1982-02-04 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYESTERS
DE3029907A1 (en) * 1980-08-07 1982-03-18 Hoechst Ag, 6000 Frankfurt CONTINUOUS METHOD AND DEVICE FOR PRODUCING A VINYL CHLORIDE POLYMERISATE IN AQUEOUS SUSPENSION
DE3047474C2 (en) * 1980-12-17 1983-05-11 Didier Engineering Gmbh, 4300 Essen Process and device for the continuous production of polyesters
US4499226A (en) * 1981-03-20 1985-02-12 The Goodyear Tire & Rubber Company High clarity colorless polyesters
US4346193A (en) 1981-05-04 1982-08-24 Atlantic Richfield Company Continuous process for making star-block copolymers
JPS5823829A (en) 1981-07-17 1983-02-12 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Synthetic polymer finishing device
DD206558A1 (en) 1981-08-26 1984-02-01 Otto Schmidt PROCESS FOR PREPARING LOW-MOLECULAR POLYETHYLENEPEPHTHALATE
US4410750A (en) 1981-12-14 1983-10-18 Exxon Research And Engineering Co. Preparation of linear olefin products
PL136188B1 (en) 1982-04-16 1986-02-28 Inst Chemii Przemyslowej Continuous process for manufacturing polyesters and apparatus therefor
US4529787A (en) 1982-06-15 1985-07-16 S. C. Johnson & Son, Inc. Bulk polymerization process for preparing high solids and uniform copolymers
US5236558A (en) 1982-09-23 1993-08-17 Allied-Signal Inc. Method to recycle spent ethylene glycol
US4542196A (en) 1982-09-24 1985-09-17 Cosden Technology, Inc. Process for producing styrenic/alkenylnitrile copolymers
US4550149A (en) 1982-09-24 1985-10-29 Cosden Technology, Inc. Process for producing styrenic/alkenylnitrile copolymers
US4555384A (en) 1982-09-24 1985-11-26 Cosden Technology, Inc. Apparatus for producing styrenic/alkenylnitrile copolymers
US4551510A (en) 1982-09-24 1985-11-05 Cosden Technology, Inc. Process for producing styrenic/alkenylnitrile copolymers
US4548788A (en) 1982-09-24 1985-10-22 Cosden Technology, Inc. Apparatus for producing styrenic/alkenylnitrile copolymers
US4551309A (en) 1982-09-24 1985-11-05 Cosden Technology, Inc. Apparatus for producing styrenic/alkenylnitrile copolymers
DE3235531A1 (en) 1982-09-25 1984-03-29 Chemische Werke Hüls AG, 4370 Marl METHOD FOR THE ESTERIFICATION OF ACETIC ACID WITH ALCOHOLS CONTAINING 4 AND MORE C ATOMES, AND WITH GLYCOLETHERS
US4440924A (en) 1982-10-05 1984-04-03 Toyo Boseki Kabushiki Kaisha Process for production of polyester
US4831108A (en) * 1983-02-16 1989-05-16 Amoco Corporation Polycondensation process with mean dispersion residence time
US5002116A (en) * 1983-08-15 1991-03-26 Airxchange, Inc. Rotary heat regenerator
US4588560A (en) * 1984-06-29 1986-05-13 Mobil Oil Corporation Hydroprocessing reactor for catalytically dewaxing liquid petroleum feedstocks
JPH0641513B2 (en) 1984-11-20 1994-06-01 三菱レイヨン株式会社 Polyester manufacturing method
US4554343A (en) 1984-11-23 1985-11-19 Eastman Kodak Company Process for the production of high molecular weight polyester
DD229415A1 (en) 1984-11-28 1985-11-06 Guben Chemiefaserwerk METHOD FOR PRODUCING POLYETHYLENEPEPHTHALATE
US4675377A (en) 1985-03-11 1987-06-23 General Electric Company Process for continuous preparation of polyphenylene oxide in agitated reaction zones
US4680345A (en) 1985-06-05 1987-07-14 Toyo Boseki Kabushiki Kaisha Continuous production of elastic polyesters
DE3544551C2 (en) 1985-12-17 2002-02-28 Zimmer Ag Process for the continuous production of high molecular weight polybutylene terephthalate
US4670580A (en) 1986-03-31 1987-06-02 Celanese Corporation Process for preparing oligomeric glycol esters of dicarboxylic acids
US4721575A (en) * 1986-04-03 1988-01-26 Vertech Treatment Systems, Inc. Method and apparatus for controlled chemical reactions
EP0254304B1 (en) 1986-07-25 1994-09-21 Dainippon Ink And Chemicals, Inc. Process for producing high impact styrene resin by continuous bulk polymerization
DE3820362A1 (en) 1988-06-15 1990-03-15 Basf Ag METHOD FOR THE CONTINUOUS PRODUCTION OF LINEAR THERMOPLASTIC POLYESTERS
US4952302A (en) 1988-09-27 1990-08-28 Mobil Oil Corporation Vapor/liquid distributor and use thereof
US5041525A (en) 1988-09-30 1991-08-20 E. I. Du Pont De Nemours And Company Process for manufacture of shaped polyethylene terephthalate structures in the presence of molecular sieve catalyst
US5413861A (en) * 1988-10-17 1995-05-09 Dextor Corporation Semiconductor device encapsulated with a flame retardant epoxy molding compound
US5194525A (en) * 1988-12-12 1993-03-16 Dainippon Ink And Chemicals, Inc. Continuous mass polymerization process for making styrene copolymers
AU637595B2 (en) 1989-01-17 1993-06-03 Davy Mckee (London) Limited Process and apparatus
US5162488A (en) 1989-05-22 1992-11-10 Hoechst Celanese Corporation Catalyst system and process for preparing polyethylene terephthalate
FR2660663B1 (en) 1990-04-05 1993-05-21 Rhone Poulenc Fibres PROCESS FOR THE PRODUCTION OF MODIFIED ETHYLENE POLYTEREPHTHALATE, FIBERS FREE OF CORRUPTION DERIVED FROM THE POLYMER THUS MODIFIED.
US5110325A (en) 1990-04-20 1992-05-05 Lerner Bernard J Recycle spray gas-liquid contactor
US5037955A (en) 1990-06-07 1991-08-06 The Dow Chemical Company Method for heating a viscous polyethylene solution
US5245057A (en) 1990-07-20 1993-09-14 The Dow Chemical Company Horizontal continuous reactor and processes
US5064935A (en) 1990-08-01 1991-11-12 E. I. Dupont De Nemours And Company Continuous process for preparing poly(butylene terephthalate) oligomer or poly(butylene isophthalate) oligomer
KR940009419B1 (en) 1991-02-07 1994-10-13 한국과학기술연구원 Process for preparation of polyester with excellent colour
DE69225512T2 (en) 1991-02-28 1998-12-17 Agfa Gevaert Nv Process for the production of polyesters with increased electrical conductivity
DE69214686T2 (en) * 1991-02-28 1997-06-05 Agfa Gevaert Nv Process for the production of polyesters with improved thermo-oxidative stability
US5202463A (en) * 1991-09-10 1993-04-13 Arco Chemical Technology, L.P. Process for the preparation of a glycol ether ester
JPH05222180A (en) 1992-02-17 1993-08-31 Fuji Photo Film Co Ltd Production of polyester
DE4235785A1 (en) 1992-10-23 1994-05-11 Basf Ag Continuous polymerisation of olefinic monomers - uses a tubular reactor contg. a special temp.-controlled section followed by an adiabatic section discharging into a vacuum degassing chamber
DE4240588A1 (en) 1992-12-03 1994-06-09 Bayer Ag Rapid poly-condensn. of oligo:carbonate(s) to high mol. wt. polycarbonate(s) - by passing the oligo:carbonate together with inert gas through a heated tube of specified dimensions, etc
US5650536A (en) 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5324853A (en) 1993-01-19 1994-06-28 Exxon Chemical Patents Inc. Process for the production of plasticizer and polyolesters
US5385773A (en) * 1993-04-27 1995-01-31 Eastman Chemical Company Copolyester of cyclohexanenedimethanol and process for producing such polyester
US5294305A (en) 1993-05-06 1994-03-15 Mobile Process Technology, Inc. Ethylene glycol recovery process
US5340907A (en) 1993-06-28 1994-08-23 Eastman Chemical Company Copolyester of cyclohexanedimethanol and process for producing such polyester
JP3309502B2 (en) * 1993-07-12 2002-07-29 大日本インキ化学工業株式会社 Continuous production method of biodegradable polyester polymer
US5411665A (en) * 1993-07-20 1995-05-02 Scraggs; Charles R. Methods for reducing and separating emulsions and homogeneous components from contaminated water
US5599900A (en) 1993-10-18 1997-02-04 E. I. Du Pont De Nemours And Company Polyesters production process
US5434239A (en) 1993-10-18 1995-07-18 E. I. Du Pont De Nemours And Company Continuous polyester process
EP0931787A1 (en) * 1993-11-02 1999-07-28 Bayer Ag Process for preparing maleamic acid
TW330940B (en) * 1993-12-22 1998-05-01 Mitsui Petroleum Chemicals Ind A method of manufacturing polyesters
NO307467B1 (en) * 1993-12-27 2000-04-10 Shinetsu Chemical Co Polymerization apparatus and its use in a process for preparing vinyl chloride-type polymer
CA2139061C (en) 1993-12-28 1998-12-08 Mitsui Chemicals, Inc. Process for preparing polyester
US5464590A (en) 1994-05-02 1995-11-07 Yount; Thomas L. Reactor trays for a vertical staged polycondensation reactor
DE4419397A1 (en) 1994-06-03 1995-12-14 Zimmer Ag Process for multi-stage vacuum generation in polyester production
US5811496A (en) 1995-12-21 1998-09-22 E.I. Du Pont De Nemours And Company Process for polymerization of polyester oligomers
US5476919A (en) 1995-02-21 1995-12-19 Minnesota Mining And Manufacturing Company Process for esterification
US5466765A (en) 1995-03-09 1995-11-14 Eastman Chemical Company Vaccum system for controlling pressure in a polyester process
DE19511483A1 (en) 1995-03-29 1996-10-02 Bayer Ag Process for the production of thermoplastic polycarbonate
JPH08283394A (en) 1995-04-10 1996-10-29 Mitsui Petrochem Ind Ltd Production of polyethylene terephthalate
DE19524181A1 (en) * 1995-07-03 1997-01-09 Basf Ag Process and device for the continuous production of polymers
DE19524180A1 (en) * 1995-07-03 1997-01-09 Basf Ag Process and device for the continuous production of polymers
DE19525579C1 (en) 1995-07-13 1996-12-19 Rieter Automatik Gmbh Autoclave for the production of plastics
EP0755945B1 (en) * 1995-07-26 1998-11-25 Sulzer Chemtech AG Process and device for carrying out a polymerisation in a tube reactor
DE19530765A1 (en) * 1995-08-22 1997-02-27 Basf Ag Continuous process for the production of expandable styrene polymers
DE19537930B4 (en) 1995-10-12 2006-02-23 Zimmer Ag Process for the preparation of clear polyester
US5816700A (en) 1995-10-26 1998-10-06 E. I. Du Pont De Nemours And Company Process and apparatus for mechanically mixing polymers and lower viscosity fluids
DE69621642T2 (en) 1995-12-14 2003-02-20 Du Pont METHOD FOR PRODUCING POLYESTER PREPOLYMERS
TW381104B (en) 1996-02-20 2000-02-01 Eastman Chem Co Process for preparing copolyesters of terephthalic acid, ethylene glycol, and 1,4-cyclohexanedimethanol
DE19608614A1 (en) * 1996-03-06 1997-09-11 Basf Ag Process for working up residues containing dihydroxy compounds
DE19618678A1 (en) * 1996-05-09 1997-11-13 Basf Ag Process for the production of polystyrene by continuous anionic polymerization
US5898058A (en) * 1996-05-20 1999-04-27 Wellman, Inc. Method of post-polymerization stabilization of high activity catalysts in continuous polyethylene terephthalate production
DE19634450A1 (en) 1996-08-26 1998-03-05 Basf Ag Device for the continuous implementation of chemical reactions
US5922828A (en) 1996-09-03 1999-07-13 Hoechst Celanese Corp. Process for producing polyethylene terephthalate using a specific catalyst stabilizer system
TW541321B (en) 1996-09-04 2003-07-11 Hitachi Ltd Process and apparatus for continuous polycondensation
JP3836228B2 (en) 1996-12-26 2006-10-25 三井化学株式会社 Polymerization method with separated flow
US6103859A (en) 1997-04-09 2000-08-15 Eastman Chemical Company Late addition of supplemental ethylene glycol in the preparation of copolyesters
TW482790B (en) 1997-05-06 2002-04-11 Teijin Ltd Method for continuous production of polyester
US5932105A (en) 1997-10-01 1999-08-03 Mobile Process Technology, Co. Method of polyester manufacturing using crossflow membrane filtration
US5889127A (en) 1997-11-18 1999-03-30 Daicel Chemical Industries, Ltd. Continuous process for the preparation of a polyester-based polymer
KR100348238B1 (en) * 1998-02-27 2002-08-09 미쓰이 가가쿠 가부시키가이샤 Novel polyester and process for preparing polyester
US6113997A (en) 1998-05-26 2000-09-05 Shell Oil Company Process to prepare a polyester resin
US6252034B1 (en) 1998-06-04 2001-06-26 Teljin Limited Process for producing a polycarbonate resin
FR2780986B1 (en) * 1998-07-10 2000-09-29 Electrolyse L PROCESS FOR TRANSFORMATION OF CHEMICAL STRUCTURES IN A FLUID UNDER PRESSURE AND AT TEMPERATURE AND DEVICE FOR ITS IMPLEMENTATION
CA2336447C (en) * 1998-07-10 2007-08-21 S.C. Johnson Commercial Markets, Inc. Continuous bulk polymerization and esterification process and compositions including the polymeric product
US6069228A (en) * 1998-08-17 2000-05-30 E. I. Du Pont De Nemours And Company Process for preparing polyamides
US6631892B1 (en) 1998-08-25 2003-10-14 Donald C. Erickson Tray contactor with same direction liquid flow
JP2000095851A (en) 1998-09-22 2000-04-04 Hitachi Ltd Production of polyethylene terephthalate
US6111064A (en) 1998-11-04 2000-08-29 The Regents Of The University Of California Pressure polymerization of polyester
ATE220657T1 (en) * 1998-11-04 2002-08-15 Rohm & Haas METHOD FOR PRODUCING HIGH YIELD METHYL METHACRYLATE OR METHACRYLIC ACID
US6127493A (en) 1998-11-04 2000-10-03 Arteva North America S.A.R.L. Pressure polymerization of polyester
US6339031B1 (en) * 1998-12-29 2002-01-15 Seng C. Tan Microcellular carbon foams and microcellular C/C composites fabricated therefrom
DE10080450T1 (en) 1999-02-10 2001-05-17 Toshiba Kawasaki Kk Carbon monoxide conversion device for a fuel cell and fuel cell power generation system
AR024360A1 (en) 1999-06-15 2002-10-02 Dow Global Technologies Inc PROCESS AND APPLIANCE TO PREPARE A COMPOSITION THAT USES A PASTA FOOD
BE1012770A3 (en) 1999-07-02 2001-03-06 Ineos Nv WERKIJZE AND DEVICE FOR INDUSTRIAL CREATION OF PRODUCTS BY means of an alkoxylation.
US6623643B2 (en) 1999-11-19 2003-09-23 Microtek Medical Holdings, Inc. Process for treatment of aqueous environments containing a water soluble polymer
DE60034223T2 (en) 1999-12-28 2007-08-23 Daikin Industries, Ltd. SHIFT REACTOR WITH HEAT EXCHANGER
US6359106B1 (en) 2000-03-09 2002-03-19 Hitachi, Ltd. Production process and production apparatus for polybutylene terephthalate
DE60112885T2 (en) 2000-04-27 2006-06-01 Teijin Ltd. PROCESS FOR CONTINUOUS PRODUCTION OF POLYESTER
US6576774B2 (en) 2000-07-20 2003-06-10 Shell Oil Company Process for recycling polytrimethylene terephthalate cyclic dimer
ATE347548T1 (en) 2000-08-11 2006-12-15 Kureha Corp METHOD FOR PRODUCING CYCLIC ESTERS AND METHOD FOR PURIFYING THEM
DE10048003A1 (en) 2000-09-26 2002-04-11 Basell Polypropylen Gmbh Process for preactivating catalysts
JP2002161071A (en) * 2000-11-28 2002-06-04 Nippon Shokubai Co Ltd Method for producing dehydration reaction product and dehydration reaction device used therefor
AU2002243291A1 (en) * 2000-12-07 2002-06-18 Eastman Chemical Company Low cost polyester process using a pipe reactor
US6642407B2 (en) 2001-05-18 2003-11-04 Exxon Mobil Chemical Patents Inc. Production, purification and polymerization of aromatic dicarboxylic acids
DE10126133B4 (en) 2001-05-29 2007-03-29 Karl-Heinz Wiltzer Process and apparatus for the preparation of highly viscous or highly stabilized polycondensates and demonomerized PA 6
TWI306870B (en) 2001-07-10 2009-03-01 Kureha Corp
DE10224883B4 (en) * 2001-07-27 2010-07-29 Heidelberger Druckmaschinen Ag Drying station and method for drying printed sheets
US6672373B2 (en) * 2001-08-27 2004-01-06 Idalex Technologies, Inc. Method of action of the pulsating heat pipe, its construction and the devices on its base
US6458916B1 (en) 2001-08-29 2002-10-01 Hitachi, Ltd. Production process and production apparatus for polybutylene terephthalate
US6649263B2 (en) 2001-11-16 2003-11-18 Honeywell International Inc. Polyester resin and industrial yarn process
US7067088B2 (en) 2002-01-12 2006-06-27 Saudi Basic Industries Corporation Stratified flow chemical reactor
DE10219671A1 (en) 2002-05-02 2003-11-20 Zimmer Ag Process and device for the production of polyesters, copolyesters and polycarbonates
US20040068070A1 (en) * 2002-07-17 2004-04-08 Basf Aktiengesellcschaft Preparation of readily polymerizable compounds
JP4218353B2 (en) 2002-10-28 2009-02-04 セイコーエプソン株式会社 Second-hand goods estimation system, method and program thereof
US7008546B2 (en) * 2003-01-07 2006-03-07 Jerry M Edmondson Oil, water and gas separator for swaying service
JP4262995B2 (en) 2003-02-06 2009-05-13 帝人ファイバー株式会社 Method for producing terephthalic acid cake suitable for polyester raw material
US7074879B2 (en) 2003-06-06 2006-07-11 Eastman Chemical Company Polyester process using a pipe reactor
US7135541B2 (en) 2003-06-06 2006-11-14 Eastman Chemical Company Polyester process using a pipe reactor
WO2005057630A2 (en) * 2003-08-01 2005-06-23 The Regents Of The University Of California Manufacturable low-temperature silicon carbide deposition technology
DE10336164B4 (en) 2003-08-07 2005-08-25 Zimmer Ag Process and device for the continuous production of polymers by melt condensation
DE102004034708B4 (en) 2004-07-17 2008-04-10 Lurgi Zimmer Gmbh Process for the batch production of polymers by melt condensation
DE102004038466B4 (en) 2004-08-07 2014-08-28 Lurgi Zimmer Gmbh Process and apparatus for the continuous pre-polycondensation of esterification / transesterification products
EA010116B1 (en) 2004-12-15 2008-06-30 Асахи Касеи Кемикалз Корпорейшн Industrial evaporator
WO2006083250A1 (en) 2005-02-03 2006-08-10 Stepan Company Continuous segmented plug flow reactor
US7435393B2 (en) 2005-05-05 2008-10-14 Eastman Chemical Company Baffle assembly module for vertical staged polymerization reactors
US20060251547A1 (en) 2005-05-05 2006-11-09 Windes Larry C Family of stationary film generators and film support structures for vertical staged polymerization reactors
JP2007083622A (en) * 2005-09-22 2007-04-05 Toshiba Tec Corp Dot head, manufacturing method for armature body structure for dot head
WO2007065211A1 (en) 2005-12-06 2007-06-14 Acqua International Group Inc Modular chemical reactor
US7943094B2 (en) 2006-12-07 2011-05-17 Grupo Petrotemex, S.A. De C.V. Polyester production system employing horizontally elongated esterification vessel
US7868130B2 (en) * 2007-07-12 2011-01-11 Eastman Chemical Company Multi-level tubular reactor with vertically spaced segments
US7872089B2 (en) * 2007-07-12 2011-01-18 Eastman Chemical Company Multi-level tubular reactor with internal tray

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787479A (en) * 1970-03-05 1974-01-22 Inventa Ag Process for the continuous transesterification of dicarboxylic acid alkyl esters with diols
US3841836A (en) * 1972-08-10 1974-10-15 Eastman Kodak Co Apparatus for the production of condensation polymers
US4200145A (en) * 1978-01-12 1980-04-29 The Badger Company, Inc. Method of preheating a liquid reaction mass of polyolefin dissolved in liquid monomer
GB2020194A (en) * 1978-05-05 1979-11-14 Eastman Kodak Co Polymerization reactor
WO1995029752A1 (en) * 1994-05-02 1995-11-09 Eastman Chemical Company Split flow reactor trays for vertical staged polycondensation reactors
US20070037959A1 (en) * 2000-12-07 2007-02-15 Debruin Bruce R Polyester process using a pipe reactor
WO2004111104A1 (en) * 2003-06-06 2004-12-23 Eastman Chemical Company Polyester process using a pipe reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117414798A (en) * 2023-12-19 2024-01-19 成都赢纳环保科技有限公司 Reation kettle that environment-friendly medicament production was used
CN117414798B (en) * 2023-12-19 2024-04-05 成都赢纳环保科技有限公司 Reation kettle that environment-friendly medicament production was used

Also Published As

Publication number Publication date
US20090018282A1 (en) 2009-01-15
US7847053B2 (en) 2010-12-07

Similar Documents

Publication Publication Date Title
CA2690721C (en) Multi-level tubular reactor with vertically spaced segments
CA2690722C (en) Multi-level tubular reactor with internal tray
US8227554B2 (en) Reactor system with optimized heating and phase separation
US7847053B2 (en) Multi-level tubular reactor with oppositely extending segments
US7868129B2 (en) Sloped tubular reactor with spaced sequential trays
US7858730B2 (en) Multi-level tubular reactor with dual headers
US7842777B2 (en) Sloped tubular reactor with divided flow
US7829653B2 (en) Horizontal trayed reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08826256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/000294

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08826256

Country of ref document: EP

Kind code of ref document: A1