WO2009011714A1 - Echoing ultrasound atomization and mixing system - Google Patents

Echoing ultrasound atomization and mixing system Download PDF

Info

Publication number
WO2009011714A1
WO2009011714A1 PCT/US2007/081484 US2007081484W WO2009011714A1 WO 2009011714 A1 WO2009011714 A1 WO 2009011714A1 US 2007081484 W US2007081484 W US 2007081484W WO 2009011714 A1 WO2009011714 A1 WO 2009011714A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
fluids
front wall
radiation surface
horn
Prior art date
Application number
PCT/US2007/081484
Other languages
French (fr)
Inventor
Eilaz Babaev
Original Assignee
Eilaz Babaev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eilaz Babaev filed Critical Eilaz Babaev
Publication of WO2009011714A1 publication Critical patent/WO2009011714A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • B05B17/063Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn having an internal channel for supplying the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0408Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids

Definitions

  • the present invention relates to an apparatus utilizing ultrasonic waves traveling through a horn and/or resonant structure to atomize, assist in the atomization of, and/or mix fluids passing through the horn and/or resonant structure.
  • Liquid atomization is a process by which a liquid is separated into small droplets by some force acting on the liquid, such as ultrasound. Exposing a liquid to ultrasound creates vibrations and/or cavitations within the liquid that break it apart into small droplets.
  • United States Patents No. 4,153,201 to Berger et al, No. 4,655,393 to Berger, and No. 5,516,043 to Manna et al. describe examples of atomization systems utilizing ultrasound to atomize a liquid. These devices possess a tip vibrated by ultrasonic waves passing through the tip. Within the tips are central passages that carry the liquid to be atomized. The liquid within the central passage is driven towards the end of the tip by some force acting upon the liquid.
  • the liquid to be atomized Upon reaching the end of the tip, the liquid to be atomized is expelled from tip. Ultrasonic waves emanating from the front of the tip then collide with the liquid, thereby breaking the liquid apart into small droplets. Thus, the liquid is not atomized until after it leaves the ultrasound tip because only then is the liquid exposed to collisions with ultrasonic waves.
  • An ultrasound apparatus capable of mixing and/or atomizing fluids.
  • the apparatus comprises a horn having an internal chamber including a back wall, a front wall, and at least one side wall, a radiation surface at the horn's distal end, at least one channel opening into the chamber, and a channel originating in the front wall of the internal chamber and terminating in the radiation surface.
  • a transducer powered by a generator induces ultrasonic vibrations within the horn.
  • the ultrasonic vibrations induce the release of ultrasonic energy into the fluids to be atomized and/or mixed as they travel through the horn's internal chamber and exit the horn at the radiation surface.
  • the fluids within the chamber are agitated and/or begin to cavitate, thereby mixing the fluids.
  • the ultrasonic vibrations Upon reaching the front wall of the chamber, the ultrasonic vibrations are reflected back into the chamber, like an echo. The ultrasonic vibrations echoing off the front wall pass through the fluid within the chamber a second time, further mixing the fluids.
  • the vibrations may strike protrusions located on the side walls of the chamber. After striking the protrusion on the side walls of the chamber, the vibrations may be scattered about the chamber. Consequently, some the vibrations echoing off the side wall protrusions may be reflected back towards the wall of the chamber from which they originated. Some the vibrations will may continue on towards the opposite the wall of the chamber. The remainder of the vibrations may travel towards another side wall of the chamber where they will be scattered once by the protrusion. Therefore, the echoing action of ultrasonic vibrations within the chamber may be enhanced by the protrusions on the side walls of the chamber. Emitting ultrasonic vibrations into the chamber from their distal facing edges, the protrusions within the inner chamber may also enhance the mixing of the fluids within the chamber by increasing the amount of ultrasonic vibrations within the chamber.
  • the protrusions may be formed in a variety of shapes such as, but not limited to, convex, spherical, triangular, rectangular, polygonal, and/or any combination thereof.
  • the protrusions may be discrete elements. Alternatively, the protrusions may be discrete bands encircling the internal chamber. The protrusions may also spiral down the chamber similar to the threading within a nut.
  • the ultrasound atomization and/or mixing apparatus is capable of utilizing pressure changes within the fluids passing through the apparatus to drive atomization.
  • the fluids to be atomized and/or mixed enter the apparatus through one or multiple channels opening into the internal chamber.
  • the fluids then flow through the chamber and into a channel extending from the chamber's front wall to the radiation surface. If the channel originating in the front wall of the internal chamber is narrower than the chamber, the pressure of the fluid flowing through the channel decreases and the fluid's velocity increases. Because the fluids' kinetic energy is proportional to velocity squared, the kinetic energy of the fluids increases as they flow through the channel. The pressure of the fluids is thus converted to kinetic energy as the fluids flow through the channel. Breaking the attractive forces between the molecules of the fluids, the increased kinetic energy of the fluids causes the fluids to atomize as they exit the horn at the radiation surface.
  • ultrasonic energy emanating from various points of the atomization and/or mixing apparatus thoroughly mixes fluids as they pass through the internal chamber.
  • the proximal end of the horn is secured to an ultrasound transducer, activation of the transducer induces ultrasonic vibrations within the horn.
  • the vibrations can be conceptualized as ultrasonic waves traveling from the proximal end to the distal end of horn. As the ultrasonic vibrations travel down the length of the horn, the horn contracts and expands. However, the entire length of the horn is not expanding and contracting.
  • the segments of the horn between the nodes of the ultrasonic vibrations are expanding and contracting.
  • the portions of the horn lying exactly on the nodes of the ultrasonic vibrations are not expanding and contracting. Therefore, only the segments of the horn between the nodes are expanding and contracting, while the portions of the horn lying exactly on nodes are not moving. It is as if the ultrasound horn has been physically cut into separate pieces. The pieces of the horn corresponding to nodes of the ultrasonic vibrations are held stationary, while the pieces of the horn corresponding to the regions between nodes are expanding and contracting. If the pieces of the horn corresponding to the regions between nodes were cut up into even smaller pieces, the pieces expanding and contracting the most would be the pieces corresponding to the antinodes of ultrasonic vibrations (points of maximum deflection or amplitude).
  • the amount of mixing that occurs within the chamber can be adjusted by changing the locations of the chamber's front and back walls with respect to ultrasonic vibrations passing through the horn.
  • the back wall of the chamber induces ultrasonic vibrations in the fluids within the chamber.
  • the back wall moves forward it hits the fluids. Striking the fluids, like a mallet hitting a gong, the back wall induces ultrasonic vibrations that travel through the fluids.
  • the vibrations traveling through the fluids possess the same frequency as the ultrasonic vibrations traveling through horn.
  • the farther forwards and backwards the back wall of the chamber moves the more forcefully the back wall strikes the fluids within the chamber and the higher the amplitude of the ultrasonic vibrations within the fluids.
  • the amount of mixing that occurs within the chamber can also be adjusted by controlling the volume of the fluids within the chamber. Ultrasonic vibrations within the chamber may cause atomization of the fluids, especially liquids. As the fluids atomize, their volumes increase which may cause the fluids to separate. However, if the fluids completely fill the chamber, then there is no room in the chamber to accommodate an increase in the volume of the fluids. Consequently, the amount of atomization occurring within the chamber when the chamber is completely filled with the fluids will be decreased and the amount of mixing increased.
  • the ultrasonic echoing properties of the chamber may also be enhanced by including an ultrasonic lens within the front wall of the chamber.
  • Ultrasonic vibrations striking the lens within the front wall of the chamber are directed to reflect back into the chamber in a specific manner depending upon the configuration of the lens.
  • a lens within the front wall of the chamber may contain a concave portion. Ultrasonic vibrations striking the concave portion of the lens would be reflected towards the side walls. Upon impacting a side wall, the ultrasonic vibrations would be reflected again off the side wall's protrusions. Scattering as they reflected off protrusion, the vibrations wound travel towards the various walls of the chambers, and would thus echo throughout the chamber.
  • the ultrasonic vibrations echoing off the lens and/or the energy they carry may be focused towards the focus of the parabola before striking chamber's side walls.
  • the lens within the front wall of the chamber may also contain a convex portion. Again, ultrasonic vibrations emitted from the chamber's back wall striking the lens within the front wall would be directed to reflect back into and echo throughout the chamber in a specific manner. However, instead of being directed towards a focal point as with a concave portion, the ultrasonic vibrations echoing off the convex portion are reflected in a dispersed manner.
  • the back wall of the chamber may also contain an ultrasonic lens possessing concave and/or convex portions. Such portions within the back wall lens of the chamber function similarly to their front wall lens equivalents, except that in addition to directing and/or focusing echoing ultrasonic vibrations, they also direct and/or focus the ultrasonic vibrations as they are emitted into the chamber.
  • the amount of mixing occurring within the internal chamber may be controlled by adjusting the amplitude of the ultrasonic vibrations traveling down the length of the horn. Increasing the amplitude of the ultrasonic vibrations increases the degree to which the fluids within the chamber are agitated and/or cavitated. If the horn is ultrasonically vibrated in resonance by a piezoelectric transducer driven by an electrical signal supplied by a generator, then increasing the voltage of the electrical signal will increase the amplitude of the ultrasonic vibrations traveling down the horn.
  • the ultrasound atomization apparatus utilizes pressure changes within the fluid to create the kinetic energy that drives atomization.
  • pressure driven fluid atomization can be adversely impacted by changes in environmental conditions.
  • a change in the pressure of the environment into which the atomized fluid is to be sprayed may decrease the level of atomization and/or distort the spray pattern.
  • the net pressure acting on the fluid is the difference of the pressure pushing the fluid through the atomizer and the pressure of the environment. It is the net pressure of the fluid that is converted to kinetic energy.
  • the environmental pressure increases, the net pressure decreases, causing a reduction in the kinetic energy of the fluid exiting the horn.
  • An increase in environmental pressure therefore, reduces the level of fluid atomization.
  • a counteracting increase in the kinetic energy of the fluid may be induced from the ultrasonic vibrations emanating from the radiation surface.
  • the radiation surface is also moving forwards and backwards when ultrasonic vibrations travel down the length of the horn. Consequently, as the radiation surface moves forward it strikes the fluids exiting the horn and the surrounding air. Striking the exiting fluids and surrounding air, the radiation surface emits, or induces, vibrations within the exiting fluids. As such, the kinetic energy of the exiting fluids increases. The increased kinetic energy further atomizes the fluids exiting at the radiation surface, thereby counteracting a decrease in atomization caused by changing environmental conditions.
  • the increased kinetic energy imparted on the fluids by the movement of the radiation surface can be controlled by adjusting the amplitude of the ultrasonic vibrations traveling down the length of the horn. Increasing the amplitude of the ultrasonic vibrations increases the amount of kinetic energy imparted on the fluids as they exit at the radiation surface. [019] As with increases in environmental pressure, decreases in environmental pressure may adversely impact the atomized spray. Because the net pressure acting on the fluids is converted to kinetic energy and the net pressure acting on the fluids is the difference of the pressure pushing the fluids through the atomizer and the pressure of the environment, decreasing the environmental pressure increases the kinetic energy of the fluids exiting a pressure driven atomizer.
  • the exiting velocity of the fluids increases.
  • the atomized fluid droplets move farther away from the atomizer, thereby widening the spray pattern.
  • Changing the spray pattern may lead to undesirable consequences. For instance, widening the spray pattern may direct the atomized fluids away from their intended target and/or towards unintended targets.
  • a decrease in environmental pressure may result in a detrimental un-focusing of the atomized spray.
  • Adjusting the amplitude of the ultrasonic waves traveling down the length of the horn may be useful in focusing the atomized spray produced at the radiation surface.
  • Creating a focused spray may be accomplished by utilizing the ultrasonic vibrations emanating from the radiation surface to confine and direct the spray pattern.
  • Ultrasonic vibrations emanating from the radiation surface may direct and confine the vast majority of the atomized spray produced within the outer boundaries of the radiation surface.
  • the level of confinement obtained by the ultrasonic vibrations emanating from the radiation surface depends upon the amplitude of the ultrasonic vibrations traveling down the horn. As such, increasing the amplitude of the ultrasonic vibrations passing through the horn may narrow the width of the spray pattern produced; thereby focusing the spray. For instance, if the spray is fanning too wide, increasing the amplitude of the ultrasonic vibrations may narrow the spray pattern. Conversely, if the spray is too narrow, then decreasing the amplitude of the ultrasonic vibrations may widen the spray pattern.
  • Changing the geometric conformation of the radiation surface may also alter the shape of the spray pattern.
  • Producing a roughly column-like spray pattern may be accomplished by utilizing a radiation surface with a planar face.
  • Generating a spray pattern with a width smaller than the width of the horn may be accomplished by utilizing a tapered radiation surface.
  • Further focusing of the spray may be accomplished by utilizing a concave radiation surface.
  • ultrasonic waves emanating from the concave radiation surface may focus the spray through the focus of the radiation surface. If it is desirable to focus, or concentrate, the spray produced towards the inner boundaries of the radiation surface, but not towards a specific point, then utilizing a radiation surface with slanted portions facing the central axis of the horn may be desirable.
  • Ultrasonic waves emanating from the slanted portions of the radiation surface may direct the atomized spray inwards, towards the central axis.
  • a focused spray is not desirable.
  • utilizing a convex radiation surface may produce a spray pattern with a width wider than that of the horn.
  • the radiation surface utilized may possess any combination of the above mentioned configurations such as, but not limited to, an outer concave portion encircling an inner convex portion and/or an outer planar portion encompassing an inner conical portion. Inducing resonating vibrations within the horn facilitates the production of the spray patterns described above, but may not be necessary.
  • Figure 1 illustrates cross-sectional views of an embodiment of the ultrasound atomization and/or mixing apparatus.
  • Figure 2 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus wherein the back wall and front wall contain lenses with concave portions.
  • Figure 3 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus wherein the back wall and front wall contain lenses with convex portions.
  • Figure 4 illustrates alternative embodiments of the radiation surface.
  • FIG. 1 illustrates an embodiment of the ultrasound atomization and/or mixing apparatus comprising a horn 101 and an ultrasound transducer 102 attached to the proximal surface 117 of horn 101 powered by generator 116.
  • ultrasound transducers and generators are well known in the art they need not and will not, for the sake of brevity, be described in detail herein.
  • Ultrasound horn 101 comprises a proximal surface 117, a radiation surface 111 opposite proximal end 117, and at least one radial surface 118 extending between proximal surface 117 and radiation surface 111.
  • ultrasound transducer 102 may be mechanically coupled to proximal surface 117. Mechanically coupling horn 101 to transducer 102 may be achieved by mechanically attaching (for example, securing with a threaded connection), adhesively attaching, and/or welding horn 101 to transducer 102.
  • horn 101 and transducer 102 may be a single piece.
  • driving transducer 102 with an electrical signal supplied from generator 116 induces ultrasonic vibrations 114 within horn 101.
  • transducer 102 is a piezoelectric transducer, then the amplitude of the ultrasonic vibrations 114 traveling down the length of horn 101 may be increased by increasing the voltage of the electrical signal driving transducer 102.
  • back wall 104 oscillates back-and-forth.
  • the back-and- forth movement of back wall 104 induces the release of ultrasonic vibrations into the fluids inside chamber 103.
  • Positioning back wall 104 such that at least one point on back wall 104 lies approximately on an antinode of the ultrasonic vibrations 114 passing through horn 101 may maximize the amount and/or amplitude of the ultrasonic vibrations emitted into the fluids in chamber 103.
  • the center of back wall 104 lies approximately on an antinode of the ultrasonic vibrations 114.
  • the ultrasonic vibrations emanating from back wall 104 travel towards the front of chamber 103.
  • the ultrasonic vibrations 119 strike front wall 105 they echo off it, and thus are reflected back into chamber 103.
  • the reflected ultrasonic vibrations 119 then travel towards back wall 104.
  • Traveling towards front wall 105 and then echoing back towards back wall 104, ultrasonic vibrations 119 travel back and forth through chamber 103 in an echoing pattern.
  • the center of front wall 105 lies approximately on an antinode of the ultrasonic vibrations 114.
  • protrusions 127 enhances ultrasonic echoing within chamber 103 by increasing the amount of ultrasonic vibrations emitted into chamber 103 and/or by providing a larger surface area from which ultrasonic vibrations echo.
  • the distal or front facing edges of protrusions 127 may emit ultrasonic waves into chamber 103 when the ultrasound transducer 102 is activated.
  • the proximal, or rear facing, and front facing edges of protrusions 127 reflect ultrasonic waves striking the protrusions 127.
  • protrusions 127 increase the complexity of the echoing pattern of the ultrasonic vibrations within chamber 103.
  • the specific protrusions 127 depicted in Figure IA comprise a triangular shape and encircle the cavity.
  • the protrusions may be formed in a variety of shapes such as, but not limited to, convex, spherical, triangular, rectangular, polygonal, and/or any combination thereof.
  • the protrusions may spiral down the chamber similar to the threading within a nut.
  • the protrusions may be discrete elements secured to a side wall of chamber that do not encircle the chamber.
  • the protrusions may be integral with side wall or walls of the chamber.
  • the fluids to be atomized and/or mixed enter chamber 103 of the embodiment depicted in Figure 1 through at least one channel 109 originating in radial surface 118 and opening into chamber 103.
  • channel 109 encompasses a node of the ultrasonic vibrations 114 traveling down the length of the horn 101 and/or emanating from lens 122.
  • channel 109 may originate in radial surface 118 and open at back wall 104 into chamber 103.
  • the fluids flow through chamber 103.
  • the fluids then exit chamber 103 through channel 110, originating within front wall 105 and terminating within radiation surface 111.
  • the pressure of the fluids decreases while their velocity increases.
  • the pressure acting on the fluids is converted to kinetic energy. If the fluids gain sufficient kinetic energy as they pass through channel 110, then the attractive forces between the molecules of the fluids may be broken, causing the fluids to atomize as they exit channel 110 at radiation surface 111.
  • the maximum height (h) of chamber 103 should be larger than maximum width (w) of channel 110. Preferably, the maximum height of chamber 103 should be approximately 200 times larger than the maximum width of channel 110 or greater.
  • ultrasound horn 101 may further comprise cap 112 attached to its distal end.
  • Cap 112 may be mechanically attached (for example, secured with a threaded connector), adhesively attached, and/or welded to the distal end of horn 101.
  • Other means of attaching cap 112 to horn 101 may be used in combination with or in the alternative to the previously enumerated means.
  • a removable cap 112 permits the level of fluid atomization and/or the spray pattern produced to be adjusted depending on need and/or circumstances. For instance, the width of channel 110 may need to be adjusted to produce the desired level of atomization with different fluids. The geometrical configuration of the radiation surface may also need to be changed as to create the appropriate spray pattern for different applications. Attaching cap 112 to the present invention at approximately a nodal point of the ultrasonic vibrations 114 passing through horn 101 may help prevent the separation of cap 112 from horn 101 during operation. [035] It is important to note that fluids of different temperatures may be delivered into chamber 103 as to improve the atomization of the fluids exiting channel 110. This may also change the spray volume, the quality of the spray, and/or expedite the drying process of the fluids sprayed.
  • an ultrasound horn 101 in accordance with the present invention may possess a single channel 109 opening within side wall 113 of chamber 103. If multiple channels 109 are utilized, they may be aligned along the central axis 120 of horn 101, as depicted in Figure IA. Alternatively or in combination, channels 109 may be located on different platans, as depicted in Figure IA, and/or the same platan, as depicted in Figure IB.
  • the fluids to be atomized may enter chamber 103 through a channel 121 originating in proximal surface 117 and opening within back wall 104, as depicted in Figure IA. If the fluids passing through horn 101 are to be atomized by the kinetic energy gained from their passage through channel 110, then the maximum width (w') of channel 121 should be smaller than the maximum height of chamber 103. Preferably, the maximum height of chamber 103 should be approximately twenty times larger than the maximum width of channel 121.
  • a single channel may be used to deliver the fluids to be mixed and/or atomized into chamber 103.
  • horn 101 includes multiple channels opening into chamber 103, atomization of the fluids may be improved be delivering a gas into chamber 103 through at least one of the channels.
  • Horn 101 and chamber 103 may be cylindrical, as depicted in Figure 1. Horn 101 and chamber 103 may also be constructed in other shapes and the shape of chamber 103 need not correspond to the shape of horn 101.
  • FIG. 2 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus further comprising an ultrasonic lens 201 within back wall 104 and an ultrasonic lens 202 within front wall 105 containing convex portions 203 and 204, respectively.
  • the concave portion 203 of lens 201 within back wall 104 form an overall parabolic configuration in at least two dimensions, then the ultrasonic vibrations depicted by arrows 119 emanating from the lens 201 travel in a pattern of convergence towards the parabola's focus 205. As the ultrasonic vibrations 119 converge at focus 205, the ultrasonic energy carried by vibrations 119 may become focused at focus 205.
  • the ultrasonic vibrations 119 diverge and continue towards front wall 105. After striking the concave portion 204 of lens 202 within front wall 105, ultrasonic vibrations 119 are reflected back into chamber 103. If concave portion 204 form an overall parabolic configuration in at least two dimensions, the ultrasonic vibrations 119 echoing backing into chamber 103 may travel in a pattern of convergence towards the parabola's focus. The ultrasonic energy carried by the echoing vibrations and/or the energy they carry may become focused at the focus of the parabola formed by the concave portion 204. Converging as they travel towards front wall 105 and then again as they echo back towards back wall 104, ultrasonic vibrations 119 travel back and forth through chamber 103 in a converging echoing pattern.
  • ultrasonic lens 201 and 202 direct the ultrasonic vibrations 119 towards the side walls of the chamber. As such, an increased amount of ultrasonic vibrations emanating from back wall 104 and/or reflecting off front wall 105 strike side wall 113 and become scattered by protrusions 127.
  • the parabolas formed by concave portions 203 and 204 have a common focus 205.
  • the parabolas may have different foci.
  • the ultrasonic vibrations 119 emanating and/or echoing off the parabolas and/or the energy the vibrations carry may become focused at focus 205.
  • the fluids passing through chamber 103 are therefore exposed to the greatest concentration of the ultrasonic agitation, cavitation, and/or energy at focus 205. Consequently, the ultrasonically induced mixing of the fluids is greatest at focus 205.
  • FIG. 3 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus wherein lens 201 within back wall 104 and lens 202 within front wall 105 contain convex portions 301 and 302, respectively.
  • Ultrasonic vibrations emanating from convex portion 301 of lens 201 travel in a dispersed reflecting pattern towards front wall 105 in the following manner: The ultrasonic vibrations are first directed towards side wall 113 at varying angles of trajectory.
  • the ultrasonic vibrations then reflect off side wall 113 and become scattered by protrusions 127.
  • the scattered ultrasonic vibrations may then travel back towards back wall 104, continue on towards front wall 105, and/or become scattered again by protrusions 127 on another region of side wall 113.
  • the ultrasonic vibrations strike lens 202 within front wall 105, they echo back into chamber 103 towards side wall 113 and become scattered.
  • some of the ultrasonic vibrations echoing off lens 202 may continue on towards back wall 104 after striking side wall 113.
  • Some of the echoing ultrasonic vibrations may travel back towards front wall 105. The remainder may strike another region of side wall 113 and become scattered again.
  • the configuration of the chamber's front wall lens need not match the configuration of the chamber's back wall lens.
  • the lenses within the front and/or back walls of the chamber may comprise any combination of the above mentioned configurations such as, but not limited to, an outer concave portion encircling an inner convex portion.
  • the fluids passing through horn 101 exit channel 110 they may be atomized into a spray.
  • the fluids exiting channel 110 may be atomized into a spray by the ultrasonic vibrations emanating from radiation surface 111. Regardless of whether fluids are atomized as they exit channel 110 and/or by the vibrations emanating from radiation surface 111, the vibrations emanating from the radiation may direct and/or confine the spray produced.
  • FIG. 4 illustrates alternative embodiments of the radiation surface.
  • Figures 4A and 4B depict radiation surfaces 111 comprising a planar face producing a roughly column-like spray pattern. Radiation surface 111 may be tapered such that it is narrower than the width of the horn in at least one dimension oriented orthogonal to the central axis 120 of the horn, as depicted Figure 4B.
  • Ultrasonic vibrations emanating from the radiation surfaces 111 depicted in Figures 4A and 4B may direct and confine the vast majority of spray 401 ejected from channel 110 to the outer boundaries of the radiation surfaces 111. Consequently, the majority of spray 401 emitted from channel 110 in Figures 4A and 4B is initially confined to the geometric boundaries of the respective radiation surfaces.
  • the ultrasonic vibrations emitted from the convex portion 403 of the radiation surface 111 depicted in Figure 4C directs spray 401 radially and longitudinally away from radiation surface 111.
  • the ultrasonic vibrations emanating from the concave portion 404 of the radiation surface 111 depicted in Figure 4E focuses spray 401 through focus 402. Maximizing the focusing of spray 401 towards focus 402 may be accomplished by constructing radiation surface 111 such that focus 402 is the focus of an overall parabolic configuration formed in at least two dimensions by concave portion 404.
  • the radiation surface 111 may also possess a conical portion 405 as depicted in Figure 4D.
  • Ultrasonic vibrations emanating from the conical portion 405 direct the atomized spray 401 inwards.
  • the radiation surface may possess any combination of the above mentioned configurations such as, but not limited to, an outer concave portion encircling an inner convex portion and/or an outer planar portion encompassing an inner conical portion.
  • adjusting the amplitude of the ultrasonic vibrations traveling down the length of the horn may be useful in focusing the atomized spray produced.
  • the level of confinement obtained by the ultrasonic vibrations emanating from the radiation surface and/or the ultrasonic energy the vibrations carry depends upon the amplitude of the ultrasonic vibrations traveling down horn.
  • increasing the amplitude of the ultrasonic vibrations may narrow the width of the spray pattern produced; thereby focusing the spray produced. For instance, if the fluid spray exceeds the geometric bounds of the radiation surface, i.e. is fanning too wide, increasing the amplitude of the ultrasonic vibrations may narrow the spray.
  • the horn may be capable of vibrating in resonance at a frequency of approximately 16 kHz or greater.
  • the ultrasonic vibrations traveling down the horn may have an amplitude of approximately 1 micron or greater. It is preferred that the horn be capable of vibrating in resonance at a frequency between approximately 20 kHz and approximately 200 kHz. It is recommended that the horn be capable of vibrating in resonance at a frequency of approximately 30 kHz.
  • the signal driving the ultrasound transducer may be a sinusoidal wave, square wave, triangular wave, trapezoidal wave, or any combination thereof.

Abstract

An ultrasound apparatus capable of mixing and/or atomizing fluids is disclosed. The apparatus includes a horn having an internal chamber through which fluids to be atomized and/or mixed flow. Connected to the horn's proximal end, a transducer powered by a generator induces ultrasonic vibrations within the horn. Traveling down the horn from the transducer, the ultrasonic vibrations induce the release of ultrasonic energy into the fluids to be atomized and/or mixed as they travel through the horn's internal chamber. As the ultrasonic vibrations travel through the chamber, the fluids within the chamber are agitated and/or begin to cavitate, thereby mixing the fluids. Upon reaching the front wall of the chamber, the ultrasonic vibrations are reflected back into the chamber, like an echo. The ultrasonic vibrations echoing off the front wall pass through the fluids within the chamber a second time, further mixing the fluids.

Description

ECHOING ULTRASOUND ATOMIZATION AND MIXING SYSTEM
TECHNICAL FIELD
[001] The present invention relates to an apparatus utilizing ultrasonic waves traveling through a horn and/or resonant structure to atomize, assist in the atomization of, and/or mix fluids passing through the horn and/or resonant structure.
DISCLOSURE OF INVENTION
[002] Liquid atomization is a process by which a liquid is separated into small droplets by some force acting on the liquid, such as ultrasound. Exposing a liquid to ultrasound creates vibrations and/or cavitations within the liquid that break it apart into small droplets. United States Patents No. 4,153,201 to Berger et al, No. 4,655,393 to Berger, and No. 5,516,043 to Manna et al. describe examples of atomization systems utilizing ultrasound to atomize a liquid. These devices possess a tip vibrated by ultrasonic waves passing through the tip. Within the tips are central passages that carry the liquid to be atomized. The liquid within the central passage is driven towards the end of the tip by some force acting upon the liquid. Upon reaching the end of the tip, the liquid to be atomized is expelled from tip. Ultrasonic waves emanating from the front of the tip then collide with the liquid, thereby breaking the liquid apart into small droplets. Thus, the liquid is not atomized until after it leaves the ultrasound tip because only then is the liquid exposed to collisions with ultrasonic waves.
SUMMARY OF THE INVENTION
[003] An ultrasound apparatus capable of mixing and/or atomizing fluids is disclosed. The apparatus comprises a horn having an internal chamber including a back wall, a front wall, and at least one side wall, a radiation surface at the horn's distal end, at least one channel opening into the chamber, and a channel originating in the front wall of the internal chamber and terminating in the radiation surface. Connected to the horn's proximal end, a transducer powered by a generator induces ultrasonic vibrations within the horn. Traveling down the horn from the transducer to the horn's radiation surface, the ultrasonic vibrations induce the release of ultrasonic energy into the fluids to be atomized and/or mixed as they travel through the horn's internal chamber and exit the horn at the radiation surface. As the ultrasonic vibrations travel through the chamber, the fluids within the chamber are agitated and/or begin to cavitate, thereby mixing the fluids. Upon reaching the front wall of the chamber, the ultrasonic vibrations are reflected back into the chamber, like an echo. The ultrasonic vibrations echoing off the front wall pass through the fluid within the chamber a second time, further mixing the fluids.
[004] As the vibrations travel back-and-forth within the chamber, the may strike protrusions located on the side walls of the chamber. After striking the protrusion on the side walls of the chamber, the vibrations may be scattered about the chamber. Consequently, some the vibrations echoing off the side wall protrusions may be reflected back towards the wall of the chamber from which they originated. Some the vibrations will may continue on towards the opposite the wall of the chamber. The remainder of the vibrations may travel towards another side wall of the chamber where they will be scattered once by the protrusion. Therefore, the echoing action of ultrasonic vibrations within the chamber may be enhanced by the protrusions on the side walls of the chamber. Emitting ultrasonic vibrations into the chamber from their distal facing edges, the protrusions within the inner chamber may also enhance the mixing of the fluids within the chamber by increasing the amount of ultrasonic vibrations within the chamber.
[005] The protrusions may be formed in a variety of shapes such as, but not limited to, convex, spherical, triangular, rectangular, polygonal, and/or any combination thereof. The protrusions may be discrete elements. Alternatively, the protrusions may be discrete bands encircling the internal chamber. The protrusions may also spiral down the chamber similar to the threading within a nut.
[006] As with typical pressure driven fluid atomizers, the ultrasound atomization and/or mixing apparatus is capable of utilizing pressure changes within the fluids passing through the apparatus to drive atomization. The fluids to be atomized and/or mixed enter the apparatus through one or multiple channels opening into the internal chamber. The fluids then flow through the chamber and into a channel extending from the chamber's front wall to the radiation surface. If the channel originating in the front wall of the internal chamber is narrower than the chamber, the pressure of the fluid flowing through the channel decreases and the fluid's velocity increases. Because the fluids' kinetic energy is proportional to velocity squared, the kinetic energy of the fluids increases as they flow through the channel. The pressure of the fluids is thus converted to kinetic energy as the fluids flow through the channel. Breaking the attractive forces between the molecules of the fluids, the increased kinetic energy of the fluids causes the fluids to atomize as they exit the horn at the radiation surface.
[007] By agitating and/or inducing cavitations within fluids passing through the internal chamber, ultrasonic energy emanating from various points of the atomization and/or mixing apparatus thoroughly mixes fluids as they pass through the internal chamber. When the proximal end of the horn is secured to an ultrasound transducer, activation of the transducer induces ultrasonic vibrations within the horn. The vibrations can be conceptualized as ultrasonic waves traveling from the proximal end to the distal end of horn. As the ultrasonic vibrations travel down the length of the horn, the horn contracts and expands. However, the entire length of the horn is not expanding and contracting. Instead, the segments of the horn between the nodes of the ultrasonic vibrations (points of minimum deflection or amplitude) are expanding and contracting. The portions of the horn lying exactly on the nodes of the ultrasonic vibrations are not expanding and contracting. Therefore, only the segments of the horn between the nodes are expanding and contracting, while the portions of the horn lying exactly on nodes are not moving. It is as if the ultrasound horn has been physically cut into separate pieces. The pieces of the horn corresponding to nodes of the ultrasonic vibrations are held stationary, while the pieces of the horn corresponding to the regions between nodes are expanding and contracting. If the pieces of the horn corresponding to the regions between nodes were cut up into even smaller pieces, the pieces expanding and contracting the most would be the pieces corresponding to the antinodes of ultrasonic vibrations (points of maximum deflection or amplitude).
[008] The amount of mixing that occurs within the chamber can be adjusted by changing the locations of the chamber's front and back walls with respect to ultrasonic vibrations passing through the horn. Moving forwards and backwards, the back wall of the chamber induces ultrasonic vibrations in the fluids within the chamber. As the back wall moves forward it hits the fluids. Striking the fluids, like a mallet hitting a gong, the back wall induces ultrasonic vibrations that travel through the fluids. The vibrations traveling through the fluids possess the same frequency as the ultrasonic vibrations traveling through horn. The farther forwards and backwards the back wall of the chamber moves, the more forcefully the back wall strikes the fluids within the chamber and the higher the amplitude of the ultrasonic vibrations within the fluids.
[009] When the ultrasonic vibrations traveling through the fluids within the chamber strike the front wall of the chamber, the front wall compresses forwards. The front wall then rebounds backwards, striking the fluids within the chamber, and thereby creates an echo of the ultrasonic vibrations that struck the front wall. If the front wall of the chamber is struck by an antinode of the ultrasonic vibrations traveling through chamber, then the front wall will move as far forward and backward as is possible. Consequently, the front wall will strike the fluids within the chamber more forcefully and thus generate an echo with the largest possible amplitude. If, however, the ultrasonic vibrations passing through the chamber strike the front wall of the chamber at a node, then the front wall will not be forced forward because there is no movement at a node. Consequently, an ultrasonic vibration striking the front wall at a node will not produce an echo.
[010] Positioning the front and back walls of the chamber such that at least one point on both, preferably their centers, lie approximately on antinodes of the ultrasonic vibrations passing through the chamber maximizes the amount of mixing occurring within the chamber. Moving the back wall of the chamber away from an antinode and towards a node decreases the amount of mixing induced by ultrasonic vibrations emanating from the back wall. Likewise, moving the front wall of the chamber away from an antinode and towards a node decreases the amount of mixing induced by ultrasonic vibrations echoing off the front wall. Therefore, positioning the front and back walls of the chamber such that center of both the front and back wall lie approximately on nodes of the ultrasonic vibrations passing through the chamber minimizes the amount of mixing within the chamber. [Oi l] The amount of mixing that occurs within the chamber can also be adjusted by controlling the volume of the fluids within the chamber. Ultrasonic vibrations within the chamber may cause atomization of the fluids, especially liquids. As the fluids atomize, their volumes increase which may cause the fluids to separate. However, if the fluids completely fill the chamber, then there is no room in the chamber to accommodate an increase in the volume of the fluids. Consequently, the amount of atomization occurring within the chamber when the chamber is completely filled with the fluids will be decreased and the amount of mixing increased.
[012] The ultrasonic echoing properties of the chamber may also be enhanced by including an ultrasonic lens within the front wall of the chamber. Ultrasonic vibrations striking the lens within the front wall of the chamber are directed to reflect back into the chamber in a specific manner depending upon the configuration of the lens. For instance, a lens within the front wall of the chamber may contain a concave portion. Ultrasonic vibrations striking the concave portion of the lens would be reflected towards the side walls. Upon impacting a side wall, the ultrasonic vibrations would be reflected again off the side wall's protrusions. Scattering as they reflected off protrusion, the vibrations wound travel towards the various walls of the chambers, and would thus echo throughout the chamber. If the concaved portion or portions within the lens form an overall parabolic configuration in at least two dimensions, then the ultrasonic vibrations echoing off the lens and/or the energy they carry may be focused towards the focus of the parabola before striking chamber's side walls. [013] In combination or in the alternative, the lens within the front wall of the chamber may also contain a convex portion. Again, ultrasonic vibrations emitted from the chamber's back wall striking the lens within the front wall would be directed to reflect back into and echo throughout the chamber in a specific manner. However, instead of being directed towards a focal point as with a concave portion, the ultrasonic vibrations echoing off the convex portion are reflected in a dispersed manner.
[014] In combination or in the alternative, the back wall of the chamber may also contain an ultrasonic lens possessing concave and/or convex portions. Such portions within the back wall lens of the chamber function similarly to their front wall lens equivalents, except that in addition to directing and/or focusing echoing ultrasonic vibrations, they also direct and/or focus the ultrasonic vibrations as they are emitted into the chamber. [015] The amount of mixing occurring within the internal chamber may be controlled by adjusting the amplitude of the ultrasonic vibrations traveling down the length of the horn. Increasing the amplitude of the ultrasonic vibrations increases the degree to which the fluids within the chamber are agitated and/or cavitated. If the horn is ultrasonically vibrated in resonance by a piezoelectric transducer driven by an electrical signal supplied by a generator, then increasing the voltage of the electrical signal will increase the amplitude of the ultrasonic vibrations traveling down the horn.
[016] As with typical pressure driven fluid atomizers, the ultrasound atomization apparatus utilizes pressure changes within the fluid to create the kinetic energy that drives atomization. Unfortunately, pressure driven fluid atomization can be adversely impacted by changes in environmental conditions. Most notably, a change in the pressure of the environment into which the atomized fluid is to be sprayed may decrease the level of atomization and/or distort the spray pattern. As a fluid passes through a pressure driven fluid atomizer, it is pushed backwards by the pressure of the environment. Thus, the net pressure acting on the fluid is the difference of the pressure pushing the fluid through the atomizer and the pressure of the environment. It is the net pressure of the fluid that is converted to kinetic energy. Thus, as the environmental pressure increases, the net pressure decreases, causing a reduction in the kinetic energy of the fluid exiting the horn. An increase in environmental pressure, therefore, reduces the level of fluid atomization.
[017] A counteracting increase in the kinetic energy of the fluid may be induced from the ultrasonic vibrations emanating from the radiation surface. Like the back wall of the internal chamber, the radiation surface is also moving forwards and backwards when ultrasonic vibrations travel down the length of the horn. Consequently, as the radiation surface moves forward it strikes the fluids exiting the horn and the surrounding air. Striking the exiting fluids and surrounding air, the radiation surface emits, or induces, vibrations within the exiting fluids. As such, the kinetic energy of the exiting fluids increases. The increased kinetic energy further atomizes the fluids exiting at the radiation surface, thereby counteracting a decrease in atomization caused by changing environmental conditions. [018] The increased kinetic energy imparted on the fluids by the movement of the radiation surface can be controlled by adjusting the amplitude of the ultrasonic vibrations traveling down the length of the horn. Increasing the amplitude of the ultrasonic vibrations increases the amount of kinetic energy imparted on the fluids as they exit at the radiation surface. [019] As with increases in environmental pressure, decreases in environmental pressure may adversely impact the atomized spray. Because the net pressure acting on the fluids is converted to kinetic energy and the net pressure acting on the fluids is the difference of the pressure pushing the fluids through the atomizer and the pressure of the environment, decreasing the environmental pressure increases the kinetic energy of the fluids exiting a pressure driven atomizer. Thus, as the environmental pressure decreases, the exiting velocity of the fluids increases. Exiting the atomizer at a higher velocity, the atomized fluid droplets move farther away from the atomizer, thereby widening the spray pattern. Changing the spray pattern may lead to undesirable consequences. For instance, widening the spray pattern may direct the atomized fluids away from their intended target and/or towards unintended targets. Thus, a decrease in environmental pressure may result in a detrimental un-focusing of the atomized spray.
[020] Adjusting the amplitude of the ultrasonic waves traveling down the length of the horn may be useful in focusing the atomized spray produced at the radiation surface. Creating a focused spray may be accomplished by utilizing the ultrasonic vibrations emanating from the radiation surface to confine and direct the spray pattern. Ultrasonic vibrations emanating from the radiation surface may direct and confine the vast majority of the atomized spray produced within the outer boundaries of the radiation surface. The level of confinement obtained by the ultrasonic vibrations emanating from the radiation surface depends upon the amplitude of the ultrasonic vibrations traveling down the horn. As such, increasing the amplitude of the ultrasonic vibrations passing through the horn may narrow the width of the spray pattern produced; thereby focusing the spray. For instance, if the spray is fanning too wide, increasing the amplitude of the ultrasonic vibrations may narrow the spray pattern. Conversely, if the spray is too narrow, then decreasing the amplitude of the ultrasonic vibrations may widen the spray pattern.
[021] Changing the geometric conformation of the radiation surface may also alter the shape of the spray pattern. Producing a roughly column-like spray pattern may be accomplished by utilizing a radiation surface with a planar face. Generating a spray pattern with a width smaller than the width of the horn may be accomplished by utilizing a tapered radiation surface. Further focusing of the spray may be accomplished by utilizing a concave radiation surface. In such a configuration, ultrasonic waves emanating from the concave radiation surface may focus the spray through the focus of the radiation surface. If it is desirable to focus, or concentrate, the spray produced towards the inner boundaries of the radiation surface, but not towards a specific point, then utilizing a radiation surface with slanted portions facing the central axis of the horn may be desirable. Ultrasonic waves emanating from the slanted portions of the radiation surface may direct the atomized spray inwards, towards the central axis. There may, of course, be instances where a focused spray is not desirable. For instance, it may be desirable to quickly apply an atomized liquid to a large surface area. In such instances, utilizing a convex radiation surface may produce a spray pattern with a width wider than that of the horn. The radiation surface utilized may possess any combination of the above mentioned configurations such as, but not limited to, an outer concave portion encircling an inner convex portion and/or an outer planar portion encompassing an inner conical portion. Inducing resonating vibrations within the horn facilitates the production of the spray patterns described above, but may not be necessary.
[022] It should be noted and appreciated that other benefits and/or mechanisms of operation, in addition to those listed, may be elicited by devices in accordance with the present invention. The mechanisms of operation presented herein are strictly theoretical and are not meant in any way to limit the scope this disclosure and/or the accompanying claims.
BRIEF DESCRIPTION OF DRAWINGS
[023] The ultrasound atomization apparatus will be shown and described with reference to the drawings of preferred embodiments and clearly understood in details.
[024] Figure 1 illustrates cross-sectional views of an embodiment of the ultrasound atomization and/or mixing apparatus.
[025] Figure 2 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus wherein the back wall and front wall contain lenses with concave portions.
[026] Figure 3 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus wherein the back wall and front wall contain lenses with convex portions.
[027] Figure 4 illustrates alternative embodiments of the radiation surface.
BEST MODE FOR CARRYING OUT THE INVENTION
[028] Preferred embodiments of the ultrasound atomization and/or mixing apparatus are illustrated throughout the figures and described in detail below. Those skilled in the art will immediately understand the advantages for mixing and/or atomizing material provided by the atomization and/or mixing apparatus upon review.
[029] Figure 1 illustrates an embodiment of the ultrasound atomization and/or mixing apparatus comprising a horn 101 and an ultrasound transducer 102 attached to the proximal surface 117 of horn 101 powered by generator 116. As ultrasound transducers and generators are well known in the art they need not and will not, for the sake of brevity, be described in detail herein. Ultrasound horn 101 comprises a proximal surface 117, a radiation surface 111 opposite proximal end 117, and at least one radial surface 118 extending between proximal surface 117 and radiation surface 111. Within horn 101 is an internal chamber 103 containing a back wall 104, a front wall 105, at least one side wall 113 extending between back wall 104 and front wall 105, and protrusion 127 located on side wall 113 and extending into chamber 103. As to induce vibrations within horn 101, ultrasound transducer 102 may be mechanically coupled to proximal surface 117. Mechanically coupling horn 101 to transducer 102 may be achieved by mechanically attaching (for example, securing with a threaded connection), adhesively attaching, and/or welding horn 101 to transducer 102. Other means of mechanically coupling horn 101 and transducer 102, readily recognizable to persons of ordinary skill in the art, may be used in combination with or in the alternative to the previously enumerated means. Alternatively, horn 101 and transducer 102 may be a single piece. When transducer 102 is mechanically coupled to horn 101, driving transducer 102 with an electrical signal supplied from generator 116 induces ultrasonic vibrations 114 within horn 101. If transducer 102 is a piezoelectric transducer, then the amplitude of the ultrasonic vibrations 114 traveling down the length of horn 101 may be increased by increasing the voltage of the electrical signal driving transducer 102. [030] As the ultrasonic vibrations 114 travel down the length of horn 101, back wall 104 oscillates back-and-forth. The back-and- forth movement of back wall 104 induces the release of ultrasonic vibrations into the fluids inside chamber 103. Positioning back wall 104 such that at least one point on back wall 104 lies approximately on an antinode of the ultrasonic vibrations 114 passing through horn 101 may maximize the amount and/or amplitude of the ultrasonic vibrations emitted into the fluids in chamber 103. Preferably, the center of back wall 104 lies approximately on an antinode of the ultrasonic vibrations 114. The ultrasonic vibrations emanating from back wall 104, represented by arrows 119, travel towards the front of chamber 103. When the ultrasonic vibrations 119 strike front wall 105 they echo off it, and thus are reflected back into chamber 103. The reflected ultrasonic vibrations 119 then travel towards back wall 104. Traveling towards front wall 105 and then echoing back towards back wall 104, ultrasonic vibrations 119 travel back and forth through chamber 103 in an echoing pattern. As to maximize the echoing of vibrations 119 off front wall 105, it may be desirable to position front wall 105 such that at least one point on it lies on an antinode of the ultrasonic vibrations 114. Preferably, the center of front wall 105 lies approximately on an antinode of the ultrasonic vibrations 114.
[031] The incorporation of protrusions 127 enhances ultrasonic echoing within chamber 103 by increasing the amount of ultrasonic vibrations emitted into chamber 103 and/or by providing a larger surface area from which ultrasonic vibrations echo. The distal or front facing edges of protrusions 127 may emit ultrasonic waves into chamber 103 when the ultrasound transducer 102 is activated. The proximal, or rear facing, and front facing edges of protrusions 127 reflect ultrasonic waves striking the protrusions 127. Emitting and/or reflecting ultrasonic vibrations into chamber 103, protrusions 127 increase the complexity of the echoing pattern of the ultrasonic vibrations within chamber 103. The specific protrusions 127 depicted in Figure IA comprise a triangular shape and encircle the cavity. The protrusions may be formed in a variety of shapes such as, but not limited to, convex, spherical, triangular, rectangular, polygonal, and/or any combination thereof. In the alternative or in combination to being a band encircling the chamber, the protrusions may spiral down the chamber similar to the threading within a nut. In combination or in the alternative, the protrusions may be discrete elements secured to a side wall of chamber that do not encircle the chamber. In the alternative or in combination, the protrusions may be integral with side wall or walls of the chamber.
[032] The fluids to be atomized and/or mixed enter chamber 103 of the embodiment depicted in Figure 1 through at least one channel 109 originating in radial surface 118 and opening into chamber 103. Preferably, channel 109 encompasses a node of the ultrasonic vibrations 114 traveling down the length of the horn 101 and/or emanating from lens 122. In the alternative or in combination, channel 109 may originate in radial surface 118 and open at back wall 104 into chamber 103. Upon exiting channel 109, the fluids flow through chamber 103. The fluids then exit chamber 103 through channel 110, originating within front wall 105 and terminating within radiation surface 111. As the fluids to be atomized pass through channel 110, the pressure of the fluids decreases while their velocity increases. Thus, as the fluids flow through channel 110, the pressure acting on the fluids is converted to kinetic energy. If the fluids gain sufficient kinetic energy as they pass through channel 110, then the attractive forces between the molecules of the fluids may be broken, causing the fluids to atomize as they exit channel 110 at radiation surface 111. If the fluids passing through horn 101 are to be atomized by the kinetic energy gained from their passage through channel 110, then the maximum height (h) of chamber 103 should be larger than maximum width (w) of channel 110. Preferably, the maximum height of chamber 103 should be approximately 200 times larger than the maximum width of channel 110 or greater.
[033] It is preferable if at least one point on radiation surface 111 lies approximately on an antinode of the ultrasonic vibrations 114 passing through horn 101. [034] As to simplify manufacturing, ultrasound horn 101 may further comprise cap 112 attached to its distal end. Cap 112 may be mechanically attached (for example, secured with a threaded connector), adhesively attached, and/or welded to the distal end of horn 101. Other means of attaching cap 112 to horn 101, readily recognizable to persons of ordinary skill in the art, may be used in combination with or in the alternative to the previously enumerated means. Comprising front wall 105, channel 110, and radiation surface 111, a removable cap 112 permits the level of fluid atomization and/or the spray pattern produced to be adjusted depending on need and/or circumstances. For instance, the width of channel 110 may need to be adjusted to produce the desired level of atomization with different fluids. The geometrical configuration of the radiation surface may also need to be changed as to create the appropriate spray pattern for different applications. Attaching cap 112 to the present invention at approximately a nodal point of the ultrasonic vibrations 114 passing through horn 101 may help prevent the separation of cap 112 from horn 101 during operation. [035] It is important to note that fluids of different temperatures may be delivered into chamber 103 as to improve the atomization of the fluids exiting channel 110. This may also change the spray volume, the quality of the spray, and/or expedite the drying process of the fluids sprayed.
[036] Alternative embodiments of an ultrasound horn 101 in accordance with the present invention may possess a single channel 109 opening within side wall 113 of chamber 103. If multiple channels 109 are utilized, they may be aligned along the central axis 120 of horn 101, as depicted in Figure IA. Alternatively or in combination, channels 109 may be located on different platans, as depicted in Figure IA, and/or the same platan, as depicted in Figure IB.
[037] Alternatively or in combination, the fluids to be atomized may enter chamber 103 through a channel 121 originating in proximal surface 117 and opening within back wall 104, as depicted in Figure IA. If the fluids passing through horn 101 are to be atomized by the kinetic energy gained from their passage through channel 110, then the maximum width (w') of channel 121 should be smaller than the maximum height of chamber 103. Preferably, the maximum height of chamber 103 should be approximately twenty times larger than the maximum width of channel 121.
[038] A single channel may be used to deliver the fluids to be mixed and/or atomized into chamber 103. When horn 101 includes multiple channels opening into chamber 103, atomization of the fluids may be improved be delivering a gas into chamber 103 through at least one of the channels.
[039] Horn 101 and chamber 103 may be cylindrical, as depicted in Figure 1. Horn 101 and chamber 103 may also be constructed in other shapes and the shape of chamber 103 need not correspond to the shape of horn 101.
[040] Figure 2 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus further comprising an ultrasonic lens 201 within back wall 104 and an ultrasonic lens 202 within front wall 105 containing convex portions 203 and 204, respectively. If the concave portion 203 of lens 201 within back wall 104 form an overall parabolic configuration in at least two dimensions, then the ultrasonic vibrations depicted by arrows 119 emanating from the lens 201 travel in a pattern of convergence towards the parabola's focus 205. As the ultrasonic vibrations 119 converge at focus 205, the ultrasonic energy carried by vibrations 119 may become focused at focus 205. After converging at focus 205, the ultrasonic vibrations 119 diverge and continue towards front wall 105. After striking the concave portion 204 of lens 202 within front wall 105, ultrasonic vibrations 119 are reflected back into chamber 103. If concave portion 204 form an overall parabolic configuration in at least two dimensions, the ultrasonic vibrations 119 echoing backing into chamber 103 may travel in a pattern of convergence towards the parabola's focus. The ultrasonic energy carried by the echoing vibrations and/or the energy they carry may become focused at the focus of the parabola formed by the concave portion 204. Converging as they travel towards front wall 105 and then again as they echo back towards back wall 104, ultrasonic vibrations 119 travel back and forth through chamber 103 in a converging echoing pattern.
[041] In addition to focusing the ultrasonic vibrations 119 and/or the ultrasonic energy they carry, ultrasonic lens 201 and 202 direct the ultrasonic vibrations 119 towards the side walls of the chamber. As such, an increased amount of ultrasonic vibrations emanating from back wall 104 and/or reflecting off front wall 105 strike side wall 113 and become scattered by protrusions 127.
[042] In the embodiment illustrated in Figure 2 the parabolas formed by concave portions 203 and 204 have a common focus 205. In the alternative, the parabolas may have different foci. However, by sharing a common focus 205, the ultrasonic vibrations 119 emanating and/or echoing off the parabolas and/or the energy the vibrations carry may become focused at focus 205. The fluids passing through chamber 103 are therefore exposed to the greatest concentration of the ultrasonic agitation, cavitation, and/or energy at focus 205. Consequently, the ultrasonically induced mixing of the fluids is greatest at focus 205. Positioning focus 205, or any other focus of a parabola formed by the concave portions 203 and/or 204, at point downstream of the entry of at least two fluids into chamber 103 may maximize the mixing of the fluids entering chamber 103 upstream of the focus. [043] Figure 3 illustrates a cross-sectional view of an alternative embodiment of the ultrasound atomizing and/or mixing apparatus wherein lens 201 within back wall 104 and lens 202 within front wall 105 contain convex portions 301 and 302, respectively. Ultrasonic vibrations emanating from convex portion 301 of lens 201 travel in a dispersed reflecting pattern towards front wall 105 in the following manner: The ultrasonic vibrations are first directed towards side wall 113 at varying angles of trajectory. The ultrasonic vibrations then reflect off side wall 113 and become scattered by protrusions 127. The scattered ultrasonic vibrations may then travel back towards back wall 104, continue on towards front wall 105, and/or become scattered again by protrusions 127 on another region of side wall 113. Likewise, when the ultrasonic vibrations strike lens 202 within front wall 105, they echo back into chamber 103 towards side wall 113 and become scattered. As such, some of the ultrasonic vibrations echoing off lens 202 may continue on towards back wall 104 after striking side wall 113. Some of the echoing ultrasonic vibrations may travel back towards front wall 105. The remainder may strike another region of side wall 113 and become scattered again.
[044] It should be appreciated that the configuration of the chamber's front wall lens need not match the configuration of the chamber's back wall lens. Furthermore, the lenses within the front and/or back walls of the chamber may comprise any combination of the above mentioned configurations such as, but not limited to, an outer concave portion encircling an inner convex portion.
[045] As the fluids passing through horn 101 exit channel 110, they may be atomized into a spray. In the alternative or in combination, the fluids exiting channel 110 may be atomized into a spray by the ultrasonic vibrations emanating from radiation surface 111. Regardless of whether fluids are atomized as they exit channel 110 and/or by the vibrations emanating from radiation surface 111, the vibrations emanating from the radiation may direct and/or confine the spray produced.
[046] The manner in which ultrasonic vibrations emanating from the radiation surface direct the spray of fluid ejected from channel 110 depends largely upon the conformation of radiation surface 111. Figure 4 illustrates alternative embodiments of the radiation surface. Figures 4A and 4B depict radiation surfaces 111 comprising a planar face producing a roughly column-like spray pattern. Radiation surface 111 may be tapered such that it is narrower than the width of the horn in at least one dimension oriented orthogonal to the central axis 120 of the horn, as depicted Figure 4B. Ultrasonic vibrations emanating from the radiation surfaces 111 depicted in Figures 4A and 4B may direct and confine the vast majority of spray 401 ejected from channel 110 to the outer boundaries of the radiation surfaces 111. Consequently, the majority of spray 401 emitted from channel 110 in Figures 4A and 4B is initially confined to the geometric boundaries of the respective radiation surfaces.
[047] The ultrasonic vibrations emitted from the convex portion 403 of the radiation surface 111 depicted in Figure 4C directs spray 401 radially and longitudinally away from radiation surface 111. Conversely, the ultrasonic vibrations emanating from the concave portion 404 of the radiation surface 111 depicted in Figure 4E focuses spray 401 through focus 402. Maximizing the focusing of spray 401 towards focus 402 may be accomplished by constructing radiation surface 111 such that focus 402 is the focus of an overall parabolic configuration formed in at least two dimensions by concave portion 404. The radiation surface 111 may also possess a conical portion 405 as depicted in Figure 4D. Ultrasonic vibrations emanating from the conical portion 405 direct the atomized spray 401 inwards. The radiation surface may possess any combination of the above mentioned configurations such as, but not limited to, an outer concave portion encircling an inner convex portion and/or an outer planar portion encompassing an inner conical portion.
[048] Regardless of the configuration of the radiation surface, adjusting the amplitude of the ultrasonic vibrations traveling down the length of the horn may be useful in focusing the atomized spray produced. The level of confinement obtained by the ultrasonic vibrations emanating from the radiation surface and/or the ultrasonic energy the vibrations carry depends upon the amplitude of the ultrasonic vibrations traveling down horn. As such, increasing the amplitude of the ultrasonic vibrations may narrow the width of the spray pattern produced; thereby focusing the spray produced. For instance, if the fluid spray exceeds the geometric bounds of the radiation surface, i.e. is fanning too wide, increasing the amplitude of the ultrasonic vibrations may narrow the spray. Conversely, if the spray is too narrow, then decreasing the amplitude of the ultrasonic vibrations may widen the spray. If the horn is vibrated in resonance frequency by a piezoelectric transducer attached to its proximal end, increasing the amplitude of the ultrasonic vibrations traveling down the length of the horn may be accomplished by increasing the voltage of the electrical signal driving the transducer. [049] The horn may be capable of vibrating in resonance at a frequency of approximately 16 kHz or greater. The ultrasonic vibrations traveling down the horn may have an amplitude of approximately 1 micron or greater. It is preferred that the horn be capable of vibrating in resonance at a frequency between approximately 20 kHz and approximately 200 kHz. It is recommended that the horn be capable of vibrating in resonance at a frequency of approximately 30 kHz.
[050] The signal driving the ultrasound transducer may be a sinusoidal wave, square wave, triangular wave, trapezoidal wave, or any combination thereof.
[051] It should be appreciated that elements described with singular articles such as "a", "an", and/or "the" and/or otherwise described singularly may be used in plurality. It should also be appreciated that elements described in plurality may be used singularly. [052] Although specific embodiments of apparatuses and methods have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, combination, and/or sequence that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. It is to be understood that the above description is intended to be illustrative and not restrictive. Combinations of the above embodiments and other embodiments as well as combinations and sequences of the above methods and other methods of use will be apparent to individuals possessing skill in the art upon review of the present disclosure.
[053] The scope of the claimed apparatus and methods should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. INDUSTRIAL APPLICABILITY
[054] The disclosed ultrasound device and methods of utilizing ultrasonic waves traveling through a horn and/or resonant structure to atomize, assist in the atomization of, and/or mix fluids passing through the horn and/or resonant structure.

Claims

CLAIMS I claim:
1. An apparatus characterized by: a. a proximal surface; b. a radiation surface opposite the proximal surface; c. at least one radial surface extending between the proximal end and the radiation surface; d. an internal chamber containing: i. a back wall; ii. a front wall; and iii. at least one side wall extending between the back wall and the front wall; e. at least one channel originating in a surface other than the radiation surface and opening into the internal chamber; f. a channel originating in the front wall of the internal chamber and terminating in the radiation surface; g. at least one protrusions on a side wall of the chamber and extending into the chamber; and h. being capable of vibrating in resonance at a frequency of approximately 16 kHz or greater.
2. The apparatus according to Claim 1 further characterized by at least one point on the back wall of the chamber lying approximately on an anti-node of the vibrations of the apparatus.
3. The apparatus according to Claim 1 further characterized by at least one point on the radiation surface lying approximately on an anti-node of the vibrations of the apparatus.
4. The apparatus according to Claim 1 further characterized by at least one point on the front wall of the chamber lying approximately on a anti-node of the vibrations of the apparatus.
5. The apparatus according to Claim 1 further characterized by the channel opening into the chamber originating in a radial surface and opening into a side wall of the internal chamber approximately on a node of the vibrations.
6. The apparatus according to Claim 1 further characterized by a transducer attached to the proximal surface.
7. The apparatus according to Claim 7 further characterized by a generator to drive the transducer.
8. An apparatus comprising: a. a proximal surface; b. a radiation surface opposite the proximal surface; c. at least one radial surface extending between the proximal end and the radiation surface; d. an internal chamber containing: i. a back wall; ii. a front wall; and iii. at least one side wall extending between the back wall and the front wall; e. at least one channel originating in a surface other than the radiation surface and opening into the internal chamber; f. a channel originating in the front wall of the internal chamber and terminating in the radiation surface; and g. at least one protrusion located on a side wall of the chamber and extending into the chamber.
9. The apparatus according to Claim 8 characterized by the maximum height of the internal chamber being larger than the maximum width of the channel originating in the front wall of the internal chamber.
10. The apparatus according to Claim 8 characterized by the maximum height of the internal chamber being approximately 200 times larger than the maximum width of the channel originating in the front wall of the internal chamber or greater.
11. The apparatus according to Claim 8 characterized by the channel opening into the chamber originating in the proximal surface and opening into the back wall of the internal chamber and the maximum height of the internal chamber being larger than the maximum width of the channel.
12. The apparatus according to Claim 8 characterized by the channel opening into the chamber originating in the proximal surface and opening into the back wall of the internal chamber and the maximum height of the internal chamber being approximately 20 times larger than the maximum width of the channel or greater.
13. The apparatus according to Claim 8 further comprising an ultrasonic lens within the back wall of the chamber.
14. The apparatus according to Claim 13 further comprising one or a plurality of concave portions within the lens within the back wall that form an overall parabolic configuration in at least two dimensions.
15. The apparatus according to Claim 13 further comprising at least one convex portion within the lens within the back wall.
16. The apparatus according to Claim 8 further comprising an ultrasonic lens within the front wall of the chamber.
17. The apparatus according to Claim 16 further comprising one or a plurality of concave portions within the lens within the front wall that form an overall parabolic configuration in at least two dimensions.
18. The apparatus according to Claim 16 further comprising at least one convex portion within the lens within the front wall.
19. The apparatus according to Claim 8 further comprising at least one planar portion within the radiation surface.
20. The apparatus according to Claim 8 further comprising a central axis extending from the proximal surface to the radiation surface and a region of the radiation surface narrower than the width of the apparatus in at least one dimension oriented orthogonal to the central axis.
21. The apparatus according to Claim 8 further comprising at least one concave portion within the radiation surface.
22. The apparatus according to Claim 8 further comprising at least one convex portion within the radiation surface.
23. The apparatus according to Claim 8 further comprising at least one conical portion within the radiation surface.
24. The apparatus according to Claim 8 further comprising a transducer attached to the proximal surface capable of vibrating the apparatus according to Claim 8 in resonance at a frequency of approximately 16 kHz or greater.
25. The apparatus according to Claim 24 further comprising a generator to drive the transducer.
PCT/US2007/081484 2007-07-13 2007-10-16 Echoing ultrasound atomization and mixing system WO2009011714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/777,934 US7753285B2 (en) 2007-07-13 2007-07-13 Echoing ultrasound atomization and/or mixing system
US11/777,934 2007-07-13

Publications (1)

Publication Number Publication Date
WO2009011714A1 true WO2009011714A1 (en) 2009-01-22

Family

ID=40252267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/081484 WO2009011714A1 (en) 2007-07-13 2007-10-16 Echoing ultrasound atomization and mixing system

Country Status (2)

Country Link
US (1) US7753285B2 (en)
WO (1) WO2009011714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137402A1 (en) 2016-02-08 2017-08-17 Lunaphore Technologies Sa Methods of sample cycle multiplexing and in situ imaging

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8235919B2 (en) 2001-01-12 2012-08-07 Celleration, Inc. Ultrasonic method and device for wound treatment
US8491521B2 (en) 2007-01-04 2013-07-23 Celleration, Inc. Removable multi-channel applicator nozzle
US20110160624A1 (en) * 2007-07-13 2011-06-30 Bacoustics, Llc Apparatus for creating a therapeutic solution and debridement with ultrasound energy
US7950594B2 (en) * 2008-02-11 2011-05-31 Bacoustics, Llc Mechanical and ultrasound atomization and mixing system
US8287472B2 (en) * 2009-04-30 2012-10-16 Boston Scientific Scimed, Inc. Ultrasound heater-agitator for thermal tissue treatment
AU2014355072A1 (en) 2013-11-26 2016-06-02 Alliqua Biomedical, Inc. Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing
CN106694297B (en) * 2017-01-16 2022-11-25 湖北澄之铭环保科技有限公司 Ultrasonic atomizing head
CN107899846A (en) * 2017-11-21 2018-04-13 江西天祥通用航空股份有限公司 A kind of ultrasonic atomizatio shower nozzle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014470A (en) * 1976-03-01 1977-03-29 Bete Fog Nozzle, Inc. Conical spray nozzle
US5900690A (en) * 1996-06-26 1999-05-04 Gipson; Lamar Heath Apparatus and method for controlling an ultrasonic transducer
US20030060736A1 (en) * 1999-05-14 2003-03-27 Martin Roy W. Lens-focused ultrasonic applicator for medical applications
US7059307B2 (en) * 2002-03-22 2006-06-13 Philip Morris Usa Inc. Fuel injector for an internal combustion engine
US20070051307A1 (en) * 2005-08-16 2007-03-08 Babaev Eilaz P Ultrasound apparatus and methods for mixing liquids and coating stents

Family Cites Families (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE634668A (en) * 1962-07-11
US3561444A (en) * 1968-05-22 1971-02-09 Bio Logics Inc Ultrasonic drug nebulizer
US3663288A (en) * 1969-09-04 1972-05-16 American Cyanamid Co Physiologically acceptible elastomeric article
CS148449B1 (en) * 1970-03-13 1973-02-22
US3924335A (en) 1971-02-26 1975-12-09 Ultrasonic Systems Ultrasonic dental and other instrument means and methods
US3861852A (en) 1974-01-25 1975-01-21 Berger Harvey Fuel burner with improved ultrasonic atomizer
DE2445791C2 (en) 1974-09-25 1984-04-19 Siemens AG, 1000 Berlin und 8000 München Ultrasonic liquid atomizer
GB1528163A (en) * 1975-02-10 1978-10-11 Agfa Gevaert Process for the hardening of photographic layers
US4309989A (en) * 1976-02-09 1982-01-12 The Curators Of The University Of Missouri Topical application of medication by ultrasound with coupling agent
US4153201A (en) 1976-11-08 1979-05-08 Sono-Tek Corporation Transducer assembly, ultrasonic atomizer and fuel burner
US4301968A (en) 1976-11-08 1981-11-24 Sono-Tek Corporation Transducer assembly, ultrasonic atomizer and fuel burner
US4169984A (en) 1976-11-30 1979-10-02 Contract Systems Associates, Inc. Ultrasonic probe
US4391797A (en) * 1977-01-05 1983-07-05 The Children's Hospital Medical Center Systems for the controlled release of macromolecules
US4168447A (en) 1977-02-25 1979-09-18 Bussiere Ronald L Prestressed cylindrical piezoelectric ultrasonic scaler
US4100309A (en) * 1977-08-08 1978-07-11 Biosearch Medical Products, Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
US4119094A (en) * 1977-08-08 1978-10-10 Biosearch Medical Products Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
DE2811248C3 (en) * 1978-03-15 1981-11-26 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Liquid atomizer
FR2443113B1 (en) * 1978-06-30 1985-12-06 Deutsch Pruef Messgeraete METHOD AND DEVICE FOR TRANSMITTING ACOUSTIC PULSES, PARTICULARLY IN THE FIELD OF ULTRA-SOUNDS, AND APPLICATION OF SUCH PULSES IN PARTICULAR TO NON-DESTRUCTIVE CONTROL OF MATERIALS
JPS5848225B2 (en) * 1979-01-09 1983-10-27 オムロン株式会社 Atomization amount control method of ultrasonic liquid atomization device
US4263188A (en) * 1979-05-23 1981-04-21 Verbatim Corporation Aqueous coating composition and method
DE2930410A1 (en) * 1979-07-26 1981-02-12 Bayer Ag PROCESS FOR THE PRODUCTION OF STABLE Aqueous DISPERSIONS OF OLIGO- OR POLYURETHANES, AND THEIR USE AS A COATING AGENT FOR FLEXIBLE OR NON-FLEXIBLE SUBSTRATES
US4387024A (en) * 1979-12-13 1983-06-07 Toray Industries, Inc. High performance semipermeable composite membrane and process for producing the same
US4675361A (en) * 1980-02-29 1987-06-23 Thoratec Laboratories Corp. Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
NL189237C (en) 1980-04-12 1993-02-16 Battelle Institut E V DEVICE FOR SPRAYING LIQUIDS.
US4389330A (en) * 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
US4373009A (en) * 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4474326A (en) 1981-11-24 1984-10-02 Tdk Electronics Co., Ltd. Ultrasonic atomizing device
SE430696B (en) * 1982-04-22 1983-12-05 Astra Meditec Ab PROCEDURE FOR THE PREPARATION OF A HYDROPHILIC COATING AND ANY PROCEDURE MANUFACTURED MEDICAL ARTICLE
US4487808A (en) * 1982-04-22 1984-12-11 Astra Meditec Aktiebolag Medical article having a hydrophilic coating
SE430695B (en) * 1982-04-22 1983-12-05 Astra Meditec Ab PROCEDURE FOR THE PREPARATION OF A HYDROPHILIC COATING AND ACCORDING TO THE PROCEDURE OF MEDICAL ARTICLES
JPS58196874A (en) 1982-05-12 1983-11-16 多賀電気株式会社 Ultrasonic treating apparatus
JPS58206838A (en) 1982-05-28 1983-12-02 Hitachi Ltd System for supplying fuel into electronic control cylinder
US4469974A (en) 1982-06-14 1984-09-04 Eaton Corporation Low power acoustic fuel injector drive circuit
US4499154A (en) * 1982-09-03 1985-02-12 Howard L. Podell Dipped rubber article
US4536179A (en) * 1982-09-24 1985-08-20 University Of Minnesota Implantable catheters with non-adherent contacting polymer surfaces
US5002582A (en) 1982-09-29 1991-03-26 Bio-Metric Systems, Inc. Preparation of polymeric surfaces via covalently attaching polymers
US4541564A (en) * 1983-01-05 1985-09-17 Sono-Tek Corporation Ultrasonic liquid atomizer, particularly for high volume flow rates
US4764021A (en) 1983-02-22 1988-08-16 Corning Glass Works Apparatus for ultrasonic agitation of liquids
US4492622A (en) * 1983-09-02 1985-01-08 Honeywell Inc. Clark cell with hydrophylic polymer layer
SE452404B (en) * 1984-02-03 1987-11-30 Medinvent Sa MULTILAYER PROTEST MATERIAL AND PROCEDURE FOR ITS MANUFACTURING
US4646967A (en) 1984-04-23 1987-03-03 The Boeing Company Ultrasonic water jet having electromagnetic interference shielding
AU566085B2 (en) * 1984-06-04 1987-10-08 Terumo Kabushiki Kaisha Medical instrument with surface treatment
US4684328A (en) 1984-06-28 1987-08-04 Piezo Electric Products, Inc. Acoustic pump
US5037677A (en) 1984-08-23 1991-08-06 Gregory Halpern Method of interlaminar grafting of coatings
US4959074A (en) * 1984-08-23 1990-09-25 Gergory Halpern Method of hydrophilic coating of plastics
DE3574344D1 (en) * 1984-08-29 1989-12-28 Omron Tateisi Electronics Co Ultrasonic atomizer
US4582654A (en) * 1984-09-12 1986-04-15 Varian Associates, Inc. Nebulizer particularly adapted for analytical purposes
US4642267A (en) * 1985-05-06 1987-02-10 Hydromer, Inc. Hydrophilic polymer blend
JPS61259784A (en) * 1985-05-13 1986-11-18 Toa Nenryo Kogyo Kk Vibrator for ultrasonic injection
US5057371A (en) 1985-06-14 1991-10-15 Minnesota Mining And Manufacturing Company Aziridine-treated articles
DE3522697A1 (en) 1985-06-25 1985-11-07 Fa. J. Eberspächer, 7300 Esslingen ARRANGEMENT OF AN ULTRASONIC SPRAYER IN A HEATER USED WITH LIQUID FUEL
US4923464A (en) * 1985-09-03 1990-05-08 Becton, Dickinson And Company Percutaneously deliverable intravascular reconstruction prosthesis
US4659014A (en) 1985-09-05 1987-04-21 Delavan Corporation Ultrasonic spray nozzle and method
US4705709A (en) * 1985-09-25 1987-11-10 Sherwood Medical Company Lubricant composition, method of coating and a coated intubation device
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4748986A (en) * 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
JPH065060B2 (en) 1985-12-25 1994-01-19 株式会社日立製作所 Drive circuit for ultrasonic fuel atomizer for internal combustion engine
EP0257091B1 (en) * 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
GB2189168B (en) * 1986-04-21 1989-11-29 Aligena Ag Composite membranes useful in the separation of low molecular weight organic compounds from aqueous solutions containing inorganic salts
US4721117A (en) * 1986-04-25 1988-01-26 Advanced Cardiovascular Systems, Inc. Torsionally stabilized guide wire with outer jacket
US4692352A (en) * 1986-04-29 1987-09-08 The Kendall Company Method of making an adhesive tape
US4867173A (en) * 1986-06-30 1989-09-19 Meadox Surgimed A/S Steerable guidewire
DE3627222A1 (en) * 1986-08-11 1988-02-18 Siemens Ag ULTRASONIC POCKET SPRAYER
US4686406A (en) 1986-11-06 1987-08-11 Ford Motor Company Apparatus for applying high frequency ultrasonic energy to cleaning and etching solutions
US5037656A (en) 1986-12-04 1991-08-06 Millipore Corporation Porous membrane having hydrophilic and cell growth promotions surface and process
US4834124A (en) 1987-01-09 1989-05-30 Honda Electronics Co., Ltd. Ultrasonic cleaning device
US4734092A (en) * 1987-02-18 1988-03-29 Ivac Corporation Ambulatory drug delivery device
ATE46836T1 (en) 1987-03-17 1989-10-15 Lechler Gmbh & Co Kg ULTRASONIC LIQUID ATOMIZER.
US5211183A (en) 1987-05-13 1993-05-18 Wilson Bruce C Steerable memory alloy guide wires
US4850534A (en) 1987-05-30 1989-07-25 Tdk Corporation Ultrasonic wave nebulizer
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US4795458A (en) * 1987-07-02 1989-01-03 Regan Barrie F Stent for use following balloon angioplasty
JPH088933B2 (en) * 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter
US5025766A (en) 1987-08-24 1991-06-25 Hitachi, Ltd. Fuel injection valve and fuel supply system equipped therewith for internal combustion engines
JPS6458263A (en) 1987-08-28 1989-03-06 Terumo Corp Intravascular introducing catheter
US4964409A (en) * 1989-05-11 1990-10-23 Advanced Cardiovascular Systems, Inc. Flexible hollow guiding member with means for fluid communication therethrough
CS270372B1 (en) 1987-12-09 1990-06-13 Sulc Jiri Method of thin hydrophilic layers formation on surface of articles of non-hydrophilic methacrylic and acrylic polymers
US4841976A (en) * 1987-12-17 1989-06-27 Schneider-Shiley (Usa) Inc. Steerable catheter guide
US4980231A (en) * 1988-02-19 1990-12-25 Snyder Laboratories, Inc. Process for coating polymer surfaces and coated products produced using such process
US4943460A (en) * 1988-02-19 1990-07-24 Snyder Laboratories, Inc. Process for coating polymer surfaces and coated products produced using such process
US4925698A (en) * 1988-02-23 1990-05-15 Tekmat Corporation Surface modification of polymeric materials
JP2670680B2 (en) 1988-02-24 1997-10-29 株式会社ビーエムジー Polylactic acid microspheres containing physiologically active substance and method for producing the same
US4884579A (en) * 1988-04-18 1989-12-05 Target Therapeutics Catheter guide wire
JPH01300958A (en) 1988-05-31 1989-12-05 Canon Inc Intraocular lens having surface functional film
US5079093A (en) 1988-08-09 1992-01-07 Toray Industries, Inc. Easily-slippery medical materials and a method for preparation thereof
US5067489A (en) 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5470829A (en) 1988-11-17 1995-11-28 Prisell; Per Pharmaceutical preparation
EP0373237A1 (en) 1988-12-13 1990-06-20 Siemens Aktiengesellschaft Pocket inhaler device
US5091205A (en) 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
WO1990011135A1 (en) 1989-03-27 1990-10-04 Azerbaidzhansky Politekhnichesky Institut Imeni Ch.Ildryma Device for ultrasonic dispersion of a liquid medium
JPH03505424A (en) 1989-04-14 1991-11-28 アゼルバイジャンスキ ポリテフニチェスキ インスティテュト イメニ チェー.イルドリマ Ultrasonic atomization device for liquid media
US5080924A (en) 1989-04-24 1992-01-14 Drexel University Method of making biocompatible, surface modified materials
KR940005307B1 (en) 1989-04-28 1994-06-16 또낀 코포레이션 Readily operable catheter guide wire using shape memory alloy with pseudo elasticity
US5019400A (en) 1989-05-01 1991-05-28 Enzytech, Inc. Very low temperature casting of controlled release microspheres
EP0397130B1 (en) 1989-05-11 1995-04-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Medical device having highly biocompatible surface and method for manufacturing the same
US5026607A (en) 1989-06-23 1991-06-25 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5017383A (en) * 1989-08-22 1991-05-21 Taisho Pharmaceutical Co., Ltd. Method of producing fine coated pharmaceutical preparation
US4945937A (en) 1989-10-06 1990-08-07 Conoco Inc. Use of ultrasonic energy in the transfer of waxy crude oil
US5049403A (en) 1989-10-12 1991-09-17 Horsk Hydro A.S. Process for the preparation of surface modified solid substrates
US5674192A (en) 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5066705A (en) 1990-01-17 1991-11-19 The Glidden Company Ambient cure protective coatings for plastic substrates
US5084315A (en) 1990-02-01 1992-01-28 Becton, Dickinson And Company Lubricious coatings, medical articles containing same and method for their preparation
US5545208A (en) 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5008363A (en) 1990-03-23 1991-04-16 Union Carbide Chemicals And Plastics Technology Corporation Low temperature active aliphatic aromatic polycarbodiimides
US5107852A (en) 1990-04-02 1992-04-28 W. L. Gore & Associates, Inc. Catheter guidewire device having a covering of fluoropolymer tape
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
AU7998091A (en) 1990-05-17 1991-12-10 Harbor Medical Devices, Inc. Medical device polymer
US4995367A (en) 1990-06-29 1991-02-26 Hitachi America, Ltd. System and method of control of internal combustion engine using methane fuel mixture
US5069217A (en) 1990-07-09 1991-12-03 Lake Region Manufacturing Co., Inc. Steerable guide wire
US5040543A (en) 1990-07-25 1991-08-20 C. R. Bard, Inc. Movable core guidewire
US5102401A (en) 1990-08-22 1992-04-07 Becton, Dickinson And Company Expandable catheter having hydrophobic surface
US5449372A (en) 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
SE467309B (en) 1990-10-22 1992-06-29 Berol Nobel Ab HYDROPHILIZED FIXED SURFACE, PROCEDURE FOR ITS PREPARATION AND AGENTS THEREOF
SE467308B (en) 1990-10-22 1992-06-29 Berol Nobel Ab SOLID SURFACE COATED WITH A HYDROPHILIC SURFACE WITH COVALENTLY BONDED BIOPOLYMERS, SET TO MAKE SUCH A SURFACE AND CONJUGATED THEREOF
US5160790A (en) 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5102402A (en) 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5324261A (en) 1991-01-04 1994-06-28 Medtronic, Inc. Drug delivery balloon catheter with line of weakness
US5266359A (en) 1991-01-14 1993-11-30 Becton, Dickinson And Company Lubricative coating composition, article and assembly containing same and method thereof
AU1579092A (en) 1991-02-27 1992-10-06 Nova Pharmaceutical Corporation Anti-infective and anti-inflammatory releasing systems for medical devices
DE69215722T3 (en) 1991-03-22 2001-03-08 Katsuro Tachibana Amplifiers for ultrasound therapy of diseases and liquid pharmaceutical compositions containing them
US5241970A (en) 1991-05-17 1993-09-07 Wilson-Cook Medical, Inc. Papillotome/sphincterotome procedures and a wire guide specially
US5147370A (en) 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5105010A (en) 1991-06-13 1992-04-14 Ppg Industries, Inc. Carbodiimide compounds, polymers containing same and coating compositions containing said polymers
US5213111A (en) 1991-07-10 1993-05-25 Cook Incorporated Composite wire guide construction
US5188621A (en) 1991-08-26 1993-02-23 Target Therapeutics Inc. Extendable guidewire assembly
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
GB2265845B (en) 1991-11-12 1996-05-01 Medix Ltd A nebuliser and nebuliser control system
US5289838A (en) 1991-12-27 1994-03-01 The United States Of America As Represented By The United States Department Of Energy Ultrasonic cleaning of interior surfaces
US5243996A (en) 1992-01-03 1993-09-14 Cook, Incorporated Small-diameter superelastic wire guide
US5283063A (en) 1992-01-31 1994-02-01 Eagle Vision Punctum plug method and apparatus
ZA93929B (en) 1992-02-18 1993-09-10 Akzo Nv A process for the preparation of biologically active materialcontaining polymeric microcapsules.
FR2688401B1 (en) 1992-03-12 1998-02-27 Thierry Richard EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL.
US5599352A (en) 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5217026A (en) 1992-04-06 1993-06-08 Kingston Technologies, Inc. Guidewires with lubricious surface and method of their production
WO1993020949A1 (en) 1992-04-09 1993-10-28 Omron Corporation Ultrasonic atomizer, ultrasonic inhalator and method of controlling same
JPH05293431A (en) 1992-04-21 1993-11-09 Fuji Photo Film Co Ltd Coating method
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5449382A (en) 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
US5578075B1 (en) 1992-11-04 2000-02-08 Daynke Res Inc Minimally invasive bioactivated endoprosthesis for vessel repair
US5443458A (en) 1992-12-22 1995-08-22 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method of manufacture
GB9226791D0 (en) 1992-12-23 1993-02-17 Biocompatibles Ltd New materials
US5419760A (en) 1993-01-08 1995-05-30 Pdt Systems, Inc. Medicament dispensing stent for prevention of restenosis of a blood vessel
KR960015447B1 (en) 1993-03-16 1996-11-14 주식회사 삼양사 Biodegradable polymer
WO1994021308A1 (en) 1993-03-18 1994-09-29 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
US5523092A (en) 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5426885A (en) 1993-05-20 1995-06-27 Empak, Inc. Tackle tote
US5994341A (en) 1993-07-19 1999-11-30 Angiogenesis Technologies, Inc. Anti-angiogenic Compositions and methods for the treatment of arthritis
EP0711158B2 (en) 1993-07-29 2008-07-23 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Method of treating atherosclerosis or restenosis using microtubule stabilizing agent
CH686872A5 (en) 1993-08-09 1996-07-31 Disetronic Ag Medical Inhalationsgeraet.
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5326164A (en) 1993-10-28 1994-07-05 Logan James R Fluid mixing device
GB9324250D0 (en) 1993-11-25 1994-01-12 Minnesota Mining & Mfg Inhaler
KR0148704B1 (en) 1994-01-10 1998-08-17 김상응 Biodegradable polymer as drug delivery
GB9415926D0 (en) 1994-08-04 1994-09-28 Biocompatibles Ltd New materials
US5803106A (en) 1995-12-21 1998-09-08 Kimberly-Clark Worldwide, Inc. Ultrasonic apparatus and method for increasing the flow rate of a liquid through an orifice
US5516043A (en) 1994-06-30 1996-05-14 Misonix Inc. Ultrasonic atomizing device
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5736100A (en) 1994-09-20 1998-04-07 Hitachi, Ltd. Chemical analyzer non-invasive stirrer
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5576072A (en) 1995-02-01 1996-11-19 Schneider (Usa), Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
EP0810845A2 (en) 1995-02-22 1997-12-10 Menlo Care Inc. Covered expanding mesh stent
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US5620738A (en) 1995-06-07 1997-04-15 Union Carbide Chemicals & Plastics Technology Corporation Non-reactive lubicious coating process
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5597292A (en) 1995-06-14 1997-01-28 Alliedsignal, Inc. Piezoelectric booster pump for a braking system
US6041253A (en) 1995-12-18 2000-03-21 Massachusetts Institute Of Technology Effect of electric field and ultrasound for transdermal drug delivery
US6053424A (en) 1995-12-21 2000-04-25 Kimberly-Clark Worldwide, Inc. Apparatus and method for ultrasonically producing a spray of liquid
US5868153A (en) 1995-12-21 1999-02-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid flow control apparatus and method
ZA969680B (en) 1995-12-21 1997-06-12 Kimberly Clark Co Ultrasonic liquid fuel injection on apparatus and method
US6720710B1 (en) 1996-01-05 2004-04-13 Berkeley Microinstruments, Inc. Micropump
US5799732A (en) 1996-01-31 1998-09-01 Schlumberger Technology Corporation Small hole retrievable perforating system for use during extreme overbalanced perforating
JP2002515786A (en) 1996-06-28 2002-05-28 ソントラ メディカル,エル.ピー. Ultrasound enhancement of transdermal delivery
US6099561A (en) 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
EP0957980A4 (en) 1996-11-27 2000-03-29 Gen Hospital Corp Compound delivery using impulse transients
EP0971698A4 (en) 1996-12-31 2006-07-26 Nektar Therapeutics Aerosolized hydrophobic drug
US5785972A (en) 1997-01-10 1998-07-28 Tyler; Kathleen A. Colloidal silver, honey, and helichrysum oil antiseptic composition and method of application
US6776792B1 (en) 1997-04-24 2004-08-17 Advanced Cardiovascular Systems Inc. Coated endovascular stent
US6306166B1 (en) 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
US5972027A (en) 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5957975A (en) 1997-12-15 1999-09-28 The Cleveland Clinic Foundation Stent having a programmed pattern of in vivo degradation
US6104952A (en) 1998-01-07 2000-08-15 Tu; Lily Chen Devices for treating canker sores, tissues and methods thereof
WO1999034857A1 (en) 1998-01-08 1999-07-15 Sontra Medical, Inc. Sonophoretic enhanced transdermal transport
US6221425B1 (en) 1998-01-30 2001-04-24 Advanced Cardiovascular Systems, Inc. Lubricious hydrophilic coating for an intracorporeal medical device
US6102298A (en) 1998-02-23 2000-08-15 The Procter & Gamble Company Ultrasonic spray coating application system
US6296630B1 (en) 1998-04-08 2001-10-02 Biocardia, Inc. Device and method to slow or stop the heart temporarily
JPH11347392A (en) 1998-06-11 1999-12-21 Hitachi Ltd Stirrer
US6369039B1 (en) 1998-06-30 2002-04-09 Scimed Life Sytems, Inc. High efficiency local drug delivery
FR2780789B1 (en) 1998-07-01 2000-08-18 Commissariat Energie Atomique DEVICE AND METHOD FOR DETERMINING PHYSICAL PARAMETERS OF A TWO-PHASE MIXTURE BY PROPAGATION OF AN ACOUSTIC WAVE IN THE CONTINUOUS PHASE OF THE TWO-PHASE MIXTURE
JP4898991B2 (en) 1998-08-20 2012-03-21 クック メディカル テクノロジーズ エルエルシー Sheathed medical device
US6335029B1 (en) 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
SE9900369D0 (en) 1999-02-04 1999-02-04 Siemens Elema Ab Ultrasonic nebuliser
US6234765B1 (en) 1999-02-26 2001-05-22 Acme Widgets Research & Development, Llc Ultrasonic phase pump
US6210128B1 (en) 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
US6730349B2 (en) 1999-04-19 2004-05-04 Scimed Life Systems, Inc. Mechanical and acoustical suspension coating of medical implants
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
EP1250164B1 (en) 2000-01-24 2005-11-23 Biocompatibles UK Limited Coated implants
EP1128185B8 (en) 2000-02-25 2009-08-19 Hitachi, Ltd. Mixing device for automatic analyzer
US20040211362A1 (en) 2000-05-31 2004-10-28 Daniel Castro System for coating a stent
US6638249B1 (en) 2000-07-17 2003-10-28 Wisconsin Alumni Research Foundation Ultrasonically actuated needle pump system
SE517421C2 (en) 2000-10-06 2002-06-04 Bioglan Ab New production of microparticles involves use of aqueous solution of purified amylopectin-based starch of reduced molecular weight
US6601581B1 (en) 2000-11-01 2003-08-05 Advanced Medical Applications, Inc. Method and device for ultrasound drug delivery
US6569099B1 (en) 2001-01-12 2003-05-27 Eilaz Babaev Ultrasonic method and device for wound treatment
US6706337B2 (en) 2001-03-12 2004-03-16 Agfa Corporation Ultrasonic method for applying a coating material onto a substrate and for cleaning the coating material from the substrate
US6623444B2 (en) 2001-03-21 2003-09-23 Advanced Medical Applications, Inc. Ultrasonic catheter drug delivery method and device
US20030063984A1 (en) 2001-04-09 2003-04-03 George Keilman Ultrasonic pump and methods
US6478754B1 (en) 2001-04-23 2002-11-12 Advanced Medical Applications, Inc. Ultrasonic method and device for wound treatment
US6811805B2 (en) 2001-05-30 2004-11-02 Novatis Ag Method for applying a coating
US6669103B2 (en) 2001-08-30 2003-12-30 Shirley Cheng Tsai Multiple horn atomizer with high frequency capability
US6776352B2 (en) 2001-11-26 2004-08-17 Kimberly-Clark Worldwide, Inc. Apparatus for controllably focusing ultrasonic acoustical energy within a liquid stream
US6743463B2 (en) 2002-03-28 2004-06-01 Scimed Life Systems, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
JP2003339729A (en) 2002-05-22 2003-12-02 Olympus Optical Co Ltd Ultrasonic operation apparatus
EP1516597A4 (en) 2002-06-27 2010-11-10 Microport Medical Shanghai Co Drug eluting stent
US6840280B1 (en) 2002-07-30 2005-01-11 Sonics & Materials Inc. Flow through ultrasonic processing system
US6818063B1 (en) 2002-09-24 2004-11-16 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for minimizing coating defects
JP4428014B2 (en) * 2003-02-25 2010-03-10 パナソニック電工株式会社 Ultrasonic biological cleaning equipment
EP1605865B1 (en) 2003-03-17 2008-12-10 ev3 Endovascular, Inc. Stent with thin film composite laminate
US7163555B2 (en) 2003-04-08 2007-01-16 Medtronic Vascular, Inc. Drug-eluting stent for controlled drug delivery
US20040236399A1 (en) 2003-04-22 2004-11-25 Medtronic Vascular, Inc. Stent with improved surface adhesion
US20040215313A1 (en) 2003-04-22 2004-10-28 Peiwen Cheng Stent with sandwich type coating
US8518097B2 (en) 2003-04-25 2013-08-27 Medtronic Vascular, Inc. Plasticized stent coatings
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US7524527B2 (en) 2003-05-19 2009-04-28 Boston Scientific Scimed, Inc. Electrostatic coating of a device
US6883729B2 (en) 2003-06-03 2005-04-26 Archimedes Technology Group, Inc. High frequency ultrasonic nebulizer for hot liquids
US7169179B2 (en) 2003-06-05 2007-01-30 Conor Medsystems, Inc. Drug delivery device and method for bi-directional drug delivery
US20050058768A1 (en) 2003-09-16 2005-03-17 Eyal Teichman Method for coating prosthetic stents
US7060319B2 (en) 2003-09-24 2006-06-13 Boston Scientific Scimed, Inc. method for using an ultrasonic nozzle to coat a medical appliance
US7744645B2 (en) 2003-09-29 2010-06-29 Medtronic Vascular, Inc. Laminated drug-polymer coated stent with dipped and cured layers
US7318932B2 (en) 2003-09-30 2008-01-15 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices comprising hydrolitically stable adducts of poly(ethylene-co-vinyl alcohol) and methods for fabricating the same
US7044163B1 (en) 2004-02-10 2006-05-16 The Ohio State University Drag reduction in pipe flow using microbubbles and acoustic energy
US7178554B2 (en) * 2005-05-27 2007-02-20 Kimberly-Clark Worldwide, Inc. Ultrasonically controlled valve
US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US7429815B2 (en) 2006-06-23 2008-09-30 Caterpillar Inc. Fuel injector having encased piezo electric actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014470A (en) * 1976-03-01 1977-03-29 Bete Fog Nozzle, Inc. Conical spray nozzle
US5900690A (en) * 1996-06-26 1999-05-04 Gipson; Lamar Heath Apparatus and method for controlling an ultrasonic transducer
US20030060736A1 (en) * 1999-05-14 2003-03-27 Martin Roy W. Lens-focused ultrasonic applicator for medical applications
US7059307B2 (en) * 2002-03-22 2006-06-13 Philip Morris Usa Inc. Fuel injector for an internal combustion engine
US20070051307A1 (en) * 2005-08-16 2007-03-08 Babaev Eilaz P Ultrasound apparatus and methods for mixing liquids and coating stents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137402A1 (en) 2016-02-08 2017-08-17 Lunaphore Technologies Sa Methods of sample cycle multiplexing and in situ imaging

Also Published As

Publication number Publication date
US7753285B2 (en) 2010-07-13
US20090014550A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
US8016208B2 (en) Echoing ultrasound atomization and mixing system
US7830070B2 (en) Ultrasound atomization system
US7950594B2 (en) Mechanical and ultrasound atomization and mixing system
US7753285B2 (en) Echoing ultrasound atomization and/or mixing system
US7780095B2 (en) Ultrasound pumping apparatus
WO2009011713A1 (en) Ultrasound pumping apparatus
US7896854B2 (en) Method of treating wounds by creating a therapeutic solution with ultrasonic waves
KR100916871B1 (en) Apparatus for focussing untrasonic acoustical energy within a liquid stream
US9101949B2 (en) Ultrasonic atomization and/or seperation system
US6883724B2 (en) Method and device for production, extraction and delivery of mist with ultrafine droplets
JP5517134B2 (en) Ultrasonic atomization nozzle with variable fan jet function
CN105964473A (en) Two-phase flow ultrasonic atomization device
JP6210630B2 (en) Microbubble generator, microdischarge hole nozzle and manufacturing method thereof
US20080128527A1 (en) Liquid dispensing apparatus based on piezoelectrically driven hollow horn
CN108855849A (en) It is a kind of for liquid from exciting sonic generator
CN217250121U (en) Ultrasonic atomizer
EP0085583B1 (en) Liquid atomizing method and apparatus
CN114950830A (en) Ultrasonic atomizer and atomization method
Jeng et al. Droplets ejection apparatus and methods
JPS59112866A (en) Atomizer
JP2004114041A (en) Ultrasonic standing wave atomizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07873229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07873229

Country of ref document: EP

Kind code of ref document: A1