WO2009045562A1 - Optical fiber field termination kit - Google Patents

Optical fiber field termination kit Download PDF

Info

Publication number
WO2009045562A1
WO2009045562A1 PCT/US2008/060073 US2008060073W WO2009045562A1 WO 2009045562 A1 WO2009045562 A1 WO 2009045562A1 US 2008060073 W US2008060073 W US 2008060073W WO 2009045562 A1 WO2009045562 A1 WO 2009045562A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
termination
disposed
kit
region
Prior art date
Application number
PCT/US2008/060073
Other languages
French (fr)
Inventor
Wayne M. Kachmar
Original Assignee
Adc Telecommunications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adc Telecommunications, Inc. filed Critical Adc Telecommunications, Inc.
Publication of WO2009045562A1 publication Critical patent/WO2009045562A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/22Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B19/226Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground of the ends of optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3846Details of mounting fibres in ferrules; Assembly methods; Manufacture with fibre stubs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/385Accessories for testing or observation of connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3866Devices, tools or methods for cleaning connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3863Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using polishing techniques

Definitions

  • the present disclosure relates to fiber optic terminations, and more particularly, to a field termination kit.
  • Fiber optic networks as a signal-carrying medium for communications is now extremely widespread and continues to increase.
  • Fiber optic networks frequently include a plurality of fiber optic cables having optical fibers.
  • the need for optical fiber terminations for maintenance or expansion purposes is also growing.
  • a fiber termination kit which can be used in the field in order to terminate an optical fiber or optical fibers.
  • An aspect of the present disclosure relates to a field termination kit including an optical fiber preparation device for preparing an end of an optical fiber, an optical inspection device for inspecting the end of the optical fiber, and a termination assembly for terminating the end of the optical fiber.
  • Another aspect of the present disclosure relates to a field termination kit including an optical fiber preparation device for preparing an end of an optical fiber, an optical inspection device for inspecting the end of the optical fiber, and a termination assembly for terminating the end of the optical fiber.
  • the optical fiber preparation device has an adhesive portion and an abrasive portion.
  • the termination assembly includes a connector and a carrier.
  • the connector includes a main body with a ferrule assembly disposed in the main body.
  • the ferrule assembly is adapted for axial movement within the main body.
  • the carrier includes a connector end adapted for engagement with the connector, an oppositely disposed cable end, a termination region disposed between the connector end and the cable end, and a take-up region disposed between the connector end and the termination region.
  • Another aspect of the present disclosure relates to a method of using a field termination kit.
  • the method includes rotating an end of a first optical fiber about a center of an abrasive portion of an optical fiber preparation tool.
  • the end is pressed against an adhesive portion of the optical fiber preparation tool to clean contaminants from the end.
  • the end is inserted into an inner passage of an optical fiber inspection device for viewing.
  • the end is inserted into a termination assembly.
  • the end is terminated to an end of a second optical fiber in a termination region of the termination assembly.
  • FIG. 1 is a perspective view of a field termination kit having features that are examples of aspects in accordance with the principles of the present disclosure.
  • FIG. 2 is a perspective view of an optical fiber preparation device of FIG. 1.
  • FIG. 3 is a perspective view of an optical fiber inspection device of FIG. 1.
  • FIG. 4 is a perspective view of a fiber optic connector assembly of FIG. 1.
  • FIG. 5 is a cross-sectional view of the fiber optic connector assembly taken on line 5-5 of FIG. 1.
  • FIG. 6 is a cross-sectional view of a termination assembly having features that are examples of aspects in accordance with the principles of the present disclosure.
  • the field optical fiber termination kit 11 includes an optical fiber preparation device, generally designated 13, an optical fiber inspection device, generally designated 15, and a fiber optic connector assembly, generally designated 17.
  • the field optical fiber termination kit 11 is packaged in a structure, such as a box, a bag, shrink wrap, etc.
  • FIG. 2 the optical fiber preparation device 13 will be described.
  • the optical fiber preparation device 13 has been described in detail in U.S. Patent Application Serial No. 11/693,908, entitled “Optical Fiber Preparation Device", filed on March 30, 2007 and is hereby incorporated by reference in its entirety.
  • the optical fiber preparation device 13 includes a body 19 having a first substrate 21 with at least one abrasive portion 23 and a second substrate 25 with at least one adhesive portion 27.
  • the first substrate 21, which is mounted onto the second substrate 25, includes at least one thru hole 29 that exposes the adhesive portion 27 of the second substrate 25.
  • the abrasive portion 23 includes an annular protrusion 31 that projects away from a planar top surface 33 of the body 19.
  • the annular protrusion 31 has a polishing portion 35.
  • the polishing portion 35 has a tapered shape (e.g. conical) with an inner diameter that narrows as it extends downwardly.
  • the annular protrusion 31 and the polishing portion 35 are sized so that only the outer diameter of an optical fiber is contacted. In other words, in a preferred embodiment, the core of the optical fiber is not contacted by the polishing portion 35.
  • the annular protrusion 31 defines an orifice 37 that allows particles generated during polishing to pass through the body 19.
  • the orifice 37 is located at or about the center of the polishing portion 35.
  • the adhesive portion 27 is a medium tack adhesive that is accessible through a hole 39 in the body 19.
  • the optical fiber inspection device 15 has been described in detail in U.S. Patent Application Serial No. 11/694,614, entitled “Optical Fiber Inspection Tool", filed on March 30, 2007 and is hereby incorporated by reference in its entirety.
  • the optical fiber inspection device 15 includes a housing 41 having a first end portion 43, a second end portion 45, and a viewing portion 47.
  • a lens 49 is disposed in the housing 41.
  • the viewing portion 47 protrudes from the second end portion 45 of the housing 41. It will be understood, however, that the scope of the present disclosure is not limited to the viewing portion 47 protruding from the second end portion 45 of the housing 41.
  • the viewing portion 47 includes at least one exterior surface 51 that is made of a material that is either transparent or translucent. This transparent or translucent material allows for the entry of light from an external light source, either natural or artificial, into the viewing portion 47. To allow greater entry of light into the viewing portion 47 of the subject embodiment, five exterior surfaces 51 of the viewing portion 47 are manufactured from this transparent or translucent material.
  • the housing 41 defines an opening 53 (shown as a hidden line in FIG. 3 with a dashed lead line to the reference numeral) in the first end portion 43, through which the lens 51 can be viewed.
  • the lens 51 provides a magnification of objects within a field of view 55 of the lens 51.
  • the lens 51 has a magnification power in the range of 6OX to 400X, although it will be understood that the scope of the present disclosure is not limited to such magnification powers of the lens 51.
  • the center of the lens 51 and the center of an opening 53 in the first end portion 43 cooperatively define an axis of viewing 57.
  • a fiber position assembly 58 defines an inner passage 59 that is used to present an end of an optical fiber into the field of view 55 of the lens 51 for inspection purposes.
  • the inner passage 59 is disposed in the housing 41 such that a longitudinal axis 61 of the inner passage 59 is about perpendicular to the axis of viewing 57.
  • This orientation of the inner passage 59 with respect to the axis of viewing 57 is advantageous as it allows the user of the optical fiber inspection device 15 to not only determine the condition of an end surface of the optical fiber but also to assess whether the cleaved end of the optical fiber is of proper axial length for insertion into a splice.
  • FIG. 4 a fiber optic connector assembly 17 is shown.
  • the fiber optic connector assembly 17 has been described in U.S. Patent Application Serial No. 11/735,267, entitled “Field Terminatable Fiber Optic Connector Assembly,” filed on April 13, 2007 and is hereby incorporated by reference in its entirety.
  • the fiber optic connector assembly 17 includes a connector 63 and
  • the connector 63 is an LX.5-type connector, which has been described in U.S. Patent Nos. 5,883,995 and 6,142,676 that are hereby incorporated by reference in their entirety. It will be understood, however, that the scope of the present disclosure is not limited to the connector 63 being an LX.5-type connector.
  • the carrier 65 includes a connector end 67 and a cable end 69, which is oppositely disposed from the connector end 67.
  • the connector end 67 defines a slot 71 for mounting the connector 63. It will be understood, however, that the scope of the present disclosure is not limited to the carrier 65 defining the slot 71 for mounting the connector 63.
  • Disposed between the connector end 67 and the cable end 69 of the carrier 65 is a fiber support region 73.
  • the fiber support region 73 includes guide ways 75 that narrow as the depth of the guide ways 75 in the fiber support region 73 increase.
  • the carrier 65 further defines a take-up region 77, the purpose of which will be described subsequently, that is disposed between the connector end 67 and the fiber support region 73.
  • a termination region, generally designated 79, is disposed between the cable end 69 of the carrier 65 and the fiber support region 73.
  • the termination region 79 of the carrier 65 defines guide paths 81 that are generally aligned with the guide ways 75 and crimp tube holes 83 defined by the cable end 69. In the subject embodiment, the guide paths 81 narrow as the depth of the guide paths 81 in the termination region 79 increase.
  • the termination region 79 further defines a cavity 85.
  • the cavity 85 is adapted to receive a V-groove chip, generally designated 87.
  • the V-groove chip 87 in the fiber optic connector assembly 17 serves as the location for the termination of a cleaved optical fiber 89.
  • the V-groove chip 87 includes a base 91 and a cover 93.
  • the base 91 defines V-grooves 95 that support the cleaved optical fiber 89. Tapered openings 97 are disposed on either side of the V-grooves 95 in order to assist in the insertion of the cleaved optical fibers 89 into the V-grooves 95.
  • the base 91 is made of a silicon material while the cover 93 is made of a transparent material such as pyrex. The cover 93 is bonded to the base 91.
  • the termination region 79 in the carrier 65 includes an adhesive region 98 disposed between the cavity 85 and the cable end 69. Disposed in the adhesive region 98 is a heat responsive adhesive element, generally designated 99, and a saddle assembly, generally designated 101.
  • the heat responsive adhesive element 99 is a glue pellet.
  • the glue pellet 99 is shown as being generally rectangular in shape, although it will be understood that the scope of the present disclosure is not limited to the glue pellet 99 being rectangular in shape.
  • the glue pellet 99 includes a first surface 103 and an oppositely disposed second surface 105. At least one pathway 107 is pre-formed in the glue pellet 99. In the subject embodiment, the at least one pathway 107 is a channel that is pre-formed in the second surface 105 of the glue pellet 99.
  • the saddle assembly 101 includes a saddle, generally designated 111, and a resistor 113.
  • the glue pellet 99 is in thermally conductive contact with the saddle 111, which is in thermally conductive contact with the resistor 113.
  • the first surface 103 of the glue pellet 99 is in contact with a bottom surface 115 of the saddle 111, thereby establishing the thermally conductive contact between the glue pellet 99 and the saddle 111.
  • the resistor 113 is in contact with a top surface 117 of the saddle 111, thereby establishing the thermally conductive contact between the resistor 113 and the saddle 111.
  • a portion of the outer surface of each buffer 109 is disposed in channels 107 of the glue pellet 99. In the subject embodiment, nearly half of the outer circumference of the outer surface of the buffers 109 is disposed in the channels 107.
  • the carrier 65 further includes crimp tubes 119, which are engaged with the cable end 69 of the carrier 65.
  • the crimp tubes 119 are in a press-fit engagement with the crimp tube holes 83 in the cable end 69 of the carrier 65.
  • the crimp tubes 119 define passageways 121 through which the cleaved optical fibers 89 are inserted.
  • Strength members/layers (e.g., Kevlar) of a fiber optic cable can be crimped outside the crimp tube 119 for securing the fiber optic cable.
  • the connector 63 includes a main body 123 having a front end region 125 and an oppositely disposed back end region 127.
  • the main body 123 defines a longitudinal bore 129 that extends through the front and back end regions 125, 127.
  • a ferrule assembly, generally designated 131 includes a ferrule 133, an optical fiber 135, a portion of which is housed in the ferrule 133, and a hub 137 having a flange 139 connectedly engaged with the ferrule 133.
  • the ferrule assembly 131 is disposed in the longitudinal bore 129 of the connector 63 such that the ferrule 133 is positioned in the front end region 125 of the main body 123.
  • the connector 63 further includes a tube, generally designated 141.
  • the tube 141 has a first end portion 143 and an oppositely disposed second end portion 145 and defines a passage 147 through the tube 141.
  • the first end portion 143 of the tube 141 is connectedly engaged with the longitudinal bore 129 at the back end portion 127 of the main body 123.
  • the connected engagement between the tube 141 and the main body 123 is a press-fit engagement.
  • of the passage 147 at the first end portion 143 of the tube 141 is smaller than an inner diameter D 2 of the passage 147 at the second end portion 145.
  • the purpose for the difference in the inner diameters Di, D 2 of the passage 147 between the first and second end portions 143, 145, respectively, will be described subsequently.
  • the tube 141 further includes an annular groove 149 disposed in the outer surface of the tube 141 between the first end portion 143 and the second end portion 145.
  • a spring 151 Disposed between the ferrule assembly 131 and the tube 141 is a spring 151.
  • a first end 153 of the spring 151 abuts the flange 139 of the hub 137 while an oppositely disposed second end 155 of the spring 151 abuts an end surface 157 of the first end portion 143 of the tube 141.
  • the spring 151 biases the ferrule assembly 131 toward the front end region 125 of the main body 123, the spring 151 allows for axial movement of the ferrule assembly 131 within the longitudinal bore 129.
  • the spring 151 allows for at least 1 mm of axial movement of the ferrule assembly 131.
  • the connector 63 can be connected to the carrier 65.
  • the connector 63 is inserted into the slot 71 of the carrier 65 such that the slot 71 is disposed in the annular groove 149 of the tube 151.
  • the annular groove 149 is in a press-fit engagement with the slot 71.
  • dust boots 158 are inserted over fiber ends 159 of the optical fibers 135, which extend through the longitudinal bore 129 of the main body 123 and the passage 147 of the tube 151.
  • the dust boots 158 are in tight-fit engagement with the second end portion 155 of the tube 151 and are disposed in the take-up region 77 of the carrier 65.
  • the fiber ends 159 of the optical fibers 135 are then inserted through the tapered openings 97 of the V-groove chip 87 and into the V-grooves 95.
  • the optical fibers 135 With the fiber ends 159 of the optical fibers 135 inserted into the V-grooves 95 of the V-groove chip 87, the optical fibers 135 are secured to the guide ways 75 of the fiber support region 73. In the subject embodiment, the optical fibers 135 are affixed to the guide ways 75 with an epoxy. The affixation of the optical fibers 135 in the guide ways 75 prevents the fiber ends 159 of the optical fibers 135 from moving axially within the V-grooves 95 of the V-groove chip 87.
  • the spring 151 allows the ferrule assembly 131 to move axially within the longitudinal bore 129 of the main body 123 toward the carrier 65.
  • the axial movement of the ferrule assembly 131 causes the optical fibers 131 to bend between the fiber support region 73 and the ferrule 133.
  • this bend has a radius that is smaller than the minimum recommended bend radius of the optical fibers 135, damage to the optical fibers 135 will result.
  • the inner diameter of the passage 147 and a length L of the take-up region 77 are controlled in order to ensure that the optical fibers 135 do not have a bend radius below minimum recommendations.
  • the inner diameter D 2 of the passage 147 must be sized appropriately to account for the axial movement of the ferrule assembly 131 and the length L of the take-up region 77. If the length L of the take- up region 77 is long, the inner diameter D 2 of the passage 147 can be smaller since the bend radius of the optical fibers 135 will be large. On the other hand, if the length L of the take-up region 77 is short, the inner diameter D 2 of the passage 147 must be larger to avoid the bend radius of the optical fibers 135 being below the minimum recommendations. As stated previously, the spring 151 abuts the end surface 157 of the first end portion 143 of the tube 141.
  • the end surface 157 of the first end portion 143 of the tube 141 must have sufficient surface area to support the spring 151. Therefore, in order to provide a sufficient surface area to support the spring 151, the inner diameter of the passage 147 should be small. As state above, the inner diameter of the passage 147 could be reduced if the length L of the take-up region 77 was sufficiently long. This would result, however, in the fiber optic connector assembly 17 having a longer overall length, which is not desirable in some applications. Therefore, the subject embodiment resolves this dimensional conflict by having the inner diameter D) at the first end portion 143 of the tube 141 smaller than the inner diameter D 2 at the second end portion 145 of the tube 141.
  • the inner diameter Di is about 950 ⁇ m while the inner diameter D 2 is about 3 mm (or about three times greater than the inner diameter D
  • a cleaved end 160 of the cleaved optical fiber 89 is inserted into the passageway 121 of the crimp tube 119.
  • the cleaved end 160 of the cleaved optical fiber 89 is inserted through the channel 107 of the glue pellet 99 and into the V-groove 95 of the V-groove chip 87.
  • an index matching gel is disposed between the cleaved end 160 of the cleaved optical fiber 89 and the fiber end 159 of the optical fiber 135.
  • the index matching gel has an index of refraction that matches the index of refraction of the glass of the optical fiber 135 and the cleaved optical fiber 89.
  • the termination assembly 161 includes a carrier 163 having a first end 165 and a second end 167.
  • a termination region 169 is disposed between the first and second ends 165, 167.
  • the termination region 169 defines a cavity 171.
  • the cavity 171 is adapted to receive a V-groove chip, generally designated 173.
  • the V-groove chip 173 in the termination assembly 161 serves as the location for the termination of the optical fibers.
  • the V-groove chip 173 includes a base 177 and a cover 179.
  • the base 177 defines V-grooves 181 that support the optical fibers.
  • the base 177 is made of a silicon material while the cover 179 is made of a transparent material such as pyrex.
  • the cover 179 is bonded to the base 177.
  • the termination region 169 in the carrier 163 includes a first adhesive region 183 disposed between the cavity 171 and the first end 165 and a second adhesive region 185 disposed between the cavity 171 and the second end 167.
  • a heat responsive adhesive element Disposed in each of the first and second adhesive regions 183, 185 is a heat responsive adhesive element, generally designated 187, and a saddle assembly, generally designated 189.
  • the heat responsive adhesive element 187 is a glue pellet.
  • the glue pellet 187 is shown as being generally rectangular in shape, although it will be understood that the scope of the present disclosure is not limited to the glue pellet 187 being rectangular in shape.
  • the glue pellet 187 includes a first surface 191 and an oppositely disposed second surface 193. At least one pathway 195 is pre-formed in the glue pellet 187.
  • the at least one pathway 195 is a channel that is pre-formed in the second surface 193 of the glue pellet 187.
  • two channels 195 are pre-formed in the second surface 193.
  • the channels 195 are adapted to receive a portion of optical fibers 197.
  • the channels 195 are arcuately shaped so as to conform to the outer surface of the buffers of the optical fibers 197.
  • the saddle assembly 189 includes a saddle, generally designated 199, and a resistor 201.
  • the glue pellet 187 is in thermally conductive contact with the saddle 199, which is in thermally conductive contact with the resistor 201.
  • the first surface 191 of the glue pellet 187 is in contact with the saddle 199, thereby establishing the thermally conductive contact between the glue pellet 187 and the saddle 199.
  • the resistor 201 is in contact with the saddle 199, thereby establishing the thermally conductive contact between the resistor 201 and the saddle 199.
  • Portions of the outer surface of the buffers of the optical fibers 197 are disposed in the channels 195 of the glue pellet 187. In the subject embodiment, nearly half of the outer circumferences of the outer surfaces of the buffers are disposed in the channels 195.
  • the carrier 163 further includes crimp tubes 207, which are engaged with the first and second ends 165, 167 of the carrier 163.
  • the crimp tubes 207 are in a press-fit engagement with crimp tube holes 208 in the first and second ends 165, 167 of the carrier 163.
  • the crimp tubes 207 define passageways 209 through which the optical fibers are inserted.
  • a fiber optic cable requiring termination needs to be stripped and cleaved using conventional techniques.
  • a precise stripper is usually used to remove a buffer and protective coating from the fiber optic cable. Having stripped the buffer and the protective coating from a portion of the fiber optic cable, an optical fiber is exposed. With the optical fiber exposed, the optical fiber is scribed and cleaved. After the optical fiber has been cleaved, the optical fiber preparation device 13 is used to prepare an end of the optical fiber. The end of the optical fiber is inserted into the abrasive portion 23 of the optical fiber preparation tool 13.
  • the optical fiber preparation device 13 As the end of the optical fiber enters the abrasive portion 23, the optical fiber preparation device 13 is rotated about a center of the abrasive portion 23 in a clockwise and counterclockwise direction by the user. During this rotation, the polishing portion 35 polishes the end of the optical fiber. After polishing, the end of the optical fiber is pressed against the adhesive portion 27 to clean any residual glass particles or contaminants from the end of the optical fiber. When the end of the optical fiber is removed from the adhesive portion 27, the contaminants that were attached to the end of the optical fiber become dislodged from the optical fiber and affixed to the adhesive portion 27.
  • the end of the optical fiber With the end of the optical fiber prepared, the end is inserted into the optical fiber inspection device 15.
  • the optical fiber is inserted through the inner passage 59 in the housing 41.
  • the end of the optical fiber is then viewable in the field of view 55 to assess the condition of the end as well as the length of the optical fiber. If the end of the optical fiber, as viewed in the field of view 55, contains a fiber lip or contamination, the optical fiber should be removed from the optical fiber inspection device 15 and prepared using the optical fiber preparation device 13 again. If the optical fiber is too long, the optical fiber should be recleaved and prepared using the optical fiber preparation device 13 again. If the end of the optical fiber is free from fiber lips and contamination, the optical fiber is ready for termination.
  • An end of the optical fiber can then be inserted into the fiber optic connector assembly 17, as described above.
  • an end 217 of a first optical fiber 219 and an end 221 of a second optical fiber 225 can be inserted into the termination assembly 161.
  • the ends 217, 221 of the first and second optical fibers 219, 225 are ready for insertion into the termination assembly 161.
  • the end 217 of the first optical fiber 219 is inserted into the passageway 209 of the crimp tube 207 disposed on the first end 165 of the carrier 163, through the channel 195 of the glue pellet 187, and into the V-groove 181 of the V-groove chip 173.
  • the end 221 of the second optical fiber 225 is inserted into the passageway 209 of the crimp tube 207 disposed on the second end 167 of the carrier 163, through the channel 195 of the glue pellet 187, and into the V-groove 183 of the V-groove chip 173.
  • index matching gel is disposed between the ends 217, 221 of the first and second optical fibers 219, 225.
  • the index matching gel has an index of refraction that matches the index of refraction of the glass of the first and second optical fibers 219, 225.
  • optical radiation is passed through the first and second optical fibers 219, 225 to assess proper alignment of the ends 217, 221. If optical radiation is detectable at the junction of the ends 217, 221 as viewed through the transparent cover 179 of the V-groove chip 171, then the alignment/abutment is not correct.
  • the ends 217, 221 may have to be polished or cleaned and reinserted into the V-groove 181. If little to no radiation is detectable at the junction of the ends 217, 221, then the first and second optical fibers 219, 225 can be secured to the termination assembly 161 by the glue pellets 187.
  • an electrical power source is connected to each of the resistors 201. Electrical current is passed through each of the resistor 201 which heats up each of the glue pellets 187 by way of the thermally conducting saddle 199. As the glue pellets 187 heat up, the glue pellets 187 become tacky and adhere to the first and second optical fibers 219, 225 and the corresponding buffers and closes passageways 209 of the crimp tubes 207. When the current is interrupted, the glue pellets 187 resets to secure the buffers and the first and second optical fibers 219, 225 in their correct position.
  • the termination assembly 161 can be provided as an insert for a housing to protect the termination assembly 161 from damage.
  • One housing in which the termination assembly 161 can be inserted is described in a U.S. Patent Application Serial No. 11/787,197, entitled “Hybrid fiber/copper connector system and method,” filed on April 13, 2007, and hereby incorporated by reference.

Abstract

A field termination kit includes an optical fiber preparation device (13) for preparing an end of an optical fiber, an optical inspection device (15) for inspecting the end of the optical fiber, and a termination assembly (161) for terminating the end of the optical fiber. A method of using a field termination kit includes rotating an end of a first optical fiber about a center of an abrasive portion of an optical fiber preparation tool. The end is pressed against an adhesive portion of the optical fiber preparation tool to clean contaminants from the end. The end is inserted into an inner passage of an optical fiber inspection device for viewing. The end is inserted into a termination assembly. The end is terminated to an end of a second optical fiber in a termination region of the termination assembly.

Description

OPTICAL FIBER FIELD TERMINATION KIT
Cross-Reference to Related Application
This application is being filed on 11 April 2008, as a PCT International Patent application in the name of ADC Telecommunications, Inc., a U.S. national corporation, applicant for the designation of all countries except the U.S., and Wayne M. KACHMAR, a citizen of the U.S., applicant for the designation of the U.S. only, and claims priority to U.S. Provisional Patent Application Serial No. 60/911,792 filed on 13 April 2007.
Technical Field The present disclosure relates to fiber optic terminations, and more particularly, to a field termination kit.
Background
The use of fiber optic networks as a signal-carrying medium for communications is now extremely widespread and continues to increase. Fiber optic networks frequently include a plurality of fiber optic cables having optical fibers. As fiber optic networks continue to grow, the need for optical fiber terminations for maintenance or expansion purposes is also growing. As such, there is a need for a fiber termination kit which can be used in the field in order to terminate an optical fiber or optical fibers.
Summary
An aspect of the present disclosure relates to a field termination kit including an optical fiber preparation device for preparing an end of an optical fiber, an optical inspection device for inspecting the end of the optical fiber, and a termination assembly for terminating the end of the optical fiber. Another aspect of the present disclosure relates to a field termination kit including an optical fiber preparation device for preparing an end of an optical fiber, an optical inspection device for inspecting the end of the optical fiber, and a termination assembly for terminating the end of the optical fiber. The optical fiber preparation device has an adhesive portion and an abrasive portion. The termination assembly includes a connector and a carrier. The connector includes a main body with a ferrule assembly disposed in the main body. The ferrule assembly is adapted for axial movement within the main body. The carrier includes a connector end adapted for engagement with the connector, an oppositely disposed cable end, a termination region disposed between the connector end and the cable end, and a take-up region disposed between the connector end and the termination region.
Another aspect of the present disclosure relates to a method of using a field termination kit. The method includes rotating an end of a first optical fiber about a center of an abrasive portion of an optical fiber preparation tool. The end is pressed against an adhesive portion of the optical fiber preparation tool to clean contaminants from the end. The end is inserted into an inner passage of an optical fiber inspection device for viewing. The end is inserted into a termination assembly. The end is terminated to an end of a second optical fiber in a termination region of the termination assembly.
A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.
Brief Description of the Drawings
FIG. 1 is a perspective view of a field termination kit having features that are examples of aspects in accordance with the principles of the present disclosure.
FIG. 2 is a perspective view of an optical fiber preparation device of FIG. 1.
FIG. 3 is a perspective view of an optical fiber inspection device of FIG. 1.
FIG. 4 is a perspective view of a fiber optic connector assembly of FIG. 1. FIG. 5 is a cross-sectional view of the fiber optic connector assembly taken on line 5-5 of FIG. 1. FIG. 6 is a cross-sectional view of a termination assembly having features that are examples of aspects in accordance with the principles of the present disclosure.
Detailed Description Reference will now be made in detail to the exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like structure.
Referring now to FIG. 1 , a field optical fiber termination kit 11 is shown. The field optical fiber termination kit 11 includes an optical fiber preparation device, generally designated 13, an optical fiber inspection device, generally designated 15, and a fiber optic connector assembly, generally designated 17. In the subject embodiment, the field optical fiber termination kit 11 is packaged in a structure, such as a box, a bag, shrink wrap, etc. Referring now to FIG. 2, the optical fiber preparation device 13 will be described. The optical fiber preparation device 13 has been described in detail in U.S. Patent Application Serial No. 11/693,908, entitled "Optical Fiber Preparation Device", filed on March 30, 2007 and is hereby incorporated by reference in its entirety. The optical fiber preparation device 13 includes a body 19 having a first substrate 21 with at least one abrasive portion 23 and a second substrate 25 with at least one adhesive portion 27. In the subject embodiment, the first substrate 21, which is mounted onto the second substrate 25, includes at least one thru hole 29 that exposes the adhesive portion 27 of the second substrate 25.
The abrasive portion 23 includes an annular protrusion 31 that projects away from a planar top surface 33 of the body 19. The annular protrusion 31 has a polishing portion 35. The polishing portion 35 has a tapered shape (e.g. conical) with an inner diameter that narrows as it extends downwardly. In a preferred embodiment, the annular protrusion 31 and the polishing portion 35 are sized so that only the outer diameter of an optical fiber is contacted. In other words, in a preferred embodiment, the core of the optical fiber is not contacted by the polishing portion 35. The annular protrusion 31 defines an orifice 37 that allows particles generated during polishing to pass through the body 19. In a preferred embodiment, the orifice 37 is located at or about the center of the polishing portion 35. In the subject embodiment, the adhesive portion 27 is a medium tack adhesive that is accessible through a hole 39 in the body 19.
Referring now to FIG. 3, the optical fiber inspection device 15 will be described. The optical fiber inspection device 15 has been described in detail in U.S. Patent Application Serial No. 11/694,614, entitled "Optical Fiber Inspection Tool", filed on March 30, 2007 and is hereby incorporated by reference in its entirety. The optical fiber inspection device 15 includes a housing 41 having a first end portion 43, a second end portion 45, and a viewing portion 47. A lens 49 is disposed in the housing 41.
In the subject embodiment, the viewing portion 47 protrudes from the second end portion 45 of the housing 41. It will be understood, however, that the scope of the present disclosure is not limited to the viewing portion 47 protruding from the second end portion 45 of the housing 41. In a preferred embodiment, the viewing portion 47 includes at least one exterior surface 51 that is made of a material that is either transparent or translucent. This transparent or translucent material allows for the entry of light from an external light source, either natural or artificial, into the viewing portion 47. To allow greater entry of light into the viewing portion 47 of the subject embodiment, five exterior surfaces 51 of the viewing portion 47 are manufactured from this transparent or translucent material.
The housing 41 defines an opening 53 (shown as a hidden line in FIG. 3 with a dashed lead line to the reference numeral) in the first end portion 43, through which the lens 51 can be viewed. The lens 51 provides a magnification of objects within a field of view 55 of the lens 51. In a preferred embodiment, the lens 51 has a magnification power in the range of 6OX to 400X, although it will be understood that the scope of the present disclosure is not limited to such magnification powers of the lens 51. The center of the lens 51 and the center of an opening 53 in the first end portion 43 cooperatively define an axis of viewing 57.
A fiber position assembly 58 defines an inner passage 59 that is used to present an end of an optical fiber into the field of view 55 of the lens 51 for inspection purposes. The inner passage 59 is disposed in the housing 41 such that a longitudinal axis 61 of the inner passage 59 is about perpendicular to the axis of viewing 57. This orientation of the inner passage 59 with respect to the axis of viewing 57 is advantageous as it allows the user of the optical fiber inspection device 15 to not only determine the condition of an end surface of the optical fiber but also to assess whether the cleaved end of the optical fiber is of proper axial length for insertion into a splice. Referring now to FIG. 4, a fiber optic connector assembly 17 is shown. The fiber optic connector assembly 17 has been described in U.S. Patent Application Serial No. 11/735,267, entitled "Field Terminatable Fiber Optic Connector Assembly," filed on April 13, 2007 and is hereby incorporated by reference in its entirety. The fiber optic connector assembly 17 includes a connector 63 and a carrier 65.
In the subject embodiment, the connector 63 is an LX.5-type connector, which has been described in U.S. Patent Nos. 5,883,995 and 6,142,676 that are hereby incorporated by reference in their entirety. It will be understood, however, that the scope of the present disclosure is not limited to the connector 63 being an LX.5-type connector.
The carrier 65 includes a connector end 67 and a cable end 69, which is oppositely disposed from the connector end 67. In the subject embodiment, the connector end 67 defines a slot 71 for mounting the connector 63. It will be understood, however, that the scope of the present disclosure is not limited to the carrier 65 defining the slot 71 for mounting the connector 63. Disposed between the connector end 67 and the cable end 69 of the carrier 65 is a fiber support region 73. In the subject embodiment, the fiber support region 73 includes guide ways 75 that narrow as the depth of the guide ways 75 in the fiber support region 73 increase. The carrier 65 further defines a take-up region 77, the purpose of which will be described subsequently, that is disposed between the connector end 67 and the fiber support region 73.
A termination region, generally designated 79, is disposed between the cable end 69 of the carrier 65 and the fiber support region 73. The termination region 79 of the carrier 65 defines guide paths 81 that are generally aligned with the guide ways 75 and crimp tube holes 83 defined by the cable end 69. In the subject embodiment, the guide paths 81 narrow as the depth of the guide paths 81 in the termination region 79 increase. The termination region 79 further defines a cavity 85. The cavity 85 is adapted to receive a V-groove chip, generally designated 87. The V-groove chip 87 in the fiber optic connector assembly 17 serves as the location for the termination of a cleaved optical fiber 89. The V-groove chip 87 includes a base 91 and a cover 93. The base 91 defines V-grooves 95 that support the cleaved optical fiber 89. Tapered openings 97 are disposed on either side of the V-grooves 95 in order to assist in the insertion of the cleaved optical fibers 89 into the V-grooves 95. In the subject embodiment, the base 91 is made of a silicon material while the cover 93 is made of a transparent material such as pyrex. The cover 93 is bonded to the base 91.
The termination region 79 in the carrier 65 includes an adhesive region 98 disposed between the cavity 85 and the cable end 69. Disposed in the adhesive region 98 is a heat responsive adhesive element, generally designated 99, and a saddle assembly, generally designated 101. In the subject embodiment, the heat responsive adhesive element 99 is a glue pellet. The glue pellet 99 is shown as being generally rectangular in shape, although it will be understood that the scope of the present disclosure is not limited to the glue pellet 99 being rectangular in shape. The glue pellet 99 includes a first surface 103 and an oppositely disposed second surface 105. At least one pathway 107 is pre-formed in the glue pellet 99. In the subject embodiment, the at least one pathway 107 is a channel that is pre-formed in the second surface 105 of the glue pellet 99. In the preferred embodiment, two channels 107 are pre-formed in the second surface 105. The channels 107 are adapted to receive a portion of the cleaved optical fibers 89 and a portion of buffers 109, which surround the cleaved optical fibers 89. In the subject embodiment, each of the channels 107 is arcuately shaped so as to conform to the outer surface of the buffers 109. In the subject embodiment, the saddle assembly 101 includes a saddle, generally designated 111, and a resistor 113. The glue pellet 99 is in thermally conductive contact with the saddle 111, which is in thermally conductive contact with the resistor 113. In the subject embodiment, the first surface 103 of the glue pellet 99 is in contact with a bottom surface 115 of the saddle 111, thereby establishing the thermally conductive contact between the glue pellet 99 and the saddle 111. The resistor 113 is in contact with a top surface 117 of the saddle 111, thereby establishing the thermally conductive contact between the resistor 113 and the saddle 111. A portion of the outer surface of each buffer 109 is disposed in channels 107 of the glue pellet 99. In the subject embodiment, nearly half of the outer circumference of the outer surface of the buffers 109 is disposed in the channels 107.
The carrier 65 further includes crimp tubes 119, which are engaged with the cable end 69 of the carrier 65. In the subject embodiment, the crimp tubes 119 are in a press-fit engagement with the crimp tube holes 83 in the cable end 69 of the carrier 65. The crimp tubes 119 define passageways 121 through which the cleaved optical fibers 89 are inserted. Strength members/layers (e.g., Kevlar) of a fiber optic cable can be crimped outside the crimp tube 119 for securing the fiber optic cable.
Referring now to FIG. 5, the connector 63 will be described. The connector 63 includes a main body 123 having a front end region 125 and an oppositely disposed back end region 127. The main body 123 defines a longitudinal bore 129 that extends through the front and back end regions 125, 127. A ferrule assembly, generally designated 131, includes a ferrule 133, an optical fiber 135, a portion of which is housed in the ferrule 133, and a hub 137 having a flange 139 connectedly engaged with the ferrule 133. The ferrule assembly 131 is disposed in the longitudinal bore 129 of the connector 63 such that the ferrule 133 is positioned in the front end region 125 of the main body 123. The connector 63 further includes a tube, generally designated 141.
The tube 141 has a first end portion 143 and an oppositely disposed second end portion 145 and defines a passage 147 through the tube 141. The first end portion 143 of the tube 141 is connectedly engaged with the longitudinal bore 129 at the back end portion 127 of the main body 123. In the subject embodiment, the connected engagement between the tube 141 and the main body 123 is a press-fit engagement. In the subject embodiment, an inner diameter D| of the passage 147 at the first end portion 143 of the tube 141 is smaller than an inner diameter D2 of the passage 147 at the second end portion 145. The purpose for the difference in the inner diameters Di, D2 of the passage 147 between the first and second end portions 143, 145, respectively, will be described subsequently. The tube 141 further includes an annular groove 149 disposed in the outer surface of the tube 141 between the first end portion 143 and the second end portion 145. Disposed between the ferrule assembly 131 and the tube 141 is a spring 151. A first end 153 of the spring 151 abuts the flange 139 of the hub 137 while an oppositely disposed second end 155 of the spring 151 abuts an end surface 157 of the first end portion 143 of the tube 141. While the spring 151 biases the ferrule assembly 131 toward the front end region 125 of the main body 123, the spring 151 allows for axial movement of the ferrule assembly 131 within the longitudinal bore 129. In the subject embodiment, and by way of example only, the spring 151 allows for at least 1 mm of axial movement of the ferrule assembly 131. With the ferrule assembly 131, tube 141, and spring 151 disposed in the main body 123, the connector 63 can be connected to the carrier 65. To connect the connector 63 to the carrier 65, the connector 63 is inserted into the slot 71 of the carrier 65 such that the slot 71 is disposed in the annular groove 149 of the tube 151. In the subject embodiment, the annular groove 149 is in a press-fit engagement with the slot 71. With the connector 63 engaged with the carrier 65, dust boots 158 are inserted over fiber ends 159 of the optical fibers 135, which extend through the longitudinal bore 129 of the main body 123 and the passage 147 of the tube 151. The dust boots 158 are in tight-fit engagement with the second end portion 155 of the tube 151 and are disposed in the take-up region 77 of the carrier 65. The fiber ends 159 of the optical fibers 135 are then inserted through the tapered openings 97 of the V-groove chip 87 and into the V-grooves 95. With the fiber ends 159 of the optical fibers 135 inserted into the V-grooves 95 of the V-groove chip 87, the optical fibers 135 are secured to the guide ways 75 of the fiber support region 73. In the subject embodiment, the optical fibers 135 are affixed to the guide ways 75 with an epoxy. The affixation of the optical fibers 135 in the guide ways 75 prevents the fiber ends 159 of the optical fibers 135 from moving axially within the V-grooves 95 of the V-groove chip 87.
As stated previously, the spring 151 allows the ferrule assembly 131 to move axially within the longitudinal bore 129 of the main body 123 toward the carrier 65. With the optical fibers 135 affixed to the guide ways 75 of the fiber support region 73, the axial movement of the ferrule assembly 131 causes the optical fibers 131 to bend between the fiber support region 73 and the ferrule 133. However, if this bend has a radius that is smaller than the minimum recommended bend radius of the optical fibers 135, damage to the optical fibers 135 will result. In one embodiment, the inner diameter of the passage 147 and a length L of the take-up region 77 are controlled in order to ensure that the optical fibers 135 do not have a bend radius below minimum recommendations. As the inner diameter of the passage 147 decreases, the number of bends in the optical fiber 135 increases. However, as the number of bends increase, the radii of each bend in the optical fiber 135 decreases. Therefore, there is a directly proportional relationship between the inner diameter of the passage 147 and the bend radius in the optical fiber 135.
As the length L of the take-up region 77 increases, the radii of the bends of the optical fibers 135 increases. Therefore, there is a directly proportional relationship between the length L and the bend radius of the optical fiber 135.
In the subject embodiment, the inner diameter D2 of the passage 147 must be sized appropriately to account for the axial movement of the ferrule assembly 131 and the length L of the take-up region 77. If the length L of the take- up region 77 is long, the inner diameter D2 of the passage 147 can be smaller since the bend radius of the optical fibers 135 will be large. On the other hand, if the length L of the take-up region 77 is short, the inner diameter D2 of the passage 147 must be larger to avoid the bend radius of the optical fibers 135 being below the minimum recommendations. As stated previously, the spring 151 abuts the end surface 157 of the first end portion 143 of the tube 141. In order to have a proper surface against which the spring 151 would act, the end surface 157 of the first end portion 143 of the tube 141 must have sufficient surface area to support the spring 151. Therefore, in order to provide a sufficient surface area to support the spring 151, the inner diameter of the passage 147 should be small. As state above, the inner diameter of the passage 147 could be reduced if the length L of the take-up region 77 was sufficiently long. This would result, however, in the fiber optic connector assembly 17 having a longer overall length, which is not desirable in some applications. Therefore, the subject embodiment resolves this dimensional conflict by having the inner diameter D) at the first end portion 143 of the tube 141 smaller than the inner diameter D2 at the second end portion 145 of the tube 141. In the subject embodiment, and by way of example only, with the ferrule assembly 131 having an axial movement of at least 1 mm in the longitudinal bore 129, the inner diameter Di is about 950 μm while the inner diameter D2 is about 3 mm (or about three times greater than the inner diameter D|). By having the inner diameter D2 at the second end portion 145 of the tube 141 larger than the inner diameter Dl at the first end portion 143 of the tube 141, the fiber optic connector assembly 17 can be more compact.
With the connector 63 engaged to the carrier 65, the optical fiber 135 affixed in the guide way 75 of the fiber support region 73, and the fiber ends 159 inserted into the V-groove 95 of the V-groove chip 87, a cleaved end 160 of the cleaved optical fiber 89 is inserted into the passageway 121 of the crimp tube 119. The cleaved end 160 of the cleaved optical fiber 89 is inserted through the channel 107 of the glue pellet 99 and into the V-groove 95 of the V-groove chip 87. In the subject embodiment, an index matching gel is disposed between the cleaved end 160 of the cleaved optical fiber 89 and the fiber end 159 of the optical fiber 135. The index matching gel has an index of refraction that matches the index of refraction of the glass of the optical fiber 135 and the cleaved optical fiber 89.
Referring now to FIG. 6, a termination assembly 161 is shown. The termination assembly 161 includes a carrier 163 having a first end 165 and a second end 167. A termination region 169 is disposed between the first and second ends 165, 167. The termination region 169 defines a cavity 171. The cavity 171 is adapted to receive a V-groove chip, generally designated 173. The V-groove chip 173 in the termination assembly 161 serves as the location for the termination of the optical fibers.
The V-groove chip 173 includes a base 177 and a cover 179. The base 177 defines V-grooves 181 that support the optical fibers. In the subject embodiment, the base 177 is made of a silicon material while the cover 179 is made of a transparent material such as pyrex. The cover 179 is bonded to the base 177.
The termination region 169 in the carrier 163 includes a first adhesive region 183 disposed between the cavity 171 and the first end 165 and a second adhesive region 185 disposed between the cavity 171 and the second end 167. Disposed in each of the first and second adhesive regions 183, 185 is a heat responsive adhesive element, generally designated 187, and a saddle assembly, generally designated 189. In the subject embodiment, the heat responsive adhesive element 187 is a glue pellet. The glue pellet 187 is shown as being generally rectangular in shape, although it will be understood that the scope of the present disclosure is not limited to the glue pellet 187 being rectangular in shape. The glue pellet 187 includes a first surface 191 and an oppositely disposed second surface 193. At least one pathway 195 is pre-formed in the glue pellet 187. In the subject embodiment, the at least one pathway 195 is a channel that is pre-formed in the second surface 193 of the glue pellet 187. In the preferred embodiment, two channels 195 are pre-formed in the second surface 193. The channels 195 are adapted to receive a portion of optical fibers 197. In the subject embodiment, the channels 195 are arcuately shaped so as to conform to the outer surface of the buffers of the optical fibers 197.
In the subject embodiment, the saddle assembly 189 includes a saddle, generally designated 199, and a resistor 201. The glue pellet 187 is in thermally conductive contact with the saddle 199, which is in thermally conductive contact with the resistor 201. In the subject embodiment, the first surface 191 of the glue pellet 187 is in contact with the saddle 199, thereby establishing the thermally conductive contact between the glue pellet 187 and the saddle 199. The resistor 201 is in contact with the saddle 199, thereby establishing the thermally conductive contact between the resistor 201 and the saddle 199. Portions of the outer surface of the buffers of the optical fibers 197 are disposed in the channels 195 of the glue pellet 187. In the subject embodiment, nearly half of the outer circumferences of the outer surfaces of the buffers are disposed in the channels 195.
The carrier 163 further includes crimp tubes 207, which are engaged with the first and second ends 165, 167 of the carrier 163. In the subject embodiment, the crimp tubes 207 are in a press-fit engagement with crimp tube holes 208 in the first and second ends 165, 167 of the carrier 163. The crimp tubes 207 define passageways 209 through which the optical fibers are inserted.
Referring now to FIGS. 2-6, a method for using the field optical fiber termination kit 17 will be described. A fiber optic cable requiring termination needs to be stripped and cleaved using conventional techniques. A precise stripper is usually used to remove a buffer and protective coating from the fiber optic cable. Having stripped the buffer and the protective coating from a portion of the fiber optic cable, an optical fiber is exposed. With the optical fiber exposed, the optical fiber is scribed and cleaved. After the optical fiber has been cleaved, the optical fiber preparation device 13 is used to prepare an end of the optical fiber. The end of the optical fiber is inserted into the abrasive portion 23 of the optical fiber preparation tool 13. As the end of the optical fiber enters the abrasive portion 23, the optical fiber preparation device 13 is rotated about a center of the abrasive portion 23 in a clockwise and counterclockwise direction by the user. During this rotation, the polishing portion 35 polishes the end of the optical fiber. After polishing, the end of the optical fiber is pressed against the adhesive portion 27 to clean any residual glass particles or contaminants from the end of the optical fiber. When the end of the optical fiber is removed from the adhesive portion 27, the contaminants that were attached to the end of the optical fiber become dislodged from the optical fiber and affixed to the adhesive portion 27.
With the end of the optical fiber prepared, the end is inserted into the optical fiber inspection device 15. The optical fiber is inserted through the inner passage 59 in the housing 41. The end of the optical fiber is then viewable in the field of view 55 to assess the condition of the end as well as the length of the optical fiber. If the end of the optical fiber, as viewed in the field of view 55, contains a fiber lip or contamination, the optical fiber should be removed from the optical fiber inspection device 15 and prepared using the optical fiber preparation device 13 again. If the optical fiber is too long, the optical fiber should be recleaved and prepared using the optical fiber preparation device 13 again. If the end of the optical fiber is free from fiber lips and contamination, the optical fiber is ready for termination.
An end of the optical fiber can then be inserted into the fiber optic connector assembly 17, as described above. Alternatively, an end 217 of a first optical fiber 219 and an end 221 of a second optical fiber 225 can be inserted into the termination assembly 161.
With the ends 217, 221 of the first and second optical fibers 219, 225 prepared and inspected, the ends 217, 221 are ready for insertion into the termination assembly 161. The end 217 of the first optical fiber 219 is inserted into the passageway 209 of the crimp tube 207 disposed on the first end 165 of the carrier 163, through the channel 195 of the glue pellet 187, and into the V-groove 181 of the V-groove chip 173. The end 221 of the second optical fiber 225 is inserted into the passageway 209 of the crimp tube 207 disposed on the second end 167 of the carrier 163, through the channel 195 of the glue pellet 187, and into the V-groove 183 of the V-groove chip 173. In the subject embodiment, index matching gel is disposed between the ends 217, 221 of the first and second optical fibers 219, 225. The index matching gel has an index of refraction that matches the index of refraction of the glass of the first and second optical fibers 219, 225.
With the ends 217, 221 of the first and second optical fibers 219, 225 inserted into the V-groove 181, optical radiation is passed through the first and second optical fibers 219, 225 to assess proper alignment of the ends 217, 221. If optical radiation is detectable at the junction of the ends 217, 221 as viewed through the transparent cover 179 of the V-groove chip 171, then the alignment/abutment is not correct. The ends 217, 221 may have to be polished or cleaned and reinserted into the V-groove 181. If little to no radiation is detectable at the junction of the ends 217, 221, then the first and second optical fibers 219, 225 can be secured to the termination assembly 161 by the glue pellets 187. To secure the first and second optical fibers 219, 225 to the termination assembly 161, an electrical power source is connected to each of the resistors 201. Electrical current is passed through each of the resistor 201 which heats up each of the glue pellets 187 by way of the thermally conducting saddle 199. As the glue pellets 187 heat up, the glue pellets 187 become tacky and adhere to the first and second optical fibers 219, 225 and the corresponding buffers and closes passageways 209 of the crimp tubes 207. When the current is interrupted, the glue pellets 187 resets to secure the buffers and the first and second optical fibers 219, 225 in their correct position.
With the first and second optical fibers 219, 225 secured, the termination assembly 161 can be provided as an insert for a housing to protect the termination assembly 161 from damage. One housing in which the termination assembly 161 can be inserted is described in a U.S. Patent Application Serial No. 11/787,197, entitled "Hybrid fiber/copper connector system and method," filed on April 13, 2007, and hereby incorporated by reference.
Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative embodiments set forth herein.

Claims

What is claimed is:
1. A field termination kit comprising: an optical fiber preparation device for preparing an end of an optical fiber; an optical fiber inspection device for inspecting the end of the optical fiber; and a termination assembly for terminating the end of the optical fiber.
2. A field termination kit as claimed in claim 1, wherein the optical fiber preparation device includes an adhesive portion and an abrasive portion.
3. A field termination kit as claimed in claim 2, wherein the abrasive portion of the optical fiber preparation device is a protrusion having a polishing portion.
4. A field termination kit as claimed in claim 3, wherein the protrusion is annular and sized so that only an outer diameter of an optical fiber is contacted
5. A field termination kit as claimed in claim 3, wherein the protrusion defines an orifice located at or about the center of the polishing portion.
6. A field termination kit as claimed in claim 1 , wherein the optical fiber inspection device includes a housing having an opening disposed on an end portion and a lens disposed in the housing, the opening and the lens defining an axis of viewing.
7. A field termination kit as claimed in claim 6, wherein the housing defines an inner passage for presenting an optical fiber into a field of view of the lens, the inner passage being disposed in the housing such that a longitudinal axis is about perpendicular to the axis of viewing.
8. A field termination kit as claimed in claim 1, wherein the termination assembly includes a carrier having a termination region.
9. A field termination kit as claimed in claim 8, wherein the termination assembly includes at least one heat responsive adhesive element disposed in the termination region.
10. A field termination kit as claimed in claim 9, wherein the heat responsive adhesive element defines channels disposed on a surface for receiving an optical fiber.
11. A field termination kit as claimed in claim 8, wherein the termination region of the carrier is disposed between a first end and an oppositely disposed second end of the carrier.
12. A field termination kit as claimed in claim 11 , wherein the carrier includes a fiber support region disposed between the first end and the termination region and a take-up region disposed between the first end and the fiber support region, the take- up region being adapted for axial movement of a ferrule assembly in a fiber optic connector engaged with the first end of the carrier.
13. A field termination kit as claimed in claim 12, wherein the take-up region is adapted to receive a dust boot disposed over the optical fiber.
14. A field termination kit as claimed in claim 8, wherein a V-groove chip is disposed in the termination region of the carrier.
15. A field termination kit comprising: an optical fiber preparation device having an adhesive portion and an abrasive portion for preparing an end of an optical fiber; an optical fiber inspection device for inspecting the end of the optical fiber; and a termination assembly for terminating the end of the optical fiber, the termination assembly including: a connector having a main body with a ferrule assembly disposed in the main body, the ferrule assembly being adapted for axial movement within the main body; and a carrier having a connector end engaged with the connector and an oppositely disposed cable end, a termination region disposed between the connector end and the cable end, and a take-up region disposed between the connector end and the termination region.
16. A field termination kit as claimed in claim 15, wherein the connector includes a passage.
17. A field termination kit as claimed in claim 16, wherein an inner diameter of the passage increases as the passage extends away from the ferrule assembly.
18. A field termination kit as claimed in claim 17, wherein the passage is defined by a tube disposed in a longitudinal bore of the connector.
19. A method of using a field termination kit comprising: rotating an end of a first optical fiber about a center of an abrasive portion of an optical fiber preparation tool; pressing the end against an adhesive portion of the optical fiber preparation tool to clean contaminants from the end; inserting the end into an inner passage of an optical fiber inspection device for viewing; inserting the end into a termination assembly; and terminating the end of the first optical fiber with an end of a second optical fiber in a termination region of the termination assembly.
20. A method of using a field termination kit as claimed in claim 19, wherein the inner passage of the optical fiber inspection tool is disposed in the optical fiber inspection tool such that a longitudinal axis of the inner passage is about perpendicular to an axis of viewing of the optical fiber inspection tool.
PCT/US2008/060073 2007-04-13 2008-04-11 Optical fiber field termination kit WO2009045562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91179207P 2007-04-13 2007-04-13
US60/911,792 2007-04-13

Publications (1)

Publication Number Publication Date
WO2009045562A1 true WO2009045562A1 (en) 2009-04-09

Family

ID=40027576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/060073 WO2009045562A1 (en) 2007-04-13 2008-04-11 Optical fiber field termination kit

Country Status (2)

Country Link
US (2) US7676134B2 (en)
WO (1) WO2009045562A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045562A1 (en) 2007-04-13 2009-04-09 Adc Telecommunications, Inc. Optical fiber field termination kit
US8430572B2 (en) 2008-07-10 2013-04-30 Adc Telecommunications, Inc. Field terminable fiber optic connector assembly
US8573858B2 (en) 2009-05-29 2013-11-05 Adc Telecommunications, Inc. Field terminable fiber optic connector assembly
WO2011109498A2 (en) * 2010-03-02 2011-09-09 Adc Telecommunications, Inc. Fiber optic cable assembly
WO2015040206A1 (en) * 2013-09-23 2015-03-26 Tyco Electronics Uk Ltd. Adapter for inspection of fiber optic cables
US10335839B2 (en) 2016-06-29 2019-07-02 Lockheed Martin Corporation Component connector servicer
WO2018135368A1 (en) * 2017-01-17 2018-07-26 住友電気工業株式会社 Optical-fiber holding component, optical connector, and optical coupling structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813902A (en) * 1997-04-14 1998-09-29 Minnesota Mining And Manufacturing Company Optical fiber end-face preparation and connector assembly
WO2001096923A1 (en) * 2000-06-12 2001-12-20 Krone Gmbh Assembly and method for use in terminating an optical fibre or fibres
EP1184695A1 (en) * 2000-08-31 2002-03-06 Corning Cable Systems LLC Field-installable optic ribbon connector and installation tool
US20030156799A1 (en) * 2002-01-08 2003-08-21 Masanori Wada Method for polishing end face of ferrule with optical fiber, method for assembling optical connector, and terminating kit for optical fiber
US20060188208A1 (en) * 2005-02-23 2006-08-24 Neptec Optical Solutions, Inc. Optical connector field termination oven and kit

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975865A (en) 1975-05-27 1976-08-24 The United States Of America As Represented By The Secretary Of The Navy Fiber optic grinding and polishing tool
US4178722A (en) 1978-01-18 1979-12-18 The United States Of America As Represented By The Secretary Of The Navy Grinding and polishing tool
US4255164A (en) 1979-04-30 1981-03-10 Minnesota Mining And Manufacturing Company Fining sheet and method of making and using the same
US4272926A (en) 1979-11-05 1981-06-16 Epoxy Technology Inc. Face finishing tool for fiber optic communication cable
DE3381297D1 (en) 1982-06-05 1990-04-12 Amp Inc PLUG TO CONNECT TO AN OPTICAL FIBER.
US4588256A (en) 1982-09-07 1986-05-13 Minnesota Mining And Manufacturing Company Optical fiber connector
JPS59177513A (en) 1983-03-28 1984-10-08 Sumitomo Electric Ind Ltd Optical fiber connector
DE3408783A1 (en) * 1983-08-03 1985-02-14 Siemens AG, 1000 Berlin und 8000 München CONNECTING ELEMENT FOR LIGHTWAVE GUIDE AND METHOD FOR PRODUCING THE SAME
SE8403740L (en) 1984-07-17 1986-01-18 Stratos Ab SET FOR FIXING AN OPTICAL FIBER IN A CONNECTOR AND A PAUSE MANUFACTURED CONNECTOR
JPS61284710A (en) 1985-06-11 1986-12-15 Furukawa Electric Co Ltd:The Method for fixing connector to optical fiber terminal
USRE34005E (en) 1985-11-20 1992-07-21 Raychem Corporation Contact for terminating an optical fiber
JPS6327805A (en) 1986-07-21 1988-02-05 Sumitomo Electric Ind Ltd Member for connecting optical fiber and connecting method using same
EP0284658B1 (en) 1987-03-26 1994-05-04 Siemens Aktiengesellschaft Connecting device for two light wave guide
US4787699A (en) 1987-09-01 1988-11-29 Hughes Aircraft Company Fiber optic terminus
US4984865A (en) 1989-11-17 1991-01-15 Minnesota Mining And Manufacturing Company Thermoplastic adhesive mounting apparatus and method for an optical fiber connector
US5325425A (en) * 1990-04-24 1994-06-28 The Telephone Connection Method for monitoring telephone call progress
JPH0440402A (en) 1990-06-06 1992-02-10 Seiko Instr Inc Device for hardening adhesive for assembling optical connector
US5121456A (en) 1990-09-06 1992-06-09 Reliance Comm/Tec Corporation Polymer spring fiber optic splicer, tool for operating same and panel incorporating same
US5193133A (en) 1992-01-21 1993-03-09 Methode Electronics, Inc. Method of terminating optical fiber utilizing a plastic alignment ferrule with polishing pedestal
US5151961A (en) 1992-02-20 1992-09-29 Northern Telecom Limited Ferrule alignment assembly for blind mating optical fiber connector
DE69303356T2 (en) * 1992-12-16 1997-01-23 Eastman Kodak Co Red sensitizers for emulsions rich in silver chloride
US5325452A (en) 1993-04-09 1994-06-28 Stein Harold M Device for cleaning and polishing an optical fiber
US5363461A (en) * 1993-07-20 1994-11-08 Bergmann Ernest E Field installable optical fiber connectors
US5599638A (en) * 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US5418876A (en) 1994-02-18 1995-05-23 Augat Communications Products, Inc. Fiber optic connector with epoxy preform
US5631986A (en) 1994-04-29 1997-05-20 Minnesota Mining And Manufacturing Co. Optical fiber ferrule
US5469521A (en) 1994-05-23 1995-11-21 Itt Corporation Seal between buffer tube and optical fiber
JP2947073B2 (en) 1994-06-24 1999-09-13 住友電装株式会社 Plastic optical fiber end processing equipment
US5446819A (en) 1994-07-14 1995-08-29 Itt Industries, Inc. Termination tool and method for optical fibre cables
GB9423268D0 (en) 1994-11-18 1995-01-11 Minnesota Mining & Mfg Abrasive articles
US5577149A (en) 1994-11-29 1996-11-19 Adc Telecommunications, Inc. Fiber optic polishing fixture
US5611017A (en) 1995-06-01 1997-03-11 Minnesota Mining And Manufacturing Co. Fiber optic ribbon cable with pre-installed locations for subsequent connectorization
US5647043A (en) 1995-10-12 1997-07-08 Lucent Technologies, Inc. Unipartite jack receptacle
US5836031A (en) 1996-06-07 1998-11-17 Minnesota Mining And Manufacturing Company Fiber optic cable cleaner
ATE215235T1 (en) 1995-12-22 2002-04-15 Minnesota Mining & Mfg FIBER OPTICAL CONNECTOR WITH A FIBER ACTING AS A SPRING FORCE AND A NUT FOR ALIGNMENT
US5731893A (en) * 1996-02-21 1998-03-24 Dominique; Jeffrey M. Portable microscope for inspecting fiber optic cable
JP3540096B2 (en) 1996-05-30 2004-07-07 株式会社フジクラ Optical fiber splicer
AU4600997A (en) 1996-09-30 1998-04-24 Sang Van Nguyen Automatic fiber optic connectorization and inspection system (afocis)
US5778125A (en) 1996-10-30 1998-07-07 The United States Of America As Represented By The Secretary Of The Navy Optical fiber terminations
US5806175A (en) 1996-12-20 1998-09-15 Siecor Corporation Crimp assembly for connecting an optical fiber ribbon cord to a connector
SE516303C2 (en) 1997-03-20 2001-12-17 Ericsson Telefon Ab L M Connectors for at least one optical fiber
US6054007A (en) 1997-04-09 2000-04-25 3M Innovative Properties Company Method of forming shaped adhesives
US6142676A (en) 1997-05-20 2000-11-07 Adc Telecommunications, Inc. Fiber connector and adaptor
US5883995A (en) 1997-05-20 1999-03-16 Adc Telecommunications, Inc. Fiber connector and adapter
US6432511B1 (en) 1997-06-06 2002-08-13 International Business Machines Corp. Thermoplastic adhesive preform for heat sink attachment
EP0991969B1 (en) 1997-06-24 2001-08-01 Tyco Electronics Logistics AG Ferrule container and assembly device for multiple optical fibers
JPH11218644A (en) 1997-11-13 1999-08-10 Whitaker Corp:The Optical fiber device and optical fiber subassembly
DE19835670A1 (en) 1998-08-06 2000-04-20 Delphi Automotive Systems Gmbh Sealing arrangement between an electrical connector and an electrical conductor
JP2001074987A (en) 1999-09-08 2001-03-23 Yazaki Corp Manufacturing method of receptacle, receptacle, and optical connector
JP3857876B2 (en) * 1999-12-17 2006-12-13 古河電気工業株式会社 Fiber with lens, manufacturing method thereof, manufacturing apparatus and semiconductor laser module
DE50013282D1 (en) 2000-02-11 2006-09-14 Huber+Suhner Ag OPTICAL CONNECTOR FOR THE SIMULTANEOUS CONNECTION OF A MULTIPLE OF FIBER OPTIC CABLES AND APPLICATION FOR SUCH A CONNECTOR
US20010033730A1 (en) 2000-02-17 2001-10-25 Vernon Fentress Adapter retaining method and pull-protector for fiber optic cable
US20030063868A1 (en) 2000-02-17 2003-04-03 Vernon Fentress Fiber optic cable termination devices and methods
JP2001266998A (en) 2000-03-16 2001-09-28 Yazaki Corp Water-proof connector
US6560811B1 (en) 2000-08-14 2003-05-13 Lucent Technologies Inc. Compact apparatus for cleaning optical fiber endfaces
US20020067894A1 (en) 2000-08-14 2002-06-06 Thomas Scanzillo Ferrule having bondable insert
CA2418078A1 (en) 2000-09-08 2002-03-14 3M Innovative Properties Company Abrasive sheet, method of manufacturing the same and method to abrade a fiber optic connector
US20040020514A1 (en) 2002-07-18 2004-02-05 Orsillo James E. Probe device cleaner and method
US6819858B2 (en) 2000-10-26 2004-11-16 Shipley Company, L.L.C. Fiber array with V-groove chip and mount
EP1229364B1 (en) 2001-02-05 2005-01-05 Tyco Electronics AMP GmbH Mounting case for lightguide
EP1249282A3 (en) 2001-04-11 2003-04-09 NTT Advanced Technology Corporation Cleaning tool for optical connector
US6782182B2 (en) 2001-04-23 2004-08-24 Shipley Company, L.L.C. Optical fiber attached to a substrate
US6672772B2 (en) 2001-10-31 2004-01-06 Corning Cable Systems Llc Method and apparatus for positioning an optical fiber
US6790131B2 (en) * 2002-01-22 2004-09-14 Adc Telecommunications, Inc. Field termination kit for fiber connector
GB2385147A (en) 2002-02-08 2003-08-13 Simon Charles Gilligan Fibre-optic connector having plunger to move adhesive
EP1546786A4 (en) 2002-08-29 2005-09-07 Sumitomo Electric Industries Ribbon-like optical fiber core assembly, method for producing the same, tape core assembly-containing connector, tape core assembly-containing optical fiber array, and optical wiring system.
US20040057672A1 (en) * 2002-09-19 2004-03-25 Doss Donald G. Process for field terminating an optical fiber connector
US6945706B2 (en) 2002-09-27 2005-09-20 Corning Cable Systems Llc Ferrule guide member and ferrule with precision optical fiber placement and method for assembling same
KR100471083B1 (en) 2002-12-24 2005-03-10 삼성전자주식회사 Apparatus for cleavering optical fiber
US7410088B2 (en) 2003-09-05 2008-08-12 Matsushita Electric Industrial, Co., Ltd. Solder preform for low heat stress laser solder attachment
US7290941B2 (en) 2003-12-23 2007-11-06 Amphenol Corporation Modular fiber optic connector system
US7184634B2 (en) 2004-03-25 2007-02-27 Corning Cable Systems, Llc. Fiber optic drop cables suitable for outdoor fiber to the subscriber applications
US7147384B2 (en) 2004-03-26 2006-12-12 3M Innovative Properties Company Small form factor optical connector with thermoplastic adhesive
US7444340B2 (en) * 2004-05-05 2008-10-28 Adobe Systems Incorporated Using metadata in user interfaces
JP4470593B2 (en) * 2004-06-03 2010-06-02 株式会社デンソー Exhaust gas purification device for internal combustion engine
US7352938B2 (en) 2004-06-14 2008-04-01 Adc Telecommunications, Inc. Drive for system for processing fiber optic connectors
US7242914B2 (en) * 2004-06-16 2007-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Method of automatic gain control for multiple receiver front-ends
US20050281509A1 (en) 2004-06-18 2005-12-22 3M Innovative Properties Company Optical connector system with EMI shielding
US7192197B2 (en) 2004-09-27 2007-03-20 Neptec Optical Solutions, Inc. Planetary cleaning motion optical connector cleaner
JP2009500182A (en) 2005-07-09 2009-01-08 ティービーダブリュ インダストリーズ インク. End effector arm apparatus improved for CMP pad conditioning
US7210980B2 (en) 2005-08-26 2007-05-01 Applied Materials, Inc. Sealed polishing pad, system and methods
CA2626776A1 (en) * 2005-10-24 2007-05-03 3M Innovative Properties Company Optical connector, fiber distribution unit, and fiber termination platform for optical connectors
US7140950B1 (en) 2005-12-27 2006-11-28 3M Innovative Properties Company Fiber polishing apparatus and method for field terminable optical connectors
US7217174B1 (en) * 2006-04-07 2007-05-15 Mf Lightwave, Inc Portable optical fiber polisher
WO2009045562A1 (en) 2007-04-13 2009-04-09 Adc Telecommunications, Inc. Optical fiber field termination kit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813902A (en) * 1997-04-14 1998-09-29 Minnesota Mining And Manufacturing Company Optical fiber end-face preparation and connector assembly
WO2001096923A1 (en) * 2000-06-12 2001-12-20 Krone Gmbh Assembly and method for use in terminating an optical fibre or fibres
EP1184695A1 (en) * 2000-08-31 2002-03-06 Corning Cable Systems LLC Field-installable optic ribbon connector and installation tool
US20030156799A1 (en) * 2002-01-08 2003-08-21 Masanori Wada Method for polishing end face of ferrule with optical fiber, method for assembling optical connector, and terminating kit for optical fiber
US20060188208A1 (en) * 2005-02-23 2006-08-24 Neptec Optical Solutions, Inc. Optical connector field termination oven and kit

Also Published As

Publication number Publication date
US7929819B2 (en) 2011-04-19
US7676134B2 (en) 2010-03-09
US20100272401A1 (en) 2010-10-28
US20080285922A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
US20190243076A1 (en) Fiber optic connector with fiber take-up region
US7929819B2 (en) Field termination kit
US8801301B2 (en) Simplex connectors for multicore optical fiber cables
US7150567B1 (en) Fiber optic connector having keyed ferrule holder
CA2674155C (en) Multi-fiber fiber optic receptacle and plug assembly
US7244066B2 (en) Fiber optic receptacle and plug assembly including alignment sleeve insert
US11561357B2 (en) Fiber optic connection modules
US20130044978A1 (en) Method And System For A Multi-Core Fiber Connector
US7192194B2 (en) Universal adapter for fiber optic connectors
US20010033730A1 (en) Adapter retaining method and pull-protector for fiber optic cable
CN110967792A (en) Multi-fiber connectorization for cable assemblies including crimpable fiber optic ribbons
EP2296024A1 (en) Optical transmission medium, ferrule, optical termination connector, optical structure and optical apparatus
US20200249401A1 (en) Connector assemblies for hybrid fiber/wire connections
WO2005010570A2 (en) Packaging for a fiber-coupled optical device
US10663672B2 (en) Connector assemblies for hybrid fiber/wire connections
WO2021216179A1 (en) Connector assemblies for hybrid fiber/wire connections
WO2020263388A1 (en) Connector assemblies for hybrid fiber/wire connections
Monaghan Design and performance considerations for single-fiber multichannel environmental connectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08745635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08745635

Country of ref document: EP

Kind code of ref document: A1