WO2009082745A1 - Integrated dead reckoning and gnss/ins positioning - Google Patents

Integrated dead reckoning and gnss/ins positioning Download PDF

Info

Publication number
WO2009082745A1
WO2009082745A1 PCT/US2008/088070 US2008088070W WO2009082745A1 WO 2009082745 A1 WO2009082745 A1 WO 2009082745A1 US 2008088070 W US2008088070 W US 2008088070W WO 2009082745 A1 WO2009082745 A1 WO 2009082745A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
processor
providing
gnss
dead reckoning
Prior art date
Application number
PCT/US2008/088070
Other languages
French (fr)
Inventor
John A. Mcclure
Aaron C. Stichler
Original Assignee
Hemisphere Gps Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hemisphere Gps Llc filed Critical Hemisphere Gps Llc
Priority claimed from US12/341,844 external-priority patent/US20100161179A1/en
Publication of WO2009082745A1 publication Critical patent/WO2009082745A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Definitions

  • the present invention relates generally to integrated dead reckoning and GNSS positioning, and in particular to applications on cargo -handling logistics equipment.
  • GNSS Global Navigation Satellite Systems
  • GPS Global Positioning System
  • DGPS differential GPS
  • Such systems accurately locate points on a universal coordinate system, which facilitates vehicle and equipment operations.
  • the logistics field includes cargo-handling whereby cargo of various shapes and sizes is loaded, unloaded, stacked and otherwise positioned in and on vehicles and facilities.
  • GNSS navigation requires line-of- site access to the signals of at least four satellites in the constellation. An interruption of such access causes signal loss whereby accurate positioning can no longer be based on GNSS along.
  • Previous systems have used gyroscope-based inertial guidance augmentation for "coasting" until enough GNSS signals are reacquired.
  • cargo container handling and other logistics operations may require greater accuracy and more consistency than have previously been available.
  • positioning is accomplished by receiving GNSS location signals, calculating latitude and longitude scale factors, integrating with inertial input from gyroscopes and integrating with dead reckoning input from vehicle wheel sensors. Operating parameters, such as vehicle motion, direction and speed, are sensed and used for selecting and integrating the appropriate positioning input(s) for guidance and other operations.
  • Optical recognition and RFID methods can be utilized in connection with storage and retrieval operations in logistics applications when coupled with this new extended positioning capability.
  • FIG. 1 is a block diagram of a dead reckoning, inertial and GNSS-based positioning system embodying an aspect of the present invention.
  • FIG. 2 is a plan view of a cargo container port operation involving a container ship, a gantry crane and transport vehicles, which utilizes the positioning system of the present invention in loading and unloading operations.
  • FIG. 3 is an end elevational view of a gantry crane positioned over a stack of cargo containers.
  • FIG. 4 is a side elevational view of a container forklift.
  • FIG. 5 is a flow diagram of a positioning method embodying an aspect of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • GNSS Global navigation satellite systems
  • INS Inertial navigation systems
  • gyroscopic sensors gyro sensors
  • accelerometers gyro sensors
  • similar technologies for providing output corresponding to the inertia of moving components in all axes, i.e.
  • Yaw, pitch and roll refer to moving component rotation about the Z, X and Y axes respectively.
  • Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
  • the reference numeral 2 generally designates a system embodying an aspect of the present invention, which generally includes a vehicle 4, a controller 6, a GNSS signal -receiving input subsystem 8, a wheel position input subsystem 10 and a vehicle steering subsystem 12.
  • the vehicle 4 can be adapted for logistics operations such as storage, retrieval, loading and unloading in conjunction with transportation operations.
  • the controller 6 includes a microprocessor 14, a graphical user interface (GUI) 16 and data storage 18, all of which can be provided by a general-purpose computer or a special- -A- purpose programmable logic controller (PLC).
  • a dead reckoning (DR) function is provided at 20 and an INS (gyroscopic) function is provided at 22.
  • the GNSS input subsystem 8 can be mounted remotely from the controller 6, for example on an elevated mast or other structural component of the vehicle 4.
  • An example of a suitable GNSS input subsystem is a Crescent AlOO Smart Antenna, which is available from Hemisphere GPS LLC of Calgary, Alberta, Canada.
  • the GNSS input subsystem 8 includes one or more antennas 24 connected to a receiver 26 via a filter 28 and a correction function 30.
  • GNSS signals are received from satellites, an optional central control and an optional real-time kinematic (RTK) source, collectively referred to as a GNSS source or constellation 32.
  • RTK real-time kinematic
  • GNSS positioning data is transmitted from the GNSS input subsystem 8 to the controller 6, and commands from the controller 6 are received by the GNSS input subsystem 8.
  • the wheel positioning input subsystem 10 utilizes drive shaft encoders 34 for producing an output to the controller 6 corresponding to distance and direction of vehicle travel, providing the necessary inputs for a DR operating mode.
  • the steering subsystem 12 includes autosteer logic 36, hydraulics 38 and steering linkage 40. Examples of autosteering systems are shown in U.S. Patent No. 7, 142,956, which is incorporated herein by reference.
  • An hydraulic power source 42 drives the steering hydraulics 38 and a steering wheel 44 provides manual steering input.
  • Electrical power from a source 46 is distributed to the system 2 components and signal distribution is provided via a controller area network (CAN) 45, or via some other suitable hardwired or wireless (e.g. optical, RF, etc.) distribution.
  • An optional optical character reader 46 provides input to the controller 6, which can comprise data from barcode and other labels on containers 48.
  • FIG. 2 shows an application of the system 2 in a containerized cargo operation 52 wherein a container ship 54 configured for transporting stacks of cargo containers 48.
  • a gantry crane 56 is mounted dockside for loading and unloading an adjacent ship 54 from or onto land vehicles, such as tractor-trailer trucks 58.
  • the gantry crane 56 can be equipped with the system 2 for controlling its operation.
  • the GNSS input subsystem 8 can be mounted on the highest point of the crane structure for maximum satellite signal reception by permitting the antenna 24 to "see" as many satellites as possible.
  • the ship 54 can also be equipped with GNSS capability, including antennas 24 located on either side of the bridge for determining ship attitude and location.
  • FIG. 3 shows a mobile, self-propelled crane 62 with the system 2 mounted on an upper part of its structure for maximum antenna 24 exposure.
  • a five-high stack 64 of containers 48 is located in position for the crane 62 to straddle for picking up and depositing containers 48.
  • Fig. 4 shows a forklift 66 with the system 2 mounted thereon with antennas 24 and/or receivers mounted on a forklift cab 68 and/or at the top of its mast 70, which is the highest point of the forklift 66.
  • the forklift 66 is designed to lift containers 48 sufficiently high to form stacks, such as 64, of a desired height.
  • Fig. 5 is a flowchart for a method embodying an aspect of the present invention, which commences at a start 100 and proceeds to an initialization step 102 whereat various operating parameters can be programmed and preset.
  • GNSS e.g., GPS
  • DR snap dead reckoning
  • GPS position, heading and speed are calculated at 114 and INS (gyroscopic) calibration for bias, gain and offset based on GPS heading and speed occurs at 116. If the wheel sensor 10 detects motion, the gyro heading is updated based on bias and gain. Delta lat/lon values are generated based on wheel sensor and gyro heading inputs at 118. DR is incremented based on lat/lon values at 120. Filtered DR based lat/lon to GPS based lat/lon occurs at 122 if GPS is valid. At decision box 124 an affirmative decision indicating indicating GNSS (GPS) mode operating leads to an output at 130 for input to an autosteer control center at 132.
  • GPS GNSS
  • the method then proceeds to the read GPS position, heading and speed step at 114.
  • the GNSS mode As long as the GNSS mode is considered operational, it has an adequate number of tracked satellites and its standard deviation of the solution and geometric dilution of precision and age of differential is low, it can provide primary guidance until the procedure ends at 134.
  • a negative decision at 124 leads to a dead reckoning (DR) mode decision box 126, with an affirmative decision leading to the output step 118 and the autosteer control center at 132. If the DR input subsystem 10 is not functioning (negative decision at 126), determined by estimated age since last GPS based calibration, the system 2 determines if the vehicle has stopped at 128, from which an affirmative decision leads to an end at 134.
  • DR dead reckoning
  • the operation allows a continuous tracking of the position associated with a container 48. Depending on the antenna location on the moving vehicle and its heading, an offset from the "new" position can be generated and assigned to the container 48. On picking up or dropping off the container 48 the container ID information and the container location can be sent to the Central Control station where the data base of all container locations can continuously be updated. If the equipment is not stopped, the method loops back to step 114 for operation in an INS mode until GNSS or DR modes are reacquired.
  • the DR mode can maintain relatively accurate guidance during interruptions of GNSS signals, for example when the equipment is located between container stacks or adjacent ships and dockside equipment blocking the satellite signals.
  • GNSS signals will be reacquired after a short DR "coasting" mode of operation because DR accuracy tends to degrade until "corrected" by a GNSS location fix upon satellite signal reacquisition.
  • the sequence of the method steps, and the steps themselves, can vary according to particular applications of the system 2 and the equipment on which it is mounted. IV. Additional Features and Functionalities.
  • Calibrating wheel sensors/encoders 34 during a calibration test typically: start calibration; drive straight for approximately 100 meters; and stop calibration.
  • GNSS mode e.g. 1 mph.

Abstract

An integrated dead reckoning (DR) and GNSS/INS control system and method are provided for guiding, navigating and controlling vehicles and equipment. A controller generally prioritizes GNSS navigation when satellite signals are available. Upon signal interruption, DR guidance can be integrated with INS to continue autosteering and other automated functions. Exemplary applications include logistics operations where ships, cranes and stacked containers can block satellite signals.

Description

INTEGRATED DEAD RECKONING AND GNSS/INS POSITIONING
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority in U.S. Provisional Application No. 60/016,451, filed December 22, 2007, which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0002] The present invention relates generally to integrated dead reckoning and GNSS positioning, and in particular to applications on cargo -handling logistics equipment. 2. Description of the Related Art [0003] Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), have significantly advanced navigation, machine control and related fields. Accuracy can be significantly improved through the use of differential techniques, which encompass a wide variety of GPS accuracy enhancements, collectively referred to as differential GPS (DGPS). Such systems accurately locate points on a universal coordinate system, which facilitates vehicle and equipment operations. For example, the logistics field includes cargo-handling whereby cargo of various shapes and sizes is loaded, unloaded, stacked and otherwise positioned in and on vehicles and facilities.
[0004] For several decades port operations have been converting to containerized cargo operations. The cargo containers have standardized lengths in different sizes, such as 20, 40 and 45 feet. Container ships account for a large portion of cargo shipping, and are accommodated by automated containerized ports with massive container-handling gantry cranes for loading and offloading operations. Ashore, the containers can be stacked five -high while awaiting ground transport or loading onto container ships. Such vertical storage at containerized ports can create problems with using conventional GNSS guidance because the ships, container stacks and equipment often block the satellite signals. For example, dockside forklifts and gantries often operate within stacks of containers, which can create relatively deep "valleys" from which satellite acquisition and signal lock are often compromised. GNSS navigation requires line-of- site access to the signals of at least four satellites in the constellation. An interruption of such access causes signal loss whereby accurate positioning can no longer be based on GNSS along. Previous systems have used gyroscope-based inertial guidance augmentation for "coasting" until enough GNSS signals are reacquired. However, cargo container handling and other logistics operations may require greater accuracy and more consistency than have previously been available.
[0005] In order to accommodate the position locating needs of the logistics industry generally, and cargo container handling specifically, a relatively high degree of accuracy may be consistently needed. Continuous knowledge of the location of individual containers from being offloaded from the ship by crane, being translocated around the dock area in stacking locations and finally leaving the secured dock area by rail or truck is now a requirement, for security. Positioning input is thus needed from GNSS, inertial (gyroscopic) guidance and dead reckoning sources to match with the container ID at all times. [0006] Heretofore there has not been available an integrated dead reckoning and GNSS positioning system and method with the advantages and features of the present invention.
SUMMARY OF THE INVENTION [0007] In the practice of the present invention, positioning is accomplished by receiving GNSS location signals, calculating latitude and longitude scale factors, integrating with inertial input from gyroscopes and integrating with dead reckoning input from vehicle wheel sensors. Operating parameters, such as vehicle motion, direction and speed, are sensed and used for selecting and integrating the appropriate positioning input(s) for guidance and other operations. Optical recognition and RFID methods can be utilized in connection with storage and retrieval operations in logistics applications when coupled with this new extended positioning capability.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Fig. 1 is a block diagram of a dead reckoning, inertial and GNSS-based positioning system embodying an aspect of the present invention.
[0009] Fig. 2 is a plan view of a cargo container port operation involving a container ship, a gantry crane and transport vehicles, which utilizes the positioning system of the present invention in loading and unloading operations.
[00010] Fig. 3 is an end elevational view of a gantry crane positioned over a stack of cargo containers.
[00011] Fig. 4 is a side elevational view of a container forklift.
[00012] Fig. 5 is a flow diagram of a positioning method embodying an aspect of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
I. Introduction and Environment
[00013] As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. [00014] Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as oriented in the view being referred to. The words "inwardly" and "outwardly" refer to directions toward and away from, respectively, the geometric center of the embodiment being described and designated parts thereof. Global navigation satellite systems (GNSS) are broadly defined to include GPS (U.S.), Galileo (proposed), GLONASS (Russia), Beidou (China), Compass (proposed), IRNSS (India, proposed), QZSS (Japan, proposed) and other current and future positioning technology using signals from satellites, with or without augmentation from terrestrial sources. Inertial navigation systems (INS) include gyroscopic (gyro) sensors, accelerometers and similar technologies for providing output corresponding to the inertia of moving components in all axes, i.e. through six degrees of freedom (positive and negative directions along transverse X, longitudinal Y and vertical Z axes). Yaw, pitch and roll refer to moving component rotation about the Z, X and Y axes respectively. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
II. Preferred Embodiment System 2.
[00015] Referring to the drawings in more detail, the reference numeral 2 generally designates a system embodying an aspect of the present invention, which generally includes a vehicle 4, a controller 6, a GNSS signal -receiving input subsystem 8, a wheel position input subsystem 10 and a vehicle steering subsystem 12. Without limitation on the generality of useful applications of the control system 2, the vehicle 4 can be adapted for logistics operations such as storage, retrieval, loading and unloading in conjunction with transportation operations. [00016] The controller 6 includes a microprocessor 14, a graphical user interface (GUI) 16 and data storage 18, all of which can be provided by a general-purpose computer or a special- -A- purpose programmable logic controller (PLC). A dead reckoning (DR) function is provided at 20 and an INS (gyroscopic) function is provided at 22.
[00017] The GNSS input subsystem 8 can be mounted remotely from the controller 6, for example on an elevated mast or other structural component of the vehicle 4. An example of a suitable GNSS input subsystem is a Crescent AlOO Smart Antenna, which is available from Hemisphere GPS LLC of Calgary, Alberta, Canada. The GNSS input subsystem 8 includes one or more antennas 24 connected to a receiver 26 via a filter 28 and a correction function 30. GNSS signals are received from satellites, an optional central control and an optional real-time kinematic (RTK) source, collectively referred to as a GNSS source or constellation 32. GNSS positioning data is transmitted from the GNSS input subsystem 8 to the controller 6, and commands from the controller 6 are received by the GNSS input subsystem 8. [00018] The wheel positioning input subsystem 10 utilizes drive shaft encoders 34 for producing an output to the controller 6 corresponding to distance and direction of vehicle travel, providing the necessary inputs for a DR operating mode. The steering subsystem 12 includes autosteer logic 36, hydraulics 38 and steering linkage 40. Examples of autosteering systems are shown in U.S. Patent No. 7, 142,956, which is incorporated herein by reference. An hydraulic power source 42 drives the steering hydraulics 38 and a steering wheel 44 provides manual steering input. Electrical power from a source 46 is distributed to the system 2 components and signal distribution is provided via a controller area network (CAN) 45, or via some other suitable hardwired or wireless (e.g. optical, RF, etc.) distribution. An optional optical character reader 46 provides input to the controller 6, which can comprise data from barcode and other labels on containers 48.
[00019] Fig. 2 shows an application of the system 2 in a containerized cargo operation 52 wherein a container ship 54 configured for transporting stacks of cargo containers 48. A gantry crane 56 is mounted dockside for loading and unloading an adjacent ship 54 from or onto land vehicles, such as tractor-trailer trucks 58. The gantry crane 56 can be equipped with the system 2 for controlling its operation. For example, the GNSS input subsystem 8 can be mounted on the highest point of the crane structure for maximum satellite signal reception by permitting the antenna 24 to "see" as many satellites as possible. The ship 54 can also be equipped with GNSS capability, including antennas 24 located on either side of the bridge for determining ship attitude and location.
[00020] Fig. 3 shows a mobile, self-propelled crane 62 with the system 2 mounted on an upper part of its structure for maximum antenna 24 exposure. A five-high stack 64 of containers 48 is located in position for the crane 62 to straddle for picking up and depositing containers 48. Fig. 4 shows a forklift 66 with the system 2 mounted thereon with antennas 24 and/or receivers mounted on a forklift cab 68 and/or at the top of its mast 70, which is the highest point of the forklift 66. The forklift 66 is designed to lift containers 48 sufficiently high to form stacks, such as 64, of a desired height.
III. Integrated Dead Reckoning and GNSS/INS Positioning Method. [00021] Fig. 5 is a flowchart for a method embodying an aspect of the present invention, which commences at a start 100 and proceeds to an initialization step 102 whereat various operating parameters can be programmed and preset. GNSS (e.g., GPS) signals are acquired at the 106, enabling calculation of latitude and longitude scale factors at 108. With the system 2 in motion, the wheel sensors are calibrated one time and the values saved at 110. A snap dead reckoning (DR) based latitude and longitude (lat/lon) to GPS (lat/lon) step occurs at 112, i.e. during normal operation with the GNSS input subsystem 8 functional. GPS position, heading and speed are calculated at 114 and INS (gyroscopic) calibration for bias, gain and offset based on GPS heading and speed occurs at 116. If the wheel sensor 10 detects motion, the gyro heading is updated based on bias and gain. Delta lat/lon values are generated based on wheel sensor and gyro heading inputs at 118. DR is incremented based on lat/lon values at 120. Filtered DR based lat/lon to GPS based lat/lon occurs at 122 if GPS is valid. At decision box 124 an affirmative decision indicating GNSS (GPS) mode operating leads to an output at 130 for input to an autosteer control center at 132. The method then proceeds to the read GPS position, heading and speed step at 114. As long as the GNSS mode is considered operational, it has an adequate number of tracked satellites and its standard deviation of the solution and geometric dilution of precision and age of differential is low, it can provide primary guidance until the procedure ends at 134. A negative decision at 124 leads to a dead reckoning (DR) mode decision box 126, with an affirmative decision leading to the output step 118 and the autosteer control center at 132. If the DR input subsystem 10 is not functioning (negative decision at 126), determined by estimated age since last GPS based calibration, the system 2 determines if the vehicle has stopped at 128, from which an affirmative decision leads to an end at 134. [00022] The operation allows a continuous tracking of the position associated with a container 48. Depending on the antenna location on the moving vehicle and its heading, an offset from the "new" position can be generated and assigned to the container 48. On picking up or dropping off the container 48 the container ID information and the container location can be sent to the Central Control station where the data base of all container locations can continuously be updated. If the equipment is not stopped, the method loops back to step 114 for operation in an INS mode until GNSS or DR modes are reacquired.
[00023] The DR mode can maintain relatively accurate guidance during interruptions of GNSS signals, for example when the equipment is located between container stacks or adjacent ships and dockside equipment blocking the satellite signals. Preferably GNSS signals will be reacquired after a short DR "coasting" mode of operation because DR accuracy tends to degrade until "corrected" by a GNSS location fix upon satellite signal reacquisition. The sequence of the method steps, and the steps themselves, can vary according to particular applications of the system 2 and the equipment on which it is mounted. IV. Additional Features and Functionalities.
[00024] The following include additional features and functionalities, which can be incorporated in the system 2 and its operation:
• Updating INS/gyro input subsystem 22.
• Calibrating wheel sensors/encoders 34 during a calibration test. Typically: start calibration; drive straight for approximately 100 meters; and stop calibration.
• Calculating latitude (lat)/longitude (Ion) scale factors soon after first valid GNSS acquisition.
• Calculating internal DR lat/lon values. These are based on integrated average wheel sensor and gyro heading and biased towards valid GNSS lat/lon values when available.
• Determine if need to stop updating gyro heading when stopped in DR mode
(e.g., no pulses in specified time interval) or below speed cutoff when in GNSS mode, e.g. 1 mph.
• Flips in and out of GPS and DR modes depending on criteria TBD, potentially GPS stdev > 1 m, sats < 6, displays age incremented since value in last GPS mode. • Outputs GGA with differential or DR flags ( 1 GPS, 2 DIF, 4 RTK, 6 DR ) and VTG at 5 Hz
• I/O requirements. 2 pulse streams, serial/power to AlOO, serial to SATTEL Messenger
• Will operate with use of SBAS, beacon with the eDrive box, additionally L Dif, and RTK for the next generation product.
• For LDif/RTK correctors can be accepted via the Messenger port and sent out to the AlOO.
• Programmable GAP application, saving, loading, downloading of GAP parameters, output of debug data as required.
[00025] It is to be understood that the invention can be embodied in various forms, and is not to be limited to the examples discussed above. Other components can be utilized with the present invention.

Claims

CLAIMSHaving thus described the invention, what is claimed as new and desired to be secured by Letters Patent is:
1. A method of storing, positioning and retrieving containers in a containerized cargo handling facility, which method includes the steps of: providing the vehicle with a GNSS receiver; providing the vehicle with a processor connected to the GNSS receiver; providing the vehicle with a dead reckoning subsystem connected to the processor; providing the dead reckoning subsystem with a dead reckoning sensor connected to the vehicle and the processor; providing GNSS positioning signal inputs from said receiver to said processor; providing dead reckoning signals corresponding to movement of said vehicle from said dead reckoning sensor to said processor; integrating in said processor GNSS positioning signals and dead reckoning signals; and guiding said vehicle utilizing said integrated signals.
2. The method of claim 1, which includes the additional steps of: equipping said vehicle with a wheel position sensor including a drive shaft encoder; and providing distance and direction inputs to said processor from said wheel position sensor.
3. The method of claim 2, which includes the additional steps of: equipping said vehicle with an inertial navigation system (INS) including a gyroscope and/or an accelerometer.
4. The method of claim 2, which includes the additional steps of: calibrating the dead reckoning subsystem with GNSS positioning inputs.
5. The method of claim 3, which includes the additional steps of: calibrating the INS with GNSS positioning inputs.
6. The method of claim 1, which includes the additional steps of: providing said vehicle with an optical reader; connecting said optical reader to said processor; providing information on said containers visible to said optical reader; scanning said container information with said optical reader; providing input signals to said processor from said optical reader corresponding to information scanned by said optical reader; and controlling said vehicle using said container information.
7. The method of claim 1, which includes the additional step of: equipping said vehicle with an autosteer subsystem connected to said processor; and automatically steering said vehicle with control signals from said processor.
8. The method of claim 1, which includes the additional steps of: calculating with GNSS latitude and longitude scale factors; snapping a vehicle position to a GNSS-derived latitude and longitude; and generating latitude and longitude value changes based on heading and distance values detected by said dead reckoning subsystem and said INS.
9. The method of claim 1 wherein said vehicle comprises a forklift with a cab and a mast connected to said cab, which method includes the additional steps of: providing a first GNSS antenna mounted on said cab; providing a second GNSS antenna mounted on said mast; and providing GNSS measurements to said processor from said first and second GNSS antennas; and determining an attitude of said vehicle from said the GNSS measurements.
10. The method of claim 1, which includes the additional steps of: providing said facility with a waterfront wharf for marine vessels; providing said facility with road and/or railroad facilities for access by trucks and/or trains; providing said facility with a gantry crane for transferring cargo containers to and from marine vessels and trucks; providing said facility with a forklift for transferring and stacking cargo containers in staging areas; and equipping and controlling operation of said marine vessels, trucks and/or trains, gantry crane and forklift with respective GNSS systems.
11. A method of storing, positioning and retrieving containers in a containerized cargo handling facility with stacks of containers accessible via aisles formed between said container stacks, which method includes the steps of: providing a vehicle chosen from among the group comprising: forklift; gantry crane; and truck configured for transporting cargo containers; providing said vehicle with a GNSS subsystem including a GNSS receiver; providing the vehicle with a processor connected to the GNSS receiver; providing the vehicle with a dead reckoning subsystem including a wheel sensor connected to a vehicle wheel; connecting the dead reckoning subsystem to the processor; providing an inertial navigation system (INS) connected to the processor; providing the dead reckoning subsystem with a dead reckoning sensor connected to the vehicle and the processor; providing GNSS positioning signal inputs from said receiver to said processor; providing dead reckoning signals corresponding to movement of said vehicle to said processor; integrating in said processor GNSS positioning signals and dead reckoning signals; and guiding said vehicle utilizing said integrated signals.
12. An integrated dead reckoning and GNSS method of positioning a vehicle, which method comprises the steps providing the vehicle with a GNSS receiver; providing the vehicle with a processor connected to the GNSS receiver ; providing the vehicle with a dead reckoning subsystem; providing the dead reckoning subsystem with a dead reckoning sensor connected to the vehicle and the processor; providing GNSS positioning signal inputs from said receiver to said processor; providing dead reckoning signals corresponding to movement of said vehicle to said processor; integrating in said processor GNSS positioning signals and dead reckoning signals; and guiding said vehicle utilizing said integrated signals.
13. The method of claim 12, which includes the additional steps of: equipping said vehicle with a wheel position sensor including a drive shaft encoder; and providing distance and direction inputs to said processor from said wheel position sensor.
14. The method of claim 13, which includes the additional steps of: equipping said vehicle with an inertial navigation system (INS) including a gyroscope and/or an accelerometer.
15. The method of claim 13, which includes the additional steps of: calibrating the dead reckoning subsystem with GNSS positioning inputs.
16. The method of claim 14, which includes the additional steps of: calibrating the INS with GNSS positioning inputs.
17. The method of claim 12, which includes the additional steps of: providing said vehicle with an optical reader; connecting said optical reader to said processor ; and providing input signals to said processor from said optical reader corresponding to information scanned by said optical reader.
18. The method of claim 12, which includes the additional step of: equipping said vehicle with an autosteer subsystem connected to said processor; and automatically steering said vehicle with control signals from said processor.
19. The method of claim 12, which includes the additional steps of: calculating with GNSS latitude and longitude scale factors; snapping a vehicle position to a GNSS-derived latitude and longitude; and generating latitude and longitude value changes based on heading and distance phase detected by said dead reckoning subsystem and said INS.
20. A system for storing, positioning and retrieving containers in a containerized cargo handling facility, which system includes: a GNSS receiver; a processor connected to the GNSS receiver; a dead reckoning subsystem connected to the processor; the dead reckoning subsystem including a dead reckoning sensor connected to the vehicle and the processor;
GNSS positioning signal inputs from said receiver to said processor; dead reckoning signals corresponding to movement of said vehicle from said dead reckoning sensor to said processor; said processor being configured to integrate GNSS positioning signals and dead reckoning signals; and said processor being configured to guide to said vehicle utilizing said integrated signals.
PCT/US2008/088070 2007-12-22 2008-12-22 Integrated dead reckoning and gnss/ins positioning WO2009082745A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1645107P 2007-12-22 2007-12-22
US61/016,451 2007-12-22
US12/341,844 2008-12-22
US12/341,844 US20100161179A1 (en) 2008-12-22 2008-12-22 Integrated dead reckoning and gnss/ins positioning

Publications (1)

Publication Number Publication Date
WO2009082745A1 true WO2009082745A1 (en) 2009-07-02

Family

ID=40801581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/088070 WO2009082745A1 (en) 2007-12-22 2008-12-22 Integrated dead reckoning and gnss/ins positioning

Country Status (1)

Country Link
WO (1) WO2009082745A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8140223B2 (en) 2003-03-20 2012-03-20 Hemisphere Gps Llc Multiple-antenna GNSS control system and method
US8190337B2 (en) 2003-03-20 2012-05-29 Hemisphere GPS, LLC Satellite based vehicle guidance control in straight and contour modes
US8271194B2 (en) 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
US8311696B2 (en) 2009-07-17 2012-11-13 Hemisphere Gps Llc Optical tracking vehicle control system and method
US8334804B2 (en) 2009-09-04 2012-12-18 Hemisphere Gps Llc Multi-frequency GNSS receiver baseband DSP
US8401704B2 (en) 2009-07-22 2013-03-19 Hemisphere GPS, LLC GNSS control system and method for irrigation and related applications
US8548649B2 (en) 2009-10-19 2013-10-01 Agjunction Llc GNSS optimized aircraft control system and method
US8583315B2 (en) 2004-03-19 2013-11-12 Agjunction Llc Multi-antenna GNSS control system and method
US8686900B2 (en) 2003-03-20 2014-04-01 Hemisphere GNSS, Inc. Multi-antenna GNSS positioning method and system
US9002566B2 (en) 2008-02-10 2015-04-07 AgJunction, LLC Visual, GNSS and gyro autosteering control
CN107607974A (en) * 2017-09-13 2018-01-19 中国科学院光电研究院 It is a kind of can rapid deployment Emergency Logistics equipment method for tracking and positioning
US9880562B2 (en) 2003-03-20 2018-01-30 Agjunction Llc GNSS and optical guidance and machine control
USRE47101E1 (en) 2003-03-20 2018-10-30 Agjunction Llc Control for dispensing material from vehicle
USRE48527E1 (en) 2007-01-05 2021-04-20 Agjunction Llc Optical tracking vehicle control system and method
US11525926B2 (en) 2019-09-26 2022-12-13 Aptiv Technologies Limited System and method for position fix estimation using two or more antennas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611755B1 (en) * 1999-12-19 2003-08-26 Trimble Navigation Ltd. Vehicle tracking, communication and fleet management system
US20060206246A1 (en) * 2004-10-28 2006-09-14 Walker Richard C Second national / international management and security system for responsible global resourcing through technical management to brige cultural and economic desparity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611755B1 (en) * 1999-12-19 2003-08-26 Trimble Navigation Ltd. Vehicle tracking, communication and fleet management system
US20060206246A1 (en) * 2004-10-28 2006-09-14 Walker Richard C Second national / international management and security system for responsible global resourcing through technical management to brige cultural and economic desparity

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9886038B2 (en) 2003-03-20 2018-02-06 Agjunction Llc GNSS and optical guidance and machine control
US8190337B2 (en) 2003-03-20 2012-05-29 Hemisphere GPS, LLC Satellite based vehicle guidance control in straight and contour modes
US8686900B2 (en) 2003-03-20 2014-04-01 Hemisphere GNSS, Inc. Multi-antenna GNSS positioning method and system
US10168714B2 (en) 2003-03-20 2019-01-01 Agjunction Llc GNSS and optical guidance and machine control
USRE47101E1 (en) 2003-03-20 2018-10-30 Agjunction Llc Control for dispensing material from vehicle
US8140223B2 (en) 2003-03-20 2012-03-20 Hemisphere Gps Llc Multiple-antenna GNSS control system and method
US9880562B2 (en) 2003-03-20 2018-01-30 Agjunction Llc GNSS and optical guidance and machine control
US8271194B2 (en) 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
US8583315B2 (en) 2004-03-19 2013-11-12 Agjunction Llc Multi-antenna GNSS control system and method
USRE48527E1 (en) 2007-01-05 2021-04-20 Agjunction Llc Optical tracking vehicle control system and method
US9002566B2 (en) 2008-02-10 2015-04-07 AgJunction, LLC Visual, GNSS and gyro autosteering control
US8311696B2 (en) 2009-07-17 2012-11-13 Hemisphere Gps Llc Optical tracking vehicle control system and method
US8401704B2 (en) 2009-07-22 2013-03-19 Hemisphere GPS, LLC GNSS control system and method for irrigation and related applications
US8334804B2 (en) 2009-09-04 2012-12-18 Hemisphere Gps Llc Multi-frequency GNSS receiver baseband DSP
US8548649B2 (en) 2009-10-19 2013-10-01 Agjunction Llc GNSS optimized aircraft control system and method
CN107607974A (en) * 2017-09-13 2018-01-19 中国科学院光电研究院 It is a kind of can rapid deployment Emergency Logistics equipment method for tracking and positioning
CN107607974B (en) * 2017-09-13 2019-08-06 中国科学院光电研究院 It is a kind of can rapid deployment Emergency Logistics equip method for tracking and positioning
US11525926B2 (en) 2019-09-26 2022-12-13 Aptiv Technologies Limited System and method for position fix estimation using two or more antennas

Similar Documents

Publication Publication Date Title
US20100161179A1 (en) Integrated dead reckoning and gnss/ins positioning
WO2009082745A1 (en) Integrated dead reckoning and gnss/ins positioning
CN103562745B (en) technology for positioning vehicle
US7983808B2 (en) Fully automatic straddle carrier with local radio detection and laser steering
US20050242052A1 (en) Method and apparatus for gantry crane sway determination and positioning
US8452527B2 (en) Method of automatic positioning for loading and unloading of container ships in container terminals
JP3085468B2 (en) Container handling equipment and management system
CA2612921C (en) Traffic management system for a passageway environment
US20200140241A1 (en) System and method for controlling mobile hoisting apparatus, server and mobile hoisting apparatus
EP0909394B1 (en) Automatic gantry steering system for a container handling machine
FI123560B (en) Integrated monitoring system and method
Barnes et al. Indoor industrial machine guidance using Locata: A pilot study at BlueScope Steel
JP3820166B2 (en) Handling system and control method of handling system
CN108445514A (en) A kind of container stacking alignment method based on global position system and laser ranging
CN109917439A (en) Automated guided vehicle and combinations thereof positioning navigation method and device
CN112543505A (en) Port area positioning system and method
CN113544465A (en) Method, device and system for navigating autonomous vehicle
CN109828569A (en) A kind of intelligent AGV fork truck based on 2D-SLAM navigation
KR102446517B1 (en) Auto guided vehicle capable of autonomous driving in indoor and outdoor environments
JP6729865B2 (en) Container yard and its control method
US20140088859A1 (en) Process and device to track containers being moved in a harbor terminal with the assistance of a tractor
KR102432148B1 (en) Driving operation method of unmanned vehicle(AGV)
Landaluze et al. Mocont location module: a container location system based on DR/DGNSS integration
FI109242B (en) Automatic direct drive system for a container handling machine
Yang et al. Ambiguity-Free Search Method for Precise Container Positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863934

Country of ref document: EP

Kind code of ref document: A1