WO2009086405A2 - Optimizing size of implantable medical devices by isolating the power source - Google Patents

Optimizing size of implantable medical devices by isolating the power source Download PDF

Info

Publication number
WO2009086405A2
WO2009086405A2 PCT/US2008/088207 US2008088207W WO2009086405A2 WO 2009086405 A2 WO2009086405 A2 WO 2009086405A2 US 2008088207 W US2008088207 W US 2008088207W WO 2009086405 A2 WO2009086405 A2 WO 2009086405A2
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter module
implantable
module
battery
transmitter
Prior art date
Application number
PCT/US2008/088207
Other languages
French (fr)
Other versions
WO2009086405A3 (en
Inventor
Robert Fowler
Mark W. Cowan
N. Parker Willis
Axel F. Brisken
Debra S. Echt
Original Assignee
Ebr Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebr Systems, Inc. filed Critical Ebr Systems, Inc.
Priority to EP08866258.0A priority Critical patent/EP2234666B1/en
Publication of WO2009086405A2 publication Critical patent/WO2009086405A2/en
Publication of WO2009086405A3 publication Critical patent/WO2009086405A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37288Communication to several implantable medical devices within one patient

Definitions

  • the field of the present invention relates generally to implanted devices for tissue stimulation, monitoring, and other therapeutic or diagnostic functions, and specifically to implantable devices for the stimulation of cardiac tissue, for example pacemakers or implantable cardioverter-defibrillators (ICDs). More specifically, it pertains to such devices utilizing wireless energy transfer, for example through ultrasonic means.
  • implantable devices for the stimulation of cardiac tissue for example pacemakers or implantable cardioverter-defibrillators (ICDs). More specifically, it pertains to such devices utilizing wireless energy transfer, for example through ultrasonic means.
  • IPGs Implantable Pulse Generators
  • the mass of an IPG for a conventional cardiac pacemaker is primarily dependent upon the volume and weight of the enclosed battery that powers the electronic control elements and stimulation energy of the IPG.
  • the IPG is normally located subcutaneously in the pectoral region of the chest. This location is surgically accessible and near the typically used entry sites for the vascular leads. There is latitude with regards to the placement of the IPG enclosure. However, because it is connected to leads, the location and surgical process must consider lead insertion into a vascular access. Most often, the IPG is placed in a shallow subcutaneous pocket located in the upper left aspect of the chest, several centimeters below the clavicle. Venous access is then accomplished via the subclavian, cephalic, or axillary veins. This location generally allows the patient full range of movement with minimal discomfort. For example, see Hauser et al., 2001.
  • WiCSTM Wireless Cardiac Stimulation
  • C-T subcutaneously implantable controller-transmitter device
  • R-S receiver-stimulator
  • Ultrasonic transducers and circuitry in the R-S convert the transmitted ultrasonic energy into an electrical signal capable of stimulating the cardiac tissue.
  • the C-T contains ultrasound elements as well as housing for the electronic control circuitry and battery.
  • the C-T transmits ultrasound through the chest wall to the location of the R-S which may be placed in the left ventricle of the heart or any other heart location.
  • the transmitting aperture is located with a direct line of transmission between the C-T and the R-S — the direct line avoiding both bone and lung tissue to minimize transmission losses.
  • Embodiments of the present invention are directed to wireless cardiac stimulation C-T devices comprising two separately implantable modules.
  • the first module (transmitter module) houses a transmitter while the second houses a battery (battery module) for powering the system.
  • the battery powers the transmitter via an implantable cable connecting the two modules.
  • the control electronics could be housed in either module.
  • the control electronics could include means for receiving instructions or programming from an external communications device and circuits for operating the transmitter and could be preferably located in the transmitter module.
  • the cable supplies power from the battery to the transmitter module.
  • the cable can further comprise an antenna to facilitate communication between the implantable modules and an external programming module for initial setup or clinical monitoring of the system performance.
  • the antenna is incorporated into an outer-facing surface of the battery enclosure or in an alternative embodiment the antenna is incorporated into the cable, and the system comprises radio circuitry within the battery enclosure or the transmitter enclosure.
  • the system further comprises one or more sensing electrodes incorporated onto the surface of one or both the implanted modules or the cable. These electrodes could sense electrograms and the sensed information could be advantageously used for controlling the generation and transmission of acoustic energy from the transmitter module.
  • the cable could further have connectors at both ends. In one embodiment, the cable is permanently attached to the transmitter module and the other end of the cable terminates in connectors that can be detachably attached to connectors on the battery module. This facilitates replacement of the battery module without having to disturb the implanted transmitter module.
  • the enclosures comprise one or more features, such as localization or immobilization devices, e.g., suture points, incorporated onto their exteriors to facilitate their alignment.
  • the transmitter module may be localized over an intercostal space to align the transmitter with a receiver-stimulator in the heart and the battery module may be localized to the abdominal area to align its placement relative to the transmitter and connecting cable.
  • the enclosures may be secured to underlying fascia, thereby stabilizing the modules relative to their respective chosen locations and preventing their dislodgement or movement due to patient movement.
  • a tissue stimulation system comprising an implantable transmitter module, a battery module and one or more receiver-stimulators wherein the transmitter and battery modules are connected by a cable, and the transmitter module comprises a transducer array.
  • the transmitter module can additionally comprise various ASICs for generating, controlling and transmitting acoustic energy from the transmitter module.
  • the circuits could be configured to be optimally distributed inside the transmitter module and one such configuration being where the ASICs are stacked on top of the transducer array, with the transducer array closest to the heart.
  • the tissue pocket that is created to house the transmitter module is slightly smaller than the transmitter module so that the transmitter module fits snugly in the space.
  • the transducer array is sized to be wider than the intercostal space such that at least a portion of the transducer array, the target tissue and the receiver stimulators implanted in the target tissue are always within the acoustic transmission path without being obscured by intervening tissues such as rib and lung.
  • Another aspect of this invention is methods and systems for optimizing energy transmission in implantable ultrasound transducer arrays comprising activating one or more ultrasound transducers to transmit acoustic energy towards an implanted receiver-stimulator, where the receiver-stimulator is configured to receive the acoustic energy and convert the received acoustic energy into electrical energy output.
  • the receiver-stimulator is configured to receive the acoustic energy and convert the received acoustic energy into electrical energy output.
  • this information about the unobscured transducers can be advantageously used for transmitting acoustic energy towards an implanted receiver-stimulator using the unobscured transducers, where the receiver-stimulator converts the received acoustic energy into electrical energy output to stimulate tissue at the location of the receiver-stimulator.
  • FIGS. IA, IB and 1C are diagrammatic views of a wireless cardiac stimulation system having separately implantable transmitter and battery modules, in accordance with an embodiment of the present invention.
  • FIGS. 2A and 2B are diagrammatic views of a wireless cardiac stimulation system implant process steps and as it is implanted in a patient, in accordance with an embodiment of the present invention.
  • An ultrasound based Wireless Cardiac Stimulation (WiCSTM) system comprising two separate C-T enclosures.
  • the first enclosure houses one or more transducers and electronics to control the operation of the transducer(s).
  • the second enclosure houses a battery. The battery powers the transducer(s) and electronics via an electrical cable connecting the enclosures.
  • FIGS. IA and IB illustrate components of a wireless cardiac stimulation system 101, in accordance with an embodiment of the present invention.
  • the WiCSTM system comprises a transmitter module 102, a battery module 110, a header or connector block 107, a cable 120, an external programmer 130 and one or more implantable receiver-stimulator units (not shown).
  • Transmitter module 102 comprises a transmitter enclosure 103 which houses one or more ultrasonic transducers 104 and electronics 105 for the generation and control of the ultrasound transmission.
  • ultrasonic transducers 104 and electronics 105 for the generation and control of the ultrasound transmission.
  • multiple ultrasonic transducers (104) are arranged as a transducer array 106.
  • Internal connections between the electronics 105 and the transducers 104 in the transducer array 106 are not shown in detail in Figure IB.
  • Hundreds of such transducers 104 may be arranged in the array 106. This poses special demands on establishing the electrical connections between the transducers and the electronics 105 that control the desired functioning of these transducers.
  • different components of the transmitter module can be stacked on top of each other.
  • the transducer array 106 could be the bottom most layer (facing the heart), with the transmit electronics (transmit ASIC) organized on top of the transducer array, and the control electronics 105 (control ASIC) layered over the transmit ASIC.
  • the sensing electrodes 140 could be optimally distributed about the periphery of the outermost surface of the transmitter module.
  • the transmitter module 102 may be approximately 2.5cm x 3.5cm with a thickness of about 8mm, allowing it to house a transducer array of approximately 2cm x 3cm. Other dimensions are possible, as will be known to those of skill in the art.
  • Battery module 110 comprises a battery enclosure 111 which houses a battery cell 112 used to power the transmitter module 102.
  • a header or connector block 113 is incorporated onto the battery enclosure 111.
  • the battery module 110 may likely be larger, thicker, and/or heavier than the transmitter module 102, but such increased dimensions and weight are not an issue since slight movement or migration of the battery module 110 will not affect transmitter performance.
  • One skilled in the art would recognize that in an alternative embodiment (not shown), some or all of the electronics circuitry 105 could be located in battery module 110. In such an embodiment, the transmitter module 102 could be even smaller than the embodiment where the electronics are present in the transmitter module 102.
  • the electrical connections between the modules 102 and 110 could be established using appropriate connector and wiring that runs as part of the cable 120.
  • the battery module 110 occupies a volume of about 35cc. Using current battery technology, a battery module of such size would provide for approximately a 10 Amp-hour battery capacity. Using nominal transmission conditions to an R-S, this may provide approximately 3 years of service life for the device. It is contemplated that with advances in battery technology, the dimensions of the battery module 110 may be reduced without loss of battery capacity, or alternatively the battery module 110 may provide longer battery service life at approximately the same dimensions.
  • a cable 120 connects the two modules 102 and 110 and is preferably routed subcutaneously.
  • cable 120 comprises an electrical cable and allows battery cell 112 to power the transmitter module 102.
  • the cable 120 could be thin, for increased patient comfort and ease of subcutaneous routing.
  • one or both ends of the cable 120 are terminated in connectors 121 to facilitate implantation of the enclosures. While the connectors 121 may be of similar design and construction to current implantable connector systems (such as IS-I, DS-I, LV-I) used in pacemakers and ICDs, it is important for safety reasons that connectors 121 used on the present wireless cardiac stimulation device 101 not be able to accept or connect to conventional pacemakers, ICDs, pacing lead wires, or defibrillator lead wires.
  • the cable 120 is permanently attached to the transmitter module 102 or alternatively permanently attached to battery module 110, in which case only one end of the cable is terminated with connectors 121.
  • FIG. 1C shows various components of the cable 120.
  • Cable 120 contains wires to connect the terminals 1121 and 1122 of the battery cell 112. Additionally it has wires connecting sensing electrodes 1131 and 1132 from the battery enclosure 110 to the transmitter assembly 102.
  • the cable also has a shield 125 which may be braided, served or of similar construction that acts as the antenna and facilitates efficient communication between the devices and the external programmer 130 (shown in Fig. IA).
  • the transmitter module 102 and the battery module 110 are configured to be separately implantable.
  • the transmitter module 102 is implanted subcutaneously to be centered above an intercostal space, typically between the fourth and fifth ribs.
  • the battery module 110 is typically implanted below the transmitter module 102 at about 8 to 15 cm away from the transmitter module 102, as illustrated in Figures 2B. Procedural steps for implanting the transmitter module 102 and the battery module 110 are illustrated in Figure 2A.
  • the transmitter and battery modules are implanted by first making a skin incision and then creating a subcutaneous tissue pocket in the region of an intercostal space overlying an acoustic window.
  • the pocket is made to be slightly smaller than the transmitter module so that the transmitter module fits snugly in the space.
  • This tissue pocket should be centered between two ribs, such that when secured, the transmitter module is centered in the pocket in order to optimize the position of the transmitter module between two ribs such that the aperture of the transducer array would be centered above the intercostal space.
  • the transmitter module and the aperture of the transducer array may be oversized for the space and extend slightly over the ribs.
  • the transmitter is now placed in the pocket.
  • the second incision is made about 10 cm directly below the first incision and a second subcutaneous pocket is made to fit the battery module 110.
  • a tunneling instrument such as a trocar
  • a channel is created between the two incisions and the cable is inserted into one of the incisions and exits through the second incision, leaving the cable routed between the two incisions.
  • the cable In the case where the cable is permanently attached to the transmitter module then the cable would be routed starting with the transmitter module pocket.
  • the battery module 110 is placed in the pocket created around the second incision.
  • the cable 120 is then connected to the battery module 110.
  • the transmitter module 102 and battery module 110 are sutured to the fascia.
  • the skin incisions are closed using standard techniques. This leaves both modules fastened in place and connected subcutaneously via the cable 120.
  • the battery module 110 placed at a distance below the transmitter module 102, it is possible to implant the battery module 110 in other locations, with the cable 120 routed between the two modules.
  • the transmitter module could be located under the left breast and the battery module on the right side of the chest under the right breast with the cable 120 routed across and over the sternum.
  • the transmitter module 102 is subcutaneously implanted on the left chest wall overlying the heart.
  • the transmitter module 102 is sutured on the fascia over the intercostal muscle so that the transducer array is aligned between the 4th and 5th, or between the 5th and 6th ribs. Patients will undergo specific testing, such as acoustic window assessment testing, to determine an optimal location for transmitter module 102.
  • the transmitter module 102 is sized wider than the intercostal space over which it is sutured.
  • the transmitter module 102 may be obscured by ribs, or the transmitter may move with breathing, only an unobscured group of the transducers of the array 104 need be used to transmit acoustic energy.
  • One technique is to determine such a group at the time of implantation or during clinical monitoring, with the help of an external programming module described below.
  • Transducers 104 in the transducer array 106 may be activated in a pre-determined pattern sequentially or in groups, for example in a raster scan pattern, and reception by one or more receiver-stimulators monitored to determine whether the activated transducers are obscured or not, such that unobscured transducers 104 may be chosen for transmission.
  • a raster pattern may be employed during the operation of the transmitter module 102 to compensate for newly obscured transducers 104 as a result of a change in the spatial relationship of transmitter module 102 and the R-S. Details for optimizing energy transmission from the transmitter, and one such optimization method is to use only unobscured transducers of the array, can be found in co- pending US patent application serial number 11/752,775 by applicant.
  • the transmitter enclosure 103 incorporates onto its exterior one or more features, such as suture points, to facilitate its alignment between two ribs, and by which it may be secured to the underlying fascia.
  • the suture points may be incorporated in the cable 120 or the connector 121 of the device.
  • Separation of the battery cell 112 to a separate module rather than incorporating it into the transmitter module 102 has numerous advantages.
  • one advantageous aspect of the present embodiments is that battery depletion does not necessitate surgical access to the transmitter module 102 for battery replacement followed by a repeat of the acoustic transmission testing, alignment, and fixation of the transmitter module 102 to the body. Instead, the separately implanted battery module 110 is accessed and the battery module 110 is replaced or explanted without disturbing or explanting the transmitter module 102.
  • the transmitter module 102 of the present embodiments has a reduced mass and size which minimizes temporary or permanent migration of the transmitter module 102 due to patient movement or gravity.
  • the wireless cardiac stimulation system 101 utilizes radiofrequency communications to communicate with an external programmer unit 130 for initial setup and clinical monitoring.
  • the radiofrequency is in the Medical Implant Communications Service (MICS) band of approximately 402-405 MHz.
  • a communication antenna is used in conjunction with radio circuitry 132 (shown in Fig. IB).
  • cable 120 encases an antenna for the wireless cardiac stimulation system 101, obviating the need for incorporating the antenna into the packaging of the transmitter module 102 or the battery module 110. Incorporating the antenna in the cable 120 has the advantage of compensating for some of the losses that occur when transmitting and receiving RF energy through body tissue.
  • a separate communication antenna is used comprising a loop design, wherein the loop is designed to be as large as possible, located external to any metal housing, and located as shallow in the patient's body as possible.
  • the antenna loop itself can be incorporated onto the outer-facing surface of the battery module 110, which will likely be the larger of the two modules 102 and 110 (due to the generally larger size of the battery cell 112).
  • the connections to the antenna are carried through the cable 120 routed between the two modules.
  • the battery enclosure 111 and/or the transmitter enclosure 103 comprise one or more electrodes 140 (shown in Fig. 1C) for sensing electrogram signals. Electrodes 140 are incorporated onto the exterior surfaces of the enclosures. These electrodes are connected to amplifiers to process electrogram signals that can be used to provide the requisite sensing of electrical outputs from the receiver-stimulator in order to determine unobstructed transducers in the transducer array 106, or in order to evaluate effectiveness of stimulation by sensing physiologic events. Signals registered by the sensing electrodes could also be advantageously used for monitoring the performance of the transmitter by observing whether the desired electrical output of the R-S is achieved.

Abstract

A wireless cardiac stimulation device comprising an implantable transmitter module housing a transmitter and a separately implantable battery module housing a battery for powering the transmitter and other device electronics via a subcutaneously routable electrical cable connecting the module is disclosed. The transmitter module contains a transmitter enclosure which comprises one or more ultrasound transducers. Having separate transmitter and battery modules allows implantation of the transmitter module closer to the target receiver implanted in tissue. A discrete battery module also enables easy replacement of the battery without disturbing the transmitter, which is highly desirable.

Description

OPTIMIZING SIZE OF IMPLANTABLE MEDICAL DEVICES BY ISOLATING THE POWER SOURCE
BACKGROUND OF THE INVENTION [0001] Field of the Invention. The field of the present invention relates generally to implanted devices for tissue stimulation, monitoring, and other therapeutic or diagnostic functions, and specifically to implantable devices for the stimulation of cardiac tissue, for example pacemakers or implantable cardioverter-defibrillators (ICDs). More specifically, it pertains to such devices utilizing wireless energy transfer, for example through ultrasonic means.
[0002] Description of the Background Art. Conventional cardiac pacemaker and defibrillator systems comprise Implantable Pulse Generators (IPGs) constructed with a single hermetically- sealed enclosure that contains the electronic control circuitry and battery components. The mass of an IPG for a conventional cardiac pacemaker is primarily dependent upon the volume and weight of the enclosed battery that powers the electronic control elements and stimulation energy of the IPG.
[0003] In order to have an IPG of acceptable size and weight for implantation in patients, the batteries on average do not last as long as the patients' lifetime. Cardiac pacemaker and defibrillator battery longevity ranges from about 3-9 years (Hauser et al., "Feasibility and Initial Results of an Internet-Based Pacemaker and ICD Pulse Generator and Lead Registry," Pacing and Clinical Electrophysiology (PACE) 2001 ; 24:82-87). Therefore, many patients undergo multiple surgical procedures to replace the IPG.
[0004] For ease of insertion of pacing leads into the vasculature, the IPG is normally located subcutaneously in the pectoral region of the chest. This location is surgically accessible and near the typically used entry sites for the vascular leads. There is latitude with regards to the placement of the IPG enclosure. However, because it is connected to leads, the location and surgical process must consider lead insertion into a vascular access. Most often, the IPG is placed in a shallow subcutaneous pocket located in the upper left aspect of the chest, several centimeters below the clavicle. Venous access is then accomplished via the subclavian, cephalic, or axillary veins. This location generally allows the patient full range of movement with minimal discomfort. For example, see Hauser et al., 2001.
[0005] An ultrasound based Wireless Cardiac Stimulation (WiCS™) system has been disclosed in currently pending applications by the applicant (e.g., US patent application serial no. 11/315,023). This system employs ultrasonic energy transfer from a subcutaneously implantable controller-transmitter device (C-T), which is directed towards one or more receiver-stimulator (R-S) devices implanted at desired sites in the heart, for example in the left ventricle. Ultrasonic transducers and circuitry in the R-S convert the transmitted ultrasonic energy into an electrical signal capable of stimulating the cardiac tissue. The WiCS™ system, C-T, and R-S are described in co-pending U.S. patent applications Nos. (Publication Number) 20060136004,
20060136005, 20070027508, 20070055184, 20070078490 and 20070060961 and serial number 11/752,775, which are herein incorporated by reference in their entirety.
[0006] In the disclosed WiCS™ system, the C-T contains ultrasound elements as well as housing for the electronic control circuitry and battery. The C-T transmits ultrasound through the chest wall to the location of the R-S which may be placed in the left ventricle of the heart or any other heart location. In one preferred embodiment of the system, the transmitting aperture is located with a direct line of transmission between the C-T and the R-S — the direct line avoiding both bone and lung tissue to minimize transmission losses. Thus, it is desirable to place the transmitting aperture anteriorly over the rib cage of the left chest, and further desirable to align as much of the aperture of the transmitter as possible with the intercostal space between two ribs. It is still further desirable to tightly affix the transmitting aperture in the preferred location so that other factors, such as patient movement, do not disturb its position.
[0007] However, it can be observed that a significant portion of the general population, including potential recipients of the WiCS™ system, do not have significant thickness of muscle or fat tissue in the left anterior chest in the area of the 4th, 5th, and 6th ribs, which are preferred locations for such a device. Therefore, to improve patient comfort and to provide the largest usable aperture, it would be desirable to optimize the volume of devices implanted in this area, particularly by reducing the thickness of the device. To reduce the possible movement or dislodgement of the device, it would also be desirable to optimize its weight, particularly by reducing the mass of the device. The present embodiments address these challenges, as well as providing further advantages, as disclosed herein. Alternatively, other implant sites that have an unobstructed acoustic path between the C-T and R-S, for example, pericardial placement or subcostal placement, would be more practical if the C-T could remain undisturbed when replacing the battery.
BRIEF SUMMARY OF THE INVENTION
[0008] Embodiments of the present invention are directed to wireless cardiac stimulation C-T devices comprising two separately implantable modules. The first module (transmitter module) houses a transmitter while the second houses a battery (battery module) for powering the system. The battery powers the transmitter via an implantable cable connecting the two modules. The control electronics could be housed in either module. The control electronics could include means for receiving instructions or programming from an external communications device and circuits for operating the transmitter and could be preferably located in the transmitter module.
[0009] The cable supplies power from the battery to the transmitter module. The cable can further comprise an antenna to facilitate communication between the implantable modules and an external programming module for initial setup or clinical monitoring of the system performance. In one embodiment, the antenna is incorporated into an outer-facing surface of the battery enclosure or in an alternative embodiment the antenna is incorporated into the cable, and the system comprises radio circuitry within the battery enclosure or the transmitter enclosure.
[0010] The system further comprises one or more sensing electrodes incorporated onto the surface of one or both the implanted modules or the cable. These electrodes could sense electrograms and the sensed information could be advantageously used for controlling the generation and transmission of acoustic energy from the transmitter module. The cable could further have connectors at both ends. In one embodiment, the cable is permanently attached to the transmitter module and the other end of the cable terminates in connectors that can be detachably attached to connectors on the battery module. This facilitates replacement of the battery module without having to disturb the implanted transmitter module.
[0011] In one embodiment, the enclosures comprise one or more features, such as localization or immobilization devices, e.g., suture points, incorporated onto their exteriors to facilitate their alignment. For example, the transmitter module may be localized over an intercostal space to align the transmitter with a receiver-stimulator in the heart and the battery module may be localized to the abdominal area to align its placement relative to the transmitter and connecting cable. The enclosures may be secured to underlying fascia, thereby stabilizing the modules relative to their respective chosen locations and preventing their dislodgement or movement due to patient movement.
[0012] Another aspect of the invention relates to a tissue stimulation system comprising an implantable transmitter module, a battery module and one or more receiver-stimulators wherein the transmitter and battery modules are connected by a cable, and the transmitter module comprises a transducer array. The transmitter module can additionally comprise various ASICs for generating, controlling and transmitting acoustic energy from the transmitter module. The circuits could be configured to be optimally distributed inside the transmitter module and one such configuration being where the ASICs are stacked on top of the transducer array, with the transducer array closest to the heart.
[0013] In yet another aspect of this invention, the tissue pocket that is created to house the transmitter module is slightly smaller than the transmitter module so that the transmitter module fits snugly in the space. Additionally, the transducer array is sized to be wider than the intercostal space such that at least a portion of the transducer array, the target tissue and the receiver stimulators implanted in the target tissue are always within the acoustic transmission path without being obscured by intervening tissues such as rib and lung.
[0014] Another aspect of this invention is methods and systems for optimizing energy transmission in implantable ultrasound transducer arrays comprising activating one or more ultrasound transducers to transmit acoustic energy towards an implanted receiver-stimulator, where the receiver-stimulator is configured to receive the acoustic energy and convert the received acoustic energy into electrical energy output. By monitoring the electrical energy output of the receiver-stimulator, it can be determined whether the ultrasound transducers of the controller-transmitter are obscured by intervening tissue. Additionally, this information about the unobscured transducers can be advantageously used for transmitting acoustic energy towards an implanted receiver-stimulator using the unobscured transducers, where the receiver-stimulator converts the received acoustic energy into electrical energy output to stimulate tissue at the location of the receiver-stimulator. BRIEF DESCRIPTION OF THE DRAWINGS
[0015] The invention has other advantages and features which will be more readily apparent from the following detailed description of the invention and the appended claims, when taken in conjunction with the accompanying drawings, in which:
[0016] Figures IA, IB and 1C are diagrammatic views of a wireless cardiac stimulation system having separately implantable transmitter and battery modules, in accordance with an embodiment of the present invention.
[0017] Figures 2A and 2B are diagrammatic views of a wireless cardiac stimulation system implant process steps and as it is implanted in a patient, in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0018] In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details.
[0019] An ultrasound based Wireless Cardiac Stimulation (WiCS™) system comprising two separate C-T enclosures is disclosed. The first enclosure houses one or more transducers and electronics to control the operation of the transducer(s). The second enclosure houses a battery. The battery powers the transducer(s) and electronics via an electrical cable connecting the enclosures.
[0020] Figures IA and IB illustrate components of a wireless cardiac stimulation system 101, in accordance with an embodiment of the present invention. The WiCS™ system comprises a transmitter module 102, a battery module 110, a header or connector block 107, a cable 120, an external programmer 130 and one or more implantable receiver-stimulator units (not shown). Transmitter module 102 comprises a transmitter enclosure 103 which houses one or more ultrasonic transducers 104 and electronics 105 for the generation and control of the ultrasound transmission. As will be known to one of ordinary skill in the art, using modern microelectronics methods such components may be made very small, thus causing a reduction in the overall size, thickness, and weight of the transmitter module 102. In one embodiment, and as shown in Figure IB multiple ultrasonic transducers (104) are arranged as a transducer array 106. Internal connections between the electronics 105 and the transducers 104 in the transducer array 106 are not shown in detail in Figure IB. Hundreds of such transducers 104 may be arranged in the array 106. This poses special demands on establishing the electrical connections between the transducers and the electronics 105 that control the desired functioning of these transducers. Hence, it is desirable to locate the control electronics 105 proximate to the transducer array 106 inside the enclosure 103. In one embodiment, different components of the transmitter module can be stacked on top of each other. For example, the transducer array 106 could be the bottom most layer (facing the heart), with the transmit electronics (transmit ASIC) organized on top of the transducer array, and the control electronics 105 (control ASIC) layered over the transmit ASIC. The sensing electrodes 140 could be optimally distributed about the periphery of the outermost surface of the transmitter module.
[0021] In one embodiment, the transmitter module 102 may be approximately 2.5cm x 3.5cm with a thickness of about 8mm, allowing it to house a transducer array of approximately 2cm x 3cm. Other dimensions are possible, as will be known to those of skill in the art.
[0022] Battery module 110 comprises a battery enclosure 111 which houses a battery cell 112 used to power the transmitter module 102. A header or connector block 113 is incorporated onto the battery enclosure 111. The battery module 110 may likely be larger, thicker, and/or heavier than the transmitter module 102, but such increased dimensions and weight are not an issue since slight movement or migration of the battery module 110 will not affect transmitter performance. One skilled in the art would recognize that in an alternative embodiment (not shown), some or all of the electronics circuitry 105 could be located in battery module 110. In such an embodiment, the transmitter module 102 could be even smaller than the embodiment where the electronics are present in the transmitter module 102. The electrical connections between the modules 102 and 110 could be established using appropriate connector and wiring that runs as part of the cable 120.
[0023] In one embodiment, the battery module 110 occupies a volume of about 35cc. Using current battery technology, a battery module of such size would provide for approximately a 10 Amp-hour battery capacity. Using nominal transmission conditions to an R-S, this may provide approximately 3 years of service life for the device. It is contemplated that with advances in battery technology, the dimensions of the battery module 110 may be reduced without loss of battery capacity, or alternatively the battery module 110 may provide longer battery service life at approximately the same dimensions.
[0024] A cable 120 connects the two modules 102 and 110 and is preferably routed subcutaneously. In one embodiment, cable 120 comprises an electrical cable and allows battery cell 112 to power the transmitter module 102. The cable 120 could be thin, for increased patient comfort and ease of subcutaneous routing.
[0025] In one embodiment, one or both ends of the cable 120 are terminated in connectors 121 to facilitate implantation of the enclosures. While the connectors 121 may be of similar design and construction to current implantable connector systems (such as IS-I, DS-I, LV-I) used in pacemakers and ICDs, it is important for safety reasons that connectors 121 used on the present wireless cardiac stimulation device 101 not be able to accept or connect to conventional pacemakers, ICDs, pacing lead wires, or defibrillator lead wires. In one embodiment, the cable 120 is permanently attached to the transmitter module 102 or alternatively permanently attached to battery module 110, in which case only one end of the cable is terminated with connectors 121.
[0026] Figure 1C shows various components of the cable 120. Cable 120 contains wires to connect the terminals 1121 and 1122 of the battery cell 112. Additionally it has wires connecting sensing electrodes 1131 and 1132 from the battery enclosure 110 to the transmitter assembly 102. Finally, the cable also has a shield 125 which may be braided, served or of similar construction that acts as the antenna and facilitates efficient communication between the devices and the external programmer 130 (shown in Fig. IA).
[0027] The transmitter module 102 and the battery module 110 are configured to be separately implantable. In one embodiment, the transmitter module 102 is implanted subcutaneously to be centered above an intercostal space, typically between the fourth and fifth ribs. The battery module 110 is typically implanted below the transmitter module 102 at about 8 to 15 cm away from the transmitter module 102, as illustrated in Figures 2B. Procedural steps for implanting the transmitter module 102 and the battery module 110 are illustrated in Figure 2A. [0028] As shown in Figure 2A, the transmitter and battery modules are implanted by first making a skin incision and then creating a subcutaneous tissue pocket in the region of an intercostal space overlying an acoustic window. The pocket is made to be slightly smaller than the transmitter module so that the transmitter module fits snugly in the space. This tissue pocket should be centered between two ribs, such that when secured, the transmitter module is centered in the pocket in order to optimize the position of the transmitter module between two ribs such that the aperture of the transducer array would be centered above the intercostal space. The transmitter module and the aperture of the transducer array may be oversized for the space and extend slightly over the ribs. The transmitter is now placed in the pocket. The second incision is made about 10 cm directly below the first incision and a second subcutaneous pocket is made to fit the battery module 110. Then, using a tunneling instrument, such as a trocar, a channel is created between the two incisions and the cable is inserted into one of the incisions and exits through the second incision, leaving the cable routed between the two incisions. In the case where the cable is permanently attached to the transmitter module then the cable would be routed starting with the transmitter module pocket. The battery module 110 is placed in the pocket created around the second incision. The cable 120 is then connected to the battery module 110. The transmitter module 102 and battery module 110 are sutured to the fascia. The skin incisions are closed using standard techniques. This leaves both modules fastened in place and connected subcutaneously via the cable 120. While the present embodiments describe the battery module 110 placed at a distance below the transmitter module 102, it is possible to implant the battery module 110 in other locations, with the cable 120 routed between the two modules. For example, the transmitter module could be located under the left breast and the battery module on the right side of the chest under the right breast with the cable 120 routed across and over the sternum.
[0029] Unlike conventional cardiac pacemakers, it is an object of the present embodiments to achieve and maintain an efficient acoustic transmission path from the transmitter module 102 to one or more receiver-stimulator devices (R-S) implanted inside the heart. In order to achieve such an acoustic path, the transmitter module 102 is subcutaneously implanted on the left chest wall overlying the heart. In one embodiment, the transmitter module 102 is sutured on the fascia over the intercostal muscle so that the transducer array is aligned between the 4th and 5th, or between the 5th and 6th ribs. Patients will undergo specific testing, such as acoustic window assessment testing, to determine an optimal location for transmitter module 102.
[0030] In one embodiment comprising a transducer array 106, the transmitter module 102 is sized wider than the intercostal space over which it is sutured. Optionally, since some of the transducers 104 may be obscured by ribs, or the transmitter may move with breathing, only an unobscured group of the transducers of the array 104 need be used to transmit acoustic energy. One technique is to determine such a group at the time of implantation or during clinical monitoring, with the help of an external programming module described below. Transducers 104 in the transducer array 106 may be activated in a pre-determined pattern sequentially or in groups, for example in a raster scan pattern, and reception by one or more receiver-stimulators monitored to determine whether the activated transducers are obscured or not, such that unobscured transducers 104 may be chosen for transmission. Optionally, such a raster pattern may be employed during the operation of the transmitter module 102 to compensate for newly obscured transducers 104 as a result of a change in the spatial relationship of transmitter module 102 and the R-S. Details for optimizing energy transmission from the transmitter, and one such optimization method is to use only unobscured transducers of the array, can be found in co- pending US patent application serial number 11/752,775 by applicant.
[0031] To optimize performance of the system, it is desirable to prevent or minimize movement of the transmitter module 102. One way to achieve this is by suturing the enclosure 103 to the fascia covering the ribs and intercostal muscles, or to the fascia of the pectoralis muscle if it is present. In one embodiment, the transmitter enclosure 103 incorporates onto its exterior one or more features, such as suture points, to facilitate its alignment between two ribs, and by which it may be secured to the underlying fascia. Alternatively, or additionally, the suture points may be incorporated in the cable 120 or the connector 121 of the device.
[0032] Separation of the battery cell 112 to a separate module rather than incorporating it into the transmitter module 102 has numerous advantages. For example, one advantageous aspect of the present embodiments is that battery depletion does not necessitate surgical access to the transmitter module 102 for battery replacement followed by a repeat of the acoustic transmission testing, alignment, and fixation of the transmitter module 102 to the body. Instead, the separately implanted battery module 110 is accessed and the battery module 110 is replaced or explanted without disturbing or explanting the transmitter module 102.
[0033] It is another advantageous aspect that the transmitter module 102 of the present embodiments has a reduced mass and size which minimizes temporary or permanent migration of the transmitter module 102 due to patient movement or gravity.
[0034] Furthermore, many patients tend to have little subcutaneous tissue, either muscular or adipose, in this region of the chest wall. Segregation of the battery cell 112 from the transmitter module 102, and the resulting reduction in the size and thickness of the transmitter implant, contributes to patient comfort and tolerance of the implanted transmitter module 102 without sacrificing battery life.
[0035] Another important advantage gained from separately implanting the battery module 110 and the transmitter module 102 relates to communication between the devices or components of the WICS™ system 101; particularly between the implanted devices and an external programming module. In one embodiment, the wireless cardiac stimulation system 101 utilizes radiofrequency communications to communicate with an external programmer unit 130 for initial setup and clinical monitoring. In one embodiment, the radiofrequency is in the Medical Implant Communications Service (MICS) band of approximately 402-405 MHz.
[0036] To facilitate low power transmission from the wireless cardiac stimulation system 101 through the skin to the external programming module 130, a communication antenna is used in conjunction with radio circuitry 132 (shown in Fig. IB). In one embodiment, cable 120 encases an antenna for the wireless cardiac stimulation system 101, obviating the need for incorporating the antenna into the packaging of the transmitter module 102 or the battery module 110. Incorporating the antenna in the cable 120 has the advantage of compensating for some of the losses that occur when transmitting and receiving RF energy through body tissue. In another embodiment, a separate communication antenna is used comprising a loop design, wherein the loop is designed to be as large as possible, located external to any metal housing, and located as shallow in the patient's body as possible. Though the actual radio circuitry 132 may be located in either module 102 or 1 10, the antenna loop itself can be incorporated onto the outer-facing surface of the battery module 110, which will likely be the larger of the two modules 102 and 110 (due to the generally larger size of the battery cell 112). In an embodiment wherein the radio circuitry 132 is located within the transmitter module 102, the connections to the antenna are carried through the cable 120 routed between the two modules.
[0037] Optionally, the battery enclosure 111 and/or the transmitter enclosure 103 comprise one or more electrodes 140 (shown in Fig. 1C) for sensing electrogram signals. Electrodes 140 are incorporated onto the exterior surfaces of the enclosures. These electrodes are connected to amplifiers to process electrogram signals that can be used to provide the requisite sensing of electrical outputs from the receiver-stimulator in order to determine unobstructed transducers in the transducer array 106, or in order to evaluate effectiveness of stimulation by sensing physiologic events. Signals registered by the sensing electrodes could also be advantageously used for monitoring the performance of the transmitter by observing whether the desired electrical output of the R-S is achieved.
[0038] Although the detailed description contains many specifics, these should not be construed as limiting the scope of the invention but merely as illustrating different examples and aspects of the invention. Particularly, while heart tissue is used as the target tissue to illustrate the invention, it should be noted that the target tissue could be other tissues which could benefit from the separation of the transmitter and battery modules. It should be appreciated that the scope of the invention includes other embodiments not discussed in detail above. Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present invention disclosed herein without departing from the spirit and scope of the invention as described here.

Claims

WHAT IS CLAIMED IS:
L A tissue stimulation system comprising: an implantable battery module configured to house a battery to power a transmitter module; wherein the transmitter module is separately implantable and comprises a transmitter enclosure and is configured for transmitting acoustic energy to one or more receiver- stimulator devices implantable in the tissue; wherein the battery module and the transmitter module are connectable by an implantable cable wherein the cable conducts power from the battery to the transmitter module.
2. The system of claim 1 further comprising electronic circuitry for communication between an external device and at least one of the implantable modules.
3. The system of claim 2, wherein the cable further comprises an antenna,
wherein the antenna facilitates a low power radiofrequency communication link between the at least one implantable modules and an external programming module for initial setup or clinical monitoring of the system performance.
4. The system of claim 3, further comprising radio circuitry which is connected to the antenna to process a signal over the radiofrequency communication link.
5. The system of claim 1, further comprising one or more sensing electrodes incorporated onto the surface of one or both of the implantable modules or the cable.
6. The system of claim 5, wherein the cable further comprises one or more electrode connections.
7. The system of claim 1 , wherein the battery module can be explanted without explanting the transmitter module.
8. A tissue stimulation system comprising: an implantable transmitter module, the transmitter module configured to transmit acoustic energy to one or more receiver-stimulators implantable in the tissue; wherein the transmitter module is adapted to draw power from a battery housed in a separately implantable battery module, the battery module and the transmitter module connectable by an implantable cable, wherein the cable conducts power from the battery to the transmitter module.
9. The system of claim 8, further comprising electronic circuitry for communication between an external device and at least one of the implantable modules.
10. The system of claim 9, wherein the cable further comprises an antenna,
wherein the antenna facilitates a low power radiofrequency communication link between the at least one implantable modules and an external programming module for initial setup or clinical monitoring of the system performance.
11. The system of claim 10, further comprising a radio circuitry which is connected to the antenna to process a signal over the radiofrequency communication link.
12. The system of claim 8, further comprising one or more sensing electrodes incorporated onto the surface of one or both of the implantable modules.
13. The system of claim 8, wherein the cable comprises one or more electrode connections.
14. The system of claim 8, wherein the transmitter module comprises one or more features incorporated onto its exterior to facilitate its alignment overlying an intercostal space and by which it may be secured to underlying fascia, thereby stabilizing the transmitter module relative to the intercostal space and preventing its dislodgement or movement due to patient movement.
15. The system of claim 14, wherein the transmitter module is wider than the intercostal space, thereby allowing the transmitter module to be stably positioned relative to the intercostal space to optimize the use of an acoustic window.
16. The system of claim 8, wherein one end of the cable is permanently attached to the transmitter module, and the other end is attached to the battery module using releasable connectors.
17. The system of claim 8 comprising a transducer array, wherein the transducer array is wider than an intercostal space in which the transmitter module is localized.
18. The system of claim 17, wherein the transducer array targets the receiver- stimulator is through an acoustic window.
19. A method of optimizing energy utilization in ultrasound transducer arrays comprising: activating one or more ultrasound transducers to transmit acoustic energy towards an implanted receiver-stimulator, wherein the receiver-stimulator is configured to receive the acoustic energy and convert the received acoustic energy into electrical energy output; monitoring the electrical energy output; and determining whether the ultrasound transducers are obscured by intervening tissue, based on the monitored output.
20. The method of claim 19, further comprising activating those transducers that have been determined to be unobscured by intervening tissue and transmitting acoustic energy towards an implanted receiver-stimulator, wherein the receiver-stimulator converts the received acoustic energy into electrical energy output to stimulate tissue at the location of the receiver-stimulator.
21. The method of claim 19, wherein the ultrasound transducer array is implantable and is located in a subcutaneous pocket above an intercostal space.
22. The method of claim 21 , wherein the transducer array is wider than the intercostal space.
23. A system for optimizing energy utilization in ultrasound transducer arrays comprising: a controller-transmitter configured to activate one or more ultrasound transducers of a transducer array that transmit acoustic energy towards an implanted receiver-stimulator, wherein the receiver-stimulator is configured to receive the acoustic energy and convert the received acoustic energy into electrical energy output delivered to pacing electrodes at the location of the receiver-stimulator; one or more sensing electrodes configured to monitor the electrical energy output; and circuitry configured to identify the ultrasound transducers that are obscured by intervening tissue based on the monitored electrical energy output.
24. The system of claim 23, further comprising activating the transducers in a pre-determined pattern.
25. The system of claim 23, further comprising activating those transducers that have been identified to be unobscured by intervening tissue to target the receiver-stimulator with sufficient acoustic energy that the electrical energy output stimulates the tissue at the location of the receiver-stimulator.
26. The system of claim 23, wherein the ultrasound transducer array is implantable in a subcutaneous pocket above an intercostal space.
27. The system of claim 26, wherein the transducer array is wider than the intercostal space.
28. A tissue stimulation system comprising: an implantable transmitter module; a discrete, implantable battery module; one or more implantable receiver-stimulators; wherein the transmitter module comprises a transducer array comprising one or more ultrasound transducers and configured to transmit acoustic energy towards one or more of the receiver-stimulators; the transmitter module is adapted to draw power from a battery housed in the implantable battery module; and the battery module and the transmitter module are connectable by an implantable cable.
29. A method of implanting a tissue stimulation system comprising: implanting a transmitter module, wherein the transmitter module comprises a transducer array comprising one or more ultrasound transducers; implanting a separate battery module, wherein the battery module comprises a battery; connecting the transmitter module and the battery module using an implantable cable; wherein the battery module supplies power to the transmitter module; and the transmitter module is configured to transmit acoustic energy towards one or more implantable receiver-stimulators that are in contact with the tissue for stimulating the tissue.
30. A method of implanting a tissue stimulation system comprising: implanting a separate battery module, wherein the battery module comprises a battery; connecting the battery module to an existing implanted transmitter module; wherein the battery module supplies power to the transmitter module; and the transmitter module is configured to transmit acoustic energy towards one or more implantable receiver-stimulators that are in contact with the tissue for stimulating the tissue.
PCT/US2008/088207 2007-12-27 2008-12-23 Optimizing size of implantable medical devices by isolating the power source WO2009086405A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08866258.0A EP2234666B1 (en) 2007-12-27 2008-12-23 Optimizing size of implantable medical devices by isolating the power source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1686907P 2007-12-27 2007-12-27
US61/016,869 2007-12-27

Publications (2)

Publication Number Publication Date
WO2009086405A2 true WO2009086405A2 (en) 2009-07-09
WO2009086405A3 WO2009086405A3 (en) 2009-12-30

Family

ID=40825080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/088207 WO2009086405A2 (en) 2007-12-27 2008-12-23 Optimizing size of implantable medical devices by isolating the power source

Country Status (3)

Country Link
US (1) US7953493B2 (en)
EP (1) EP2234666B1 (en)
WO (1) WO2009086405A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9700731B2 (en) 2014-08-15 2017-07-11 Axonics Modulation Technologies, Inc. Antenna and methods of use for an implantable nerve stimulator

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649875B2 (en) 2005-09-10 2014-02-11 Artann Laboratories Inc. Systems for remote generation of electrical signal in tissue based on time-reversal acoustics
US8078283B2 (en) * 2006-06-20 2011-12-13 Ebr Systems, Inc. Systems and methods for implantable leadless bone stimulation
US9544068B2 (en) 2013-05-13 2017-01-10 The Board Of Trustees Of The Leland Stanford Junior University Hybrid communication system for implantable devices and ultra-low power sensors
US9789319B2 (en) 2013-11-21 2017-10-17 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
WO2015106015A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
EP3308833B1 (en) 2014-01-10 2019-06-26 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US9669224B2 (en) 2014-05-06 2017-06-06 Medtronic, Inc. Triggered pacing system
US9492671B2 (en) 2014-05-06 2016-11-15 Medtronic, Inc. Acoustically triggered therapy delivery
EP3185952B1 (en) 2014-08-28 2018-07-25 Cardiac Pacemakers, Inc. Implantable cardiac rhythm system and an associated method for triggering a blanking period through a second device
WO2016126968A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
WO2016126613A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
CN107530002B (en) 2015-03-04 2021-04-30 心脏起搏器股份公司 System and method for treating cardiac arrhythmias
CN107427222B (en) 2015-03-18 2021-02-09 心脏起搏器股份公司 Communication in a medical device system using link quality assessment
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10052492B2 (en) 2015-05-06 2018-08-21 Verily Life Sciences Llc Replaceable battery for implantable devices
EP3337559B1 (en) 2015-08-20 2019-10-16 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
CN108136186B (en) 2015-08-20 2021-09-17 心脏起搏器股份公司 System and method for communication between medical devices
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
EP3341076B1 (en) 2015-08-28 2022-05-11 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
EP3359251B1 (en) 2015-10-08 2019-08-07 Cardiac Pacemakers, Inc. Adjusting pacing rates in an implantable medical device
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
EP3411113B1 (en) 2016-02-04 2019-11-27 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US9731138B1 (en) 2016-02-17 2017-08-15 Medtronic, Inc. System and method for cardiac pacing
CN108883286B (en) 2016-03-31 2021-12-07 心脏起搏器股份公司 Implantable medical device with rechargeable battery
US20170281936A1 (en) * 2016-04-01 2017-10-05 Boston Scientific Neuromodulation Corporation Convertible Implantable Stimulator
US9802055B2 (en) 2016-04-04 2017-10-31 Medtronic, Inc. Ultrasound powered pulse delivery device
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
WO2018009908A1 (en) 2016-07-07 2018-01-11 The Regents Of The University Of California Implants using ultrasonic backscatter for radiation detection and oncology
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
WO2018017226A1 (en) 2016-07-20 2018-01-25 Cardiac Pacemakers, Inc. System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
EP3500342B1 (en) 2016-08-19 2020-05-13 Cardiac Pacemakers, Inc. Trans-septal implantable medical device
CN109640809B (en) 2016-08-24 2021-08-17 心脏起搏器股份公司 Integrated multi-device cardiac resynchronization therapy using P-wave to pacing timing
WO2018039322A1 (en) 2016-08-24 2018-03-01 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
CN109803720B (en) 2016-09-21 2023-08-15 心脏起搏器股份公司 Leadless stimulation device having a housing containing its internal components and functioning as a terminal for a battery case and an internal battery
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
WO2018081225A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
JP7038115B2 (en) 2016-10-27 2022-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device with pressure sensor
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
EP3538213B1 (en) 2016-11-09 2023-04-12 Cardiac Pacemakers, Inc. Systems and devices for setting cardiac pacing pulse parameters for a cardiac pacing device
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10675476B2 (en) 2016-12-22 2020-06-09 Cardiac Pacemakers, Inc. Internal thoracic vein placement of a transmitter electrode for leadless stimulation of the heart
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
EP3573706A1 (en) 2017-01-26 2019-12-04 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
WO2018140623A1 (en) 2017-01-26 2018-08-02 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
WO2019036600A1 (en) 2017-08-18 2019-02-21 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
EP3717063B1 (en) 2017-12-01 2023-12-27 Cardiac Pacemakers, Inc. Systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
WO2019108830A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
WO2019183514A1 (en) 2018-03-23 2019-09-26 Medtronic, Inc. Vfa cardiac therapy for tachycardia
EP3768369A1 (en) 2018-03-23 2021-01-27 Medtronic, Inc. Av synchronous vfa cardiac therapy
US10596383B2 (en) 2018-04-03 2020-03-24 Medtronic, Inc. Feature based sensing for leadless pacing therapy
JP7250904B2 (en) 2018-08-31 2023-04-03 エフ ホフマン-ラ ロッシュ アクチェン ゲゼルシャフト modular implantable medical device
EP3856331A1 (en) 2018-09-26 2021-08-04 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
EP3918730A4 (en) * 2019-01-28 2022-11-02 EBR Systems, Inc. Devices, systems, and methods for cardiac resynchronization therapy
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659615A (en) 1970-06-08 1972-05-02 Carl C Enger Encapsulated non-permeable piezoelectric powered pacesetter
US3693627A (en) 1970-09-14 1972-09-26 American Optical Corp Stimulator for treatment of tachycardia with a burst of stimuli having a continuously variable rate
US3698398A (en) 1970-11-06 1972-10-17 American Optical Corp Rate-scanning pacer for treatment of tachycardia
US3735756A (en) 1971-06-23 1973-05-29 Medco Products Co Inc Duplex ultrasound generator and combined electrical muscle stimulator
US3832994A (en) 1972-04-21 1974-09-03 Mediscience Corp Cardiac monitor
US3857382A (en) 1972-10-27 1974-12-31 Sinai Hospital Of Detroit Piezoelectric heart assist apparatus
FR2248020B1 (en) 1973-10-18 1977-05-27 Pequignot Michel
GB1493353A (en) 1973-11-21 1977-11-30 Devices Implants Ltd Device for terminating tachycardia
US4256115A (en) 1976-12-20 1981-03-17 American Technology, Inc. Leadless cardiac pacer
US4181133A (en) 1978-05-22 1980-01-01 Arco Medical Products Company Programmable tachycardia pacer
US4265228A (en) 1978-09-14 1981-05-05 Zoll Paul M Mechanical pacemaker
US4280502A (en) 1979-08-08 1981-07-28 Intermedics, Inc. Tachycardia arrester
US4690144A (en) 1982-04-02 1987-09-01 Medtronic, Inc. Wireless transcutaneous electrical tissue stimulator
CA1199371A (en) 1982-12-03 1986-01-14 Orest Z. Roy Ultrasonic enhancement of cardiac contractility synchronised with ecg event or defibrillation pulse
US4561442A (en) 1983-10-17 1985-12-31 Cordis Corporation Implantable cardiac pacer with discontinuous microprocessor programmable antitachycardia mechanisms and patient data telemetry
US4577633A (en) 1984-03-28 1986-03-25 Medtronic, Inc. Rate scanning demand pacemaker and method for treatment of tachycardia
US4830006B1 (en) 1986-06-17 1997-10-28 Intermedics Inc Implantable cardiac stimulator for detection and treatment of ventricular arrhythmias
DE3831809A1 (en) 1988-09-19 1990-03-22 Funke Hermann DEVICE DETERMINED AT LEAST PARTLY IN THE LIVING BODY
USRE38119E1 (en) 1989-01-23 2003-05-20 Mirowski Family Ventures, LLC Method and apparatus for treating hemodynamic disfunction
US5018523A (en) 1990-04-23 1991-05-28 Cardiac Pacemakers, Inc. Apparatus for common mode stimulation with bipolar sensing
US5063928A (en) 1990-07-05 1991-11-12 Telectronics Pacing Systems, Inc. Apparatus and method for detecting and treating cardiac tachyarrhythmias
US5103129A (en) 1990-07-26 1992-04-07 Acoustic Imaging Technologies Corporation Fixed origin biplane ultrasonic transducer
US5174289A (en) 1990-09-07 1992-12-29 Cohen Fred M Pacing systems and methods for control of the ventricular activation sequence
US5170784A (en) 1990-11-27 1992-12-15 Ceon Ramon Leadless magnetic cardiac pacemaker
US5165403A (en) 1991-02-26 1992-11-24 Medtronic, Inc. Difibrillation lead system and method of use
US5193540A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
US5193539A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
JPH05245215A (en) 1992-03-03 1993-09-24 Terumo Corp Heart pace maker
US5292338A (en) 1992-07-30 1994-03-08 Medtronic, Inc. Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use
SE9301055D0 (en) 1993-03-29 1993-03-29 Siemens-Elema Ab MECHANICAL DEFIBRILLATION
DE4330680A1 (en) 1993-09-10 1995-03-16 Michael Dr Zwicker Device for electrical stimulation of cells within a living human or animal
US5377166A (en) 1994-01-25 1994-12-27 Martin Marietta Corporation Polyhedral directional transducer array
US5562708A (en) 1994-04-21 1996-10-08 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation
EP0706835B1 (en) 1994-10-10 1999-01-20 Endress + Hauser GmbH + Co. Method of operating an ultrasonic piezoelectric transducer and circuit arrangement for performing the method
US5751539A (en) 1996-04-30 1998-05-12 Maxwell Laboratories, Inc. EMI filter for human implantable heart defibrillators and pacemakers
US5978204A (en) 1995-11-27 1999-11-02 Maxwell Energy Products, Inc. Capacitor with dual element electrode plates
US5817130A (en) 1996-05-03 1998-10-06 Sulzer Intermedics Inc. Implantable cardiac cardioverter/defibrillator with EMI suppression filter with independent ground connection
US5871506A (en) 1996-08-19 1999-02-16 Mower; Morton M. Augmentation of electrical conduction and contractility by biphasic cardiac pacing
SE9603066D0 (en) 1996-08-23 1996-08-23 Pacesetter Ab Electrode for tissue stimulation
EP0973581A4 (en) 1996-09-16 2000-04-05 Impulse Dynamics Ltd Drug-device combination for controlling the contractility of muscles
US5800464A (en) 1996-10-03 1998-09-01 Medtronic, Inc. System for providing hyperpolarization of cardiac to enhance cardiac function
US5749909A (en) 1996-11-07 1998-05-12 Sulzer Intermedics Inc. Transcutaneous energy coupling using piezoelectric device
US5814089A (en) 1996-12-18 1998-09-29 Medtronic, Inc. Leadless multisite implantable stimulus and diagnostic system
US6110098A (en) 1996-12-18 2000-08-29 Medtronic, Inc. System and method of mechanical treatment of cardiac fibrillation
AU6043898A (en) 1997-01-28 1998-08-18 Penn State Research Foundation, The Relaxor ferroelectric single crystals for ultrasound transducers
US5844349A (en) 1997-02-11 1998-12-01 Tetrad Corporation Composite autoclavable ultrasonic transducers and methods of making
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US5766227A (en) 1997-03-04 1998-06-16 Nappholz; Tibor A. EMI detection in an implantable pacemaker and the like
US6037704A (en) 1997-10-08 2000-03-14 The Aerospace Corporation Ultrasonic power communication system
US6070100A (en) 1997-12-15 2000-05-30 Medtronic Inc. Pacing system for optimizing cardiac output and determining heart condition
AU756507B2 (en) 1998-03-18 2003-01-16 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
US6122545A (en) 1998-04-28 2000-09-19 Medtronic, Inc. Multiple channel sequential cardiac pacing method
GB9811116D0 (en) 1998-05-23 1998-07-22 Andaris Ltd Method of altering heartbeat
US6501990B1 (en) 1999-12-23 2002-12-31 Cardiac Pacemakers, Inc. Extendable and retractable lead having a snap-fit terminal connector
US6141588A (en) 1998-07-24 2000-10-31 Intermedics Inc. Cardiac simulation system having multiple stimulators for anti-arrhythmia therapy
US6424234B1 (en) 1998-09-18 2002-07-23 Greatbatch-Sierra, Inc. Electromagnetic interference (emi) filter and process for providing electromagnetic compatibility of an electronic device while in the presence of an electromagnetic emitter operating at the same frequency
US6645145B1 (en) 1998-11-19 2003-11-11 Siemens Medical Solutions Usa, Inc. Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components
IT1304052B1 (en) 1998-12-23 2001-03-07 Fabio Paolo Marchesi ELECTRONIC STIMULATION EQUIPMENT WITH WIRELESS SATELLITE UNIT
US6078837A (en) 1999-01-27 2000-06-20 Medtronic, Inc. Method and apparatus for treatment of fibrillation
US6439236B1 (en) 1999-10-25 2002-08-27 The Board Of Regents Of The University Of Nebraska Methods for inducing atrial and ventricular rhythms using ultrasound and microbubbles
US6654638B1 (en) 2000-04-06 2003-11-25 Cardiac Pacemakers, Inc. Ultrasonically activated electrodes
GB2366104B (en) 2000-05-01 2002-10-23 Murata Manufacturing Co Surface acoustic wave device, shear bulk wave transducer, and longitudinal bulk wave transducer
US7120495B2 (en) * 2000-09-18 2006-10-10 Cameron Health, Inc. Flexible subcutaneous implantable cardioverter-defibrillator
US6856835B2 (en) 2000-09-18 2005-02-15 Cameron Health, Inc. Biphasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US6834204B2 (en) 2001-11-05 2004-12-21 Cameron Health, Inc. Method and apparatus for inducing defibrillation in a patient using a T-shock waveform
US6754528B2 (en) 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
US6788974B2 (en) 2000-09-18 2004-09-07 Cameron Health, Inc. Radian curve shaped implantable cardioverter-defibrillator canister
US6721597B1 (en) 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US6647292B1 (en) 2000-09-18 2003-11-11 Cameron Health Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
US7198603B2 (en) 2003-04-14 2007-04-03 Remon Medical Technologies, Inc. Apparatus and methods using acoustic telemetry for intrabody communications
US7283874B2 (en) 2000-10-16 2007-10-16 Remon Medical Technologies Ltd. Acoustically powered implantable stimulating device
US6628989B1 (en) 2000-10-16 2003-09-30 Remon Medical Technologies, Ltd. Acoustic switch and apparatus and methods for using acoustic switches within a body
US6764446B2 (en) 2000-10-16 2004-07-20 Remon Medical Technologies Ltd Implantable pressure sensors and methods for making and using them
US7024248B2 (en) 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
US6445953B1 (en) 2001-01-16 2002-09-03 Kenergy, Inc. Wireless cardiac pacing system with vascular electrode-stents
US7010350B2 (en) 2001-03-21 2006-03-07 Kralik Michael R Temporary biventricular pacing of heart after heart surgery
US6707230B2 (en) 2001-05-29 2004-03-16 University Of North Carolina At Charlotte Closed loop control systems employing relaxor ferroelectric actuators
US6671547B2 (en) 2001-06-13 2003-12-30 Koninklijke Philips Electronics N.V. Adaptive analysis method for an electrotherapy device and apparatus
US6754531B1 (en) 2001-10-19 2004-06-22 Pacesetter, Inc. Anti-tachycardia pacing methods and devices
US6894456B2 (en) * 2001-11-07 2005-05-17 Quallion Llc Implantable medical power module
WO2003068047A2 (en) 2002-02-11 2003-08-21 Gold - T Tech, Inc. Method for preventing thrombus formation
IL148299A (en) 2002-02-21 2014-04-30 Technion Res & Dev Foundation Ultrasound cardiac stimulator
US20040243192A1 (en) 2003-06-02 2004-12-02 Hepp Dennis G. Physiologic stimulator tuning apparatus and method
US7006864B2 (en) 2003-06-17 2006-02-28 Ebr Systems, Inc. Methods and systems for vibrational treatment of cardiac arrhythmias
US6798716B1 (en) 2003-06-19 2004-09-28 Bc Systems, Inc. System and method for wireless electrical power transmission
US20050113886A1 (en) 2003-11-24 2005-05-26 Fischell David R. Implantable medical system with long range telemetry
US7765001B2 (en) 2005-08-31 2010-07-27 Ebr Systems, Inc. Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices
US7200437B1 (en) 2004-10-13 2007-04-03 Pacesetter, Inc. Tissue contact for satellite cardiac pacemaker
WO2006069327A2 (en) 2004-12-21 2006-06-29 Ebr Systems, Inc. Implantable transducer devices
EP1835964B1 (en) * 2004-12-21 2016-03-09 EBR Systems, Inc. Leadless cardiac system for pacing and arrhythmia treatment
US7558631B2 (en) 2004-12-21 2009-07-07 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
US7840279B2 (en) 2005-02-11 2010-11-23 Boston Scientific Neuromodulation Corporation Implantable microstimulator having a separate battery unit and methods of use thereof
US8634908B2 (en) 2005-08-01 2014-01-21 Ebr Systems, Inc. Efficiently delivering acoustic stimulation energy to tissue
US7702392B2 (en) 2005-09-12 2010-04-20 Ebr Systems, Inc. Methods and apparatus for determining cardiac stimulation sites using hemodynamic data
US7837706B2 (en) 2006-05-31 2010-11-23 Boston Scientific Scimed, Inc. Tissue attachment device, system, and method
WO2008034005A2 (en) * 2006-09-13 2008-03-20 Boston Scientific Scimed, Inc. Cardiac stimulation using leadless electrode assemblies
US8718773B2 (en) 2007-05-23 2014-05-06 Ebr Systems, Inc. Optimizing energy transmission in a leadless tissue stimulation system
US8221323B2 (en) * 2007-08-03 2012-07-17 Cardiac Pacemakers, Inc. Using acoustic energy to compute a lung edema fluid status indication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2234666A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9700731B2 (en) 2014-08-15 2017-07-11 Axonics Modulation Technologies, Inc. Antenna and methods of use for an implantable nerve stimulator
US9770596B2 (en) 2015-01-09 2017-09-26 Axonics Modulation Technologies, Inc. Antenna and methods of use for an implantable nerve stimulator
US10722721B2 (en) 2015-01-09 2020-07-28 Axonics Modulation Technologies, Inc. Antenna and methods of use for an implantable nerve stimulator
US11478648B2 (en) 2015-01-09 2022-10-25 Axonics, Inc. Antenna and methods of use for an implantable nerve stimulator

Also Published As

Publication number Publication date
US7953493B2 (en) 2011-05-31
EP2234666B1 (en) 2015-10-14
EP2234666A2 (en) 2010-10-06
US20090264965A1 (en) 2009-10-22
WO2009086405A3 (en) 2009-12-30
EP2234666A4 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
EP2234666B1 (en) Optimizing size of implantable medical devices by isolating the power source
US9731139B2 (en) Local lead to improve energy efficiency in implantable wireless acoustic stimulators
JP4931809B2 (en) Acoustic communication system for implantable medical devices
JP5111116B2 (en) Leadless cardiac system for pacing and arrhythmia treatment
US8983619B2 (en) Testing communication during implantation
US7280872B1 (en) Wireless communication with implantable medical device
US8663202B2 (en) Wireless remote neurostimulator
CN110709131B (en) Implantable medical device with tethered transmit coil for transmitting power to another implantable medical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866258

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008866258

Country of ref document: EP