WO2009096049A1 - Differentiated cells originating in artificial pluripotent stem cells - Google Patents

Differentiated cells originating in artificial pluripotent stem cells Download PDF

Info

Publication number
WO2009096049A1
WO2009096049A1 PCT/JP2008/059590 JP2008059590W WO2009096049A1 WO 2009096049 A1 WO2009096049 A1 WO 2009096049A1 JP 2008059590 W JP2008059590 W JP 2008059590W WO 2009096049 A1 WO2009096049 A1 WO 2009096049A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
ips
cell
gene
pluripotent stem
Prior art date
Application number
PCT/JP2008/059590
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Yamanaka
Takashi Aoi
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of WO2009096049A1 publication Critical patent/WO2009096049A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to cells and tissues produced by inducing differentiation from induced pluripotent stem cells obtained by reprogramming differentiated somatic cells.
  • Embryonic stem cells are stem cells established from early embryos of humans and mice, and can be cultured over a long period of time while maintaining the pluripotency that can differentiate into all cells present in the living body. Have. Using this property, human ES cells are expected as a resource for cell transplantation for many diseases such as Parkinson's disease, juvenile diabetes and leukemia. However, transplantation of ES cells has the problem of causing rejection similar to organ transplantation. There are also many disagreements from the ethical point of view regarding the use of ES cells established by destroying human embryos.
  • ES-like cells induced pluripotent stem cells
  • iPS cell induced pluripotent stem cells
  • ES-like cells an ideal without rejection or ethical problems It is expected that it can be used as a typical pluripotent cell.
  • An object of the present invention is to provide means for reducing or eliminating the risk of tumor development in tissues and individuals obtained by inducing differentiation of induced pluripotent stem cells produced by reprogramming somatic cells.
  • the present inventors have found that tumors in tissues and individuals produced by inducing differentiation of induced pluripotent stem cells obtained using hepatocytes or gastric epithelial cells. We found that the incidence was significantly lower.
  • the present invention has been completed based on the above findings.
  • the present invention provides a cell, tissue, organ, or individual obtained by inducing differentiation of an induced pluripotent stem cell obtained by nuclear reprogramming of a hepatocyte or gastric epithelial cell.
  • the nuclear reprogramming factor is a single substance or a combination of a plurality of substances that is positive by the nuclear reprogramming factor screening method described in International Publication WO ⁇ 2005/80598.
  • Cell, tissue, organ, or individual gene product of a single gene or a gene product of multiple genes whose nuclear reprogramming factor is positive by the screening method for nuclear reprogramming factor described in International Publication WO ⁇ 2005/80598.
  • the cell, tissue, organ, or individual that is a combination; the cell, tissue, organ, or individual that performs nuclear reprogramming by nuclear reprogramming factor by introducing the gene into the somatic cell; the gene into the somatic cell Cells, tissues, organs or individuals as described above, which are introduced by a recombinant vector, preferably a viral vector, more preferably a retroviral vector;
  • a recombinant vector preferably a viral vector, more preferably a retroviral vector
  • the gene encoding the reprogramming factor is at least one selected from the group consisting of an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene.
  • a combination of two genes selected from genes excluding the Myc family preferably a combination of three genes, more preferably a combination of four genes, and particularly preferably a combination of four or more genes.
  • An organ or an individual is provided.
  • a more preferred combination is (a) a combination of two genes consisting of an Oct family gene and a Sox family gene; (b) a combination of three genes consisting of an Oct family gene, a Klf family gene, and a Sox family gene; ) A combination of four genes consisting of Oct family gene, Sox family gene, Lin family gene, and Nanog gene. Furthermore, it is also preferable to combine the TERT gene and / or the SV40 Large T antigen gene. In some cases, it may be preferable to remove the Klf family gene. In some cases, these combinations may include a Myc family gene, but in the present invention, a combination not including a Myc family gene can be preferably used.
  • particularly preferred combinations are combinations of two genes consisting of Oct3 / 4 and Sox2; combinations of three genes consisting of Oct3 / 4, Klf4, and Sox2; and Oct3 / 4, Sox2, Lin28, and It is a combination of four kinds of genes consisting of Nanog, and it is also preferable to combine these with the TERT gene and / or SV40 Large T antigen gene. In some cases, it may be preferable to remove Klf4. In some cases, c-Myc can be combined with these combinations, but in the present invention, a combination not containing c-Myc can be preferably used.
  • the somatic cell is a hepatocyte or gastric epithelial cell of a mammal including a human, preferably a human or mouse hepatocyte or gastric epithelial cell, particularly preferably a human hepatocyte or gastric epithelial cell.
  • a human preferably a human or mouse hepatocyte or gastric epithelial cell, particularly preferably a human hepatocyte or gastric epithelial cell.
  • the above-mentioned cells, tissues, organs or individuals as described above, wherein the somatic cells are hepatocytes or gastric epithelial cells derived from adult humans; the hepatocytes or stomach collected from patients as the somatic cells;
  • Provided is the above cell, tissue, organ or individual that is an epithelial cell; the above cell, tissue, organ or individual in which the occurrence of a tumor is substantially reduced or eliminated.
  • Another aspect of the present invention is a method for reducing or eliminating tumor development in a cell, tissue, organ, or individual that has been induced to differentiate from an induced pluripotent stem cell, comprising reprogramming nuclear cells of hepatocytes or gastric epithelial cells.
  • a method comprising the step of inducing differentiation of the induced pluripotent stem cell obtained by the above is provided by the present invention.
  • stem cell therapy is performed, and cells, tissues, or organs obtained by inducing differentiation of induced pluripotent stem cells obtained from hepatocytes or gastric epithelial cell vesicles isolated and collected from a patient are transplanted into the patient.
  • a therapy comprising the steps of:
  • a method for evaluating the physiological action and toxicity of compounds, drugs, toxicants, etc. using cells, tissues, or organs obtained by inducing differentiation of induced pluripotent stem cells obtained from hepatocytes or gastric epithelial cell vesicles are also provided by the present invention.
  • clones labeled A EGF and HGF were added to the serum-free medium.
  • clones labeled B used 10% serum medium and did not use EGF or HGF.
  • a primer set that amplifies only the endogenous transcript (endo) was used.
  • NAT1 was used (Genes Dev., 11, 321, 1997).
  • PCR was also performed on a template without reverse transcription (RT-) for Sox2. It is the figure which showed the transfection efficiency by a retrovirus, and iPS cell induction
  • EGFP Enhanced Green Fluorecent Protein
  • pMXs-EGFP Enhanced Green Fluorecent Protein
  • control virus mock
  • EGFP Enhanced Green Fluorecent Protein
  • pMXs-EGFP Enhanced Green Fluorecent Protein
  • mock control virus
  • b) shows transfection efficiency and iPS induction by retroviruses in MEF. The top row is seeded with 100,000 MEF cells per well of a gelatin-coated 6-well plate, infected the next day with a 10-fold serial dilution of EGFP-expressing retrovirus, and transfection efficiency was determined by flow cytometry 48 hours later. Results (average and standard deviation of 3 independent experiments) are shown.
  • the bottom row covers 100,000 Fbx15-reporter MEF cells per well of a 6-well plate with STO feeder cells and contains 10-fold serial dilutions of retrovirus (Oct3 / 4, Sox2, c-Myc, and Klf4) 2), and 2 days after infection, cells were selected with 0.3 mg / ml G418 for 12 days (average value and standard deviation of the number of colonies of iPS cells in three independent experiments). It is the figure which showed the characteristic of the adult mouse
  • iPS-Hep cells (clone 92A-3, -5, and -6) and ES cells.
  • b) shows RT-PCR analysis results of ES marker gene expression in iPS-Stm cells and ES cells. For Oct3 / 4 and Sox2, primer sets that only amplify endogenous transcription were used (endo). The morphology of clone iPS-Stm-99-4 was different from that of ES cells.
  • c) Results of bisulfite genome sequencing of the promoter regions of Oct3 / 4, Nanog, and Fbx15 in iPS cells (iPS-Hep-98A-2 and iPS-Stm-99-1), ES cells, and hepatocytes Show.
  • iPS-Hep-98A2 cells and iPS-Stm-99-1 cells were microinjected into C57BL / 6 blastocysts and transplanted into pseudopregnant female mice.
  • the iPS cell portion can be identified by dark gray hair.
  • b) shows iPS-Stm cell germline transmission. Male chimeric mice derived from iPS-Stm-99-1 cells were mated with C57BL / 6 female mice. The fluorescence photograph of F1 mouse
  • the position of the RIS on the chromosome in two iPS-Stm clones (99-1 and -3) and two iPS-Hep clones (98A-1 and -2) are shown. It is the figure which showed the presumed function of the gene which received retrovirus insertion.
  • the dark gray arrow indicates the insertion site of 4 factors.
  • the light gray arrow indicates the translation start site.
  • Black arrows indicate the transcription start site and gene direction.
  • the scale bar indicates the size (bp) of the gene, and the gene abbreviation is an abbreviation in UCSC and the ensemble database.
  • Three cases (Oct3 / 4 in Stm99-1, c-Myc in Stm99-3, and c-Myc in Hep98A-2) detected more RIS than the number of bands detected in FIG. 7 (these In some cases, the band may be too large or too small to be detectable by Southern blotting, or there may be band overlap).
  • FIG. 1 It is a schematic diagram of a retrovirus insertion site. It is a schematic diagram of a retrovirus insertion site. It is the figure which showed the influence at the time of remove
  • the present invention is a cell, tissue, organ, or individual obtained by inducing differentiation of an induced pluripotent stem cell, and the induced pluripotent stem cell is obtained by nuclear reprogramming of hepatocytes or gastric epithelial cells.
  • the induced pluripotent stem cell is obtained by nuclear reprogramming of hepatocytes or gastric epithelial cells.
  • somatic cell that can be obtained by inducing differentiation of an induced pluripotent stem cell according to the present invention is not particularly limited, and any somatic cell can be prepared, and any tissue or organ can be prepared.
  • Artificial pluripotent stem cells have pluripotency, and for example, means for inducing differentiation into specific somatic cells, tissues, or organs known for embryonic stem cells can be appropriately employed.
  • nerve cells For example, nerve cells, cardiomyocytes, bone marrow cells, insulin-producing cells, blood cells, etc., nerve tissue, cornea, retina, lens, muscle, skin, bone, blood vessel, lymphatic vessel, lymph node, or lymph node tissue, or heart, Arbitrary somatic cells, tissues, or organs can be produced, including organs such as kidney, pancreas, liver, stomach, large intestine, small intestine, esophagus, gallbladder, or lung.
  • a complete individual can be generated from the induced pluripotent stem cell, and this embodiment is also encompassed in the “induction of differentiation of induced pluripotent stem cell” in the present invention (except for a human individual). .
  • a screening method for a nuclear reprogramming factor described in International Publication WO 2005/80598 can be used.
  • the entire disclosures of the above publications are incorporated herein by reference.
  • Those skilled in the art can screen for nuclear reprogramming factors by referring to the above-mentioned publications and use them in the present invention.
  • the nuclear reprogramming factor can be confirmed using a method in which appropriate modification or alteration is added to the above screening method.
  • a gene encoding a reprogramming factor that can be used in the present invention, one or more genes selected from the group consisting of an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene
  • one or more genes selected from the group consisting of the Oct family gene, Klf family gene, Sox family gene, Lin family gene, and Nanog gene excluding the Myc family gene more preferably two types
  • a combination of genes more preferably a combination of three genes, particularly preferably a combination of four genes can be mentioned.
  • an initialization factor encoded by one or more genes selected from the group consisting of the Oct family gene, the Klf family gene, the Sox family gene, the Myc family gene, the Lin family gene, and the Nanog gene is replaced with, for example, a cytokine. Or may be replaced with one or more other low molecular weight compounds.
  • a low molecular weight compound for example, an action of promoting the expression of one or more genes selected from the group consisting of Oct family gene, Klf family gene, Sox family gene, Myc family gene, Lin family gene, and Nanog gene
  • a low molecular weight compound having the above can be used, but such a low molecular weight compound can be easily screened by those skilled in the art.
  • genes are genes that exist in common in mammals including humans, and in order to use the genes in the present invention, they are derived from any mammal (for example, human, mouse, rat, cow, sheep, Genes derived from mammals such as horses and monkeys) can be used.
  • any mammal for example, human, mouse, rat, cow, sheep, Genes derived from mammals such as horses and monkeys
  • the wild-type gene product several (eg, 1 to 10, preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3, particularly preferably 1 or 2)
  • a gene product having a function similar to that of a wild-type gene product which is a mutant gene product in which the amino acid is substituted, inserted, and / or deleted.
  • the c-Myc gene product may be a wild type or a stable type (T58A). The same applies to other gene products.
  • genes encoding factors that induce cell immortalization may be further combined.
  • a combination of four genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, and a TERT gene (e) a combination of four genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, and a TERT gene; (f) A combination of four genes consisting of Oct family gene, Klf family gene, Sox family gene, and SV40 Large T antigen gene; (g) A combination of five genes consisting of Oct family gene, Klf family gene, Sox family gene, TERT gene, and SV40 Large T antigen gene can be mentioned. If necessary, the Myc family gene can be combined with these, and the Klf family gene can be excluded from the above combination.
  • one or more genes selected from the group consisting of Fbx15, ERas, ECAT15-2, Tcl1, and ⁇ -catenin may be combined, and / or ECAT1, Esg1, Dnmt3L, ECAT8
  • One or more genes selected from the group consisting of Gdf3, Sox15, ECAT15-1, Fthl17, Sall4, Rex1, UTF1, Stella, Stat3, and Grb2 can also be combined. These combinations are specifically described in International Publication WO2007 / 69666.
  • Particularly preferred gene combinations are: (1) a combination of two genes consisting of Oct3 / 4 and Sox2; (2) A combination of three genes consisting of Oct3 / 4, Klf4, and Sox2; (3) a combination of four genes consisting of Oct3 / 4, Sox2, Lin28, and Nanog; (4) A combination of four genes consisting of Oct3 / 4, Sox2, TERT, and SV40 Large T antigen; (5) A combination of five genes consisting of Oct3 / 4, Klf4, Sox2, TERT, and SV40 Large T antigen, but is not limited thereto. You can combine them with c-Myc as needed.
  • the factor containing the above gene product is combined with one or more gene products selected from the group consisting of the following groups: Fbx15, Nanog, ERas, ECAT15-2, Tcl1, and ⁇ -catenin May be. Further, for example, one or more genes selected from the group consisting of the following groups: ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sall4, Rex1, UTF1, Stella, Stat3, and Grb2. It can also be combined with gene products. These gene products are disclosed in International Publication WO2007 / 69666.
  • the gene products that can be included in the nuclear reprogramming factor of the present invention are not limited to the gene products of the genes specifically described above.
  • the nuclear reprogramming factor of the present invention includes, in addition to other gene products that can function as a nuclear reprogramming factor, 1 or 2 factors related to differentiation, development, or proliferation, or other factors having physiological activity. Needless to say, such embodiments can be included, and such embodiments are also included in the scope of the present invention.
  • the gene product of one or more of these genes can be excluded from the factors to be introduced.
  • one or more genes other than the already expressed gene can be introduced into a somatic cell by an appropriate gene introduction method, for example, a method using a recombinant vector.
  • an appropriate gene introduction method for example, a method using a recombinant vector.
  • the remaining one or more genes are appropriately selected.
  • the gene can be introduced by, for example, a method using a recombinant vector.
  • the gene product that is a nuclear reprogramming factor may be, for example, in the form of a fusion gene product of the protein and other proteins or peptides in addition to the protein itself produced from the above gene.
  • a fusion gene product with a peptide such as a fusion protein with green fluorescent protein (GFP) or a histidine tag can also be used.
  • GFP green fluorescent protein
  • a histidine tag can also be used.
  • GFP green fluorescent protein
  • TAT peptide derived from HIV virus it is possible to promote intracellular uptake of nuclear reprogramming factor from the cell membrane, avoiding complicated operations such as gene transfer. It is possible to induce reprogramming simply by adding the fusion protein to the medium. Since methods for preparing such fusion gene products are well known to those skilled in the art, those skilled in the art can easily design and prepare appropriate fusion gene products according to the purpose.
  • an “artificial pluripotent stem cell” is a cell having properties close to those of an ES cell, and more specifically, an undifferentiated cell that has been initialized from a somatic cell. Cell having ability and proliferative ability, but the term should not be interpreted in a limited way in any way, but in the broadest sense.
  • a method for preparing induced pluripotent stem cells using a nuclear reprogramming factor is described in International Publication WO2005 / 80598 (in the above publication, the term ES-like cells is used), and induced pluripotent stem cells The separation means is also specifically described.
  • International publication WO2007 / 69666 discloses specific examples of reprogramming factors and specific examples of somatic cell reprogramming methods using the reprogramming factors. Therefore, it is desirable for those skilled in the art to refer to these publications when practicing the present invention.
  • the method for preparing an induced pluripotent stem cell from a somatic cell by the method of the present invention is not particularly limited, and a method capable of nuclear reprogramming of a somatic cell with a nuclear reprogramming factor in an environment where the somatic cell and the induced pluripotent stem cell can proliferate Any method may be adopted as long as it is.
  • a method capable of nuclear reprogramming of a somatic cell with a nuclear reprogramming factor in an environment where the somatic cell and the induced pluripotent stem cell can proliferate Any method may be adopted as long as it is.
  • means such as introducing a gene into a somatic cell using a vector containing a gene capable of expressing a nuclear reprogramming factor may be employed.
  • two or more genes may be incorporated into the vector and the respective gene products may be expressed simultaneously in somatic cells.
  • the expression vector When a gene is introduced into a somatic cell using a vector capable of expressing the above gene, the expression vector may be introduced into the somatic cell cultured on the feeder cell, but the expression vector only in the somatic cell. You may introduce. The latter method may be suitable for increasing the efficiency of introducing the expression vector.
  • feeder cells feeder cells used for culturing embryonic stem cells can be used as appropriate. For example, mouse 14-15 day embryonic fibroblast primary cultured cells, fibroblast-derived cell lines such as STO cells, etc. Cells treated with a drug such as mitomycin C or cells treated with radiation can be used.
  • nuclear reprogramming progresses autonomously, and artificial pluripotent stem cells can be produced from hepatocytes or gastric epithelial cells.
  • the step of obtaining an induced pluripotent stem cell by introducing it into a somatic cell using a vector expressing a gene encoding a nuclear reprogramming factor can be performed according to a method using a retrovirus, for example, Cell, 126 , Pp.1-14, 2006; Cell, 131, pp.1-12, 2007; Science, 318, pp.1917-1920, 2007 and the like.
  • the culture density of the cells after introduction of the expression vector lower than in the case of normal animal cell culture. For example, it is preferable to continue the culture at a cell density of about 100,000 to 100,000, preferably about 50,000 per cell culture dish.
  • the medium used for the culture is not particularly limited and can be appropriately selected by those skilled in the art.
  • the above publications can also be referred to for the selection of culture media and culture conditions.
  • the generated induced pluripotent stem cells can be confirmed with various markers peculiar to undifferentiated cells, and the means thereof are described specifically and in detail in the above-mentioned publications.
  • Various media that can maintain the undifferentiation and pluripotency of ES cells or media that cannot maintain the properties thereof are known in the art.
  • artificial pluripotent stem cells can be separated efficiently.
  • the differentiation ability and proliferation ability of the separated induced pluripotent stem cells can be easily confirmed by those skilled in the art by using confirmation means widely used for ES cells.
  • a colony of induced pluripotent stem cells can be obtained, and the presence of the induced pluripotent stem cell can be specified from the shape of the colony.
  • mouse induced pluripotent stem cells form raised colonies
  • human induced pluripotent stem cells are known to form flat colonies
  • these colony shapes are mouse ES cells and Since it is very similar to a colony of human ES cells, those skilled in the art can identify induced pluripotent stem cells generated from the colony shape.
  • hepatocytes or gastric epithelial cells to be initialized is not particularly limited.
  • cells derived from any mammal eg, mammals such as human, mouse, rat, cow, sheep, horse, monkey
  • hepatocytes or gastric epithelial cells in mature individuals may be used.
  • hepatocytes or gastric epithelial cells isolated and collected from adult human individuals can be used.
  • Hepatocytes and gastric epithelial cells can be separated and collected by biopsy or surgery, and gastric epithelial cells can also be collected by, for example, endoscopy.
  • hepatocytes or gastric epithelial cells isolated from patients When artificial pluripotent stem cells are used for treatment of diseases, it is desirable to use hepatocytes or gastric epithelial cells isolated from patients. For example, when stem cell transplantation is performed for diseases such as heart failure, insulin-dependent diabetes, Parkinson's disease, or spinal cord injury, it is preferable to use hepatocytes or gastric epithelial cells isolated and collected from patients.
  • Example 1 induced pluripotent stem cells are abbreviated as iPS cells.
  • iPS cells induced pluripotent stem cells.
  • Example 1 ⁇ Method> 1. Primary culture of adult mouse hepatocytes and gastric epithelial cells Separated mouse hepatocytes were isolated by a two-stage collagenase perfusion method, and hepatocytes were isolated by literature methods (Hepatology, 31, 65, 2000). The stomach of the mouse was excised and incised, washed with PBS and divided into small pieces. The glandular gastric mucosa was minced and digested for 60 minutes with shaking at 37 ° C.
  • bovine serum albumin 2.0 g / L, glucose 2.0 g / L, galactose 2.0 g / l, ornithine 0.1 g / L, proline 0.030 g / L, nicotinamide 0.610 g / L, ZnCl 2 0.025 mg / L, ZnSO 4 ⁇ 7H 2 O 0.750 mg / l, CuSO 4 ⁇ 5H 2 O 0.20 mg / l, MnSO 4 0.025 mg / l, Glutamine 5.0 mM, Insulin 5.0 mg / l, Human transferrin 5.0 mg / l , Selenium 5.0 ⁇ g / l, dexamethasone 10 ⁇ 7 M, penicillin 100 mg / l
  • Retroviruses derived from pMXs were prepared for hepatocytes and gastric epithelial cells with some modifications to the methods described in the literature (Cell, 126, 663, 2006).
  • PLAT-E cells were spread at a rate of 8 ⁇ 10 6 cells per 100 mm plate in DMEM medium containing 10% FBS.
  • 9 ⁇ g of retroviral vector was introduced into PLAT-E cells using 27 ⁇ l of FuGENE6 transfection reagent (Roche). After 24 hours, the medium was replaced with 10 ml of the above basal chemically defined medium.
  • the virus-containing supernatant from the PLAT-E cell culture was collected and filtered through a 0.45 ⁇ m cellulose acetate filter (Fatman).
  • Induction of iPS cells Induction of iPS cells from primary cultures of hepatocytes and gastric epithelial cells was performed by slightly modifying the methods described in the literature (Cell, 126, 663, 2006). Hepatocytes and gastric epithelial cells were isolated and cultured on feeder cells, and the above-described pMXs-Oct3 / 4, -Sox2, -c-Myc, and -Klf4 were introduced.
  • Retrovirus introduction site in iPS cells was performed by inverse polymerase chain reaction (IPCR) with some modifications to the method described in the literature (Nat. Genet., 23, 348, 1999; Proc. Natl. Acad. Sci. USA, 93, 2414, 1996). That is, genomic DNA from iPS cells was digested using restriction enzymes TaqI and HpyCH4IV (New England Biolabs), respectively, to obtain a fragment containing the junction between the retroviral vector and the flanking sequence. The fragment digested with the restriction enzyme was subjected to a ligation reaction at 16 ° C. for 30 minutes using a half amount of Ligation High (Toyobo).
  • IPCR inverse polymerase chain reaction
  • a vector end containing a flanking sequence was amplified by PCR using EX taq polymerase (Takara). 5'-AGGAACTGCTTACCACA-3 'and 5'-CTGTTCCTTGGGAGGGT-3' were used as primers for the first PCR, and 5'-TCCTGACCTTGATCTGA-3 'and 5'-CTGAGTGATTGACTACC-3' were used for the second PCR. .
  • the PCT product was purified on a gel and directly sequenced with an ABI3130 DNA sequencer (Applied Biosystems). If direct sequencing was not possible, the PCR product was subcloned into pCR2.1 using TOPO TA cloning (Invitrogen) and sequenced again. To confirm which of the four factors are present at each virus insertion site, a primer designed from the corresponding flanking sequence and another one designed from the coding sequence of one of the four factors Chromosomal fragments were amplified by PCR using primers.
  • SIPCR selective inverse PCR
  • Oct3 / 4R1 (5'-CTGAAGGTTCTCATTGTTGTCG-3 '), Sox2R1 (5'-AGTGGGAGGAAGAGGTAACCAC-3'), c-MycR1 (5'-TTCTTGCTCTTCTTCAGAGTCG-3 '), or Klf4R1 was used.
  • PMXsRF1 (5'-TCCAATAAACCCTCTTGCAGTT-3 ') is used as a common forward primer in the second PCR, and Oct3 / 4R2 (5'-AGGTGATCCTCTTCTGCTTCAG-3'), Sox2R2 (5'- CTGCGAGTAGGACATGCTGTAG-3 ′), c-mycR2 (5′-AATCGGACGAGGTACAGGATTT-3 ′), or Klf4R2 (5′-GCAGATTCTCGGCTGTAGAGGA-3 ′) was used. The sequence was determined directly or after subcloning into pCR2.1.
  • the signal was detected with an Immobilon Western Chemiluminescent Luminescent HRP substrate (Millipore) and a LAS3000 imaging device (Fuji Film).
  • Immobilon Western Chemiluminescent Luminescent HRP substrate Millipore
  • LAS3000 imaging device Fuji Film
  • anti-Sox2 antiserum J. Biol.
  • anti-Oct3 / 4 antibody (sc-5279, Santa Cruz), anti-Klf4 antibody (sc-20691) , Santa Cruz), anti-c-Myc antibody (sc-764, Santa Cruz), anti-E-cadherin antibody (610182, BD Bioscience), anti- ⁇ -catenin antibody (sc-7199, Santa Cruz), anti- ⁇ - Actin antibody (A5441, Sigma), anti-mouse IgG-HRP antibody (# 7076, cell signaling), and anti-rabbit IgG-HRP antibody (# 7074, cell signaling) were used.
  • IPS cells were established from epithelial cells. Primary cells from hepatocytes and gastric epithelial cells from mice in which ⁇ -geo gene (a fusion gene of ⁇ -galactosidase and neomycin resistance gene) was knocked in at the Fbx15 locus (Mol. Cell Biol., 23, 2699, 2003) 1a) was isolated. The Fbx15 gene is specifically expressed in ES cells and preimplantation embryos. IPS cells derived from fibroblasts selected by the Fbx15 reporter (mouse embryonic fibroblasts [MEF] or caudal fibroblasts [TTF]) are ES cells in gene expression, DNA methylation pattern, and chimera formation. (Cell, 126, 663, 2006).
  • Fbx15 reporter mouse embryonic fibroblasts [MEF] or caudal fibroblasts [TTF]
  • iPS-Hep iPS-Hepatic
  • iPS-Stm iPS-Stomach
  • iPS-Hep cells and iPS-Stm cells expressed ES cell marker genes such as Nanog, Rex1, ECAT1, Cripto, and Gdf3 to the same extent as ES cells.
  • ES cell marker genes such as Nanog, Rex1, ECAT1, Cripto, and Gdf3 to the same extent as ES cells.
  • TPS-derived iPS cells (iPS-TTF) selected by the Fbx15 reporter had a low expression level of ES cell marker gene (FIG. 1c).
  • iPS-Hep cells and iPS-Stm cells are more ES cells than iPS-TTF cells, despite being selected by Fbx15 gene expression. It was very similar. Therefore, iPS-Hep cells and iPS-Stm cells (1 ⁇ 10 6 cells) were transplanted subcutaneously into the posterior abdomen of nude mice (Table 1).
  • iPS-HepPS cells and iPS-Stm cells have pluripotency.
  • iPS-Hep ⁇ clones derived from Fbx15 ⁇ reporter mice and 6 ⁇ iPS-Stm ⁇ clones were used for injection. Furthermore, the injections were similarly performed on clones of 5 types of iPS-Hep cells selected by expression of the Nanog gene. Most of these clones had the GFP transgene expressed by the constitutively activated CAG promoter (Gene, 108, 193, 1991). In addition, one iPS-Hep cell clone selected only by morphology without a selectable marker (A.
  • iPS-Hep cells selected from the expression of Fbx15 gene (derived from 21-week-old mice) and 2 clones of iPS-Stm cells (derived from 12-week-old mice) were introduced into the germline. This was confirmed by the expression of GFP and the presence of the transgene (FIG. 5b).
  • iPS-fibroblasts derived from fibroblasts (MEF) or TTF) selected by expression of Nanog gene become adult or germline chimeras, and in iPS-fibroblast selected by Fbx15 Contrast that they were not obtained (Cell, 126, 663, 2006).
  • mice derived from iPS-Hep cells, iPS-Stm cells, or iPS-MEF cells 46 chimeric adult mice were obtained from iPS-MEF clones of independent 10 clones among the 12 clones injected. Of these chimeric mice, approximately 30% developed tumors by 30 weeks of age (FIG. 6a). On the other hand, in the 65 chimera adult chimeric mice obtained from 12 clones of iPS-Hep sputum cells and iPS-Stm sputum cells, no tumor was observed during this period.
  • chimeric mice derived from iPS-Hep cells and iPS-Stm cells had higher perinatal mortality compared to non-chimeric mice (Fig. 6b).
  • Such high mortality during the perinatal period was not observed in chimeric mice derived from iPS-MEF sputum cells.
  • Necropsy was performed on the dead mice, but the macroscopic appearance was normal and the cause of death was unknown. Although considered common in cloned animals (Nat. N Genet., 39, 295, 2007), some epigenetic anomalies may cause perinatal mortality. On the other hand, there was no increase in mortality in mice that were 1 day old (Fig. 6a).
  • RIS retrovirus insertion sites
  • iPS-Hep cells and iPS-Stm cells differ from iPS-fibroblast in three properties.
  • iPS-Hep cells and iPS-Stm cells contributed to the formation of adult chimeras despite being selected by the expression of the Fbx15 gene.
  • the third difference between iPS-Hep cells and iPS-Stm cells and iPS-MEF and RRF cells is that the RIS of the former two iPS cells is less than that of the latter iPS cells.
  • the expression level of 4 transcription factors by retrovirus was higher in hepatocytes than in fibroblasts (Fig. 16). This fact can explain why, at least in part, there is less RIS in iPS-Hep cells.
  • ES cells have been shown to have epithelial characteristics such as close contact between cells and E- cadherin expression on the cell surface (Mol. Biol. Cell., 18, 2838, 2007).
  • iPS-Hep cells In order to investigate the origin of iPS-Hep cells, we performed a cell lineage tracking analysis using a genetic technique (Fig. 17a).
  • the GFP gene and the puromycin resistance gene are knocked into the Nanog gene for selection of iPS cells.
  • a transgenic mouse that expresses Crel recombinase by this mouse and albumin promoter (J. Biol. Chem. , 274, 305, 1999), and then transgenic mice expressing the loxP-CAT-loxP- ⁇ -gal ( ⁇ - galactosidase) cassette under a constitutively activated promoter (Biochem. Biophys. Res. Commun., 237, 318, 1997).
  • ⁇ -gal activity is induced as the albumin gene is activated, and ⁇ -gal activity persists even if the expression of the albumin gene is stopped.
  • Primary hepatocytes were isolated from these mice, and 4 types of factors were introduced to prepare iPS cells.
  • iPS-Hep cells are derived from hepatocytes or other albumin-expressing cells and derived from undifferentiated cells that do not express albumin I knew it wasn't. Some GFP -positive and ⁇ -gal -negative colonies were also found, but they originated from albumin-negative cells that were mixed in the primary culture of hepatocytes, or simply reflected incomplete recombination with Cre recombinase. It is thought that there is.
  • the present invention provides a means for reducing or eliminating the risk of tumor development in cells, tissues, organs, etc. obtained by inducing differentiation of induced pluripotent stem cells produced by reprogramming somatic cells.
  • pluripotent stem cells By using pluripotent stem cells, it is possible to easily obtain safe cells, tissues, organs or the like in which the risk of tumor development is reduced or eliminated.

Abstract

Cells, a tissue, an organ or an individual having a high safety that are obtained via the induction of the differentiation of artificial pluripotent stem cells, which have been obtained by the nucleus initialization of hepatic cells or gastric epithelial cells, and have a reduced or no risk of tumorigenesis.

Description

人工多能性幹細胞由来分化細胞Artificial pluripotent stem cell-derived differentiated cells
 本発明は分化した体細胞を初期化することにより得られる人工多能性幹細胞から分化誘導することにより製造される細胞や組織などに関するものである。 The present invention relates to cells and tissues produced by inducing differentiation from induced pluripotent stem cells obtained by reprogramming differentiated somatic cells.
 胚性幹細胞(ES細胞)はヒトやマウスの初期胚から樹立された幹細胞であり、生体に存在する全ての細胞へと分化できる多能性を維持したまま長期にわたって培養することができるという特徴を有している。この性質を利用してヒトES細胞はパーキンソン病、若年性糖尿病、白血病など多くの疾患に対する細胞移植療法の資源として期待されている。しかしながら、ES細胞の移植は臓器移植と同様に拒絶反応を惹起してしまうという問題がある。また、ヒト胚を破壊して樹立されるES細胞の利用に対しては倫理的見地から反対意見も多い。 Embryonic stem cells (ES cells) are stem cells established from early embryos of humans and mice, and can be cultured over a long period of time while maintaining the pluripotency that can differentiate into all cells present in the living body. Have. Using this property, human ES cells are expected as a resource for cell transplantation for many diseases such as Parkinson's disease, juvenile diabetes and leukemia. However, transplantation of ES cells has the problem of causing rejection similar to organ transplantation. There are also many disagreements from the ethical point of view regarding the use of ES cells established by destroying human embryos.
 患者自身の分化体細胞を利用して脱分化を誘導し、ES細胞に近い多能性や増殖能を有する細胞(この細胞を本明細書において「人工多能性幹細胞」又は「iPS細胞」と言うが、この細胞は「誘導多能性幹細胞」、「胚性幹細胞様細胞」、又は「ES様細胞」と呼ばれる場合もある)を樹立することができれば、拒絶反応や倫理的問題のない理想的な多能性細胞として利用できるものと期待される。最近、このiPS細胞をマウス及びヒトの分化細胞から製造できることが報告され、極めて大きな反響を呼んでいる(国際公開WO2007/69666; Cell, 126, pp.1-14, 2006; Cell, 131, pp.1-12, 2007; Science, 318, pp.1917-1920, 2007; Nature, 451, pp.141-146, 2008)。 Dedifferentiation is induced using the patient's own differentiated somatic cells, and the cells have pluripotency and proliferative ability similar to those of ES cells (this cell is referred to as “artificial pluripotent stem cell” or “iPS cell” However, if these cells can be called “induced pluripotent stem cells”, “embryonic stem cell-like cells”, or “ES-like cells”), an ideal without rejection or ethical problems It is expected that it can be used as a typical pluripotent cell. Recently, it has been reported that this iPS cell can be produced from mouse and human differentiated cells, and has been called a huge response (International Publication WO2007 / 69666; Cell, 126, pp.1-14, 2006; Cell, 131, pp .1-12, 2007; Science, 318, pp.1917-1920, 2007; Nature, 451, pp.141-146, 2008).
 これらの方法では、複数の特定因子(Cell, 126, pp.1-14, 2006ではOct3/4、Sox2、Klf4、及びc-Mycの4因子が用いられている)を体細胞に導入して初期化を行う工程を含んでおり、因子の導入にはレトロウイルス又はレンチウイルスなどのウイルスベクターが用いられている。しかしながら、レトロウイルスを体細胞に導入することから、得られた人工多能性幹細胞を分化誘導することにより製造される細胞、組織、又は個体などにおいて腫瘍発生の危険性が危惧されている。 In these methods, multiple specific factors (Cell, 126, pp.1-14, 2006 uses four factors, Oct3 / 4, Sox2, Klf4, and c-Myc) are introduced into somatic cells. A virus vector such as a retrovirus or a lentivirus is used for the introduction of factors. However, since retroviruses are introduced into somatic cells, there is a concern about the risk of tumor development in cells, tissues, or individuals produced by inducing differentiation of the obtained induced pluripotent stem cells.
 一方、人工多能性幹細胞は皮膚細胞のほか胃細胞又は肝細胞からも製造できることが知られている(国際公開WO2007/69666、実施例の例10)。しかしながら、上記刊行物には、胃細胞又は肝細胞から製造される人工多能性幹細胞から分化誘導して得られる組織や個体などについての開示はなく、また、分化後の組織や個体における腫瘍の発生率などについても示唆又は教示はない。
国際公開WO2007/69666 Cell, 126, pp.1-14, 2006 Cell, 131, pp.1-12, 2007 Science, 318, pp.1917-1920, 2007 Nature, 451, pp.141-146, 2008
On the other hand, it is known that artificial pluripotent stem cells can be produced not only from skin cells but also from stomach cells or hepatocytes (International Publication WO2007 / 69666, Example 10 in Examples). However, the above publication does not disclose a tissue or an individual obtained by inducing differentiation from an induced pluripotent stem cell produced from a stomach cell or a hepatic cell, and the tumor or the individual in the differentiated tissue or individual is not disclosed. There is no suggestion or teaching about the incidence.
International Publication WO2007 / 69666 Cell, 126, pp.1-14, 2006 Cell, 131, pp.1-12, 2007 Science, 318, pp.1917-1920, 2007 Nature, 451, pp.141-146, 2008
 本発明の課題は、体細胞を初期化して製造される人工多能性幹細胞を分化誘導することにより得られる組織や個体において腫瘍発生の危険性を低減ないし排除する手段を提供することにある。 An object of the present invention is to provide means for reducing or eliminating the risk of tumor development in tissues and individuals obtained by inducing differentiation of induced pluripotent stem cells produced by reprogramming somatic cells.
 本発明者らは上記の課題を解決すべく鋭意研究を行った結果、肝細胞又は胃上皮細胞を用いて得られる人工多能性幹細胞を分化誘導することにより製造される組織や個体において腫瘍の発生率が顕著に低いことを見出した。本発明は上記の知見を基にして完成されたものである。 As a result of intensive studies to solve the above problems, the present inventors have found that tumors in tissues and individuals produced by inducing differentiation of induced pluripotent stem cells obtained using hepatocytes or gastric epithelial cells. We found that the incidence was significantly lower. The present invention has been completed based on the above findings.
 すなわち、本発明により、肝細胞又は胃上皮細胞を核初期化することにより得られた人工多能性幹細胞を分化誘導することにより得られる細胞、組織、臓器、又は個体が提供される。 That is, the present invention provides a cell, tissue, organ, or individual obtained by inducing differentiation of an induced pluripotent stem cell obtained by nuclear reprogramming of a hepatocyte or gastric epithelial cell.
 この発明の好ましい態様によれば、核初期化因子が国際公開WO 2005/80598に記載された核初期化因子のスクリーニング方法により陽性を示す単一の物質又は複数の物質の組合わせである上記の細胞、組織、臓器、又は個体;核初期化因子が国際公開WO 2005/80598に記載された核初期化因子のスクリーニング方法により陽性を示す単一の遺伝子の遺伝子産物又は複数の遺伝子の遺伝子産物の組み合わせである上記の細胞、組織、臓器、又は個体;核初期化因子による核初期化を体細胞への上記遺伝子の導入により行う上記の細胞、組織、臓器、又は個体;体細胞への上記遺伝子の導入を組換えベクター、好ましくはウイルスベクター、より好ましくはレトロウイルスベクターにより行う上記の細胞、組織、臓器、又は個体;核初期化因子による核初期化を体細胞への上記遺伝子の遺伝子産物の導入により行う上記の細胞、組織、臓器、又は個体が提供される。 According to a preferred embodiment of the present invention, the nuclear reprogramming factor is a single substance or a combination of a plurality of substances that is positive by the nuclear reprogramming factor screening method described in International Publication WO 公開 2005/80598. Cell, tissue, organ, or individual: gene product of a single gene or a gene product of multiple genes whose nuclear reprogramming factor is positive by the screening method for nuclear reprogramming factor described in International Publication WO 公開 2005/80598 The cell, tissue, organ, or individual that is a combination; the cell, tissue, organ, or individual that performs nuclear reprogramming by nuclear reprogramming factor by introducing the gene into the somatic cell; the gene into the somatic cell Cells, tissues, organs or individuals as described above, which are introduced by a recombinant vector, preferably a viral vector, more preferably a retroviral vector; There is provided the cell, tissue, organ or individual described above, wherein the staging is carried out by introduction of a gene product of the gene into a somatic cell.
 上記発明のさらに好ましい態様によれば、初期化因子をコードする遺伝子がOctファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、Mycファミリー遺伝子、Linファミリー遺伝子、及びNanog遺伝子からなる群から選ばれる1種以上の遺伝子、好ましくはMycファミリーを除く遺伝子から選ばれる2種の遺伝子の組み合わせ、さらに好ましくは3種の遺伝子の組み合わせ、特に好ましくは4種又は4種以上の遺伝子の組み合わせである上記の細胞、組織、臓器、又は個体が提供される。 According to a further preferred aspect of the invention, the gene encoding the reprogramming factor is at least one selected from the group consisting of an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene. A combination of two genes selected from genes excluding the Myc family, preferably a combination of three genes, more preferably a combination of four genes, and particularly preferably a combination of four or more genes. An organ or an individual is provided.
 より好ましい組み合わせは、(a)Octファミリー遺伝子及びSoxファミリー遺伝子からなる2種の遺伝子の組み合わせ;(b)Octファミリー遺伝子、Klfファミリー遺伝子、及びSoxファミリー遺伝子からなる3種の遺伝子の組み合わせ;(c)Octファミリー遺伝子、Soxファミリー遺伝子、Linファミリー遺伝子、及びNanog遺伝子からなる4種の遺伝子の組み合わせなどである。さらに、TERT遺伝子及び/又はSV40 Large T antigen遺伝子を組合わせることも好ましい。場合により、Klfファミリー遺伝子を除くことが好ましい場合もある。場合によってはこれらの組合わせにMycファミリー遺伝子を含むこともできるが、本発明においてはMycファミリー遺伝子を含まない組み合わせを好適に用いることができる。 A more preferred combination is (a) a combination of two genes consisting of an Oct family gene and a Sox family gene; (b) a combination of three genes consisting of an Oct family gene, a Klf family gene, and a Sox family gene; ) A combination of four genes consisting of Oct family gene, Sox family gene, Lin family gene, and Nanog gene. Furthermore, it is also preferable to combine the TERT gene and / or the SV40 Large T antigen gene. In some cases, it may be preferable to remove the Klf family gene. In some cases, these combinations may include a Myc family gene, but in the present invention, a combination not including a Myc family gene can be preferably used.
 これらのうち、特に好ましい組み合わせは、Oct3/4及びSox2からなる2種の遺伝子の組み合わせ;Oct3/4、Klf4、及びSox2からなる3種の遺伝子の組み合わせ;及びOct3/4、Sox2、Lin28、及びNanogからなる4種の遺伝子の組み合わせであり、これらにTERT遺伝子及び/又はSV40 Large T antigen遺伝子を組合わせることも好ましい。場合によりKlf4を除くことが好ましい場合もある。場合によってはこれらの組合わせにc-Mycを組合わせることもできるが、本発明においてはc-Mycを含まない組み合わせを好適に用いることができる。 Of these, particularly preferred combinations are combinations of two genes consisting of Oct3 / 4 and Sox2; combinations of three genes consisting of Oct3 / 4, Klf4, and Sox2; and Oct3 / 4, Sox2, Lin28, and It is a combination of four kinds of genes consisting of Nanog, and it is also preferable to combine these with the TERT gene and / or SV40 Large T antigen gene. In some cases, it may be preferable to remove Klf4. In some cases, c-Myc can be combined with these combinations, but in the present invention, a combination not containing c-Myc can be preferably used.
 また、別の好ましい態様によれば、体細胞がヒトを含む哺乳類動物の肝細胞又は胃上皮細胞、好ましくはヒト又はマウスの肝細胞又は胃上皮細胞、特に好ましくはヒトの肝細胞又は胃上皮細胞である上記の細胞、組織、臓器、又は個体;体細胞が成人ヒト由来の肝細胞又は胃上皮細胞である上記の細胞、組織、臓器、又は個体;体細胞が患者から採取した肝細胞又は胃上皮細胞である上記の細胞、組織、臓器、又は個体;腫瘍の発生が実質的に低減ないし排除された上記の細胞、組織、臓器、又は個体が提供される。 According to another preferred embodiment, the somatic cell is a hepatocyte or gastric epithelial cell of a mammal including a human, preferably a human or mouse hepatocyte or gastric epithelial cell, particularly preferably a human hepatocyte or gastric epithelial cell. The above-mentioned cells, tissues, organs or individuals as described above, wherein the somatic cells are hepatocytes or gastric epithelial cells derived from adult humans; the hepatocytes or stomach collected from patients as the somatic cells; Provided is the above cell, tissue, organ or individual that is an epithelial cell; the above cell, tissue, organ or individual in which the occurrence of a tumor is substantially reduced or eliminated.
 別の観点からは、人工多能性幹細胞から分化誘導された細胞、組織、臓器、又は個体において腫瘍の発生を低減ないし排除する方法であって、肝細胞又は胃上皮細胞を核初期化することにより得られた人工多能性幹細胞を分化誘導する工程を含む方法が本発明により提供される。 Another aspect of the present invention is a method for reducing or eliminating tumor development in a cell, tissue, organ, or individual that has been induced to differentiate from an induced pluripotent stem cell, comprising reprogramming nuclear cells of hepatocytes or gastric epithelial cells. A method comprising the step of inducing differentiation of the induced pluripotent stem cell obtained by the above is provided by the present invention.
 さらに本発明により、幹細胞療法であって、患者から分離採取した肝細胞又は胃上皮細胞胞から得られた人工多能性幹細胞を分化誘導して得られる細胞、組織、又は臓器を該患者に移植する工程を含む療法が提供される。 Furthermore, according to the present invention, stem cell therapy is performed, and cells, tissues, or organs obtained by inducing differentiation of induced pluripotent stem cells obtained from hepatocytes or gastric epithelial cell vesicles isolated and collected from a patient are transplanted into the patient. A therapy comprising the steps of:
 また、肝細胞又は胃上皮細胞胞から得られた人工多能性幹細胞を分化誘導して得られる細胞、組織、又は臓器を用いて、化合物、薬剤、毒物などの生理作用や毒性を評価する方法も本発明により提供される。 Also, a method for evaluating the physiological action and toxicity of compounds, drugs, toxicants, etc. using cells, tissues, or organs obtained by inducing differentiation of induced pluripotent stem cells obtained from hepatocytes or gastric epithelial cell vesicles Are also provided by the present invention.
成体マウスの肝細胞と胃上皮細胞から作製したiPS 細胞の特徴を示した図である。a)ゼラチン処理を行ったプレート上での初代肝細胞と胃上皮細胞の形態を示す。スケールバー=50μm。b)STO フィーダー細胞上でのiPS-Hep 細胞とiPS-Stm 細胞の形態を示す。スケールバー=500μm。c)RT-PCR によるiPS-Hep 細胞、iPS-TTF 細胞、及びES 細胞におけるES 細胞マーカー遺伝子の発現解析を示す。レトロウイルスによる遺伝子導入には、2 種類の培地を用いた。A と表示してあるクローンでは無血清培地にEGF とHGF を加えて用いた。一方、B と表示してあるクローンでは10%の血清培地を用い、EGF とHGF を使用しなかった。Oct3/4 及びSox2 の発現については内在性の転写産物のみ(endo)を増幅するプライマーセットを用いた。泳動量のコントロールとして、NAT1 を用いた(Genes Dev., 11, 321, 1997)。陰性対照としてSox2 については逆転写なし(RT-)の鋳型についてもPCR を行った。It is the figure which showed the characteristic of the iPS sputum cell produced from the liver cell and stomach epithelial cell of the adult mouse | mouth. a) The morphology of primary hepatocytes and gastric epithelial cells on a gelatin-treated plate is shown. Scale bar = 50 μm. b) The morphology of iPS-HepH cells and iPS-Stm cells on STOS feeder cells. Scale bar = 500 μm. c) Shows the expression analysis of ES cell marker gene in iPS-Hep cells, iPS-TTF cells, and ES cells by RT-PCR. Two kinds of culture media were used for gene introduction by retrovirus. For clones labeled A, EGF and HGF were added to the serum-free medium. On the other hand, clones labeled B used 10% serum medium and did not use EGF or HGF. For expression of Oct3 / 4 and Sox2, a primer set that amplifies only the endogenous transcript (endo) was used. As a control of the migration amount, NAT1 was used (Genes Dev., 11, 321, 1997). As a negative control, PCR was also performed on a template without reverse transcription (RT-) for Sox2. レトロウイルスによるトランスフェクト効率及びiPS細胞誘導効率を示した図である。a)肝細胞におけるレトロウイルスによるトランスフェクションの効率を示す。EGFP(Enhanced Green Fluorecent Protein)-発現レトロウイルス(pMXs-EGFP)又はコントロールウイルス(mock)を肝細胞にトランスフェクトし、この細胞をゼラチンコートされたプレート上でHGF及びEGFを添加した培地で培養し、48時間後に細胞をフローサイトメトリーで分析した。b)MEFにおけるレトロウイルスによるトランスフェクト効率及びiPS誘導を示す。上段はゼラチンコート6-ウェルプレートの1ウェルあたり10万個のMEF細胞をまき、翌日に10倍段階希釈のEGFP-発現レトロウイルスを感染させ、48時間後にトランスフェクト効率をフローサイトメトリーで決定した結果(3回の独立した実験の平均値及び標準偏差)を示す。下段はSTOフィーダー細胞を敷いた6-ウェルプレートの1ウェルあたり10万個のFbx15-レポーターMEF細胞をまき、10倍段階希釈のレトロウイルス(Oct3/4、Sox2、c-Myc、及びKlf4を含む)を感染させ、感染2日後に細胞を0.3 mg/ml G418で12日間選択した結果(3回の独立した実験におけるiPS細胞のコロニー数の平均値及び標準偏差)を示す。It is the figure which showed the transfection efficiency by a retrovirus, and iPS cell induction | guidance | derivation efficiency. a) shows the efficiency of retroviral transfection in hepatocytes. EGFP (Enhanced Green Fluorecent Protein) -expressing retrovirus (pMXs-EGFP) or control virus (mock) is transfected into hepatocytes, and the cells are cultured on a gelatin-coated plate in a medium supplemented with HGF and EGF. After 48 hours, cells were analyzed by flow cytometry. b) shows transfection efficiency and iPS induction by retroviruses in MEF. The top row is seeded with 100,000 MEF cells per well of a gelatin-coated 6-well plate, infected the next day with a 10-fold serial dilution of EGFP-expressing retrovirus, and transfection efficiency was determined by flow cytometry 48 hours later. Results (average and standard deviation of 3 independent experiments) are shown. The bottom row covers 100,000 Fbx15-reporter MEF cells per well of a 6-well plate with STO feeder cells and contains 10-fold serial dilutions of retrovirus (Oct3 / 4, Sox2, c-Myc, and Klf4) 2), and 2 days after infection, cells were selected with 0.3 mg / ml G418 for 12 days (average value and standard deviation of the number of colonies of iPS cells in three independent experiments). 成体マウス肝細胞及び胃上皮細胞由来のiPS細胞の特性を示した図である。a)iPS-Hep細胞(クローン92A-3, -5, 及び-6)及びES細胞の増殖を示す。6ウェルプレートの1ウェルあたり20万個の細胞を3日ごとに継代した(カッコ内は分裂時間を示す)。b)iPS-Stm細胞及びES細胞におけるESマーカー遺伝子発現のRT-PCR分析結果を示す。Oct3/4及びSox2については内因性転写のみを増幅するプライマーセットを用いた(endo)。クローンiPS-Stm-99-4の形態はES細胞とは異なっていた。c)iPS細胞(iPS-Hep-98A-2及びiPS-Stm-99-1)、ES細胞、及び肝細胞におけるOct3/4、Nanog、及びFbx15のプロモーター領域のビサルファイト・ゲノム・シーケンシングの結果を示す。白丸は非メチル化CpGジヌクレオチド、黒丸はメチル化CpGsを示す。It is the figure which showed the characteristic of the adult mouse | mouth hepatocyte and the iPS cell derived from a stomach epithelial cell. a) Proliferation of iPS-Hep cells (clone 92A-3, -5, and -6) and ES cells. 200,000 cells per well of a 6-well plate were passaged every 3 days (in parentheses indicate division time). b) shows RT-PCR analysis results of ES marker gene expression in iPS-Stm cells and ES cells. For Oct3 / 4 and Sox2, primer sets that only amplify endogenous transcription were used (endo). The morphology of clone iPS-Stm-99-4 was different from that of ES cells. c) Results of bisulfite genome sequencing of the promoter regions of Oct3 / 4, Nanog, and Fbx15 in iPS cells (iPS-Hep-98A-2 and iPS-Stm-99-1), ES cells, and hepatocytes Show. White circles indicate unmethylated CpG dinucleotides, and black circles indicate methylated CpGs. iPS-Hep/Stm細胞由来の奇形腫を示した図である。iPS-Hep-98A-2及びiPS-Stm-99-1細胞をヌードマウスの皮下に移植し、4週間後に腫瘍を切除してヘマトキシリン・エオジン染色による組織学的分析を行った。It is the figure which showed the teratoma derived from iPS-Hep / Stm cell. iPS-Hep-98A-2 and iPS-Stm-99-1 cells were transplanted subcutaneously into nude mice, the tumor was excised 4 weeks later, and histological analysis by hematoxylin-eosin staining was performed. iPS-Hep/Stm細胞由来のキメラマウスを示した図である。a)iPS-Hep/Stm細胞由来の成体キメラマウスを示す。iPS-Hep-98A2細胞及びiPS-Stm-99-1細胞をC57BL/6胚盤胞にマイクロインジェクションし擬妊娠雌性マウスに移植した。iPS細胞による部分は濃灰色の毛で識別できる。b)iPS-Stm細胞のジャームライントランスミッションを示す。iPS-Stm-99-1細胞由来の雄性キメラマウスをC57BL/6雌性マウスと交配した。F1マウスの蛍光写真及びゲノムPCR分析の結果を示す。It is the figure which showed the chimeric mouse derived from iPS-Hep / Stm cell. a) An iPS-Hep / Stm cell-derived adult chimeric mouse is shown. iPS-Hep-98A2 cells and iPS-Stm-99-1 cells were microinjected into C57BL / 6 blastocysts and transplanted into pseudopregnant female mice. The iPS cell portion can be identified by dark gray hair. b) shows iPS-Stm cell germline transmission. Male chimeric mice derived from iPS-Stm-99-1 cells were mated with C57BL / 6 female mice. The fluorescence photograph of F1 mouse | mouth and the result of a genomic PCR analysis are shown. iPS-Hep/Stm 細胞の多能性を示す図である。a)iPS 細胞由来マウスの腫瘍発生率と死亡率を示す。iPS-MEF 細胞又はiPS-Hep/Stm 細胞から作製されたキメラマウス(上段)及びF1 マウス(下段)の腫瘍による累積死亡率(左側)と全死亡率(右側)を示す。「死亡」は衰弱による屠殺例を含む。死亡例はすべて死因を検討するために解剖した。各図の下に示す数字は、各時点で解析されたマウス数を示す。b)iPS-Hep 細胞及びiPS-Stm 細胞に由来するキメラマウスにおける高い周産期死亡率を示し、出生時の生存個体数と死亡個体数を示す。It is a figure which shows the pluripotency of iPS-Hep / Stm cell. a) Tumor incidence and mortality of iPS sputum cell-derived mice. The cumulative mortality (left side) and total mortality (right side) due to tumors of chimeric mice (upper) and F1 mice (lower) prepared from iPS-MEF cells or iPS-Hep / Stm cells are shown. “Death” includes slaughter cases due to weakness. All deaths were dissected to investigate the cause of death. The numbers below each figure indicate the number of mice analyzed at each time point. b) High perinatal mortality in chimeric mice derived from iPS-HepH cells and iPS-Stm cells, showing the number of surviving and dead individuals at birth. iPS-Hep 細胞とiPS-Stm 細胞におけるレトロウイルス挿入部位を示す図である。iPS-Hep 細胞とiPS-Stm 細胞のクローンについて、レトロウイルスを用いて挿入されたOct3/4、Sox、Klf4、及びc-Myc 遺伝子のサザンブロット解析を示した。iPS-Stm 細胞、iPS-Hep 細胞、iPS-MEF 細胞、及び野生型ES 細胞から単離したゲノムDNA を解析した。検出されたバンド数を下段に示す。矢印は内在性の遺伝子座に相当するバンドを示す。白の矢印はOct3/4 の偽遺伝子に相当するバンドを示す。It is a figure which shows the retrovirus insertion site in iPS-HepH cell and iPS-Stm cell. Southern blot analysis of Oct3 / 4, Sox, Klf4, and c-Myc genes inserted using retrovirus was shown for clones of iPS-Hep cells and iPS-Stm cells. Genomic DNAs isolated from iPS-Stm cells, iPS-Hep cells, iPS-MEF cells, and wild-type ES cells were analyzed. The number of detected bands is shown in the lower part. The arrow indicates the band corresponding to the endogenous locus. The white arrow indicates the band corresponding to the Oct3 / 4 pseudogene. iPS-Hep/Stm細胞におけるレトロウイルス挿入部位(RIS)を示した図である。2種のiPS-Stmクローン(99-1及び-3)及び2種のiPS-Hepクローン(98A-1及び-2)中の染色体におけるRISの位置を示す。It is the figure which showed the retrovirus insertion site (RIS) in iPS-Hep / Stm cell. The position of the RIS on the chromosome in two iPS-Stm clones (99-1 and -3) and two iPS-Hep clones (98A-1 and -2) are shown. レトロウイルス挿入を受けた遺伝子の推定機能を示した図である。a)レトロウイルス挿入のある遺伝子の分子機能を示したヒストグラムである。機能はジャクソンラボラトリー(http://www.jax.org/)のウェブサイトのマウス・ゲノム・インフォーマティックス(MGI)におけるジーン・オントロジー(Gene Ontology: GO)に従って分類した。少なくとも2回検出された分子機能を示した。b)レトロウイルス挿入を受けた遺伝子の細胞コンパートメントのGO分類を示す。It is the figure which showed the presumed function of the gene which received retrovirus insertion. a) Histogram showing the molecular function of a gene with a retrovirus insertion. The functions were classified according to Gene Ontology (GO) in Mouse Genome Informatics (MGI) of the Jackson Laboratory (http://www.jax.org/) website. It showed molecular function detected at least twice. b) GO classification of the cellular compartment of a gene that has undergone retroviral insertion. レトロウイルス挿入部位の模式図である。濃灰色の矢印は4因子の挿入部位を示す。薄灰色の矢印は翻訳開始部位を示す。黒の矢印は転写開始部位及び遺伝子の方向を示す。スケールバーは遺伝子のサイズ(bp)を示し、遺伝子の略号はUCSC及びアンサンブルデータベースにおける略号である。3つの場合(Stm99-1におけるOct3/4、Stm99-3におけるc-Myc、及びHep98A-2におけるc-Myc)では図7において検出されたバンドの数よりも多いRISが検出された(これらの場合にはサザンブロッティングで検出できる限界よりもバンドが大きすぎるか、又は小さすぎるか、あるいはバンドのオーバーラップがあるものと思われる)。It is a schematic diagram of a retrovirus insertion site. The dark gray arrow indicates the insertion site of 4 factors. The light gray arrow indicates the translation start site. Black arrows indicate the transcription start site and gene direction. The scale bar indicates the size (bp) of the gene, and the gene abbreviation is an abbreviation in UCSC and the ensemble database. Three cases (Oct3 / 4 in Stm99-1, c-Myc in Stm99-3, and c-Myc in Hep98A-2) detected more RIS than the number of bands detected in FIG. 7 (these In some cases, the band may be too large or too small to be detectable by Southern blotting, or there may be band overlap). レトロウイルス挿入部位の模式図である。It is a schematic diagram of a retrovirus insertion site. レトロウイルス挿入部位の模式図である。It is a schematic diagram of a retrovirus insertion site. レトロウイルス挿入部位の模式図である。It is a schematic diagram of a retrovirus insertion site. レトロウイルス挿入部位の模式図である。It is a schematic diagram of a retrovirus insertion site. Nanog-レポーター肝細胞からiPS細胞を生成させる際にc-Mycを除いた場合の影響を示した図である。a)4種又は3種の因子によるNanog-GFPレポーター肝細胞からのiPS細胞の生成を示す(GFP-陽性クローン数を示す)。b)4種の因子又はc-Mycを除く3種の因子によるGFP-陽性クローンコロニー数の比較(3回の独立した実験における平均値及び標準偏差)を示し、各実験における4種の因子によるコロニー数を1とした。It is the figure which showed the influence at the time of remove | excluding c-Myc when producing an iPS cell from a Nanog-reporter hepatocyte. a) The production of iPS cells from Nanog-GFP reporter hepatocytes by 4 or 3 factors is shown (the number of GFP-positive clones is shown). b) Comparison of the number of GFP-positive clone colonies by 4 factors or 3 factors except c-Myc (mean value and standard deviation in 3 independent experiments), depending on 4 factors in each experiment The number of colonies was 1. 肝細胞及びMEFにけるタンパク発現の結果を示す。4種の因子又はDsRed(コントロール)を肝細胞及びMEFにレトロウイルスで導入し、4日後に細胞上清を採取してSDS-PAGE及びウェスタンブロットにて分析した。The result of protein expression in hepatocytes and MEF is shown. Four types of factors or DsRed (control) were introduced into hepatocytes and MEF by retrovirus, and after 4 days, cell supernatants were collected and analyzed by SDS-PAGE and Western blot. アルブミン発現細胞に由来するiPS-Hep 細胞を示した図である。a)細胞運命の追跡方法を示す。b)トリプルトランスジェニックマウス肝細胞に由来するiPS 細胞コロニーの位相差顕微鏡、蛍光顕微鏡、及びX-gal 染色の各写真を示す。矢印はβ-gal 陰性コロニーを示す。スケールバー=2mm。It is the figure which showed the iPS-Hep cell derived from an albumin expression cell. a) Demonstrate how to track cell fate. b) Pictures of phase contrast microscope, fluorescence microscope, and X-gal staining of iPS sputum cell colonies derived from triple transgenic mouse hepatocytes are shown. Arrows indicate β-gal negative colonies. Scale bar = 2mm.
 本発明は、人工多能性幹細胞を分化誘導することにより得られる細胞、組織、臓器、又は個体であって、該人工多能性幹細胞が肝細胞又は胃上皮細胞を核初期化することにより得られた該人工多能性幹細胞であることを特徴としている。 The present invention is a cell, tissue, organ, or individual obtained by inducing differentiation of an induced pluripotent stem cell, and the induced pluripotent stem cell is obtained by nuclear reprogramming of hepatocytes or gastric epithelial cells. The induced pluripotent stem cell.
 例えば、国際公開WO2007/69666、Cell, 126, pp.1-14, 2006、Cell, 131, pp.1-12, 2007、Science, 318, pp.1917-1920, 2007、Nature, 451, pp.141-146, 2008などに記載の方法に従って、あるいはそれらの方法に適宜の修飾ないし改変を加えた方法により、肝細胞又は胃上皮細胞の核初期化を誘導して人工多能性幹細胞を調製し、得られた人工多能性幹細胞を体細胞へと分化誘導し、必要に応じて適宜の培養や組織や臓器形成過程を加えることにより、任意の組織、臓器、又は哺乳類動物個体を製造することができる。 For example, International Publication WO2007 / 69666, Cell, 126, pp.1-14, 2006, Cell, 131, pp.1-12, 2007, Science, 318, pp.1917-1920, 2007, Nature, 451, pp. Induced nuclear reprogramming of hepatocytes or gastric epithelial cells according to the methods described in 141-146, 2008, etc., or by appropriate modifications or alterations to those methods, to prepare induced pluripotent stem cells Inducing any tissue, organ, or individual mammal by inducing differentiation of the obtained induced pluripotent stem cells into somatic cells and adding appropriate culture, tissue or organ formation processes as necessary Can do.
 本発明により人工多能性幹細胞を分化誘導して得ることができる体細胞の種類は特に限定されず、任意の体細胞を調製することができ、さらに任意の組織や臓器を調製することができる。人工多能性幹細胞は分化万能性を有しており、例えば胚性幹細胞について知られている特定の体細胞、組織、又は臓器への分化誘導手段を適宜採用することが可能である。例えば、神経細胞、心筋細胞、骨髄細胞、インスリン産生細胞、若しくは血球細胞など、神経組織、角膜、網膜、水晶体、筋肉、皮膚、骨、血管、リンパ管、若しくはリンパ節などの組織、又は心臓、腎臓、膵臓、肝臓、胃、大腸、小腸、食道、胆嚢、若しくは肺などの臓器など、任意の体細胞、組織、又は臓器を製造することができる。また、本発明の方法では人工多能性幹細胞から完全な個体を発生させることもでき、この態様も本発明における「人工多能性幹細胞を分化誘導」に包含される(ただしヒト個体を除く)。 The type of somatic cell that can be obtained by inducing differentiation of an induced pluripotent stem cell according to the present invention is not particularly limited, and any somatic cell can be prepared, and any tissue or organ can be prepared. . Artificial pluripotent stem cells have pluripotency, and for example, means for inducing differentiation into specific somatic cells, tissues, or organs known for embryonic stem cells can be appropriately employed. For example, nerve cells, cardiomyocytes, bone marrow cells, insulin-producing cells, blood cells, etc., nerve tissue, cornea, retina, lens, muscle, skin, bone, blood vessel, lymphatic vessel, lymph node, or lymph node tissue, or heart, Arbitrary somatic cells, tissues, or organs can be produced, including organs such as kidney, pancreas, liver, stomach, large intestine, small intestine, esophagus, gallbladder, or lung. Further, in the method of the present invention, a complete individual can be generated from the induced pluripotent stem cell, and this embodiment is also encompassed in the “induction of differentiation of induced pluripotent stem cell” in the present invention (except for a human individual). .
 核初期化因子を確認する手段としては、例えば、国際公開WO 2005/80598に記載された核初期化因子のスクリーニング方法を利用することができる。上記刊行物の全ての開示を参照により本明細書の開示に含める。当業者は上記刊行物を参照することにより核初期化因子をスクリーニングし、本発明に利用することができる。また、上記のスクリーニング方法に適宜の修飾ないし改変を加えた方法を用いて核初期化因子を確認することもできる。 As a means for confirming a nuclear reprogramming factor, for example, a screening method for a nuclear reprogramming factor described in International Publication WO 2005/80598 can be used. The entire disclosures of the above publications are incorporated herein by reference. Those skilled in the art can screen for nuclear reprogramming factors by referring to the above-mentioned publications and use them in the present invention. In addition, the nuclear reprogramming factor can be confirmed using a method in which appropriate modification or alteration is added to the above screening method.
 初期化因子をコードする遺伝子の組み合わせの一例が国際公開WO2007/69666に開示されている。上記刊行物の全ての開示を参照により本明細書の開示に含める。当業者は上記刊行物を参照することにより本発明に好適に使用可能な遺伝子を適宜選択することが可能である。また、初期化因子をコードする遺伝子の組み合わせの別の例がScience, 318, pp.1917-1920, 2007に記載されている。従って、当業者は核初期化因子をコードする遺伝子の組み合わせの多様性を理解することができ、国際公開WO 2005/80598に記載された核初期化因子のスクリーニング方法を利用することにより、国際公開WO2007/69666及びScience, 318, pp.1917-1920, 2007に記載された組み合わせ以外の適宜の遺伝子の組み合わせを本発明において利用できる。 An example of a combination of genes encoding reprogramming factors is disclosed in International Publication WO2007 / 69666. The entire disclosures of the above publications are incorporated herein by reference. Those skilled in the art can appropriately select genes that can be suitably used in the present invention by referring to the above-mentioned publications. Another example of a combination of genes encoding reprogramming factors is described in Science, 318, pp.1917-1920, 2007. Accordingly, those skilled in the art can understand the diversity of combinations of genes encoding nuclear reprogramming factors, and by using the nuclear reprogramming factor screening method described in International Publication WO 2005/80598, Appropriate gene combinations other than those described in WO2007 / 69666 and Science, 318, pp.1917-1920, 2007 can be used in the present invention.
 本発明において使用可能な初期化因子をコードする遺伝子として、Octファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、Mycファミリー遺伝子、Linファミリー遺伝子、及びNanog遺伝子からなる群から選ばれる1種以上の遺伝子を挙げることができるが、好ましくはMycファミリー遺伝子を除くOctファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、Linファミリー遺伝子、及びNanog遺伝子からなる群から選ばれる1種以上の遺伝子、より好ましくは2種の遺伝子の組み合わせ、さらに好ましくは3種の遺伝子の組み合わせ、特に好ましくは4種の遺伝子の組み合わせを挙げることができる。 As a gene encoding a reprogramming factor that can be used in the present invention, one or more genes selected from the group consisting of an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene Preferably, one or more genes selected from the group consisting of the Oct family gene, Klf family gene, Sox family gene, Lin family gene, and Nanog gene excluding the Myc family gene, more preferably two types A combination of genes, more preferably a combination of three genes, particularly preferably a combination of four genes can be mentioned.
 Octファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、Mycファミリー遺伝子については国際公開WO2007/69666にファミリー遺伝子の具体例が示されている。Linファミリー遺伝子についても当業者は同様にファミリー遺伝子を抽出することが可能である。 For the Oct family gene, the Klf family gene, the Sox family gene and the Myc family gene, specific examples of family genes are shown in International Publication WO2007 / 69666. Those skilled in the art can similarly extract a family gene for the Lin family gene.
 また、Octファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、Mycファミリー遺伝子、Linファミリー遺伝子、及びNanog遺伝子からなる群から選ばれる1種以上の遺伝子によりコードされる初期化因子を例えばサイトカインなどで置き換えることができる場合があり、あるいは他の1種又は2種以上の低分子化合物で置き換えることができる場合もある。このような低分子化合物としては、例えばOctファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、Mycファミリー遺伝子、Linファミリー遺伝子、及びNanog遺伝子からなる群から選ばれる1種以上の遺伝子の発現を促進する作用を有する低分子化合物を用いることができるが、このような低分子化合物は当業者が容易にスクリーニングすることが可能である。 In addition, an initialization factor encoded by one or more genes selected from the group consisting of the Oct family gene, the Klf family gene, the Sox family gene, the Myc family gene, the Lin family gene, and the Nanog gene is replaced with, for example, a cytokine. Or may be replaced with one or more other low molecular weight compounds. As such a low molecular weight compound, for example, an action of promoting the expression of one or more genes selected from the group consisting of Oct family gene, Klf family gene, Sox family gene, Myc family gene, Lin family gene, and Nanog gene A low molecular weight compound having the above can be used, but such a low molecular weight compound can be easily screened by those skilled in the art.
 より好ましい遺伝子の組み合わせとしては、
(a)Octファミリー遺伝子及びSoxファミリー遺伝子からなる2種の遺伝子の組み合わせ
(b)Octファミリー遺伝子、Klfファミリー遺伝子、及びSoxファミリー遺伝子からなる3種の遺伝子の組み合わせ;
(c)Octファミリー遺伝子、Soxファミリー遺伝子、Linファミリー遺伝子、及びNanog遺伝子からなる4種の遺伝子の組み合わせ;
などを挙げることができるが、これらに限定されることはない。これらにMycファミリー遺伝子を組み合わせることもできる。
As a more preferable combination of genes,
(a) Combination of two genes consisting of Oct family gene and Sox family gene
(b) a combination of three genes consisting of an Oct family gene, a Klf family gene, and a Sox family gene;
(c) a combination of four genes consisting of an Oct family gene, a Sox family gene, a Lin family gene, and a Nanog gene;
However, it is not limited to these. These can be combined with Myc family genes.
 これらの遺伝子はいずれもヒトを含む哺乳類動物において共通して存在する遺伝子であり、本発明において上記遺伝子を利用するためには、任意の哺乳類動物由来(例えばヒト、マウス、ラット、ウシ、ヒツジ、ウマ、サルなどの哺乳類動物由来)の遺伝子を用いることが可能である。また、野生型の遺伝子産物のほか、数個(例えば1~10個、好ましくは1~6個、より好ましくは1~4個、さらに好ましくは1~3個、特に好ましくは1又は2個)のアミノ酸が置換、挿入、及び/又は欠失した変異遺伝子産物であって、野生型の遺伝子産物と同様の機能を有する遺伝子産物も利用可能である。例えば、c-Mycの遺伝子産物としては野生型のほか安定型(T58A)などを用いてもよい。他の遺伝子産物についても同様である。 These genes are genes that exist in common in mammals including humans, and in order to use the genes in the present invention, they are derived from any mammal (for example, human, mouse, rat, cow, sheep, Genes derived from mammals such as horses and monkeys) can be used. In addition to the wild-type gene product, several (eg, 1 to 10, preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3, particularly preferably 1 or 2) It is also possible to use a gene product having a function similar to that of a wild-type gene product, which is a mutant gene product in which the amino acid is substituted, inserted, and / or deleted. For example, the c-Myc gene product may be a wild type or a stable type (T58A). The same applies to other gene products.
 また、上記の遺伝子に加えて、細胞の不死化を誘導する因子をコードする遺伝子をさらに組み合わせてもよい。国際公開WO2007/69666に開示されているように、例えば、TERT遺伝子、及び下記の遺伝子:SV40 Large T antigen、HPV16 E6、HPV16 E7、及びBmilからなる群から選ばれる1種以上の遺伝子を単独で、あるいは適宜組み合わせて用いることができる。
 好ましい組み合わせとして、例えば、
(e)Octファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、及びTERT遺伝子からなる4種の遺伝子の組み合わせ;
(f)Octファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、及びSV40 Large T antigen遺伝子からなる4種の遺伝子の組み合わせ;
(g)Octファミリー遺伝子、Klfファミリー遺伝子、Soxファミリー遺伝子、TERT遺伝子、及びSV40 Large T antigen遺伝子からなる5種の遺伝子の組み合わせを挙げることができる。
 必要に応じて、これらにMycファミリー遺伝子を組み合わせることもでき、上記の組み合わせからKlfファミリー遺伝子を除くことができる場合もある。
Moreover, in addition to the above genes, genes encoding factors that induce cell immortalization may be further combined. As disclosed in International Publication WO2007 / 69666, for example, a TERT gene and one or more genes selected from the group consisting of the following genes: SV40 Large T antigen, HPV16 E6, HPV16 E7, and Bmil alone Or they can be used in appropriate combinations.
As a preferred combination, for example,
(e) a combination of four genes consisting of an Oct family gene, a Klf family gene, a Sox family gene, and a TERT gene;
(f) A combination of four genes consisting of Oct family gene, Klf family gene, Sox family gene, and SV40 Large T antigen gene;
(g) A combination of five genes consisting of Oct family gene, Klf family gene, Sox family gene, TERT gene, and SV40 Large T antigen gene can be mentioned.
If necessary, the Myc family gene can be combined with these, and the Klf family gene can be excluded from the above combination.
 さらに、上記の遺伝子に加えて、Fbx15、ERas、ECAT15-2、Tcl1、及びβ-cateninからなる群から選ばれる1種以上の遺伝子を組み合わせてもよく、及び/又はECAT1、Esg1、Dnmt3L、ECAT8、Gdf3、Sox15、ECAT15-1、Fthl17、Sall4、Rex1、UTF1、Stella、Stat3、及びGrb2からなる群から選ばれる1種以上の遺伝子を組み合わせることもできる。これらの組み合わせについては国際公開WO2007/69666に具体的に説明されている。 Furthermore, in addition to the above genes, one or more genes selected from the group consisting of Fbx15, ERas, ECAT15-2, Tcl1, and β-catenin may be combined, and / or ECAT1, Esg1, Dnmt3L, ECAT8 One or more genes selected from the group consisting of Gdf3, Sox15, ECAT15-1, Fthl17, Sall4, Rex1, UTF1, Stella, Stat3, and Grb2 can also be combined. These combinations are specifically described in International Publication WO2007 / 69666.
 特に好ましい遺伝子の組み合わせは、
(1)Oct3/4及びSox2からなる2種の遺伝子の組み合わせ;
(2)Oct3/4、Klf4、及びSox2からなる3種の遺伝子の組み合わせ;
(3)Oct3/4、Sox2、Lin28、及びNanogからなる4種の遺伝子の組み合わせ;
(4)Oct3/4、Sox2、TERT、及びSV40 Large T antigenからなる4種の遺伝子の組み合わせ;
(5)Oct3/4、Klf4、Sox2、TERT、及びSV40 Large T antigenからなる5種の遺伝子の組み合わせ
などであるが、これらに限定されることはない。必要に応じて、これらにc-Mycを組合わせることができる。
Particularly preferred gene combinations are:
(1) a combination of two genes consisting of Oct3 / 4 and Sox2;
(2) A combination of three genes consisting of Oct3 / 4, Klf4, and Sox2;
(3) a combination of four genes consisting of Oct3 / 4, Sox2, Lin28, and Nanog;
(4) A combination of four genes consisting of Oct3 / 4, Sox2, TERT, and SV40 Large T antigen;
(5) A combination of five genes consisting of Oct3 / 4, Klf4, Sox2, TERT, and SV40 Large T antigen, but is not limited thereto. You can combine them with c-Myc as needed.
 上記の遺伝子産物を含む因子は、下記の群:Fbx15、Nanog、ERas、ECAT15-2、Tcl1、及びβ-cateninからなる群から選ばれる遺伝子のうちの1種又は2種以上の遺伝子産物と組み合わせてもよい。さらに、例えば、下記の群:ECAT1、Esg1、Dnmt3L、ECAT8、Gdf3、Sox15、ECAT15-1、Fthl17、Sall4、Rex1、UTF1、Stella、Stat3、及びGrb2からなる群から選ばれる1種以上の遺伝子の遺伝子産物と組み合わせることもできる。これらの遺伝子産物については国際公開WO2007/69666に開示されている。もっとも、本発明の核初期化因子に含むことができる遺伝子産物は上記に具体的に説明した遺伝子の遺伝子産物に限定されることはない。本発明の核初期化因子には、核初期化因子として機能することができる他の遺伝子産物のほか、分化、発生、又は増殖などに関係する因子あるいはその他の生理活性を有する因子を1又は2以上含むことができ、そのような態様も本発明の範囲に包含されることは言うまでもない。 The factor containing the above gene product is combined with one or more gene products selected from the group consisting of the following groups: Fbx15, Nanog, ERas, ECAT15-2, Tcl1, and β-catenin May be. Further, for example, one or more genes selected from the group consisting of the following groups: ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sall4, Rex1, UTF1, Stella, Stat3, and Grb2. It can also be combined with gene products. These gene products are disclosed in International Publication WO2007 / 69666. However, the gene products that can be included in the nuclear reprogramming factor of the present invention are not limited to the gene products of the genes specifically described above. The nuclear reprogramming factor of the present invention includes, in addition to other gene products that can function as a nuclear reprogramming factor, 1 or 2 factors related to differentiation, development, or proliferation, or other factors having physiological activity. Needless to say, such embodiments can be included, and such embodiments are also included in the scope of the present invention.
 初期化すべき体細胞においてこれらの遺伝子のうちの1種又は2種以上の遺伝子の遺伝子産物がすでに発現している場合には、そのような遺伝子産物を導入すべき因子から除外することができる。例えば、すでに発現している遺伝子以外の1種又は2種以上の遺伝子を体細胞に適宜の遺伝子導入方法、例えば組換えベクターを用いる方法などで導入することができる。あるいは、これらの遺伝子の遺伝子産物のうちの1種又は2種以上を融合タンパク質や核内へのマイクロインジェクションなどの手法により核内に導入する場合には、残りの1又は2以上の遺伝子を適宜の遺伝子導入方法、例えば組換えベクターを用いる方法などによって導入することができる。 If the gene product of one or more of these genes has already been expressed in the somatic cell to be initialized, such gene product can be excluded from the factors to be introduced. For example, one or more genes other than the already expressed gene can be introduced into a somatic cell by an appropriate gene introduction method, for example, a method using a recombinant vector. Alternatively, when one or more of the gene products of these genes are introduced into the nucleus by a technique such as fusion protein or microinjection into the nucleus, the remaining one or more genes are appropriately selected. The gene can be introduced by, for example, a method using a recombinant vector.
 また、核初期化因子である遺伝子産物は、例えば上記遺伝子から産生されるタンパク質自体のほか、該タンパク質とその他のタンパク質又はペプチドなどとの融合遺伝子産物の形態であってもよい。例えば、緑色蛍光タンパク質(GFP)との融合タンパク質やヒスチジンタグなどのペプチドとの融合遺伝子産物を用いることもできる。また、HIVウイルスに由来するTATペプチドとの融合タンパク質を調製して用いることにより、細胞膜からの核初期化因子の細胞内取り込みを促進させることができ、遺伝子導入などの煩雑な操作を回避して、融合タンパク質を培地に添加するだけで初期化を誘導することが可能になる。このような融合遺伝子産物の調製方法は当業者によく知られているので、当業者は目的に応じて適宜の融合遺伝子産物を容易に設計して調製することが可能である。 In addition, the gene product that is a nuclear reprogramming factor may be, for example, in the form of a fusion gene product of the protein and other proteins or peptides in addition to the protein itself produced from the above gene. For example, a fusion gene product with a peptide such as a fusion protein with green fluorescent protein (GFP) or a histidine tag can also be used. In addition, by preparing and using a fusion protein with a TAT peptide derived from HIV virus, it is possible to promote intracellular uptake of nuclear reprogramming factor from the cell membrane, avoiding complicated operations such as gene transfer. It is possible to induce reprogramming simply by adding the fusion protein to the medium. Since methods for preparing such fusion gene products are well known to those skilled in the art, those skilled in the art can easily design and prepare appropriate fusion gene products according to the purpose.
 本明細書において「人工多能性幹細胞」(iPS細胞)とはES細胞に近い性質を有する細胞のことであり、より具体的には、体細胞より初期化された未分化細胞であって多能性及び増殖能を有する細胞を包含するが、この用語をいかなる意味においても限定的に解釈してはならず、最も広義に解釈する必要がある。核初期化因子を用いて人工多能性幹細胞を調製する方法については国際公開WO2005/80598に説明されており(上記公報においてはES様細胞という用語が用いられている)、人工多能性幹細胞の分離手段についても具体的に説明されている。また、国際公開WO2007/69666には初期化因子の具体例及びその初期化因子を用いた体細胞の初期化方法の具体例が開示されている。従って、本発明を実施するにあたり当業者はこれらの刊行物を参照することが望ましい。 As used herein, an “artificial pluripotent stem cell” (iPS cell) is a cell having properties close to those of an ES cell, and more specifically, an undifferentiated cell that has been initialized from a somatic cell. Cell having ability and proliferative ability, but the term should not be interpreted in a limited way in any way, but in the broadest sense. A method for preparing induced pluripotent stem cells using a nuclear reprogramming factor is described in International Publication WO2005 / 80598 (in the above publication, the term ES-like cells is used), and induced pluripotent stem cells The separation means is also specifically described. International publication WO2007 / 69666 discloses specific examples of reprogramming factors and specific examples of somatic cell reprogramming methods using the reprogramming factors. Therefore, it is desirable for those skilled in the art to refer to these publications when practicing the present invention.
 本発明の方法により体細胞から人工多能性幹細胞を調製する方法は特に限定されず、体細胞及び人工多能性幹細胞が増殖可能な環境において核初期化因子により体細胞を核初期化できる方法であれば、いかなる方法を採用してもよい。例えば、核初期化因子を発現可能な遺伝子を含むベクターを用いて該遺伝子を体細胞に導入するなどの手段を採用してもよい。このようなベクターを用いる場合には、ベクターに2種以上の遺伝子を組み込んでそれぞれの遺伝子産物を体細胞において同時に発現させてもよい。 The method for preparing an induced pluripotent stem cell from a somatic cell by the method of the present invention is not particularly limited, and a method capable of nuclear reprogramming of a somatic cell with a nuclear reprogramming factor in an environment where the somatic cell and the induced pluripotent stem cell can proliferate Any method may be adopted as long as it is. For example, means such as introducing a gene into a somatic cell using a vector containing a gene capable of expressing a nuclear reprogramming factor may be employed. When such a vector is used, two or more genes may be incorporated into the vector and the respective gene products may be expressed simultaneously in somatic cells.
 上記遺伝子を発現可能なベクターを用いて遺伝子を体細胞に導入する場合には、フィーダー細胞上に培養された体細胞に対して発現ベクターの導入を行ってもよいが、体細胞にのみ発現ベクター導入を行ってもよい。発現ベクターの導入効率を高めるために後者の方法が適している場合がある。フィーダー細胞としては胚性幹細胞の培養に用いられるフィーダー細胞を適宜使用することができるが、例えば、マウス14~15日胚の線維芽細胞初代培養細胞や線維芽細胞由来細胞株であるSTO細胞等をマイトマイシンCなどの薬剤で処理した細胞や放射線処理した細胞などを用いることができる。また、初期化の効率を高めるために特定のmicroRNAの存在下で初期化を行うことが好ましい場合もある(小柳ら、第30回日本分子生物学会、1T7-7、要旨集発行2007年11月25日)。 When a gene is introduced into a somatic cell using a vector capable of expressing the above gene, the expression vector may be introduced into the somatic cell cultured on the feeder cell, but the expression vector only in the somatic cell. You may introduce. The latter method may be suitable for increasing the efficiency of introducing the expression vector. As feeder cells, feeder cells used for culturing embryonic stem cells can be used as appropriate. For example, mouse 14-15 day embryonic fibroblast primary cultured cells, fibroblast-derived cell lines such as STO cells, etc. Cells treated with a drug such as mitomycin C or cells treated with radiation can be used. In some cases, it is preferable to perform initialization in the presence of specific microRNAs to increase the efficiency of initialization (Koyanagi et al., 30th Annual Meeting of the Molecular Biology Society of Japan, 1T7-7, Abstracts published November 2007) 25th).
 核初期化因子を導入した体細胞を適宜の条件下で培養することにより自律的に核初期化が進行し、肝細胞又は胃上皮細胞から人工多能性幹細胞を製造することができる。核初期化因子をコードする遺伝子を発現するベクターを用いて体細胞に導入して人工多能性幹細胞を得る工程は、例えばレトロウイルスを用いる方法に準じて行うことができ、例えば、Cell, 126, pp.1-14, 2006; Cell, 131, pp.1-12, 2007; Science, 318, pp.1917-1920, 2007などの刊行物に記載された方法に準じて行うことができる。ヒト人工多能性幹細胞を製造する場合には、発現ベクター導入後の細胞の培養密度を通常の動物細胞培養の場合よりも低く設定することが望ましい。例えば、細胞培養用ディッシュあたり1~10万個、好ましくは5万個程度の細胞密度で培養を継続することが好ましい。培養に用いる培地は特に限定されず当業者により適宜選択可能であるが、例えば、ヒト人工多能性幹細胞を製造する場合にはヒトES細胞培養に適した培地を用いることが好ましい場合がある。培地の選択及び培養条件などについても上記刊行物を参照することができる。 By culturing somatic cells into which a nuclear reprogramming factor has been introduced under appropriate conditions, nuclear reprogramming progresses autonomously, and artificial pluripotent stem cells can be produced from hepatocytes or gastric epithelial cells. The step of obtaining an induced pluripotent stem cell by introducing it into a somatic cell using a vector expressing a gene encoding a nuclear reprogramming factor can be performed according to a method using a retrovirus, for example, Cell, 126 , Pp.1-14, 2006; Cell, 131, pp.1-12, 2007; Science, 318, pp.1917-1920, 2007 and the like. When producing human induced pluripotent stem cells, it is desirable to set the culture density of the cells after introduction of the expression vector lower than in the case of normal animal cell culture. For example, it is preferable to continue the culture at a cell density of about 100,000 to 100,000, preferably about 50,000 per cell culture dish. The medium used for the culture is not particularly limited and can be appropriately selected by those skilled in the art. For example, when producing human induced pluripotent stem cells, it may be preferable to use a medium suitable for human ES cell culture. The above publications can also be referred to for the selection of culture media and culture conditions.
 生成した人工多能性幹細胞は未分化細胞に特有の各種マーカーで確認することができるが、その手段についても上記の各刊行物に具体的かつ詳細に説明されている。ES細胞の未分化性及び多能性を維持可能な培地又はその性質を維持することができない培地は当業界で種々知られており、適宜の培地を組み合わせて用いることにより、人工多能性幹細胞を効率よく分離することができる。分離された人工多能性幹細胞の分化能及び増殖能はES細胞について汎用されている確認手段を利用することにより当業者が容易に確認可能である。また、生成した人工多能性幹細胞を適宜の条件下で増殖させると人工多能性幹細胞のコロニーが得られるが、コロニーの形状から人工多能性幹細胞の存在を特定することが可能である。例えば、マウス人工多能性幹細胞は盛り上がったコロニーを形成するのに対して、ヒト人工多能性幹細胞は扁平なコロニーを形成することが知られており、これらのコロニー形状はそれぞれマウスES細胞及びヒトES細胞のコロニーと極めて類似しているので、当業者はコロニー形状から生成した人工多能性幹細胞を特定することが可能になる。 The generated induced pluripotent stem cells can be confirmed with various markers peculiar to undifferentiated cells, and the means thereof are described specifically and in detail in the above-mentioned publications. Various media that can maintain the undifferentiation and pluripotency of ES cells or media that cannot maintain the properties thereof are known in the art. By using a combination of appropriate media, artificial pluripotent stem cells Can be separated efficiently. The differentiation ability and proliferation ability of the separated induced pluripotent stem cells can be easily confirmed by those skilled in the art by using confirmation means widely used for ES cells. Further, when the generated induced pluripotent stem cells are grown under appropriate conditions, a colony of induced pluripotent stem cells can be obtained, and the presence of the induced pluripotent stem cell can be specified from the shape of the colony. For example, it is known that mouse induced pluripotent stem cells form raised colonies, whereas human induced pluripotent stem cells are known to form flat colonies, and these colony shapes are mouse ES cells and Since it is very similar to a colony of human ES cells, those skilled in the art can identify induced pluripotent stem cells generated from the colony shape.
 初期化すべき肝細胞又は胃上皮細胞の種類は特に限定されず、例えば、任意の哺乳類動物由来(例えばヒト、マウス、ラット、ウシ、ヒツジ、ウマ、サルなどの哺乳類動物由来)の細胞を用いることができ、胎児期の肝細胞又は胃上皮細胞のほか、成熟個体における肝細胞又は胃上皮細胞を用いてもよい。好ましくは成人のヒト個体から分離・採取した肝細胞又は胃上皮細胞を用いることができる。肝細胞や胃上皮細胞は生検や手術により分離・採取することができ、胃上皮細胞については例えば内視鏡検査で採取することも可能である。人工多能性幹細胞を疾病の治療に用いる場合には、患者から分離した肝細胞又は胃上皮細胞を用いることが望ましい。例えば、心不全、インスリン依存性糖尿病、パーキンソン病、又は脊髄損傷などの疾患に対して幹細胞移植療法を行う場合には、患者から分離・採取した肝細胞又は胃上皮細胞を用いることが好ましい。 The type of hepatocytes or gastric epithelial cells to be initialized is not particularly limited. For example, cells derived from any mammal (eg, mammals such as human, mouse, rat, cow, sheep, horse, monkey) are used. In addition to fetal hepatocytes or gastric epithelial cells, hepatocytes or gastric epithelial cells in mature individuals may be used. Preferably, hepatocytes or gastric epithelial cells isolated and collected from adult human individuals can be used. Hepatocytes and gastric epithelial cells can be separated and collected by biopsy or surgery, and gastric epithelial cells can also be collected by, for example, endoscopy. When artificial pluripotent stem cells are used for treatment of diseases, it is desirable to use hepatocytes or gastric epithelial cells isolated from patients. For example, when stem cell transplantation is performed for diseases such as heart failure, insulin-dependent diabetes, Parkinson's disease, or spinal cord injury, it is preferable to use hepatocytes or gastric epithelial cells isolated and collected from patients.
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。以下、実施例において人工多能性幹細胞をiPS細胞と略す。
例1
<方法>
1.成体マウス肝細胞及び胃上皮細胞の初代培養
 ばらばらにしたマウス肝細胞を2段階コラゲナーゼ・パーフュージョン法で単離し、肝実質細胞は文献記載の方法で単離した(Hepatology, 31, 65, 2000)。マウスの胃を摘出して切開し、PBSで洗浄し、小片に分けた。腺胃粘膜を細かく刻み、0.05%のコラゲナーゼ・タイプI、150 U/mlのDispase(Gibco)、及び0.2%ウシ血清アルブミンを含む消化液を用いて37℃で振盪しながら60分間消化した。初代肝細胞及び胃上皮細胞は、ウシ血清アルブミン 2.0 g/L, グルコース 2.0 g/L, ガラクトース 2.0 g/l, オルニチン 0.1 g/L, プロリン 0.030 g/L, ニコチンアミド 0.610 g/L, ZnCl2 0.025 mg/L, ZnSO4・7H2O 0.750 mg/l, CuSO4・5H2O 0.20 mg/l, MnSO4 0.025 mg/l, グルタミン 5.0 mM, インスリン 5.0 mg/l, ヒトトランスフェリン 5.0 mg/l, セレニウム 5.0 μg/l, デキサメタゾン 10-7 M, ペニシリン 100 mg/l, 及び ストレプトマイシン 100 mg/lを補充したDMEM(ナカライテスク製)からなる基本合成培地(basal chemically defined medium)で培養した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example. In the following examples, induced pluripotent stem cells are abbreviated as iPS cells.
Example 1
<Method>
1.Primary culture of adult mouse hepatocytes and gastric epithelial cells Separated mouse hepatocytes were isolated by a two-stage collagenase perfusion method, and hepatocytes were isolated by literature methods (Hepatology, 31, 65, 2000). The stomach of the mouse was excised and incised, washed with PBS and divided into small pieces. The glandular gastric mucosa was minced and digested for 60 minutes with shaking at 37 ° C. using a digestion solution containing 0.05% collagenase type I, 150 U / ml Dispase (Gibco), and 0.2% bovine serum albumin. Primary hepatocytes and gastric epithelial cells are bovine serum albumin 2.0 g / L, glucose 2.0 g / L, galactose 2.0 g / l, ornithine 0.1 g / L, proline 0.030 g / L, nicotinamide 0.610 g / L, ZnCl 2 0.025 mg / L, ZnSO 4・ 7H 2 O 0.750 mg / l, CuSO 4・ 5H 2 O 0.20 mg / l, MnSO 4 0.025 mg / l, Glutamine 5.0 mM, Insulin 5.0 mg / l, Human transferrin 5.0 mg / l , Selenium 5.0 μg / l, dexamethasone 10 −7 M, penicillin 100 mg / l, and streptomycin 100 mg / l, and cultured in a basic chemically defined medium consisting of DMEM (manufactured by Nacalai Tesque).
2.レトロウイルスの調製
 pMXs由来レトロウイルスは、肝細胞及び胃上皮細胞のために文献記載の方法に若干の改変を加えて調製した(Cell, 126, 663, 2006)。10% FBSを含むDMEM培地中でPLAT-E細胞を100 mmプレートあたり8×106個の割合でまいた。翌日、27μlのFuGENE6トランスフェクション試薬(ロッシュ)を用いて9μgのレトロウイスルベクターをPLAT-E細胞に導入した。24時間後に培地を10mlの上記の基本合成培地(basal chemically defined medium)に交換した。翌日、PLAT-E細胞培養物からのウイルスを含む上清を回収し、0.45μmのセルロースアセテートフィルター(ファットマン)で濾過した。
2. Preparation of retroviruses Retroviruses derived from pMXs were prepared for hepatocytes and gastric epithelial cells with some modifications to the methods described in the literature (Cell, 126, 663, 2006). PLAT-E cells were spread at a rate of 8 × 10 6 cells per 100 mm plate in DMEM medium containing 10% FBS. The next day, 9 μg of retroviral vector was introduced into PLAT-E cells using 27 μl of FuGENE6 transfection reagent (Roche). After 24 hours, the medium was replaced with 10 ml of the above basal chemically defined medium. The next day, the virus-containing supernatant from the PLAT-E cell culture was collected and filtered through a 0.45 μm cellulose acetate filter (Fatman).
3.肝細胞及び胃上皮細胞の初代培養物へのレトロウイルスのトランスフェクション
 初代培養の開始から1日後に培地を肝細胞増殖因子(HGF, ペプロテック) 40 ng/ml及び上皮細胞成長因子(EGF, ペプロテック) 20 ng/mlを添加した基本合成培地(basal chemically defined medium)に交換した。胃上皮細胞の培養については2日目に、肝細胞の培養については3日目に、培地を、PLAT-E細胞培養物から得たレトロウイルスを含む培地(ポリブレン(最終濃度8μg/ml)、HGF(40 ng/ml)、及びEGF(20 ng/ml)を補充)に交換した。
3.Transfection of retrovirus into primary cultures of hepatocytes and gastric epithelial cells One day after the start of primary culture, the medium was mixed with hepatocyte growth factor (HGF, peprotech) 40 ng / ml and epidermal growth factor (EGF, (Peprotech) The basal chemically defined medium was replaced with 20 ng / ml. On day 2 for the culture of gastric epithelial cells and on day 3 for the culture of hepatocytes, the medium was replaced with medium containing retrovirus obtained from PLAT-E cell culture (polybrene (final concentration 8 μg / ml), HGF (40 ng / ml) and EGF (20 ng / ml) supplemented).
4.iPS細胞の誘導
 肝細胞及び胃上皮細胞の初代培養物からのiPS細胞の誘導は、文献記載の方法に若干の改変を加えて行った(Cell, 126, 663, 2006)。肝細胞及び胃上皮細胞を単離し、フィーダー細胞上で培養し、上記のpMXs-Oct3/4、-Sox2、-c-Myc、及び-Klf4を導入した。遺伝子導入の24時間後に細胞をHGF 40 ng/ml及びEGF 20 ng/mlを添加した基本合成培地(basal chemically defined medium)(補充)に交換し、さらに2日ごとに培地を交換し、Fbx15選択については遺伝子導入後3日目、Nanog選択については遺伝子導入7日目に、LIFを添加したES培地(Proc. Natl. Acad. Sci. USA, 93, 14041, 1996)と培地交換した。Fbx15によるiPS細胞の選択についてはG418を最終濃度0.3 mg/mlで添加し、NanogによるiPS細胞の選択についてはピューロマイシン 1.5μg/mlを添加した。一つの実験では遺伝子導入の10日後にG418選択を開始し、別の実験では薬剤選択を行わなかった(表1)。奇形腫形成、RT-PCR分析、及びビサルファイト(bisulfite)ゲノムシークエンシングは文献記載の方法に従って行った(Cell, 126, 663, 2006)。
4. Induction of iPS cells Induction of iPS cells from primary cultures of hepatocytes and gastric epithelial cells was performed by slightly modifying the methods described in the literature (Cell, 126, 663, 2006). Hepatocytes and gastric epithelial cells were isolated and cultured on feeder cells, and the above-described pMXs-Oct3 / 4, -Sox2, -c-Myc, and -Klf4 were introduced. 24 hours after gene transfer, replace cells with basal chemically defined medium (supplemented) supplemented with 40 ng / ml HGF and 20 ng / ml EGF, then replace medium every 2 days and select Fbx15 On day 3 after gene introduction, and on day 7 for gene selection, the medium was replaced with ES medium supplemented with LIF (Proc. Natl. Acad. Sci. USA, 93, 14041, 1996). For selection of iPS cells by Fbx15, G418 was added at a final concentration of 0.3 mg / ml, and for selection of iPS cells by Nanog, puromycin 1.5 μg / ml was added. In one experiment, G418 selection was started 10 days after gene transfer and in another experiment no drug selection was performed (Table 1). Teratoma formation, RT-PCR analysis, and bisulfite genome sequencing were performed according to literature methods (Cell, 126, 663, 2006).
5.遺伝系列追跡分析のためのトリプルトランスジェニックマウスの作製
 まずホモ接合のGAG-CAT-Zマウス(Biochem. Biophys. Res. Commun., 237, 318, 1997)をホモ接合のNanogレポーターマウスと交配した。次に、得られたF1マウスをホモ接合のAlb-Creマウス(J. Biol. Chem., 274, 305, 1999)と交配させ、トリプルトランスジェニックマウスを得た。iPS細胞の誘導のために初代肝細胞を該トリプルトランスジェニックマウスから分離した。
5. Generation of triple transgenic mice for follow-up analysis of genetic lines First, homozygous GAG-CAT-Z mice (Biochem. Biophys. Res. Commun., 237, 318, 1997) were crossed with homozygous Nanog reporter mice. did. Next, the obtained F1 mice were crossed with homozygous Alb-Cre mice (J. Biol. Chem., 274, 305, 1999) to obtain triple transgenic mice. Primary hepatocytes were isolated from the triple transgenic mice for induction of iPS cells.
6.培養細胞のX-gal染色
 細胞をPBSで洗浄して1% グルタルアルデヒドで5分間固定した。1% Triton-X100での処理及びPBSによる洗浄の後、染色液(PBS中に0.04% X-gal/DMSO, 1mM MgCl2, 3 mM K4[Fe(CN)6], 3 mM K3[Fe(CN)6]を含む)を用いて細胞を37℃で12時間染色した。
6. X-gal staining of cultured cells Cells were washed with PBS and fixed with 1% glutaraldehyde for 5 minutes. After treatment with 1% Triton-X100 and washing with PBS, staining solution (0.04% X-gal / DMSO, 1 mM MgCl 2 , 3 mM K 4 [Fe (CN) 6 ], 3 mM K 3 [ The cells were stained for 12 hours at 37 ° C. with Fe (CN) 6 ].
7.レトロウイルス導入部位の決定
 iPS細胞におけるレトロウイルスの導入部位は文献記載の方法に若干の改変を加えてインバース・ポリメラーゼ連鎖反応(IPCR)にて行った(Nat. Genet., 23, 348, 1999; Proc. Natl. Acad. Sci. USA, 93, 2414, 1996)。即ち、制限酵素TaqI及びHpyCH4IV(ニューイングランドバイオラボズ)をそれぞれ用いてiPS細胞からのゲノミックDNAを消化し、レトロウイルスベクターとフランキング配列との間の接合を含むフラグメントを得た。制限酵素で消化したフラグメントを半量のライゲーション・ハイ(Ligation High, 東洋紡)を用いて16℃で30分間ライゲーション反応を行った。このライゲーションしたテンプレートを用いてフランキング配列を含むベクター端をEX taqポリメラーゼ(タカラ)を用いてPCRにて増幅した。1回目のPCRにはプライマーとして5'-AGGAACTGCTTACCACA-3'及び5'- CTGTTCCTTGGGAGGGT-3'を用い、2回目のPCRには5'-TCCTGACCTTGATCTGA-3'及び5'-CTGAGTGATTGACTACC-3'を用いた。
7.Decision of retrovirus introduction site Retrovirus introduction site in iPS cells was performed by inverse polymerase chain reaction (IPCR) with some modifications to the method described in the literature (Nat. Genet., 23, 348, 1999; Proc. Natl. Acad. Sci. USA, 93, 2414, 1996). That is, genomic DNA from iPS cells was digested using restriction enzymes TaqI and HpyCH4IV (New England Biolabs), respectively, to obtain a fragment containing the junction between the retroviral vector and the flanking sequence. The fragment digested with the restriction enzyme was subjected to a ligation reaction at 16 ° C. for 30 minutes using a half amount of Ligation High (Toyobo). Using this ligated template, a vector end containing a flanking sequence was amplified by PCR using EX taq polymerase (Takara). 5'-AGGAACTGCTTACCACA-3 'and 5'-CTGTTCCTTGGGAGGGT-3' were used as primers for the first PCR, and 5'-TCCTGACCTTGATCTGA-3 'and 5'-CTGAGTGATTGACTACC-3' were used for the second PCR. .
 PCT産物をゲルで精製し ABI3130 DNA シーケンサー(アプライドバイオシステムズ)で直接配列決定した。直接配列決定ができない場合には、PCR産物をTOPO TAクローニング(インビトロジェン)を用いてpCR2.1にサブクローニングして再度配列決定した。各ウイルス挿入部位に4種の因子のいずれが存在するかを確認するために、対応のフランキング配列から設計したプライマーと、4種の因子のうちの1種のコード配列から設計したもう一種のプライマーとを用いたPCRで染色体フラグメントを増幅した。マウスゲノムに対するフランキング配列のアラインメントはカリフォルニア大学サンタクルズ校(UCSC)BLATゲノムブラウザー(2006Feb and/or 2007Jul, http://genome.ucsc.edu/cgi-bin/hgblat?command=start)、ヨーロッパ・バイオインフォマティックス・インスティチュート(FBI)及びウェルカム・トラスト・サンガー・インスティチュート(WTSI)のアンサンブルデータベース(Build m36, http://www.ensembl.org)、及びナショナル・インスティチュート・オブ・ヘルス(NIH)のナショナル・センター・フォア・バイオテクノロジー・インフォーメーション(NCBI)のBLASTN (http://www.ncbi.nlm.nih.gov/)で行った。 The PCT product was purified on a gel and directly sequenced with an ABI3130 DNA sequencer (Applied Biosystems). If direct sequencing was not possible, the PCR product was subcloned into pCR2.1 using TOPO TA cloning (Invitrogen) and sequenced again. To confirm which of the four factors are present at each virus insertion site, a primer designed from the corresponding flanking sequence and another one designed from the coding sequence of one of the four factors Chromosomal fragments were amplified by PCR using primers. The alignment of flanking sequences to the mouse genome is the University of California, Santa Cruz (UCSC) BLAT Genome Browser (2006Feb and / or 2007Jul, http://genome.ucsc.edu/cgi-bin/hgblat?command=start), European Bio Informatics Institute (FBI) and Welcome Trust Sanger Institute (WTSI) Ensemble Database (Build m36, http://www.ensembl.org), and National Institute of Health (NIH) National Center for Biotechnology Information (NCBI) at BLASTNni (http://www.ncbi.nlm.nih.gov/).
 挿入部位及びレトロウイルスの特定の両方を行うために、選択的インバースPCR (SIPCR)も行った。染色体DNAをPstI、NsiI、BamHI、又はBglII (東洋紡)のような6塩基切断酵素で消化した。これらのフラグメントをライゲーションしたものを鋳型としてネスティッドPCRにて増幅させた。1回目のPCRにおける共通のフォアワードプライマーとしてpMXsU3F1 (5'-AAATGACCCTGTGCCTTATTTG-3')を用いた。1回目のPCRにおけるリバースプライマーとしてOct3/4R1 (5'-CTGAAGGTTCTCATTGTTGTCG-3')、Sox2R1 (5'-AGTGGGAGGAAGAGGTAACCAC-3')、c-MycR1 (5'-TTCTTGCTCTTCTTCAGAGTCG-3')、又はKlf4R1 (5'-CGGAATGTATACTGGGTCCAAC-3')を用いた。2回目のPCRにおける共通のフォアワードプライマーとしてpMXsRF1 (5'-TCCAATAAACCCTCTTGCAGTT-3')を用い、2回目のPCRのリバースプライマーとしてOct3/4R2 (5'-AGGTGATCCTCTTCTGCTTCAG-3')、Sox2R2 (5'-CTGCGAGTAGGACATGCTGTAG-3')、c-mycR2 (5'-AATCGGACGAGGTACAGGATTT-3')、又はKlf4R2 (5'-GCAGATTCTCGGCTGTAGAGGA-3')を用いた。配列は直接又はpCR2.1へのサブクローニング後に決定した。 In order to perform both the insertion site and retrovirus identification, selective inverse PCR (SIPCR) was also performed. Chromosomal DNA was digested with a 6-base cleavage enzyme such as PstI, NsiI, BamHI, or BglIIgl (Toyobo). Amplified by nested PCR using a ligated product of these fragments as a template. PMXsU3F1 (5′-AAATGACCCTGTGCCTTATTTG-3 ′) was used as a common forward primer in the first PCR. As reverse primers in the first PCR, Oct3 / 4R1 (5'-CTGAAGGTTCTCATTGTTGTCG-3 '), Sox2R1 (5'-AGTGGGAGGAAGAGGTAACCAC-3'), c-MycR1 (5'-TTCTTGCTCTTCTTCAGAGTCG-3 '), or Klf4R1 (5' -CGGAATGTATACTGGGTCCAAC-3 ') was used. PMXsRF1 (5'-TCCAATAAACCCTCTTGCAGTT-3 ') is used as a common forward primer in the second PCR, and Oct3 / 4R2 (5'-AGGTGATCCTCTTCTGCTTCAG-3'), Sox2R2 (5'- CTGCGAGTAGGACATGCTGTAG-3 ′), c-mycR2 (5′-AATCGGACGAGGTACAGGATTT-3 ′), or Klf4R2 (5′-GCAGATTCTCGGCTGTAGAGGA-3 ′) was used. The sequence was determined directly or after subcloning into pCR2.1.
8.イムノブロッティング
 レトロウイルス感染の4日後に細胞をPBS(-)で洗浄し、1×SDSサンプルバッファーで処理し、さらに煮沸した。細胞ライセートを10% SDS-ポリアクリルアミドゲル電気泳動で分離し、ニフッ化ポリビニリデンメンブレン(ミリポア)に移した。ブロットを4%スキムミルクを含むTBSTバッファーでブロックした後に、一次抗体溶液で4℃で一晩インキュベートした。TBSTバッファーで洗浄した後、メンブレンを西洋ワサビペルオキシダーゼ(HPR)標識二次抗体とインキュベートした。シグナルをイモビロン・ウェスタン・ケモイルミネッセントHRPサブストレート(ミリポア)とLAS3000イメージング装置(富士フイルム)で検出した。イムノブロッティング用の抗体としては、抗-Sox2抗血清(J. Biol. Chem., 280, 24371, 2005)、抗-Oct3/4抗体 (sc-5279、サンタクルズ)、抗-Klf4抗体 (sc-20691、サンタクルズ)、抗-c-Myc抗体 (sc-764、サンタクルズ)、抗-E-カドヘリン抗体(610182, BD バイオサイエンス)、抗-β-カテニン抗体(sc-7199、サンタクルズ)、抗-β-アクチン抗体(A5441, シグマ)、抗-マウス IgG-HRP抗体 (#7076, セル・シグナリング)、及び抗-ウサギ IgG-HRP抗体 (#7074, セル・シグナリング)を用いた。
8. Immunoblotting Four days after retrovirus infection, the cells were washed with PBS (−), treated with 1 × SDS sample buffer, and boiled. Cell lysates were separated by 10% SDS-polyacrylamide gel electrophoresis and transferred to a polyvinylidene difluoride membrane (Millipore). The blot was blocked with TBST buffer containing 4% skim milk and then incubated overnight at 4 ° C. with the primary antibody solution. After washing with TBST buffer, the membrane was incubated with a horseradish peroxidase (HPR) labeled secondary antibody. The signal was detected with an Immobilon Western Chemiluminescent Luminescent HRP substrate (Millipore) and a LAS3000 imaging device (Fuji Film). As an antibody for immunoblotting, anti-Sox2 antiserum (J. Biol. Chem., 280, 24371, 2005), anti-Oct3 / 4 antibody (sc-5279, Santa Cruz), anti-Klf4 antibody (sc-20691) , Santa Cruz), anti-c-Myc antibody (sc-764, Santa Cruz), anti-E-cadherin antibody (610182, BD Bioscience), anti-β-catenin antibody (sc-7199, Santa Cruz), anti-β- Actin antibody (A5441, Sigma), anti-mouse IgG-HRP antibody (# 7076, cell signaling), and anti-rabbit IgG-HRP antibody (# 7074, cell signaling) were used.
<結果>
 上皮細胞からiPS 細胞を樹立した。β-geo 遺伝子(β- ガラクトシダーゼとネオマイシン耐性遺伝子の融合遺伝子)をFbx15 遺伝子座にノックインしたマウス(Mol. Cell Biol., 23, 2699, 2003)から、肝細胞及び胃上皮細胞初代培養細胞(図1a)を単離した。Fbx15 遺伝子はES 細胞及び着床前の胚に特異的に発現している遺伝子である。Fbx15 レポーターによって選択された線維芽細胞(マウス胚性線維芽細胞[MEF]、又は尾端線維芽細胞[TTF])由来のiPS 細胞は、遺伝子発現、DNA メチル化パターン、及びキメラ形成においてES 細胞とは異なっている(Cell, 126, 663, 2006)。
<Result>
IPS cells were established from epithelial cells. Primary cells from hepatocytes and gastric epithelial cells from mice in which β-geo gene (a fusion gene of β-galactosidase and neomycin resistance gene) was knocked in at the Fbx15 locus (Mol. Cell Biol., 23, 2699, 2003) 1a) was isolated. The Fbx15 gene is specifically expressed in ES cells and preimplantation embryos. IPS cells derived from fibroblasts selected by the Fbx15 reporter (mouse embryonic fibroblasts [MEF] or caudal fibroblasts [TTF]) are ES cells in gene expression, DNA methylation pattern, and chimera formation. (Cell, 126, 663, 2006).
 この肝細胞及び胃上皮細胞に、レトロウイルスベクターを用いて4 種類の転写因子(Oct3/4、Sox2、Klf4、及びc-Myc)を導入した。レトロウイルスによる上皮細胞への遺伝子導入効率(30~45%、図2a)は、MEF への導入効率(>85%)よりも低かった。希釈したレトロウイルスでMEF に遺伝子導入を行った場合、その効率が30%前後であった場合にはiPS 細胞は得られていなかった(図2b)。上皮細胞に遺伝子導入して3 日後、血清とG418(ネオマイシン)を加えたES 細胞用の培地に交換した。2 週間後、そのように低いレトロウイルスによる遺伝子導入効率にもかかわらず、肝細胞と胃上皮細胞の両方において、G418 耐性で、核が大きく細胞質に乏しい特徴を持つES 細胞様のコロニーが複数観察された。 4 types of transcription factors (Oct3 / 4, Sox2, Klf4, and c-Myc) were introduced into the hepatocytes and gastric epithelial cells using a retroviral vector. The efficiency of retrovirus gene transfer into epithelial cells (30-45%, Figure 2a) was lower than the efficiency of transfer into MEF (> 85%). When the gene was introduced into MEF with diluted retrovirus, iPS cells were not obtained when the efficiency was around 30% (Fig. 2b). Three days after the introduction of the gene into the epithelial cells, the medium was replaced with a medium for ES cells containing serum and G418 (neomycin). Two weeks later, in spite of such low retroviral gene transfer efficiency, both ES cells and gastric epithelial cells were observed with multiple ES cell-like colonies that are resistant to G418 and have large nuclei and poor cytoplasm It was done.
 G418 耐性のコロニーを増殖させたところ、約60%の細胞がマウスES 細胞と区別できない形態を示した(図1b)。これらの細胞をそれぞれiPS-Hep(iPS-Hepatic)、及びiPS-Stm(iPS-Stomach)と命名した。これらの細胞は増殖能についてもES細胞と同様の結果を示した(図3a)。RT-PCR を行うと、iPS-Hep細胞(図1c)とiPS-Stm 細胞(図3b)は、ES 細胞と同程度の内在性のOct3/4 とSox2 を発現していることがわかった。また、iPS-Hep 細胞とiPS-Stm 細胞は、Nanog、Rex1、ECAT1、Cripto、及びGdf3 などES 細胞のマーカー遺伝子についてもES 細胞と同程度に発現していた。一方、Fbx15 レポーターによって選択されたTTF 由来のiPS 細胞(iPS-TTF)は、ES 細胞マーカー遺伝子の発現量が低かった(図1c)。 When G418 -resistant colonies were grown, about 60% of the cells showed a form that could not be distinguished from mouse ES cells (Fig. 1b). These cells were named iPS-Hep (iPS-Hepatic) and iPS-Stm (iPS-Stomach), respectively. These cells also showed the same proliferative ability as ES cells (Fig. 3a). When RT-PCR was performed, iPS-Hep cells (Fig. 1c) and iPS-Stm cells (Fig. 3b) were found to express endogenous Oct3 / 4 cells and Sox2 cells, similar to ES cells. In addition, iPS-Hep cells and iPS-Stm cells expressed ES cell marker genes such as Nanog, Rex1, ECAT1, Cripto, and Gdf3 to the same extent as ES cells. On the other hand, TPS-derived iPS cells (iPS-TTF) selected by the Fbx15 reporter had a low expression level of ES cell marker gene (FIG. 1c).
 次いで、iPS-Hep 細胞とiPS-TTF 細胞の作製時に、2 通りの培養条件を検討した。一方は上皮成長因子(EGF)と肝細胞増殖因子(HGF)を添加するが血清は添加しない条件(図1c, A)、もう一方は10%の血清を添加するがEGF及びHGFをは添加しない条件(図1c, B)とした。この結果、両方の培養条件下で、iPS-Hep 細胞はiPS-TTF 細胞よりもES 細胞マーカー遺伝子の発現量が多かった。iPS-Hep 細胞とiPS-Stm 細胞では、Oct3/4、Nanog、及びFbx15 各遺伝子のプロモーター領域の大部分が完全とはいえないものの非メチル化状態にあった(図3c)。この点についてもiPS-TTF 細胞とは対照的であり、iPS-TTF 細胞では部分的な脱メチル化が認められるのみであった(Cell, 126, 663, 2006)。このように、iPS-MEF、iPS-TTF と同様に、Fbx15 遺伝子の発現によって選択された細胞であるにもかかわらず、iPS-Hep 細胞とiPS-Stm 細胞はiPS-TTF 細胞よりもES 細胞によく似ていた。そこで、iPS-Hep 細胞とiPS-Stm 細胞(1×10細胞)をヌードマウスの後側腹部皮下に移植した(表1)。 Next, two types of culture conditions were examined when iPS-Hep cells and iPS-TTF cells were prepared. One with the addition of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) but no serum (Figure 1c, A), the other with 10% serum but no EGF or HGF Conditions (Fig. 1c, B) were used. As a result, under both culture conditions, iPS-Hep cells expressed more ES cell marker genes than iPS-TTF cells. In iPS-Hep cells and iPS-Stm cells, most of the promoter regions of the Oct3 / 4, Nanog, and Fbx15 genes were not complete but were unmethylated (FIG. 3c). This was also in contrast to iPS-TTF cells, and only partial demethylation was observed in iPS-TTF cells (Cell, 126, 663, 2006). Thus, as with iPS-MEF and iPS-TTF, iPS-Hep cells and iPS-Stm cells are more ES cells than iPS-TTF cells, despite being selected by Fbx15 gene expression. It was very similar. Therefore, iPS-Hep cells and iPS-Stm cells (1 × 10 6 cells) were transplanted subcutaneously into the posterior abdomen of nude mice (Table 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 移植から4 週間後、神経組織、筋肉、軟骨、腸様の上皮組織など三胚葉に由来するさまざまな組織からなる腫瘍が形成された(図4)。この結果から、iPS-Hep 細胞とiPS-Stm 細胞は多能性を持つことが実証された。 4 weeks after transplantation, tumors composed of various tissues derived from the three germ layers such as nerve tissue, muscle, cartilage, and intestinal-like epithelial tissue were formed (FIG. 4). From this result, it was demonstrated that iPS-HepPS cells and iPS-Stm cells have pluripotency.
 次にこれらの細胞を、マイクロインジェクションによって胚盤胞にも移植した(表2)。Fbx15 レポーターマウスに由来する8 種類のiPS-Hep 細胞のクローンと6 種類のiPS-Stm クローンをインジェクションに用いた。さらに、Nanog 遺伝子の発現によって選択した5 種類のiPS-Hep 細胞のクローンについても同様にインジェクションを行った。これらのクローンの大半は、恒常的に活性化しているCAG プロモーター(Gene, 108, 193, 1991)によって発現するGFP の導入遺伝子を有していた。加えて、選択マーカーなしに形態のみで選択した1 種類のiPS-Hep 細胞のクローン(A. Meissner et al., Nat., Biotechnol, 2007; Cell Stem Cell,, 2007; M. Nakagawa et al., Nat. Biotechnol., 2007)も移植した。これらのなかからiPS-Hep 細胞の10 クローン、及びiPS-Stm 細胞の2 クローンに由来する成体キメラマウス(毛色によって確認される)が得られた(図5a)。 Next, these cells were also transplanted into blastocysts by microinjection (Table 2). Eight kinds of iPS-Hep ~ clones derived from Fbx15 ~ reporter mice and 6 ~ iPS-Stm ~ clones were used for injection. Furthermore, the injections were similarly performed on clones of 5 types of iPS-Hep cells selected by expression of the Nanog gene. Most of these clones had the GFP transgene expressed by the constitutively activated CAG promoter (Gene, 108, 193, 1991). In addition, one iPS-Hep cell clone selected only by morphology without a selectable marker (A. Meissner et al., Nat., Biotechnol, 2007; Cell Stem Cell ,, 2007; M. Nakagawa et al., Nat. Biotechnol, 2007) was also transplanted. Among these, adult chimeric mice (confirmed by hair color) derived from 10 clones of iPS-Hep cells and 2 clones of iPS-Stm cells were obtained (Fig. 5a).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 Fbx15 遺伝子の発現で選択されたiPS-Hep 細胞の1クローン(21 週齢のマウス由来)とiPS-Stm 細胞の2 クローン(12 週齢のマウス由来)がそれぞれ生殖細胞系列に導入されたことがGFP の発現と導入遺伝子の存在から確認された(図5b)。この点に関しても同様にNanog 遺伝子の発現によって選択された線維芽細胞(MEF 又はTTF)由来iPS 細胞(iPS-fibroblast)だけが成体や生殖細胞系列キメラになり、Fbx15 によって選択されたiPS-fibroblast ではそれらが得られなかった(Cell, 126, 663, 2006)ことと対照的であった。 1 clone of iPS-Hep cells selected from the expression of Fbx15 gene (derived from 21-week-old mice) and 2 clones of iPS-Stm cells (derived from 12-week-old mice) were introduced into the germline. This was confirmed by the expression of GFP and the presence of the transgene (FIG. 5b). In this regard as well, only iPS-fibroblasts derived from fibroblasts (MEF) or TTF) selected by expression of Nanog gene become adult or germline chimeras, and in iPS-fibroblast selected by Fbx15 Contrast that they were not obtained (Cell, 126, 663, 2006).
 次に、iPS-Hep 細胞由来、iPS-Stm 細胞由来、又はiPS-MEF 細胞由来のマウス間で腫瘍発生率を比較した。インジェクションした12 系統のうち独立した10 クローンのiPS-MEF から46 個体の成体キメラマウスが得られた。これらのキメラマウスのうち、約30%が30 週齢までに腫瘍を発生した(図6a)。一方、iPS-Hep 細胞とiPS-Stm 細胞の12 クローンから得られた65 個体の成体キメラマウスでは、この期間中に腫瘍の発生は認められなかった。さらに、8 種類のiPS-MEF 細胞クローンに由来するF1 マウスのおよそ20%においても、30 週齢までに腫瘍が発生したが、iPS-Hep 細胞やiPS-Stm 細胞由来のF1 マウスでは腫瘍は観察されなかった(図6a)。iPS-Hep 細胞やiPS-Stm 細胞由来のマウスのうちの幾匹かが、通常飼育施設への移動後に死亡したが、これらのマウスを剖検しても腫瘍は発見できなかった(図6a)。 Next, tumor incidence was compared between mice derived from iPS-Hep cells, iPS-Stm cells, or iPS-MEF cells. 46 chimeric adult mice were obtained from iPS-MEF clones of independent 10 clones among the 12 clones injected. Of these chimeric mice, approximately 30% developed tumors by 30 weeks of age (FIG. 6a). On the other hand, in the 65 chimera adult chimeric mice obtained from 12 clones of iPS-Hep sputum cells and iPS-Stm sputum cells, no tumor was observed during this period. In addition, approximately 20% of the F1 mice derived from 8 iPS-MEF cell clones developed tumors by 30 weeks of age, but tumors were observed in F1 mice derived from iPS-Hep cells and iPS-Stm cells. Not (Figure 6a). Some of the mice derived from iPS-Hep sputum cells and iPS-Stm sputum cells died after moving to a normal housing facility, but no tumor was found even after autopsy of these mice (FIG. 6a).
 しかし、iPS-Hep 細胞及びiPS-Stm 細胞由来のキメラマウスは、非キメラマウスと比較して、周産期死亡率が高かった(図6b)。このような周産期における高死亡率は、iPS-MEF 細胞由来のキメラマウスでは認められなかった。死亡したマウスの剖検を行ったが、肉眼的な外観は正常で、死因は不明であった。クローン動物によくあると考えられているが(Nat. Genet., 39, 295, 2007)、何らかのエピジェネティックな異常が周産期死亡の原因である可能性もある。一方、生後1 日を経過したマウスでは、死亡率増加は認められなかった(図6a)。 However, chimeric mice derived from iPS-Hep cells and iPS-Stm cells had higher perinatal mortality compared to non-chimeric mice (Fig. 6b). Such high mortality during the perinatal period was not observed in chimeric mice derived from iPS-MEF sputum cells. Necropsy was performed on the dead mice, but the macroscopic appearance was normal and the cause of death was unknown. Although considered common in cloned animals (Nat. N Genet., 39, 295, 2007), some epigenetic anomalies may cause perinatal mortality. On the other hand, there was no increase in mortality in mice that were 1 day old (Fig. 6a).
 次に、iPS-Hep 細胞とiPS-Stm 細胞におけるレトロウイルス挿入部位(RIS)の数を調べた。サザンブロット解析によって、各クローンに導入された4 種類のレトロウイルスのそれぞれについて、1 本から4 本のバンドが検出された(図7)。この数はMEF-iPS 細胞におけるバンド数よりも少なく、MEF-iPS 細胞では各レトロウイルスあたり1 カ所から12 カ所のRIS が検出された。インバースPCR を用いて調べたところ、iPS-Hep 細胞の2 クローンとiPS-Stm 細胞の2クローンでは、RIS は複数の染色体にランダムに分布していた(図8)。 Next, the number of retrovirus insertion sites (RIS) in iPS-Hep cells and iPS-Stm cells was examined. By Southern blot analysis, 1 to 4 bands were detected for each of 4 types of retroviruses introduced into each clone (FIG. 7). This number is less than the number of bands in MEF-iPS sputum cells, and from 1 to 12 RIS sputum per retrovirus was detected in MEF-iPS sputum cells. When examined using inverse PCR, RIS was randomly distributed on multiple chromosomes in 2 clones of iPS-Hep cells and 2 clones of iPS-Stm cells (Fig. 8).
 レトロウイルスが挿入された部位の遺伝子は、機能的分類においても、その分子の細胞内局在においても、特定の偏向を示さなかった(図9)。RIS はおもにこれらの遺伝子の転写開始位置の近傍に存在していた(図10~14)。これらのデータは、iPS-Hep 細胞やiPS-Stm 細胞が、3 つの特性においてiPS-fibroblast と異なっていることを示している。第一に、iPS-Hep 細胞とiPS-Stm 細胞は、Fbx15 遺伝子の発現によって選択されているにもかかわらず成体キメラの形成に寄与していた。第二に、検証した30 週齢までの期間においてiPS-Hep細胞由来とiPS-Stm 細胞由来のキメラマウスでは腫瘍発生率の上昇が認められなかった。これらの2 つの特徴は、c-Myc のレトロウイルスを用いずに樹立されたiPS-MEFやTTF細胞と似ている(M. Nakagawa et al., Nat. Biotechnol., 2007)。このことは、iPS-Hep 細胞やiPS-Stm 細胞の樹立においては、iPS-MEFやRRF細胞の樹立と比較して、Myc が担う役割がより小さいことを示唆している。 The gene at the site where the retrovirus was inserted showed no specific bias in functional classification or in the intracellular localization of the molecule (FIG. 9). RIS was mainly present near the transcription start position of these genes (Figs. 10-14). These data indicate that iPS-Hep cells and iPS-Stm cells differ from iPS-fibroblast in three properties. First, iPS-Hep cells and iPS-Stm cells contributed to the formation of adult chimeras despite being selected by the expression of the Fbx15 gene. Second, no increase in tumor incidence was observed in iPS-Hep cell-derived and iPS-Stm -derived chimeric mice during the period up to 30 weeks of age. These two features are similar to iPS-MEF and TTF cells established without using c-Myc retrovirus (M. Nakagawa et al., Nat. Biotechnol., 2007). This suggests that Myc plays a smaller role in the establishment of iPS-Hep cells and iPS-Stm cells than iPS-MEF and RRF cells.
 この可能性について検討するため、4 種類の因子から1 種類ずつ除外し、肝細胞からのiPS細胞作製に及ぼす影響を調べた。その結果、Oct3/4、Sox2、又はKlf4 を除外した場合には、iPS 細胞のコロニーは出現しなかった(図15a)。一方、c-Myc を除外した場合には、全4 種類を用いて作製した場合と較べ、コロニー数は20~40%減少したのみであった(図15a, b)。この結果は、c-Myc を除外すると90%以上もコロニーが減少したiPS-fibroblast 細胞とは対照的で(M. Nakagawa et al., Nat. Biotechnol., 2007)、肝細胞由来のiPS細胞樹立におけるMyc の重要性の低さを示している。 In order to investigate this possibility, 1 type was excluded from 4 types of factors, and the effect on the production of iPS cells from hepatocytes was examined. As a result, when Oct3 / 4, Sox2 or Klf4 was excluded, iPS cell colonies did not appear (FIG. 15a). On the other hand, when c-Myc was excluded, the number of colonies was only reduced by 20 to 40% compared to the case of using all 4 types (Fig. 15a, b). This result is in contrast to iPS-fibroblast cells, whose colonies decreased by more than 90% when c-Myc was excluded (M. Nakagawa et al., Nat. Biotechnol., 2007), and the establishment of iPS cells derived from hepatocytes. Shows the low importance of Myc.
 iPS-Hep 細胞、iPS-Stm 細胞とiPS-MEFやRRF細胞との第三の違いは、前2 者のiPS 細胞のRIS が後者のiPS 細胞のそれより少ない点である。レトロウイルスによる4 種類の転写因子の発現量は、線維芽細胞よりも肝細胞において高かった(図16)。この事実によって、少なくとも部分的にはiPS-Hep 細胞においてRIS が少ない理由を説明できる。また、ES 細胞は、細胞間の緊密な接触や、細胞表面におけるE- カドヘリン発現など、上皮細胞としての特徴を持っていることが示されている(Mol. Biol. Cell., 18, 2838, 2007)。今回の解析では、肝細胞におけるE- カドヘリンとβ- カテニンの発現が線維芽細胞よりも高く、ES 細胞と同程度であることを確認した(図16)。この類似性も、iPS-Hep細胞とiPS-Stm 細胞においてRIS の数が少なくなることに寄与していると考えられる。 The third difference between iPS-Hep cells and iPS-Stm cells and iPS-MEF and RRF cells is that the RIS of the former two iPS cells is less than that of the latter iPS cells. The expression level of 4 transcription factors by retrovirus was higher in hepatocytes than in fibroblasts (Fig. 16). This fact can explain why, at least in part, there is less RIS in iPS-Hep cells. In addition, ES cells have been shown to have epithelial characteristics such as close contact between cells and E- cadherin expression on the cell surface (Mol. Biol. Cell., 18, 2838, 2007). In this analysis, it was confirmed that the expression of E- リ ン cadherin and β- 発 現 catenin in hepatocytes was higher than that of fibroblasts and similar to that of ES cells (Figure 16). This similarity is also considered to contribute to the decrease in the number of RIS in iPS-Hep cells and iPS-Stm cells.
 iPS-Hep 細胞の起源を調べるため、遺伝学的手法による細胞系列追跡解析を行った(図17a)。Nanog レポーターマウスでは、iPS細胞の選択のためにGFP 遺伝子とピューロマイシン耐性遺伝子がNanog 遺伝子にノックインされているが、まずこのマウスとアルブミンプロモーターによってCre リコンビナーゼを発現するトランスジェニックマウス(J. Biol. Chem., 274, 305, 1999)を交配させ、その後さらに恒常的に活性化しているプロモーター下でloxP-CAT-loxP-β-gal(β- ガラクトシダーゼ)カセットを発現するトランスジェニックマウス(Biochem. Biophys. Res. Commun., 237, 318, 1997)と交配させた。このトリプルトランスジェニックマウスでは、アルブミン遺伝子の活性化に伴ってβ-gal 活性が誘導され、アルブミン遺伝子の発現が停止してもβ-gal 活性は持続する。このマウスから初代肝細胞を単離し、4 種類の因子を導入してiPS 細胞を作製した。 In order to investigate the origin of iPS-Hep cells, we performed a cell lineage tracking analysis using a genetic technique (Fig. 17a). In the Nanog reporter mouse, the GFP gene and the puromycin resistance gene are knocked into the Nanog gene for selection of iPS cells. First, a transgenic mouse that expresses Crel recombinase by this mouse and albumin promoter (J. Biol. Chem. , 274, 305, 1999), and then transgenic mice expressing the loxP-CAT-loxP-β-gal (β- galactosidase) cassette under a constitutively activated promoter (Biochem. Biophys. Res. Commun., 237, 318, 1997). In this triple transgenic mouse, β-gal activity is induced as the albumin gene is activated, and β-gal activity persists even if the expression of the albumin gene is stopped. Primary hepatocytes were isolated from these mice, and 4 types of factors were introduced to prepare iPS cells.
 遺伝子導入から14 日後、ピューロマイシンによる選択を開始した。遺伝子導入後30 日までに、100 個以上のGFP 陽性のコロニーが得られた(図17b 左と中央)。その大半はβ-gal 陽性でもあったことから(図17b 右)、iPS-Hep 細胞は肝細胞か、あるいは他のアルブミン発現細胞に由来しており、アルブミンを発現しない未分化細胞に由来するものではないことがわかった。GFP 陽性でβ-gal 陰性のコロニーも散見されたが、それらは肝細胞の初代培養に混在していたアルブミン陰性の細胞から生じたか、もしくは単純にCre リコンビナーゼによる不完全な組換えを反映していると考えられる。これらの結果から、4 種類の転写因子を用いてアルブミンプロモーターが活性化される段階まで分化が進んだ体細胞の初期化に成功したことを示している。さらに、iPS-Hep 細胞やiPS-Stm 細胞の樹立にあたり、ゲノムの特定の部位へのレトロウイルスの挿入が必要でないことも確認された。 14 days after gene transfer, selection with puromycin was started. By 30 days after gene transfer, 100 or more GFP-positive colonies were obtained (FIG. 17b, left and center). Since most of them were also β-gal -positive (Fig. 17b right), iPS-Hep cells are derived from hepatocytes or other albumin-expressing cells and derived from undifferentiated cells that do not express albumin I knew it wasn't. Some GFP -positive and β-gal -negative colonies were also found, but they originated from albumin-negative cells that were mixed in the primary culture of hepatocytes, or simply reflected incomplete recombination with Cre recombinase. It is thought that there is. These results indicate that we succeeded in reprogramming somatic cells that have been differentiated to the stage where the albumin promoter is activated using four types of transcription factors. Furthermore, it was also confirmed that retrovirus insertion into a specific site in the genome is not necessary for the establishment of iPS-Hep cells and iPS-Stm cells.
 本発明により、体細胞を初期化して製造される人工多能性幹細胞を分化誘導することにより得られる細胞、組織、又は臓器などにおいて腫瘍発生の危険性を低減ないし排除する手段が提供され、人工多能性幹細胞を利用して腫瘍発生の危険性が低減ないし排除された安全な細胞、組織、又は臓器などを容易に入手することができる。 The present invention provides a means for reducing or eliminating the risk of tumor development in cells, tissues, organs, etc. obtained by inducing differentiation of induced pluripotent stem cells produced by reprogramming somatic cells. By using pluripotent stem cells, it is possible to easily obtain safe cells, tissues, organs or the like in which the risk of tumor development is reduced or eliminated.

Claims (2)

  1. 肝細胞又は胃上皮細胞を核初期化することにより得られた人工多能性幹細胞を分化誘導することにより得られる細胞、組織、臓器、又は個体。 A cell, tissue, organ, or individual obtained by inducing differentiation of induced pluripotent stem cells obtained by nuclear reprogramming of hepatocytes or gastric epithelial cells.
  2. 人工多能性幹細胞から分化誘導された細胞、組織、臓器、又は個体において腫瘍の発生を低減ないし排除する方法であって、肝細胞又は胃上皮細胞を核初期化することにより得られた人工多能性幹細胞を分化誘導する工程を含む方法。 A method for reducing or eliminating the occurrence of tumors in cells, tissues, organs, or individuals that have been induced to differentiate from induced pluripotent stem cells, obtained by reprogramming hepatocytes or gastric epithelial cells into a nucleus A method comprising a step of inducing differentiation of a potent stem cell.
PCT/JP2008/059590 2008-02-01 2008-05-23 Differentiated cells originating in artificial pluripotent stem cells WO2009096049A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US683408P 2008-02-01 2008-02-01
US61/006,834 2008-02-01
US684908P 2008-02-04 2008-02-04
US61/006,849 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009096049A1 true WO2009096049A1 (en) 2009-08-06

Family

ID=40912414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059590 WO2009096049A1 (en) 2008-02-01 2008-05-23 Differentiated cells originating in artificial pluripotent stem cells

Country Status (1)

Country Link
WO (1) WO2009096049A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037270A1 (en) * 2009-09-24 2011-03-31 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2011121636A1 (en) * 2010-03-29 2011-10-06 国立大学法人熊本大学 Method for producing induced pluripotent stem cells
WO2011122318A1 (en) * 2010-03-31 2011-10-06 学校法人東京女子医科大学 Therapeutic graft material and method for using same
EP2494035A2 (en) * 2009-10-29 2012-09-05 Janssen Biotech, Inc. Pluripotent stem cells
JP2012520660A (en) * 2009-03-20 2012-09-10 メゾブラスト,インコーポレーテッド Generation of reprogrammed pluripotent cells
JP2013078303A (en) * 2011-10-04 2013-05-02 Masato Sakaki Clone internal organ
JP2013523134A (en) * 2010-03-31 2013-06-17 ザ スクリプス リサーチ インスティチュート Cell reprogramming
US8778673B2 (en) 2004-12-17 2014-07-15 Lifescan, Inc. Seeding cells on porous supports
US9096832B2 (en) 2007-07-31 2015-08-04 Lifescan, Inc. Differentiation of human embryonic stem cells
US9150833B2 (en) 2009-12-23 2015-10-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9181528B2 (en) 2010-08-31 2015-11-10 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US9388387B2 (en) 2008-10-31 2016-07-12 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9434920B2 (en) 2012-03-07 2016-09-06 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
US9506036B2 (en) 2010-08-31 2016-11-29 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9528090B2 (en) 2010-08-31 2016-12-27 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9593306B2 (en) 2008-06-30 2017-03-14 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US9752126B2 (en) 2008-10-31 2017-09-05 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
US9752125B2 (en) 2010-05-12 2017-09-05 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9969982B2 (en) 2007-11-27 2018-05-15 Lifescan, Inc. Differentiation of human embryonic stem cells
US9969981B2 (en) 2010-03-01 2018-05-15 Janssen Biotech, Inc. Methods for purifying cells derived from pluripotent stem cells
US9969973B2 (en) 2008-11-20 2018-05-15 Janssen Biotech, Inc. Methods and compositions for cell attachment and cultivation on planar substrates
US9969972B2 (en) 2008-11-20 2018-05-15 Janssen Biotech, Inc. Pluripotent stem cell culture on micro-carriers
US10006006B2 (en) 2014-05-16 2018-06-26 Janssen Biotech, Inc. Use of small molecules to enhance MAFA expression in pancreatic endocrine cells
US10066210B2 (en) 2012-06-08 2018-09-04 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells
US10066203B2 (en) 2008-02-21 2018-09-04 Janssen Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
US10076544B2 (en) 2009-07-20 2018-09-18 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US10138465B2 (en) 2012-12-31 2018-11-27 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators
US10316293B2 (en) 2007-07-01 2019-06-11 Janssen Biotech, Inc. Methods for producing single pluripotent stem cells and differentiation thereof
US10344264B2 (en) 2012-12-31 2019-07-09 Janssen Biotech, Inc. Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells
US10358628B2 (en) 2011-12-22 2019-07-23 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
JP2019521669A (en) * 2016-06-03 2019-08-08 中国人民解放軍軍事医学科学院野戦輸血研究所Institute Of Transfusion Medicine, Academy Of Military Medical Sciences, People’S Libration Army Of China Combination, initialization method and application of low molecular weight compounds for reprogramming digestive tract-derived epithelial cells to endoderm stem / progenitor cells
US10377989B2 (en) 2012-12-31 2019-08-13 Janssen Biotech, Inc. Methods for suspension cultures of human pluripotent stem cells
US10420803B2 (en) 2016-04-14 2019-09-24 Janssen Biotech, Inc. Differentiation of pluripotent stem cells to intestinal midgut endoderm cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069666A1 (en) * 2005-12-13 2007-06-21 Kyoto University Nuclear reprogramming factor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069666A1 (en) * 2005-12-13 2007-06-21 Kyoto University Nuclear reprogramming factor

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AOI, T ET AL.: "Generation of pluripotent stem cells from adult mouse liver and stomach cells.", SCIENCE, 14 February 2008 (2008-02-14) *
BANG, AG ET AL.: "Deconstructing pluripotency", SCIENCE, vol. 320, no. 5872, April 2008 (2008-04-01), pages 58 - 59 *
GRINNELL, KL ET AL.: "De-differentiation of mouse Interfollicular keratinocytes by the embryonic transcription factor Oct-4.", J INVEST DERMATOL., vol. 127, no. 2, 2007, pages 372 - 380 *
NAKAGAWA, M ET AL.: "Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.", NAT BIOTECHNOL., vol. 26, no. 1, January 2008 (2008-01-01), pages 101 - 106 *
PARK, IH ET AL.: "Reprogramming of human somatic cells to pluripotency with defined factors.", NATURE, vol. 451, no. 7175, January 2008 (2008-01-01), pages 141 - 146 *
SRIDHARAN, R ET AL.: "Illuminating the black box of reprogramming.", CELL STEM CELL, vol. 2, no. 4, April 2008 (2008-04-01), pages 295 - 297 *
TAKAHASHI, K ET AL.: "Induction of pluripotent stem cells from adult human fibroblasts by defined factors.", CELL, vol. 131, no. 5, 2007, pages 861 - 872 *
TAKAHASHI, K ET AL.: "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.", CELL, vol. 126, no. 4, 2006, pages 663 - 676 *
TAKAYUKI AOI: "Kiso Kenkyu no Shinpo Jinko Tanosei Kansaibo (iPS) no Genkyo to Kadai", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 66, no. 5, 1 May 2008 (2008-05-01), pages 850 - 856 *
YU, J ET AL.: "Induced pluripotent stem cell lines derived from human somatic cells.", SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778673B2 (en) 2004-12-17 2014-07-15 Lifescan, Inc. Seeding cells on porous supports
US10316293B2 (en) 2007-07-01 2019-06-11 Janssen Biotech, Inc. Methods for producing single pluripotent stem cells and differentiation thereof
US10456424B2 (en) 2007-07-31 2019-10-29 Janssen Biotech, Inc. Pancreatic endocrine cells and methods thereof
US9744195B2 (en) 2007-07-31 2017-08-29 Lifescan, Inc. Differentiation of human embryonic stem cells
US9096832B2 (en) 2007-07-31 2015-08-04 Lifescan, Inc. Differentiation of human embryonic stem cells
US9969982B2 (en) 2007-11-27 2018-05-15 Lifescan, Inc. Differentiation of human embryonic stem cells
US11001802B2 (en) 2008-02-21 2021-05-11 Nunc A/S Surface of a vessel with polystyrene, nitrogen, oxygen and a static sessile contact angle for attachment and cultivation of cells
US10066203B2 (en) 2008-02-21 2018-09-04 Janssen Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
US9593305B2 (en) 2008-06-30 2017-03-14 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US10351820B2 (en) 2008-06-30 2019-07-16 Janssen Biotech, Inc. Methods for making definitive endoderm using at least GDF-8
US9593306B2 (en) 2008-06-30 2017-03-14 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US10233421B2 (en) 2008-06-30 2019-03-19 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US9752126B2 (en) 2008-10-31 2017-09-05 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
US9388387B2 (en) 2008-10-31 2016-07-12 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9969973B2 (en) 2008-11-20 2018-05-15 Janssen Biotech, Inc. Methods and compositions for cell attachment and cultivation on planar substrates
US9969972B2 (en) 2008-11-20 2018-05-15 Janssen Biotech, Inc. Pluripotent stem cell culture on micro-carriers
JP2012520660A (en) * 2009-03-20 2012-09-10 メゾブラスト,インコーポレーテッド Generation of reprogrammed pluripotent cells
US10471104B2 (en) 2009-07-20 2019-11-12 Janssen Biotech, Inc. Lowering blood glucose
US10076544B2 (en) 2009-07-20 2018-09-18 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
JP2013505701A (en) * 2009-09-24 2013-02-21 国立大学法人京都大学 Efficient method for establishing induced pluripotent stem cells
WO2011037270A1 (en) * 2009-09-24 2011-03-31 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US8993329B2 (en) 2009-09-24 2015-03-31 Kyoto University Method of efficiently establishing induced pluripotent stem cells
EP2494035A4 (en) * 2009-10-29 2013-09-25 Janssen Biotech Inc Pluripotent stem cells
EP2494035A2 (en) * 2009-10-29 2012-09-05 Janssen Biotech, Inc. Pluripotent stem cells
US9150833B2 (en) 2009-12-23 2015-10-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US10329534B2 (en) 2010-03-01 2019-06-25 Janssen Biotech, Inc. Methods for purifying cells derived from pluripotent stem cells
US9969981B2 (en) 2010-03-01 2018-05-15 Janssen Biotech, Inc. Methods for purifying cells derived from pluripotent stem cells
WO2011121636A1 (en) * 2010-03-29 2011-10-06 国立大学法人熊本大学 Method for producing induced pluripotent stem cells
JP2016171798A (en) * 2010-03-31 2016-09-29 ザ スクリプス リサーチ インスティテュート Reprogramming cells
JP2020150961A (en) * 2010-03-31 2020-09-24 ザ スクリプス リサーチ インスティテュート Reprogramming cells
JP2013523134A (en) * 2010-03-31 2013-06-17 ザ スクリプス リサーチ インスティチュート Cell reprogramming
WO2011122318A1 (en) * 2010-03-31 2011-10-06 学校法人東京女子医科大学 Therapeutic graft material and method for using same
JP2018198628A (en) * 2010-03-31 2018-12-20 ザ スクリプス リサーチ インスティテュート Reprogramming cells
US9752125B2 (en) 2010-05-12 2017-09-05 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9181528B2 (en) 2010-08-31 2015-11-10 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US9528090B2 (en) 2010-08-31 2016-12-27 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9458430B2 (en) 2010-08-31 2016-10-04 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US9951314B2 (en) 2010-08-31 2018-04-24 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9506036B2 (en) 2010-08-31 2016-11-29 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
JP2013078303A (en) * 2011-10-04 2013-05-02 Masato Sakaki Clone internal organ
US11377640B2 (en) 2011-12-22 2022-07-05 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US10358628B2 (en) 2011-12-22 2019-07-23 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US9434920B2 (en) 2012-03-07 2016-09-06 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
US9593307B2 (en) 2012-03-07 2017-03-14 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
US10066210B2 (en) 2012-06-08 2018-09-04 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells
US10208288B2 (en) 2012-06-08 2019-02-19 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells
US10947511B2 (en) 2012-12-31 2021-03-16 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells using thyroid hormone and/or alk5, an inhibitor of tgf-beta type 1 receptor
US10377989B2 (en) 2012-12-31 2019-08-13 Janssen Biotech, Inc. Methods for suspension cultures of human pluripotent stem cells
US10138465B2 (en) 2012-12-31 2018-11-27 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators
US10344264B2 (en) 2012-12-31 2019-07-09 Janssen Biotech, Inc. Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
US10006006B2 (en) 2014-05-16 2018-06-26 Janssen Biotech, Inc. Use of small molecules to enhance MAFA expression in pancreatic endocrine cells
US10870832B2 (en) 2014-05-16 2020-12-22 Janssen Biotech, Inc. Use of small molecules to enhance MAFA expression in pancreatic endocrine cells
US10420803B2 (en) 2016-04-14 2019-09-24 Janssen Biotech, Inc. Differentiation of pluripotent stem cells to intestinal midgut endoderm cells
JP2019521669A (en) * 2016-06-03 2019-08-08 中国人民解放軍軍事医学科学院野戦輸血研究所Institute Of Transfusion Medicine, Academy Of Military Medical Sciences, People’S Libration Army Of China Combination, initialization method and application of low molecular weight compounds for reprogramming digestive tract-derived epithelial cells to endoderm stem / progenitor cells
JP7005528B2 (en) 2016-06-03 2022-01-21 中国人民解放軍軍事医学科学院野戦輸血研究所 Combinations, reprogramming methods and applications of low molecular weight compounds for reprogramming gastrointestinal tract-derived epithelial cells into endoderm stem cells / progenitor cells

Similar Documents

Publication Publication Date Title
WO2009096049A1 (en) Differentiated cells originating in artificial pluripotent stem cells
JP5098028B2 (en) Nuclear reprogramming factor
US20220048963A1 (en) Nuclear reprogramming factor and induced pluripotent stem cells
AU2014224119B2 (en) Wnt pathway stimulation in reprogramming somatic cells
Shao et al. Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame
JP5558097B2 (en) Efficient nuclear initialization method
KR101564044B1 (en) Nuclear Reprogramming Method
JP5346925B2 (en) Nuclear initialization method
JP5633075B2 (en) Vector material for preparing pluripotent stem cells and method for preparing pluripotent stem cells using the same
Debowski et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach
CN107988261A (en) The method for producing IPS cells
WO2009006930A1 (en) Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
CN104630136A (en) Method for preparing induced pluripotent stem cells as well as composition used in method and application of composition
JP2010273680A (en) Method for preparing induced pluripotent stem cell wherein reprogramming factor is eliminated
JP2013545480A (en) Method for preparing induced pluripotent stem cells and medium for preparing induced pluripotent stem cells
KR102117894B1 (en) Method of confirming that direct reprogramming cell is in sate pluripotent stem cell
JP2010161960A (en) Method for producing artificial pluripotent stem cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP