WO2009101228A1 - Co-continuous hybrid structure for the regeneration of bone defects - Google Patents

Co-continuous hybrid structure for the regeneration of bone defects Download PDF

Info

Publication number
WO2009101228A1
WO2009101228A1 PCT/ES2009/000081 ES2009000081W WO2009101228A1 WO 2009101228 A1 WO2009101228 A1 WO 2009101228A1 ES 2009000081 W ES2009000081 W ES 2009000081W WO 2009101228 A1 WO2009101228 A1 WO 2009101228A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcl
support
solvent
temperature
tissue
Prior art date
Application number
PCT/ES2009/000081
Other languages
Spanish (es)
French (fr)
Inventor
José Luís GÓMEZ RIBELLES
Manuel MONLEÓN PRADAS
Julio José SUAY ANTÓN
Myriam Lebourgh
Original Assignee
Universidad Politécnica De Valencia
Fundación Comunidad Valenciana - Centro De Investigación Principe Felipe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica De Valencia, Fundación Comunidad Valenciana - Centro De Investigación Principe Felipe filed Critical Universidad Politécnica De Valencia
Publication of WO2009101228A1 publication Critical patent/WO2009101228A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/038Use of an inorganic compound to impregnate, bind or coat a foam, e.g. waterglass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/10Mineral substrates
    • C12N2533/18Calcium salts, e.g. apatite, Mineral components from bones, teeth, shells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers

Definitions

  • the present invention falls within the field of tissue engineering, and more particularly it relates to a three-dimensional macroporous support, comprising a porous polycaprolactone matrix and a biomimetic hydroxyapatite coating.
  • the invention also relates to the method of obtaining said support, as well as the use thereof in applications such as bone tissue regeneration.
  • Osteoconductive materials include calcium phosphate-based ceramics, such as hydroxyapatite (natural inorganic component of bone), calcium triphosphate or bioglass (Bioglass ®).
  • the ceramics and bioglasses are compatible because of the similarity of their chemical structure with that of the native bone, however they are difficult to process, especially in porous form, and they do not have the flexibility that gives the bone its organic part, the collagen, being very rigid and brittle.
  • sintered hydroxyapatites are highly crystalline and do not degrade easily, which in the long term can prevent complete bone regeneration.
  • Biodegradable polymers that arouse much interest in the field of tissue engineering are for example polycaprolactone (PCL), polylactic acid (PLA), the polyglycolic acid (PGA), acid (lactic-co-glycolic), etc. They are easy to shape and transform, and degrade at a rate that can be adapted to the bone regeneration rate. Although scaffolds can be synthesized from them in a simple way and have good mechanical properties, pure polymers are not ideal for this use since they are not very osteoconductive. The neoformed bone will not adhere or grow well in pure materials.
  • PCL polycaprolactone
  • PLA polylactic acid
  • PGA polyglycolic acid
  • acid lactic-co-glycolic
  • composite materials which, like bone, which combines an organic phase, collagen, with an inorganic phase, hydroxyapatite), contain both polymer and ceramic.
  • specific inorganic particles of reduced size are incorporated into a matrix of the selected polymer.
  • the bioactivity and osteoconductivity of the support is expected to grow.
  • biomimetic hydroxyapatite can be nuclear on the surface of the polymeric material in order to increase cell adhesion and bioactivity.
  • the presence of biomimetic hydroxyapatite in the graft can favor bone remodeling by redisolving the deposited apatite. Additionally and due to a greater excess of ions in the medium, the presence of hydroxyapatite may serve to regulate the pH of the medium around the graft since some degradation products of the polymers are acidic (for example in the case of polylactic acid) .
  • Techniques for coating biomimetic hydroxyapatite different polymeric materials have been developed as long as they have hydroxyl functional groups such as carboxyls, silanoles, TiOH, etc.
  • Patent applications are known in the state of the art, which describe the preparation of "scaffolds" with very different characteristics that are obtained by using various manufacturing processes and materials for bone regeneration.
  • Application US2003082808 discloses a polymeric macroporous support with a network of interconnected macropores having a diameter between 0.5-3.5mm, preferably between 1-2mm.
  • This support is prepared by a method comprising the combination of the techniques of selective dissolution and phase inversion, which provides control over the morphology of the formed support, has utility in the field of tissue engineering, particularly as a support for cell growth in In vitro and in vivo.
  • the surface of the support can be modified for example by deposition of resorbable calcium phosphate particles by osteoclasts.
  • this support has, among others, the disadvantage that its biocompatibility is limited.
  • Application US2004 / 191292 discloses a composite material, and its use in the field of biomedical engineering, which comprises bioactive microparticles that could induce human bone tissue to regenerate.
  • the support uses the combination of microparticles of silica, calcium, phosphorus as bioactive substances that could actively induce the proliferation and differentiation of human osteoblasts, promoting the formation and calcification of new bone.
  • the volume of microparticles included has to be very high for a sufficient osteoinductive effect to take place on the surface.
  • HAp hydroxyapatite
  • PCL polycaprolactone
  • Hp biomimetic hydroxyapatite
  • Fig. 1 a graph showing the temperature variation
  • Fig. 2 a, b, c SEM micrographs of scaffolds obtained by cold sublimation of ternary dioxane / water-PCL mixtures (of composition 88 / 12-10 with 1% of tween 80) varying the heat treatment time below cloud point
  • Fig. 3 a, b SEM micrographs of a scaffold coated with a dense layer of hydroxyapatite after nucleation treatment and a week of immersion in SBF (x5000)
  • Fig. 4 a, b Microscope image of the preceding sample, and the corresponding X-ray spectrum taken at the point indicated in the image
  • Fig. 5 SEM micrograph of a scaffold with an average pore size of less than 10 microns
  • Fig. 6 SEM micrograph of a scaffold with an average pore size of more than 50 microns.
  • the present invention relates to a new three-dimensional hybrid support consisting of an organic polymeric polycaprolactone matrix and an inorganic phase consisting of a biomimetic HAp coating.
  • the new hybrid support has a particular morphology with a network of pores perfectly interconnected with each other in size between 5 and 300 microns.
  • the invention relates to a new method of obtaining the hybrid support.
  • the invention relates to a support obtainable according to the process of the invention.
  • the invention relates to the use of hybrid support in applications such as tissue generation or regeneration, for example, connective tissue, such as bone or cartilage.
  • the invention relates to a process for generating or regenerating tissue comprising obtaining a hybrid support according to the invention, and culturing cells of a selected tissue on said support.
  • the procedure may also include seeding with support cells.
  • the present invention relates to a three-dimensional macroporous hybrid support, also referred to as "scaffold” or support of the invention, consisting of a porous polycaprolactone matrix (PCL) and a hydroxyapatite coating. biomimetic that covers the internal surfaces of the pores of the matrix.
  • the support has a structure of perfectly interconnected pores, and sizes ranging from 5 to 300 microns.
  • Figure 5 shows an SEM photomicrograph of a support according to the invention having pores of less than 10 microns
  • Figure 6 shows the SEM photomicrograph of a support with pores larger than 50 microns that can be invaded by cells of very diverse biological tissues.
  • biomimetic hydroxyapatite refers to hydroxyapatite that is naturally deposited ⁇ in vivo" or that is deposited by immersing the support in an equivalent solution that reproduces the conditions "in vivo" of the same composition saline than human plasma (Simulated Body Fluid or SBF) for as long as necessary.
  • the characteristics of the support of the invention vary depending on its chemical composition and the method of production.
  • the support of the invention can have a porosity between 70 and 90%;
  • the support can have different properties, and can be from spongy, very deformable support, whose plastic deformation allows them to take the form of a pre-existing hole, to elastic supports with modules between 0.05 and 2 MPa.
  • the support of the invention also has other advantages, which make it especially interesting in tissue applications, such as bone regeneration.
  • the matrix is PCL, a biodegradable, biocompatible and bioreabsorbable polymer, which is also approved for clinical use.
  • biocompatible refers in the present invention to being non-toxic and allowing cells to colonize it.
  • bioabsorbable in the present invention refers to the support disappearing over time when it is inside an animal body as it is replaced by regenerated tissue.
  • the support of the invention also has good osseointegration and osteoinduction properties; induces the proliferation and differentiation of osteoblasts, induces the formation and calcification of new bone, and restores physiological function at the molecular and cellular levels. In this sense, the support can be implanted "in vivo". Optionally, the support can be seeded with "in vitro" cells prior to implantation.
  • the invention provides a new method for obtaining the support of the invention comprising the following steps:
  • step (iv) maintain the temperature reached in step (iii) until the desired phase morphology is reached;
  • Step (i) is generally carried out at a temperature equal to or greater than room temperature, at which the PCL is soluble in the mixture of Dl and D2 in the proportion D1 / D2 used, obtaining a homogeneous solution of PCL in a mixture of the two solvents Dl and D2. If at room temperature the selected mixture is not homogeneous, it is heated; the person skilled in the art can easily recognize in each case the temperature necessary to obtain a homogeneous solution that will depend on the concentration of PCL, not solvent, and possibly the surfactant. Ambient temperature means between 20 ° C and 25 ° C.
  • the surfactant can be a surfactant conventional, commercial or an amphiphilic diblock.
  • Dl is a solvent of the PCL and D2 is a non-solvent of the PCL.
  • PCL solvents include, among others, tetrahydrofuran, dimethylsulfoxide (DMSO), methylene chloride, ethyl acetate, chloroform, n-heptane, n-hexane, n-pentane, dioxane, benzene, xylene, naphthalene, dimethylformamide, acetic acid, acetone, and mixtures of the foregoing.
  • non-solvent are, among others, water, ethanol and mixtures thereof.
  • step (ii) once the mold has been filled with the homogeneous solution, it is homogenized again at the previous temperature to alleviate a possible temperature difference of the mold.
  • the mold has to withstand solvents and sudden temperature changes during the procedure, so it has to be chemically and thermally stable.
  • a resin, polytetrafluoroethylene (PTFE) Teflon or metal mold is used.
  • the mold is closed, and the homogeneous mixture in the closed mold is subjected to the next step.
  • step (iii) the homogeneous solution is cooled, and two phases are separated; one of the phases is formed mainly by the dissolution of the PCL in the solvent Dl and the other phase mostly by a mixture of the solvents Dl and D2.
  • a cloud point At the temperature at which the solution becomes cloudy it is called a "cloud point.”
  • the dissolution becomes cloudy as a result of the light scattering in the microscopic nuclei of one phase in the other: it is an indicator of the moment from which the phase phase of the phase diagram is passed to a heterogeneous zone (presence of several phases).
  • the dependence of the "cloud point”, which allows setting the rest of the heat treatment conditions, with the composition of the solution, depends on the concentration of PCL and the solvents Dl and D2 used, and can be determined in each case (see Figure one) .
  • the temperature reached in the stage (üi) is lower than that of the cloud point, typically 5 ° C below it.
  • stage (iv) the temperature reached in stage (üi) is maintained during. a time generally between 3 and 30 minutes, until reaching the desired phase morphology, that is, until spherical inclusions of poor phase in PCL reach the desired pore size for the scaffold.
  • the process of liquid phase separation is kinetically controlled, which means that the distribution, size and shape of the two coexisting phases varies depending on the hardening depth below the temperature "point" cloud “(iii ) and / or the isothermal treatment time of the mixture at the temperature below the cloud point, in step (iv).
  • stage ((v)) When the system formed by the two phases, still in the liquid phase, reaches the desired morphology, the temperature (stage ((v)) is sharply decreased by solidifying both phases by crystallization of the solvents and partial crystallization of the polymer. Such rapid cooling is desirable. like the one produced by immersion in liquid nitrogen (tempering), to limit the further evolution of the structure.
  • the solvents Dl and D2 are then extracted with a third solvent D3 in which the PCL is insoluble, at a temperature below the melting temperature of Dl and D2, and at which D3 is in a liquid state.
  • Solvents Dl and D2 are dissolved in D3.
  • D3 can be a low melting alcohol, with the melting point of D3 being much lower than that of D2.
  • the ethanol frozen system is introduced at -20 ° C until complete dissolution of Dl and D2 is achieved, leaving only the PCL with the porous architecture derived from the structure formed during the separation of liquid phases, and proceeds to Dry it under vacuum and at room temperature until complete removal of solvent D3.
  • the extraction can be carried out by cold sublimation (freeze drying)
  • biomimetic hydroxyapatite deposition comprises the following stages:
  • Step 1) introduces carboxyl groups on the surface of the pores of the PCL, suitable for nuclear calcium phosphate.
  • step 2) calcium phosphate cores are generated on the surface of the micropores and macropores of the support, by alternating immersion of the support obtained in 1) in solutions containing respectively Ca 2+ and PO 4 3 "" , for example calcium chloride and potassium phosphate.
  • step 3) the support obtained in 2) is immersed in a simulated body fluid for a period of time between a few days and two weeks. The longer the time, the greater the thickness of the biomimetic hydroxyapatite coating layer created, depending on the required application.
  • the support obtained in 2) can be immersed in another modified solution.
  • the composition of the simulated body fluid (SBF) can be modified to accelerate the deposition process or to include ions that are not present in the normal environment but may have osteoinductive properties (for example fluorine).
  • the support is submerged for a period typically between 24 hours and 2 weeks. Depending on the time, a coating of hydroxyapatite of variable thickness is generated (the greater the longer the deposition time) that completely covers the surface of r ⁇ acro and micropores.
  • a hybrid support is thus obtained with an interpenetrated structure as described and illustrated in the invention.
  • the SEM photomicrograph images Figures 3 and 4 show, the deposited biomimetic hydroxyapatite covers all internal surfaces of the pores, constituting a continuous phase, and originating the interpenetrated hybrid structure of the support of the invention.
  • the support is then washed with distilled water and dried, for example in a vacuum desiccator. It can be sterilized according to any conventional method, stored or conditioned for use.
  • Figures 5 and ⁇ show how very variable porous structure architectures can be obtained by this procedure, from structures with small pores, some microns, which are perfectly interconnected (Figure 5), to large pores that can be invaded by cells of very diverse biological tissues (Figure 6).
  • the hybrid supports of the invention are suitable for application in tissue engineering.
  • the invention provides the use of the support of the invention for its use in tissue applications, in the generation or regeneration of tissue.
  • tissue applications in the generation or regeneration of tissue.
  • various cutting tools can be used after obtaining them to obtain the desired geometry for their specific use.
  • tissue The generation or regeneration of tissue includes bone repair or replacement, intervertebral fusion strips, prosthetic implant in bone tissue "in vivo "among others.
  • the tissue can be for example connective tissue, such as bone or cartilage.
  • Bioactive supports and hybrid supports are used in vivo or in vitro.
  • the invention thus relates to a method for generating or regenerating tissue comprising: providing a hybrid support according to the present invention, and culturing in vitro in said support cells of a tissue, and optionally implanting the support obtained in the previous stage in a human or animal.
  • the procedure can also comprise seeding with support cells prior to their culture and implantation.
  • Differentiated cells such as osteoblasts can be used, as well as pluripotential cells such as those of the bone marrow in conjunction with chemical signals such as bone growth factor GMPl.
  • the present invention relates to a method of treatment for the generation or regeneration of a tissue in a subject comprising implanting a hybrid support in said subject in need thereof, where the subject is an animal including the human being.
  • the support may have been treated prior to its implantation by in vitro cultivating the support with the cells of interest, and / or sowing it with said cells.
  • Example 1 Determination of the phase diagram of dioxane / water / polymer solutions.
  • Figure 1 shows how for different concentrations of PCL between 3% and 20%, and for different percentages of water the temperature of the "cloud point" varies.
  • the cloud point increases strongly and linearly with the proportion of non-solvent (water) in the mixture, it is more difficult to dissolve the polymer because there is less affinity between the liquid and the polymer.
  • concentration of polymer the more polymer in the solution, the more difficult it is to dissolve it, so the curve with the highest concentration (20% PCL) is superior to all others.
  • the slope of the curve does not change significantly (Cf. concentrations of 3, 5, 8%).
  • the dotted box represents the temperature range where you can work comfortably. It is not possible to work at high temperatures, since the liquid-vapor equilibrium of the solvent shifts from the steam side, and consequently the concentration of the mixture is altered. Nor is it desirable to work at lower temperatures than the environment, as it requires more equipment and more refined temperature control; In addition, at low temperatures, both the crystallization of dioxane (Tf US ion: 11 0 C) and the polymer gel (crystallization in solution) can occur, which ultimately produces solidification, preventing the separation of liquid-liquid phases for the benefit of a liquid-solid phase separation.
  • the microstructure of the support obtained has been determined as a function of the isothermal treatment time, (3, 10 and 15 minutes) in particular at 5 ° C below the cloud point ( Figure 2 a, b, c) for systems 88 / 12-10 (dioxane / water-PCL) and 1% tween ⁇ O.
  • the dioxane-water-PCL 88 / 12-10 system is a solution containing 10% by weight of PCL in a mixture of dioxane and water in which the percentage of dioxane is 88% by weight.
  • a dioxane / water mixture in proportion 88/12 was prepared. 10% by weight was added to the liquid PCL respect, and 1 wt% Tween 80.
  • the cloud point temperature of this mixture was determined by the procedure described in Example 1.1, and a value of 37 0 C was obtained
  • the mixture is homogenized for fifteen minutes in the monophase region at 40 0 C, then cooled in a bath at 32 ° C, in the two - phase zone, T cloud -5 O C. was left in this zone for the separation of liquid-liquid phase occurred during 3, 10 and 15 rain and the influence of nucleation time on the pore size obtained was observed. It was then cooled sharply by immersion in liquid nitrogen, which freezes the structure as it is.
  • the solvent water dioxane mixture
  • Example 1.3 Nucleation of an inorganic phase similar to bone apatite to obtain the hybrid structure
  • a scaffold was synthesized with a mixture of 88/12 dioxane and water, and 8% by weight of PCL with respect to the solvent weight, with a nucleation time of 3 minutes at
  • the scaffold was treated with a 1M solution of sodium hydroxide for 24 hours at room temperature. It was then treated with solutions of calcium chloride (0.2 M) and potassium phosphate (0.2M) to generate nuclei of calcium phosphate on the surface.
  • the scaffold was immersed in simulated body fluid, (SBF, Simulated Body Fluid), an aqueous solution whose molar composition is described in Table 2. After one week the scaffold was washed with water distilled, and then with ethanol and dried. The micrographs presented (Fig 3a and 3b) show the abundant nucleation of a mineral layer on top of the synthetic support. The EDX analysis confirms that this mineral layer has a composition similar to hydroxyapatite, bone mineral, due to its richness in calcium phosphate and its impurities (magnesium, potassium) typical of biological hydroxyapatite.
  • SBF Simulated Body Fluid
  • Table 2 Ionic composition of simulated body fluid and blood plasma, (mM / 1) A: Simulated body fluid; B: blood plasma.

Abstract

The invention relates to a method for obtaining a scaffold consisting of a porous PCL matrix and a hydroxyapatite coating, comprising the following steps: (i) preparing a homogeneous PCL solution in a mixture of two solvents, namely a PCL solvent and a PCL nonsolvent; (ii) filling a mould with the homogeneous solution; (iii) cooling the homogeneous solution to a temperature lower than the temperature at which the separation of the two liquid phases occurs; (iv) isothermal treatment; (v) solidifying both phases, reducing the temperature; (vi) extracting the PCL solvent and the PCL nonsolvent, together with a third solvent; and (vii) depositing biomimetic HAp. The structure is suitable for use in tissue engineering.

Description

ESTRUCTURA HÍBRIDA CO-CONTINUA PARA LA REGENERACIÓN DE HYBRID CO-CONTINUOUS STRUCTURE FOR THE REGENERATION OF
DEFECTOS ÓSEOSBONE DEFECTS
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se encuadra dentro del campo de la ingeniería tisular, y más particularmente se refiere a un soporte macroporoso tridimensional, que comprende una matriz porosa de policaprolactona y un recubrimiento de hidroxiapatita biomimética. La invención se refiere asimismo al procedimiento de obtención de dicho soporte, asi como al empleo del mismo en aplicaciones como la regeneración de tejido óseo.The present invention falls within the field of tissue engineering, and more particularly it relates to a three-dimensional macroporous support, comprising a porous polycaprolactone matrix and a biomimetic hydroxyapatite coating. The invention also relates to the method of obtaining said support, as well as the use thereof in applications such as bone tissue regeneration.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Debido al padecimiento de cánceres, accidentes o por degeneración ósea se puede producir una perdida masiva de tejido óseo, y dar lugar a la necesidad de un injerto óseo. Un injerto óseo ideal para reparar defectos óseos deberla permitir a las células óseas crecer en el área afectada, para restaurar la función e integridad física del hueso. Hoy en dia, los autoinjertos son la opción preferida para la reparación ósea porque son biocompatibles y no hay riesgo de trasmisión de enfermedades. Sin embargo, las limitaciones de los autoinjertos son la escasa cantidad de tejido obtenible, la doble operación necesaria para llevar a cabo el injerto, y la morbilidad en el sitio de extracción, generalmente asociado con molestias y sufrimiento para el paciente. Aloinjertos, que consistan en el injerto del tejido extraído del hueso de un cadáver, son también soluciones pero se descartan cada vez más por el riesgo de transmisión de enfermedades y de rechazo inmunológico . Para resolver los problemas asociados con los injertos óseos, muchos investigadores han intentado desarrollar sustancias artificiales que puedan servir de injerto óseo. En el estado de la técnica se definen las cualidades que debe poseer tal material para ser implantado exitosamente. Primero, el material debe ser biodegradable para que conforme el nuevo hueso vaya formándose pueda crecer en el sitio de injerto, puesto que éste va desapareciendo con el tiempo. Tanto el material como sus productos de degradación deben ser biocompatibles, para no presentar riesgo alguno para la salud del paciente. Segundo, el material debe mantener unas características mecánicas parecidas a las del hueso, para que las cargas trasmitidas en el implante favorezcan la remodelación del tejido óseo y la calcificación. Tercero, el material debe ser osteoconductivo, es decir, debe proporcionar a las células un soporte para adherirse y proliferar hasta colonizar todo el implante. Materiales osteoconductivos incluyen las cerámicas a base de fosfato calcico, como la hidroxiapatita (componente natural inorgánico del hueso) , el trifosfato de calcio o los biovidrios (Bioglass ®) .Due to the suffering of cancers, accidents or bone degeneration a massive loss of bone tissue can occur, and lead to the need for a bone graft. An ideal bone graft to repair bone defects should allow bone cells to grow in the affected area, to restore the function and physical integrity of the bone. Today, autografts are the preferred option for bone repair because they are biocompatible and there is no risk of disease transmission. However, the limitations of autografts are the small amount of tissue obtainable, the double operation necessary to carry out the graft, and the morbidity at the extraction site, usually associated with discomfort and suffering for the patient. Allografts, which consist of grafting the tissue extracted from the bone of a corpse, are also solutions but are increasingly ruled out due to the risk of disease transmission and immune rejection. To solve the problems associated with grafts Bone, many researchers have tried to develop artificial substances that can serve as bone graft. In the state of the art the qualities that such material must possess to be successfully implanted are defined. First, the material must be biodegradable so that as the new bone is formed it can grow at the graft site, since it disappears over time. Both the material and its degradation products must be biocompatible, so as not to present any risk to the patient's health. Second, the material must maintain mechanical characteristics similar to those of the bone, so that the loads transmitted in the implant favor bone remodeling and calcification. Third, the material must be osteoconductive, that is, it must provide the cells with a support to adhere and proliferate until the entire implant is colonized. Osteoconductive materials include calcium phosphate-based ceramics, such as hydroxyapatite (natural inorganic component of bone), calcium triphosphate or bioglass (Bioglass ®).
Las cerámicas y biovidrios son compatibles por el parecido de su estructura química con la del hueso nativo, sin embargo son difíciles de procesar, sobre todo en forma porosa, y no tienen la flexibilidad que otorga al hueso su parte orgánica, el colágeno, siendo muy rígidas y quebradizas. Además, las hidroxiapatitas sinterizadas son altamente cristalinas y no se degradan con facilidad, lo que a largo plazo puede impedir una regeneración completa del hueso.The ceramics and bioglasses are compatible because of the similarity of their chemical structure with that of the native bone, however they are difficult to process, especially in porous form, and they do not have the flexibility that gives the bone its organic part, the collagen, being very rigid and brittle. In addition, sintered hydroxyapatites are highly crystalline and do not degrade easily, which in the long term can prevent complete bone regeneration.
Polímeros biodegradables que despiertan mucho interés en el campo de la ingeniería tisular son por ejemplo la policaprolactona (PCL) , el acido poliláctico (PLA) , el acido poliglicólico (PGA) , el acido (láctico-co-glicólico) , etc. Son fáciles de conformar y de trasformar, y se degradan a una velocidad que se puede adaptar al ritmo de regeneración del hueso. Aunque se puede sintetizar scaffolds a partir de ellos de forma sencilla y lograr que tengan buenas propiedades mecánicas, los polímeros puros no son ideales para este uso ya que no son muy osteoconductivos . El hueso neoformado no se adherirá o no crecerá bien en los materiales puros. Debido a este hecho, lógicamente, la atención de las nuevas investigaciones realizadas se ha volcado sobre materiales compuestos (que a semejanza del hueso, que combina una fase orgánica, el colágeno, con una fase inorgánica, la hidroxiapatita) , contengan a la vez polímero y cerámica. Para conseguir el material compuesto se incorporan partículas inorgánicas especificas de tamaño reducido a una matriz del polímero seleccionado. Además de una mejora de propiedades mecánicas debida al efecto reforzante de dichas partículas, se espera que crezca la bioactividad y la osteoconductividad del soporte. Diversos estudios han demostrado la viabilidad de este planteamientoBiodegradable polymers that arouse much interest in the field of tissue engineering are for example polycaprolactone (PCL), polylactic acid (PLA), the polyglycolic acid (PGA), acid (lactic-co-glycolic), etc. They are easy to shape and transform, and degrade at a rate that can be adapted to the bone regeneration rate. Although scaffolds can be synthesized from them in a simple way and have good mechanical properties, pure polymers are not ideal for this use since they are not very osteoconductive. The neoformed bone will not adhere or grow well in pure materials. Due to this fact, logically, the attention of the new investigations carried out has turned to composite materials (which, like bone, which combines an organic phase, collagen, with an inorganic phase, hydroxyapatite), contain both polymer and ceramic. To achieve the composite material, specific inorganic particles of reduced size are incorporated into a matrix of the selected polymer. In addition to an improvement of mechanical properties due to the reinforcing effect of said particles, the bioactivity and osteoconductivity of the support is expected to grow. Several studies have demonstrated the feasibility of this approach
(Biomaterials, in press; Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffoíd interactions in Vitro, Lauren Shor, Selcuk Guceri, Xuejun Wen, Milind Gandhi, Wei Sun) . Sin embargo, la cantidad de partículas que afloran a la superficie es bastante pequeña y el efecto osteoinductivo consecuentemente también lo es. Es por ello que se hace necesaria una cantidad de carga muy elevada para que este efecto sea significativo.(Biomaterials, in press; Fabrication of three-dimensional polycaprolactone / hydroxyapatite tissue scaffolds and osteoblast-scaffoid interactions in Vitro, Lauren Shor, Selcuk Guceri, Xuejun Wen, Milind Gandhi, Wei Sun). However, the amount of particles that appear on the surface is quite small and the osteoinductive effect is consequently also so. That is why a very high amount of load is necessary for this effect to be significant.
Un procedimiento propuesto por Kokubo et al. [Biomaterials 27 (2006) 2907-2915- How useful is SBF in predicting in vivo bone bioactivity? Tadashi Kokubo, Hiroaki Takadama] para cuantificar la osteoinductividad de un soporte es la inmersión en un fluido corporal simulado (disolución acuosa con la misma cantidad de electrolitos que el plasma sanguíneo) . Una prueba de la osteoinductividad es haber conseguido la deposición en la superficie del material de una fase inorgánica a base de fosfato calcico, parecida a la hidroxiapatita del hueso.A procedure proposed by Kokubo et al. [Biomaterials 27 (2006) 2907-2915- How useful is SBF in predicting in vivo bone bioactivity? Tadashi Kokubo, Hiroaki Takadama] to quantify the osteoinductivity of a support is immersion in a simulated body fluid (aqueous solution with the same amount of electrolytes as the blood plasma). An osteoinductivity test is to have achieved the deposition on the surface of the material of an inorganic phase based on calcium phosphate, similar to the hydroxyapatite of the bone.
En numerosos trabajos se plantean procedimientos para que hidroxiapatita biomimética se pueda nuclear en la superficie del material polimérico a fin de aumentar la adhesión celular y la bioactividad. La presencia de hidroxiapatita biomimética en el injerto puede favorecer la remodelación del hueso por redisolución de la apatita depositada. Adicionalmente y debido a un mayor exceso de iones en el medio, la presencia de la hidroxiapatita puede servir para regular el pH del medio alrededor del injerto ya que algunos productos de degradación de los polímeros son ácidos (por ejemplo en el caso del acido poliláctico) . Se han desarrollado técnicas para recubrir de hidroxiapatita biomimética distintos materiales poliméricos simpre que éstos tengan grupos funcionales de tipo hidroxilo tales como los carboxilos, silanoles, TiOH, etc.. Los resultados publicados [Preparation of bonelike apatite composite for tissue engineering scaffold; Hirotaka Maeda, Toshihiro Kasuga, Masayuki Nogamia, Minoru Ueda; Science and Technology of Advanced Materials 6 (2005) 48-53] permiten intuir que las propiedades biológicas de tal apatita son significativamente mejores que las de los fosfatos calcicos o apatitas sintéticas tradicionales. Las causas que explican estos mejores resultados son variadas. Entre otras destaca que el tamaño medio del cristal de apatita formada por este procedimiento es pequeño, lo cual favorece la redisolución de los cristales en el organismo. Se trata éste de un fenómeno que no se observa con las apatitas sintéticas sinterizadas a altas temperaturas, que son altamente estables y no se descomponen. Otra causa es que la composición química de este tipo de apatita es mucho más similar a la del hueso natural.In many studies, procedures are proposed so that biomimetic hydroxyapatite can be nuclear on the surface of the polymeric material in order to increase cell adhesion and bioactivity. The presence of biomimetic hydroxyapatite in the graft can favor bone remodeling by redisolving the deposited apatite. Additionally and due to a greater excess of ions in the medium, the presence of hydroxyapatite may serve to regulate the pH of the medium around the graft since some degradation products of the polymers are acidic (for example in the case of polylactic acid) . Techniques for coating biomimetic hydroxyapatite different polymeric materials have been developed as long as they have hydroxyl functional groups such as carboxyls, silanoles, TiOH, etc. The published results [Preparation of bonelike apatite composite for tissue engineering scaffold; Hirotaka Maeda, Toshihiro Kasuga, Masayuki Nogamia, Minoru Ueda; Science and Technology of Advanced Materials 6 (2005) 48-53] allow us to intuit that the biological properties of such apatite are significantly better than those of calcium phosphates or traditional synthetic apatites. The causes that explain these best results are varied. Among others it stands out that the average crystal size of Apatite formed by this procedure is small, which favors the redisolution of crystals in the body. This is a phenomenon that is not observed with synthetic apatites sintered at high temperatures, which are highly stable and do not decompose. Another cause is that the chemical composition of this type of apatite is much more similar to that of natural bone.
Se conoce en el estado de la técnica solicitudes de patentes, que describen la preparación de "scaffolds" con características muy diversas que se obtienen mediante el uso de variados procesos de fabricación y materiales para la regeneración ósea.Patent applications are known in the state of the art, which describe the preparation of "scaffolds" with very different characteristics that are obtained by using various manufacturing processes and materials for bone regeneration.
La solicitud US2003082808 divulga un soporte macroporoso polimérico con una red de macroporos interconectados que presentan un diámetro comprendido entre 0,5-3,5mm, preferentemente entre l-2mm. Este soporte se prepara mediante un procedimiento que comprende la combinación de las técnicas de disolución selectiva e inversión de fase, que proporciona control sobre la morfología del soporte formado, tiene utilidad en el campo de la ingeniería tisular, particularmente como soporte para crecimiento de células in vitro e in vivo. La superficie del soporte puede ser modificada por ejemplo por deposición de partículas de fosfato calcico resorbibles por osteoclastos . Sin embargo, este soporte presenta, entre otras, la desventaja de que su biocompatibilidad es limitada .Application US2003082808 discloses a polymeric macroporous support with a network of interconnected macropores having a diameter between 0.5-3.5mm, preferably between 1-2mm. This support is prepared by a method comprising the combination of the techniques of selective dissolution and phase inversion, which provides control over the morphology of the formed support, has utility in the field of tissue engineering, particularly as a support for cell growth in In vitro and in vivo. The surface of the support can be modified for example by deposition of resorbable calcium phosphate particles by osteoclasts. However, this support has, among others, the disadvantage that its biocompatibility is limited.
La solicitud US2004/191292 divulga un material compuesto, y su uso en el campo de la ingeniería biomédica, que comprende microparticulas bioactivas que podrían inducir al tejido óseo humano a regenerarse. El soporte usa la combinación de microparticulas de sílice, calcio, fósforo como sustancias bioactivas que podrían inducir activamente la proliferación y diferenciación de los osteoblastos humanos, promoviendo la formación y la calcificación del hueso nuevo. Sin embargo, el volumen de microparticulas incluidas tiene que ser muy elevado para que tenga lugar un efecto osteoinductivo suficiente en la superficie.Application US2004 / 191292 discloses a composite material, and its use in the field of biomedical engineering, which comprises bioactive microparticles that could induce human bone tissue to regenerate. The support uses the combination of microparticles of silica, calcium, phosphorus as bioactive substances that could actively induce the proliferation and differentiation of human osteoblasts, promoting the formation and calcification of new bone. However, the volume of microparticles included has to be very high for a sufficient osteoinductive effect to take place on the surface.
La solicitud US2005255159 describe una composición porosa que comprende un material hidroxiapatita (HAp) , obtenido a partir de una mezcla de fosfato calcico, oxido de calcio y un porógeno inorgánico que puede ser eliminado- del soporte una vez formado. Este material es totalmente inorgánico, no tiene fase orgánica, por lo que su resiliencia mecánica y resistencia a la fractura son limitadas, más aún teniendo en cuenta las porosidades alcanzadas. Además su capacidad de ser biodegradado también es limitada.Application US2005255159 describes a porous composition comprising a hydroxyapatite (HAp) material, obtained from a mixture of calcium phosphate, calcium oxide and an inorganic porogen that can be removed from the support once formed. This material is totally inorganic, has no organic phase, so its mechanical resilience and resistance to fracture are limited, even more taking into account the porosities achieved. In addition its ability to be biodegraded is also limited.
De lo anterior se desprende que ninguno de los soportes macroporosos tridimensionales descritos en el estado de la técnica, cumple con todos los requisitos necesarios y deseables para su aplicación eficaz y satisfactoria en ingeniería tisular. Por lo tanto, sigue existiendo la necesidad en el estado de la técnica de proporcionar soportes híbridos macroporosos tridimensionales alternativos, que superen al menos parte de las desventajas de los soportes del estado de la técnica.It follows that none of the three-dimensional macroporous supports described in the prior art meets all the necessary and desirable requirements for its effective and satisfactory application in tissue engineering. Therefore, there is still a need in the state of the art to provide alternative three-dimensional macroporous hybrid supports, which overcome at least part of the disadvantages of the prior art supports.
En este sentido los inventores de la presente invención han descubierto sorprendentemente, que es posible obtener un nuevo soporte tridimensional de policaprolactona (PCL) y una fase inorgánica de hidroxiapatita (HAp) biomimética, mediante un nuevo procedimiento de preparación basado en la combinación de un método de separación de fases liquidas con la extracción de disolvente solidificado a baja temperatura con un disolvente especifico. El procedimiento es reproducible, y permite controlar el tamaño de los poros del nuevo soporte comprendido entre algunas mieras a varios cientos de mieras.In this sense the inventors of the present invention have surprisingly discovered that it is possible obtain a new three-dimensional support of polycaprolactone (PCL) and an inorganic phase of biomimetic hydroxyapatite (HAp), by means of a new preparation procedure based on the combination of a method of separation of liquid phases with the extraction of solidified solvent at low temperature with a specific solvent The procedure is reproducible, and allows controlling the pore size of the new support comprised between a few microns to several hundred microns.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Fig. 1: una gráfica que muestra la variación de temperaturaFig. 1: a graph showing the temperature variation
(0C) del punto de nube para distintas disoluciones homogéneas, en función de la concentración de PLC (entre 3%-20%) , y del porcentaje de agua (entre 10%-15%) en la mezcla de disolventes agua y dioxano.( 0 C) of the cloud point for different homogeneous solutions, depending on the concentration of PLC (between 3% -20%), and the percentage of water (between 10% -15%) in the mixture of water and dioxane solvents .
Fig. 2 a, b, c: Microfotograflas SEM de scaffolds obtenidos por sublimación en frió de mezclas ternarias dioxano/agua- PCL (de composición 88/12-10 con 1% de tween 80) variando el tiempo de tratamiento térmico por debajo del punto de nube .Fig. 2 a, b, c: SEM micrographs of scaffolds obtained by cold sublimation of ternary dioxane / water-PCL mixtures (of composition 88 / 12-10 with 1% of tween 80) varying the heat treatment time below cloud point
Fig. 3 a, b: Microfotografias SEM de un scaffold recubierto con una densa capa de hidroxiapatita tras tratamiento de nucleación y una semana de inmersión en SBF (x5000) Fig. 4 a, b: Imagen de microscopio de la muestra precedente, y el espectro de rayos X correspondiente tomado en el punto indicado en la imagenFig. 3 a, b: SEM micrographs of a scaffold coated with a dense layer of hydroxyapatite after nucleation treatment and a week of immersion in SBF (x5000) Fig. 4 a, b: Microscope image of the preceding sample, and the corresponding X-ray spectrum taken at the point indicated in the image
Fig. 5: micrografia SEM de un scaffold con un tamaño medio de poro inferior a 10 mieras Fig. 6: micrografia SEM de un scaffold con un tamaño medio de poro superior a 50 mieras.Fig. 5: SEM micrograph of a scaffold with an average pore size of less than 10 microns Fig. 6: SEM micrograph of a scaffold with an average pore size of more than 50 microns.
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
En un aspecto la presente invención se refiere a un nuevo soporte híbrido tridimensional que consiste en una matriz polimérica orgánica de policaprolactona y una fase inorgánica consistente en un recubrimiento de HAp biomimética. El nuevo soporte híbrido presenta una morfología particular con una red de poros perfectamente interconectados entre sí de tamaño comprendido entre 5 y 300 mieras.In one aspect the present invention relates to a new three-dimensional hybrid support consisting of an organic polymeric polycaprolactone matrix and an inorganic phase consisting of a biomimetic HAp coating. The new hybrid support has a particular morphology with a network of pores perfectly interconnected with each other in size between 5 and 300 microns.
En otro aspecto la invención se refiere a un nuevo procedimiento de obtención del soporte híbrido.In another aspect the invention relates to a new method of obtaining the hybrid support.
En otro aspecto adicional la invención, se refiere a un soporte obtenible según el procedimiento de la invención.In a further aspect the invention relates to a support obtainable according to the process of the invention.
En otro aspecto la invención se refiere al empleo del soporte híbrido en aplicaciones como la generación o regeneración de tejido, por ejemplo, tejido conectivo, como hueso o cartílago.In another aspect the invention relates to the use of hybrid support in applications such as tissue generation or regeneration, for example, connective tissue, such as bone or cartilage.
En otro aspecto adicional la invención se relaciona con un procedimiento para generar o regenerar tejido que comprende obtener un soporte híbrido según la invención, y cultivar en dicho soporte células de un tejido seleccionado. Opcionalmente el procedimiento puede comprender asimismo la siembra con células del soporte.In a further aspect, the invention relates to a process for generating or regenerating tissue comprising obtaining a hybrid support according to the invention, and culturing cells of a selected tissue on said support. Optionally, the procedure may also include seeding with support cells.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
En un aspecto la presente invención se refiere a un soporte híbrido macroporoso tridimensional, también denominado en adelante "scaffold" o soporte de la invención, que consiste en una matriz porosa de policaprolactona (PCL) y un recubrimiento de hidroxiapatita biomimética que recubre las superficies internas de los poros de la matriz. El soporte presenta una estructura de poros perfectamente interconectados entre si, y de tamaños comprendidos entre 5 y 300 mieras. En este sentido, la Figura 5 muestra una microfotografia SEM de un soporte según la invención que presenta poros de menos de 10 mieras; y la Figura 6 muestra la microfotografia SEM de un soporte con poros de tamaño superior a 50 mieras que pueden ser invadidos por células de muy diversos tejidos biológicos.In one aspect the present invention relates to a three-dimensional macroporous hybrid support, also referred to as "scaffold" or support of the invention, consisting of a porous polycaprolactone matrix (PCL) and a hydroxyapatite coating. biomimetic that covers the internal surfaces of the pores of the matrix. The support has a structure of perfectly interconnected pores, and sizes ranging from 5 to 300 microns. In this regard, Figure 5 shows an SEM photomicrograph of a support according to the invention having pores of less than 10 microns; and Figure 6 shows the SEM photomicrograph of a support with pores larger than 50 microns that can be invaded by cells of very diverse biological tissues.
La adherencia del recubrimiento de HAp biomimética a la matriz polimérica es muy elevada y consigue conferir al "scaffold" buenas propiedades mecánicas. En el contexto de la presente invención λλhidroxiapatita biomimética" se refiere a la hidroxiapatita que se deposita de forma natural Λλin vivo" o que se deposita sumergiendo el soporte en una solución equivalente que reproduce las condiciones "in vivo", de la misma composición salina que el plasma humano (Simulated Body Fluid o SBF) durante el tiempo necesario.The adhesion of the biomimetic HAp coating to the polymer matrix is very high and gives the scaffold good mechanical properties. In the context of the present invention λλ biomimetic hydroxyapatite "refers to hydroxyapatite that is naturally deposited Λλ in vivo" or that is deposited by immersing the support in an equivalent solution that reproduces the conditions "in vivo" of the same composition saline than human plasma (Simulated Body Fluid or SBF) for as long as necessary.
Las características del soporte de la invención, varian en función de su composición química y del procedimiento de obtención. En este sentido el soporte de la invención puede presentar una porosidad comprendida entre 70 y 90%; además el soporte puede presentar diferentes propiedades, y ser desde soporte esponjosos, muy deformables, cuya deformación plástica les permite adoptar la forma de un hueco preexistente, hasta soportes elásticos con módulos comprendidos entre 0,05 y 2 MPa.The characteristics of the support of the invention vary depending on its chemical composition and the method of production. In this sense, the support of the invention can have a porosity between 70 and 90%; In addition, the support can have different properties, and can be from spongy, very deformable support, whose plastic deformation allows them to take the form of a pre-existing hole, to elastic supports with modules between 0.05 and 2 MPa.
El soporte de la invención presenta además otras ventajas, que lo hacen especialmente interesante en aplicaciones tisulares, como la regeneración ósea.The support of the invention also has other advantages, which make it especially interesting in tissue applications, such as bone regeneration.
La matriz es PCL, un polímero biodegradable, biocompatible y bioreabsorbible, que está además aprobado para su uso clínico. El término "biocompatible" se refiere en la presente invención a que no sea tóxico y a que permita a las células colonizarlo. El término "bioreabsorbible" en la presente invención se refiere a que el soporte desaparezca en el tiempo cuando se encuentra en el interior de un cuerpo animal a medida que es sustituido por tejido regenerado. El soporte de la invención presenta asimismo buenas propiedades de osteointegración y osteoinducción; induce la proliferación y diferenciación de osteoblastos, induce la formación y calcificación de hueso nuevo, y restituye la función fisiológica a nivel molecular y celular. En este sentido el soporte puede implantarse "in vivo". Opcionalmente, el soporte puede sembrarse con células "in vitro" previo a su implantación.The matrix is PCL, a biodegradable, biocompatible and bioreabsorbable polymer, which is also approved for clinical use. The term "biocompatible" refers in the present invention to being non-toxic and allowing cells to colonize it. The term "bioabsorbable" in the present invention refers to the support disappearing over time when it is inside an animal body as it is replaced by regenerated tissue. The support of the invention also has good osseointegration and osteoinduction properties; induces the proliferation and differentiation of osteoblasts, induces the formation and calcification of new bone, and restores physiological function at the molecular and cellular levels. In this sense, the support can be implanted "in vivo". Optionally, the support can be seeded with "in vitro" cells prior to implantation.
La estructura del soporte híbrido, se observa en las Figuras 3 a y b en las que se muestra claramente que la matriz PCL, y la fase de hidroxiapatita biomimética se entremezclan de manera • altamente interpenetrada y constituyen fases continuas .The structure of the hybrid support is seen in Figures 3 a and b in which it is clearly shown that the PCL matrix, and the biomimetic hydroxyapatite phase intermingle in a highly interpenetrated manner and constitute continuous phases.
En otro aspecto la invención proporciona un nuevo procedimiento para obtener el soporte de la invención que comprende las siguientes etapas:In another aspect the invention provides a new method for obtaining the support of the invention comprising the following steps:
(i) preparar una disolución homogénea de PCL en una mezcla de dos disolventes Dl y D2, opcionalmente en presencia de un surfactante; (ii) rellenar con la disolución homogénea un molde con la forma y dimensiones de la pieza de soporte que se desee obtener;(i) preparing a homogeneous solution of PCL in a mixture of two solvents Dl and D2, optionally in the presence of a surfactant; (ii) fill a mold with the homogeneous solution with the shape and dimensions of the support piece to be obtained;
(iii) enfriar la disolución hasta una temperatura inferior a la temperatura a la que se produce la separación de dos fases liquidas;(iii) cooling the solution to a temperature below the temperature at which the separation of two liquid phases occurs;
(iv) mantener la temperatura alcanzada en la etapa (iii) hasta alcanzar la morfología de las fases deseada;(iv) maintain the temperature reached in step (iii) until the desired phase morphology is reached;
(v) solidificar ambas fases disminuyendo la temperatura;(v) solidify both phases by lowering the temperature;
(vi) extraer los solventes Dl y D2 con un tercer disolvente D3 en el que el PCL es insoluble, a una temperatura inferior a la temperatura de fusión de Dl y D2, y a la que D3 se encuentra en estado liquido; o alternativamente por sublimación en frió (freeze drying) (vii) deposición de HAp biomimética.(vi) extract solvents Dl and D2 with a third solvent D3 in which the PCL is insoluble, at a temperature below the melting temperature of Dl and D2, and at which D3 is in a liquid state; or alternatively by sublimation in cold (freeze drying) (vii) deposition of biomimetic HAp.
La etapa (i) se lleva a cabo generalmente a una temperatura igual o superior a la temperatura ambiente, a la cual la PCL es soluble en la mezcla de Dl y D2 en la proporción D1/D2 utilizada obteniéndose una disolución homogénea de PCL en una mezcla de los dos disolventes Dl y D2. Si a temperatura ambiente la mezcla seleccionada no es homogénea se calienta; el experto en la materia puede reconocer fácilmente en cada caso la temperatura necesaria para obtener una disolución homogénea que dependerá de la concentración de PCL, no solvente, y eventualmente el surfactante. Por temperatura ambiente se entiende entre 20°C y 25°C. El surfactante puede ser un surfactante convencional, comercial o un diblock anfifilo. Dl es un disolvente de la PCL y D2 es un no-solvente de la PCL. A modo ilustrativo entre los disolventes de la PCL se pueden mencionar entre otro, tetrahidrofurano, dimetilsulfóxido (DMSO) , cloruro de metileno, acetato de etilo, cloroformo, n-heptano, n-hexano, n-pentano, dioxano, benceno, xileno, naftaleno, dimetilformamida, acido acético, acetona, y mezclas de los anteriores. Ejemplos de no-solvente son entre otros agua, etanol y sus mezclas.Step (i) is generally carried out at a temperature equal to or greater than room temperature, at which the PCL is soluble in the mixture of Dl and D2 in the proportion D1 / D2 used, obtaining a homogeneous solution of PCL in a mixture of the two solvents Dl and D2. If at room temperature the selected mixture is not homogeneous, it is heated; the person skilled in the art can easily recognize in each case the temperature necessary to obtain a homogeneous solution that will depend on the concentration of PCL, not solvent, and possibly the surfactant. Ambient temperature means between 20 ° C and 25 ° C. The surfactant can be a surfactant conventional, commercial or an amphiphilic diblock. Dl is a solvent of the PCL and D2 is a non-solvent of the PCL. By way of illustration, PCL solvents include, among others, tetrahydrofuran, dimethylsulfoxide (DMSO), methylene chloride, ethyl acetate, chloroform, n-heptane, n-hexane, n-pentane, dioxane, benzene, xylene, naphthalene, dimethylformamide, acetic acid, acetone, and mixtures of the foregoing. Examples of non-solvent are, among others, water, ethanol and mixtures thereof.
En la presente descripción las proporciones de Dl, D2 y PCL en la mezcla se indican de la siguiente manera: XDI/XD2- Xpoi, con XDi+XD2=100, siendo XDi y XD2 las proporciones en peso de cada disolvente en la mezcla solvente, y Xpoi la proporción en peso de polímero en la disolución. En la etapa (ii) una vez rellenado el molde con la disolución homogénea, ésta vuelve a homogeneizarse a la temperatura anterior para paliar una eventual diferencia de temperatura del molde. El molde tiene que soportar los disolventes y los cambios bruscos de temperatura durante el procedimiento, por lo cual tiene que ser estable química y térmicamente. Generalmente se utiliza un molde de resina, de politetrafluoroetileno (PTFE) teflón o metal. En general se cierra el molde, y la mezcla homogénea en el molde cerrado se somete a la siguiente etapa.In the present description the proportions of Dl, D2 and PCL in the mixture are indicated as follows: X D I / XD2- Xpoi, with X D i + X D 2 = 100, with X D i and X D 2 being the proportions by weight of each solvent in the solvent mixture, and X by the proportion by weight of polymer in the solution. In step (ii) once the mold has been filled with the homogeneous solution, it is homogenized again at the previous temperature to alleviate a possible temperature difference of the mold. The mold has to withstand solvents and sudden temperature changes during the procedure, so it has to be chemically and thermally stable. Generally a resin, polytetrafluoroethylene (PTFE) Teflon or metal mold is used. In general, the mold is closed, and the homogeneous mixture in the closed mold is subjected to the next step.
En la etapa (iii) la disolución homogénea se enfría, y se separan dos fases; una de las fases está formada mayoritariamente por la disolución del PCL en el disolvente Dl y la otra fase mayoritariamente por una mezcla de los disolventes Dl y D2. A la temperatura a la cual la disolución se vuelve turbia se le denomina "punto de nube". La disolución se vuelve turbia como consecuencia de la dispersión de la luz en los núcleos microscópicos de una fase en la otra: es un indicador del momento donde se pasa de la zona monofásica del diagrama de fases a una zona heterogénea (presencia de varias fases) . La dependencia del "punto de nube", que permite fijar el resto de condiciones del tratamiento térmico, con la composición de la disolución, depende de la concentración de PCL y los disolventes Dl y D2 empleados, y puede determinarse en cada caso (ver Figura 1) . La temperatura alcanzada en la etapa (üi) es inferior a la del punto de nube, típicamente 5°C por debajo de éste.In step (iii) the homogeneous solution is cooled, and two phases are separated; one of the phases is formed mainly by the dissolution of the PCL in the solvent Dl and the other phase mostly by a mixture of the solvents Dl and D2. At the temperature at which the solution becomes cloudy it is called a "cloud point." The dissolution becomes cloudy as a result of the light scattering in the microscopic nuclei of one phase in the other: it is an indicator of the moment from which the phase phase of the phase diagram is passed to a heterogeneous zone (presence of several phases). The dependence of the "cloud point", which allows setting the rest of the heat treatment conditions, with the composition of the solution, depends on the concentration of PCL and the solvents Dl and D2 used, and can be determined in each case (see Figure one) . The temperature reached in the stage (üi) is lower than that of the cloud point, typically 5 ° C below it.
En la etapa (iv) se mantiene la temperatura alcanzada en la etapa (üi) durante . un tiempo generalmente comprendido entre 3 y 30 minutos, hasta alcanzar la morfología de las fases deseada, es decir, hasta que las inclusiones esféricas de fase pobre en PCL alcancen el tamaño de poro deseado para el scaffold.In stage (iv) the temperature reached in stage (üi) is maintained during. a time generally between 3 and 30 minutes, until reaching the desired phase morphology, that is, until spherical inclusions of poor phase in PCL reach the desired pore size for the scaffold.
El proceso de separación de fases líquidas está controlado cinéticamente, lo que significa que la distribución, el tamaño y la forma de las dos fases coexistentes varía en función de la profundidad de temple por debajo de la temperatura del "punto de' nube" (iii) y/o del tiempo de tratamiento isotermo de la mezcla a la temperatura inferior al punto de nube, en la etapa (iv) .The process of liquid phase separation is kinetically controlled, which means that the distribution, size and shape of the two coexisting phases varies depending on the hardening depth below the temperature "point" cloud "(iii ) and / or the isothermal treatment time of the mixture at the temperature below the cloud point, in step (iv).
Cuando el sistema formado por las dos fases, todavía en fase líquida, alcanza la morfología deseada se disminuye bruscamente la temperatura (etapa ( (v) ) solidificando ambas fases por cristalización de los disolventes y cristalización parcial del polímero. Es deseable un enfriamiento rápido tal como el que se produce por inmersión en nitrógeno líquido (temple) , para limitar la evolución ulterior de la estructura.When the system formed by the two phases, still in the liquid phase, reaches the desired morphology, the temperature (stage ((v)) is sharply decreased by solidifying both phases by crystallization of the solvents and partial crystallization of the polymer. Such rapid cooling is desirable. like the one produced by immersion in liquid nitrogen (tempering), to limit the further evolution of the structure.
A continuación se extraen los solventes Dl y D2 con un tercer disolvente D3 en el que el PCL es insoluble, a una temperatura inferior a la temperatura de fusión de Dl y D2, y a la que D3 se encuentra en estado líquido. Los disolventes Dl y D2 se disuelven en D3. D3 puede ser un alcohol de bajo punto de fusión, siendo obligatorio tener el punto de fusión de D3 muy por debajo del de D2. En una realización particular se introduce el sistema congelado en etanol a -20°C hasta conseguir la completa disolución de Dl y D2, dejando únicamente la PCL con la arquitectura porosa derivada de la estructura formada durante la separación de fases líquidas, y se procede a secarlo a vacío y a temperatura ambiente hasta la completa eliminación del disolvente D3.The solvents Dl and D2 are then extracted with a third solvent D3 in which the PCL is insoluble, at a temperature below the melting temperature of Dl and D2, and at which D3 is in a liquid state. Solvents Dl and D2 are dissolved in D3. D3 can be a low melting alcohol, with the melting point of D3 being much lower than that of D2. In a particular embodiment, the ethanol frozen system is introduced at -20 ° C until complete dissolution of Dl and D2 is achieved, leaving only the PCL with the porous architecture derived from the structure formed during the separation of liquid phases, and proceeds to Dry it under vacuum and at room temperature until complete removal of solvent D3.
Alternativamente la extracción se puede llevar a cabo por sublimación en frío (freeze drying)Alternatively the extraction can be carried out by cold sublimation (freeze drying)
La etapa final de deposición de hidroxiapatita biomimética en la superficie del soporte se realiza según la técnica convencional de recubrimiento de hidroxiapatita biomimética, que consiste en depositar los minerales que componen el material cerámico del hueso desde un fluido corporal simulado (SBF) por inmersión de la matriz polimérica en dicho fluido rico en iones con una composición en iones cercana al plasma humano como ocurre en el cuerpo (tabla 1) . La deposición de hidroxiapatita biomimética comprende las siguientes etapas:The final stage of deposition of biomimetic hydroxyapatite on the surface of the support is performed according to the conventional technique of biomimetic hydroxyapatite coating, which consists of depositing the minerals that make up the ceramic bone material from a simulated body fluid (SBF) by immersion of the polymer matrix in said ion-rich fluid with an ion composition close to human plasma as occurs in the body (table 1). Biomimetic hydroxyapatite deposition comprises the following stages:
1) tratamiento del soporte por exposición a un plasma de un gas o por inmersión en una disolución de hidróxido sódico;1) treatment of the support by exposure to a gas plasma or by immersion in a hydroxide solution sodium;
2) inmersión el soporte obtenido en 1 alternativamente en soluciones que contienen respectivamente Ca2+ o PO43~;2) immersion the support obtained in 1 alternatively in solutions containing respectively Ca 2+ or PO4 3 ~ ;
3) inmersión del soporte obtenido en 2) en fluido corporal simulado (SBF) .3) immersion of the support obtained in 2) in simulated body fluid (SBF).
La etapa 1) introduce en la superficie de los poros de la PCL grupos carboxilos, adecuados para nuclear fosfato calcico. A continuación en la etapa 2) se generan núcleos de fosfato calcico en la superficie de los microporos y macroporos del soporte, mediante la inmersión alternada del soporte obtenido en 1) en soluciones conteniendo respectivamente Ca2+ y PO4 3"", por ejemplo cloruro calcico y fosfato de potasio. En la etapa 3) el soporte obtenido en 2) se sumerge en un fluido corporal simulado por un periodo de tiempo comprendido entre unos días y dos semanas. Cuanto mayor sea el tiempo, mayor será el espesor de la capa recubrimiento de hidroxiapatita biomimética creada, según la aplicación requerida. Alternativamente el soporte obtenido en 2) puede sumergirse en otra solución modificada. La composición del fluido corporal simulado (SBF) puede modificarse para acelerar el proceso de deposición o para incluir iones que no están presentes en el medio normal pero pueden tener propiedades osteoinductivas (por ejemplo el flúor).Step 1) introduces carboxyl groups on the surface of the pores of the PCL, suitable for nuclear calcium phosphate. Then in step 2) calcium phosphate cores are generated on the surface of the micropores and macropores of the support, by alternating immersion of the support obtained in 1) in solutions containing respectively Ca 2+ and PO 4 3 "" , for example calcium chloride and potassium phosphate. In step 3) the support obtained in 2) is immersed in a simulated body fluid for a period of time between a few days and two weeks. The longer the time, the greater the thickness of the biomimetic hydroxyapatite coating layer created, depending on the required application. Alternatively, the support obtained in 2) can be immersed in another modified solution. The composition of the simulated body fluid (SBF) can be modified to accelerate the deposition process or to include ions that are not present in the normal environment but may have osteoinductive properties (for example fluorine).
En una realización preferente se utiliza la siguiente composición iónica del fluido corporal simulado (SBF) tamponada con acido clorhídrico e hidrocloruro de tris (hidroximetil) aminometano de la Tabla 1:In a preferred embodiment the following ionic composition of the simulated body fluid (SBF) buffered with hydrochloric acid and tris (hydroxymethyl) aminomethane hydrochloride of Table 1 is used:
Tabla 1
Figure imgf000017_0001
Table 1
Figure imgf000017_0001
El soporte se sumerge durante un tiempo típicamente comprendido entre 24 horas y 2 semanas. Dependiendo del tiempo se genera un recubrimiento de hidroxiapatita de espesor variable (tanto mayor cuanto más tiempo de deposición) que recubre totalmente la superficie de rαacro y microporos . Se obtiene asi un soporte híbrido con una estructura interpenetrada según de describe e ilustra en la invención. Como muestran las imágenes de microfotografia SEM (Figuras 3 y 4) la hidroxiapatita biomimética depositada cubre todas las superficies internas de los poros, constituyendo una fase continua, y originando la estructura híbrida interpenetrada del soporte de la invención.The support is submerged for a period typically between 24 hours and 2 weeks. Depending on the time, a coating of hydroxyapatite of variable thickness is generated (the greater the longer the deposition time) that completely covers the surface of rαacro and micropores. A hybrid support is thus obtained with an interpenetrated structure as described and illustrated in the invention. As the SEM photomicrograph images (Figures 3 and 4) show, the deposited biomimetic hydroxyapatite covers all internal surfaces of the pores, constituting a continuous phase, and originating the interpenetrated hybrid structure of the support of the invention.
A continuación el soporte se lava con agua destilada y se seca, por ejemplo en un desecador a vacio. Puede esterilizarse de acuerdo con cualquier método convencional, almacenarse o acondicionarse para su uso.The support is then washed with distilled water and dried, for example in a vacuum desiccator. It can be sterilized according to any conventional method, stored or conditioned for use.
Para proceder a una separación de fase liquido- liquido, es necesario conocer el diagrama de fase del sistema ternario solvente/no-solvente/PCL que se elije. Asimismo en el procedimiento de la invención resulta determinante controlar la relación existente entre la composición de la disolución en cuanto a las fracciones en peso de PCL y de los disolventes Dl y D2 '(Xm, XD2, Xpoi) i el tratamiento térmico y la morfología de fases para obtener de forma precisa y reproducible un soporte según la invención. Esto se ilustra en los ejemplos 1 y 2.To proceed to a liquid-liquid phase separation, it is necessary to know the phase diagram of the solvent / non-solvent / PCL ternary system chosen. Also in the process of the invention results decisive to control the relationship between the composition of the solution in terms of the weight fractions of PCL and of the solvents Dl and D2 ' (Xm, XD2, Xpoi) and the heat treatment and phase morphology to obtain precisely and reproducible a support according to the invention. This is illustrated in examples 1 and 2.
Las características del soporte de la invención pueden variarse de forma sencilla por un experto en la materia dentro de los intervalos descritos en la presente invención para adaptarse a las necesidades requeridas por la aplicación concreta. Las Figuras 5 y β muestran cómo pueden obtenerse por este procedimiento arquitecturas de estructura porosa muy variables, desde estructuras con pequeños poros, de algunas mieras, que están perfectamente interconectados (Figura 5) , hasta poros de gran tamaño que pueden ser invadidos por células de muy diversos tejidos biológicos (Figura 6) .The characteristics of the support of the invention can be varied in a simple manner by one skilled in the art within the ranges described in the present invention to adapt to the needs required by the specific application. Figures 5 and β show how very variable porous structure architectures can be obtained by this procedure, from structures with small pores, some microns, which are perfectly interconnected (Figure 5), to large pores that can be invaded by cells of very diverse biological tissues (Figure 6).
Como ya se mencionó anteriormente, los soportes híbridos de la invención son adecuados para su aplicación en ingeniería tisular.As already mentioned above, the hybrid supports of the invention are suitable for application in tissue engineering.
Por tanto en otro aspecto la invención proporciona el empleo del soporte de la invención para su uso aplicaciones tisulares, en la generación o regeneración de tejido. Para formas no complejas de "scaffold" se pueden utilizar después de su obtención, diversas herramientas de corte para obtener la geometría deseada para su uso concreto.Therefore in another aspect the invention provides the use of the support of the invention for its use in tissue applications, in the generation or regeneration of tissue. For non-complex "scaffold" forms, various cutting tools can be used after obtaining them to obtain the desired geometry for their specific use.
La generación o regeneración de tejido incluye la reparación o sustitución de hueso, tiras de fusión intervertebrales, implante de prótesis en tejido óseo "in vivo" entre otras. El tejido puede ser por ejemplo tejido conectivo, como hueso o cartilago. Los soportes bioactivos y los soportes híbridos se utilizan in vivo o in vitro.The generation or regeneration of tissue includes bone repair or replacement, intervertebral fusion strips, prosthetic implant in bone tissue "in vivo "among others. The tissue can be for example connective tissue, such as bone or cartilage. Bioactive supports and hybrid supports are used in vivo or in vitro.
En otro aspecto adicional la invención se relaciona por tanto con un procedimiento para generar o regenerar tejido que comprende: proporcionar un soporte híbrido según la presente invención, y cultivar in vitro en dicho soporte células de un tejido, y opcionalmente implantar el soporte obtenido en la etapa anterior en un humano o animal.In a further aspect, the invention thus relates to a method for generating or regenerating tissue comprising: providing a hybrid support according to the present invention, and culturing in vitro in said support cells of a tissue, and optionally implanting the support obtained in the previous stage in a human or animal.
Opcionalmente el procedimiento puede comprender además una siembra con células del soporte previo a su cultivo e implante.Optionally, the procedure can also comprise seeding with support cells prior to their culture and implantation.
Se pueden usar células diferenciadas como osteoblastos, así como células pluripotenciales como las de la médula ósea en conjunto con señales químicas tal como el factor de crecimiento de hueso GMPl.Differentiated cells such as osteoblasts can be used, as well as pluripotential cells such as those of the bone marrow in conjunction with chemical signals such as bone growth factor GMPl.
Asimismo la presente invención se relaciona con un método de tratamiento para la generación o regeneración de un tejido en un sujeto que comprende implantar un soporte híbrido en dicho sujeto en necesidad del mismo, donde sujeto es un animal incluido el ser humano. Como se ha mencionado arriba el soporte puede haber sido tratado previamente a su implantación cultivando in vitro el soporte con las células de interés, y/o sembrándolo con dichas células.Likewise, the present invention relates to a method of treatment for the generation or regeneration of a tissue in a subject comprising implanting a hybrid support in said subject in need thereof, where the subject is an animal including the human being. As mentioned above, the support may have been treated prior to its implantation by in vitro cultivating the support with the cells of interest, and / or sowing it with said cells.
A continuación se presentan ejemplos ilustrativos de la invención que se exponen para una mejor comprensión de la invención y en ningún caso deben considerarse una limitación del alcance de la misma.Below are illustrative examples of the invention set forth for a better understanding of The invention and in no case should be considered a limitation of its scope.
EJEMPLOS 1. Preparación de un scaffoídEXAMPLES 1. Preparation of a scaffoid
Ejemplo 1. Determinación del diagrama de fase de disoluciones dioxano/agua/polimero .Example 1. Determination of the phase diagram of dioxane / water / polymer solutions.
Se prepararon varias disoluciones dioxano/agua-PCL, variando tanto la concentración de PCL entre 3% y 20% como la de agua en la mezcla de disolventes agua y dioxano entre 10% y 15%. Las mezclas se calientan hasta estar en la zona monofásica, donde la disolución tiene un aspecto transparente y homogéneo. Esta zona, donde la mezcla ternaria dioxano-agua-PCL es homogénea, se sitúa por encima de las curvas de la Figura 1. A continuación se bajó la temperatura gradualmente, dejándose a una temperatura dada 10 minutos, observando, y bajando otro grado, etc. Los puntos de las curvas indican la temperatura a la que empieza la separación de fases para un sistema dado. La Figura 1 muestra como para distintas concentraciones de PCL comprendidas entre 3% y 20%, y para diferentes porcentajes de agua varia la temperatura del "punto de nube". En este sentido, el punto de nube aumenta fuertemente y linealmente con la proporción de no-solvente (agua) en la mezcla, cuesta más disolver el polímero pues hay menos afinidad entre el liquido y el polímero. Pasa lo mismo, aunque en menor grado, para la concentración de polímero: cuanto más polímero hay en la disolución, más cuesta disolverlo, por lo cual la curva con la mayor concentración (20% PCL) es superior a todas las demás. Para todas las series, la tendencia observada es la misma, y para un rango estrecho de concentraciones, la pendiente de la curva no cambia significativamente (Cf. concentraciones de 3, 5, 8%) . El cuadro en puntillos representa el intervalo de temperaturas donde se puede trabajar cómodamente. No se puede trabajar a temperaturas altas, pues el equilibrio liquido-vapor del solvente se desplaza del lado del vapor, y por consecuencia se altera la concentración de la mezcla. Tampoco es deseable trabajar a temperaturas más bajas que el ambiente, pues requiere más equipamiento y un control de temperatura más refinado; además a bajas temperaturas se puede producir tanto la cristalización del dioxano (TfUSión: 11 0C) como el gel del polímero (cristalización en disolución) que en definitiva produce una solidificación, impidiendo la separación de fases liquido-liquido en beneficio de una separación de fases liquido-sólido.Several dioxane / water-PCL solutions were prepared, varying both the concentration of PCL between 3% and 20% and that of water in the mixture of water and dioxane solvents between 10% and 15%. The mixtures are heated until they are in the single-phase zone, where the solution has a transparent and homogeneous appearance. This zone, where the dioxane-water-PCL ternary mixture is homogeneous, is located above the curves of Figure 1. The temperature was then gradually lowered, leaving at a given temperature 10 minutes, observing, and lowering another degree, etc. The points of the curves indicate the temperature at which the phase separation begins for a given system. Figure 1 shows how for different concentrations of PCL between 3% and 20%, and for different percentages of water the temperature of the "cloud point" varies. In this sense, the cloud point increases strongly and linearly with the proportion of non-solvent (water) in the mixture, it is more difficult to dissolve the polymer because there is less affinity between the liquid and the polymer. The same is true, although to a lesser extent, for the concentration of polymer: the more polymer in the solution, the more difficult it is to dissolve it, so the curve with the highest concentration (20% PCL) is superior to all others. For all series, the observed trend is the same, and for a narrow range of concentrations, the slope of the curve does not change significantly (Cf. concentrations of 3, 5, 8%). The dotted box represents the temperature range where you can work comfortably. It is not possible to work at high temperatures, since the liquid-vapor equilibrium of the solvent shifts from the steam side, and consequently the concentration of the mixture is altered. Nor is it desirable to work at lower temperatures than the environment, as it requires more equipment and more refined temperature control; In addition, at low temperatures, both the crystallization of dioxane (Tf US ion: 11 0 C) and the polymer gel (crystallization in solution) can occur, which ultimately produces solidification, preventing the separation of liquid-liquid phases for the benefit of a liquid-solid phase separation.
La adjunción de cualquier sustancia surfactante, espesante, u otra, modifica el equilibrio de fases, por lo cual se ha de volver a calcular el diagrama.The attachment of any surfactant, thickener, or other substance, modifies the phase equilibrium, so the diagram has to be recalculated.
Ejemplo 1.2: Influencia del tiempo de nucleación sobre la estructura del scaffoldExample 1.2: Influence of nucleation time on the scaffold structure
Asimismo se ha determinado como varia la microestructura del soporte obtenido en función del tiempo de tratamiento isotermo, (3, 10 y 15 minutos) en particular a 5°C por debajo del punto de nube (Figura 2 a, b, c) para sistemas 88/12-10 (dioxano/agua-PCL) y 1% de tweenδO. El sistema dioxano-agua-PCL 88/12-10 es una disolución que contiene un 10% en peso de PCL en una mezcla de dioxano y agua en la que el porcentaje de dioxano es el 88% en peso.Likewise, the microstructure of the support obtained has been determined as a function of the isothermal treatment time, (3, 10 and 15 minutes) in particular at 5 ° C below the cloud point (Figure 2 a, b, c) for systems 88 / 12-10 (dioxane / water-PCL) and 1% tweenδO. The dioxane-water-PCL 88 / 12-10 system is a solution containing 10% by weight of PCL in a mixture of dioxane and water in which the percentage of dioxane is 88% by weight.
Se preparó una mezcla de dioxano/agua en proporción 88/12. Se añadió 10% en peso de PCL respeto al liquido, y 1% en peso de Tween 80. La temperatura del punto de nube de tal mezcla se determinó por el procedimiento descrito en el Ejemplo 1.1, y se obtuvo un valor de 370C. La mezcla se homogeneizó durante un cuarto de hora en la zona monofásica a 400C, a continuación se enfrió en un baño a 32°C, en la zona bifásica, a Tnube-5OC. Se dejó en esta zona para que la separación de fase liquido-liquido se produjera, durante 3, 10 y 15 rain y se observó la influencia del tiempo de nucleación sobre el tamaño de poro obtenido. A continuación, se enfrió bruscamente por inmersión en nitrógeno liquido, lo que congela la estructura tal como está. Después se procedió a la extracción del disolvente (mezcla dioxano agua) a baja temperatura por otro disolvente que no es solvente del polímero, en este caso el etanol. Se cambió el etanol de extracción tres veces, y después se procedió al secado de la muestra.A dioxane / water mixture in proportion 88/12 was prepared. 10% by weight was added to the liquid PCL respect, and 1 wt% Tween 80. The cloud point temperature of this mixture was determined by the procedure described in Example 1.1, and a value of 37 0 C was obtained The mixture is homogenized for fifteen minutes in the monophase region at 40 0 C, then cooled in a bath at 32 ° C, in the two - phase zone, T cloud -5 O C. was left in this zone for the separation of liquid-liquid phase occurred during 3, 10 and 15 rain and the influence of nucleation time on the pore size obtained was observed. It was then cooled sharply by immersion in liquid nitrogen, which freezes the structure as it is. Then the solvent (water dioxane mixture) was extracted at low temperature by another solvent that is not solvent of the polymer, in this case ethanol. The extraction ethanol was changed three times, and then the sample was dried.
Tal y como se observa en las Figuras 2 a,b y c cuanto mayor es el tiempo de nucleación mayor es el tamaño de los poros obtenidos. En cualquiera de los tiempos utilizados se observa sin embargo la interconexión entre los poros formados .As can be seen in Figures 2 a, b and c, the longer the nucleation time, the greater the size of the pores obtained. In any of the times used, however, the interconnection between the pores formed is observed.
Ejemplo 1.3: Nucleación de una fase inorgánica similar a la apatita del hueso para obtener la estructura hibridaExample 1.3: Nucleation of an inorganic phase similar to bone apatite to obtain the hybrid structure
Se sintetizó un scaffold con una mezcla de 88/12 de dioxano y agua, y un 8% en peso de PCL respeto al peso de disolvente, con un tiempo de nucleación de 3 minutos aA scaffold was synthesized with a mixture of 88/12 dioxane and water, and 8% by weight of PCL with respect to the solvent weight, with a nucleation time of 3 minutes at
El scaffold se trató con una disolución 1 M de hidróxido sódico durante 24horas a temperatura ambiente. A continuación se trató con disoluciones de cloruro calcico (0,2 M) y fosfato potásico (0,2M) para generar núcleos de fosfato calcico en la superficie.The scaffold was treated with a 1M solution of sodium hydroxide for 24 hours at room temperature. It was then treated with solutions of calcium chloride (0.2 M) and potassium phosphate (0.2M) to generate nuclei of calcium phosphate on the surface.
Después del tratamiento se sumergió el scaffold en fluido corporal simulado, (SBF, Simulated Body Fluid) , una solución acuosa cuya composición molar está descrita en la Tabla 2. Al cabo de una semana se lavó el scaffold con agua destilada, y después con etanol y se secó. Las micrografias presentadas (Fig 3a y 3b) ponen en evidencia la abundante nucleación de una capa mineral encima del soporte sintético. El análisis EDX permite confirmar que esta capa mineral tiene una composición parecida a la hidroxiapatita, el mineral del hueso, por su riqueza en fosfato calcico y sus impurezas (magnesio, potasio) típicas de la hidroxiapatita biológica.After the treatment, the scaffold was immersed in simulated body fluid, (SBF, Simulated Body Fluid), an aqueous solution whose molar composition is described in Table 2. After one week the scaffold was washed with water distilled, and then with ethanol and dried. The micrographs presented (Fig 3a and 3b) show the abundant nucleation of a mineral layer on top of the synthetic support. The EDX analysis confirms that this mineral layer has a composition similar to hydroxyapatite, bone mineral, due to its richness in calcium phosphate and its impurities (magnesium, potassium) typical of biological hydroxyapatite.
Figure imgf000023_0001
Figure imgf000023_0001
Tabla 2: composición iónica del fluido corporal simulado y del plasma sanguíneo, (mM/1) A: Fluido corporal simulado; B: plasma sanguíneo. Table 2: Ionic composition of simulated body fluid and blood plasma, (mM / 1) A: Simulated body fluid; B: blood plasma.

Claims

REIVINDICACIONES
1. Un soporte macroporoso y tridimensional que consiste en 5 una matriz porosa de policaprolactona y un recubrimiento de hidroxiapatita biomimética que recubre las superficies internas de los poros, interconectados entre si, y de tamaños comprendidos entre 5 y 300 mieras, en el que la matriz porosa de policaprolactona y el recubrimiento de 10 hidroxiapatita se entremezclan y constituyen fases continuas.1. A macroporous and three-dimensional support consisting of a porous polycaprolactone matrix and a biomimetic hydroxyapatite coating that covers the internal surfaces of the pores, interconnected with each other, and of sizes between 5 and 300 microns, in which the matrix Polycaprolactone porous and hydroxyapatite coating intermingle and constitute continuous phases.
2. Soporte según la reivindicación 1, que presenta una porosidad en volumen comprendida entre un 70 y 90%.2. Support according to claim 1, which has a volume porosity between 70 and 90%.
15fifteen
3. Soporte según cualquiera de las reivindicaciones 1 a 2, que presenta un módulo elástico comprendido entre 0,5 MPa y 2MPa.3. Support according to any of claims 1 to 2, which has an elastic module between 0.5 MPa and 2MPa.
20 4. Un procedimiento para obtener un soporte según una cualquiera de las reivindicaciones 1 a 3, que comprende las etapas de:A method for obtaining a support according to any one of claims 1 to 3, comprising the steps of:
(i) preparar una disolución homogénea de PCL en una mezcla de dos disolventes, un disolvente de PCL, y un no- 2.5 solvente de PCL, opcionalmente en presencia de un surfactante;(i) preparing a homogeneous solution of PCL in a mixture of two solvents, a PCL solvent, and a non-2.5 PCL solvent, optionally in the presence of a surfactant;
(ii) rellenar un molde con la disolución homogénea obtenida en la etapa anterior;(ii) filling a mold with the homogeneous solution obtained in the previous stage;
(iii) enfriar la disolución homogénea hasta una 30 temperatura inferior a la temperatura a la que se produce la separación de dos fases liquidas; (iv) mantener la temperatura alcanzada en la etapa anterior hasta alcanzar la morfología de las fases deseada; (v) solidificar ambas fases disminuyendo la temperatura; (vi) extraer el disolvente de PCL y el no-solvente de PCL, con un tercer disolvente en el que PCL es insoluble, a una temperatura inferior a la temperatura de fusión del disolvente de PCL y del no-solvente de PCL, y a la que el tercer disolvente se encuentra en estado líquido;(iii) cooling the homogeneous solution to a temperature below the temperature at which the separation of two liquid phases occurs; (iv) maintain the temperature reached in the previous stage until the desired phase morphology is reached; (v) solidify both phases by lowering the temperature; (vi) extract the PCL solvent and the PCL non-solvent, with a third solvent in which PCL is insoluble, at a temperature below the melting temperature of the PCL solvent and the PCL non-solvent, and that the third solvent is in a liquid state;
(vii) deposición de HAp biomimética .(vii) deposition of biomimetic HAp.
5. Procedimiento según la reivindicación 4, en el que la etapa (i) se lleva a cabo a una temperatura igual o superior la temperatura ambiente.5. The method according to claim 4, wherein step (i) is carried out at a temperature equal to or greater than the ambient temperature.
6. Procedimiento según la reivindicación 4 o 5, en el que el disolvente de PCL se selecciona del grupo formado por tetrahidrofurano, dimetilsulfóxido, cloruro de metileno, acetato de etilo, cloroformo, n-heptano, n-hexano, n- pentano, dioxano, benceno, xileno, acetona, naftaleno, dimetilformamida, dioxano, ácido acético, acetona y sus mezclas .6. The process according to claim 4 or 5, wherein the PCL solvent is selected from the group consisting of tetrahydrofuran, dimethyl sulfoxide, methylene chloride, ethyl acetate, chloroform, n-heptane, n-hexane, n-pentane, dioxane , benzene, xylene, acetone, naphthalene, dimethylformamide, dioxane, acetic acid, acetone and mixtures thereof.
7. Procedimiento según la reivindicación 4 o 5, en el que el no-solvente se selecciona del grupo formado por agua, etanol y sus mezclas.7. A process according to claim 4 or 5, wherein the non-solvent is selected from the group consisting of water, ethanol and mixtures thereof.
8. Procedimiento según las reivindicaciones β y 7, en el que el disolvente es dioxano y el no-solvente es agua.8. Process according to claims β and 7, wherein the solvent is dioxane and the non-solvent is water.
9. Procedimiento según la reivindicación 8, en el que la concentración de agua en la mezcla de dioxano y agua está comprendida entre 10% y 15%, y en el que la concentración de PCL está comprendida entre 3% y 20%.9. The method according to claim 8, wherein the concentration of water in the mixture of dioxane and water is between 10% and 15%, and in which the concentration of PCL is between 3% and 20%.
10. Procedimiento según la reivindicación 9, en el que el la disolución homogénea se prepara a partir de una mezcla de dioxano/agua en proporción 88/12, 10% en peso de PCL con respecto a la mezcla de disolventes y 1% de tween 80.10. The method according to claim 9, wherein the homogeneous solution is prepared from a mixture of dioxane / water in 88/12 proportion, 10% by weight of PCL with respect to the solvent mixture and 1% tween 80.
11. Procedimiento según una cualquiera de las reivindicaciones 4 a 10, en el que la disolución homogénea se enfria 5°C por debajo de la temperatura del punto de nube, y se mantiene a dicha temperatura durante un tiempo comprendido entre 3 y 30 minutos.11. A method according to any one of claims 4 to 10, wherein the homogeneous solution is cooled 5 ° C below the cloud point temperature, and is maintained at said temperature for a time between 3 and 30 minutes.
12. Procedimiento según una cualquiera de las reivindicaciones 4 a 11, en la que la etapa (v) se lleva a cabo por inmersión del sistema formado por las dos fases en nitrógeno liquido.12. The method according to any one of claims 4 to 11, wherein step (v) is carried out by immersion of the system formed by the two phases in liquid nitrogen.
13. Procedimiento según una cualquiera de las reivindicaciones 4 a 12, en el que la etapa (vi) se lleva a cabo en etanol a -200C.13. Process according to any one of claims 4 to 12, wherein step (vi) is carried out in ethanol at -20 0 C.
14. Procedimiento según la reivindicación 4, en el que la etapa (vi) de extracción se lleva a cabo, alternativamente, por sublimación en frió.14. The method according to claim 4, wherein the extraction stage (vi) is carried out, alternatively, by cold sublimation.
15. Procedimiento según una cualquiera de las reivindicaciones 4 a 14, en el que la etapa (vii) comprende las siguientes etapas:15. The method according to any one of claims 4 to 14, wherein the step (vii) comprises the following steps:
1) tratamiento del soporte por exposición a un plasma de un gas o por inmersión en una disolución de hidróxido sódico. 2) inmersión el soporte obtenido en 1) alternativamente en soluciones que contienen respectivamente cada una iones Ca2+ e iones PO43".1) treatment of the support by exposure to a gas plasma or by immersion in a solution of sodium hydroxide. 2) immersion the support obtained in 1) alternatively in solutions containing respectively each Ca 2+ ions and PO4 3 " ions.
3) inmersión del soporte obtenido en fluido corporal simulado.3) immersion of the support obtained in simulated body fluid.
16. Soporte obtenible según cualquiera de las reivindicaciones 4 a 15.16. Support obtainable according to any of claims 4 to 15.
17. Soporte según cualquiera de las reivindicaciones 1 a 3 para su uso en la generación o regeneración de tejido.17. Support according to any of claims 1 to 3 for use in tissue generation or regeneration.
18. Empleo del soporte según cualquiera de las reivindicaciones 1 a 3, para la generación o regeneración de tejido.18. Use of the support according to any of claims 1 to 3, for tissue generation or regeneration.
19. Empleo según la reivindicación 18, en la que el tejido es conectivo.19. Use according to claim 18, wherein the tissue is connective.
20. Procedimiento para generar o regenerar tejido que comprende : obtener un soporte híbrido según cualquiera de las reivindicaciones 1 a 3, y cultivar in vitro en dicho soporte células de un tejido, y opcionalmente siembra con células del soporte previo a su cultivo. 20. Method for generating or regenerating tissue comprising: obtaining a hybrid support according to any one of claims 1 to 3, and culturing in vitro in said support cells of a tissue, and optionally planting with cells of the support prior to its cultivation.
PCT/ES2009/000081 2008-02-14 2009-02-12 Co-continuous hybrid structure for the regeneration of bone defects WO2009101228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800516A ES2330823B2 (en) 2008-02-14 2008-02-14 CO-CONTINUOUS HYBRID STRUCTURE FOR THE REGENERATION OF OSE DEFECTS.
ESP200800516 2008-02-14

Publications (1)

Publication Number Publication Date
WO2009101228A1 true WO2009101228A1 (en) 2009-08-20

Family

ID=40956679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000081 WO2009101228A1 (en) 2008-02-14 2009-02-12 Co-continuous hybrid structure for the regeneration of bone defects

Country Status (2)

Country Link
ES (1) ES2330823B2 (en)
WO (1) WO2009101228A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178852A1 (en) * 2012-06-01 2013-12-05 Universitat Politècnica De València Polymer/ceramic hybrid material
US10238507B2 (en) 2015-01-12 2019-03-26 Surgentec, Llc Bone graft delivery system and method for using same
US10687828B2 (en) 2018-04-13 2020-06-23 Surgentec, Llc Bone graft delivery system and method for using same
US11116647B2 (en) 2018-04-13 2021-09-14 Surgentec, Llc Bone graft delivery system and method for using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202111039D0 (en) 2021-07-30 2021-09-15 Promimic Ab Materials and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281257B1 (en) * 1998-04-27 2001-08-28 The Regents Of The University Of Michigan Porous composite materials
AU783073B2 (en) * 2001-03-01 2005-09-22 Ethicon Inc. Foam composite for the repair or regeneration of tissue
WO2007115367A1 (en) * 2006-04-07 2007-10-18 The University Of Queensland Porous polymer blend structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281257B1 (en) * 1998-04-27 2001-08-28 The Regents Of The University Of Michigan Porous composite materials
AU783073B2 (en) * 2001-03-01 2005-09-22 Ethicon Inc. Foam composite for the repair or regeneration of tissue
WO2007115367A1 (en) * 2006-04-07 2007-10-18 The University Of Queensland Porous polymer blend structures

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAJI, A. ET AL.: "Processing Methodologies for Polycaprolactone-Hydroxyapatite Composites: A Review", MATERIALS AND MANUFACTURING PROCESSES, vol. 20, 2006, pages 211 - 218 *
HYUN, Y-T. ET AL.: "Characterization of PCL/HA composite Scaffolds for Bone Tissue Engineering", KEY ENGINEERING MATERIALS, vol. 342-343, 2007, pages 109 - 112 *
KIM, S.E. ET AL.: "Biodegradable Porous PCL/HA Scaffolds for Bone Tissue Engineering", KEY ENGINEERING MATERIALS, vol. 342-343, 2007, pages 77 - 80 *
TANAKA, M. ET AL.: "Formation of hydroxyapatite on a self-organized 3D honeycomb-patterned biodegradable polymer film", COLLOID AND SURFACES A: PHYSICOCHEMICAL ENGINEERING ASPECTS, vol. 313-314, 2008, pages 515 - 519 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178852A1 (en) * 2012-06-01 2013-12-05 Universitat Politècnica De València Polymer/ceramic hybrid material
ES2437183A1 (en) * 2012-06-01 2014-01-09 Universidad Politécnica De Valencia Polymer/ceramic hybrid material
US10238507B2 (en) 2015-01-12 2019-03-26 Surgentec, Llc Bone graft delivery system and method for using same
US11116646B2 (en) 2015-01-12 2021-09-14 Surgentec, Llc Bone graft delivery system and method for using same
US10687828B2 (en) 2018-04-13 2020-06-23 Surgentec, Llc Bone graft delivery system and method for using same
US11116647B2 (en) 2018-04-13 2021-09-14 Surgentec, Llc Bone graft delivery system and method for using same

Also Published As

Publication number Publication date
ES2330823A1 (en) 2009-12-15
ES2330823B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
Yazdimamaghani et al. Porous magnesium-based scaffolds for tissue engineering
Vitale-Brovarone et al. Development of glass–ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation
Wang et al. Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures
JP4101458B2 (en) Bone substitute
WO2017219654A1 (en) Degradable, porous, magnesium-containing calcium phosphate-calcium sulfate composite biological stent
Guda et al. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art
Bellucci et al. A new potassium-based bioactive glass: Sintering behaviour and possible applications for bioceramic scaffolds
Peng et al. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. Preparation and characterization of scaffold
Abdurrahim et al. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications
KR101427305B1 (en) Bone grafting material and method thereof
ES2330823B2 (en) CO-CONTINUOUS HYBRID STRUCTURE FOR THE REGENERATION OF OSE DEFECTS.
Van Ho et al. Novel TOCNF reinforced injectable alginate/β-tricalcium phosphate microspheres for bone regeneration
CN104368040A (en) Composite 3D printing porous metal support for demineralized bone matrix and preparation method of metal support
Rahaman et al. Bioactive glass in bone tissue engineering
ES2939266T3 (en) Collagen matrix or granulated mixture of bone substitute material
Mohammed Mohammed et al. A comprehensive review of the effects of porosity and macro-and micropore formations in porous β-TCP scaffolds on cell responses
US8465582B2 (en) Process for producing inorganic interconnected 3D open cell bone substitutes
US8911762B2 (en) Polylactic acid/calcium sulfate scaffold
Sa et al. Fabrication and evaluation of 3D β-TCP scaffold by novel direct-write assembly method
CN110075349B (en) Bioactive glass composite bracket and application
Nommeots-Nomm et al. Glass and glass-ceramic scaffolds: manufacturing methods and the impact of crystallization on in-vitro dissolution
ES2331678B2 (en) THREE-DIMENSIONAL MACROPOROUS SUPPORTS FOR TISSULAR ENGINEERING.
Niedzielski et al. An in vivo study of the new generation of bioactive glass-ceramics as a bone substitute
CN101947332A (en) Porous biodegradable composite-type bone repairing material and preparation method thereof
Babini et al. Towards biologically inspired materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710070

Country of ref document: EP

Kind code of ref document: A1