WO2009119782A1 - Modified photoreceptor channel type rhodopsin protein - Google Patents

Modified photoreceptor channel type rhodopsin protein Download PDF

Info

Publication number
WO2009119782A1
WO2009119782A1 PCT/JP2009/056216 JP2009056216W WO2009119782A1 WO 2009119782 A1 WO2009119782 A1 WO 2009119782A1 JP 2009056216 W JP2009056216 W JP 2009056216W WO 2009119782 A1 WO2009119782 A1 WO 2009119782A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acids
protein
channel
dopsin
Prior art date
Application number
PCT/JP2009/056216
Other languages
French (fr)
Japanese (ja)
Inventor
八尾寛
石塚徹
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2010505812A priority Critical patent/JP5544659B2/en
Publication of WO2009119782A1 publication Critical patent/WO2009119782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants

Definitions

  • the present invention relates to a modified photoreceptor channel-type rhodopsin protein, a polynucleotide encoding the protein, an expression vector containing the polynucleotide, and a cell expressing the protein.
  • Chlamydomonas which normally lives in freshwater ponds, belongs to the green alga, a unicellular eukaryote that has chloroplasts and photosynthesizes. Chlamydomonas has the habit of gathering in light (ie, phototaxis) by receiving light in a special membrane region called the eye point and controlling flagellar movement.
  • Channel opsin 1 has the property of transmitting H + in response to light when expressed in force oocytes (Non-Patent Document 1).
  • Channelopsin 2 also has a cation permeability such as Na + and is expressed in cultured mammalian cells (HEK293, BHK) to cause depolarization in response to blue light at 400 to 500 nm. (Non-patent document 2).
  • Photoreceptor channels such as those described above are expected to be used in a variety of fields, including medical care, welfare 'nursing and information communication.
  • Patent Document 1 discloses that a neuron newly imparted with photosensitivity is created by introducing and expressing channelopsin 2 into a neuronal cell using a genetic engineering method.
  • Non-Patent Documents 3 to 6 attempts have been made to make neural cell networks work by light irradiation.
  • Non-Patent Documents 7 and 8 it is possible to restore visual acuity by introducing and expressing channelopsin 2 in ganglion cells and bipolar cells using animals whose retinal photoreceptor cells have degenerated due to various causes.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-217866
  • Non-Patent Document 1 Nagel et al., 2002, Science 296, 2395-2398.
  • Non-Patent Document 2 Nagel et al., 2003, Proc. Natl. Acad. Sci. USA 100, 13940-13945.
  • Non-Patent Document 3 Boyden et al., 2005, Nat. Neurosci. 8, 1263-1268.
  • Non-Patent Document 4 Li et al., 2005, Proc. Natl. Acad. Sci. USA 102, 17816-17821.
  • Non-Patent Document 5 Ishizuka et al., 2006, Neurosci. Res 54, 85-94.
  • Non-Patent Document 6 Arenkiel et al., 2007, Neuron 54, 205-218.
  • Non-Patent Document 8 Tomita et al., 2007, Invest. Ophthalmol. Vis. Sci. 48, 3821-3826.
  • photoreceptor channels are introduced and expressed in eukaryotic cells such as mammalian cells and used for functional control such as depolarization caused by light irradiation. .
  • the photoreceptor channel is generally desired to have functions such as weak inactivation of photocurrent, high conductance, and high frequency response characteristics. No photoreceptor channel has been found to date.
  • an object of the present invention is to provide a photoreceptor channel type protein having various functional properties improved or imparted.
  • the present invention includes the following features.
  • a modified photoreceptor channel-type oral dopsin protein having a plurality of transmembrane domains, wherein at least one of the transmembrane domains is a Chlamydomonas reinhardti i Is a transmembrane domain derived from 1 or a variant thereof and / or at least one transmembrane domain is derived from the equivalent chinenoreopsin 2 of Chlamydomonas reinhardti i
  • the protein which is a transmembrane structure domain or a variant thereof.
  • transmembrane domains are transmembrane domain derived from the corresponding channel opsin 1 of Chlamydomonas reinhardti i or a variant thereof, and at least one of the transmembrane domains is present.
  • the photoreceptor channel-type oral dopsin protein is channel opsin 1, The protein according to (1) above, wherein at least one of the transmembrane domain is a transmembrane domain derived from channel opsin 2 of Chlamydomonas reinhardtii or a variant thereof.
  • Photoreceptor channel type dopsin protein is channel opsin 2 and at least one transmembrane domain is a transmembrane domain derived from the corresponding channel opsin 1 of Chlamydomonas reinhardtii Or the protein according to (1) above, which is a variant thereof.
  • An expression vector comprising the polynucleotide according to (10) operably linked to a promoter.
  • Figure 1 shows (A) amino acid primary structure alignment of Chopl and Chop2, and (B) a transmembrane domain structure of a modified oral dopsin protein in which the C-terminus of the channelopsin gene is replaced with Venus.
  • FIG. 2 shows the transmembrane domain structure of the hybrid apoprotein produced in the example.
  • Fig. 3 shows a schematic diagram of the experimental apparatus used in the examples.
  • FIG. 5 shows confocal images of (A) HEK293 cells expressing hybrid Abcdefg and (B) HEK293 cells expressing hybrid ABcdefg.
  • FIG. 6A shows photocurrent of HEK293 cells expressing hybrid Abcdefg (upper: blue light, lower: green light) and photoelectric current of HEK293 cells expressing hybrid ABcdefg (upper: blue light, lower: green light) )
  • Figure 6B shows a comparison of the absorption wavelength response characteristics of the hybrid apoprotein according to the G / B ratio (Green / Blue ratio) of the blue light response and the green light response.
  • Figure 7A shows the IV relationship of the hybrid Abcdefg photocurrent (black: extracellular Na + concentration 142 mM, red: extracellular Na + concentration 20 mM).
  • Figure 7B shows the IV relationship of the hybrid Abcdefg photocurrent (black: extracellular Na + concentration 142 mM, red: extracellular Na + concentration 20 mM).
  • Figure 7C shows a comparison of photocurrent reversal potential shifts for each hybrid apoprotein.
  • Figure 8 shows the Honore cell conductance per unit membrane capacity of the photoreceptor channel of each hybrid apoprotein.
  • Figure 9A shows the relative size of the irradiated pulsed light.
  • Figures 9B and C show the comparison of the current response to the light intensity for the photocurrents of the hybrids Abcdefg and ABcdefg, respectively.
  • Figure 10A shows a comparison between the wild-type Chop2 (1-315) abcdefg photocurrent ( ⁇ ) and the hybrid ABcdefg photocurrent (red).
  • Figure 10B shows the results of quantifying the degree of inactivation by the ratio of steady photocurrent and maximum photocurrent (plateau / peak ratio) for each hybrid apoprotein.
  • Fig. 11 A shows a comparison of the rise of photocurrent in hybrid Abcdefg (black) and hybrid ABcdefg (red).
  • Figure 11B shows a comparison of photocurrent termination for hybrid Abcdefg (black) and hybrid ABcdefg (red).
  • Fig. 1 1C shows a comparison of the photocurrent ON rate constant and OFF rate constant between the hybrid apoprotein and the wild type apoprotein.
  • Figure 12 shows the transmembrane domain structure and amino acid primary structure of the channel opsin wide receiver (chopWR).
  • Fig. 13 shows the transmembrane structure of channel opsin 'fast tracer (chopFR). Best mode for carrying out the invention showing the main structure and amino acid primary structure
  • the present invention relates to a modified photoreceptor channel-type oral dopsin protein (hereinafter also referred to as “modified rhodopsin protein” or “hybrid apoprotein”). Specifically, at least one of the multiple transmembrane domains possessed by the photoreceptor channel-type rhodopsin protein corresponds to the channel opsin 1 of Chlamydomonas reinhardti i (hereinafter “Chopl”).
  • Chopl Chlamydomonas reinhardti i
  • the present invention relates to a photoreceptor channel-type rhodopsin protein, which is a penetrating domain or a variant thereof.
  • transmembrane-containing domain refers to a region containing a transmembrane structure deduced from homology with bacteriophage dopsin in a photoreceptor channel-type rhodopsin protein.
  • the modified oral dopsin protein of the present invention comprises a transmembrane domain derived from Chopl or a variant thereof, wherein at least one of the transmembrane domains in the photoreceptor channel type oral dopsin protein corresponds to this It is a transmembrane structure domain derived from Chop2 or a variant thereof, which is and / or equivalent thereto.
  • the modified rhodopsin protein of the present invention is preferably a transmembrane domain having a preferable functional property found in Chopl, and / or a preferred one found in Chop2.
  • the transmembrane-containing domain having the functional characteristics in the domain of the transmembrane-containing domain corresponding thereto, preferable functional characteristics are maintained.
  • the modified port Dopushi Ntanpaku quality of the present invention preferably has both a preferred functional properties. Therefore, in the present invention, the photoreceptor channel type oral dopsin protein is preferably Chopl.
  • a photoreceptor channel-type oral dopsin protein refers to an archaeal type oral dopsin family protein having both a photoreceptor function and a channel function (hereinafter also referred to as “photoreceptor channel function”).
  • photoreceptor channel function a channel function having both a photoreceptor function and a channel function (hereinafter also referred to as “photoreceptor channel function”).
  • photoreceptor channel function a photoreceptor channel function
  • Chopl and Chop2 bacteriorhodopsin, halorhodopsin, sensory mouth dopsin, proteorhodopsin, and green algae opsin protein as structurally closely related proteins belonging to the archaeal type mouth dopsin family.
  • the preferred photoreceptor channel-type oral dopsin protein in the present invention is Chopl or Chop2, or a homologue or variant thereof.
  • the gene sequence and amino acid sequence of Chopl and Chop2 are known (Chopl: GenBank accession number AF385748, Chop2: GenBank accession number AF461397).
  • the gene sequence and amino acid sequence of Chopl are shown in SEQ ID NOS: 1 and 2
  • the gene sequence and amino acid sequence of Chop2 are shown in SEQ ID NOS: 3 and 4, respectively.
  • the “homolog” refers to a protein (or nuclear acid) having the same function derived from different organisms.
  • the homologous protein and the sequence of the nucleic acid that encodes it can be searched using algorithms such as BLAST and FASTA by accessing well-known databases such as NCBI and EMBL.
  • Such homologous nucleic acid or gene can be isolated according to a conventional method.
  • a primer that specifically amplifies a gene identified using a database that stores base sequence information is designed, chemically synthesized, and the above-mentioned primer that uses the genomic DNA extracted from the target organism as a cage is used.
  • the desired homologue of chop 1 or chop 2 gene can be amplified and isolated by PCR.
  • Chopl (or Chop2) mutant used in the present invention includes Chopl (or Chop2)
  • Chop2 amino acid sequence, substitution, addition, insertion or insertion of one to several amino acids
  • Polypeptides having sequence homology of%, 97%, 98% or 99% sequence homology and functional properties equivalent to Chopl (or Chop2) are included.
  • “several” is an integer of 10 or less, for example, an integer of 2 to 9, 2 to 7, or 2 to 5.
  • sequence homology was calculated using software (for example, FASTA, DNASYS, BLAST, etc.) that calculates the homology between multiple (two) amino acid sequences with default settings. Value.
  • equivalent functional characteristics used in connection with Chopl or Chop2 means that at least one of the functional characteristics such as conductance, optical absorption wavelength characteristics, inactivation characteristics, and frequency response characteristics of Chopl or Chop2 is substantially. Are identical.
  • the mutant of Chopl may be a naturally occurring mutant or an artificially introduced mutant.
  • Artificial mutations can be introduced by introducing mutations into the chopl (or cho P 2) gene using, for example, site-specific mutagenesis or PCR-based mutagenesis. (Proc Natl Acad Sci USA., 1984 81: 5662; Sambrook et al., Molecular Cloning A Laboratory Manual (1989) Second edition, Cold Spring Harbor Laboratory Press; Ausubel et al., Current Protocols in Molecular Biology 1995 John Wiley & Sons) .
  • Chopl (or Chop2) homologue or mutant has functional characteristics equivalent to those of Chopl (or Cho P 2) can be determined by, for example, membrane potential recording using electrophysiological methods, membrane current recording, It can be assessed by examining changes in intracellular ion concentration using a fluorescent probe. '
  • Chopl or Chop2 is not necessarily its length, it may be a fragment of Chopl or Cho P 2 having a light-receiving channel activity.
  • Chopl or Chop2 is an N-terminal region containing a transmembrane structure (Chopl: 1-345 (SEQ ID NO: 5));
  • Chop2: 1-315 (SEQ ID NO: 6) has been reported to have photoreceptive activity, and it is preferable to use a polypeptide containing these regions as the fragment.
  • Chopl and Chop2 are each assumed to have seven transmembrane structures due to their similarity to bacteriodopsin (see Figure 1).
  • the N-terminal region (Chopl: 1-345, Chop2: 1-315) including each hypothetical transmembrane structure has photoreceptive channel activity. Therefore, A, B, C, D, E, F, and G are defined as transmembrane-containing domain including each hypothetical transmembrane structure of Chopl, and a photoreceptor channel that holds Chopl's A to G.
  • Photoreceptor channel type mouth Dopsin protein or fragment thereof is expressed as abcdefg.
  • a photoreceptor channel-type oral dopsin protein or fragment thereof in which A to D are derived from Chopl and e to g is derived from Chop2 is represented as ABCDefg.
  • Chopl transmembrane structure domains A to G are amino acid regions shown below.
  • Domain B amino acids 118 to 164 of the amino acid sequence shown in SEQ ID NO: 2
  • Domain E amino acids 213 to 242 of the amino acid sequence shown in SEQ ID NO: 2
  • Domain G amino acids 277 to 345 of the amino acid sequence shown in SEQ ID NO: 2
  • Chop2 transmembrane domains ag are amino acid regions shown below.
  • Domain a Amino acids 1 to 78 of the amino acid sequence shown in SEQ ID NO: 4
  • Domain b amino acids 79 to 125 of the amino acid sequence shown in SEQ ID NO: 4
  • Domain c amino acids 126 to of the amino acid sequence shown in SEQ ID NO: 4;
  • Domain d amino acids 146 to 173 of the amino acid sequence shown in SEQ ID NO: 4
  • Domainein e amino acids 174 to 203 of the amino acid sequence shown in SEQ ID NO: 4
  • Domain f amino acids 204 to 237 of the amino acid sequence shown in SEQ ID NO: 4
  • Domain g amino acids 238 to 315 of the amino acid sequence shown in SEQ ID NO: 4
  • a variant of the transmembrane domain of Chopl (or Chop2) (hereinafter referred to as “Also referred to as “mutant transmembrane domain”) has one to several amino acid substitutions, additions, insertions or deletions in the amino acid region of the transmembrane domain, and has not been modified. At least 90%, preferably at least 95%, more preferably at least 96%, 97%, with respect to the amino acid sequence of the polypeptide having functional properties equivalent to the transmembrane domain, and the transmembrane domain It includes polypeptides having 98% or 99% sequence homology and functional properties equivalent to unmodified transmembrane domains. Note that “several” and sequence homology values are defined above.
  • “Equivalent functional characteristics” used in the context of mutant transmembrane domains are the types of functional characteristics of the mutant transmembrane domains (conductance, light absorption wavelength characteristics, inactivation characteristics, frequency response characteristics, etc.) ) Is substantially the same as the unmodified transmembrane domain, and the properties of the functional properties of the mutant transmembrane domain (conductance intensity, light absorption wavelength range, degree of inactivation of photocurrent) The degree of frequency response etc.) is substantially the same as the unmodified transmembrane domain.
  • the mutant transmembrane domain may be a naturally occurring one or an artificially introduced mutation. Artificial mutations can be introduced by introducing mutations into a polynucleotide encoding a transmembrane domain using, for example, site-specific mutagenesis or PCR-based mutagenesis. Yes (Proc Natl Acad Sci USA., 1984 81: 5662; Sambrook et al., Supra; Ausubel et al., Supra) ⁇
  • the modified oral dopsin protein of the present invention is a transmembrane domain or a variant thereof derived from Chopl, in which at least one of the transmembrane domains in the photoreceptor channel type oral dopsin protein corresponds to this. Is and / or equivalent
  • transmembrane domain derived from Chop2 or a variant thereof is a transmembrane domain derived from Chop2 or a variant thereof.
  • at least one transmembrane domain in the photoreceptor channel type oral dopsin protein is equivalent to the transmembrane domain derived from Chopl, which corresponds to this domain.
  • it can be said that it is substituted with a mutant thereof, and / or is substituted with a corresponding transmembrane domain derived from Chop2 or a mutant thereof. This allows for the preferred functional characteristics of Chopl or Chop2. Can be provided.
  • “Equivalent transmembrane domain” is the same as the transmembrane domain to be replaced in the type of functional characteristics (conductance, light absorption wavelength characteristics, inactivation characteristics, frequency response characteristics, etc.) However, it refers to domains with a transmembrane structure that have the same or different functional properties (conductance strength, light absorption wavelength range, degree of photocurrent inactivation, frequency response, etc.). For example, the transmembrane domain of Chop2 corresponding to the domain A of Chopl is the domain a.
  • both the Chopl transmembrane domain and the Chop2 transmembrane domain have different functional properties, both the Chopl transmembrane domain and the Chop2 transmembrane domain are various. By holding them in combination, it is possible to provide a lineup of photoreceptor channel-type rhodopsin proteins having various functional properties.
  • the modified oral dopsin protein of the present invention has increased conductance and long wavelength photoresponse. It can have at least one of the following functional characteristics: increased performance, weak inactivation, and high frequency response.
  • An increase in conductance is a preferable functional characteristic in that a large membrane potential response and membrane current response are generated even for weak light.
  • the increase in the long wavelength photoresponsiveness is a preferable functional characteristic in that the wavelength band of light that can be used for activation is expanded and the response to white light is increased.
  • Weak inactivation is a favorable functional characteristic in that the light input pattern is more accurately reflected in the membrane potential and membrane current, and the response is not attenuated by repeated stimulation.
  • High frequency response is a preferable functional characteristic in that the response to optical information that fluctuates at high frequencies is not attenuated.
  • the modified oral dopsin protein of the present invention is replaced with at least one of the transmembrane domains of Chopl (for example, domain A), instead of Chop2 It can be created by retaining a transmembrane domain (eg domain a).
  • the modified rhodopsin protein of the invention is created by retaining Chopl's transmembrane domain (eg, domain A) instead of at least one (eg, domain a) of Chop2's transmembrane domain. be able to.
  • modified oral dopsin protein created between Chopl and Chop2 include proteins including the following exemplified polypeptides or variants thereof.
  • ABSenfg A polypeptide consisting of amino acids 1-164 of SEQ ID NO: 2 and amino acids 126-315 of SEQ ID NO: 4.
  • ABSORFg Polypeptide consisting of amino acids 1 to 184 of SEQ ID NO: 2 and amino acids 146 to 315 of SEQ ID NO: 4
  • ABSORG A polypeptide consisting of amino acids 1-212 of SEQ ID NO: 2 and amino acids 174-315 of SEQ ID NO: 4.
  • ABSORfg A polypeptide comprising amino acids 1 to 242 of SEQ ID NO: 2 and amino acids 204 to 315 of SEQ ID NO: 4.
  • ABSCDEFg A polypeptide consisting of amino acids 1 to 276 of SEQ ID NO: 2 and amino acids 238 to 315 of SEQ ID NO: 4
  • aBCDEFG A polypeptide consisting of amino acids 118 to 345 of SEQ ID NO: 2 and amino acids 1 to 78 of SEQ ID NO: 4.
  • (abCDEFG) A polypeptide consisting of amino acids 165 to 345 of SEQ ID NO: 2 and amino acids 1-125 of SEQ ID NO: 4.
  • (abcDEFG) A polypeptide comprising amino acids 185 to 345 of SEQ ID NO: 2 and amino acids 1 to 145 of SEQ ID NO: 4.
  • Each variant of the above polypeptide has one to several amino acid substitutions, additions, insertions or deletions in each amino acid sequence of the above polypeptide, and is equivalent to the above polypeptide. And at least 90%, preferably at least 95%, more preferably at least 96%, 97%, 98% or 99% sequence homology to the amino acid sequence of said polypeptide. And a polypeptide having functional properties equivalent to those of the polypeptide. Note that “several”, sequence homology values, and “equivalent functional properties” are defined above.
  • the mutants may be naturally occurring or artificially introduced with mutations. Artificial mutations are introduced by, for example, site-directed mutagenesis or active mutagenesis using PCR (Proc Natl Acad Sci USA., 1984 81: 5662; Sambrook et al., Supra. In addition to Ausubel et al., The above), it may be produced from a convenient aspect of production, such as an operation for increasing the expression efficiency of the above-mentioned polypeptide.
  • ABCDEfg (hereinafter also referred to as “channel opsin” wide receiver (chop WR) J) has conductance and long-wavelength light absorption. The size, weakness of inactivation, etc. are remarkably superior, and the selectivity to Na + ions is high. The channelopsin wide receiver is excellent in the reception of faint light. It is a modified type of oral dopsin protein that is excellent for use in cells that are deep in the region.
  • ABcdefg (hereinafter also referred to as “channel opsin 'fast receiver (chop FR) J)” is remarkably superior in frequency response characteristics.
  • the channelops fast receiver is excellent in accepting optical information that fluctuates at high frequencies, for example, a neural cell network module that can input information by light. It is an excellent modified type of dopsin protein.
  • the modified oral dopsin protein of the present invention is a photoreceptor channel type oral dopsin tongue. Based on the sequence information of protein gene, chopl gene and chop2 gene, it can be produced by genetic engineering techniques.
  • modified oral dopsin gene a polynucleotide encoding the modified oral dopsin protein of the present invention (hereinafter also referred to as “modified oral dopsin gene”) is prepared.
  • the modified oral dopsin gene can be prepared by techniques known to those skilled in the art. For example, the sequence information of the gene encoding the photoreceptor channel type load de trypsin proteins, based on chopl gene ⁇ Pi cho P 2 gene sequence information, the desired modified port Dopushinta protein co one de polynucleotide It can be chemically synthesized.
  • a PCR primer that amplifies the desired region of the photoreceptor channel-type oral dopsin gene and a PCR primer that amplifies the desired domain of the chopl gene and / or chop2 gene are designed and chemically synthesized.
  • a polymorphism encoding the photoreceptor channel type mouth dopsin gene region constituting the modified mouth dopsin gene and the Chopl and / or Chop2 domain region may be prepared by amplifying each nucleotide and ligating them.
  • the modified rhodopsin gene of the present invention operably linked to the promoter can be maintained in the host cell, and the protein can be stably expressed, and the gene can be stably expressed.
  • the modified expression vector of the present invention can be produced in the host by transforming the host using the obtained recombinant expression vector, which is incorporated into an expression vector that can be maintained. For recombination techniques, see Sambrook et al. (Supra), Ausubel et al. (Supra).
  • expression vectors include, but are not limited to, plasmids derived from Escherichia coli (eg, pET28, pGEX4T, pUC118, pUC119, pUC18, pUC19, and other plasmid DNAs), Bacillus subtilis ( Bacillus subtil is) (eg, pUB110, pTP5, and other plasmid DNA), yeast-derived plasmids (eg, YEpl3, YEp24, YCp50, and other plasmid DNA), phage (; L gtl l, ⁇ ZAP, etc.), mammalian plasmids (pCMV, pSV40), viral vectors (adenovirus vectors, adeno-associated winores vectors, retrovirus vectors, lentiwinoles vectors, ⁇ kucinia winores vectors, etc.) The baki Insect virus vectors such as mouth virus vectors), plant vectors (
  • operably linked refers to a functional sequence between a promoter sequence and a polynucleotide sequence of interest such that the promoter sequence can initiate transcription of the polynucleotide sequence of interest. This is a simple bond.
  • the promoter is not particularly limited, and a suitable promoter may be selected depending on the host, and any of a constitutive promoter and an inducible promoter known in the art may be used. In the present invention, it is particularly preferable to use a constitutive promoter.
  • promoters that can be used in the present invention include CMV promoter, SV40 promoter, CAG promoter, synapsin promoter, oral dopsin promoter, CaMV promoter, corn sugar enzyme promoter, lac promoter, trp promoter, tac promoter, GAPDH Examples include promoters, GAL1 promoter, PH05 promoter, PGK promoter, thyl promoter and the like.
  • Insertion of the modified rhodopsin gene into the expression vector is, for example, creating or ligating a restriction enzyme site flanking the modified rhodopsin gene and inserting it into the restriction enzyme site or multiple cloning site of an appropriate vector.
  • expression vectors include drugs such as enhancers and other cis elements, splicing signals, poly A-added signals, selection markers (ampicillin resistance markers, tetracycline resistance markers, etc.) Resistance gene markers, auxotrophic complementary gene markers such as LEU1, TRPi, and URA3, dominant selection markers such as APH, DHFR, and TK), liposome binding sites (RBS), and the like.
  • the protoplast method In order to transform the host, the protoplast method, the spheroplast method, the combinatorial cell method, the virus method, the calcium phosphate method, the ribofusion method, the microinjection method, the gene bombardment method, the agrobatterium method, the electroporo method
  • the protoplast method In order to transform the host, the protoplast method, the spheroplast method, the combinatorial cell method, the virus method, the calcium phosphate method, the ribofusion method, the microinjection method, the gene bombardment method, the agrobatterium method, the electroporo method
  • the virus method In order to transform the host, the protoplast method, the spheroplast method, the combinatorial cell method, the virus method, the calcium phosphate method, the ribofusion method, the microinjection method, the gene bombardment method, the agrobatterium method, the electroporo method
  • the virus method In order to transform the host, the protoplast method, the s
  • the obtained transformant is cultured under a suitable condition using a medium containing an assimilating carbon source, nitrogen source, metal salt, vitamin and the like.
  • Transformants are usually cultured by shaking culture or Is performed at 25-37 ° C for 3-6 hours under aerobic conditions such as aeration and agitation.
  • the pH is kept near neutral.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • an antibiotic such as ampicillin or tetracycline may be added to the medium according to the selection marker inserted into the recombinant expression vector, if necessary.
  • the host used for transformation is not particularly limited as long as it can express the modified oral dopsin protein of the present invention.
  • Bacteria such as Escherichia coli and Bacillus subtilis
  • yeast such as Saccharomyces cerevisiae
  • Examples include animal cells (COS cells, Chinese nomstar ovary (CH0) cells, 3T3 cells, BHK cells, HEK293 cells, etc.) and insect cells.
  • COS cells Chinese nomstar ovary (CH0) cells, 3T3 cells, BHK cells, HEK293 cells, etc.
  • insect cells COS cells, Chinese nomstar ovary (CH0) cells, 3T3 cells, BHK cells, HEK293 cells, etc.
  • the modified oral dopsin protein of the present invention is separated from a culture obtained by culturing a transformant (culture supernatant, cultured cell, cultured cell, cell or cell homogenate, etc.) by a general method. It can be obtained in such a way that its activity is maintained by ultrafiltration concentration, freeze drying, spray drying, crystallization, etc.
  • the modified rhodopsin protein of the present invention may be provided in the form of a cell that expresses the protein without isolation and purification.
  • the host cell used for transformation is a host cell suitable for the subsequent use, for example, a nerve cell, preferably a human nerve cell.
  • the modified oral dopsin protein of the present invention when used for medical purposes, it may be provided in the form of the protein expression vector.
  • an expression vector excellent in efficiency of introduction into cells, maintenance of replication in the cells, stability, expression efficiency, and the like examples include, but are not limited to, viral vectors such as adeno-associated virus vectors, retrovirus vectors, and lentivirus vectors, plasmids capable of autonomous replication, and transposons. it can.
  • Park Teri O rhodopsin which is one of the photoreceptor channel port Dopushin is since its function is revealed, visual recovery (for example, JP 2002-363107) or re searching tool (e.g. Kohyo basic research 2 004 As well as photoelectric conversion elements (for example, JP-A-2002-271265, JP-A-2000-67939), optical information storage materials (for example, JP-A-2006-515683), or neural model elements (for example, JP-A 6-295350) It is a substance that has been obtained. However, since one electron moves per photon, which is a feature of bacteriorhodopsin, there remains a problem to be solved for use in the above applications.
  • channel mouth dopsin the ion channel is opened by absorbing one photon, so the number of electrons moving is much larger, and as a result, highly efficient photoelectric conversion is expected.
  • wild type channel dopsin also has problems such as the need to consider the effects of desensitization.
  • modified rhodopsin proteins having functional characteristics that differ greatly from the wild type photoreceptor channel-type rhodopsin proteins can be obtained. Therefore, modified rhodopsin protein can be selected and used according to the application.
  • ganglion cells In the human eye, light is sensed by receptor cells in the retina, and the activity is transmitted to ganglion cells via bipolar cells. The neurites of ganglion cells send nerves to the brain as optic nerves. In retinitis pigmentosa and age-related macular degeneration, visual loss is lost due to degeneration of receptor cells.
  • the former has a genetic background and is blinded when it is relatively young, but it is said that there are 1.5 million patients worldwide. The latter is the biggest cause of blindness at age 65 and older. In such patients, retinal ganglion cells are healthy.
  • retinal bipolar cells and ganglion cells are not inherently light sensitive, but by introducing and expressing wild-type Chop2 (1-315) abcdefg into retinal neurons via genetic engineering methods, Research to restore vision is underway.
  • oral dopsin protein requires the following characteristics: (i) Sensitive to weak light; (ii) Low wavelength selectivity and response to white light; iii) Photocurrent inactivation is weak. Wild-type Chop2 (1-315) abcdefg is not excellent in these properties because of its high selectivity to blue light and strong photocurrent inactivation.
  • channel opsin wide receivers for example, have excellent conductance, response to a wide wavelength range from blue to green, and almost no photocurrent inactivation. Because of its characteristics, it is deep in the organization It is expected to impart high photosensitivity to cells.
  • the modified oral dopsin protein of the present invention for example, a channelopsin wide receiver
  • an expression vector containing a polynucleotide encoding the protein or a eukaryotic cell (for example, an optic nerve) that expresses the protein.
  • Cell can be used as a pharmaceutical composition for restoring visual function.
  • the nerve cells of the auditory system are known to have a high frequency of several hundred Hz.
  • chopFR channel opsin fast receiver
  • the neuronal cell can acquire photosensitivity. Attempts have been made to stimulate the vesicles. However, the photocurrent of wild-type channel rhodopsin (eg Chop2) quickly desensitizes and takes tens of seconds to recover from desensitization. Therefore, it is difficult to repeatedly stimulate frequently.
  • wild-type channel rhodopsin eg Chop2
  • the photoelectric current obtained when expressing the modified oral dopsin protein of the present invention for example, channelopsin.wide receiver or channelopsin 'fast receiver, has high conductance and weak inactivation. Suitable for repeated stimulation purposes. Since the channel opsin wide receiver has a large absorption on the long wavelength side, it is possible to generate a larger photoelectric current by using broadband light. Therefore, the light pulse can surely cause a large depolarization exceeding the action potential threshold value in the nerve cell, and high reliability is expected. In addition, the channel opsin 'fast receiver 1 is suitable for the purpose of activating nerve cells at a high frequency because of its high following frequency.
  • the technology that decodes brain information and uses it to control the machine and input information to the computer as well as to input information to the brain is the brain 'machine interface (BMI), brain' computer 'interface ( BCI).
  • BMI brain 'machine interface
  • BCI brain' computer 'interface
  • Modified oral dopsin protein of the present invention such as channelopsin.
  • Fast receiver is expected to be the most suitable medium for inputting information into the brain using light.
  • Computers have excellent ability to process information quickly and accurately.
  • the network enables real-time communication with computers all over the world.
  • the brain excels in the ability to actively create errors and derive the best answer for the environment and situation from many options. This ability is the source of inspiration and emotion. Therefore, an attempt has been made to create a computer that can process information closer to the brain by combining a neuron network with artificial hardware.
  • a silicon substrate or a glass plate is processed, electrodes for stimulation and measurement are arranged on a matrix, and cultured neurons and brain slices are set thereon.
  • the neuron can acquire photosensitivity.
  • cultured neurons by using one laser, etc., it becomes possible to stimulate individual neurons and even some of them simultaneously, and send complex patterns of information to the neuron network. This makes it possible to reproduce the trial and error information processing performed by the brain, even with a simple cultured neuron network.
  • multiple points of pattern stimulation can be realized with high resolution by irradiating light from the brain surface.
  • light stimulation there is no electrical artifact, so it is easy to measure the activity of individual neurons in real time and feed back to the computer.
  • the ability of the brain such as pattern recognition and self-organization, has been improved. It is expected that a computer with the ability will be made.
  • the modified oral dopsin protein of the present invention for example, channel opsin / wide receiver bar or channel opsin / fast receiver, is expected to be optimal as an information input medium to nerve cell networks using light. .
  • multi-channel information can be input to the neuronal network using the difference in light absorption characteristics of these modified oral dopsin proteins. For example, it is considered that multi-channel input using the difference in photocurrent wavelength dependency between channel-capable pushin wide receiver and channel opsin fast receiver will be possible.
  • Muscle fibers (muscle cells), which are the smallest unit of muscle, are very small, but can generate strong force. It is also very energy efficient. Because of these advantages, attempts have been made to use biological contraction mechanisms to power micromachines (Soong et al., 2000; Bachand and Montemagno, 2000; Hess et al., 2004; Shu et al., 2003; Xi et al., 2005). However, when operating a micromachine, there is a problem of how to control and drive the contraction mechanism in time and space. In muscle, the motor nerves of the spinal cord form almost one-to-one synapses in muscle fibers.
  • the modified oral dopsin protein of the present invention is expected to be optimal as a muscle contraction medium using light.
  • the construction of a system that can freely operate such an optically operated micromachine under a microscope is expected.
  • Microscissors that cut an object under a microscope For example, a micrograbber that bites, a microconveyor that carries the object, and a mic mouth worm that swims in liquid. These are expected to be used in precision microsurgery under a microscope, for example, surgery that removes cancer cells while protecting blood vessels and nerves in tissues.
  • hybrid apoproteins were prepared by overlap extension PCR. The process will be specifically described below.
  • the overlap extension PCR method consists of two steps. First, in the first step, the cDNA fragment encoding the N-terminal amino acid residue sequence and the cDNA fragment encoding the C-terminal amino acid residue sequence of the hybrid apoprotein to be prepared are each obtained by PCR. Make it. At this time, the reverse primer used when preparing the N-terminal fragment and the cDNA sequence of the forward primer used when generating the C-terminal fragment are designed to have a complementary relationship.
  • the cDNA fragment of the A domain is a combination of chopl-345-EcoRI-F1 and chop-chRl primer, and the cDNA fragment of the bcdefg domain is chop-chFl and chop2-315-EcoRI.
  • -In combination with R1 make Chop l (1-345) and Chop2 (l- 315) into a saddle,
  • PCR was performed using KOD-Plus-DNA polymerase (Toyobo) to prepare each fragment.
  • the A and bcdefg fragments are mixed and PCR is performed using KOD-Plus-DNA polymerase.
  • one end of the A fragment and the bcdefg fragment contains mutually complementary sequences.
  • Both ends of the hybrid apoprotein cDNA fragment prepared by overlap extension PCR are cleaved by restriction enzymes EcoRI and BamHI.
  • the cDNA fragment treated with both restriction enzymes was cloned between EcoRI and BamHI of the pVenus-Nl vector (Clontech's pDsRed2-N1 vector DsRed2 was replaced with Venus) and placed on the C-terminal side of the hybrid apoprotein.
  • a plasmid vector for mammalian cell expression that expresses a fusion protein with Venus added, a kind of yellow fluorescent protein, was prepared.
  • HEK293 cells derived from human fetal kidney cells were cultured and maintained on a 60 mm plastic dish (BD Falcon PRIMARIA dish). The culture solution is 90% D-MEM, 10 ° /. Fetus fetus serum was used. Gene transfer was performed when 30-50% confluent after passage into a 4-well plate (NUNC) with collagen coating. The day after gene transfer, the cells were dispersed by trypsin treatment, and the cells were reseeded on a 12 brittle round cover glass that had been subjected to collagen coating, and the function test was performed the next day. One isolated cell was used for the functional test.
  • NUNC 4-well plate
  • Mouth dopsin apoprotein conjugated with retinal responds to light wavelengths of 400-550 nm, so it does not contain blue to green light when cells are transported under a microscope or observed in a bright field.
  • a yellow fluorescent lamp Panasonic FL 40S. Y-F
  • the background color of the CRT monitor was changed to yellow. All of the following devices were installed on an air table to eliminate the effects of vibration. It was also installed in the curtain to eliminate the effects of room light.
  • Figure 3 shows an outline of the main equipment.
  • Upright epi-illumination microscope (Olympus BH2-RFC): Transmitted light during cell observation was blocked through light with a wavelength of 490 nm or less via a GIF filter. Venus was excited. A xenon lamp light source was used for observation, and the ON / OFF of the light was controlled by an electromagnetic shutter. F By combining the filter and dichroic mirror, the excitation light wavelength
  • Monochromator JASCO CAM-230: Spectroscopy xenon lamp light to extract an arbitrary wavelength of 10nm width. The extracted light was introduced into an epifluorescence microscope using an optical fiber. Light on / off was controlled by a built-in electromagnetic shutter.
  • Microscope XY drive device (Medical Agent 0XY-1): A 3D micro-mapulator described later was installed on the fixed part, and the upright epi-illumination fluorescent microscope was installed on the drive part. The micrometer controlled the drive in the X-Y2 axis direction finely.
  • Measuring chamber A transparent acrylic plate was processed and a cover glass was attached to the lower part. Tyrode liquid (see Table 3 below) was circulated through the chamber by a peristaltic pump. A force bar glass with cultured cells attached was placed in the chamber.
  • Patch clamp amplifier (Axon AXOPATCIEOOA): The membrane current was measured when the membrane potential was maintained constant by feedback through the notch electrode (potential fixation experiment).
  • Microelectrode amplifier (Nihon Kohden MEZ-8201): Photocurrent was measured while applying a reverse current of 20 nA to the photodiode. The measured value was expressed as a value relative to the maximum output of the blue light emitting diode.
  • Analog-to-digital converter (Axon DIGIDATA1200): The current output and voltage output of the patch clamp amplifier and the voltage output of the microelectrode amplifier were converted from analog to digital and output to a computer. In addition, a rectangular wave pulse created by a computer was output externally.
  • a construct cDNA was prepared by coordinating Venus, one of the green fluorescent protein GFP variants derived from the jellyfish, to the C-terminal.
  • Venus one of the green fluorescent protein GFP variants derived from the jellyfish
  • high expression was observed in the plasma membrane in all two types of hybrid apoproteins (Fig. 5). In other words, it was suggested that the structure as a membrane protein was maintained.
  • Venus's fluorescence as a clue, the cells were identified, and the photocurrent was measured with the whole cell patch potential fixed.
  • the magnitude of the photocurrent of wild-type Chop2 (1-315) abcdefg is maximum at 460 nm, depending on the wavelength of the irradiated light. This is explained by the wavelength dependence of the light energy absorption efficiency.
  • Figure 6A compares the photocurrents of the hybrids Abcdefg and ABcdefg. The response of the hybrid ABcdefg to green light is increasing.
  • the absorption wavelength response characteristics are quantified, and this is compared between the hybrid apoprotein and the wild-type apoprotein. 6 Posted in B. That is, the hybrid Abcdefg showed almost the same absorption wavelength response characteristics as the wild-type channelopsin 2 (1-315) abcdefg. In contrast, the absorptions on the long wavelength side increased in the hybrids ABcdef g, ABCdefg, and ABCDefg. In the hybrid ABCDEfg, the absorption at the long wavelength side was further increased and was almost equal to the wild type channel opsin 1 and ABCDEFG. In other words, there are structures that control the absorption wavelength characteristics in the transmembrane domain B / b and E / e, and it is suggested that when these are b and e, they shift to the longer wavelength side.
  • Photoreceptive channels expressed in Xenopus oocytes expressing wild-type Chopl (1-345) ABCDEFG have been reported to have high H + permeability but little permeability to Na + (Nagel et al. , 2002; Hegemann et al., 2005).
  • the wild type Chop2 (1-315) abcdefg has been reported to have high Na + permeability (Nagel et al., 2003; Ishizuka et al., 2006).
  • the whole cell patch solution is Na + -glutamate (Na +, 100 mM), and the extracellular solution Na + is 142 mM and 20 mM (N-methyl-D-glucamine ion).
  • Figure 7A shows the IV relationship of hybrid Abcdefg.
  • the polarity was reversed at about 10 mV, but when the external solution Na + 20 mM, the reversal potential was about ⁇ 10 mV. In other words, it shifted to the negative side by about 20mV. This change is significantly smaller than wild-type Chop2 (1-315) abcdefg.
  • Figure 7B shows the IV relationship of hybrid ABcdefg. The reversal potential shifted more than 30mV.
  • Figure 7C compares photocurrent reversal potential shifts for each hybrid apoprotein. In the hybrid ABCdefg and ABCDefg, the reversal potential shift was significantly small.
  • hybrid opsin proteins may have reduced Na + selectivity for permeation.
  • the reversal of the inversion potential is strongly dependent on the external solution Na + and There was no significant difference. That is, the permeation selectivity is controlled by multiple transmembrane domains, suggesting that transmembrane domains A, B / b, and C have important functions.
  • Figure 9A shows the relative intensity of blue LED illumination (470 ⁇ 25 nm).
  • a photoelectric current depending on the intensity of the irradiated light was measured (Fig. 9B).
  • the photocurrent peaks in a few milliseconds, but quickly fails. It was observed to activate.
  • This photoresponsive property is similar to wild-type Chop2 (1-315) abcdefg.
  • the photocurrent of hybrid ABcdefg is hardly inactivated (Fig. 9C).
  • Figure 10A shows a comparison of the photocurrent when the blue LED light with the maximum illuminance is irradiated for 1 second, together with the magnitude of the maximum photocurrent.
  • the photocurrent of hybrid ABcdefg has been shown to have a large ratio of stationary photocurrent to maximum photocurrent. Therefore, the strength of inactivation was quantified using this ratio (plateau / peak ratio).
  • a comparison between hybrid and wild type apoproteins is shown in Figure 10B.
  • the hybrid Abcdefg was weakly inactivated compared to the biotype Chop2 (1-315) abcdefg, but was found to be more inactivated compared to the hybrid ABcdefg.
  • the hybrid ABCDEfg further weakens inactivation. That is, there are structures that control inactivation in transmembrane domains A, B / b, and E / e, suggesting that when these are a, b, and e, strong inactivation is caused. Is done.
  • FIG. 11 A compares the speed of photocurrent activation (ON) for hybrid Abcdefg and hybrid ABcdef g.
  • Figure 11B compares the speed of photocurrent deactivation (OFF). It was observed that both photocurrent 0N and OFF were faster in the hybrid ABcdef g.
  • Figure 11C A comparison of the photocurrent ON and OFF rate constants between the hybrid apoprotein and the wild-type apoprotein is shown in Figure 11C. It is suggested that when the transmembrane domain B / b is B, both 0N and OFF are faster, and when the transmembrane domain E / e is E, both 0N and OFF are slower.
  • Wild-type Chop2 (1-315) abcdefg has been used as a means of photostimulating nerve cells, etc., but there is strong inactivation in the photocurrent, so when repeated light stimulation is performed at short intervals, light There was a drawback that the current decreased. In order to obtain the same photoelectric current, it was necessary to leave an interval of 10 seconds or more. According to the above example, there are structures that control inactivation in transmembrane domains A / a, B / b, and E / e. When these are A, B, and E, they are inactive It was suggested that the conversion will become weaker. Among the hybrid rhodopsin proteins studied to date, the use of ABCDEfg provides the weakest inactivation photocurrent.
  • the magnitude of this following frequency is equal to the constant constant of the photocurrent ON speed.
  • the magnitude of the ON speed constant depends on the transmembrane structure domains B / b and E / e, and is small for the combination of B-E and b-e and larger for the combination of B-e.
  • photocurrents with high frequency response characteristics can be obtained by using ABcdefg, ABCdefg ⁇ ABCDefg, etc.
  • ABcdefg is the best, taking into account the selectivity for the ON speed constant Opi Na +.
  • the channel opsin wide receiver is designed to accept faint light. Excellent for use.
  • a photoreceptor channel type protein having various functions improved or imparted can be provided.
  • a photoreceptor channel-type protein specialized for a specific function is provided. be able to.
  • the modified rhodopsin protein of the present invention is via light, it is completely noninvasive to tissues such as the retina, nerves and brain. Further, the novel photoreceptive channel-type oral dopsin protein according to the present invention can be constructed as superior to the conventional channel-mouthed dopsin protein in terms of time and spatial resolution. Therefore, it is an extremely useful material in fields including medical care, welfare / care, and information communication. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Abstract

Disclosed is a novel photoreceptor channel type protein which is improved in various functional properties or is imparted with various functional properties. Specifically disclosed is a modified rhodopsin protein which is characterized in that at least one of two or more transmembrane-structure-containing domains in a photoreceptor channel type rhodopsin protein is a corresponding transmembrane-structure-containing domain derived from channelopsin-1 of Chlamydomonas reinhardtii or a mutant of the transmembrane-structure-containing domain, and/or at least one of the two or more transmembrane-structure-containing domains is a corresponding transmembrane-structure-containing domain derived from channelopsin-2 of Chlamydomonas reinhardtii or a mutant of the transmembrane-structure-containing domain.

Description

明 細 書 改変された光受容体チャネル型口ドプシンタンパク質 技術分野  Description Modified Photoreceptor Channel Type Oral Dopsin Protein Technical Field
本発明は、 改変された光受容体チヤネル型ロドプシンタンパク質、 該タンパク 質をコードするポリヌクレオチド、 該ポリヌクレオチドを含む発現ベクター、 及 び該タンパク質を発現する細胞に関する。 背景技術  The present invention relates to a modified photoreceptor channel-type rhodopsin protein, a polynucleotide encoding the protein, an expression vector containing the polynucleotide, and a cell expressing the protein. Background art
淡水池沼に普通に生息しているクラミ ドモナスは、 葉緑体を持ち、 光合成をす る単細胞真核生物である緑藻類に属している。 クラミ ドモナスは、 眼点と呼ばれ る特殊な膜領域で光を受容し、 鞭毛運動を制御することにより、 光に集まる習性 (すなわち走光性) を有している。  Chlamydomonas, which normally lives in freshwater ponds, belongs to the green alga, a unicellular eukaryote that has chloroplasts and photosynthesizes. Chlamydomonas has the habit of gathering in light (ie, phototaxis) by receiving light in a special membrane region called the eye point and controlling flagellar movement.
クラミ ドモナスの一種 Chlamydomonas reinhardti iの眼点に分布している原核 生物型口ドプシンフアミリータンパク質の遺伝子配列が解明され、 公開されてい る (GenBank登録番号 AF461397)。 このタンパク質は、 可視光に応答してイオンを 透過させ、 膜電位を制御しているので、 生物界における光受容体チャネルの事例 である (非特許文献 1、 2 )。  The gene sequence of the prokaryotic oral dopsin family protein distributed in the eyes of Chlamydomonas reinhardti i has been elucidated and published (GenBank accession number AF461397). This protein is an example of a photoreceptor channel in the biological world because it transmits ions in response to visible light and controls membrane potential (Non-patent Documents 1 and 2).
クラミ ドモナスにおいては、 2 種類の原核生物型口ドプシンタンパク質、 チヤ ネノレォプシン 1とチャネルォプシン 2がある。 これらは、 光受容体チャネルの一 種であり、単一の分子で、光感受性とイオンチャネルの機能をあわせ持っている。 チャネルォプシン 1は、 力エル (ゼノパス) の卵母細胞に発現させると、 光に応 答して H+を透過させる性質をもっている(非特許文献 1)。チャネルォプシン 2は、 Na+などの陽イオン透過性もあわせもち、 培養哺乳類細胞 (HEK293、 BHK) に発現 させることで、 400〜500 nm の青色光に応答した脱分極が引き起こされることが 報告されている (非特許文献 2)。 In Chlamydomonas, there are two prokaryotic oral dopsin proteins, chanenorepsin 1 and channelopsin 2. These are a type of photoreceptor channel that is a single molecule that combines photosensitivity and ion channel functions. Channel opsin 1 has the property of transmitting H + in response to light when expressed in force oocytes (Non-Patent Document 1). Channelopsin 2 also has a cation permeability such as Na + and is expressed in cultured mammalian cells (HEK293, BHK) to cause depolarization in response to blue light at 400 to 500 nm. (Non-patent document 2).
上記のような光受容体チャネルは、 医療、 福祉 '介護、 情報通信を含む様々な 分野に利用されることが見込まれている。 例えば、 特許文献 1は、 遺伝子工学的方法を用いて、 チャネルォプシン 2を神 経細胞に導入 ·発現することにより、 光感受性を新たに付与した神経細胞が創出 されることを開示している。 また、 この技術をイン ' ビボおよびイン · ビトロの 系に応用することにより、 光照射により神経細胞ネットワークを働かせることが 試みられている (非特許文献 3〜6)。 Photoreceptor channels such as those described above are expected to be used in a variety of fields, including medical care, welfare 'nursing and information communication. For example, Patent Document 1 discloses that a neuron newly imparted with photosensitivity is created by introducing and expressing channelopsin 2 into a neuronal cell using a genetic engineering method. . In addition, by applying this technology to in vivo and in vitro systems, attempts have been made to make neural cell networks work by light irradiation (Non-Patent Documents 3 to 6).
さらに、 さまざまな原因により網膜の光受容体細胞が変性した動物を用いて、 神経節細胞や双極細胞などにチャネルォプシン 2を導入 ·発現することにより、 視力を回復させることが行われている (非特許文献 7、 8)。  Furthermore, it is possible to restore visual acuity by introducing and expressing channelopsin 2 in ganglion cells and bipolar cells using animals whose retinal photoreceptor cells have degenerated due to various causes. (Non-Patent Documents 7 and 8).
特許文献 1 特開 2006-217866号公報  Patent Document 1 Japanese Unexamined Patent Publication No. 2006-217866
非特許文献 1 Nagel et al., 2002, Science 296, 2395 - 2398.  Non-Patent Document 1 Nagel et al., 2002, Science 296, 2395-2398.
非特許文献 2 Nagel et al. , 2003, Proc. Natl. Acad. Sci. USA 100, 13940-13945.  Non-Patent Document 2 Nagel et al., 2003, Proc. Natl. Acad. Sci. USA 100, 13940-13945.
非特許文献 3 Boyden et al. , 2005, Nat. Neurosci. 8, 1263-1268.  Non-Patent Document 3 Boyden et al., 2005, Nat. Neurosci. 8, 1263-1268.
非特許文献 4 Li et al. , 2005, Proc. Natl. Acad. Sci . USA 102, 17816-17821.  Non-Patent Document 4 Li et al., 2005, Proc. Natl. Acad. Sci. USA 102, 17816-17821.
非特許文献 5 Ishizuka et al. , 2006, Neurosci. Res 54, 85-94.  Non-Patent Document 5 Ishizuka et al., 2006, Neurosci. Res 54, 85-94.
非特許文献 6 Arenkiel et al. , 2007, Neuron 54, 205-218.  Non-Patent Document 6 Arenkiel et al., 2007, Neuron 54, 205-218.
非特許文献 7 Bi et al. , 2006, Neuron 50, 23 - 33.  Non-Patent Document 7 Bi et al., 2006, Neuron 50, 23-33.
非特許文献 8 Tomita et al. , 2007, Invest. Ophthalmol. Vis. Sci. 48, 3821-3826. 発明の開示  Non-Patent Document 8 Tomita et al., 2007, Invest. Ophthalmol. Vis. Sci. 48, 3821-3826.
上記のような試みは、 光受容体チャネルを哺乳類細胞などの真核生物細胞に導 入 ·発現させ、 これを光照射により惹起される脱分極などの機能制御に用いると いうコンセプトを基礎とする。 このような光受容体チャネルの応用において、 光 受容体チャネルは、 概して、 光電流の不活化が弱い、 コンダクタンスが大きい、 周波数応答特性が高いといった機能を有することが望まれるが、 これらを充足す る光受容体チャネルは現在までに見出されていない。  The above-mentioned attempts are based on the concept that photoreceptor channels are introduced and expressed in eukaryotic cells such as mammalian cells and used for functional control such as depolarization caused by light irradiation. . In such photoreceptor channel applications, the photoreceptor channel is generally desired to have functions such as weak inactivation of photocurrent, high conductance, and high frequency response characteristics. No photoreceptor channel has been found to date.
また、 例えば、 光受容体チャネルを網膜の神経細胞に導入 ·発現させることに より失明患者の視覚を回復させる試みにおいては、 さらに、 微弱な光を感知でき ること、 波長選択性が低く白色光に応答すること等の機能を有することが望まし レ、。 In addition, for example, the introduction and expression of photoreceptor channels in retinal neurons In an attempt to restore the vision of a more blind patient, it would be desirable to have functions such as being able to sense faint light and responding to white light with low wavelength selectivity.
したがって、 機能制御のための使用に望ましい機能を有し、 目的とする用途に 応じて更なる機能特性が付与された光受容体チャネルを提供することは非常に有 用である。  Therefore, it is very useful to provide a photoreceptor channel having a function desirable for use for function control and having additional functional characteristics depending on the intended use.
そこで、 本発明は、 様々な機能特性が改善又は付与された光受容体チャネル型 タンパク質を提供することを目的とする。  Accordingly, an object of the present invention is to provide a photoreceptor channel type protein having various functional properties improved or imparted.
本発明者らは、 緑藻類クラミ ドモナス由来の 2種類の光受容体チャネル型タン パク質、チャネルォプシン 1及ぴチャネルォプシン 2の構造-機能連関を解析する 過程で、 これらのチャネルォプシン間で含膜貫通構造ドメインを組換えた様々な ハイブリッドアポタンパク質を作製したところ、 これらの中に、 野生型と異なる 機能特性を保持するハイプリッドアポタンパク質が存在することを見出した。 ま た、 これに伴い、 チャネルォプシン 1及ぴチャネルォプシン 2の様々な機能特性 に関与する含膜貫通構造ドメインを同定することができ、 本発明を完成させるに 至った。  In the process of analyzing the structure-function relationship of two types of photoreceptor channel-type proteins derived from the green alga Chlamydomonas, channel opsin 1 and channel opsin 2, As a result, various hybrid apoproteins with recombination of the transmembrane domain were prepared, and among them, it was found that there was a hybrid apoprotein having functional properties different from those of the wild type. In addition, accompanying this, it was possible to identify the transmembrane-containing domain involved in various functional properties of channel opsin 1 and channel opsin 2, and the present invention was completed.
すなわち、 本発明は以下の特徴を包含する。  That is, the present invention includes the following features.
(1) 複数の含膜貫通構造ドメインを有する改変された光受容体チャネル型口ド プシンタンパク質であって、 含膜貫通構造ドメインの少なくとも 1つはこれに相 当する Chlamydomonas reinhardti iのチャネル才プシン 1に由来する含膜貫通構 造ドメイン又はその変異体である、及び/又は、含膜貫通構造ドメインの少なくと も 1つはこれに相当する Chlamydomonas reinhardti iのチヤネノレオプシン 2に由 来する含膜貫通構造ドメイン又はその変異体である、 前記タンパク質。  (1) A modified photoreceptor channel-type oral dopsin protein having a plurality of transmembrane domains, wherein at least one of the transmembrane domains is a Chlamydomonas reinhardti i Is a transmembrane domain derived from 1 or a variant thereof and / or at least one transmembrane domain is derived from the equivalent chinenoreopsin 2 of Chlamydomonas reinhardti i The protein, which is a transmembrane structure domain or a variant thereof.
(2) '含膜貫通構造ドメインの少なくとも 1つはこれに相当する Chlamydomonas reinhardti i のチャネルォプシン 1に由来する含膜貫通構造ドメイン又はその変 異体であり、 かつ含膜貫通構造ドメインの少なく とも 1 つはこれに相当する Chlamydomonas reinhardtii のチャネルォプシン 2に由来する含膜貫通構造ドメ イン又はその変異体である、 上記(1)記載のタンパク質。  (2) 'At least one of the transmembrane domains is a transmembrane domain derived from the corresponding channel opsin 1 of Chlamydomonas reinhardti i or a variant thereof, and at least one of the transmembrane domains is present. The protein according to (1) above, wherein one is a transmembrane domain or a variant thereof derived from a corresponding channel opsin 2 of Chlamydomonas reinhardtii.
(3) 光受容体チャネル型口ドプシンタンパク質はチャネルォプシン 1であり、 含膜貫通構造ドメインの少なく とも 1 つはこれに相当する Chlamydomonas reinhardtii のチャネルォプシン 2に由来する含膜貫通構造ドメイン又はその変 異体である、 上記(1)記載のタンパク質。 (3) The photoreceptor channel-type oral dopsin protein is channel opsin 1, The protein according to (1) above, wherein at least one of the transmembrane domain is a transmembrane domain derived from channel opsin 2 of Chlamydomonas reinhardtii or a variant thereof.
(4) 前記光受容体チャネル型口 ドプシンタンパク質は Chlamydomonas reinhardtii由来のチャネルォプシン 1である、 上記(3)記載のタンパク質。  (4) The protein according to (3) above, wherein the photoreceptor channel-type oral dopsin protein is channel opsin 1 derived from Chlamydomonas reinhardtii.
(5) 光受容体チャネル型口 ドプシンタンパク質はチャネルォプシン 2であり、 含膜貫通構造ドメインの少なく とも 1 つはこれに相当する Chlamydomonas reinhardtiiのチャネルォプシン 1 に由来する含膜貫通構造ドメイン又はその変 異体である、 上記(1)記載のタンパク質。  (5) Photoreceptor channel type dopsin protein is channel opsin 2 and at least one transmembrane domain is a transmembrane domain derived from the corresponding channel opsin 1 of Chlamydomonas reinhardtii Or the protein according to (1) above, which is a variant thereof.
(6) 前記光受容体チャネル型口 ドプシンタンパク質は Chlamydomonas reinhardtii由来のチヤネノレォプシン 2である、 上記(5)記載のタンパク質。  (6) The protein according to (5) above, wherein the photoreceptor channel-type oral dopsin protein is chinenorepsin 2 derived from Chlamydomonas reinhardtii.
(7) 以下の(a)〜(: 1)のいずれかに示すポリペプチド又はその変異体を含む、 上 記(1)〜(6)のいずれか記載のタンパク質。 (7) The protein according to any one of (1) to ( 6 ) above, comprising the polypeptide shown in any one of the following (a) to (: 1) or a variant thereof.
(a) 配列番号 2のアミノ酸 1〜117と配列番号 4のアミノ酸 79〜315とからなる ポリぺプチド  (a) a polypeptide comprising amino acids 1-117 of SEQ ID NO: 2 and amino acids 79-315 of SEQ ID NO: 4
(b) 配列番号 2のアミノ酸 1〜: 164と配列番号 4のアミノ酸 126〜315とからな るポリ ^プチド  (b) Polypeptide consisting of amino acids 1 to 164 of SEQ ID NO: 2 and amino acids 126 to 315 of SEQ ID NO: 4
(c) 配列番号 2のアミノ酸 1〜: 184と配列番号 4のアミノ酸 146〜315とからな るポリべプチド  (c) A polypeptide consisting of amino acids 1 to 184 of SEQ ID NO: 2 and amino acids 146 to 315 of SEQ ID NO: 4
(d) 配列番号 2のアミノ酸 1〜212と配列番号 4のアミノ酸 174〜315とからな るポリべプチド  (d) A polypeptide consisting of amino acids 1-212 of SEQ ID NO: 2 and amino acids 174-315 of SEQ ID NO: 4.
(e) 配列番号 2のアミノ酸 1〜242と配列番号 4のアミノ酸 204〜315 とからな るポリべプチド  (e) a polypeptide consisting of amino acids 1 to 242 of SEQ ID NO: 2 and amino acids 204 to 315 of SEQ ID NO: 4
(f) 配列番号 2のアミノ酸 1〜276と配列番号 4のアミノ酸 238〜315とからな るポリペプチド  (f) a polypeptide comprising amino acids 1 to 276 of SEQ ID NO: 2 and amino acids 238 to 315 of SEQ ID NO: 4
(g) 配列番号 2のアミノ酸 118〜345と配列番号 4のアミノ酸 1〜78とからなる ポリぺプチド  (g) a polypeptide consisting of amino acids 118 to 345 of SEQ ID NO: 2 and amino acids 1 to 78 of SEQ ID NO: 4
(h) 配列番号 2のアミノ酸 165〜345と配列番号 4のアミノ酸 1〜125とからな るポリペプチド (i) 配列番号 2のァミノ酸 185〜345と配列番号 4のアミノ酸 1〜145とからな るポリ ^プチド (h) a polypeptide comprising amino acids 165 to 345 of SEQ ID NO: 2 and amino acids 1 to 125 of SEQ ID NO: 4 (i) Polypeptide consisting of amino acids 185 to 345 of SEQ ID NO: 2 and amino acids 1 to 145 of SEQ ID NO: 4
(j) 配列番号 2のアミノ酸 213〜345と配列番号 4のアミノ酸 1〜; L73とからな るポリぺプチド  (j) A polypeptide consisting of amino acids 213 to 345 of SEQ ID NO: 2 and amino acids 1 to 4 of SEQ ID NO: 4; L73
(k) 配列番号 2のアミノ酸 243〜345と配列番号 4のアミノ酸 1~203とからな るポリ ^プチド  (k) Polypeptide consisting of amino acids 243 to 345 of SEQ ID NO: 2 and amino acids 1 to 203 of SEQ ID NO: 4
(1) 配列番号 2のアミノ酸 277〜345と配列番号 4のアミノ酸 1〜237とからな るポリベプチド  (1) Polypeptide consisting of amino acids 277 to 345 of SEQ ID NO: 2 and amino acids 1 to 237 of SEQ ID NO: 4
(8) 配列番号 2のアミノ酸 1〜164と配列番号 4のアミノ酸 126〜315とからな るポリべプチド又はその変異体を含む、 上記(7)記載のタンパク質。  (8) The protein according to (7) above, comprising a polypeptide consisting of amino acids 1-164 of SEQ ID NO: 2 and amino acids 126-315 of SEQ ID NO: 4 or a variant thereof.
(9) 配列番号 2のアミノ酸 1〜242と配列番号 4のアミノ酸 204〜315とからな るポリべプチド又はその変異体を含む、 上記(7)記載のタンパク質。  (9) The protein according to (7) above, comprising a polypeptide consisting of amino acids 1 to 242 of SEQ ID NO: 2 and amino acids 204 to 315 of SEQ ID NO: 4 or a variant thereof.
(10) 上記(1)〜(9)のいずれか記載のタンパク質をコードするポリヌクレオチ ド、。 (10) A polynucleotide encoding the protein according to any one of (1) to ( 9 ) above.
(11) プロモーターと機能的に連結された上記(10)記載のポリヌクレオチドを 含む発現ベクター。  (11) An expression vector comprising the polynucleotide according to (10) operably linked to a promoter.
(12) 上記(1)〜(9)のいずれか記載のタンパク質を発現する細胞。  (12) A cell that expresses the protein according to any one of (1) to (9) above.
(13) 神経細胞である上記(12)記載の細胞。  (13) The cell according to (12), which is a nerve cell.
本明細書は本願の優先権の基礎である日本国特許出願 2008-076538号の明細書 および Zまたは図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification and Z or drawings of Japanese Patent Application No. 2008-076538, which is the basis of the priority of the present application. Brief Description of Drawings
図 1は、 (A) Chopl及び Chop2のアミノ酸一次構造ァライメント、 及ぴ (B ) チャネルォプシン遺伝子の C末端を Venusに置き換えた改変型口ドプシンタンパ ク質の含膜貫通構造ドメイン構造を示す。  Figure 1 shows (A) amino acid primary structure alignment of Chopl and Chop2, and (B) a transmembrane domain structure of a modified oral dopsin protein in which the C-terminus of the channelopsin gene is replaced with Venus.
図 2は、 実施例で作製したハイプリッドアポタンパク質の含膜貫通構造ドメィ ン構造を示す。  FIG. 2 shows the transmembrane domain structure of the hybrid apoprotein produced in the example.
図 3は、 実施例で使用した実験装置の概略図を示す。  Fig. 3 shows a schematic diagram of the experimental apparatus used in the examples.
図 4は、 実施例で使用したブースター回路の回路図を示す。 図 5は、 (A)ハイブリッド Abcdefgを発現した HEK293細胞及び ( B ) ハイブリ ッド ABcdefgを発現した HEK293細胞の共焦点画像を示す。 Figure 4 shows the circuit diagram of the booster circuit used in the example. FIG. 5 shows confocal images of (A) HEK293 cells expressing hybrid Abcdefg and (B) HEK293 cells expressing hybrid ABcdefg.
図 6 Aは、ハイブリッド Abcdefgを発現させた HEK293細胞の光電流 (上段:青 色光、 下段:緑色光)及ぴハイプリッド ABcdefgを発現させた HEK293細胞の光電 流 (上段:青色光、 下段:緑色光) を示す。 図 6 Bは、 青色光応答と緑色光応答 の G/B比(Green/Blue ratio)によるハイプリッドアポタンパク質の吸収波長応答 特性の比較を示す。  Fig. 6A shows photocurrent of HEK293 cells expressing hybrid Abcdefg (upper: blue light, lower: green light) and photoelectric current of HEK293 cells expressing hybrid ABcdefg (upper: blue light, lower: green light) ) Figure 6B shows a comparison of the absorption wavelength response characteristics of the hybrid apoprotein according to the G / B ratio (Green / Blue ratio) of the blue light response and the green light response.
図 7 Aは、ハイブリッド Abcdefg光電流の I- V関係(黒:細胞外 Na+濃度 142mM、 赤:細胞外 Na+濃度が 20mM) を示す。 図 7 Bは、 ハイブリッド Abcdefg光電流の I-V関係 (黒:細胞外 Na+濃度が 142mM、 赤:細胞外 Na+濃度が 20mM) を示す。 図 7 Cは、 それぞれのハイブリッドアポタンパク質に関する、 光電流反転電位のシ フトの比較を示す。 Figure 7A shows the IV relationship of the hybrid Abcdefg photocurrent (black: extracellular Na + concentration 142 mM, red: extracellular Na + concentration 20 mM). Figure 7B shows the IV relationship of the hybrid Abcdefg photocurrent (black: extracellular Na + concentration 142 mM, red: extracellular Na + concentration 20 mM). Figure 7C shows a comparison of photocurrent reversal potential shifts for each hybrid apoprotein.
図 8は、 それぞれのハイプリッドアポタンパク質の光受容チャネルの単位膜容 量あたりのホーノレセルコンダクタンスを示す。  Figure 8 shows the Honore cell conductance per unit membrane capacity of the photoreceptor channel of each hybrid apoprotein.
図 9 Aは、 照射パルス光の相対的な大きさを示す。 図 9 B及び Cは、 それぞれ ハイプリッド Abcdefg及ぴ ABcdefgの光電流に関する、 光の強さに対する電流応 答の比較を示す。  Figure 9A shows the relative size of the irradiated pulsed light. Figures 9B and C show the comparison of the current response to the light intensity for the photocurrents of the hybrids Abcdefg and ABcdefg, respectively.
図 1 0 Aは、野生型 Chop2 (1-315) abcdefgの光電流(黑)とハイプリッド ABcdefg の光電流 (赤) との比較を示す。 図 1 0 Bは、 それぞれのハイブリッドアポタン パク質について、 不活性化の強さを定常光電流と最大光電流の比(plateau/peak ratio)で定量化した結果を示す。  Figure 10A shows a comparison between the wild-type Chop2 (1-315) abcdefg photocurrent (黑) and the hybrid ABcdefg photocurrent (red). Figure 10B shows the results of quantifying the degree of inactivation by the ratio of steady photocurrent and maximum photocurrent (plateau / peak ratio) for each hybrid apoprotein.
図 1 1 Aは、 ハイブリッド Abcdefg (黒) とハイプリッド ABcdefg (赤) におけ る、 光電流の立ち上がりの比較を示す。 図 1 1 Bは、 ハイブリッド Abcdefg (黒) とハイブリッド ABcdefg (赤) における、光電流終了の比較を示す。 図 1 1 Cは、 光電流の ON速度常数及ぴ OFF速度常数の、ハイプリッドアポタンパク質及ぴ野生 型アポタンパク質間での比較を示す。  Fig. 11 A shows a comparison of the rise of photocurrent in hybrid Abcdefg (black) and hybrid ABcdefg (red). Figure 11B shows a comparison of photocurrent termination for hybrid Abcdefg (black) and hybrid ABcdefg (red). Fig. 1 1C shows a comparison of the photocurrent ON rate constant and OFF rate constant between the hybrid apoprotein and the wild type apoprotein.
図 1 2は、チャネルォプシン'ワイドレシーバー (chopWR)の含膜貫通構造ドメ ィン構造およびアミノ酸 1次構造を示す。  Figure 12 shows the transmembrane domain structure and amino acid primary structure of the channel opsin wide receiver (chopWR).
図 1 3は、チャネルォプシン 'ファス トレシ一パー (chopFR)の含膜貫通構造ド メィン構造およびアミノ酸 1次構造を示す, 発明を実施するための最良の形態 Fig. 13 shows the transmembrane structure of channel opsin 'fast tracer (chopFR). Best mode for carrying out the invention showing the main structure and amino acid primary structure
本発明は、 改変された光受容体チャネル型口ドプシンタンパク質(以下、 「改変 型ロドプシンタンパク質」 又は 「ハイブリッドアポタンパク質」 とも称する) に 関する。 具体的には、 光受容体チャネル型ロドプシンタンパク質が有する複数の 含膜貫通構造ドメ イ ンの う ちの少なく とも 1 つが、 これに相当する、 Chlamydomonas reinhardti iのチャネルォプシン 1 (以下、 「Chopl」 とも称する) に由来する含膜貫通構造ドメイン又はその変異体である、及び/又は、 これに相当 する、 Chlamydomonas reinhardti iのチャネルォプシン 2 (以下、 「Chop2」 とも称 する) に由来する含膜貫通構造ドメイン又はその変異体である、 光受容体チヤネ ル型ロドプシンタンパク質に関する。  The present invention relates to a modified photoreceptor channel-type oral dopsin protein (hereinafter also referred to as “modified rhodopsin protein” or “hybrid apoprotein”). Specifically, at least one of the multiple transmembrane domains possessed by the photoreceptor channel-type rhodopsin protein corresponds to the channel opsin 1 of Chlamydomonas reinhardti i (hereinafter “Chopl”). The membrane-containing transmembrane domain derived from (2), or a variant thereof, and / or the equivalent, the membrane-containing membrane derived from Chlamydomonas reinhardti i channelopsin 2 (hereinafter also referred to as “Chop2”) The present invention relates to a photoreceptor channel-type rhodopsin protein, which is a penetrating domain or a variant thereof.
本明細書で使用する 「含膜貫通構造ドメイン」 とは、 光受容体チャネル型ロド プシンタンパク質において、 バクテリオ口ドプシンとの相同性から推定される膜 貫通構造を含む領域を指す。  As used herein, “transmembrane-containing domain” refers to a region containing a transmembrane structure deduced from homology with bacteriophage dopsin in a photoreceptor channel-type rhodopsin protein.
1 . 改変型ロドプシンタンパク質 1. Modified rhodopsin protein
本発明の改変型口ドプシンタンパク質は、 光受容体チャネル型口ドプシンタン パク質中の含膜貫通構造ドメインの少なくとも 1つが、 これに相当する、 Chopl に由来する含膜貫通構造ドメイン又はその変異体である、及び/又は、 これに相当 する、 Chop2 に由来する含膜貫通構造ドメイン又はその変異体であることを特徴 とする。  The modified oral dopsin protein of the present invention comprises a transmembrane domain derived from Chopl or a variant thereof, wherein at least one of the transmembrane domains in the photoreceptor channel type oral dopsin protein corresponds to this It is a transmembrane structure domain derived from Chop2 or a variant thereof, which is and / or equivalent thereto.
すなわち、 本発明の改変型ロドプシンタンパク質は、 光受容体チャネル型ロド プシンタンパク質が、 Chopl において見出された好ましい機能特性を示す含膜貫 通構造ドメイン、 及び/又は、 Chop2において見出された好ましい機能特性を示す 含膜貫通構造ドメィンを、 これに相当する含膜貫通構造ドメィン領域で含んでい る結果、 好ましい機能特性を保持する。  That is, the modified rhodopsin protein of the present invention is preferably a transmembrane domain having a preferable functional property found in Chopl, and / or a preferred one found in Chop2. As a result of including the transmembrane-containing domain having the functional characteristics in the domain of the transmembrane-containing domain corresponding thereto, preferable functional characteristics are maintained.
Chopl及ぴ ChoP2は、 異なる機能特性を有するため、 本発明の改変型口ドプシ ンタンパク質は双方の好ましい機能特性を有することが好ましい。 したがって、 本発明において、光受容体チャネル型口ドプシンタンパク質は、好ましくは、 Chopl において見出された好ましい機能特性を示す含膜貫通構造ドメインと、 Chop2 に おいて見出された好ましい機能特性を示す含膜貫通構造ドメインとを、 これらに 相当する含膜貫通構造ドメイン領域で含む。 Chopl及Pi Cho P 2, in order to have different functional properties, the modified port Dopushi Ntanpaku quality of the present invention preferably has both a preferred functional properties. Therefore, in the present invention, the photoreceptor channel type oral dopsin protein is preferably Chopl. A transmembrane domain having a preferable functional property found in C. and a transmembrane domain having a preferred functional property found in Chop2 in the corresponding transmembrane domain region. .
1 . 1 光受容体チャネル型ロドプシンタンパク質  1.1 Photoreceptor channel-type rhodopsin protein
本明細書で使用する光受容体チャネル型口 ドプシンタンパク質とは、 光受容機 能及びチャネル機能の両方 (以下、 「光受容チャネル機能」 とも称する) を有する 古細菌型口ドプシンフアミリータンパク質を指す。 古細菌型口ドプシンフアミリ 一タンパク質に属する構造的に近縁のタンパク質として、 現在までに、 Chopl 及 び Chop2、 好塩菌由来のバクテリオロドプシン、 ハロロドプシン、 センサリー口 ドプシン、 プロテオロドプシン、 緑藻類のォプシンタンパク質、 菌類に見出され ている機能不明のォプシンタンパク質などが知られており、 いずれも本発明にお いて使用することができる。  As used herein, a photoreceptor channel-type oral dopsin protein refers to an archaeal type oral dopsin family protein having both a photoreceptor function and a channel function (hereinafter also referred to as “photoreceptor channel function”). Point to. To date, Chopl and Chop2, bacteriorhodopsin, halorhodopsin, sensory mouth dopsin, proteorhodopsin, and green algae opsin protein as structurally closely related proteins belonging to the archaeal type mouth dopsin family. There are known opsin proteins of unknown function found in fungi, and any of them can be used in the present invention.
本発明において好ましい光受容体チャネル型口ドプシンタンパク質は、 Chopl 又は Chop2、 或いはそれらの相同体又は変異体である。 なお、 Chopl 及ぴ Chop2 の遺伝子配列及びァミノ酸配列は公知である(Chopl : GenBank登録番号 AF385748、 Chop2: GenBank登録番号 AF461397)。 Chopl の遺伝子配列及びアミノ酸配列を配 列番号 1及び 2に、 Chop2の遺伝子配列及びァミノ酸配列を配列番号 3及ぴ 4に それぞれ示す。  The preferred photoreceptor channel-type oral dopsin protein in the present invention is Chopl or Chop2, or a homologue or variant thereof. The gene sequence and amino acid sequence of Chopl and Chop2 are known (Chopl: GenBank accession number AF385748, Chop2: GenBank accession number AF461397). The gene sequence and amino acid sequence of Chopl are shown in SEQ ID NOS: 1 and 2, and the gene sequence and amino acid sequence of Chop2 are shown in SEQ ID NOS: 3 and 4, respectively.
ここで、 「相同体」 とは、 異なる生物由来の同一機能をもつタンパク質 (又は核 酸) を指す。 相同体タンパク質及びそれをコードする核酸の配列は、 NCBI、 EMBL などの著名なデータベースにアクセスすることによって、 例えば BLAST、 FASTA などのアルゴリズムを利用して検索することができる。 またかかる相同体核酸又 は遺伝子は定法に従って単離することができる。 例えば、 塩基配列情報を格納し たデータベースを用いて特定した遺伝子を特異的に増幅するためのプライマーを 設計、 化学合成し、 対象の生物から抽出したゲノム DNAを铸型とする前記プライ マーを用いた PCRによって、目的とする chop 1又は chop2遺伝子の相同体を増幅、 単離することができる。  Here, the “homolog” refers to a protein (or nuclear acid) having the same function derived from different organisms. The homologous protein and the sequence of the nucleic acid that encodes it can be searched using algorithms such as BLAST and FASTA by accessing well-known databases such as NCBI and EMBL. Such homologous nucleic acid or gene can be isolated according to a conventional method. For example, a primer that specifically amplifies a gene identified using a database that stores base sequence information is designed, chemically synthesized, and the above-mentioned primer that uses the genomic DNA extracted from the target organism as a cage is used. The desired homologue of chop 1 or chop 2 gene can be amplified and isolated by PCR.
本発明で使用する Chopl (又は Chop2) の変異体という用語には、 Chopl (又は The term Chopl (or Chop2) mutant used in the present invention includes Chopl (or
Chop2)のアミノ酸配列において、 1 個〜数個のアミノ酸の置換、 付加、 揷入又は 欠失を有し、 かつ Chopl (又は Chop2)と同等の機能特性を有するポリペプチド、 並びに Chopl (又は Chop2) のァミノ酸配列と少なくとも 90%、 好ましくは少な くとも 95%、 より好ましくは少なくとも 96%、 97%、 98%又は 99%の配列相同 性の配列相同性を有し、 かつ Chopl (又は Chop2) と同等の機能特性を有するポリ ぺプチドが含まれる。 Chop2) amino acid sequence, substitution, addition, insertion or insertion of one to several amino acids A polypeptide having a deletion and functional properties equivalent to those of Chopl (or Chop2), and an amino acid sequence of Chopl (or Chop2) at least 90%, preferably at least 95%, more preferably at least 96 Polypeptides having sequence homology of%, 97%, 98% or 99% sequence homology and functional properties equivalent to Chopl (or Chop2) are included.
本明細書において使用する 「数個」 とは、 10以下の整数、 例えば 2〜9、 2〜7、 2〜5の整数である。 また、 本明細書において、 配列相同性の値は、 複数 (2つ) のアミノ酸配列間の相同性を演算するソフトゥヱァ(例えば、 FASTA、DNASYS、 BLAST など) をデフォルトの設定で使用して算出した値をいう。  As used herein, “several” is an integer of 10 or less, for example, an integer of 2 to 9, 2 to 7, or 2 to 5. In this specification, the value of sequence homology was calculated using software (for example, FASTA, DNASYS, BLAST, etc.) that calculates the homology between multiple (two) amino acid sequences with default settings. Value.
本明細書において、 Chopl又は Chop2の関連で使用する 「同等の機能特性」 と は、例えば Chopl又は Chop2のコンダクタンス、光吸収波長特性、不活性化特性、 周波数応答特性といった機能特性の少なくとも 1つが実質的に同一であることを 指す。  In this specification, “equivalent functional characteristics” used in connection with Chopl or Chop2 means that at least one of the functional characteristics such as conductance, optical absorption wavelength characteristics, inactivation characteristics, and frequency response characteristics of Chopl or Chop2 is substantially. Are identical.
上記 Chopl (又は ChoP2)の変異体は、天然に生じたものであってもよいし、人為 的に変異を導入したものであってもよい。 人為的な変異の導入は、 例えば部位特 異的変異導入法や、 PCRを利用した変異導入法などを用いて、 chopl (又は choP2) 遺伝子に変異を導入することによつて行うことができる(Proc Natl Acad Sci USA., 1984 81:5662; Sambrook ら., Molecular Cloning A Laboratory Manual (1989) Second edition, Cold Spring Harbor Laboratory Press; Ausubel ら, Current Protocols in Molecular Biology 1995 John Wi ley & Sons)。 The mutant of Chopl (or Cho P 2) may be a naturally occurring mutant or an artificially introduced mutant. Artificial mutations can be introduced by introducing mutations into the chopl (or cho P 2) gene using, for example, site-specific mutagenesis or PCR-based mutagenesis. (Proc Natl Acad Sci USA., 1984 81: 5662; Sambrook et al., Molecular Cloning A Laboratory Manual (1989) Second edition, Cold Spring Harbor Laboratory Press; Ausubel et al., Current Protocols in Molecular Biology 1995 John Wiley & Sons) .
上記 Chopl (又は Chop2) の相同体又は変異体が、 Chopl (又は ChoP2) と同等 の機能特性を有するか否かは、 例えば、 電気生理学的手法を用いた膜電位記録や 膜電流記録や蛍光プローブを用いた細胞内イオン濃度変化を調べることによって アツセィすることができる。 ' Whether or not the above-mentioned Chopl (or Chop2) homologue or mutant has functional characteristics equivalent to those of Chopl (or Cho P 2) can be determined by, for example, membrane potential recording using electrophysiological methods, membrane current recording, It can be assessed by examining changes in intracellular ion concentration using a fluorescent probe. '
本発明において、 Chopl又は Chop2は、 必ずしもその全長である必要はなく、 光受容チャネル活性を有する Chopl又は ChoP2の断片であってもよい。 Chopl又 は Chop2はそれぞれ膜貫通構造を含む N末端側領域(Chopl: 1-345 (配列番号 5 );In the present invention, Chopl or Chop2 is not necessarily its length, it may be a fragment of Chopl or Cho P 2 having a light-receiving channel activity. Chopl or Chop2 is an N-terminal region containing a transmembrane structure (Chopl: 1-345 (SEQ ID NO: 5));
Chop2 : 1 - 315 (配列番号 6 ) ) に光受容活性があることが報告されており、 上記断 片としてこれらの領域を含むポリべプチドを使用することが好ましい。 1 . 2 含膜貫通構造ドメイン Chop2: 1-315 (SEQ ID NO: 6)) has been reported to have photoreceptive activity, and it is preferable to use a polypeptide containing these regions as the fragment. 1.2 Transmembrane domain
Chopl及び Chop2は、 バクテリオ口 ドプシンとの類似性から、 それぞれ 7つの 膜貫通構造を有していると仮定される (図 1参照)。 また、 上記の通り、 それぞれ の仮定膜貫通構造を含む N末側領域 (Chopl: 1-345、 Chop2: 1-315) に光受容チ ャネル活性があることが報告されている。 そこで、 Chopl の各仮定膜貫通構造そ れぞれを含む含膜貫通構造ドメインとして A、 B、 C、 D、 E、 F、 Gを定義し、 Chopl の A〜G を保持する光受容体チヤネル型口 ドプシンタンパク質又はその断片を Chopl and Chop2 are each assumed to have seven transmembrane structures due to their similarity to bacteriodopsin (see Figure 1). In addition, as described above, it has been reported that the N-terminal region (Chopl: 1-345, Chop2: 1-315) including each hypothetical transmembrane structure has photoreceptive channel activity. Therefore, A, B, C, D, E, F, and G are defined as transmembrane-containing domain including each hypothetical transmembrane structure of Chopl, and a photoreceptor channel that holds Chopl's A to G. Type mouth Dopsin protein or fragment thereof
ABCDEFGと表記する。 同様に、 Chop2の仮定膜貫通構造それぞれを含む含膜貫通構 造ドメインとして a、 b、 c、 d、 e、 f、 gを定義し、 Chop2の含膜貫通構造ドメィ ン a〜g を保持する光受容体チャネル型口 ドプシンタンパク質又はその断片を abcdefgと表記する。 例えば、 A〜Dが Chopl由来で、 e〜gが Chop2由来の光受容 体チャネル型口ドプシンタンパク質又はその断片は、 ABCDefgと表記する。 Indicated as ABCDEFG. Similarly, a, b, c, d, e, f, and g are defined as transmembrane structure domains including each hypothetical transmembrane structure of Chop2, and the transmembrane structure domains a to g of Chop2 are retained. Photoreceptor channel type mouth Dopsin protein or fragment thereof is expressed as abcdefg. For example, a photoreceptor channel-type oral dopsin protein or fragment thereof in which A to D are derived from Chopl and e to g is derived from Chop2 is represented as ABCDefg.
Choplの含膜貫通構造ドメイン A〜Gは以下に示すアミノ酸領域である。  Chopl transmembrane structure domains A to G are amino acid regions shown below.
ドメイン A:配列番号 2に示すアミノ酸配列のアミノ酸 1〜117  Domain A: amino acids 1-117 of the amino acid sequence shown in SEQ ID NO: 2
ドメイン B:配列番号 2に示すアミノ酸配列のアミノ酸 118〜164  Domain B: amino acids 118 to 164 of the amino acid sequence shown in SEQ ID NO: 2
ドメイン C:配列番号 2に示すアミノ酸配列のアミノ酸 165〜184  Domain C: amino acids 165 to 184 of the amino acid sequence shown in SEQ ID NO: 2
ドメイン D:配列番号 2に示すアミノ酸配列のアミノ酸 185〜212  Domain D: Amino acids 185 to 212 of the amino acid sequence shown in SEQ ID NO: 2
ドメイン E:配列番号 2に示すァミノ酸配列のァミノ酸 213〜242  Domain E: amino acids 213 to 242 of the amino acid sequence shown in SEQ ID NO: 2
ドメイン F:配列番号 2に示すアミノ酸配列のアミノ酸 243〜276  Domain F: Amino acids 243 to 276 of the amino acid sequence shown in SEQ ID NO: 2
ドメイン G:配列番号 2に示すアミノ酸配列のアミノ酸 277〜345  Domain G: amino acids 277 to 345 of the amino acid sequence shown in SEQ ID NO: 2
また Chop2の含膜貫通構造ドメイン a〜gは以下に示すァミノ酸領域である。 ドメイン a:配列番号 4に示すアミノ酸配列のアミノ酸 1〜78  Chop2 transmembrane domains ag are amino acid regions shown below. Domain a: Amino acids 1 to 78 of the amino acid sequence shown in SEQ ID NO: 4
ドメイン b:配列番号 4に示すアミノ酸配列のアミノ酸 79〜125  Domain b: amino acids 79 to 125 of the amino acid sequence shown in SEQ ID NO: 4
ドメイン c:配列番号 4に示すアミノ酸配列のアミノ酸 126〜; 145  Domain c: amino acids 126 to of the amino acid sequence shown in SEQ ID NO: 4;
ドメイン d:配列番号 4に示すァミノ酸配列のァミノ酸 146〜173  Domain d: amino acids 146 to 173 of the amino acid sequence shown in SEQ ID NO: 4
ドメ'イン e:配列番号 4に示すアミノ酸配列のアミノ酸 174〜203  Domainein e: amino acids 174 to 203 of the amino acid sequence shown in SEQ ID NO: 4
ドメイン f :配列番号 4に示すァミノ酸配列のアミノ酸 204〜237  Domain f: amino acids 204 to 237 of the amino acid sequence shown in SEQ ID NO: 4
ドメイン g:配列番号 4に示すァミノ酸配列のァミノ酸 238〜315  Domain g: amino acids 238 to 315 of the amino acid sequence shown in SEQ ID NO: 4
本発明において、 Chopl (又は Chop2) の含膜貫通構造ドメインの変異体(以下、 「変異型含膜貫通構造ドメイン」 ともいう) は、 含膜貫通構造ドメインのァミノ 酸領域において 1個〜数個のアミノ酸の置換、 付加、 揷入又は欠失を有し、 かつ 未改変の含膜貫通構造ドメインと同等の機能特性を有するポリぺプチド、 並びに 含膜貫通構造ドメインのアミノ酸配列に対して、 少なくとも 90%、 好ましくは少 なくとも 95%、 より好ましくは少なくとも 96%、 97%、 98%又は 99%の配列相 同性を有し、 かつ未改変の含膜貫通構造ドメインと同等の機能特性を有するポリ ペプチドを含む。 なお、 「数個」 及ぴ配列相同性の値は、 上に定義されている。 変異型含膜貫通構造ドメインの関連で使用する 「同等の機能特性」 とは、 変異 型含膜貫通ドメインがもつ機能特性の種類 (コンダクタンス、 光吸収波長特性、 不活性化特性、 周波数応答特性など) が未改変の含膜貫通ドメインと実質的に同 一であること、 及び変異型含膜貫通ドメインがもつ機能特性の性質 (コンダクタ ンスの強度、 光吸収波長域、 光電流の不活化の程度、 周波数応答性の程度など) が未改変の含膜貫通ドメインと実質的に同一であることを含む。 In the present invention, a variant of the transmembrane domain of Chopl (or Chop2) (hereinafter referred to as (Also referred to as “mutant transmembrane domain”) has one to several amino acid substitutions, additions, insertions or deletions in the amino acid region of the transmembrane domain, and has not been modified. At least 90%, preferably at least 95%, more preferably at least 96%, 97%, with respect to the amino acid sequence of the polypeptide having functional properties equivalent to the transmembrane domain, and the transmembrane domain It includes polypeptides having 98% or 99% sequence homology and functional properties equivalent to unmodified transmembrane domains. Note that “several” and sequence homology values are defined above. “Equivalent functional characteristics” used in the context of mutant transmembrane domains are the types of functional characteristics of the mutant transmembrane domains (conductance, light absorption wavelength characteristics, inactivation characteristics, frequency response characteristics, etc.) ) Is substantially the same as the unmodified transmembrane domain, and the properties of the functional properties of the mutant transmembrane domain (conductance intensity, light absorption wavelength range, degree of inactivation of photocurrent) The degree of frequency response etc.) is substantially the same as the unmodified transmembrane domain.
上記変異型含膜貫通構造ドメインは、 天然に生じたものであってもよいし、 人 為的に変異を導入したものであってもよい。 人為的な変異の導入は、 例えば部位 特異的変異導入法や、 PCR を利用した変異導入法などを用いて、 含膜貫通構造ド メインをコードするポリヌクレオチドに変異を導入することによって行うことが できる (Proc Natl Acad Sci USA., 1984 81 : 5662; Sambrook ら.,前述; Ausubel ら,刖述 ) ο  The mutant transmembrane domain may be a naturally occurring one or an artificially introduced mutation. Artificial mutations can be introduced by introducing mutations into a polynucleotide encoding a transmembrane domain using, for example, site-specific mutagenesis or PCR-based mutagenesis. Yes (Proc Natl Acad Sci USA., 1984 81: 5662; Sambrook et al., Supra; Ausubel et al., Supra) ο
1 . 3 改変型ロドプシンタンパク質の構築  1.3 Construction of modified rhodopsin protein
本発明の改変型口ドプシンタンパク質は、 光受容体チャネル型口ドプシンタン パク質中の含膜貫通構造ドメインの少なくとも 1 つが、 これに相当する、 Chopl 由来の含膜貫通構造ドメイン又はその変異体である、及び/又は、これに相当する、 The modified oral dopsin protein of the present invention is a transmembrane domain or a variant thereof derived from Chopl, in which at least one of the transmembrane domains in the photoreceptor channel type oral dopsin protein corresponds to this. Is and / or equivalent
Chop2 由来の含膜貫通構造ドメイン又はその変異体であることを特徴とする。 言 い換えれば、 本発明の改変型口ドプシンタンパク質は、 光受容体チャネル型口ド プシンタンパク質中の含膜貫通構造ドメインの少なくとも 1つが、 これに相当す る Chopl 由来の含膜貫通構造ドメイン又はその変異体で置換されている、 及び/ 又は、 これに相当する Chop2由来の含膜貫通構造ドメイン又はその変異体で置換 されているものともいえる。 これにより、 Chopl又は Chop2の好ましい機能特性 が付与された改変型口ドプシンタンパク質を提供することができる。「これに相当 する含膜貫通構造ドメイン」 とは、 置換される含膜貫通構造ドメインと、 機能特 性の種類 (コンダクタンス、 光吸収波長特性、 不活性化特性、 周波数応答特性な ど) において同一であるが、 機能特性の性質 (コンダクタンスの強度、 光吸収波 長域、 光電流の不活化の程度、 周波数応答性の程度など) において同一であるか 又は異なる含膜貫通構造ドメィンを指す。 例えば、 上記 Choplのドメイン Aに相 当する Chop2の含膜貫通構造ドメインは、 上記ドメイン aである。 It is a transmembrane domain derived from Chop2 or a variant thereof. In other words, in the modified oral dopsin protein of the present invention, at least one transmembrane domain in the photoreceptor channel type oral dopsin protein is equivalent to the transmembrane domain derived from Chopl, which corresponds to this domain. Alternatively, it can be said that it is substituted with a mutant thereof, and / or is substituted with a corresponding transmembrane domain derived from Chop2 or a mutant thereof. This allows for the preferred functional characteristics of Chopl or Chop2. Can be provided. “Equivalent transmembrane domain” is the same as the transmembrane domain to be replaced in the type of functional characteristics (conductance, light absorption wavelength characteristics, inactivation characteristics, frequency response characteristics, etc.) However, it refers to domains with a transmembrane structure that have the same or different functional properties (conductance strength, light absorption wavelength range, degree of photocurrent inactivation, frequency response, etc.). For example, the transmembrane domain of Chop2 corresponding to the domain A of Chopl is the domain a.
また、 上記 Choplの含膜貫通構造ドメイン、 及び Chop2の含膜貫通構造ドメィ ンは、 それぞれ異なる機能特性を有するため、 Chopl の含膜貫通構造ドメイン及 ぴ Chop2の含膜貫通構造ドメインの両方を種々の組合せで保持させることにより、 様々な機能特性を有する光受容体チヤネル型ロドプシンタンパク質のラインナツ プを提供することができる。  In addition, since the Chopl transmembrane domain and the Chop2 transmembrane domain have different functional properties, both the Chopl transmembrane domain and the Chop2 transmembrane domain are various. By holding them in combination, it is possible to provide a lineup of photoreceptor channel-type rhodopsin proteins having various functional properties.
例えば、 Choplの含膜貫通構造ドメイン A〜G及び Chop2の含膜貫通構造ドメイ ン a〜gの機能特性に基づき、本発明の改変型口ドプシンタンパク質は、増大した コンダクタンス、 長波長の光応答性の増大、 弱い不活性化、 高い周波数応答性と いった機能特性の少なくとも 1つを有することができる。  For example, based on the functional properties of Chopl's transmembrane domain A to G and Chop2's transmembrane domain ag, the modified oral dopsin protein of the present invention has increased conductance and long wavelength photoresponse. It can have at least one of the following functional characteristics: increased performance, weak inactivation, and high frequency response.
コンダクタンスの増大は、 微弱光に対しても、 大きな膜電位応答、 膜電流応答 を生ずるという点で好ましい機能特性である。  An increase in conductance is a preferable functional characteristic in that a large membrane potential response and membrane current response are generated even for weak light.
長波長の光応答性の増大は、 活性化に試用できる光の波長帯域が拡大する、 白 色光に対する応答が増大するという点で好ましい機能特性である。  The increase in the long wavelength photoresponsiveness is a preferable functional characteristic in that the wavelength band of light that can be used for activation is expanded and the response to white light is increased.
弱い不活性化は、 光入力パターンをより正確に膜電位,膜電流に反映する、 繰 り返し刺激で応答が減衰しないという点で好ましい機能特性である。  Weak inactivation is a favorable functional characteristic in that the light input pattern is more accurately reflected in the membrane potential and membrane current, and the response is not attenuated by repeated stimulation.
高い周波数応答性は、 高周波で変動する光情報に対する応答が減衰しないとい う点で好ましい機能特性である。  High frequency response is a preferable functional characteristic in that the response to optical information that fluctuates at high frequencies is not attenuated.
光受容体チャネル型口ドプシンタンパク質が Choplである場合には、 本発明の 改変型口ドプシンタンパク質は、 Chopl の含膜貫通構造ドメインの少なくとも 1 つ (例えばドメイン A) に代えて、 Chop2の含膜貫通構造ドメイン (例えばドメイ ン a) を保持させることにより創出することができる。  When the photoreceptor channel-type oral dopsin protein is Chopl, the modified oral dopsin protein of the present invention is replaced with at least one of the transmembrane domains of Chopl (for example, domain A), instead of Chop2 It can be created by retaining a transmembrane domain (eg domain a).
また、 光受容体チャネル型ロドプシンタンパク質が ChoP2である場合には、 本 発明の改変型ロ ドプシンタンパク質は、 Chop2 の含膜貫通構造ドメインの少なく とも 1つ (例えばドメイン a) に代えて、 Choplの含膜貫通構造ドメイン(例えば ドメィン A)を保持させることにより創出することができる。 In addition, when the photoreceptor channel-type rhodopsin protein is Cho P 2, The modified rhodopsin protein of the invention is created by retaining Chopl's transmembrane domain (eg, domain A) instead of at least one (eg, domain a) of Chop2's transmembrane domain. be able to.
このような Chopl と Chop2との間で創出される改変型口 ドプシンタンパク質と して、 以下に例示するポリぺプチド又はその変異体を含むタンパク質が挙げられ る。  Examples of such modified oral dopsin protein created between Chopl and Chop2 include proteins including the following exemplified polypeptides or variants thereof.
(Abcdefg) 配列番号 2のアミノ酸 1〜; L17と配列番号 4のアミノ酸 79〜315とか らなるポリべプチド  (Abcdefg) A polypeptide comprising amino acids 1 to 5 of SEQ ID NO: 2; L17 and amino acids 79 to 315 of SEQ ID NO: 4
(ABcdefg) 配列番号 2のアミノ酸 1〜164と配列番号 4のアミノ酸 126〜315と からなるポリぺプチド  (ABcdefg) A polypeptide consisting of amino acids 1-164 of SEQ ID NO: 2 and amino acids 126-315 of SEQ ID NO: 4.
(ABCdefg) 配列番号 2のアミノ酸 1〜: 184と配列番号 4のアミノ酸 146〜315と からなるポリべプチド  (ABCdefg) Polypeptide consisting of amino acids 1 to 184 of SEQ ID NO: 2 and amino acids 146 to 315 of SEQ ID NO: 4
(ABCDefg) 配列番号 2のアミノ酸 1〜212と配列番号 4のアミノ酸 174〜315と からなるポリぺプチド  (ABCDefg) A polypeptide consisting of amino acids 1-212 of SEQ ID NO: 2 and amino acids 174-315 of SEQ ID NO: 4.
(ABCDEfg) 配列番号 2のアミノ酸 1〜242と配列番号 4のアミノ酸 204〜315 と からなるポリべプチド  (ABCDEfg) A polypeptide comprising amino acids 1 to 242 of SEQ ID NO: 2 and amino acids 204 to 315 of SEQ ID NO: 4.
(ABCDEFg) 配列番号 2のアミノ酸 1〜276と配列番号 4のアミノ酸 238〜315 と からなるポリぺプチド  (ABCDEFg) A polypeptide consisting of amino acids 1 to 276 of SEQ ID NO: 2 and amino acids 238 to 315 of SEQ ID NO: 4
(aBCDEFG) 配列番号 2のアミノ酸 118〜345と配列番号 4のアミノ酸 1〜78 とか らなるポリべプチド  (aBCDEFG) A polypeptide consisting of amino acids 118 to 345 of SEQ ID NO: 2 and amino acids 1 to 78 of SEQ ID NO: 4.
(abCDEFG) 配列番号 2のアミノ酸 165〜345 と配列番号 4のアミノ酸 1〜125 と からなるポリぺプチド  (abCDEFG) A polypeptide consisting of amino acids 165 to 345 of SEQ ID NO: 2 and amino acids 1-125 of SEQ ID NO: 4.
(abcDEFG) 配列番号 2のアミノ酸 185〜345と配列番号 4のアミノ酸 1〜145と からなるポリペプチド .  (abcDEFG) A polypeptide comprising amino acids 185 to 345 of SEQ ID NO: 2 and amino acids 1 to 145 of SEQ ID NO: 4.
(abcdEFG) 配列番号 2のアミノ酸 213〜345と配列番号 4のアミノ酸 1〜173 と からなるポリべプチド  (abcdEFG) Polypeptide consisting of amino acids 213 to 345 of SEQ ID NO: 2 and amino acids 1 to 173 of SEQ ID NO: 4
(abcdeFG) 配列番号 2のアミノ酸 243〜345と配列番号 4のアミノ酸 1〜203と からなるポリべプチド  (abcdeFG) Polypeptide consisting of amino acids 243 to 345 of SEQ ID NO: 2 and amino acids 1 to 203 of SEQ ID NO: 4
(abcdefG) 配列番号 2のアミノ酸 277〜345と配列番号 4のアミノ酸 1〜237 と からなるポリべプチド (abcdefG) amino acids 277 to 345 of SEQ ID NO: 2 and amino acids 1 to 237 of SEQ ID NO: 4 Polypeptide consisting of
上記ポリべプチドの各変異体には、 上記ポリべプチドの各アミノ酸配列におい て 1個〜数個のアミノ酸の置換、 付加、 揷入又は欠失を有し、 かつ上記ポリぺプ チドと同等の機能特性を有するポリべプチド、 並びに上記ポリべプチドのァミノ 酸配列に対して、少なくとも 90%、好ましくは少なくとも 95%、 より好ましくは 少なくとも 96%、 97%、 98%又は 99%の配列相同性を有し、 かつ上記ポリべプチ ドと同等の機能特性を有するポリペプチドを含む。 なお、 「数個」、 配列相同性の 値及び 「同等の機能特性」 については、 上に定義されている。  Each variant of the above polypeptide has one to several amino acid substitutions, additions, insertions or deletions in each amino acid sequence of the above polypeptide, and is equivalent to the above polypeptide. And at least 90%, preferably at least 95%, more preferably at least 96%, 97%, 98% or 99% sequence homology to the amino acid sequence of said polypeptide. And a polypeptide having functional properties equivalent to those of the polypeptide. Note that “several”, sequence homology values, and “equivalent functional properties” are defined above.
上記変異体は、 天然に生じたものであってもよいし、 人為的に変異を導入した ものであってもよい。 人為的な変異の導入は、 例えば部位特異的変異導入法や、 PCR を利用した変異導入法などによる積極的な変異の導入 (Proc Natl Acad Sci USA. , 1984 81:5662; Sambrook ら.,前述; Ausubel ら, 前述) の他、 上記ポリぺ プチドの発現効率を高める操作等、 製造の便宜的側面から生じたものであっても よい。  The mutants may be naturally occurring or artificially introduced with mutations. Artificial mutations are introduced by, for example, site-directed mutagenesis or active mutagenesis using PCR (Proc Natl Acad Sci USA., 1984 81: 5662; Sambrook et al., Supra. In addition to Ausubel et al., The above), it may be produced from a convenient aspect of production, such as an operation for increasing the expression efficiency of the above-mentioned polypeptide.
Choplと Chop2との間で創出される上記改変型口ドプシンタンパク質の中でも、 ABCDEfg (以下、 「チャネルォプシン ' ワイ ドレシーバー (chop WR) J とも称する) が、 コンダクタンス、 長波長の光吸収の大きさ、 不活性化の弱さなどが顕著に優 れている。 また、 Na +イオンに対する選択性も高い。 チャネルォプシン · ワイ ド レシーバ一は、 微弱光の受容に優れており、 例えば組織の深部にある細胞に導入 する用途にぉレ、て優れた改変型口ドプシンタンパク質である。 Among the modified oral dopsin proteins created between Chopl and Chop2, ABCDEfg (hereinafter also referred to as “channel opsin” wide receiver (chop WR) J) has conductance and long-wavelength light absorption. The size, weakness of inactivation, etc. are remarkably superior, and the selectivity to Na + ions is high.The channelopsin wide receiver is excellent in the reception of faint light. It is a modified type of oral dopsin protein that is excellent for use in cells that are deep in the region.
また上記改変型口ドプシンタンパク質の中で、 ABcdefg (以下、 「チャネルォプ シン ' ファス トレシーバー (chop FR) J とも称する) 1 周波数応答特性におい て、 顕著に優れている。 また、 コンダクタンス、 不活性化の弱さ、 Na+イオンに 対する選択性においても優れてレ、る。チヤネルォプシン ·ファス トレシーバーは、 高周波で変動する光情報の受容に優れており、 例えば光で情報入力できる神経細 胞ネットワークモジュールの素材として優れた改変型口ドプシンタンパク質であ る。  Among the above modified oral dopsin proteins, ABcdefg (hereinafter also referred to as “channel opsin 'fast receiver (chop FR) J)” is remarkably superior in frequency response characteristics. The channelops fast receiver is excellent in accepting optical information that fluctuates at high frequencies, for example, a neural cell network module that can input information by light. It is an excellent modified type of dopsin protein.
1 . 4 改変型ロドプシンタンパク質の作製  1.4 Production of modified rhodopsin protein
本発明の改変型口ドプシンタンパク質は、 光受容体チャネル型口ドプシンタン パク質遺伝子、 及ぴ chopl遺伝子及ぴ chop2遺伝子の配列情報に基づき、 遺伝子 工学的手法により製造することができる。 The modified oral dopsin protein of the present invention is a photoreceptor channel type oral dopsin tongue. Based on the sequence information of protein gene, chopl gene and chop2 gene, it can be produced by genetic engineering techniques.
具体的には、 まず本発明の改変型口ドプシンタンパク質をコードするポリヌク レオチド (以下、 「改変型口 ドプシン遺伝子」 ともいう) を調製する。 改変型口ド プシン遺伝子は、 当業者に公知の手法によって調製することができる。 例えば、 光受容体チャネル型ロ ドプシンタンパク質をコードする遺伝子の配列情報と、 chopl遺伝子及ぴ choP2遺伝子の配列情報に基づき、 所望の改変型口ドプシンタ ンパク質をコ一ドするポリヌクレオチドを化学合成することができる。 或いは、 上記配列情報に基づいて、 光受容体チャネル型口 ドプシン遺伝子の所望領域を増 幅する PCRプライマーと、 chopl遺伝子及び/又は chop2遺伝子の所望ドメインを 増幅する PCRプライマーとを設計 ·化学合成し、 対象の生物から抽出したゲノム DNAを鍚型とする前記 PCRによって、 改変型口ドプシン遺伝子を構成する光受容 体チャネル型口ドプシン遺伝子領域と、 Chopl及び/又は Chop2 ドメイン領域をコ ードするポリヌクレオチドとをそれぞれ増幅し、 これらを連結することによって 調製してもよい。 Specifically, first, a polynucleotide encoding the modified oral dopsin protein of the present invention (hereinafter also referred to as “modified oral dopsin gene”) is prepared. The modified oral dopsin gene can be prepared by techniques known to those skilled in the art. For example, the sequence information of the gene encoding the photoreceptor channel type load de trypsin proteins, based on chopl gene及Pi cho P 2 gene sequence information, the desired modified port Dopushinta protein co one de polynucleotide It can be chemically synthesized. Alternatively, based on the above sequence information, a PCR primer that amplifies the desired region of the photoreceptor channel-type oral dopsin gene and a PCR primer that amplifies the desired domain of the chopl gene and / or chop2 gene are designed and chemically synthesized. By the PCR using the genomic DNA extracted from the target organism as a cocoon, a polymorphism encoding the photoreceptor channel type mouth dopsin gene region constituting the modified mouth dopsin gene and the Chopl and / or Chop2 domain region. It may be prepared by amplifying each nucleotide and ligating them.
次に、 プロモーターと機能的に連結された、 本発明の改変型ロ ドプシン遺伝子 を、 宿主菌体内で複製維持が可能であり、 このタンパク質を安定に発現させるこ とができ、 該遺伝子を安定に保持できる発現ベクターに組み込み、 得られた組換 え発現ベクターを用いて宿主を形質転換し、 宿主において本発明の改変型口 ドプ シンタンパク質を生産させることができる。 組換え技術については、 Sambrookら (上記)、 Ausubel ら (上記) を参照することができる。  Next, the modified rhodopsin gene of the present invention operably linked to the promoter can be maintained in the host cell, and the protein can be stably expressed, and the gene can be stably expressed. The modified expression vector of the present invention can be produced in the host by transforming the host using the obtained recombinant expression vector, which is incorporated into an expression vector that can be maintained. For recombination techniques, see Sambrook et al. (Supra), Ausubel et al. (Supra).
発現ベクターとしては、これに限定されるものではないが、大腸菌(Escherichia coli) 由来のプラスミ ド(例えば pET28、 pGEX4T、 pUC118、 pUC119、 pUC18、 pUC19、 及ぴ他のプラスミ ド DNA)、 枯草菌 (Bacillus subtil is) 由来のプラスミ ド (例 えば pUB110、 pTP5、 及び他のプラスミ ド DNA)、 酵母由来のプラスミ ド (例えば YEpl3、 YEp24、 YCp50、 及ぴ他のプラスミ ド DNA)、 えファージ (; L gtl l、 λ ZAP 等)、 哺乳動物用プラスミ ド (pCMV、 pSV40)、 ウィルスベクター (アデノウイルス ベクター、 アデノ随伴ウイノレスベクター、 レトロウイルスベクター、 レンチウイ ノレスベクター、 ヮクシニアウイノレスベクターなどの動物ウイノレスベクター、 バキ ュ口ウィルスベクターなどの昆虫ウィルスベクター等)、植物用ベクター(バイナ リベクター pBi系等)、 コスミ ドベクターなどを用いることができる。 Examples of expression vectors include, but are not limited to, plasmids derived from Escherichia coli (eg, pET28, pGEX4T, pUC118, pUC119, pUC18, pUC19, and other plasmid DNAs), Bacillus subtilis ( Bacillus subtil is) (eg, pUB110, pTP5, and other plasmid DNA), yeast-derived plasmids (eg, YEpl3, YEp24, YCp50, and other plasmid DNA), phage (; L gtl l, λ ZAP, etc.), mammalian plasmids (pCMV, pSV40), viral vectors (adenovirus vectors, adeno-associated winores vectors, retrovirus vectors, lentiwinoles vectors, ヮ kucinia winores vectors, etc.) The baki Insect virus vectors such as mouth virus vectors), plant vectors (binary vectors such as pBi), cosmid vectors, and the like can be used.
本明細書で使用する 「機能的に連結された」 とは、 プロモーター配列が目的の ポリヌクレオチド配列の転写を開始することができるような、 プロモーター配列 と目的のポリヌクレオチド配列との間の機能的な結合をいう。  As used herein, “operably linked” refers to a functional sequence between a promoter sequence and a polynucleotide sequence of interest such that the promoter sequence can initiate transcription of the polynucleotide sequence of interest. This is a simple bond.
プロモーターは特に制限されず、 宿主に応じて適するプロモーターを選択すれ ばよく、 また当該技術分野で公知の構成的プロモーター、 誘導性プロモーターの いずれを用いてもよい。 本発明においては、 特に構成的プロモーターを用いるこ とが好ましい。例えば本発明において使用することができるプロモーターとして、 CMVプロモーター、 SV40 プロモーター、 CAGプロモーター、 シナプシンプロモー ター、 口 ドプシンプロモーター、 CaMV プロモーター、 角 糖系酵素プロモーター、 lacプロモーター、 trpプロモーター、 tacプロモーター、 GAPDHプロモーター、 GAL1プロモーター、 PH05プロモーター、 PGKプロモーター、 thylプロモーターな どを挙げることができる。  The promoter is not particularly limited, and a suitable promoter may be selected depending on the host, and any of a constitutive promoter and an inducible promoter known in the art may be used. In the present invention, it is particularly preferable to use a constitutive promoter. For example, promoters that can be used in the present invention include CMV promoter, SV40 promoter, CAG promoter, synapsin promoter, oral dopsin promoter, CaMV promoter, corn sugar enzyme promoter, lac promoter, trp promoter, tac promoter, GAPDH Examples include promoters, GAL1 promoter, PH05 promoter, PGK promoter, thyl promoter and the like.
改変型ロドプシン遺伝子の発現ベクターへの挿入は、 例えば、 改変型ロ ドプシ ン遺伝子にフランキングする制限酵素部位を作製又は連結し、適当なベクタ一 DNA の制限酵素部位又はマルチクローニングサイ トに挿入することにより行う。 発現 ベクターは、 プロモーター及び改変型ロ ドプシン遺伝子の他、 必要に応じてェン ハンサー及ぴ他のシスエレメント、 スプライシングシグナル、 ポリ A付加シグナ ル、 選択マーカー (アンピシリン耐性マーカー、 テトラサイクリン耐性マーカー などの薬剤耐性遺伝子マーカー、 LEU1、 TRPi、 URA3などの栄養要求性相補遺伝子 マーカー、 APH、DHFR、TKなどの優性選択マーカーなど)、リポソーム結合部位(RBS) などを含んでもよい。  Insertion of the modified rhodopsin gene into the expression vector is, for example, creating or ligating a restriction enzyme site flanking the modified rhodopsin gene and inserting it into the restriction enzyme site or multiple cloning site of an appropriate vector. By doing. In addition to promoters and modified rhodopsin genes, expression vectors include drugs such as enhancers and other cis elements, splicing signals, poly A-added signals, selection markers (ampicillin resistance markers, tetracycline resistance markers, etc.) Resistance gene markers, auxotrophic complementary gene markers such as LEU1, TRPi, and URA3, dominant selection markers such as APH, DHFR, and TK), liposome binding sites (RBS), and the like.
宿主を形質転換するには、 プロ トプラスト法、 スフエロプラスト法、 コンビテ ントセル法、 ウィルス法、 リン酸カルシウム法、 リボフヱクシヨン法、 マイクロ インジェクション法、 ジーンボンバートメント法、 ァグロバタテリゥム法、 エレ ク トロポレーション等を用いて行うことができる。  In order to transform the host, the protoplast method, the spheroplast method, the combinatorial cell method, the virus method, the calcium phosphate method, the ribofusion method, the microinjection method, the gene bombardment method, the agrobatterium method, the electroporo method For example.
得られた形質転換体は、 資化しうる炭素源、 窒素源、 金属塩、 ビタミン等を含 む培地を用いて適当な条件で培養する。 形質転換体の培養は、 通常、 振盪培養又 は通気攪拌培養などの好気的条件下、 25〜37°Cで 3〜6時間行う。培養期間中、 pH は中性付近に保持する。 pHの調整は、 無機又は有機酸、 アルカリ溶液等を用いて 行う。 培養中は、 必要に応じて、 組換え発現ベクターに挿入した選択マーカーに 応じて、アンピシリンゃテトラサイクリン等の抗生物質を培地に添加してもよい。 また形質転換に使用する宿主は、 本発明の改変型口ドプシンタンパク質を発現で きるものであれば特に制限されるものではなく、 細菌 (大腸菌、 枯草菌等)、 酵母 (Saccharomyces cerevisiae等)、 動物細胞 (COS細胞、 チャイニーズノヽムスター 卵巣 (CH0) 細胞、 3T3細胞、 BHK細胞、 HEK293細胞等)、 昆虫細胞が挙げられる。 本発明の改変型口ドプシンタンパク質は、 形質転換体の培養により得られた培 養物 (培養上清、 培養細胞、 培養菌体、 細胞若しくは菌体のホモジェネートなど) から一般的な方法によって分取や精製を行い、 限外濾過濃縮、 凍結乾燥、 噴霧乾 燥、結晶化等によって、その活性を保持するかたちで得ることができる。或いは、 本発明の改変型ロドプシンタンパク質は、 単離 ·精製を行うことなく、 該タンパ ク質を発現する細胞の形態で提供してもよい。 この場合、 形質転換に使用する宿 主細胞は、 その後の用途に適した宿主細胞、 例えば神経細胞、 好ましくヒ ト神経 細胞である。 The obtained transformant is cultured under a suitable condition using a medium containing an assimilating carbon source, nitrogen source, metal salt, vitamin and the like. Transformants are usually cultured by shaking culture or Is performed at 25-37 ° C for 3-6 hours under aerobic conditions such as aeration and agitation. During the culture period, the pH is kept near neutral. The pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like. During the culture, an antibiotic such as ampicillin or tetracycline may be added to the medium according to the selection marker inserted into the recombinant expression vector, if necessary. The host used for transformation is not particularly limited as long as it can express the modified oral dopsin protein of the present invention. Bacteria (such as Escherichia coli and Bacillus subtilis), yeast (such as Saccharomyces cerevisiae), Examples include animal cells (COS cells, Chinese nomstar ovary (CH0) cells, 3T3 cells, BHK cells, HEK293 cells, etc.) and insect cells. The modified oral dopsin protein of the present invention is separated from a culture obtained by culturing a transformant (culture supernatant, cultured cell, cultured cell, cell or cell homogenate, etc.) by a general method. It can be obtained in such a way that its activity is maintained by ultrafiltration concentration, freeze drying, spray drying, crystallization, etc. Alternatively, the modified rhodopsin protein of the present invention may be provided in the form of a cell that expresses the protein without isolation and purification. In this case, the host cell used for transformation is a host cell suitable for the subsequent use, for example, a nerve cell, preferably a human nerve cell.
また、 本発明の改変型口ドプシンタンパク質を医療用途に使用する場合には、 該タンパク質発現用ベクターの形態で提供してもよい。 この場合には、 細胞への 導入効率、 該細胞内での複製維持、 安定性、 発現効率等に優れた発現ベクターを 用いることが好ましい。 このようなベクターとして、 これに限定されるものでは ないが、 例えばアデノ随伴ウィルスベクター、 レトロウィルスベクター、 レンチ ウィルスベクターなどのウィルスベクター、 (自立複製可能な) プラスミ ド、 トラ ンスポゾンなどを挙げることができる。  In addition, when the modified oral dopsin protein of the present invention is used for medical purposes, it may be provided in the form of the protein expression vector. In this case, it is preferable to use an expression vector excellent in efficiency of introduction into cells, maintenance of replication in the cells, stability, expression efficiency, and the like. Examples of such vectors include, but are not limited to, viral vectors such as adeno-associated virus vectors, retrovirus vectors, and lentivirus vectors, plasmids capable of autonomous replication, and transposons. it can.
2 . 用途 2. Application
光受容体チャネル型口ドプシンの 1つであるパクテリォロドプシンは、 その機 能が明らかになって以降、 視覚回復 (例えば特開 2002-363107) や基礎研究のリ サーチツール (例えば特表 2004 - 521604) としての用途だけでなく、 光電変換素 子 (例えば特開 2002-271265、 特開 2000- 67939) や光学情報記憶物質 (例えば特 表 2006- 515683)、 または神経モデル素子 (例えば特開平 6- 295350) への用途が考 えられてきた物質である。 しかしながら、 バクテリオロドプシンの特徴である 1 個のフォ トンあたり 1個の電子が移動するという点から、 上記の用途に用いるこ とについては解決すべき課題が残されている。 Park Teri O rhodopsin, which is one of the photoreceptor channel port Dopushin is since its function is revealed, visual recovery (for example, JP 2002-363107) or re searching tool (e.g. Kohyo basic research 2 004 As well as photoelectric conversion elements (for example, JP-A-2002-271265, JP-A-2000-67939), optical information storage materials (for example, JP-A-2006-515683), or neural model elements (for example, JP-A 6-295350) It is a substance that has been obtained. However, since one electron moves per photon, which is a feature of bacteriorhodopsin, there remains a problem to be solved for use in the above applications.
これに対し、 チャネル口ドプシンの場合、 1 個のフォ トンを吸収してイオンチ ャネルが開口するので、 移動する電子数がはるかに多く、 その結果、 効率の高い 光電変換が期待される。 一方で、 野生型チャネル口ドプシンにおいては脱感作の 影響を考慮する必要があるなどの問題もある。  On the other hand, in the case of channel mouth dopsin, the ion channel is opened by absorbing one photon, so the number of electrons moving is much larger, and as a result, highly efficient photoelectric conversion is expected. On the other hand, wild type channel dopsin also has problems such as the need to consider the effects of desensitization.
本発明によれば、 機能特性において、 野生型の光受容体チャネル型ロドプシン タンパク質と大きく異なる改変型ロドプシンタンパク質の様々なラインナツプが 得られる。 したがって、 用途に応じて改変型ロドプシンタンパク質を選び出して 使用することができる。  According to the present invention, various lineups of modified rhodopsin proteins having functional characteristics that differ greatly from the wild type photoreceptor channel-type rhodopsin proteins can be obtained. Therefore, modified rhodopsin protein can be selected and used according to the application.
2 . 1 視覚回復及び治療 の利用可能性  2.1 Visual recovery and availability of treatment
ヒトの眼球においては、 網膜にある受容体細胞で光が感知され、 双極細胞を経 て、 神経節細胞に活動が伝えられる。 神経節細胞の軸索突起が視神経として脳に 神経を送っている。網膜色素変性症や加齢にともなう黄斑変性症などにおいては、 受容体細胞が変性することにより視力を失う。 前者は、 遺伝的な背景のあるもの で、 比較的若い時に失明するが、 世界中に 150万人の患者がいるといわれる。 後 者は、 65歳以上における失明の最大要因である。 このような患者では、 網膜の神 経節細胞は健常である。 そこで、 網膜の双極細胞や神経節細胞は、 本来光感受性 を有しないが、 野生型の Chop2 (1-315) abcdefgを遺伝子工学的方法を介して網膜 の神経細胞に導入'発現させることにより、視覚を回復する研究が行われている。 このような目的には、 口ドプシンタンパク質に以下のような特性が必要とされ る:(i) 微弱な光を感知できること;(i i) 波長選択性が低く、 白色光に応答する こと ; (i i i) 光電流の不活性化が弱いこと。 野生型の Chop2 (1-315) abcdefgは、 青色光に対する選択性が高く、 光電流が強い不活性化を有しているので、 これら の性質において優れているとはいえない。  In the human eye, light is sensed by receptor cells in the retina, and the activity is transmitted to ganglion cells via bipolar cells. The neurites of ganglion cells send nerves to the brain as optic nerves. In retinitis pigmentosa and age-related macular degeneration, visual loss is lost due to degeneration of receptor cells. The former has a genetic background and is blinded when it is relatively young, but it is said that there are 1.5 million patients worldwide. The latter is the biggest cause of blindness at age 65 and older. In such patients, retinal ganglion cells are healthy. Therefore, retinal bipolar cells and ganglion cells are not inherently light sensitive, but by introducing and expressing wild-type Chop2 (1-315) abcdefg into retinal neurons via genetic engineering methods, Research to restore vision is underway. For this purpose, oral dopsin protein requires the following characteristics: (i) Sensitive to weak light; (ii) Low wavelength selectivity and response to white light; iii) Photocurrent inactivation is weak. Wild-type Chop2 (1-315) abcdefg is not excellent in these properties because of its high selectivity to blue light and strong photocurrent inactivation.
これに対し、 例えばチャネルォプシン ' ワイドレシーバーは、 コンダクタンス が大きいこと、 青から緑の広い波長域に応答すること、 光電流の不活性化がほと んど認められないこと、 などの優れた特性を有しているため、 組織の深部にある 細胞に高い光感受性を付与することが期待される。 In contrast, channel opsin wide receivers, for example, have excellent conductance, response to a wide wavelength range from blue to green, and almost no photocurrent inactivation. Because of its characteristics, it is deep in the organization It is expected to impart high photosensitivity to cells.
したがって、 網膜光受容体細胞の変性に伴う視覚障害者において、 まったく非 侵襲的に高い解像度の視覚を回復し、 その生活能力を向上させる素材として、 最 適であることが期待される。  Therefore, it is expected to be the most suitable material for visually impaired people with degeneration of retinal photoreceptor cells to restore high-resolution vision completely non-invasively and improve their living ability.
具体的には、本発明の改変型口ドプシンタンパク質(例えばチャネルォプシン · ワイドレシーバー)、該タンパク質をコードするポリヌクレオチドを含む発現べク ター、 又は該タンパク質を発現する真核細胞 (例えば視神経細胞) を有効成分と する視機能回復用の医薬組成物として使用することができる。  Specifically, the modified oral dopsin protein of the present invention (for example, a channelopsin wide receiver), an expression vector containing a polynucleotide encoding the protein, or a eukaryotic cell (for example, an optic nerve) that expresses the protein. Cell) can be used as a pharmaceutical composition for restoring visual function.
2 . 2 聴覚系の神経細胞への導入  2.2 Introduction to the nerve cells of the auditory system
聴覚系の神経細胞などは、 数百 Hzの高頻度の活動をすることが知られている。 光照射により、 これらの神経細胞に高頻度の活動を引き起こすに当たり、 光電流 の不活性化が弱いこと、 および、 周波数応答特性の高いことが必要になる。 した がって、例えばチャネルォプシン ·ファストレシーバー (chopFR)を用いることに より、 これらの神経細胞に高頻度の活動を引き起こすことが期待される。  The nerve cells of the auditory system are known to have a high frequency of several hundred Hz. In order to cause high-frequency activity in these neurons by light irradiation, it is necessary that the inactivation of the photocurrent is weak and that the frequency response characteristic is high. Therefore, for example, by using a channel opsin fast receiver (chopFR), it is expected to cause high frequency activity in these neurons.
2 . 3 基礎研究におけるリサーチツールとしての利用可能性 2.3 Applicability as a research tool in basic research
マウス、 ラット、 サルなどの哺乳類以外に、 ゼブラフィッシュ、 昆虫、 ァメフ ラシ、 線虫など、 さまざまな種類の動物を用いて、 神経細胞や神経細胞が作るネ ットワークの機能が研究されている。 遺伝子によりコードされるタンパク質が生 体でどのような機能を担っているかを研究するにあたり、 神経細胞の機能ゃシナ ブスの機能を研究することが必要不可欠である。 また、 神経系に作用する薬品を 開発するにあたり、 それらの化学物質が、 神経細胞の機能やシナプスの機能をど のように修飾するかをアツセィすることが必要である。 これらの研究は、 in vivo あるいは in vitroの神経系において、 神経細胞を刺激し、 それにより引き起こさ れる動物の行動やシナプスの活動を計測するこ.とにより実施される。 神経細胞の 刺激は、 一般に単極または双極の刺激電極を近づけ、 短い電気パルスを通電する ことにより行われる。 しかし、 刺激される神経細胞の数、 位置、 種類などを特定 することは困難である。  In addition to mammals such as mice, rats, and monkeys, various types of animals such as zebrafish, insects, stink bugs, and nematodes are used to study the functions of neurons and the networks they create. In order to study the functions of proteins encoded by genes in organisms, it is essential to study the functions of neurons and synapses. In developing drugs that affect the nervous system, it is necessary to assess how these chemicals modify the functions of nerve cells and synapses. These studies are carried out by stimulating nerve cells in the in vivo or in vitro nervous system and measuring animal behavior and synaptic activity caused thereby. Stimulation of nerve cells is generally performed by bringing a monopolar or bipolar stimulation electrode close and energizing a short electric pulse. However, it is difficult to specify the number, location, and type of nerve cells that are stimulated.
一方、 光受容体チャネルを神経細胞に遺伝子導入して発現させることにより、 神経細胞に光感受性を獲得させることができることから、 光パルスにより神経細 胞を刺激することが試みられている。 し力 し、 野生型チャネルロドプシン (例え ば Chop2)の光電流は、速やかに脱感作し、脱感作からの回復に数十秒を要する。 したがって、 高い頻度で繰り返し刺激することが困難である。 On the other hand, by introducing a gene into a neuronal cell and expressing the photoreceptor channel, the neuronal cell can acquire photosensitivity. Attempts have been made to stimulate the vesicles. However, the photocurrent of wild-type channel rhodopsin (eg Chop2) quickly desensitizes and takes tens of seconds to recover from desensitization. Therefore, it is difficult to repeatedly stimulate frequently.
本発明の改変型口ドプシンタンパク質、 例えばチャネルォプシン .ワイドレシ 一バーやチャネルォプシン ' ファストレシーバーを発現したときに得られる光電 流は、 コンダクタンスが大きく、 不活性化が弱いので、 高頻度で繰り返し刺激す る目的に適している。 チャネルォプシン ' ワイドレシーバ一は、 長波長側におけ る吸収が大きいので、 ブロードバンドの光を用いることによりさらに大きな光電 流を惹起することができる。 したがって、 光パルスにより神経細胞に活動電位闘 値を越える大きな脱分極を確実に引き起こすことができ、 高い信頼性が期待され る。 またチャネルォプシン ' ファストレシーバ一は、 追随周波数が大きいので、 神経細胞を高頻度で活動させる目的に適している。  The photoelectric current obtained when expressing the modified oral dopsin protein of the present invention, for example, channelopsin.wide receiver or channelopsin 'fast receiver, has high conductance and weak inactivation. Suitable for repeated stimulation purposes. Since the channel opsin wide receiver has a large absorption on the long wavelength side, it is possible to generate a larger photoelectric current by using broadband light. Therefore, the light pulse can surely cause a large depolarization exceeding the action potential threshold value in the nerve cell, and high reliability is expected. In addition, the channel opsin 'fast receiver 1 is suitable for the purpose of activating nerve cells at a high frequency because of its high following frequency.
これら改変口ドプシンタンパク質を用いることにより、 神経細胞や神経細胞が 作るネットワークの機能研究や、 これらの機能をアツセィ系に用いる薬品の開発 を促進することが期待される。 さらに、 これら改変型ロドプシンタンパク質遺伝 子を組み込んだ組換えウィルスベクターや、マウス、ラット、ゼブラフィッシュ、 ショウジヨウバエ、 線虫などの遺伝子組換え動物が作製され、 研究 .開発に広く 応用されることが期待される。  By using these modified mouth dopsin proteins, it is expected to promote the research on the functions of neurons and the networks made by neurons, and the development of drugs that use these functions in the assembly system. In addition, recombinant virus vectors incorporating these modified rhodopsin protein genes and transgenic animals such as mice, rats, zebrafish, Drosophila, nematodes, etc. will be produced and widely applied in research and development. There is expected.
2 . 4 ブレイン 'マシン 'インターフェース (BMI)、 ブレイン ' コンピュータ 一 'インターフェース (BCI) への応用  2.4 Application to Brain 'Machine' Interface (BMI), Brain 'Computer One' Interface (BCI)
脳情報を解読し、 それを機械の制御やコンピュータ一への入力情報に利用する とともに、 脳に情報をインプットする技術は、 ブレイン 'マシン .インターフエ ース (BMI)、 ブレイン ' コンピューター 'インターフェース (BCI) と呼ばれてい る。 これらは、 脳を介した新たなコミュニケーションを可能とする技術であり、 その実現のためには、 低侵襲で長期安定型の脳情報双方向活用技術の発展が不可 欠である。 時間 ·空間的に高密度、 髙解像度の情報入出力を実現するにあたり、 光を双方向的情報媒体として用いることが理想的である。 また、 光を用いること により、 脳に対する機械的な侵襲を最小限にとどめることができる。  The technology that decodes brain information and uses it to control the machine and input information to the computer as well as to input information to the brain is the brain 'machine interface (BMI), brain' computer 'interface ( BCI). These are technologies that enable new communication through the brain, and in order to realize these technologies, development of a minimally invasive and long-term stable interactive information technology for brain information is indispensable. It is ideal to use light as a bi-directional information medium to realize information input / output with high density and high resolution in time and space. Also, by using light, mechanical invasion to the brain can be minimized.
本発明の改変型口ドプシンタンパク質、 例えばチャネルォプシン . ワイドレシ 一バーやチャネルォプシン . ファストレシーバ一は、 光を用いた脳への情報入力 媒体として最適であることが期待される。 Modified oral dopsin protein of the present invention, such as channelopsin. One bar or channel opsin. Fast receiver is expected to be the most suitable medium for inputting information into the brain using light.
2 . 5 神経細胞ネットワークを利用したコンピューター素子の開発  2.5 Computer element development using neural network
コンピュータ一は、 情報を早く、 正確に処理する能力に優れている。 また、 ネ ットワークにより、 リアルタイムで世界中のコンピューターと交信することがで きる。 これに対して、 脳は、 エラーを積極的に作り出し、 多くの選択肢の中から 環境や状況に最適の解答を引き出す能力に優れている。 この能力がインスビレー シヨンや感情などの源になっている。 そこで、 ニューロンネットワークを人工的 なハードウエアと組み合わせることにより、 より脳に近い情報処理のできるコン ピューターを作製することが試みられている。 具体的な方法として、 シリ コン基 板やガラス板を加工して刺激および測定用の電極をマトリックス上に配置し、 こ れに培養ニューロンや脳スライスをセットしたものが用いられている。  Computers have excellent ability to process information quickly and accurately. In addition, the network enables real-time communication with computers all over the world. The brain, on the other hand, excels in the ability to actively create errors and derive the best answer for the environment and situation from many options. This ability is the source of inspiration and emotion. Therefore, an attempt has been made to create a computer that can process information closer to the brain by combining a neuron network with artificial hardware. As a specific method, a silicon substrate or a glass plate is processed, electrodes for stimulation and measurement are arranged on a matrix, and cultured neurons and brain slices are set thereon.
また、 生きている動物の脳そのものをコンピューターの情報処理に用いる試み もなされている。 ニューロンを刺激する方法として、 金属や半導体電極による電 気刺激法やグルタミン酸投与法が用いられてきた。 従来の方法は、 空間解像度が 低いという問題があり、 さらに、 生きている動物を用いる場合、 多電極刺激装置 などを脳に埋め込む必要があるため侵襲的であり、 長期間の安全な使用が難しか つた。  Attempts have also been made to use living animal brains for computer information processing. As a method for stimulating neurons, an electric stimulation method using a metal or a semiconductor electrode or a glutamic acid administration method has been used. The conventional method has a problem that the spatial resolution is low. Furthermore, when a living animal is used, it is invasive because it is necessary to embed a multi-electrode stimulation device in the brain, and it is difficult to use it safely for a long time. Katsuta.
一方、 光受容体チャネルを神経細胞に遺伝子導入して発現させることにより、 神経細胞に光感受性を獲得させることができる。 培養ニューロンの場合、 レーザ 一などを用いることにより、 個々のニューロン、 さらには、 その一部を多点同時 刺激することが可能になり、 複雑なパターンの情報をニューロンネットワークに 送り込むことができる。 これにより、 単純な培養ニューロンネットワークであつ ても、 脳が行っている試行錯誤的な情報処理を再現することが可能になる。 生き ている動物の大脳皮質を用いる場合は、 脳表面からの光照射により、 高い解像度 をもって、 多点同時のパターン刺激が実現される。 光刺激を用いる場合、 電気的 なアーチファタトが生じないので、 同時に個々のニューロンの活動をリアルタイ ムで計測し、 コンピューターにフィードバックすることが容易になる。 これによ り、 従来のコンピューターの能力に、 パターン認識、 自己組織化など脳の優れた 能力をあわせもつコンピューターが作られることが期待される。 On the other hand, by introducing a photoreceptor channel into a neuron and expressing it, the neuron can acquire photosensitivity. In the case of cultured neurons, by using one laser, etc., it becomes possible to stimulate individual neurons and even some of them simultaneously, and send complex patterns of information to the neuron network. This makes it possible to reproduce the trial and error information processing performed by the brain, even with a simple cultured neuron network. When using the cerebral cortex of a living animal, multiple points of pattern stimulation can be realized with high resolution by irradiating light from the brain surface. When light stimulation is used, there is no electrical artifact, so it is easy to measure the activity of individual neurons in real time and feed back to the computer. As a result, the ability of the brain, such as pattern recognition and self-organization, has been improved. It is expected that a computer with the ability will be made.
本発明の改変型口ドプシンタンパク質、 例えばチャネルォプシン · ワイドレシ 一バーやチャネルォプシン · ファストレシーバ一は、 光を用いた神経細胞ネット ワークへの情報入力媒体として最適であることが期待される。 また、 これら改変 型口ドプシンタンパク質の光吸収特性の違いを利用して、 マルチチャネルの情報 を神経細胞ネットワークに入力することのできる展望がある。 例えば、 チャネル 才プシン · ワイ ドレシーバーとチャネルォプシン · ファス トレシーバーの光電流 波長依存性の差を利用したマルチチャネル入力が可能になると考えられる。  The modified oral dopsin protein of the present invention, for example, channel opsin / wide receiver bar or channel opsin / fast receiver, is expected to be optimal as an information input medium to nerve cell networks using light. . In addition, there is a prospect that multi-channel information can be input to the neuronal network using the difference in light absorption characteristics of these modified oral dopsin proteins. For example, it is considered that multi-channel input using the difference in photocurrent wavelength dependency between channel-capable pushin wide receiver and channel opsin fast receiver will be possible.
2 . 6 筋肉の力を利用するマイクロマシン (MEMS) の開発  2.6 Development of micromachine (MEMS) using muscle power
筋肉の最小単位である筋線維 (筋細胞) は、 微小ではあるが、 強い力を生み出 すことができる。 また、 きわめて高いエネルギー効率を有している。 これらの利 点ゆえに、 マイクロマシンの動力に生物由来の収縮メカニズムを利用する試みが なされてレヽる (Soong et al., 2000; Bachand and Montemagno, 2000; Hess et al., 2004; Shu et al. , 2003; Xi et al. , 2005)。 しかし、 マイクロマシンを操作す るにあたり、 収縮メカニズムをどのように時間 ·空間的に制御して駆動させるか という難問がある。 筋肉では、 脊髄の運動神経が筋線維にほぼ一対一のシナプス を形成している。 運動神経が興奮することにより、 シナプスを介して、 筋線維の シナプス部位に活動電位が発生し、 これが筋線維形質膜を伝導し、 T-小管を脱分 極させることにより、 筋収縮が引き起こされる。 したがって、 神経細胞のレベル で、 それぞれの筋線維の収縮を制御することにより、 微妙な運動の制御がなされ ている。 しかし、 人工のマイクロマシンに神経を支配させ、 その活動を制御する ことはきわめて困難である。 個々の筋細胞を直接刺激することが理想的だが、 従 来の電気刺激法では、 時間 ·空間的な制御に限界があった。  Muscle fibers (muscle cells), which are the smallest unit of muscle, are very small, but can generate strong force. It is also very energy efficient. Because of these advantages, attempts have been made to use biological contraction mechanisms to power micromachines (Soong et al., 2000; Bachand and Montemagno, 2000; Hess et al., 2004; Shu et al., 2003; Xi et al., 2005). However, when operating a micromachine, there is a problem of how to control and drive the contraction mechanism in time and space. In muscle, the motor nerves of the spinal cord form almost one-to-one synapses in muscle fibers. When motor nerves are excited, action potentials are generated at the synaptic site of the muscle fiber through the synapse, which conducts the muscle fiber plasma membrane and depolarizes the T-tubule, thereby causing muscle contraction. . Therefore, subtle movements are controlled by controlling the contraction of each muscle fiber at the nerve cell level. However, it is very difficult to control the activity by letting an artificial micro machine control the nerve. Although it is ideal to stimulate individual muscle cells directly, conventional electrical stimulation methods have limited temporal and spatial control.
遺伝子工学的に光感受性を組み込んだ筋細胞やマイオブラストクローンを作製 し、光で直接筋収縮を制御するにあたり、本発明の改変型口ドプシンタンパク質、 例えばチャネルォプシン · ワイドレシーバーやチャネルォプシン ' ファス トレシ 一バーは、 光を用いた筋収縮媒体として最適であることが期待される。 さらに、 このような光操作型マイクロマシンを顕微鏡下で自在に操作できるシステムの構 築が期待される。 例えば顕微鏡下に対象を切断するマイクロシザーズ、 対象をつ かむマイクログラバー、 対象を運搬するマイクロコンベア一、 液体中を泳ぐマイ ク口ワームなどが考えられる。これらは、顕微鏡下の精密な微小手術、たとえば、 組織の血管や神経を保護しながらがん細胞を除去するような手術に用いられるこ とが期待される。 In producing muscle cells and myoblast clones incorporating photosensitivity by genetic engineering and controlling muscle contraction directly with light, the modified oral dopsin protein of the present invention, such as channel opsin wide receiver and channel opsin '' Fastresi bar is expected to be optimal as a muscle contraction medium using light. Furthermore, the construction of a system that can freely operate such an optically operated micromachine under a microscope is expected. For example, Microscissors that cut an object under a microscope, For example, a micrograbber that bites, a microconveyor that carries the object, and a mic mouth worm that swims in liquid. These are expected to be used in precision microsurgery under a microscope, for example, surgery that removes cancer cells while protecting blood vessels and nerves in tissues.
以下、 実施例により本発明を詳細に説明するが、 本発明は下記の実施例に限定 されるものではない。  EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.
(実施例)  (Example)
( 1 ) ハイプリッド分子の作製  (1) Preparation of hybrid molecules
本実施例においては、 まず、 Chopl (1-345) ABCDEFG及び Chop2 (1-315) abcdefg から図 2に示す 12種類のハイプリッドアポタンパク質を作製した。  In this example, first, 12 types of hybrid apoproteins shown in FIG. 2 were prepared from Chopl (1-345) ABCDEFG and Chop2 (1-315) abcdefg.
これらのハイブリ ッ ドアポタンパク質は、 オーバーラップェクステンション PCR法により作製した。 以下にその過程を具体的に説明する。  These hybrid apoproteins were prepared by overlap extension PCR. The process will be specifically described below.
オーバーラップェクステンション PCR法は 2つのステップからなっている。 ま ず、 最初のステップでは、 作製したいハイブリッドアポタンパク質の N末側のァ ミノ酸残基配列をコードする cDNAフラグメントと C末側のァミノ酸残基配列をコ ードする cDNAフラグメントをそれぞれ PCRによって作製する。 この時、 N末側フ ラグメントを作製する時に使用するリバースプライマーと、 C 末側フラグメント を作製する時に使用するフォワードプライマーの cDNA 配列は相補的な関係にな るように設計する。 例えば、 ハイプリッド Abcdefgを作製する場合、 A ドメイン の cDNAフラグメントは chopl- 345 - EcoRI- F1 と chop- chRlプライマーの糸且み合わ せで、 bcdefg ドメインの cDNAフラグメントは chop—chFl と chop2-315-EcoRI- R1 の組み合わせで、 それぞれ Chop l (1-345) と Chop2 (l- 315)を铸型にして、 The overlap extension PCR method consists of two steps. First, in the first step, the cDNA fragment encoding the N-terminal amino acid residue sequence and the cDNA fragment encoding the C-terminal amino acid residue sequence of the hybrid apoprotein to be prepared are each obtained by PCR. Make it. At this time, the reverse primer used when preparing the N-terminal fragment and the cDNA sequence of the forward primer used when generating the C-terminal fragment are designed to have a complementary relationship. For example, when preparing hybrid Abcdefg, the cDNA fragment of the A domain is a combination of chopl-345-EcoRI-F1 and chop-chRl primer, and the cDNA fragment of the bcdefg domain is chop-chFl and chop2-315-EcoRI. -In combination with R1, make Chop l (1-345) and Chop2 (l- 315) into a saddle,
KOD-Plus-DNAポリメラーゼ (東洋紡) を用いて PCRを行い、 それぞれのフラグメ ントを作製した。 2つめのステップでは、 Aフラグメントと bcdefgフラグメント を混合し、 KOD-Plus - DNAポリメラーゼを用いて PCRを行う。 この時、 Aフラグメ ントと bcdefgフラグメントの片端には互いに相捕的な配列が含まれているので、PCR was performed using KOD-Plus-DNA polymerase (Toyobo) to prepare each fragment. In the second step, the A and bcdefg fragments are mixed and PCR is performed using KOD-Plus-DNA polymerase. At this time, one end of the A fragment and the bcdefg fragment contains mutually complementary sequences.
Aフラグメントのセンス鎖と bcedfg フラグメントのアンチセンス鎖の間で cDNA の伸長が起こり、 Abcdefg というキメラ分子が作製される。 以下、 同様にして、 ハイプリッド ABcdefgの作製では、 chopl - 345- EcoRI- F1 と chop - chR2の糸且み合わ せで ABフラグメントを、 chop- chF2と chop2-315 - BamHI - R1の組み合わせで cdefg フラグメントを作製し、 2回目の PCRで ABcdefgフラグメントを作製した。 表 1 にハイプリ ッドアポタンパク質作製に使用したプライマーの名称とその配列、 表 2にそれぞれのハイプリッドアポタンパク質の作製に使用したプライマーの組み 合わせと铸型に用いた cDNAをまとめた。 CDNA extension occurs between the sense strand of the A fragment and the antisense strand of the bcedfg fragment, and a chimeric molecule called Abcdefg is created. Similarly, in the production of hybrid ABcdefg, chopl-345- EcoRI- F1 and chop-chR2 yarns are combined. The cdefg fragment was prepared using a combination of chop-chF2 and chop2-315-BamHI-R1, and the ABcdefg fragment was prepared by the second PCR. Table 1 summarizes the names and sequences of the primers used for the preparation of the hybrid apoprotein, and Table 2 summarizes the combinations of primers used for the preparation of the hybrid apoprotein and the cDNA used for the saddle type.
表 1  table 1
No. Forward primers Sequences (5'->3') No. Forward primers Sequences (5 '-> 3')
1 chop2-315"EcoRPFl gcgaattccaccatggattatggaggcgccctg  1 chop2-315 "EcoRPFl gcgaattccaccatggattatggaggcgccctg
2 chop-chFl tggaagtctacttgcggctgggaggag  2 chop-chFl tggaagtctacttgcggctgggaggag
3 chop-chF2 gtggcttcgttacgcggagtggctgct  3 chop-chF2 gtggcttcgttacgcggagtggctgct
4 chop-chF3 tctggcgaacgactatagcaggcgcaccatggg  4 chop-chF3 tctggcgaacgactatagcaggcgcaccatggg
5 chop-chF4 tgtccaagggatacgtcaaggtcatcttcttc  5 chop-chF4 tgtccaagggatacgtcaaggtcatcttcttc
6 chop-chF5 gaggcgtaccacaccgtgccgaagggc  6 chop-chF5 gaggcgtaccacaccgtgccgaagggc
7 chop-chF6 ctgttcctgctgggccccgagggcttcggc  7 chop-chF6 ctgttcctgctgggccccgagggcttcggc
8 chop-c F7 cttgtccaacgactacaacaagcg accatgg  8 chop-c F7 cttgtccaacgactacaacaagcg accatgg
9 chop-c F8 ggccacc^gatacgtccgtgtcattttcttc  9 chop-c F8 ggccacc ^ gatacgtccgtgtcattttcttc
10 chop-chF9 catcga^ggttaccacaccgtgcccaaggg  10 chop-chF9 catcga ^ ggttaccacaccgtgcccaaggg
11 chopl-345-EcoRI-Fl gcgaattccaccatggcgcggaggccatggcttc  11 chopl-345-EcoRI-Fl gcgaattccaccatggcgcggaggccatggcttc
No. Reverse primers Sequences (5,->3,) No. Reverse primers Sequences (5,-> 3,)
12 cliop2"315-BamHI-Rl gcggatccttgccggtgcccttgttgaccg  12 cliop2 "315-BamHI-Rl gcggatccttgccggtgcccttgttgaccg
13 c op-chEl atctcctcccagccgcaagtagacttcca  13 c op-chEl atctcctcccagccgcaagtagacttcca
14 cliop"chR2 agcagccactccgcgtaacgaagccac  14 cliop "chR2 agcagccactccgcgtaacgaagccac
15 cliop"chE3 atggtgcgcctgctatagtcgttcgccagacc  15 cliop "chE3 atggtgcgcctgctatagtcgttcgccagacc
16 cliop-chE4 gaagaagatgaccttgacgtatcccttggaca  16 cliop-chE4 gaagaagatgaccttgacgtatcccttggaca
17 chop"chR5 gaagaagatgaccttgacgtatcccttggaca  17 chop "chR5 gaagaagatgaccttgacgtatcccttggaca
18 chop-c R6 gaagaagatgaccttgacgtatcccttggaca  18 chop-c R6 gaagaagatgaccttgacgtatcccttggaca
19 chop-chR7 ggtacgcttgttgtagtcgttggacaagcccg  19 chop-chR7 ggtacgcttgttgtagtcgttggacaagcccg
20 chop"c R8 gaaaatgacacggacgtatccggtggccatgg  20 chop "c R8 gaaaatgacacggacgtatccggtggccatgg
21 chop-c R9 cccttgggcacggtgtggtaaccctcgatg  21 chop-c R9 cccttgggcacggtgtggtaaccctcgatg
22 chopl-345-BamHI-Rl gcggatcctcgtcgtcctcctcgtgcacca ププ錶合わと型組タイイせラのみマー 22 chopl-345-BamHI-Rl gcggatcctcgtcgtcctcctcgtgcacca Combine and mold type
Figure imgf000026_0001
Figure imgf000026_0001
オーバーラップェクステンション PCRで作製したハイブリッドアポタンパク質 の cDNAフラグメントの両端は制限酵素 EcoRIと BamHIによる切断部位になってい る。 両制限酵素で処理した cDNAフラグメントを、 pVenus-Nlベクター (Clontech 社の pDsRed2 - N1ベクターの DsRed2を Venusに置換したもの) の EcoRI と BamHI 間にクローニングして、 ハイプリッドアポタンパク質の C末側に黄色蛍光タンパ ク質の一種、 Venus を付加した融合タンパク質を発現させる哺乳類細胞発現用プ ラスミ ドベクターを作製した。 Both ends of the hybrid apoprotein cDNA fragment prepared by overlap extension PCR are cleaved by restriction enzymes EcoRI and BamHI. The The cDNA fragment treated with both restriction enzymes was cloned between EcoRI and BamHI of the pVenus-Nl vector (Clontech's pDsRed2-N1 vector DsRed2 was replaced with Venus) and placed on the C-terminal side of the hybrid apoprotein. A plasmid vector for mammalian cell expression that expresses a fusion protein with Venus added, a kind of yellow fluorescent protein, was prepared.
( 2 ) HEK293細胞の培養  (2) HEK293 cell culture
ヒ ト胎児腎臓細胞由来の HEK293細胞は 60 mmプラスチックディッシュ上 (BD Falcon PRIMARIA dish) で培養し維持した。 培養液には 90% D-MEM、 10°/。ゥシ胎仔 血清を用いた。 コラーゲンコート処理を施した 4穴プレート (NUNC) に継代して 30- 50%コンフルェントになった時点で、 遺伝子導入処理を行った。 遺伝子導入の 翌日にトリプシン処理により細胞を分散し、 コラーゲンコート処理を施した 12脆 丸形カバーガラス上に細胞を播き直し、 その翌日に機能検定を行った。 機能検定 には 1個の単離した細胞を用レ、た。  HEK293 cells derived from human fetal kidney cells were cultured and maintained on a 60 mm plastic dish (BD Falcon PRIMARIA dish). The culture solution is 90% D-MEM, 10 ° /. Fetus fetus serum was used. Gene transfer was performed when 30-50% confluent after passage into a 4-well plate (NUNC) with collagen coating. The day after gene transfer, the cells were dispersed by trypsin treatment, and the cells were reseeded on a 12 brittle round cover glass that had been subjected to collagen coating, and the function test was performed the next day. One isolated cell was used for the functional test.
( 3 ) 遺伝子導入  (3) Gene transfer
HEK293 細胞への口 ドプシンアポタンパク質遺伝子の導入には Qiagen 社の Effectene (登録商標) Transfection Reagent を用いて、 メーカー指定の方法に て遺伝子導入を行った。 遺伝子導入には 12 mm丸形カバーガラス 1枚辺り 0. 2〜 の口 ドプシンアポタンパク質発現プラスミ ドを用いた。  For the introduction of the oral dopsin apoprotein gene into HEK293 cells, Qiagen's Effectene (registered trademark) Transfection Reagent was used, and the gene was introduced by the method specified by the manufacturer. For gene transfer, a 0.2- to 26-mouth oral dopsin apoprotein expression plasmid was used per 12 mm round cover glass.
( 4 ) 実験装置  (4) Experimental equipment
レチナールを結合した口 ドプシンアポタンパク質は 400- 550 nmの光の波長に反 応するので、 細胞を顕微鏡下まで運ぶ際や、 明視野で観察する際に青〜緑色光の 含まれない環境を作った。実験室の照明には黄色の蛍光灯(パナソニック FL 40S。 Y-F) を用い、 520 nm以下の波長の光を遮断した。 また、 CRTモニターの背景色を 黄色にした。 以下の装置はすべて、 エアーテーブル上に設置し、 振動の影響を除 去した。 また、 喑幕内に設置し、 室内光の影響を除去した。 主要な装置の概略を 図 3に示す。  Mouth dopsin apoprotein conjugated with retinal responds to light wavelengths of 400-550 nm, so it does not contain blue to green light when cells are transported under a microscope or observed in a bright field. Had made. We used a yellow fluorescent lamp (Panasonic FL 40S. Y-F) for lighting in the laboratory, blocking light with a wavelength of 520 nm or less. The background color of the CRT monitor was changed to yellow. All of the following devices were installed on an air table to eliminate the effects of vibration. It was also installed in the curtain to eliminate the effects of room light. Figure 3 shows an outline of the main equipment.
(i) 正立型落射蛍光顕微鏡 (ォリンパス BH2- RFC) :細胞観察時の透過光は GIF フィルターを介し、 波長 490 nm以下の光を遮断した。 Venusの励起 .観察には、 キセノンランプ光源を用い、 光の ON- OFFは、 電磁シャッターにより制御した。 フ ィルターおよぴダイクロイツク ミラーの組み合わせにより、 励起光波長(i) Upright epi-illumination microscope (Olympus BH2-RFC): Transmitted light during cell observation was blocked through light with a wavelength of 490 nm or less via a GIF filter. Venus was excited. A xenon lamp light source was used for observation, and the ON / OFF of the light was controlled by an electromagnetic shutter. F By combining the filter and dichroic mirror, the excitation light wavelength
450- 490nm、蛍光波長〉 515 nmにより Chop2-Venusを発現している細胞を同定した。 対物レンズには、 60倍水浸レンズ (ォリンパス LUMplanPl/IR60x) を用いた。 450-490 nm, fluorescence wavelength> Cells expressing Chop2-Venus were identified by 515 nm. A 60 × water immersion lens (Olympus LUMplanPl / IR60x) was used as the objective lens.
(ii) 青色光(477 ± 10 nm) と緑色光(532± 10 nm) の切り替え:落射光源には、 キセノンランプを用いた。 電気刺激装置 (日本光電 SEN - 7203) により作成した矩 形波パルス電流により電磁シャッターを駆動し、光の ON- OFFを制御した。光路の 途中においたチヨッパー (ォリ ンパス 0SP- EXCH) により、 青色光バンドパスフィ ルター (477 ± 10 nm) と緑色光バンドパスフィルター (532± 10 nm) 切り替えた。 光は、 ダイクロイツクミラーを介して、 顕微鏡対物レンズに導入した。 (ii) Switching between blue light (477 ± 10 nm) and green light (532 ± 10 nm): A xenon lamp was used as the incident light source. The electromagnetic shutter was driven by a square wave pulse current created by an electrical stimulator (Nihon Kohden SEN-720 3 ) to control the light ON-OFF. A blue light bandpass filter (477 ± 10 nm) and a green light bandpass filter (532 ± 10 nm) were switched by a chipper (Olympus 0SP-EXCH) in the middle of the optical path. The light was introduced into the microscope objective through a dichroic mirror.
(ii i) 青色発光ダイオード (LXHL-NB98 ; Lumileds Lighting Inc. ) :パッチク ランプ制御ソフトウェア (アキソン p- Clamp 9. 1) により、 パルスを作製し、 デ イジタル—アナログ変換装置 (アキソン DIGIDATA1200) および電気刺激装置 (日 本光電 SEN-7203) により作成した矩形波パルス電流を、ブースター回路に(図 4 ) により電流増幅し、 点灯した。 ダイオード光はダイクロイツクミラーを介して、 顕微鏡対物レンズに導入した。  (ii i) Blue light-emitting diode (LXHL-NB98; Lumileds Lighting Inc.): The pulse is generated by patch clamp control software (Axon p-Clamp 9.1), and the digital-analog converter (Axon DIGIDATA1200) and electrical The rectangular wave pulse current created by the stimulator (Nihon Kohden SEN-7203) was amplified in the booster circuit (Fig. 4) and turned on. The diode light was introduced into the microscope objective lens through a dichroic mirror.
(iv) モノクロメーター(日本分光 CAM-230):キセノンランプ光を分光し、 10nm 幅の任意の波長を取り出した。 取り出された光は、 光ファイバ一により、 落射蛍 光顕微鏡に導入した。 光のオン ·オフは内蔵の電磁シャッターにより制御した。  (iv) Monochromator (JASCO CAM-230): Spectroscopy xenon lamp light to extract an arbitrary wavelength of 10nm width. The extracted light was introduced into an epifluorescence microscope using an optical fiber. Light on / off was controlled by a built-in electromagnetic shutter.
(v) 顕微鏡用 XY駆動装置 (メディカル ·ェイジェント 0XY- 1) :後述の 3次元 マイクロマ-ピュレーターを固定部に設置し、 前述の正立型落射蛍光顕微鏡を駆 動部に設置した。 マイクロメーターにより、 X-Y2軸方向の駆動をそれぞれ微細に 制御した。  (v) Microscope XY drive device (Medical Agent 0XY-1): A 3D micro-mapulator described later was installed on the fixed part, and the upright epi-illumination fluorescent microscope was installed on the drive part. The micrometer controlled the drive in the X-Y2 axis direction finely.
(vi) 3次元マイクロマニピュレーター (ナリシゲ MX-1R):後述のパッチ電極の ホルダーを X-Y-Zの三軸方向に駆動した。 それぞれの駆動軸には、 粗動と微動の 両様式を併用した。  (vi) Three-dimensional micromanipulator (Narishige MX-1R): A patch electrode holder, which will be described later, was driven in the X-Y-Z triaxial directions. Each drive shaft uses both coarse and fine motion modes.
(vii) 測定用チェンバー :透明アクリル板を加工し、 低部にカバーグラスを貼 り付けた。 ペリスタポンプにより、 チェンバーにタイロード液 (下記表 3参照) を循環させた。 チェンバー内に培養細胞を付着させた力バーグラスを置いた。  (vii) Measuring chamber: A transparent acrylic plate was processed and a cover glass was attached to the lower part. Tyrode liquid (see Table 3 below) was circulated through the chamber by a peristaltic pump. A force bar glass with cultured cells attached was placed in the chamber.
(vi ii) フォトダイオード (シャープ BS500B):顕微鏡対物レンズの手前で散乱 光を受光し、 微小電極用増幅器により増幅した ( 表 3 (vi ii) Photodiode (Sharp BS500B): Scattered before the microscope objective lens Light was received and amplified by a microelectrode amplifier ( Table 3).
タイロード液 (pHを 7.4に調整した)  Tyrode solution (pH adjusted to 7.4)
低 Na+タイ口一ド液 (ϋΗを 7.4に Low Na + Thai Mouth Solution (ϋΗ to 7.4
Figure imgf000029_0001
Figure imgf000029_0001
パツチクランプ用ピぺット内液 (pHを 7.4に調整した)  Pipe clamp pipet solution (pH adjusted to 7.4)
Figure imgf000029_0002
Figure imgf000029_0002
イオン透過性実験では、 Cs+を Na+に置換した。 The ion-permeable experiments, replacing the Cs + in Na +.
( 5 ) 計測 ·記録装置およびデータ解析 HEK293細胞の膜電位と膜電流を同時計測した。 また、 照射光の強さをフォ トダ ィオード電流として同時計測した。 これらは、 アナログ一ディジタル変換し、 コ ンピューターに記録した。 計測には以下の装置を用いた。 (5) Measurement and recording equipment and data analysis The membrane potential and membrane current of HEK293 cells were measured simultaneously. In addition, the intensity of the irradiated light was measured simultaneously as the photodiode current. These were converted from analog to digital and recorded on a computer. The following apparatus was used for the measurement.
(i) パッチクランプ増幅器 (アキソン AXOPATCIEOOA) : ノ ツチ電極を介して、 フィードバックにより膜電位を一定に維持したときの膜電流を計測した (電位固 定実験)。  (i) Patch clamp amplifier (Axon AXOPATCIEOOA): The membrane current was measured when the membrane potential was maintained constant by feedback through the notch electrode (potential fixation experiment).
(i i) 微小電極用増幅器 (日本光電 MEZ- 8201) : フォ トダイォードに 20 nAの 逆電流を通電しながら、 光電流を計測した。 計測値は、 青色発光ダイオードの最 大出力に対する相対値で表した。  (i i) Microelectrode amplifier (Nihon Kohden MEZ-8201): Photocurrent was measured while applying a reverse current of 20 nA to the photodiode. The measured value was expressed as a value relative to the maximum output of the blue light emitting diode.
(ii i) アナログ一ディジタル変換装置 (アキソン DIGIDATA1200) :パッチクラ ンプ増幅器の電流出力および電圧出力、 微小電極用増幅器の電圧出力をアナログ 一ディジタル変換し、 コンピューターに出力した。 また、 コンピュータ一により 作成した矩形波パルスを外部出力した。  (ii i) Analog-to-digital converter (Axon DIGIDATA1200): The current output and voltage output of the patch clamp amplifier and the voltage output of the microelectrode amplifier were converted from analog to digital and output to a computer. In addition, a rectangular wave pulse created by a computer was output externally.
(iv) コンピューター (デル Optiplex GXi) : ノ、 °ツチクランプ制御ソフトウェ ァ (アキソン p- Clamp 9. 1) を用いてデータを取得した。 また、 矩形波パルスを 作成した。データの解析には、 Clamp-fit Ver. 9. 2 (アキソン) と Microsoft Excel を用いた。  (iv) Computer (Dell Optiplex GXi): The data was acquired using a no-o-clamp control software (Axon p-Clamp 9.1). In addition, a square wave pulse was created. Clamp-fit Ver. 9.2 (Axon) and Microsoft Excel were used for data analysis.
( 6 ) ホールセルパッチクランプ法  (6) Whole cell patch clamp method
野生型 Chopl及び 2、 並びにハイプリッドアポタンパク質の特性をホールセル パッチクランプ法により確認した。 すなわち、 直径 1. 5讓 のガラス管 (ハーパー ド ·ァパラータス GC150) をパッチピペットプラー (ナリシゲ PC-10) を用いて加 熱牽引し、 先端径 3-4 mのガラス管ピぺット (パッチピぺット) を作製し、 先端 をマイクロフォージ (ナリシゲ MF-830) にて加熱研磨した。 パッチピぺットの先 端までパッチピペット内液 (表 3 ) を満たしパッチ電極を作製した。 パッチ電極 は、 パッチ電極ホルダーに固定した。 正立落射蛍光顕微鏡下に Venusの蛍光によ り口ドプシンアポタンパク質を発現している細胞を同定した。 パッチ電極に陽圧 をかけながら、 細胞に接近させ、 細胞表面に押し当ててディンプル (くぼみ) を つく り、 陰圧に切り替えて細胞膜をガラス管に付着させ、 さらに強い陰圧をかけ てガラス管に付着した部位の膜を破り、 細胞内部とガラス管内部を電気的に導通 させた(ホールセルモード)。 ホールセルモードで以下の電位固定実験をおこなつ た。 The properties of wild-type Chopl and 2, and the hybrid apoprotein were confirmed by the whole cell patch clamp method. In other words, a 1.5 mm diameter glass tube (Harhard Aparathus GC150) is heated and pulled using a patch pipette puller (Narishige PC-10), and a 3-4 m tip glass tube pipette (patch pipe). (Pet) was prepared, and the tip was heated and polished with a microforge (Narishige MF-830). A patch electrode was prepared by filling the solution in the patch pipette (Table 3) up to the tip of the patch pipette. The patch electrode was fixed to the patch electrode holder. Under an upright epifluorescence microscope, cells expressing mouth dopsin apoprotein were identified by Venus fluorescence. While applying positive pressure to the patch electrode, approach the cell, press against the cell surface to create dimples, switch to negative pressure to attach the cell membrane to the glass tube, and apply a stronger negative pressure to the glass tube. Breaks the membrane of the part attached to the cell, electrically connects the inside of the cell and the inside of the glass tube (Whole cell mode). The following potential fixation experiment was performed in the whole cell mode.
( 7 ) 光応答特性を制御している含膜貫通構造ドメインの同定  (7) Identification of transmembrane domains that control photoresponse characteristics
これらのハイブリッドアポタンパク質にマーカーとして、 ォワンクラゲ由来の 緑色蛍光タンパク質 GFPの改変体の一つ Venusを C末に配位したコンストラタト cDNAを作製した。 これらを HEK293細胞に導入 '発現させたところ、 1 2種類の ハイブリッドアポタンパク質全てにおいて、 形質膜に高い発現が認められた (図 5 )。 すなわち、 膜タンパク質としての構造が保たれていることが示唆された。 Venus の蛍光を手がかりに発現細胞を同定し、 ホールセルパッチ電位固定下に光 電流を計測した。  As a marker for these hybrid apoproteins, a construct cDNA was prepared by coordinating Venus, one of the green fluorescent protein GFP variants derived from the jellyfish, to the C-terminal. When these were introduced and expressed in HEK293 cells, high expression was observed in the plasma membrane in all two types of hybrid apoproteins (Fig. 5). In other words, it was suggested that the structure as a membrane protein was maintained. Using Venus's fluorescence as a clue, the cells were identified, and the photocurrent was measured with the whole cell patch potential fixed.
野生型 Chop2 (1-315) abcdefgの光電流の大きさは、照射光の波長に依存し、 460 nmで最大になる。 これは、 光エネルギーの吸収効率に波長依存性があることによ り説明されている。ハイプリッド光電流の吸収光波長応答特性を比較する目的で、 青色光 (477± 10 nm) と緑色光 (532± 10 nm) により惹起される光電流を計測し た。 図 6 Aは、 それぞれの光電流をハイプリッド Abcdefgと ABcdefgで比較した ものである。 ハイプリッド ABcdefgの緑色光に対する応答が増大している。 青色 光応答と緑色光応答の G/B比(Green/Blue ratio)を用いて、 吸収波長応答特性を 定量化し、 ハイプリッドアポタンパク質と野生型アポタンパク質の間でこれを比 較したものを図 6 Bに掲載する。 すなわち、 ハイブリッド Abcdefgは、 野生型の チャネルォプシン 2 (1-315) abcdefg とほぼ同様の吸収波長応答特性を示した。 これに対し、 ハイプリッド ABcdef g、 ABCdefg、 ABCDefgでは、 長波長側における 吸収が増加していた。 ハイブリッド ABCDEfgでは、 長波長側における吸収がさら に増カ卩し、野生型のチャネルォプシン 1、 ABCDEFGとほぼ等しかった。すなわち、 含膜貫通構造ドメイン B/bおよび E/eに吸収波長特性を制御している構造があり、 これらが bや eのときに、 長波長側にシフトすることが示唆される。  The magnitude of the photocurrent of wild-type Chop2 (1-315) abcdefg is maximum at 460 nm, depending on the wavelength of the irradiated light. This is explained by the wavelength dependence of the light energy absorption efficiency. In order to compare the absorption light wavelength response characteristics of hybrid photocurrent, we measured the photocurrent induced by blue light (477 ± 10 nm) and green light (532 ± 10 nm). Figure 6A compares the photocurrents of the hybrids Abcdefg and ABcdefg. The response of the hybrid ABcdefg to green light is increasing. Using the G / B ratio (Green / Blue ratio) of the blue and green light responses, the absorption wavelength response characteristics are quantified, and this is compared between the hybrid apoprotein and the wild-type apoprotein. 6 Posted in B. That is, the hybrid Abcdefg showed almost the same absorption wavelength response characteristics as the wild-type channelopsin 2 (1-315) abcdefg. In contrast, the absorptions on the long wavelength side increased in the hybrids ABcdef g, ABCdefg, and ABCDefg. In the hybrid ABCDEfg, the absorption at the long wavelength side was further increased and was almost equal to the wild type channel opsin 1 and ABCDEFG. In other words, there are structures that control the absorption wavelength characteristics in the transmembrane domain B / b and E / e, and it is suggested that when these are b and e, they shift to the longer wavelength side.
( 8 ) ィオン透過性を制御している含膜貫通構造ドメインの同定  (8) Identification of transmembrane domain controlling ionic permeability
野生型 Chopl (1-345) ABCDEFGを発現したゼノパス卵母細胞に発現した光受容チ ャネルは、 高い H+透過性を有するが、 Na+に対する透過性がほとんどないと報告 されている(Nagel et al. , 2002; Hegemann et al., 2005)。 これに対し、 野生型 Chop2 (1-315) abcdefg は、 高い Na+透過性を有することが報告されている(Nagel et al. , 2003; Ishizuka et al. , 2006)。 Na+透過性を制御している構造を同定 する目的で、 ホールセルパッチ内液を Na+- glutamate (Na+、 100 mM)とし、 細胞 外液の Na+が 142mMと 20mM (N - methyl - D - glucamineィオン置換) のときの保持電 位と光電流の I- V関係を調べた。 Photoreceptive channels expressed in Xenopus oocytes expressing wild-type Chopl (1-345) ABCDEFG have been reported to have high H + permeability but little permeability to Na + (Nagel et al. , 2002; Hegemann et al., 2005). In contrast, the wild type Chop2 (1-315) abcdefg has been reported to have high Na + permeability (Nagel et al., 2003; Ishizuka et al., 2006). In order to identify the structure that controls Na + permeability, the whole cell patch solution is Na + -glutamate (Na +, 100 mM), and the extracellular solution Na + is 142 mM and 20 mM (N-methyl-D-glucamine ion). We investigated the IV relationship between the holding potential and the photocurrent during the substitution.
図 7 Aは、 ハイブリッド Abcdefg の I- V関係である。 外液 Na+142mMでは、 約 10mVにおいて極性が反転したが、 外液 Na+20mMのとき、 反転電位は約- 10mVだつ た。 すなわち、 約 20mV マイナス側へシフ ト した。 この変化は、 野生型 Chop2 (1-315) abcdefgに比べ有意に小さい。 図 7 Bは、 ハイブリッド ABcdefg の I-V関係である。 反転電位は 30mV以上シフトした。 図 7 Cは、 それぞれのハイブ リッドアポタンパク質について、 光電流の反転電位のシフトを比較したものであ る。 ハイプリッド ABCdefgと ABCDefgにおいても、 反転電位のシフトが有意に小 さかった。 したがって、 これらのハイブリッドォプシンタンパク質では、 透過ィ オンの Na +選択性が低下している可能性がある。 これに対し、 ハイブリッド ABcdefg, ABCDEfgヽ ABCDEFg、 ABCDEFGの I- V関係においては、 反転電位のシフト が外液 Na+によ.り強く依存しており、 野生型 Chop2 (1-315) abcdefgとの間に有意 差は認められなかった。 すなわち、 透過イオンの選択性が複数の含膜貫通構造ド メインによる制御を受けており、 含膜貫通構造ドメイン Aん、 B/b、 Cんに重要な 機能があることが示唆される。 Figure 7A shows the IV relationship of hybrid Abcdefg. In the external solution Na + 142 mM, the polarity was reversed at about 10 mV, but when the external solution Na + 20 mM, the reversal potential was about −10 mV. In other words, it shifted to the negative side by about 20mV. This change is significantly smaller than wild-type Chop2 (1-315) abcdefg. Figure 7B shows the IV relationship of hybrid ABcdefg. The reversal potential shifted more than 30mV. Figure 7C compares photocurrent reversal potential shifts for each hybrid apoprotein. In the hybrid ABCdefg and ABCDefg, the reversal potential shift was significantly small. Therefore, these hybrid opsin proteins may have reduced Na + selectivity for permeation. In contrast, in the I-V relationship of hybrids ABcdefg, ABCDEfgDEF ABCDEFg, ABCDEFG, the reversal of the inversion potential is strongly dependent on the external solution Na + and There was no significant difference. That is, the permeation selectivity is controlled by multiple transmembrane domains, suggesting that transmembrane domains A, B / b, and C have important functions.
また、 ハイプリッド ABCDEFgや野生型 Chopl (1-345) ABCDEFGの光電流は、 他に 比べ非常に微弱である傾向が認められた。 そこで、 図 8においては、 単位膜容量 あたりのホールセルコンダクタンスを比較した。 単位膜容量あたりのホールセル コンダクタンスは、 光受容チャネルの単一チャネルコンダクタンスとその発現密 度に比例する。 単位膜容量あたりのホールセルコンダクタンスは、 ハイブリッド ABCDEfgにおいて、 最大を示した。  The photocurrents of hybrid ABCDEFg and wild-type Chopl (1-345) ABCDEFG tended to be very weak compared to others. Therefore, in Fig. 8, the whole cell conductance per unit membrane capacitance was compared. The whole cell conductance per unit membrane capacity is proportional to the single channel conductance of the photoreceptor channel and its density. The whole cell conductance per unit membrane capacity was the maximum in the hybrid ABCDEfg.
( 9 ) キネティクス特性を制御している含膜貫通構造ドメインの同定  (9) Identification of transmembrane domains that control kinetic properties
図 9 Aは、 青色 LED照射光 (470± 25 nm) の相対的な強さを示している。 ハイ プリッド Abcdefgを発現した HEK293細胞において、照射光の強さに依存した光電 流が計測された (図 9 B)。 光電流は、 数ミリ秒でピークに達するが、 速やかに不 活性化することが認められた。 この光応答特性は、 野生型 Chop2 (1-315) abcdefg に類似している。 これに対し、 ハイブリッド ABcdefgの光電流は、 ほとんど不活 性化しない (図 9 C)。 図 1 0 Aは、 最大照度の青色 LED光を 1秒間照射したとき の光電流を最大光電流の大きさをあわせて比較したものである。 野生型 Chop2 (1-315) abcdefgに対し、 ハイブリッド ABcdefgの光電流は、 定常光電流と 最大光電流の比が大きいことが示されている。 そこで、 この比(plateau/peak ratio)でもって、 不活性化の強さを定量化した。 ハイブリッドアポタンパク質と 野生型アポタンパク質の間でこれを比較したものを図 1 0 B に掲載する。 すなわ ち、 ハイプリッ Abcdefg は、 gチ生型 Chop2 (1-315) abcdefgに比べ、 不活性化が 弱いが、 ハイプリッド ABcdefgに比較すると、 不活性化が強いことがわかった。 ハイプリッド ABCDEfgではさらに不活性化が弱くなる。 すなわち、 含膜貫通構造 ドメイン A 、 B/b、 E/eに不活性化を制御している構造があり、 これらが a、 b、 eのときに、 強い不活性化が引き起こされることが示唆される。 Figure 9A shows the relative intensity of blue LED illumination (470 ± 25 nm). In HEK293 cells expressing the hybrid Abcdefg, a photoelectric current depending on the intensity of the irradiated light was measured (Fig. 9B). The photocurrent peaks in a few milliseconds, but quickly fails. It was observed to activate. This photoresponsive property is similar to wild-type Chop2 (1-315) abcdefg. In contrast, the photocurrent of hybrid ABcdefg is hardly inactivated (Fig. 9C). Figure 10A shows a comparison of the photocurrent when the blue LED light with the maximum illuminance is irradiated for 1 second, together with the magnitude of the maximum photocurrent. Compared to wild-type Chop2 (1-315) abcdefg, the photocurrent of hybrid ABcdefg has been shown to have a large ratio of stationary photocurrent to maximum photocurrent. Therefore, the strength of inactivation was quantified using this ratio (plateau / peak ratio). A comparison between hybrid and wild type apoproteins is shown in Figure 10B. In other words, the hybrid Abcdefg was weakly inactivated compared to the biotype Chop2 (1-315) abcdefg, but was found to be more inactivated compared to the hybrid ABcdefg. The hybrid ABCDEfg further weakens inactivation. That is, there are structures that control inactivation in transmembrane domains A, B / b, and E / e, suggesting that when these are a, b, and e, strong inactivation is caused. Is done.
図 1 1 Aは、 ハイブリッド Abcdefgとハイブリッド ABcdef gについて、 光電流 の活性化(ON)の速さを比較したものである。 また、 図 1 1 B は、 光電流の脱活性 化(OFF)の速さを比較したものである。 光電流の 0N、 OFF ともに、 ハイブリッド ABcdef gにおいて速くなることが認められた。光電流の ON速度常数と OFF速度常 数を、 ハイプリッドアポタンパク質と野生型アポタンパク質の間で比較したもの を図 1 1 Cに掲載する。含膜貫通構造ドメイン B/bが Bのときに、 0N、 OFF共に速 くなり、 含膜貫通構造ドメィン E/eが Eになると、 0N、 OFF共に遅くなることが 示唆される。  Fig. 11 A compares the speed of photocurrent activation (ON) for hybrid Abcdefg and hybrid ABcdef g. Figure 11B compares the speed of photocurrent deactivation (OFF). It was observed that both photocurrent 0N and OFF were faster in the hybrid ABcdef g. A comparison of the photocurrent ON and OFF rate constants between the hybrid apoprotein and the wild-type apoprotein is shown in Figure 11C. It is suggested that when the transmembrane domain B / b is B, both 0N and OFF are faster, and when the transmembrane domain E / e is E, both 0N and OFF are slower.
( 1 0 ) ハイプリッドロドプシンタンパク質の特徴付け  (1 0) Characterization of hybrid rhodopsin protein
1 . コンダクタンスが増大した改変型口ドプシンタンパク質  1. Modified mouth dopsin protein with increased conductance
上記の実施例により、 含膜貫通構造ドメイン F/f にコンダクタンスを制御して いる構造の存在が示唆される。 したがって、 この含膜貫通構造ドメインの構造を f にすることにより、 コンダクタンスを増大した新規ロドプシンタンパク質が創 出される。 現在までに調べたハイブリ ッドロ ドプシンタンパク質の中では、 ABCDEfg を用いることにより、 単位膜容量あたり最大のコンダクタンスが得られ る。 2 . 長波長側における吸収が増加した改変型口ドプシンタンパク質 The above examples suggest the existence of a structure controlling conductance in the transmembrane domain F / f. Therefore, a novel rhodopsin protein with increased conductance is created by setting the structure of this transmembrane domain to f. Among the hybrid rhodopsin proteins investigated to date, the maximum conductance per unit membrane capacity can be obtained by using ABCDEfg. 2. Modified oral dopsin protein with increased absorption at longer wavelengths
上記の実施例により、含膜貫通構造ドメィン B/b、 E 、 F/f、 G/gに吸収波長特 性を制御している構造の存在が示唆される。 現在までに調べたハイプリッドロド プシンタンパク質の中では、 ABCDEFg において最も長波長側における吸収が増加 しているが、 コンダクタンスの大きさを考慮に入れると、 ABCDEfg が実用に優れ ている。  The above examples suggest the existence of structures that control the absorption wavelength characteristics in the transmembrane-containing domains B / b, E, F / f, and G / g. Among the hybrid rhodopsin proteins investigated to date, ABCDEFg has the highest absorption at the long wavelength side, but ABCDEfg is superior in practical use when the conductance is taken into account.
3 . 不活性化の弱い改変型口ドプシンタンパク質  3. A weakly inactivated modified oral dopsin protein
神経細胞などを光刺激する手段として、 野生型 Chop2 (1-315) abcdefgが用いら れてきたが、 光電流において強い不活性化が存在するので、 短い間隔で繰り返し 光刺激をおこなうと、 光電流が減少するという欠点があった。 同じ大きさの光電 流を得るためには、 10秒以上の間隔をあける必要があった。上記の実施例により、 含膜貫通構造ドメイン A/a、 B/b、 E/eに不活性化を制御している構造があり、 こ れらが A、 B、 Eのときに、 不活性化が弱くなることが示唆された。 現在までに調 ベたハイブリッドロドプシンタンパク質の中では、 ABCDEfgを用いることにより、 最も不活性化の弱い光電流が得られる。  Wild-type Chop2 (1-315) abcdefg has been used as a means of photostimulating nerve cells, etc., but there is strong inactivation in the photocurrent, so when repeated light stimulation is performed at short intervals, light There was a drawback that the current decreased. In order to obtain the same photoelectric current, it was necessary to leave an interval of 10 seconds or more. According to the above example, there are structures that control inactivation in transmembrane domains A / a, B / b, and E / e. When these are A, B, and E, they are inactive It was suggested that the conversion will become weaker. Among the hybrid rhodopsin proteins studied to date, the use of ABCDEfg provides the weakest inactivation photocurrent.
4 . 周波数応答特性の高い改変型口ドプシンタンパク質  4. Modified mouth dopsin protein with high frequency response characteristics
神経細胞などを繰り返し光刺激する場合、 どれぐらいの周波数の光の点滅に追 随した光電流を引き起こすことができるかが重要になる。 この追随周波数の大き さは、 光電流の ON速度常数に等しい。 ON速度常数の大きさは、 含膜貫通構造ド メイン B/b、 E/eに依存しており、 B- E、 b-eの組み合わせでは小さく、 B- eの組み 合わせで大きくなる。 現在までに調べたハイブリッドロドプシンタンパク質の中 では、 ABcdefg, ABCdefgヽ ABCDefg などを用いることにより、 周波数応答特性の 高い光電流が得られる。 ON速度常数おょぴ Na+に対する選択性を考慮に入れると、 ABcdefgが最も優れている。  When a nerve cell is repeatedly stimulated with light, it becomes important how much frequency it can generate a photocurrent that follows the blinking of light. The magnitude of this following frequency is equal to the constant constant of the photocurrent ON speed. The magnitude of the ON speed constant depends on the transmembrane structure domains B / b and E / e, and is small for the combination of B-E and b-e and larger for the combination of B-e. Among the hybrid rhodopsin proteins investigated so far, photocurrents with high frequency response characteristics can be obtained by using ABcdefg, ABCdefg ヽ ABCDefg, etc. ABcdefg is the best, taking into account the selectivity for the ON speed constant Opi Na +.
5 . 実用性に優れた改変型口ドプシンタンパク質  5. Modified oral dopsin protein with excellent practicality
上記実施例において作製した改変型口 ドプシンタンパク質の中で、 ABCDEfg Among the modified mouth dopsin proteins prepared in the above examples, ABCDEfg
(chop WR) 、 コンダクタンス、 長波長側における吸収の大きさ、 不活性化の弱 さなどにおいて、 顕著に優れている。 また、 Na+イオンに対する選択性も高い。 したがって、 チャネルォプシン · ワイドレシーバ一は、 微弱光の受容を目的とす る用途に優れている。 (chop WR), conductance, large absorption on the long wavelength side, weak deactivation, etc. It also has high selectivity for Na + ions. Therefore, the channel opsin wide receiver is designed to accept faint light. Excellent for use.
また、 上記実施例において作製した改変型口 ドプシンタンパク質の中で、 Among the modified oral dopsin proteins prepared in the above examples,
ABcdefg (chop FR) 力 S、 周波数応答特性において、 顕著に優れている。 また、 コ ンダクタンス、 不活性化の弱さ、 Na+イオンに対する選択性においても優れてい る。 したがって、 チャネルォプシン ' ファス トレシーバ一は、 高周波で変動する 光情報の受容を目的とする用途に優れている。 産業上の利用可能性 ABcdefg (chop FR) Force S, excellent in frequency response characteristics. It also has excellent conductance, weak inactivation, and selectivity for Na + ions. Therefore, the channel opsin fast receiver is excellent for applications that accept optical information that fluctuates at high frequencies. Industrial applicability
本発明によれば、 様々な機能が改善又は付与された光受容体チャネル型タンパ ク質を提供することができる。  According to the present invention, a photoreceptor channel type protein having various functions improved or imparted can be provided.
また、 チャネルォプシン 1の含膜貫通構造ドメインとチャネルォプシン 2の含 膜貫通構造ドメインとを様々な組合せで含ませることにより、 特定の機能に特化 した光受容体チャネル型タンパク質を提供することができる。  In addition, by including various combinations of the transmembrane domain of channel opsin 1 and the transmembrane domain of channel opsin 2, a photoreceptor channel-type protein specialized for a specific function is provided. be able to.
本発明の改変型ロドプシンタンパク質を応用する用途は、 光を介するので、 網 膜、 神経、 脳などの組織に対しまったく非侵襲的である。 また、 本発明による新 規光受容チャネル型口ドプシンタンパク質は、 時間および空間解像度において従 来のチャネル口ドプシンタンパク質よりも優れたものとして構築できる。 したが つて、医療、福祉 ·介護、情報通信を含む分野において極めて有用な素材である。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。  Since the use of the modified rhodopsin protein of the present invention is via light, it is completely noninvasive to tissues such as the retina, nerves and brain. Further, the novel photoreceptive channel-type oral dopsin protein according to the present invention can be constructed as superior to the conventional channel-mouthed dopsin protein in terms of time and spatial resolution. Therefore, it is an extremely useful material in fields including medical care, welfare / care, and information communication. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲 The scope of the claims
1 . 複数の含膜貫通構造ドメインを有する改変された光受容体チャネル型口 ドプシンタンパク質であって、 含膜貫通構造ドメインの少なくとも 1つはこれに 相当する Chlamydomonas reinhardti iのチャネルォプシン 1に由来する含膜貫通 構造ドメィン又はその変異体である、及び/又は、含膜貫通構造ドメィンの少なく とも 1つはこれに相当する Chlamydomonas reinhardti iのチヤネノレォプシン 2に 由来する含膜貫通構造ドメイン又はその変異体である、 前記タンパク質。 1. a modified photoreceptor channel-type oral dopsin protein having multiple transmembrane domains, wherein at least one of the transmembrane domains is a corresponding channel opsin 1 of Chlamydomonas reinhardti i A transmembrane domain derived from the transmembrane domain of Chlamydomonas reinhardti i which is a transmembrane domain derived from or derived from and / or at least one of the transmembrane domains Or the protein, which is a variant thereof.
2 . 含膜貫通構造ドメィンの少なくとも 1つはこれに相当する Chlamydomonas reinhardtiiのチャネルォプシン 1に由来する含膜貫通構造ドメイン又はその変 異体であり、 かつ含膜貫通構造ドメインの少なく とも 1 つはこれに相当する Chlamydomonas reinhardtii のチャネルォプシン 2に由来する含膜貫通構造ドメ ィン又はその変異体である、 請求項 1記載のタンパク質。  2. At least one of the transmembrane domains is a transmembrane domain derived from the corresponding channel opsin 1 of Chlamydomonas reinhardtii or a variant thereof, and at least one of the transmembrane domains is at least one The protein according to claim 1, which is a transmembrane domain or a variant thereof derived from the corresponding channel opsin 2 of Chlamydomonas reinhardtii.
3 . 光受容体チャネル型口ドプシンタンパク質はチャネルォプシン 1であり、 含膜貫通構造ドメインの少なく とも 1 つはこれに相当する Chlamydomonas reinhardtiiのチャネルォプシン 2に由来する含膜貫通構造ドメイン又はその変 異体である、 請求項 1記載のタンパク質。  3. The photoreceptor channel-type oral dopsin protein is channel opsin 1, and at least one of the transmembrane domains is a transmembrane domain derived from the corresponding channel opsin 2 of Chlamydomonas reinhardtii or The protein according to claim 1, which is a variant thereof.
4 . 前記光受容体チャネル型口 ドプシンタンパク質は Chlamydomonas reinhardti i由来のチヤネ/レオプシン 1である、 請求項 3記載のタンパク質。  4. The protein according to claim 3, wherein the photoreceptor channel type oral dopsin protein is chine / leopsin 1 derived from Chlamydomonas reinhardti i.
5 . 光受容体チャネル型口ドプシンタンパク質はチャネルォプシン 2であり、 含膜貫通構造ドメインの少なく とも 1 つはこれに相当する Chlamydomonas reinhardti iのチャネルォプシン 1に由来する含膜貫通構造ドメイン又はその変 異体である、 請求項 1記載のタンパク質。  5. Photoreceptor channel-type oral dopsin protein is channel opsin 2, and at least one transmembrane domain is derived from the corresponding transmembrane domain derived from channel opsin 1 of Chlamydomonas reinhardti i. 2. The protein according to claim 1, which is a variant thereof.
6 . 前記光受容体チャネル型口 ドプシンタンパク質は Chlamydomonas reinhardti i由来のチャネルォプシン 2である、 請求項 5記載のタンパク質。  6. The protein according to claim 5, wherein the photoreceptor channel-type oral dopsin protein is channel opsin 2 derived from Chlamydomonas reinhardti i.
7 . 以下の(a)〜ひ)のいずれかに示すポリべプチド又はその変異体を含む、 請求項 1〜6のいずれか 1項記載のタンパク質。  7. The protein according to any one of claims 1 to 6, which comprises the polypeptide shown in any of the following (a) to (iii) or a variant thereof.
(a) 配列番号 2のアミノ酸 1〜; 117と配列番号 4のアミノ酸 79〜315とからな るポリぺプチド (b) 配列番号 2のァミノ酸 1〜164と配列番号 4のァミノ酸 126〜315とから なるポリぺプチド (a) a polypeptide consisting of amino acids 1 to 117 of SEQ ID NO: 2; 117 and amino acids 79 to 315 of SEQ ID NO: 4 (b) a polypeptide comprising the amino acids 1-164 of SEQ ID NO: 2 and the amino acids 126-315 of SEQ ID NO: 4
(c) 配列番号 2のアミノ酸 1〜184と配列番号 4のアミノ酸 146〜315 とから なるポリべプチド  (c) a polypeptide consisting of amino acids 1-184 of SEQ ID NO: 2 and amino acids 146-315 of SEQ ID NO: 4
(d) 配列番号 2のアミノ酸 1〜212と配列番号 4のアミノ酸 174〜315とから なるポリぺプチド  (d) a polypeptide consisting of amino acids 1-212 of SEQ ID NO: 2 and amino acids 174-315 of SEQ ID NO: 4
(e) 配列番号 2のァミノ酸 1〜242と配列番号 4のァミノ酸 204〜315とから なるポリべプチド  (e) a polypeptide comprising the amino acids 1 to 242 of SEQ ID NO: 2 and the amino acids 204 to 315 of SEQ ID NO: 4
(f) 配列番号 2のアミノ酸 1〜276と配列番号 4のアミノ酸 238〜315とから なるポリぺプチド  (f) a polypeptide consisting of amino acids 1 to 276 of SEQ ID NO: 2 and amino acids 238 to 315 of SEQ ID NO: 4
.(g) 配列番号 2のアミノ酸 118〜345と配列番号 4のアミノ酸 1〜78とからな るポリ ^プチド  (g) Polypeptide consisting of amino acids 118 to 345 of SEQ ID NO: 2 and amino acids 1 to 78 of SEQ ID NO: 4
(h) 配列番号 2のァミノ酸 165〜345と配列番号 4のアミノ酸. 1〜125とから なるポリペプチド  (h) a polypeptide consisting of amino acids 165 to 345 of SEQ ID NO: 2 and amino acids of SEQ ID NO: 4; 1 to 125
(i) 配列番号 2のアミノ酸 185〜345と配列番号 4のアミノ酸 1〜145とから なるポリぺプチド  (i) a polypeptide comprising amino acids 185 to 345 of SEQ ID NO: 2 and amino acids 1 to 145 of SEQ ID NO: 4
(j) 配列番号 2のァミノ酸 213〜345と配列番号 4のァミノ酸 1〜173とから なるポリべプチド  (j) A polypeptide comprising amino acids 213 to 345 of SEQ ID NO: 2 and amino acids 1 to 173 of SEQ ID NO: 4
(k) 配列番号 2のアミノ酸 243〜345と配列番号 4·のアミノ酸 1〜203 とから なるポリぺプチド  (k) a polypeptide comprising amino acids 243 to 345 of SEQ ID NO: 2 and amino acids 1 to 203 of SEQ ID NO: 4
(1) 配列番号 2のアミノ酸 277〜345と配列番号 4のアミノ酸 1〜237とから なるポリべプチド  (1) Polypeptide consisting of amino acids 277 to 345 of SEQ ID NO: 2 and amino acids 1 to 237 of SEQ ID NO: 4
8 . 配列番号 2のアミノ酸 1〜 164と配列番号 4のアミノ酸 126〜315とから なるポリべプチド又はその変異体を含む、 請求項 7記載のタンパク質。  8. The protein according to claim 7, comprising a polypeptide consisting of amino acids 1-164 of SEQ ID NO: 2 and amino acids 126-315 of SEQ ID NO: 4 or variants thereof.
9 . 配列番号 2のアミノ酸 1〜242と配列番号 4のアミノ酸 204〜315とから なるポリべプチド又はその変異体を含む、 請求項 7記載のタンパク質。  9. The protein according to claim 7, comprising a polypeptide consisting of amino acids 1 to 242 of SEQ ID NO: 2 and amino acids 204 to 315 of SEQ ID NO: 4 or a variant thereof.
1 0 . 請求項 1〜9のいずれか 1項記載のタンパク質をコードするポリヌクレ ォチド。  10. A polynucleotide encoding the protein according to any one of claims 1 to 9.
1 1 . プロモーターと機能的に連結された請求項 10記載のポリヌクレオチド を含む発現ベクター。 11. The polynucleotide of claim 10 operably linked to a promoter. An expression vector comprising
1 2. 請求項 1〜9のいずれか 1項記載のタンパク質を発現する細胞。 1 2. A cell expressing the protein according to any one of claims 1 to 9.
1 3. 神経細胞である請求項 12記載の細胞。 1 3. The cell according to claim 12, which is a nerve cell.
PCT/JP2009/056216 2008-03-24 2009-03-19 Modified photoreceptor channel type rhodopsin protein WO2009119782A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505812A JP5544659B2 (en) 2008-03-24 2009-03-19 Modified photoreceptor channel-type rhodopsin protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008076538 2008-03-24
JP2008-076538 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119782A1 true WO2009119782A1 (en) 2009-10-01

Family

ID=41113967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056216 WO2009119782A1 (en) 2008-03-24 2009-03-19 Modified photoreceptor channel type rhodopsin protein

Country Status (2)

Country Link
JP (1) JP5544659B2 (en)
WO (1) WO2009119782A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019081A1 (en) * 2009-08-10 2011-02-17 国立大学法人東北大学 Light-receiving channel rhodopsin having improved expression efficiency
WO2013071231A1 (en) * 2011-11-12 2013-05-16 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
EP2635108A2 (en) * 2010-11-05 2013-09-11 The Board of Trustees of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
JP2014504152A (en) * 2010-11-05 2014-02-20 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Stabilized step function opsin protein and method of use thereof
US8729040B2 (en) 2008-05-29 2014-05-20 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8815582B2 (en) 2008-04-23 2014-08-26 The Board Of Trustees Of The Leland Stanford Junior University Mammalian cell expressing Volvox carteri light-activated ion channel protein (VChR1)
US8834546B2 (en) 2010-11-22 2014-09-16 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8864805B2 (en) 2007-01-10 2014-10-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8906360B2 (en) 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US8956363B2 (en) 2008-06-17 2015-02-17 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9101759B2 (en) 2008-07-08 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
WO2015148974A3 (en) * 2014-03-28 2015-12-23 The Board Of Trustees Of The Leland Stanford Junior University Engineered light-activated anion channel proteins and methods of use thereof
US9238150B2 (en) 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US9309296B2 (en) 2008-11-14 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
JP2016518853A (en) * 2013-05-17 2016-06-30 ザ リサーチ ファウンデイション フォー ザ ステイト ユニバーシティー オブ ニューヨーク Electronic expression of inward rectification in cardiomyocytes generated from human induced pluripotent stem cells
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US9693692B2 (en) 2007-02-14 2017-07-04 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
WO2017207745A1 (en) * 2016-06-03 2017-12-07 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Mutant light-inducible ion channel of channelrhodopsin
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US10052497B2 (en) 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
JP2018529335A (en) * 2015-09-15 2018-10-11 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Photoresponsive polypeptide and method of using the same
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10392426B2 (en) 2014-02-07 2019-08-27 Massachusetts Institute Of Technology Blue-light-activated ion channel polypeptides and uses thereof
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US10711242B2 (en) 2008-06-17 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for controlling cellular development
US10882892B2 (en) 2014-08-05 2021-01-05 Massachusetts Institute Of Technology Channelrhodopsin variants and uses thereof
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
WO2021193732A1 (en) * 2020-03-24 2021-09-30 国立大学法人岩手大学 Modified photoreceptive chloride channel
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217866A (en) * 2005-02-10 2006-08-24 Tohoku Univ Neurocyte to which photosensitivity is newly imparted

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217866A (en) * 2005-02-10 2006-08-24 Tohoku Univ Neurocyte to which photosensitivity is newly imparted

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIN, J.Y. ET AL.: "Characterization of engineered channelrhodopsin variants with improved properties and kinetics", BIOPHYS.J., vol. 96, no. 5, 4 March 2009 (2009-03-04), pages 1803 - 1814 *
SINESHCHEKOV, O.A. ET AL.: "Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii", PROC.NATL. ACAD.SCI.USA., vol. 99, no. 13, 2002, pages 8689 - 8694 *
SUZUKI, T. ET AL.: "Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization", BIOCHEM.BIOPHYS.RES.COMMUN., vol. 301, no. 3, 2003, pages 711 - 717 *
TSUNODA, S.P. ET AL.: "Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation", PHOTOCHEM.PHOTOBIOL., vol. 85, no. 2, 19 January 2009 (2009-01-19), pages 564 - 569 *
WANG, H. ET AL.: "Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas", J.BIOL. CHEM., vol. 284, no. 9, 27 February 2009 (2009-02-27), pages 5685 - 5696 *

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046174B2 (en) 2005-07-22 2018-08-14 The Board Of Trustees Of The Leland Stanford Junior University System for electrically stimulating target neuronal cells of a living animal in vivo
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US8906360B2 (en) 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10569099B2 (en) 2005-07-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10451608B2 (en) 2005-07-22 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US10422803B2 (en) 2005-07-22 2019-09-24 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9829492B2 (en) 2005-07-22 2017-11-28 The Board Of Trustees Of The Leland Stanford Junior University Implantable prosthetic device comprising a cell expressing a channelrhodopsin
US9278159B2 (en) 2005-07-22 2016-03-08 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10094840B2 (en) 2005-07-22 2018-10-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10052497B2 (en) 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9101690B2 (en) 2005-07-22 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9238150B2 (en) 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US10627410B2 (en) 2005-07-22 2020-04-21 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9360472B2 (en) 2005-07-22 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US10036758B2 (en) 2005-07-22 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Delivery of a light-activated cation channel into the brain of a subject
US10369378B2 (en) 2007-01-10 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8864805B2 (en) 2007-01-10 2014-10-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9187745B2 (en) 2007-01-10 2015-11-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10105551B2 (en) 2007-01-10 2018-10-23 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US11007374B2 (en) 2007-01-10 2021-05-18 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9693692B2 (en) 2007-02-14 2017-07-04 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US9855442B2 (en) 2007-03-01 2018-01-02 The Board Of Trustees Of The Leland Stanford Junior University Method for optically controlling a neuron with a mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from natromonas pharaonis (NpHR)
US9757587B2 (en) 2007-03-01 2017-09-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic method for generating an inhibitory current in a mammalian neuron
US10589123B2 (en) 2007-03-01 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US9878176B2 (en) 2008-04-23 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University System utilizing Volvox carteri light-activated ion channel protein (VChR1) for optical stimulation of target cells
US9249200B2 (en) 2008-04-23 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Expression vector comprising a nucleotide sequence encoding a Volvox carteri light-activated ion channel protein (VChR1) and implantable device thereof
US8815582B2 (en) 2008-04-23 2014-08-26 The Board Of Trustees Of The Leland Stanford Junior University Mammalian cell expressing Volvox carteri light-activated ion channel protein (VChR1)
US9394347B2 (en) 2008-04-23 2016-07-19 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating parkinson's disease by optically stimulating target cells
US10350430B2 (en) 2008-04-23 2019-07-16 The Board Of Trustees Of The Leland Stanford Junior University System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1)
US8962589B2 (en) 2008-05-29 2015-02-24 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US9453215B2 (en) 2008-05-29 2016-09-27 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8729040B2 (en) 2008-05-29 2014-05-20 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8956363B2 (en) 2008-06-17 2015-02-17 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US10711242B2 (en) 2008-06-17 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for controlling cellular development
US9084885B2 (en) 2008-06-17 2015-07-21 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US10583309B2 (en) 2008-07-08 2020-03-10 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9101759B2 (en) 2008-07-08 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9308392B2 (en) 2008-07-08 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9458208B2 (en) 2008-11-14 2016-10-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10071132B2 (en) 2008-11-14 2018-09-11 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10064912B2 (en) 2008-11-14 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9309296B2 (en) 2008-11-14 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US8754048B2 (en) 2009-08-10 2014-06-17 Tohoku University Light-receiving channel rhodopsin having improved expression efficiency
WO2011019081A1 (en) * 2009-08-10 2011-02-17 国立大学法人東北大学 Light-receiving channel rhodopsin having improved expression efficiency
US9249234B2 (en) 2010-03-17 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9604073B2 (en) 2010-03-17 2017-03-28 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9359449B2 (en) 2010-03-17 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
EP2635108A4 (en) * 2010-11-05 2014-02-26 Univ Leland Stanford Junior Light-activated chimeric opsins and methods of using the same
EP2635108A2 (en) * 2010-11-05 2013-09-11 The Board of Trustees of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9850290B2 (en) 2010-11-05 2017-12-26 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
JP2017074056A (en) * 2010-11-05 2017-04-20 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Light-activated chimeric opsins and methods of using the same
US9175095B2 (en) 2010-11-05 2015-11-03 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
JP2014500716A (en) * 2010-11-05 2014-01-16 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Photo-activated chimeric opsin and method of use thereof
US9968652B2 (en) 2010-11-05 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Optically-controlled CNS dysfunction
US9421258B2 (en) 2010-11-05 2016-08-23 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
JP2019205455A (en) * 2010-11-05 2019-12-05 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Light-activated chimeric opsins and methods of using the same
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US9340589B2 (en) 2010-11-05 2016-05-17 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
EP3486253A1 (en) * 2010-11-05 2019-05-22 The Board of Trustees of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10252076B2 (en) 2010-11-05 2019-04-09 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
JP2017046691A (en) * 2010-11-05 2017-03-09 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Stabilized step function opsin proteins and methods of using the same
JP2014504152A (en) * 2010-11-05 2014-02-20 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Stabilized step function opsin protein and method of use thereof
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US10196431B2 (en) 2010-11-05 2019-02-05 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10914803B2 (en) 2010-11-22 2021-02-09 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8834546B2 (en) 2010-11-22 2014-09-16 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9271674B2 (en) 2010-11-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10018695B2 (en) 2010-11-22 2018-07-10 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10371776B2 (en) 2010-11-22 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9615789B2 (en) 2010-11-22 2017-04-11 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
WO2013071231A1 (en) * 2011-11-12 2013-05-16 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
US20140324134A1 (en) * 2011-11-12 2014-10-30 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
EP3214094A1 (en) * 2011-11-12 2017-09-06 Massachusetts Institute of Technology Channelrhodopsins for optical control of cells
KR102084803B1 (en) 2011-11-12 2020-03-05 메사추세츠 인스티튜트 오브 테크놀로지 Channelrhodopsins for optical control of cells
US10472398B2 (en) 2011-11-12 2019-11-12 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
KR102194185B1 (en) 2011-11-12 2020-12-22 메사추세츠 인스티튜트 오브 테크놀로지 Channelrhodopsins for optical control of cells
KR20200024336A (en) * 2011-11-12 2020-03-06 메사추세츠 인스티튜트 오브 테크놀로지 Channelrhodopsins for optical control of cells
US10717769B2 (en) 2011-11-12 2020-07-21 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
US11274128B2 (en) 2011-11-12 2022-03-15 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
KR20140091743A (en) * 2011-11-12 2014-07-22 메사추세츠 인스티튜트 오브 테크놀로지 Channelrhodopsins for optical control of cells
US10711044B2 (en) 2011-11-12 2020-07-14 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
US10472399B2 (en) 2011-11-12 2019-11-12 Massachusetts Institute Of Technology Channelrhodopsins for optical control of cells
US10538560B2 (en) 2011-12-16 2020-01-21 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US10087223B2 (en) 2011-12-16 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9505817B2 (en) 2011-12-16 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9840541B2 (en) 2011-12-16 2017-12-12 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9969783B2 (en) 2011-12-16 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
JP2016518853A (en) * 2013-05-17 2016-06-30 ザ リサーチ ファウンデイション フォー ザ ステイト ユニバーシティー オブ ニューヨーク Electronic expression of inward rectification in cardiomyocytes generated from human induced pluripotent stem cells
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10392426B2 (en) 2014-02-07 2019-08-27 Massachusetts Institute Of Technology Blue-light-activated ion channel polypeptides and uses thereof
US10052383B2 (en) 2014-03-28 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University Engineered light-activated anion channel proteins and methods of use thereof
WO2015148974A3 (en) * 2014-03-28 2015-12-23 The Board Of Trustees Of The Leland Stanford Junior University Engineered light-activated anion channel proteins and methods of use thereof
US10478499B2 (en) 2014-03-28 2019-11-19 The Board Of The Trustees Of The Leland Stanford Junior University Engineered light-activated anion channel proteins and methods of use thereof
JP2017511129A (en) * 2014-03-28 2017-04-20 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Genetically engineered photoactivated anion channel protein and methods of use thereof
US10882892B2 (en) 2014-08-05 2021-01-05 Massachusetts Institute Of Technology Channelrhodopsin variants and uses thereof
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
JP2018529335A (en) * 2015-09-15 2018-10-11 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Photoresponsive polypeptide and method of using the same
US11801301B2 (en) 2015-09-15 2023-10-31 The Board Of Trustees Of The Leland Stanford Junior University Light-responsive polypeptides and methods of use thereof
CN109476720A (en) * 2016-06-03 2019-03-15 马克斯-普朗克科学促进协会 The saltant type photoinduction ion channel of channel rhodopsin
WO2017207745A1 (en) * 2016-06-03 2017-12-07 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Mutant light-inducible ion channel of channelrhodopsin
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture
WO2021193732A1 (en) * 2020-03-24 2021-09-30 国立大学法人岩手大学 Modified photoreceptive chloride channel

Also Published As

Publication number Publication date
JPWO2009119782A1 (en) 2011-07-28
JP5544659B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5544659B2 (en) Modified photoreceptor channel-type rhodopsin protein
US9969783B2 (en) Opsin polypeptides and methods of use thereof
Han In vivo application of optogenetics for neural circuit analysis
JP2006217866A (en) Neurocyte to which photosensitivity is newly imparted
Ganjawala et al. Improved CoChR variants restore visual acuity and contrast sensitivity in a mouse model of blindness under ambient light conditions
EP2635111B1 (en) Stabilized step function opsin proteins and methods of using the same
JP2016518840A (en) Apparatus, system and method for optogenetic modulation of action potentials in target cells
US10882892B2 (en) Channelrhodopsin variants and uses thereof
Natasha et al. Channelrhodopsins: visual regeneration and neural activation by a light switch
US20170174730A1 (en) Blue light-activated ion channel molecules and uses thereof
US20220073571A1 (en) Photoresponsive protein and utilization thereof
US20230104240A1 (en) Photoresponsive protein for color recognition and use thereof
JP7175880B2 (en) Chrimson's mutant light-inducible ion channel
JP2019522469A (en) Mutant light-induced ion channel of channel rhodopsin
Chow et al. Light-activated ion pumps and channels for temporally precise optical control of activity in genetically targeted neurons
RU2784086C1 (en) Nucleic acid encoding human thermosensitive trpv1 channel with altered ion selectivity for controlling cell membrane potential
US20230250143A1 (en) Novel mutant bacteriorhodopsin-like-channelrhodopsin ion channel
CN111032068A (en) Novel optogenetic tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505812

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724922

Country of ref document: EP

Kind code of ref document: A1