WO2009129186A2 - Sensor for percutaneous intravascular deployment without an indwelling cannula - Google Patents

Sensor for percutaneous intravascular deployment without an indwelling cannula Download PDF

Info

Publication number
WO2009129186A2
WO2009129186A2 PCT/US2009/040379 US2009040379W WO2009129186A2 WO 2009129186 A2 WO2009129186 A2 WO 2009129186A2 US 2009040379 W US2009040379 W US 2009040379W WO 2009129186 A2 WO2009129186 A2 WO 2009129186A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
introducer assembly
glucose
introducer
wing
Prior art date
Application number
PCT/US2009/040379
Other languages
French (fr)
Inventor
David R. Markle
William H. Markle
Original Assignee
Glumetrics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glumetrics, Inc. filed Critical Glumetrics, Inc.
Publication of WO2009129186A2 publication Critical patent/WO2009129186A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M25/0668Guide tubes splittable, tear apart

Definitions

  • a sensor for intravascular residence is disclosed along with methods for percutaneous deployment of the sensor, hi preferred embodiments, the sensor is a fiber-optic glucose sensor which is inserted and resides in a peripheral vein without an indwelling cannula.
  • Intravascular sensor deployment raises other technical difficulties.
  • one sensor for each analyte has been placed in a patient's blood vessel(s) through an indwelling cannula. If it is desired to measure several analytes, a plurality of sensors are often required, which can cause attendant discomfort to the patient and complexity of the electronic monitoring equipment.
  • a single sensor within a peripheral vein presents continuous maintenance issues for the nursing staff.
  • the present state of the art is that sensors are deployed through indwelling cannulas. Because blood becomes trapped and clots within such cannulas and between the cannula and the sensor, the cannula must be flushed continuously or periodically, typically with saline/heparin. In the ICU, for example, the nursing staff regularly purge (e.g., every 4 hrs) the trapped blood and clots, to maintain cannula access to the vein open.
  • a method for deploying a sensor in a blood vessel of a patient comprises positioning the sensor in the blood vessel, such that at least a distal portion of the sensor resides within the blood vessel and at least a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient.
  • the blood vessel is a peripheral vein.
  • the sensor is an optical fiber glucose sensor.
  • the step of positioning the sensor further comprises introducing the sensor into the blood vessel through an introducer assembly.
  • the step of positioning the sensor further comprises removing the introducer assembly, leaving only the sensor in the patient.
  • a method for measuring an analyte concentration in a blood vessel comprises: providing a sensor configured to reside at least in part within the blood vessel and generate a signal related to the analyte concentration in the blood; introducing the sensor into the blood vessel through an introducer assembly; removing the introducer assembly, leaving only the analyte sensor in the patient; and detecting the signal to measure the analyte concentration in the blood.
  • a method for deploying a sensor in a blood vessel comprises: providing an introducer assembly comprising a hypodermic needle slidably engaged within a splitable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the splitable cannula; cannulating the blood vessel with the introducer assembly; withdrawing the hypodermic needle, leaving the splitable cannula in the vessel; inserting the sensor through the splitable cannula and into the vessel; withdrawing the splitable cannula from the vessel, leaving the sensor in the vessel; and splitting and removing the cannula from the sensor.
  • a method for continuous monitoring of blood glucose levels in a patient comprises: providing an introducer assembly comprising a hypodermic needle slidably engaged within a removable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the removable cannula; inserting the introducer assembly into a peripheral vein; retracting the hypodermic needle from the removable cannula, while leaving the removable cannula in the peripheral vein; providing an optical glucose sensor comprising a fluorescent indicator system disposed along a distal end region and adapted to generate an optical signal related to the blood glucose level in response to light, an elongate fiberoptic body, and an optical coupling disposed along a proximal end region; inserting the optical glucose sensor through the removable cannula and into the peripheral vein; retracting the removable cannula from the vein, while leaving the sensor in the peripheral vein; removing the removable cannula from the sensor; connecting the optical coupling to a device comprising
  • FIG. 1 shows a side view of an embodiment of an intravascular sensor.
  • FIG. 2 shows a side view of one embodiment of a peelable introducer.
  • FIG. 3 shows a perspective view of one embodiment of a splitable introducer.
  • FIG. 4A shows a back view of the splitable introducer of FIG. 3.
  • FIG. 4B shows a side view of an introducer assembly comprising the splitable introducer of FIG. 3 and a hypodermic needle.
  • FIG. 5 shows a cut-away view of a sensor where a portion of the porous membrane sheath is cut away to expose the optical fiber and hydrogel beneath the membrane.
  • FIG. 6 is a cross-sectional view along a longitudinal axis of a sensor with a hydrogel disposed distal the optical fiber.
  • FIGS. 7A and 7B show blood glucose determinations in vitro in a circulating blood loop, with a comparison of the GLUCATHTM and YSI detection methods.
  • FIGS. 8A and 8B show Bland-Altman difference plots comparing laboratory references to SURESTEP PRO FINGERSTICKTM and GLUCATHTM equilibrium fluorescent glucose sensor.
  • the GLUCATHTM sensor is deployed in vivo in the right jugular vein of sheep.
  • the present invention involves a method for deploying a sensor in a blood vessel of a patient, wherein the sensor resides within the patient without any additional device or structural components, e.g., introducer, cannula, catheter, sleeve, etc.
  • the deployment of a naked, preferably very small and non- thrombogenic, sensor addresses some of the disadvantages that presently face patients and medical staff, e.g., thrombogenesis, constant staff care, etc.
  • the sensor can be adapted to sense any analyte using known sensing systems and/or chemistries.
  • the blood vessel can be an artery or a vein.
  • the method comprises positioning the sensor in the blood vessel, such that a distal portion of the sensor resides within the blood vessel by itself, and a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient.
  • a solution to the technical challenges involves using a sensor comprising equilibrium, non-consuming fluorescence-based detection chemistry.
  • Equilibrium optical sensing addresses the problems associated with rate-limiting consumption of enzymatic reactants in current electrochemical sensors.
  • placement within a peripheral vein as opposed to subcutaneous (interstitial) placement, provides direct monitoring of blood glucose levels, thereby avoiding the problems associated with measuring glucose levels in the interstitial fluid — e.g., uncertain and changing equilibration time for glucose between the blood and the interstitial fluid.
  • deployment of a very small diameter, non-thrombogenic fiber-optic sensor within a vein, without an indwelling cannula addresses the serious burden on the nursing staff related to continuous or periodic flushing of the cannula to maintain open access to the vein.
  • a hypodermic needle is first inserted into the blood vessel. Once the hypodermic needle is in place in the blood vessel, a guidewire may be threaded through the hypodermic needle and into the blood vessel. After the guidewire has been inserted into the blood vessel through the hypodermic needle, the hypodermic needle can be removed, leaving the guidewire in place in the blood vessel. Next, a cannula is threaded over the guidewire and into the blood vessel. Finally, the guidewire is removed and the catheter is introduced into the blood vessel through the cannula. When the catheter is an analyte sensor, the cannula is left indwelling.
  • the present invention relates to a fiber-optic glucose sensor that is introduced into and resides within a blood vessel (or interstitial site) by itself, without an indwelling cannula or permanent introducer.
  • the small diameter and flexibility of such a sensor provide obvious advantages in relation to patient comfort.
  • Liao, K.-C, et al., Biosens. Bioelectron. (2008), doi: 10.1016/j.bios.2008.01.012 recently disclosed a smaller and less invasive glucose sensor designed for interstitial implantation, wherein glucose sensitivity is mediated by Con A binding and Quantum dots are used as FRET donors; the sensor chemistry is immobilized at the end of an optical fiber in a PEG- DA hydrogel.
  • interstitial deployment of an equilibrium fiber-optic sensor may be utilized.
  • the equilibrium between blood and interstitial fluid glucose will tend to be relatively constant in such patients, wherein the convenience (less-invasive nature) of interstitial deployment may be preferred.
  • FIG. 1 shows an embodiment of a sensor 10 having a distal end 12 and an elongate body 14 that can be percutaneously inserted into a blood vessel, such as a vein or artery, for intravascular residence.
  • a blood vessel such as a vein or artery
  • the vein or artery can be a peripheral vein or a peripheral artery, while in other embodiments, the vein or artery can be a central vein or a central artery.
  • the sensor can be interstitially deployed.
  • the sensor 10 can be a sensor for measuring any compound, metabolite, chemical, protein, molecule, nutrient, and/or hemodynamic parameter of interest.
  • the senor 10 can be a sensor for measuring glucose, ions such as potassium, blood gases, such as oxygen and carbon dioxide, flow rate, pressure, pH, or any other measurable analyte.
  • the sensor 10 is a fiber-optic glucose sensor as further described in co-pending U.S. Appl. Nos. 12/026,396, filed February 5, 2008 and U.S. Application No. 12/027,158, filed February 6, 2008, both of which are incorporated herein by reference in their entireties.
  • the sensor 10 can be percutaneously introduced into a blood vessel by using a removable introducer 20, embodiments of which are illustrated in FIGS. 2-4.
  • the introducer 20 can be, for example, peelable or splitable.
  • One embodiment of a peelable introducer 20 is shown in FIG. 2.
  • the introducer 20 has a distal end 22, a proximal end 24 and an elongate body 26 having a lumen therebetween.
  • the elongate body 26 can be a sheath or tubular structure with thin walls.
  • the proximal end 24 comprises a hub 27 having a first wing 28 and a second wing 30 that extend transversely away from the elongate body 26.
  • the first wing 28 and second wing 30 are located opposite or substantially opposite each other.
  • the elongate body 26 can have two longitudinal score lines 32, 34 which are located opposite or substantially opposite each other and divide the elongate body 26 into two halves, each half attached to a wing.
  • the score lines 32, 34 are weakened portions of the elongate body 26 that allow the introducer 20 to be split in half by grasping the wings 28, 30 and pulling the wings 28, 30 apart.
  • FIGS. 3 and 4A and 4B illustrate an embodiment of a splitable introducer 20.
  • the splitable introducer 20 has a distal end 22, a proximal end 24 and an elongate body 26 having a lumen 36 therebetween.
  • the proximal end 24 comprises a hub 27 having a first wing 28 and a second wing 30 that extend transversely away from the elongate body 26.
  • the first wing 28 and the second wing 30 can be attached to the hub 27 at an angle ⁇ to each other. In some embodiments, the angle ⁇ between the first wing 28 and the second wing 30 is less than about 120 degrees.
  • the splitable introducer 20 has a single score line 32 that runs along the length of the elongate body 26 and hub 27.
  • the score line 32 is located on a portion of the splitable introducer 20 that generally opposes the first wing 28 and the second wing 30.
  • the splitable introducer 20 can be divided in half longitudinally by plane P which also bisects angle ⁇ .
  • the score line 32 is located at an angle ⁇ from the first wing 28 and at an angle ⁇ from the second wing.
  • ⁇ and ⁇ are approximately equal.
  • ⁇ and ⁇ are at least about 120 degrees.
  • the splitable introducer 20 can be split along the score line 32 by squeezing the first wing 28 and the second wing 30 together. In some embodiments, squeezing can advantageously be accomplished by using just one hand.
  • FIG. 4B illustrates an introducer assembly 40 comprising a splitable introducer 20 and a hypodermic needle 42 disposed therein.
  • the hypodermic needle 42 has a distal end 44 and a proximal end 46 and a cannula 48 extending therebetween.
  • the distal end 44 of the cannula 48 can be beveled to terminate in a sharp point that facilitates entry of the hypodermic needle 42 into the patient's tissue.
  • the proximal portion of the hypodermic needle can include a filter 50 and flashback chamber 52.
  • the distal end 44 of the hypodermic need 42 When the distal end 44 of the hypodermic need 42 is inserted into a blood vessel or interstitial space, blood or interstitial fluid will fill the flashback chamber 52, thereby facilitating the correct placement of the introducer assembly 40 into the blood vessel.
  • the filter 50 can function to contain the blood within the flashback chamber 52 and to reduce the likelihood of contamination of the blood, thereby reducing the chance of infection.
  • the cannula 48 is removably disposed within the lumen 36 of the elongate body 26 of the splitable introducer 20. After the introducer assembly 40 is inserted in the blood vessel or interstitial space, the hypodermic needle 42 can be withdrawn from the splitable introducer 20, leaving just the splitable introducer 20 in the blood vessel or interstitial space.
  • Additional types of removable introducers 20 are also suitable for introducing the sensor 10 into a blood vessel.
  • an introducer 20 that can be removed by cutting can be used in some embodiments.
  • the cutting tool used to cut the introducer 20 can be designed to cut the introducer 20 without damaging the sensor 10 underneath.
  • the introducer 20 can be made out of a metal, metal alloy, resin (for example, a thermosetting resin such as an epoxy resin or phenolic resin), polymer (for example, a thermoplastic polymer or, in some cases, an elastomeric polymer) or a combination of the forgoing compounds.
  • the polymer can be polyacrylate, polyurethane, polysulfone, polypropylene, polytetrafluoroethylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyvinyl chloride, or any other suitable polymer.
  • the introducer comprises polyurethane.
  • an introducer assembly comprises an introducer with a hypodermic needle coaxially engaged within the lumen of the introducer.
  • the hypodermic needle or stylus is typically within the lumen of the introducer 20 before the introducer 20 is inserted into the patient to access the patient's blood vessel or interstitial site.
  • the distal end of the hypodermic needle or stylus can extend beyond the distal end 22 of the introducer 20 so that the hypodermic needle or stylus can help the introducer 20 penetrate the patient's tissue to access the blood vessel.
  • the hypodermic needle can help the medical practitioner locate the blood vessel by allowing the medical practitioner to visualize blood when the hypodermic needle enters a blood vessel.
  • the introducer itself may comprise a beveled or otherwise piercing distal end that is splitable, peelable, etc., such that a separate needle need not be used to access the blood vessel or interstitial site.
  • the hypodermic needle has a diameter that is only slightly less than the diameter of the elongate body 26 of the introducer 20. This can be accomplished by making the walls of the elongate body 26 relatively thin.
  • the hypodermic needle can have a diameter that is only slightly less than the lumen 36 of the introducer 20 so that the hypodermic needle fits snugly into the lumen 36.
  • the distal end 22 of the introducer 20 can be beveled or tapered to provide a gradual increase in diameter of the distal portion of the elongate body 26.
  • the diameter of the needle may be equal to or even larger than the diameter of the introducer, such that the introducer expands to accommodate the needle.
  • the hypodermic needle which projects past the distal end 22 of the introducer 20, is used to puncture the skin and tissue of the patient, creating a hole with a diameter substantially equal to the diameter of the hypodermic needle.
  • the distal end 22 of the introducer 20 enters the hole made by the hypodermic needle.
  • the beveled or tapered distal end 22 facilitates insertion of the elongate body 26 of the introducer 20 into the hole made by the hypodermic needle by closely matching the diameter of the distal end 22 to the diameter of the hole.
  • the beveled or tapered distal end 22 also allows the hole to be gradually stretched wider, rather than further cutting or tearing the tissue, as the introducer is advanced.
  • the wall of the elongate body 26 can be thin in order to reduce the degree of widening of the hole that occurs as the introducer is advanced. In addition, the gradual widening or stretching of the hole facilitates the formation of a tight seal between the patient's tissue and the elongate body 26.
  • the hypodermic needle or stylus can be removed from the lumen 36 of the introducer 20.
  • the elongate body 26 can be flexible and kink resistant.
  • the elongate body 26 can be made flexible by fabricating the elongate body 26 out of a polymer such as polyacrylate, polyurethane, polysulfone, polyproprylene, polytetrafluroethylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyvinyl chloride, or any other suitable polymer.
  • the elongate body 26 can be made stiff, while maintaining its flexibility, and kink resistant by embedding or incorporating a coil of wire into the polymer elongate body 26. This is especially true for elastomeric polymers, such as polyacrylate and polyurethane.
  • the wire is very thin and can be made out of a variety of metals or metal alloys, such as steel, nickel, titanium, aluminum or a combination of each.
  • the elongate body 26 does not comprise a coil of wire. Making the elongate body 26 flexible and kink resistant reduces the likelihood that the lumen 36 will kink or collapse, which can make insertion of the sensor 10 through the introducer 20 difficult.
  • the sensor 10, a fiber-optic glucose sensor in preferred embodiments, can be inserted into the lumen 36 of the introducer 20 and into the blood vessel.
  • the sensor 10 has a diameter that is the same as or substantially similar to the diameter of the hypodermic needle or to the inner diameter of the lumen 36 of the introducer 20.
  • the sensor 10 can have a smooth surface to facilitate passage of the sensor 10 through the lumen 36 of the introducer 20.
  • a lubricant can be used to facilitate passage of the sensor 10 through the lumen 36 of the introducer 20.
  • the introducer 20 can be withdrawn from the patient's tissue.
  • the introducer 20 can be removed from the sensor 10 by peeling, splitting or cutting the introducer 20, as described above.
  • the stretched hole closes around the sensor 10, forming a seal.
  • the surface of the sensor 10 can be made smooth to enhance the seal between the patient's tissue and the surface of the sensor 10. This allows the sensor 10 to reside in the blood vessel or interstitial site without using a permanent indwelling cannula that also resides in the blood vessel or interstitial site.
  • the senor 10 can be given anti-thrombogenic properties by, for example, coating or treating the surface of the sensor 10 with heparin or another compound with anti-thrombogenic properties.
  • the sensor 10 can be fabricated with a smooth surface having low thrombogenicity.
  • the sensor 10 surface can be made of a polymer such as polytetrafluoroethylene.
  • Portions of the sensor 10 that include a porous or semipermeable membrane can be given a smooth surface by the polymerization of a polymer, such as a hydrogel, within the pores of the membrane, as described in co-pending U.S. Application No. 12/026,396, filed February 5, 2008, which is hereby incorporated by reference in its entirety.
  • a fiber-optic glucose sensor can be inserted into a blood vessel or an interstitial space of the patient as described herein.
  • the glucose sensor comprises an optical glucose measurement system that measures glucose concentration levels using glucose-sensing chemical indicator systems.
  • Such indicator systems preferably comprise a fluorophore operably coupled to a glucose binding moiety.
  • the glucose binding moiety acts as a quencher with respect to the fluorophore (e.g., suppresses the fluorescent emission signal of the fluorophore in response to excitation light when it associates with the fluorophore).
  • glucose binding moiety binds glucose (e.g., as glucose concentrations rise), it dissociates from the fluorophore, which then generates a fluorescent emission signal upon excitation. Accordingly, in such embodiments, the higher the glucose concentration, the more glucose bound by the binding moiety, the less quenching, and the higher the fluorescence intensity of the fluorophore upon excitation.
  • the optical glucose measurement system measures, in certain embodiments, the glucose concentrations intravascularly or interstitially and in real-time through the use of such fluorophore-quencher indicator systems.
  • the glucose-sensing indicator systems can be immobilized in a hydrogel.
  • the hydrogel can be inserted into an optical fiber such that light may be transmitted through the hydrogel while at least a portion of the hydrogel is in contact with blood.
  • the hydrogel is preferably permeable to analytes, specifically glucose.
  • the optical fiber together with the hydrogels can comprise a glucose sensor that is placed in a mammalian (human or animal) blood vessel or interstitial space. In certain embodiments, light is transmitted into the glucose sensor from a light source.
  • the light source can be a light emitting diode that emits an optical excitation signal.
  • the optical excitation signal can excite the fluorophore systems in the presence of glucose, such that the fluorophores emit light at an emission wavelength.
  • the fluorophore systems can be configured to emit an optical emission signal at a first wavelength having an intensity related to the blood glucose concentration in the blood vessel or the interstitial fluid glucose concentration in the interstitial space.
  • the light can be directed out of the glucose sensor such that the light is detected by a light sensitive module (or detector system) that can comprise at least one detector.
  • Detectors include any component capable of converting light into a measurable signal, and may include but are not limited to photomultipliers, photodiodes, diode arrays, or the like.
  • the at least one detector can be configured to measure the intensity of the emission wavelength because the intensity of the emission wavelength, in certain embodiments, is related to the glucose concentration present in the blood.
  • the light sensitive module (or detector system) comprises an interference filter, an amplifier, and/or an analog-to-digital converter.
  • the light sensitive module (or detector system) can also comprise a micro spectrometer, spectrometer, or the like.
  • the measurement errors are eliminated or are substantially eliminated or reduced by employing a ratio of certain signals.
  • the measurement errors that may be eliminated include but are not limited to changes in the intensity of the light generated from the light source(s), changes in the coupling efficiency of light into the optical fibers, bending of the optical fiber and the ensuing loss of light from the fiber, changes in the sensitivity of the detection circuit due to, for example, temperature or age or duration of use.
  • the ratio of certain signals is unaffected by changes in the light source intensity, the coupling efficiency of the light source into the optical fibers, bending of the optical fibers or the like.
  • the ratio of certain signals can be the ratio of an emission signal to an excitation signal.
  • the ratio of certain signals is the ratio of an emission signal to a second optical signal.
  • the second signal may be the excitation light signal which is transmitted through the optical system, through the sensor and indicator system, and reflects back at least in part from the sensor into the light sensitive module (or detector system).
  • the second signal may be generated by a separate reference light, for example red light, which is not absorbed by the indictor system.
  • the second signal may be generated by certain fluorophores as a second emission signal at a different wavelength — the intensity of which is independent of glucose. Any light that is propagated through the optical system, can be either not altered by the glucose concentration or is the excitation light. Light not altered by the glucose concentration can be detected by the light sensitive system (or detector system) and may be used as the second or reference light signal.
  • the indicator system (also referred to herein as a fiuorophore system) can comprise a fiuorophore operably coupled to a quencher.
  • the fiuorophore system comprises a polymer matrix comprising a fiuorophore susceptible to quenching by a viologen, a viologen quencher with quenching efficacy dependent on glucose concentration, and a glucose permeable polymer, wherein said matrix is in contact with blood in vivo.
  • the fiuorophore is a fluorescent organic dye
  • the quencher is a boronic acid functionalized viologen
  • the matrix is a hydrogel.
  • Fluorophore refers to a substance that when illuminated by light at a particular wavelength emits light at a longer wavelength; i.e. it fluoresces. Fluorophores include but are not limited to organic dyes, organometallic compounds, metal chelates, fluorescent conjugated polymers, quantum dots or nanoparticles and combinations of the above. Fluorophores may be discrete moieties or substiruents attached to a polymer.
  • Fluorophores that may be used in preferred embodiments are capable of being excited by light of wavelength at or greater than about 400 nm, with a Stokes shift large enough that the excitation and emission wavelengths are separable by at least 10 nm. In some embodiments, the separation between the excitation and emission wavelengths may be equal to or greater than about 30 nm. These fluorophores are preferably susceptible to quenching by electron acceptor molecules, such as viologens, and are resistant to photo-bleaching. They are also preferably stable against photo- oxidation, hydrolysis and biodegradation.
  • the fiuorophore may be a discrete compound.
  • the fiuorophore may be a pendant group or a chain unit in a water-soluble or water-dispersible polymer having molecular weight of about 10,000 daltons or greater, forming a dye-polymer unit.
  • such dye-polymer unit may also be non-covalently associated with a water-insoluble polymer matrix M 1 and is physically immobilized within the polymer matrix M ! , wherein M 1 is permeable to or in contact with an analyte solution.
  • the dye on the dye-polymer unit may be negatively charged, and the dye-polymer unit may be immobilized as a complex with a cationic water-soluble polymer, wherein said complex is permeable to or in contact with the analyte solution.
  • the dye may be one of the polymeric derivatives of hydroxypyrene trisulfonic acid.
  • the polymeric dyes may be water-soluble, water-swellable or dispersible in water.
  • the polymeric dyes may also be cross-linked.
  • the dye has a negative charge.
  • the dye molecule may be covalently bonded to the water-insoluble polymer matrix M 1 , wherein said M 1 is permeable to or in contact with the analyte solution.
  • the dye molecule bonded to M 1 may form a structure M ⁇ L 1 - Dye.
  • L 1 is a hydrolytically stable covalent linker that covalently connects the sensing moiety to the polymer or matrix.
  • the dye is bonded to a polymer matrix through the sulfonamide functional groups.
  • the analyte binding moiety provides the at least dual functionality of being able to bind analyte and being able to modulate the apparent concentration of the fluorophore (e.g., detected as a change in emission signal intensity) in a manner related to the amount of analyte binding.
  • the analyte binding moiety is associated with a quencher. "Quencher” refers to a compound that reduces the emission of a fluorophore when in its presence.
  • Quencher (Q) is selected from a discrete compound, a reactive intermediate which is convertible to a second discrete compound or to a polymerizable compound or Q is a pendant group or chain unit in a polymer prepared from said reactive intermediate or polymerizable compound, which polymer is water-soluble or dispersible or is an insoluble polymer, said polymer is optionally crosslinked.
  • the moiety that provides glucose recognition in the embodiments is an aromatic boronic acid.
  • the boronic acid is covalently bonded to a conjugated nitrogen-containing heterocyclic aromatic bis-onium structure (e.g., a viologen).
  • a conjugated nitrogen-containing heterocyclic aromatic bis-onium structure e.g., a viologen.
  • Viologen refers generally to compounds having the basic structure of a nitrogen containing conjugated N-substituted heterocyclic aromatic bis-onium salt, such as 2,2'-, 3,3'- or 4,4'-N,N' bis-(benzyl) bipyridium dihalide (i.e., dichloride, bromide chloride), etc. Viologen also includes the substituted phenanthroline compounds.
  • the boronic acid substituted quencher preferably has a pKa of between about 4 and 9, and reacts reversibly with glucose in aqueous media at a pH from about 6.8 to 7.8 to form boronate esters.
  • the extent of reaction is related to glucose concentration in the medium. Formation of a boronate ester diminishes quenching of the fluorphore by the viologen resulting in an increase in fluorescence dependent on glucose concentration.
  • a useful bis- onium salt is compatible with the analyte solution and capable of producing a detectable change in the fluorescent emission of the dye in the presence of the analyte to be detected.
  • Bis-onium salts in the embodiments of this invention are prepared from conjugated heterocyclic aromatic di-nitrogen compounds.
  • the conjugated heterocyclic aromatic di-nitrogen compounds are selected from dipyridyls, dipyridyl ethylenes, dipyridyl phenylenes, phenanthrolines, and diazafluorenes, wherein the nitrogen atoms are in a different aromatic ring and are able to form an onium salt. It is understood that all isomers of said conjugated heterocyclic aromatic di-nitrogen compounds in which both nitrogens can be substituted are useful in this invention.
  • the quencher may be one of the bis-onium salts derived from 3,3 '-dipyridyl, 4,4'-dipyridyl and 4,7- ⁇ henanthroline.
  • the viologen-boronic acid adduct may be a discrete compound having a molecular weight of about 400 daltons or greater. In other embodiments, it may also be a pendant group or a chain unit of a water-soluble or water- dispersible polymer with a molecular weight greater than about 10,000 daltons.
  • the quencher-polymer unit may be non-covalently associated with a polymer matrix and is physically immobilized therein. In yet another embodiment, the quencher- polymer unit may be immobilized as a complex with a negatively charge water-soluble polymer.
  • the viologen-boronic acid moiety may be a pendant group or a chain unit in a crosslinked, hydrophilic polymer or hydrogel sufficiently permeable to the analyte (e.g., glucose) to allow equilibrium to be established.
  • the quencher may be covalently bonded to a second water-insoluble polymer matrix M 2 , which can be represented by the structure M 2 - L 2 -Q.
  • L 2 is a linker selected from the group consisting of a lower alkylene (e.g., C 1 -Cg alkylene), sulfonamide, amide, quaternary ammonium, pyridinium, ester, ether, sulfide, sulfone, phenylene, urea, thiourea, urethane, amine, and a combination thereof.
  • the quencher may be linked to M 2 at one or two sites in some embodiments.
  • At least one quencher precursor is used to attach the quenching moiety to at least one polymer.
  • aromatic groups may be used to functionalize a viologen with combinations of boronic acid groups and reactive groups.
  • this process includes attaching an aromatic group to each of the two nitrogens in the dipyridyl core of the viologen. At least one boronic acid group, a reactive group, or a combination of the two are then attached to each aromatic group, such that the groups attached to each of the two nitrogens on the dipyridyl core of the viologen may either be the same or different.
  • viologen quenching moiety Certain combinations of the functionalized viologen quenching moiety are described as follows: a) a first aromatic group having a pendent reactive group is attached to the first nitrogen and a second aromatic group having at least one pendent boronic group is attached to the second nitrogen; b) one or more boronic acid groups are attached to a first aromatic group, which is attached to the first nitrogen, and one boronic acid group and a reactive group are attached to a second aromatic group, which second aromatic group is attached to the second nitrogen; c) one boronic acid group and a reactive group are attached to a first aromatic group, which first aromatic group is attached to the first nitrogen, and one boronic acid group and a reactive group are attached to a second aromatic group, which is attached to the second nitrogen; and d) one boronic acid group is attached to an aromatic group, which aromatic group is attached to each of the two nitrogens, and a reactive group is attached to a carbon in a heteroaromatic ring in the heteroaromatic centrally
  • FIG. 5 shows an embodiment of the distal portion of a sensor 100 comprising an optical fiber 110 with a distal end 112 disposed in a porous membrane sheath 114.
  • the optical fiber 110 has cavities 106, such as holes, in the fiber-optic wall that can be formed by, for example, mechanical means such as drilling or cutting.
  • the cavities 106 in the optical fiber 110 can be filled with a suitable compound, such as a polymer.
  • the polymer is a hydrogel 108.
  • the optical fiber 110 does not have cavities 106, and instead, the hydrogel 108 is disposed in a space distal to the distal end 112 of the optical fiber 110 and proximal to the mirror 123.
  • the sensor 100 is a glucose sensor.
  • the glucose sensor is an intravascular or interstitial glucose sensor.
  • the porous membrane sheath 114 can be made from a polymeric material such as polyethylene, polycarbonate, polysulfone or polypropylene. Other materials can also be used to make the porous membrane sheath 114 such as zeolites, ceramics, metals, or combinations of these materials.
  • the porous membrane sheath 114 is microporous and has a mean pore size that is less than approximately two nanometers. In other embodiments, the porous membrane sheath 114 is mesoporous and has a mean pore size that is between approximately two nanometers to approximately fifty nanometers. In still other embodiments, the porous membrane sheath 114 is macroporous and has a mean pore size that is greater than approximately fifty nanometers.
  • the porous membrane sheath 114 is attached to the optical fiber 110 by a connector 116.
  • the connector 116 can be an elastic collar that holds the porous membrane sheath 114 m place by exerting a compressive force on the optical fiber 110.
  • the connector 116 is an adhesive or a thermal weld.
  • a mirror 123 and thermistor 125 can be placed within the porous membrane sheath 114 distal the distal end 112 of the optical fiber 110.
  • Thermistor leads 127 can be made to run in a space between the optical fiber 110 and porous membrane sheath 114.
  • a thermistor 125 is shown, other devices such as a thermocouple, pressure transducer, an oxygen sensor, a carbon dioxide sensor or a pH sensor for example can be used instead.
  • the distal end 118 of the porous membrane sheath 114 is open and can be sealed with, for example, an adhesive 120.
  • the adhesive 120 can comprise a polymerizable material that can fill the distal end 118 and then be polymerized into a plug.
  • the distal end 118 can be thermally welded by melting a portion of the polymeric material on the distal end 118, closing the opening and allowing the melted polymeric material to resolidify, hi other embodiments as shown in FIG. 5, a polymeric plug 121 can be inserted into the distal end 118 and thermally heated to weld the plug to the porous membrane sheath 114.
  • Themoplastic polymeric materials such as polyethylene, polypropylene, polycarbonate and polysulfone are particularly suited for thermal welding, hi other embodiments, the distal end 118 of the porous membrane sheath 114 can be sealed against the optical fiber 110.
  • FIGS. 7A and B the results of glucose determination over time and with infused glucose in a circulating blood loop in vitro are compared for a continuous glucose sensor in accordance with a preferred embodiment of the present Invention ( — GLUC ATHTM) and the Yellow Springs Instrument glucose oxidase lab analyzer (• YSI), the gold standard of blood glucose measurements.
  • the GLUCATHTM equilibrium fluorescence glucose sensor used in this experiment comprised HPTS-triCysMA dye and 3,3'-oBBV quencher.
  • FIG. 7A shows an 8 hr time course with changes in circulating glucose in the range of 50-400 mg/dl.
  • FIG 7B is an expanded illustration of the two hr stepwise addition of 10 mg/dl boluses.
  • the data show that the equilibrium fluorescence glucose sensor provides continuous monitoring of blood glucose which is as accurate as the YSI lab analyzer.
  • the expanded view in FIG 7B shows rapid and accurate sensing even at very low levels of blood glucose (between 50 and 100 mg/dl). This is surprising since accurate detection in such a low range has been extremely difficult to accomplish with other detection devices.
  • the lack of accurate and reliable blood glucose sensing below 100 mg/dl has hampered ICU attempts to maintain target blood glucose levels, because of the significant clinical risk of going too low.
  • FIGS. 8A and B Bland-Altman plots show differences between laboratory references and either fingerstick POC (FIG. 8A) or GLUCATHTM indwelling equilibrium fluorescence glucose sensor (FIG. 8B) for in vivo blood glucose monitoring.
  • FIG. 8A shows results of blood glucose detection using a standard fingerstick test compared to a clinical chemistry system. The 95% confidence limits vary from -22.7 to 28.4 mg/dl with a bias of 2.1 mg/dl. It is noteworthy that very few readings below 100 mg/dl can be seen.
  • FIG. 8B shows results of blood glucose detection using GLUCATHTM continuous equilibrium fluorescence glucose sensor, deployed intravascularly in sheep compared to the YSI lab analyzer. The differences are much tighter, with 95% confidence limits of -11.7 to 14.1 mg/dl and a bias of only 1.2 mg/dl. There are many more data points below 100 mg/dl.

Description

SENSOR FOR PERCUTANEOUS INTRAVASCULAR DEPLOYMENT WITHOUT AN INDWELLING CANNULA
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/045,887, filed April 17, 2008, the entire contents of which are incorporated herein by reference and should be considered a part of this specification.
BACKGROUND OF THE INVENTION Field of the Invention
[0002] A sensor for intravascular residence is disclosed along with methods for percutaneous deployment of the sensor, hi preferred embodiments, the sensor is a fiber-optic glucose sensor which is inserted and resides in a peripheral vein without an indwelling cannula. Description of the Related Art
[0003] Despite advances in glucose detection technologies, there are no minimally invasive, accurate, real-time, in vivo sensors on the market for monitoring glucose levels over a period of days or weeks. Consequently, it has been a significant burden on diabetics, patients and hospital staff to perform frequent blood sampling for conventional ex vivo blood glucose monitoring. There are short-term continuous glucose sensors that use enzyme-based glucose detection in the interstitial fluid. However, such sensors are relatively large, complex and expensive. These electrochemical sensors also consume reactants (e.g., glucose), which may become limiting particularly when the sensors are walled off due to the patient's foreign body reaction. Moreover, the equilibration lag time may change and the correlation between blood and interstitial glucose levels may become tenuous, particularly in seriously ill (e.g., ICU) patients.
[0004] Intravascular sensor deployment raises other technical difficulties. Typically, one sensor for each analyte has been placed in a patient's blood vessel(s) through an indwelling cannula. If it is desired to measure several analytes, a plurality of sensors are often required, which can cause attendant discomfort to the patient and complexity of the electronic monitoring equipment. Moreover, even the deployment of a single sensor within a peripheral vein presents continuous maintenance issues for the nursing staff. The present state of the art is that sensors are deployed through indwelling cannulas. Because blood becomes trapped and clots within such cannulas and between the cannula and the sensor, the cannula must be flushed continuously or periodically, typically with saline/heparin. In the ICU, for example, the nursing staff regularly purge (e.g., every 4 hrs) the trapped blood and clots, to maintain cannula access to the vein open.
[0005] Accordingly, there remains an important unmet need for a sensor configured for intravascular deployment and methods of deploying such a sensor, wherein the sensor by itself is left to reside within the vein, without any additional structural components (e.g., an indwelling cannula).
SUMMARY OF THE INVENTION
[0006] A method is disclosed for deploying a sensor in a blood vessel of a patient. The method comprises positioning the sensor in the blood vessel, such that at least a distal portion of the sensor resides within the blood vessel and at least a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient.
[0007] In one preferred embodiment, the blood vessel is a peripheral vein. In another preferred embodiment, the sensor is an optical fiber glucose sensor.
[0008] In one embodiment, the step of positioning the sensor further comprises introducing the sensor into the blood vessel through an introducer assembly.
[0009] In another embodiment, the step of positioning the sensor further comprises removing the introducer assembly, leaving only the sensor in the patient.
[0010] A method for measuring an analyte concentration in a blood vessel is disclosed in accordance with another embodiment. The method comprises: providing a sensor configured to reside at least in part within the blood vessel and generate a signal related to the analyte concentration in the blood; introducing the sensor into the blood vessel through an introducer assembly; removing the introducer assembly, leaving only the analyte sensor in the patient; and detecting the signal to measure the analyte concentration in the blood.
[0011] A method for deploying a sensor in a blood vessel is disclosed in accordance with another embodiment. The method comprises: providing an introducer assembly comprising a hypodermic needle slidably engaged within a splitable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the splitable cannula; cannulating the blood vessel with the introducer assembly; withdrawing the hypodermic needle, leaving the splitable cannula in the vessel; inserting the sensor through the splitable cannula and into the vessel; withdrawing the splitable cannula from the vessel, leaving the sensor in the vessel; and splitting and removing the cannula from the sensor.
[0012] A method for continuous monitoring of blood glucose levels in a patient is disclosed in accordance with another embodiment. The method comprises: providing an introducer assembly comprising a hypodermic needle slidably engaged within a removable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the removable cannula; inserting the introducer assembly into a peripheral vein; retracting the hypodermic needle from the removable cannula, while leaving the removable cannula in the peripheral vein; providing an optical glucose sensor comprising a fluorescent indicator system disposed along a distal end region and adapted to generate an optical signal related to the blood glucose level in response to light, an elongate fiberoptic body, and an optical coupling disposed along a proximal end region; inserting the optical glucose sensor through the removable cannula and into the peripheral vein; retracting the removable cannula from the vein, while leaving the sensor in the peripheral vein; removing the removable cannula from the sensor; connecting the optical coupling to a device comprising a light source and a detector; and detecting the optical signal to monitor the blood glucose level of the patient. In one preferred embodiment, the removable cannula has at least one scoring such that the removable cannula can be split.
[0013] For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein. These and other objects and advantages of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS
[0014] FIG. 1 shows a side view of an embodiment of an intravascular sensor.
[0015] FIG. 2 shows a side view of one embodiment of a peelable introducer.
[0016] FIG. 3 shows a perspective view of one embodiment of a splitable introducer.
[0017] FIG. 4A shows a back view of the splitable introducer of FIG. 3.
[0018] FIG. 4B shows a side view of an introducer assembly comprising the splitable introducer of FIG. 3 and a hypodermic needle.
[0019] FIG. 5 shows a cut-away view of a sensor where a portion of the porous membrane sheath is cut away to expose the optical fiber and hydrogel beneath the membrane.
[0020] FIG. 6 is a cross-sectional view along a longitudinal axis of a sensor with a hydrogel disposed distal the optical fiber.
[0021] FIGS. 7A and 7B show blood glucose determinations in vitro in a circulating blood loop, with a comparison of the GLUCATH™ and YSI detection methods.
[0022] FIGS. 8A and 8B show Bland-Altman difference plots comparing laboratory references to SURESTEP PRO FINGERSTICK™ and GLUCATH™ equilibrium fluorescent glucose sensor. The GLUCATH™ sensor is deployed in vivo in the right jugular vein of sheep.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT [0023] In one embodiment, the present invention involves a method for deploying a sensor in a blood vessel of a patient, wherein the sensor resides within the patient without any additional device or structural components, e.g., introducer, cannula, catheter, sleeve, etc. The deployment of a naked, preferably very small and non- thrombogenic, sensor addresses some of the disadvantages that presently face patients and medical staff, e.g., thrombogenesis, constant staff care, etc. The sensor can be adapted to sense any analyte using known sensing systems and/or chemistries. The blood vessel can be an artery or a vein. The method comprises positioning the sensor in the blood vessel, such that a distal portion of the sensor resides within the blood vessel by itself, and a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient.
[0024] More particularly, new and elegant solutions to some of the technical challenges faced by patients and medical staff in using existing in vivo glucose sensors are disclosed. In one embodiment, a solution to the technical challenges involves using a sensor comprising equilibrium, non-consuming fluorescence-based detection chemistry. Equilibrium optical sensing addresses the problems associated with rate-limiting consumption of enzymatic reactants in current electrochemical sensors. Further, placement within a peripheral vein, as opposed to subcutaneous (interstitial) placement, provides direct monitoring of blood glucose levels, thereby avoiding the problems associated with measuring glucose levels in the interstitial fluid — e.g., uncertain and changing equilibration time for glucose between the blood and the interstitial fluid. In another embodiment, deployment of a very small diameter, non-thrombogenic fiber-optic sensor within a vein, without an indwelling cannula, addresses the serious burden on the nursing staff related to continuous or periodic flushing of the cannula to maintain open access to the vein.
[0025] Examples of small diameter, equilibrium optical sensors are disclosed in U.S. Patent No. 6,627,177 and U.S. Patent Publ. No. 2006/0083688, and co-pending U.S. Patent Appl. Nos. 11/296,898; 11/782,553; 11/671,880; 12/027,158; 12/026,396; 60/917,309; 60/917,307; 60/954,204; 60/915,372; 60/949,145; and 60/989,732; each of which is incorporated herein in its entirety by reference thereto.
[0026] Processes for inserting catheters into a blood vessel are known. Generally, a hypodermic needle is first inserted into the blood vessel. Once the hypodermic needle is in place in the blood vessel, a guidewire may be threaded through the hypodermic needle and into the blood vessel. After the guidewire has been inserted into the blood vessel through the hypodermic needle, the hypodermic needle can be removed, leaving the guidewire in place in the blood vessel. Next, a cannula is threaded over the guidewire and into the blood vessel. Finally, the guidewire is removed and the catheter is introduced into the blood vessel through the cannula. When the catheter is an analyte sensor, the cannula is left indwelling.
[0027] In preferred embodiments, the present invention relates to a fiber-optic glucose sensor that is introduced into and resides within a blood vessel (or interstitial site) by itself, without an indwelling cannula or permanent introducer. The small diameter and flexibility of such a sensor provide obvious advantages in relation to patient comfort. Liao, K.-C, et al., Biosens. Bioelectron. (2008), doi: 10.1016/j.bios.2008.01.012 recently disclosed a smaller and less invasive glucose sensor designed for interstitial implantation, wherein glucose sensitivity is mediated by Con A binding and Quantum dots are used as FRET donors; the sensor chemistry is immobilized at the end of an optical fiber in a PEG- DA hydrogel. However, Liao et al., does not disclose intravascular deployment. Interstitial fluid is generally slow to equilibrate with glucose. Thus, intravascular monitoring is highly preferred because it is the glucose in blood that is important, particularly where patients are critically ill and the medical staff is trying to maintain tight glycemic control. Very sick patients tend to exhibit huge fluid shifts, which dramatically change glucose response time/correlation between blood glucose and interstitial fluid glucose.
[0028] In some embodiments, e.g., for walking diabetics, interstitial deployment of an equilibrium fiber-optic sensor may be utilized. The equilibrium between blood and interstitial fluid glucose will tend to be relatively constant in such patients, wherein the convenience (less-invasive nature) of interstitial deployment may be preferred.
[0029] FIG. 1 shows an embodiment of a sensor 10 having a distal end 12 and an elongate body 14 that can be percutaneously inserted into a blood vessel, such as a vein or artery, for intravascular residence. In some embodiments, the vein or artery can be a peripheral vein or a peripheral artery, while in other embodiments, the vein or artery can be a central vein or a central artery. In some embodiments, the sensor can be interstitially deployed. The sensor 10 can be a sensor for measuring any compound, metabolite, chemical, protein, molecule, nutrient, and/or hemodynamic parameter of interest. For example, the sensor 10 can be a sensor for measuring glucose, ions such as potassium, blood gases, such as oxygen and carbon dioxide, flow rate, pressure, pH, or any other measurable analyte. In some embodiments, as illustrated in FIG. 1, the sensor 10 is a fiber-optic glucose sensor as further described in co-pending U.S. Appl. Nos. 12/026,396, filed February 5, 2008 and U.S. Application No. 12/027,158, filed February 6, 2008, both of which are incorporated herein by reference in their entireties.
[0030] The sensor 10 can be percutaneously introduced into a blood vessel by using a removable introducer 20, embodiments of which are illustrated in FIGS. 2-4. The introducer 20 can be, for example, peelable or splitable. One embodiment of a peelable introducer 20 is shown in FIG. 2. The introducer 20 has a distal end 22, a proximal end 24 and an elongate body 26 having a lumen therebetween. In some embodiments, the elongate body 26 can be a sheath or tubular structure with thin walls. The proximal end 24 comprises a hub 27 having a first wing 28 and a second wing 30 that extend transversely away from the elongate body 26. The first wing 28 and second wing 30 are located opposite or substantially opposite each other. The elongate body 26 can have two longitudinal score lines 32, 34 which are located opposite or substantially opposite each other and divide the elongate body 26 into two halves, each half attached to a wing. The score lines 32, 34 are weakened portions of the elongate body 26 that allow the introducer 20 to be split in half by grasping the wings 28, 30 and pulling the wings 28, 30 apart.
[0031] FIGS. 3 and 4A and 4B illustrate an embodiment of a splitable introducer 20. As shown in FIG. 3, the splitable introducer 20 has a distal end 22, a proximal end 24 and an elongate body 26 having a lumen 36 therebetween. The proximal end 24 comprises a hub 27 having a first wing 28 and a second wing 30 that extend transversely away from the elongate body 26. As shown in FIG. 4A, the first wing 28 and the second wing 30 can be attached to the hub 27 at an angle α to each other. In some embodiments, the angle α between the first wing 28 and the second wing 30 is less than about 120 degrees.
[0032] As shown in FIG. 3, the splitable introducer 20 has a single score line 32 that runs along the length of the elongate body 26 and hub 27. The score line 32 is located on a portion of the splitable introducer 20 that generally opposes the first wing 28 and the second wing 30. For example, as shown in FIG. 4A, the splitable introducer 20 can be divided in half longitudinally by plane P which also bisects angle α. The score line 32 is located at an angle γ from the first wing 28 and at an angle β from the second wing. hi some embodiments, β and γ are approximately equal. In some embodiments, β and γ are at least about 120 degrees. The splitable introducer 20 can be split along the score line 32 by squeezing the first wing 28 and the second wing 30 together. In some embodiments, squeezing can advantageously be accomplished by using just one hand.
[0033] FIG. 4B illustrates an introducer assembly 40 comprising a splitable introducer 20 and a hypodermic needle 42 disposed therein. The hypodermic needle 42 has a distal end 44 and a proximal end 46 and a cannula 48 extending therebetween. The distal end 44 of the cannula 48 can be beveled to terminate in a sharp point that facilitates entry of the hypodermic needle 42 into the patient's tissue. The proximal portion of the hypodermic needle can include a filter 50 and flashback chamber 52. When the distal end 44 of the hypodermic need 42 is inserted into a blood vessel or interstitial space, blood or interstitial fluid will fill the flashback chamber 52, thereby facilitating the correct placement of the introducer assembly 40 into the blood vessel. The filter 50 can function to contain the blood within the flashback chamber 52 and to reduce the likelihood of contamination of the blood, thereby reducing the chance of infection. As illustrated, the cannula 48 is removably disposed within the lumen 36 of the elongate body 26 of the splitable introducer 20. After the introducer assembly 40 is inserted in the blood vessel or interstitial space, the hypodermic needle 42 can be withdrawn from the splitable introducer 20, leaving just the splitable introducer 20 in the blood vessel or interstitial space.
[0034] Additional types of removable introducers 20 are also suitable for introducing the sensor 10 into a blood vessel. For example, an introducer 20 that can be removed by cutting can be used in some embodiments. The cutting tool used to cut the introducer 20 can be designed to cut the introducer 20 without damaging the sensor 10 underneath.
[0035] In some embodiments, the introducer 20 can be made out of a metal, metal alloy, resin (for example, a thermosetting resin such as an epoxy resin or phenolic resin), polymer (for example, a thermoplastic polymer or, in some cases, an elastomeric polymer) or a combination of the forgoing compounds. The polymer can be polyacrylate, polyurethane, polysulfone, polypropylene, polytetrafluoroethylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyvinyl chloride, or any other suitable polymer. In certain embodiments, the introducer comprises polyurethane.
[0036] Examples of removable introducers that can be used in accordance with some embodiments are described in U.S. Patent Nos. 4,345,606, 5,141,497, 5,334,157, 5,409,469, 6,273,874, and 6,663,595, and EP 0402057B1; each of which is incorporated herein in its entirety by reference thereto.
J0037] In some embodiments, an introducer assembly comprises an introducer with a hypodermic needle coaxially engaged within the lumen of the introducer. The hypodermic needle or stylus is typically within the lumen of the introducer 20 before the introducer 20 is inserted into the patient to access the patient's blood vessel or interstitial site. The distal end of the hypodermic needle or stylus can extend beyond the distal end 22 of the introducer 20 so that the hypodermic needle or stylus can help the introducer 20 penetrate the patient's tissue to access the blood vessel. In addition, the hypodermic needle can help the medical practitioner locate the blood vessel by allowing the medical practitioner to visualize blood when the hypodermic needle enters a blood vessel. It is understood that any member capable of piercing the skin and traversing the underlying tissue can be used in accordance with embodiments of the invention — it need not be a "hypodermic needle" per se, In one embodiment, the introducer itself may comprise a beveled or otherwise piercing distal end that is splitable, peelable, etc., such that a separate needle need not be used to access the blood vessel or interstitial site.
[0038] In some embodiments, the hypodermic needle has a diameter that is only slightly less than the diameter of the elongate body 26 of the introducer 20. This can be accomplished by making the walls of the elongate body 26 relatively thin. In addition, the hypodermic needle can have a diameter that is only slightly less than the lumen 36 of the introducer 20 so that the hypodermic needle fits snugly into the lumen 36. In some embodiments, the distal end 22 of the introducer 20 can be beveled or tapered to provide a gradual increase in diameter of the distal portion of the elongate body 26. In some embodiments, e.g., where a metal needle and a stretchable polymeric introducer are employed, the diameter of the needle may be equal to or even larger than the diameter of the introducer, such that the introducer expands to accommodate the needle.
[0039] The hypodermic needle, which projects past the distal end 22 of the introducer 20, is used to puncture the skin and tissue of the patient, creating a hole with a diameter substantially equal to the diameter of the hypodermic needle. As the hypodermic needle and introducer 20 are advanced through the patient's tissue and into the blood vessel or interstitial site, the distal end 22 of the introducer 20 enters the hole made by the hypodermic needle. As described above, in some embodiments the beveled or tapered distal end 22 facilitates insertion of the elongate body 26 of the introducer 20 into the hole made by the hypodermic needle by closely matching the diameter of the distal end 22 to the diameter of the hole. The beveled or tapered distal end 22 also allows the hole to be gradually stretched wider, rather than further cutting or tearing the tissue, as the introducer is advanced. The wall of the elongate body 26 can be thin in order to reduce the degree of widening of the hole that occurs as the introducer is advanced. In addition, the gradual widening or stretching of the hole facilitates the formation of a tight seal between the patient's tissue and the elongate body 26. [0040] After the introducer 20 is inserted into the blood vessel, the hypodermic needle or stylus can be removed from the lumen 36 of the introducer 20. In some embodiments, the elongate body 26 can be flexible and kink resistant. The elongate body 26 can be made flexible by fabricating the elongate body 26 out of a polymer such as polyacrylate, polyurethane, polysulfone, polyproprylene, polytetrafluroethylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyvinyl chloride, or any other suitable polymer. The elongate body 26 can be made stiff, while maintaining its flexibility, and kink resistant by embedding or incorporating a coil of wire into the polymer elongate body 26. This is especially true for elastomeric polymers, such as polyacrylate and polyurethane. Preferably, the wire is very thin and can be made out of a variety of metals or metal alloys, such as steel, nickel, titanium, aluminum or a combination of each. However, in some embodiments, the elongate body 26 does not comprise a coil of wire. Making the elongate body 26 flexible and kink resistant reduces the likelihood that the lumen 36 will kink or collapse, which can make insertion of the sensor 10 through the introducer 20 difficult.
[00411 The sensor 10, a fiber-optic glucose sensor in preferred embodiments, can be inserted into the lumen 36 of the introducer 20 and into the blood vessel. In some embodiments, the sensor 10 has a diameter that is the same as or substantially similar to the diameter of the hypodermic needle or to the inner diameter of the lumen 36 of the introducer 20. The sensor 10 can have a smooth surface to facilitate passage of the sensor 10 through the lumen 36 of the introducer 20. hi some embodiments, a lubricant can be used to facilitate passage of the sensor 10 through the lumen 36 of the introducer 20.
[0042] After the sensor 10 has been introduced into the blood vessel or interstitial site through the lumen 36 of the introducer 20, the introducer 20 can be withdrawn from the patient's tissue. The introducer 20 can be removed from the sensor 10 by peeling, splitting or cutting the introducer 20, as described above.
[0043] Once the introducer 20 has been removed, the stretched hole closes around the sensor 10, forming a seal. The surface of the sensor 10 can be made smooth to enhance the seal between the patient's tissue and the surface of the sensor 10. This allows the sensor 10 to reside in the blood vessel or interstitial site without using a permanent indwelling cannula that also resides in the blood vessel or interstitial site.
[0044] In some embodiments, the sensor 10 can be given anti-thrombogenic properties by, for example, coating or treating the surface of the sensor 10 with heparin or another compound with anti-thrombogenic properties. In addition, the sensor 10 can be fabricated with a smooth surface having low thrombogenicity. For example, the sensor 10 surface can be made of a polymer such as polytetrafluoroethylene. Portions of the sensor 10 that include a porous or semipermeable membrane can be given a smooth surface by the polymerization of a polymer, such as a hydrogel, within the pores of the membrane, as described in co-pending U.S. Application No. 12/026,396, filed February 5, 2008, which is hereby incorporated by reference in its entirety.
EXAMPLES
[0045] In some embodiments, a fiber-optic glucose sensor can be inserted into a blood vessel or an interstitial space of the patient as described herein. The glucose sensor comprises an optical glucose measurement system that measures glucose concentration levels using glucose-sensing chemical indicator systems. Such indicator systems preferably comprise a fluorophore operably coupled to a glucose binding moiety. Preferably, the glucose binding moiety acts as a quencher with respect to the fluorophore (e.g., suppresses the fluorescent emission signal of the fluorophore in response to excitation light when it associates with the fluorophore). In preferred embodiments, as the glucose binding moiety binds glucose (e.g., as glucose concentrations rise), it dissociates from the fluorophore, which then generates a fluorescent emission signal upon excitation. Accordingly, in such embodiments, the higher the glucose concentration, the more glucose bound by the binding moiety, the less quenching, and the higher the fluorescence intensity of the fluorophore upon excitation.
[0046] The optical glucose measurement system measures, in certain embodiments, the glucose concentrations intravascularly or interstitially and in real-time through the use of such fluorophore-quencher indicator systems. The glucose-sensing indicator systems can be immobilized in a hydrogel. The hydrogel can be inserted into an optical fiber such that light may be transmitted through the hydrogel while at least a portion of the hydrogel is in contact with blood. The hydrogel is preferably permeable to analytes, specifically glucose. The optical fiber together with the hydrogels can comprise a glucose sensor that is placed in a mammalian (human or animal) blood vessel or interstitial space. In certain embodiments, light is transmitted into the glucose sensor from a light source. The light source can be a light emitting diode that emits an optical excitation signal. The optical excitation signal can excite the fluorophore systems in the presence of glucose, such that the fluorophores emit light at an emission wavelength. In certain embodiments, the fluorophore systems can be configured to emit an optical emission signal at a first wavelength having an intensity related to the blood glucose concentration in the blood vessel or the interstitial fluid glucose concentration in the interstitial space. The light can be directed out of the glucose sensor such that the light is detected by a light sensitive module (or detector system) that can comprise at least one detector. Detectors include any component capable of converting light into a measurable signal, and may include but are not limited to photomultipliers, photodiodes, diode arrays, or the like. The at least one detector can be configured to measure the intensity of the emission wavelength because the intensity of the emission wavelength, in certain embodiments, is related to the glucose concentration present in the blood. In certain embodiments, the light sensitive module (or detector system) comprises an interference filter, an amplifier, and/or an analog-to-digital converter. The light sensitive module (or detector system) can also comprise a micro spectrometer, spectrometer, or the like.
[0047] Various non-glucose related factors can affect the measurements of the intensity of the emission wavelength, resulting in measurement errors. In certain embodiments, the measurement errors are eliminated or are substantially eliminated or reduced by employing a ratio of certain signals. The measurement errors that may be eliminated include but are not limited to changes in the intensity of the light generated from the light source(s), changes in the coupling efficiency of light into the optical fibers, bending of the optical fiber and the ensuing loss of light from the fiber, changes in the sensitivity of the detection circuit due to, for example, temperature or age or duration of use. In certain embodiments, the ratio of certain signals is unaffected by changes in the light source intensity, the coupling efficiency of the light source into the optical fibers, bending of the optical fibers or the like. The ratio of certain signals can be the ratio of an emission signal to an excitation signal. In certain embodiments, the ratio of certain signals is the ratio of an emission signal to a second optical signal. The second signal may be the excitation light signal which is transmitted through the optical system, through the sensor and indicator system, and reflects back at least in part from the sensor into the light sensitive module (or detector system). Alternatively, the second signal may be generated by a separate reference light, for example red light, which is not absorbed by the indictor system. The second signal may be generated by certain fluorophores as a second emission signal at a different wavelength — the intensity of which is independent of glucose. Any light that is propagated through the optical system, can be either not altered by the glucose concentration or is the excitation light. Light not altered by the glucose concentration can be detected by the light sensitive system (or detector system) and may be used as the second or reference light signal.
[0048] From the disclosure herein, it will be apparent to those of ordinary skill in the art that other sources of measurement errors may also be eliminated by employing a ratio of certain signals.
[0049] The indicator system (also referred to herein as a fiuorophore system) can comprise a fiuorophore operably coupled to a quencher. In certain embodiments, the fiuorophore system comprises a polymer matrix comprising a fiuorophore susceptible to quenching by a viologen, a viologen quencher with quenching efficacy dependent on glucose concentration, and a glucose permeable polymer, wherein said matrix is in contact with blood in vivo. Preferably the fiuorophore is a fluorescent organic dye, the quencher is a boronic acid functionalized viologen, and the matrix is a hydrogel.
[0050] "Fiuorophore" refers to a substance that when illuminated by light at a particular wavelength emits light at a longer wavelength; i.e. it fluoresces. Fluorophores include but are not limited to organic dyes, organometallic compounds, metal chelates, fluorescent conjugated polymers, quantum dots or nanoparticles and combinations of the above. Fluorophores may be discrete moieties or substiruents attached to a polymer.
[0051] Fluorophores that may be used in preferred embodiments are capable of being excited by light of wavelength at or greater than about 400 nm, with a Stokes shift large enough that the excitation and emission wavelengths are separable by at least 10 nm. In some embodiments, the separation between the excitation and emission wavelengths may be equal to or greater than about 30 nm. These fluorophores are preferably susceptible to quenching by electron acceptor molecules, such as viologens, and are resistant to photo-bleaching. They are also preferably stable against photo- oxidation, hydrolysis and biodegradation.
[0052] In some embodiments, the fiuorophore may be a discrete compound.
[0053] In some embodiments, the fiuorophore may be a pendant group or a chain unit in a water-soluble or water-dispersible polymer having molecular weight of about 10,000 daltons or greater, forming a dye-polymer unit. In one embodiment, such dye-polymer unit may also be non-covalently associated with a water-insoluble polymer matrix M1 and is physically immobilized within the polymer matrix M!, wherein M1 is permeable to or in contact with an analyte solution. In another embodiment, the dye on the dye-polymer unit may be negatively charged, and the dye-polymer unit may be immobilized as a complex with a cationic water-soluble polymer, wherein said complex is permeable to or in contact with the analyte solution. In one embodiment, the dye may be one of the polymeric derivatives of hydroxypyrene trisulfonic acid. The polymeric dyes may be water-soluble, water-swellable or dispersible in water. In some embodiments, the polymeric dyes may also be cross-linked. In preferred embodiments, the dye has a negative charge.
[0054] In other embodiments, the dye molecule may be covalently bonded to the water-insoluble polymer matrix M1, wherein said M1 is permeable to or in contact with the analyte solution. The dye molecule bonded to M1 may form a structure M^L1- Dye. L1 is a hydrolytically stable covalent linker that covalently connects the sensing moiety to the polymer or matrix. Examples of L1 include lower alkylene (e.g., Ci-Cs alkylene), optionally terminated with or interrupted by one or more divalent connecting groups selected from sulfonamide (-SO2NH-), amide -(C=O)N-, ester -(C=O)-O-, ether.-O-, sulfide -S-, sulfone (-SO2-), phenylene -C6H4-, urethane -NH(C=O)-O- -, urea -NH(C=O)NH-, thiourea -NH(C=S)-NH-, amide -(C=O)NH-, amine -NR- (where R is defined as alkyl having 1 to 6 carbon atoms) and the like, or a combination thereof. In one embodiment, the dye is bonded to a polymer matrix through the sulfonamide functional groups.
[0055] In accordance with broad aspects of the present invention, the analyte binding moiety provides the at least dual functionality of being able to bind analyte and being able to modulate the apparent concentration of the fluorophore (e.g., detected as a change in emission signal intensity) in a manner related to the amount of analyte binding. In preferred embodiments, the analyte binding moiety is associated with a quencher. "Quencher" refers to a compound that reduces the emission of a fluorophore when in its presence. Quencher (Q) is selected from a discrete compound, a reactive intermediate which is convertible to a second discrete compound or to a polymerizable compound or Q is a pendant group or chain unit in a polymer prepared from said reactive intermediate or polymerizable compound, which polymer is water-soluble or dispersible or is an insoluble polymer, said polymer is optionally crosslinked.
[0056] In one example, the moiety that provides glucose recognition in the embodiments is an aromatic boronic acid. The boronic acid is covalently bonded to a conjugated nitrogen-containing heterocyclic aromatic bis-onium structure (e.g., a viologen). "Viologen" refers generally to compounds having the basic structure of a nitrogen containing conjugated N-substituted heterocyclic aromatic bis-onium salt, such as 2,2'-, 3,3'- or 4,4'-N,N' bis-(benzyl) bipyridium dihalide (i.e., dichloride, bromide chloride), etc. Viologen also includes the substituted phenanthroline compounds. The boronic acid substituted quencher preferably has a pKa of between about 4 and 9, and reacts reversibly with glucose in aqueous media at a pH from about 6.8 to 7.8 to form boronate esters. The extent of reaction is related to glucose concentration in the medium. Formation of a boronate ester diminishes quenching of the fluorphore by the viologen resulting in an increase in fluorescence dependent on glucose concentration. A useful bis- onium salt is compatible with the analyte solution and capable of producing a detectable change in the fluorescent emission of the dye in the presence of the analyte to be detected.
[0057] Bis-onium salts in the embodiments of this invention are prepared from conjugated heterocyclic aromatic di-nitrogen compounds. The conjugated heterocyclic aromatic di-nitrogen compounds are selected from dipyridyls, dipyridyl ethylenes, dipyridyl phenylenes, phenanthrolines, and diazafluorenes, wherein the nitrogen atoms are in a different aromatic ring and are able to form an onium salt. It is understood that all isomers of said conjugated heterocyclic aromatic di-nitrogen compounds in which both nitrogens can be substituted are useful in this invention. In one embodiment, the quencher may be one of the bis-onium salts derived from 3,3 '-dipyridyl, 4,4'-dipyridyl and 4,7-ρhenanthroline.
[0058] In some embodiments, the viologen-boronic acid adduct may be a discrete compound having a molecular weight of about 400 daltons or greater. In other embodiments, it may also be a pendant group or a chain unit of a water-soluble or water- dispersible polymer with a molecular weight greater than about 10,000 daltons. In one embodiment, the quencher-polymer unit may be non-covalently associated with a polymer matrix and is physically immobilized therein. In yet another embodiment, the quencher- polymer unit may be immobilized as a complex with a negatively charge water-soluble polymer.
[0059] In other embodiments, the viologen-boronic acid moiety may be a pendant group or a chain unit in a crosslinked, hydrophilic polymer or hydrogel sufficiently permeable to the analyte (e.g., glucose) to allow equilibrium to be established. [0060] In other embodiments, the quencher may be covalently bonded to a second water-insoluble polymer matrix M2, which can be represented by the structure M2- L2-Q. L2 is a linker selected from the group consisting of a lower alkylene (e.g., C1-Cg alkylene), sulfonamide, amide, quaternary ammonium, pyridinium, ester, ether, sulfide, sulfone, phenylene, urea, thiourea, urethane, amine, and a combination thereof. The quencher may be linked to M2 at one or two sites in some embodiments.
[0061] In certain embodiments, at least one quencher precursor is used to attach the quenching moiety to at least one polymer. For example, aromatic groups may be used to functionalize a viologen with combinations of boronic acid groups and reactive groups. In certain embodiments, this process includes attaching an aromatic group to each of the two nitrogens in the dipyridyl core of the viologen. At least one boronic acid group, a reactive group, or a combination of the two are then attached to each aromatic group, such that the groups attached to each of the two nitrogens on the dipyridyl core of the viologen may either be the same or different. Certain combinations of the functionalized viologen quenching moiety are described as follows: a) a first aromatic group having a pendent reactive group is attached to the first nitrogen and a second aromatic group having at least one pendent boronic group is attached to the second nitrogen; b) one or more boronic acid groups are attached to a first aromatic group, which is attached to the first nitrogen, and one boronic acid group and a reactive group are attached to a second aromatic group, which second aromatic group is attached to the second nitrogen; c) one boronic acid group and a reactive group are attached to a first aromatic group, which first aromatic group is attached to the first nitrogen, and one boronic acid group and a reactive group are attached to a second aromatic group, which is attached to the second nitrogen; and d) one boronic acid group is attached to an aromatic group, which aromatic group is attached to each of the two nitrogens, and a reactive group is attached to a carbon in a heteroaromatic ring in the heteroaromatic centrally located group.
[0062] Preferred embodiments comprise two boronic acid moieties and one polymerizable group or coupling group wherein the aromatic group is a ben2yl substituent bonded to the nitrogen and the boronic acid groups are attached to the ben∑yl ring and may be in the ortho- meta- or para- positions. [0063] FIG. 5 shows an embodiment of the distal portion of a sensor 100 comprising an optical fiber 110 with a distal end 112 disposed in a porous membrane sheath 114. The optical fiber 110 has cavities 106, such as holes, in the fiber-optic wall that can be formed by, for example, mechanical means such as drilling or cutting. The cavities 106 in the optical fiber 110 can be filled with a suitable compound, such as a polymer. In some embodiments, the polymer is a hydrogel 108. In other embodiments of the sensor 100 as shown in FIG. 6, the optical fiber 110 does not have cavities 106, and instead, the hydrogel 108 is disposed in a space distal to the distal end 112 of the optical fiber 110 and proximal to the mirror 123. In some embodiments, the sensor 100 is a glucose sensor. In some embodiments, the glucose sensor is an intravascular or interstitial glucose sensor.
[0064] In some embodiments, the porous membrane sheath 114 can be made from a polymeric material such as polyethylene, polycarbonate, polysulfone or polypropylene. Other materials can also be used to make the porous membrane sheath 114 such as zeolites, ceramics, metals, or combinations of these materials. In some embodiments, the porous membrane sheath 114 is microporous and has a mean pore size that is less than approximately two nanometers. In other embodiments, the porous membrane sheath 114 is mesoporous and has a mean pore size that is between approximately two nanometers to approximately fifty nanometers. In still other embodiments, the porous membrane sheath 114 is macroporous and has a mean pore size that is greater than approximately fifty nanometers.
[0065] In some embodiments as shown in FIG. 6, the porous membrane sheath 114 is attached to the optical fiber 110 by a connector 116. For example, the connector 116 can be an elastic collar that holds the porous membrane sheath 114 m place by exerting a compressive force on the optical fiber 110. In other embodiments, the connector 116 is an adhesive or a thermal weld.
[0066] In some embodiments as shown in FIG. 5, a mirror 123 and thermistor 125 can be placed within the porous membrane sheath 114 distal the distal end 112 of the optical fiber 110. Thermistor leads 127 can be made to run in a space between the optical fiber 110 and porous membrane sheath 114. Although a thermistor 125 is shown, other devices such as a thermocouple, pressure transducer, an oxygen sensor, a carbon dioxide sensor or a pH sensor for example can be used instead. [0067] In some embodiments as shown in FIG. 6, the distal end 118 of the porous membrane sheath 114 is open and can be sealed with, for example, an adhesive 120. In some embodiments, the adhesive 120 can comprise a polymerizable material that can fill the distal end 118 and then be polymerized into a plug. Alternatively, in other embodiments the distal end 118 can be thermally welded by melting a portion of the polymeric material on the distal end 118, closing the opening and allowing the melted polymeric material to resolidify, hi other embodiments as shown in FIG. 5, a polymeric plug 121 can be inserted into the distal end 118 and thermally heated to weld the plug to the porous membrane sheath 114. Themoplastic polymeric materials such as polyethylene, polypropylene, polycarbonate and polysulfone are particularly suited for thermal welding, hi other embodiments, the distal end 118 of the porous membrane sheath 114 can be sealed against the optical fiber 110.
[0068] With reference to FIGS. 7A and B, the results of glucose determination over time and with infused glucose in a circulating blood loop in vitro are compared for a continuous glucose sensor in accordance with a preferred embodiment of the present Invention ( — GLUC ATH™) and the Yellow Springs Instrument glucose oxidase lab analyzer (• YSI), the gold standard of blood glucose measurements. The GLUCATH™ equilibrium fluorescence glucose sensor used in this experiment comprised HPTS-triCysMA dye and 3,3'-oBBV quencher. FIG. 7A shows an 8 hr time course with changes in circulating glucose in the range of 50-400 mg/dl. FIG. 7B is an expanded illustration of the two hr stepwise addition of 10 mg/dl boluses. The data show that the equilibrium fluorescence glucose sensor provides continuous monitoring of blood glucose which is as accurate as the YSI lab analyzer. The expanded view in FIG 7B shows rapid and accurate sensing even at very low levels of blood glucose (between 50 and 100 mg/dl). This is surprising since accurate detection in such a low range has been extremely difficult to accomplish with other detection devices. The lack of accurate and reliable blood glucose sensing below 100 mg/dl has hampered ICU attempts to maintain target blood glucose levels, because of the significant clinical risk of going too low.
[0069] With reference to FIGS. 8A and B, Bland-Altman plots show differences between laboratory references and either fingerstick POC (FIG. 8A) or GLUCATH™ indwelling equilibrium fluorescence glucose sensor (FIG. 8B) for in vivo blood glucose monitoring. FIG. 8A shows results of blood glucose detection using a standard fingerstick test compared to a clinical chemistry system. The 95% confidence limits vary from -22.7 to 28.4 mg/dl with a bias of 2.1 mg/dl. It is noteworthy that very few readings below 100 mg/dl can be seen. FIG. 8B shows results of blood glucose detection using GLUCATH™ continuous equilibrium fluorescence glucose sensor, deployed intravascularly in sheep compared to the YSI lab analyzer. The differences are much tighter, with 95% confidence limits of -11.7 to 14.1 mg/dl and a bias of only 1.2 mg/dl. There are many more data points below 100 mg/dl.
[0070] The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is therefore indicated by the appended claims rather than the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

WHAT IS CLAIMED IS:
1. A method for deploying a sensor in a blood vessel of a patient, comprising: positioning the sensor in the blood vessel, such that at least a distal portion of the sensor resides within the blood vessel and at least a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient.
2. The method of Claim 1, wherein the sensor is an equilibrium sensor.
3. The method of Claim 2, wherein the equilibrium sensor is an optical fiber glucose sensor, wherein the optical fiber glucose sensor operates by a fluorophore operably coupled to a glucose binding moiety.
4. The method of any one of Claims 1 -3, wherein the sensor measures at least one of glucose, potassium ions, oxygen, carbon dioxide, flow rate, pressure, and pH.
5. The method of any one of Claims 1-4, wherein the sensor is non- thrombogenic.
6. The method of any one of Claims 1-5, wherein the blood vessel is a peripheral vein or artery.
7. The method of any one of Claims 1-6, wherein positioning the sensor further comprises introducing the sensor into the blood vessel through an introducer assembly.
8. The method of Claim 7, wherein the introducer assembly comprises a hypodermic needle, wherein a piercing tip of the hypodermic needle extends distally beyond the introducer assembly.
9. The method of any one of Claims 7-8, wherein the introducer assembly has a proximal end and a distal end, wherein the proximal end of the introducer assembly comprises a hub having a first wing and a second wing located at an angle α to each other.
10. The method of any one of Claims 7-9, wherein the introducer assembly has at least one score line along a longitudinal axis, wherein the at least one score line is a weakened portion of the introducer assembly.
11. The method of Claim 10, wherein the at least one score line divides the longitudinal axis of the introducer assembly into two halves wherein each half comprises one of a first wing and a second wing.
12. The method of any one of Claims 1-1I5 wherein positioning the sensor further comprises removing the introducer assembly while leaving only the sensor in the patient.
13. The method of Claim 12, wherein removing the introducer assembly while leaving only the sensor in the patient forms a seal around the sensor.
14. The method of any one of Claims 12-13, wherein removing the introducer assembly comprises at least one of splitting the introducer assembly, peeling the introducer assembly, and cutting the introducer assembly.
15. The method of Claim 14, wherein splitting the introducer assembly comprises squeezing a first wing and a second wing together, wherein the first wing and the second wing are disposed opposite each other along a longitudinal axis of the introducer assembly.
PCT/US2009/040379 2008-04-17 2009-04-13 Sensor for percutaneous intravascular deployment without an indwelling cannula WO2009129186A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4588708P 2008-04-17 2008-04-17
US61/045,887 2008-04-17

Publications (1)

Publication Number Publication Date
WO2009129186A2 true WO2009129186A2 (en) 2009-10-22

Family

ID=40756449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/040379 WO2009129186A2 (en) 2008-04-17 2009-04-13 Sensor for percutaneous intravascular deployment without an indwelling cannula

Country Status (2)

Country Link
US (2) US8512245B2 (en)
WO (1) WO2009129186A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056363A1 (en) * 2010-10-27 2012-05-03 Koninklijke Philips Electronics N.V. Splittable needle with fiber probe
US8838195B2 (en) 2007-02-06 2014-09-16 Medtronic Minimed, Inc. Optical systems and methods for ratiometric measurement of blood glucose concentration
US8983565B2 (en) 2007-02-06 2015-03-17 Medtronic Minimed, Inc. Optical determination of pH and glucose
US8979790B2 (en) 2007-11-21 2015-03-17 Medtronic Minimed, Inc. Use of an equilibrium sensor to monitor glucose concentration
EP4230158A1 (en) * 2022-02-22 2023-08-23 BIOTRONIK SE & Co. KG Introducer tool

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) * 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
US8282549B2 (en) 2003-12-09 2012-10-09 Dexcom, Inc. Signal processing for continuous analyte sensor
WO2005011520A2 (en) 2003-07-25 2005-02-10 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US7494465B2 (en) 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8233959B2 (en) 2003-08-22 2012-07-31 Dexcom, Inc. Systems and methods for processing analyte sensor data
WO2005051170A2 (en) 2003-11-19 2005-06-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP2256493B1 (en) 2003-12-05 2014-02-26 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
WO2009048462A1 (en) 2007-10-09 2009-04-16 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8170803B2 (en) 2004-07-13 2012-05-01 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US20070045902A1 (en) 2004-07-13 2007-03-01 Brauker James H Analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
WO2007120381A2 (en) 2006-04-14 2007-10-25 Dexcom, Inc. Analyte sensor
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2008141243A2 (en) * 2007-05-10 2008-11-20 Glumetrics, Inc. Device and methods for calibrating analyte sensors
JP5517919B2 (en) 2007-05-10 2014-06-11 グルメトリクス、 インク. Balanced non-consumable fluorescent sensor for immediate intravascular glucose measurement
AU2008262018A1 (en) 2007-06-08 2008-12-18 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
WO2009129186A2 (en) * 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula
WO2010033724A2 (en) 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9446194B2 (en) 2009-03-27 2016-09-20 Dexcom, Inc. Methods and systems for promoting glucose management
US9517023B2 (en) 2009-06-01 2016-12-13 Profusa, Inc. Method and system for directing a localized biological response to an implant
EP2483679A4 (en) 2009-09-30 2013-04-24 Glumetrics Inc Sensors with thromboresistant coating
US8467843B2 (en) * 2009-11-04 2013-06-18 Glumetrics, Inc. Optical sensor configuration for ratiometric correction of blood glucose measurement
WO2011075711A1 (en) * 2009-12-17 2011-06-23 Glumetrics, Inc. System and method for maintaining glycemic control based on glucose activity measurements
US8473222B2 (en) * 2010-03-11 2013-06-25 Glumetrics, Inc. Measurement devices and methods for measuring analyte concentration incorporating temperature and pH correction
US10010272B2 (en) 2010-05-27 2018-07-03 Profusa, Inc. Tissue-integrating electronic apparatus
US20110319738A1 (en) * 2010-06-29 2011-12-29 Abbott Diabetes Care Inc. Medical Devices and Insertion Systems and Methods
CN105147300B (en) 2010-10-06 2019-09-03 普罗弗萨股份有限公司 Tissue integration sensor
DK3575796T3 (en) 2011-04-15 2021-01-18 Dexcom Inc ADVANCED ANALYZE SENSOR CALIBRATION AND ERROR DETECTION
US8734345B2 (en) 2011-08-01 2014-05-27 Covidien Lp Real time intravascular monitoring device
WO2014074621A1 (en) * 2012-11-07 2014-05-15 Glumetrics, Inc. Dry insertion and one-point in vivo calibration of an optical analyte sensor
EP2859911A1 (en) 2013-10-11 2015-04-15 qSTAR Medical SAS Vascular access port devices with incorporated sensors
US10251605B2 (en) 2015-02-16 2019-04-09 Verily Life Sciences Llc Bandage type of continuous glucose monitoring system
US10201295B2 (en) 2015-03-13 2019-02-12 Verily Life Sciences Llc User interactions for a bandage type monitoring device
US10292630B2 (en) 2015-06-01 2019-05-21 Verily Life Sciences Llc Optical sensor for bandage type monitoring device
US10765353B2 (en) 2015-07-02 2020-09-08 Verily Life Sciences Llc Calibration methods for a bandage-type analyte sensor
USD780548S1 (en) 2015-07-22 2017-03-07 Ac (Macao Commercial Offshore) Limited Power tool
USD806493S1 (en) 2015-07-22 2018-01-02 Tti (Macao Commercial Offshore) Limited Tool adapter
US10105100B2 (en) 2015-07-28 2018-10-23 Verily Life Sciences Llc Display on a bandage-type monitoring device
WO2017165298A1 (en) * 2016-03-22 2017-09-28 Government Of The United States, As Represented By The Secretary Of The Air Force Vascular access disassembling needle device and method
WO2018119400A1 (en) 2016-12-22 2018-06-28 Profusa, Inc. System and single-channel luminescent sensor for and method of determining analyte value
HUE063121T2 (en) * 2017-06-23 2024-01-28 Dexcom Inc Transcutaneous analyte sensors, applicators therefor, and needle hub comprising anti-rotation feature
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
CN209606445U (en) 2017-10-24 2019-11-08 德克斯康公司 Pre-connection analyte sensor
USD926325S1 (en) 2018-06-22 2021-07-27 Dexcom, Inc. Wearable medical monitoring device

Family Cites Families (329)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1120700A (en) 1914-02-02 1914-12-15 Hoechst Ag Arseno-azo compounds and process of making same.
US1334901A (en) * 1918-12-10 1920-03-23 Higdon Emma Turning-sheet and pad
US2112244A (en) * 1933-08-26 1938-03-29 Squibb & Sons Inc Amino azobenzene arsonic acids
US2274551A (en) * 1939-06-30 1942-02-24 Eastman Kodak Co Derivatives of resins and their preparation
US2496151A (en) * 1946-08-14 1950-01-31 Harvel Corp Azo dyestuffs
US3011293A (en) 1953-03-24 1961-12-05 Pickering Dorothy Frances Collapsible container
US2812524A (en) 1955-03-25 1957-11-12 Lawrence C Pruitt Patient turner
AT267017B (en) 1965-04-02 1968-12-10 Ceskoslovenska Akademie Ved Process for the preparation of new, substituted 2,7-bisphenylazo derivatives of chromotropic acid
US3302219A (en) * 1966-01-14 1967-02-07 Joe F Harris Hospital bed and lifting and turning device
US3488098A (en) * 1968-03-26 1970-01-06 Teletype Corp Motion translating device
US3659586A (en) 1969-05-20 1972-05-02 Univ Johns Hopkins Percutaneous carbon dioxide sensor and process for measuring pulmonary efficiency
CH530006A (en) * 1970-10-01 1972-10-31 Hoffmann La Roche Electrode arrangement
US3827089A (en) 1971-09-16 1974-08-06 W Grow Turnover bed assembly
US3808615A (en) * 1972-05-22 1974-05-07 W Geary Bed and pillow assembly
US3865548A (en) * 1972-06-13 1975-02-11 Einstein Coll Med Analytical apparatus and process
CH564771A5 (en) 1973-05-10 1975-07-31 Hoffmann La Roche
US3884225A (en) 1973-06-01 1975-05-20 Evelyn Ruth Witter Bed patient turn and hold device
SE428596B (en) 1975-04-09 1983-07-11 Raychem Corp DEVICE FOR CONNECTING SUBSTRATE EXV RODS INCLUDING A MEMORIAL METAL BODY
US3930580A (en) * 1973-10-19 1976-01-06 Medical Products Corporation Sterilizable, peelable pouch or tray assembly
US3909504A (en) 1973-11-05 1975-09-30 Carrier Tel Corp America Inc Ruggedized package for electronic components and the like
GB1447163A (en) 1974-03-13 1976-08-25 Gibbs J R Beds
US3895403A (en) 1974-04-05 1975-07-22 Sanford Davis Patient orienting device
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4041932A (en) 1975-02-06 1977-08-16 Fostick Moshe A Method for monitoring blood gas tension and pH from outside the body
DE2508637C3 (en) 1975-02-28 1979-11-22 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Arrangement for the optical measurement of blood gases
IT1057223B (en) 1976-02-19 1982-03-10 Cselt Centro Studi Lab Telecom OPTICAL EQUALIZER FOR TRANSMISSION OF SIGNALS OF MULTIMODE OPTICAL GUIDES
FR2350831A1 (en) 1976-05-13 1977-12-09 Caneva Moutinho Mario Bedridden patient movement aid mechanism - has cloth harness with ends coupled to motor driven rope reeved round supports
GB2005418B (en) * 1977-07-26 1982-04-21 Searle & Co Electrochemical sensor system
FR2403098A1 (en) 1977-09-19 1979-04-13 Merieux Inst NEW MATERIAL CAPABLE OF REVERSIBLE BINDING OF BIOLOGICAL MACROMOLECULES, ITS PREPARATION AND APPLICATION
CA1065969A (en) * 1977-09-28 1979-11-06 Gratien Bouillon Self-blocking cerebral catheter
US4200110A (en) * 1977-11-28 1980-04-29 United States Of America Fiber optic pH probe
US4345606A (en) * 1977-12-13 1982-08-24 Littleford Philip O Split sleeve introducers for pacemaker electrodes and the like
NO141592C (en) 1978-06-22 1980-04-23 Kjell Roeisaeth DEVICE FOR HANDLING A PERSON ON A SUBSTRATE
US4269605A (en) 1978-06-28 1981-05-26 Amicon Corporation Method and kit for separation of glycoproteins
US4344438A (en) 1978-08-02 1982-08-17 The United States Of America As Represented By The Department Of Health, Education And Welfare Optical sensor of plasma constituents
US4180879A (en) * 1978-08-04 1980-01-01 Mann Rose A Body positioner
US4306562A (en) 1978-12-01 1981-12-22 Cook, Inc. Tear apart cannula
GB2038017B (en) 1978-12-20 1982-11-24 Standard Telephones Cables Ltd Optical fibre directional coupler
JPS5618342Y2 (en) 1979-04-26 1981-04-30
US4307933A (en) 1980-02-20 1981-12-29 General Dynamics, Pomona Division Optical fiber launch coupler
US4358851A (en) 1980-02-28 1982-11-09 Xerox Corporation Fiber optic laser device and light emitter utilizing the device
DE3036868A1 (en) 1980-09-30 1982-05-13 Siemens AG, 1000 Berlin und 8000 München Coupling, junction-forming and combining light conductor fibres - using supporting body with grooves for fixing fibres and grinding or polishing region of grooves
US4371374A (en) * 1980-11-17 1983-02-01 The Rockefeller University Monitoring metabolic control in diabetic patients by measuring glycosylated amino acids and peptides in urine
EP0061884A1 (en) 1981-03-30 1982-10-06 Imperial Chemical Industries Plc Optical fibre sensor
US4659817A (en) * 1981-05-01 1987-04-21 The Children's Medical Center Corporation Reporter compounds containing boron
US4459712A (en) 1981-06-11 1984-07-17 Pathan Rajendra K Hospital bed
NO160563C (en) * 1981-07-27 1989-05-03 Vasterviks Pulverlackering Ab SIDE TURNOVER OF SLEEPING PERSONS.
GB2103786A (en) 1981-08-14 1983-02-23 Ici Plc Fibre optic sensor
EP0073558A3 (en) 1981-08-25 1984-09-26 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Fiber optic ph probe for tissue measurements
US4476870A (en) 1982-03-30 1984-10-16 The United States Of America As Represented By The Department Of Health And Human Services Fiber optic PO.sbsb.2 probe
DE3216516A1 (en) 1982-05-03 1983-11-03 Siemens AG, 1000 Berlin und 8000 München OPTICAL WAVELENGTH MULTIPLEXER IN ACCORDANCE WITH THE GRILLED PRINCIPLE
USRE32514E (en) 1982-06-14 1987-10-06 Eastman Kodak Company Polymer compositions having a low coefficient of friction
US4515584A (en) * 1982-07-06 1985-05-07 Fujisawa Pharmaceutical Co., Ltd. Artificial pancreas
US4557900A (en) 1982-09-28 1985-12-10 Cardiovascular Devices, Inc. Optical sensor with beads
US4465335A (en) 1982-10-12 1984-08-14 The United States Of America As Represented By The Secretary Of The Army Concentric core optical fiber coupler
US4490867A (en) * 1982-12-21 1985-01-01 Lycksele Nya Platprodukter Ab Bed rocking mechanism
US5030420A (en) 1982-12-23 1991-07-09 University Of Virginia Alumni Patents Foundation Apparatus for oxygen determination
US4495293A (en) * 1983-02-24 1985-01-22 Abbott Laboratories Fluorometric assay
US4528616A (en) 1983-03-28 1985-07-09 Gte Automatic Electric Inc. Printed wiring board enclosure
US4548907A (en) 1983-09-14 1985-10-22 Allied Corporation Fluorescent fluid determination method and apparatus
US5007704A (en) * 1983-10-28 1991-04-16 Baxter International Inc. Oximeter
US4754538A (en) 1983-11-15 1988-07-05 Raychem Corporation Annular tube-like driver
AU559681B2 (en) 1983-12-19 1987-03-19 Litton Systems, Incorporated Three port coupler
SE441128B (en) * 1984-01-25 1985-09-09 Asea Ab FIBER OPTICAL SENSOR FOR SURGERY OF DYNAMIC ACCELERATION
JPS60231156A (en) * 1984-04-30 1985-11-16 Kuraray Co Ltd Liquid junction type reference electrode
US4846543A (en) 1984-05-02 1989-07-11 Kaptron, Inc. Star coupler for optical fibers
US4621049A (en) 1984-11-19 1986-11-04 Miles Laboratories, Inc. Enzymatic high range glucose test
US5217691A (en) 1984-11-19 1993-06-08 Miles Inc. Nonenzymatic glucose test
US4803049A (en) * 1984-12-12 1989-02-07 The Regents Of The University Of California pH-sensitive optrode
DE3446726A1 (en) 1984-12-21 1986-06-26 Fa. Carl Zeiss, 7920 Heidenheim OPTICAL ARRANGEMENT WITH A CONCAVE MIRROR OR CONCAVE GRID
GB8504521D0 (en) * 1985-02-21 1985-03-27 Genetics Int Inc Electrochemical assay
DE3509262A1 (en) 1985-03-12 1985-10-10 Heinrich Dipl.-Ing. 1000 Berlin Ranke Bed for the disabled having a lifting device and a bath tub
US4654031A (en) * 1985-04-15 1987-03-31 Warner-Lambert Company Flash chamber
US4776047A (en) 1985-05-07 1988-10-11 Med Bed Technologies, Inc. Multiple function invalid bed arrangement
US4750795A (en) 1985-06-13 1988-06-14 The Board Of Trustees Of The Leland Stanford Junior University Optical fiber coupler
US4943364A (en) 1985-06-21 1990-07-24 Spectramed, Inc. Fiber optic CO2 sensor
US4796633A (en) * 1985-06-25 1989-01-10 American Hospital Supply Corporation Method and apparatus for in vitro calibration of oxygen saturation monitor
US4650472A (en) * 1985-08-30 1987-03-17 Cook, Incorporated Apparatus and method for effecting percutaneous catheterization of a blood vessel using a small gauge introducer needle
US4629451A (en) 1985-09-23 1986-12-16 Victory Engineering Corp. Stereotaxic array plug
FR2588471B1 (en) 1985-10-15 1990-06-08 Bernard Jean Marc ANTI-PRESSURE BED
CN1003110B (en) 1985-11-15 1989-01-25 李鸿柱 Program-controlled rejuvenating bed
JPH025799Y2 (en) * 1986-02-07 1990-02-13
US4684538A (en) 1986-02-21 1987-08-04 Loctite Corporation Polysiloxane urethane compounds and adhesive compositions, and method of making and using the same
US4710623A (en) 1986-02-27 1987-12-01 Eli Lilly And Company Optical fiber catheter with fiber-contained reactive element
US4675925A (en) 1986-04-03 1987-06-30 Henrietta Littleton Device for manipulating bedridden patients
US4798738A (en) 1986-10-10 1989-01-17 Cardiovascular Devices, Inc. Micro sensor
US4801187A (en) * 1986-04-30 1989-01-31 Baxter Travenol Laboratories, Inc. Liquid light tube end cap assembly
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4822127A (en) * 1986-06-16 1989-04-18 Shiley Incorporated Multi-channel optical transmission system
US4927222A (en) 1986-06-16 1990-05-22 Shiley Incorporated Dual optical fiber device
US4854321A (en) 1986-06-18 1989-08-08 Medex, Inc. Integrated optic system for monitoring blood gases
US4727730A (en) * 1986-07-10 1988-03-01 Medex, Inc. Integrated optic system for monitoring blood pressure
US5012809A (en) 1986-10-10 1991-05-07 Shulze John E Fiber optic catheter system with fluorometric sensor and integral flexure compensation
US4886338A (en) 1986-10-10 1989-12-12 Minnesota Mining And Manufacturing Company Optical fiber event sensor
US4794619A (en) 1986-12-05 1988-12-27 Conax Buffalo Corporation Optical fiber temperature sensor
US5162130A (en) 1986-12-17 1992-11-10 Mclaughlin Gerald G Light activated coloration of dental restorations
US5093266A (en) * 1987-02-06 1992-03-03 Shiley Inc. Sensor system
US4833091A (en) 1987-02-06 1989-05-23 Shiley Incorporated Sensor system
US4746751A (en) 1987-05-07 1988-05-24 Baxter Travenol Laboratories, Inc. Silicone reactive/fluorescent silane dye compositions
DE3720736A1 (en) 1987-06-23 1989-01-05 Erwin Dr Schleicher Method, reagents and equipment for the simple determination of non-enzymatically glycosylated proteins in body fluids
US4816130A (en) * 1987-07-02 1989-03-28 Becton, Dickinson And Company Blood electrolyte sensors including crosslinked polyetherurethane membranes
DE3869237D1 (en) 1987-07-07 1992-04-23 Siemens Ag SENSOR FOR GASES OR IONS.
GB8718430D0 (en) * 1987-08-04 1987-09-09 Ici Plc Sensor
US4861728A (en) 1987-07-24 1989-08-29 Becton, Dickinson And Company Immunoassay of glycosylated hemoglobin using a labeled boron reagent
US4785814A (en) 1987-08-11 1988-11-22 Cordis Corporation Optical probe for measuring pH and oxygen in blood and employing a composite membrane
US4851195A (en) 1987-08-17 1989-07-25 Pfizer Hospital Products Group, Inc. Carbon dioxide sensor
US4923273A (en) 1987-10-13 1990-05-08 Texas A&M University System Method for producing reflective taps in optical fibers and applications thereof
US5185263A (en) * 1987-10-23 1993-02-09 Avl Medical Instruments Ag Method for calibration of a measurement apparatus
US4821738A (en) * 1987-11-19 1989-04-18 Marquest Medical Products, Inc. Arterial blood gas syringe
FR2624007A1 (en) 1987-12-02 1989-06-09 Perdu Jean Francois Sanitary bed with special rollers for treatment of bedridden patients
US4906232A (en) * 1988-03-01 1990-03-06 Abbott Laboratories Intravascular delivery device
US4838269A (en) 1988-03-24 1989-06-13 Scimed Life Systems, Inc. Manifold for angioplasty balloon catheter
EP0336985B1 (en) * 1988-04-09 1993-01-27 Hewlett-Packard GmbH Method for manufacturing an optical probe
US4960412A (en) 1988-04-15 1990-10-02 Universal Medical Instrument Corp. Catheter introducing system
US4903707A (en) * 1988-04-22 1990-02-27 Camino Laboratories Ventricular catheter assembly
US4872226A (en) 1988-06-06 1989-10-10 Robert Lonardo Means for positioning bedfast patients
US5361758A (en) 1988-06-09 1994-11-08 Cme Telemetrix Inc. Method and device for measuring concentration levels of blood constituents non-invasively
US5000901A (en) * 1988-07-25 1991-03-19 Abbott Laboratories Fiber-optic physiological probes
US4941308A (en) 1988-07-25 1990-07-17 Abbott Laboratories Method of packaging for a sterilizable calibratable medical device
AT390517B (en) 1988-08-04 1990-05-25 Avl Verbrennungskraft Messtech OPTICAL SENSOR AND METHOD FOR THE PRODUCTION THEREOF
US4937901A (en) 1988-11-04 1990-07-03 Brennan Louis G Apparatus for turning a patient from a supine to a prone position and vice-versa
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
US4985022A (en) 1988-11-23 1991-01-15 Med Institute, Inc. Catheter having durable and flexible segments
US4889407A (en) 1988-12-02 1989-12-26 Biomedical Sensors Limited Optical waveguide sensor and method of making same
US4939801A (en) 1988-12-22 1990-07-10 Schaal Gary A Patient transporting and turning gurney
IT1225494B (en) 1988-12-23 1990-11-20 Italpres Snc Di Fregni & C APPARATUS TO PREVENT TRAINING AND TAKE CARE OF PADS IN LONG PATIENTS
US5153827A (en) 1989-01-30 1992-10-06 Omni-Flow, Inc. An infusion management and pumping system having an alarm handling system
US5047208A (en) 1989-02-23 1991-09-10 Medtronic, Inc. Blood gas monitoring sensors
US4955862A (en) 1989-05-22 1990-09-11 Target Therapeutics, Inc. Catheter and catheter/guide wire device
US5141497A (en) * 1989-06-06 1992-08-25 Becton, Dickinson And Company Apparatus and method for an introducer
US5182353A (en) * 1989-08-16 1993-01-26 Puritan-Bennett Corporation Method for bonding an analyte-sensitive dye compound to an addition-cure silicone
US5129906A (en) 1989-09-08 1992-07-14 Linvatec Corporation Bioabsorbable tack for joining bodily tissue and in vivo method and apparatus for deploying same
US5512246A (en) * 1989-09-21 1996-04-30 Anthony P. Russell Method and means for detecting polyhydroxyl compounds
US5137833A (en) 1989-09-21 1992-08-11 Russell Anthony P Method for detecting polyhydroxyl compounds
ATE123972T1 (en) 1989-11-16 1995-07-15 N E Chemcat Corp METHOD AND DEVICE FOR HOLDING AN ARTICLE.
US4946038A (en) 1989-12-20 1990-08-07 Rolland Eaton Medicine container and cover therefor
US5054497A (en) 1990-02-21 1991-10-08 Biomedical Monitors And Implants, Inc. Cranial sensor attaching device and method for its use
US5098618A (en) * 1990-03-14 1992-03-24 Joseph Zelez Surface modification of plastic substrates
EP0447196A1 (en) * 1990-03-16 1991-09-18 Hewlett-Packard Company Boronic acid dyes
US5175016A (en) 1990-03-20 1992-12-29 Minnesota Mining And Manufacturing Company Method for making gas sensing element
US5180376A (en) * 1990-05-01 1993-01-19 Cathco, Inc. Non-buckling thin-walled sheath for the percutaneous insertion of intraluminal catheters
US5104388A (en) * 1990-05-08 1992-04-14 Fbk International Corporation Membrane splittable tubing
US5143066A (en) * 1990-05-08 1992-09-01 University Of Pittsburgh Optical fiber sensors for continuous monitoring of biochemicals and related method
US5047627A (en) 1990-05-18 1991-09-10 Abbott Laboratories Configuration fiber-optic blood gas sensor bundle and method of making
US5109452A (en) * 1990-07-16 1992-04-28 Puritan-Bennett Corporation Electrical-optical hybrid connector
US5279596A (en) * 1990-07-27 1994-01-18 Cordis Corporation Intravascular catheter with kink resistant tip
US5166990A (en) 1990-08-10 1992-11-24 Puritan-Bennett Corporation Multiple optical fiber event sensor and method of manufacture
US5176882A (en) * 1990-12-06 1993-01-05 Hewlett-Packard Company Dual fiberoptic cell for multiple serum measurements
US5178267A (en) * 1990-12-20 1993-01-12 Abbott Laboratories Packaging system for a sterilizable calbratable medical device
US5082112A (en) * 1991-02-05 1992-01-21 United States Surgical Corporation Package for endoscopic ligating instrument
AR245376A1 (en) 1991-02-25 1994-01-31 Liliana Rosa Grinfeld Y Robert Arterial profusion nozzle, for extra-corporal circulation and other uses.
US5167715A (en) 1991-03-04 1992-12-01 General Electric Company Apparatus and method for impregnating superconductor windings
US5119463A (en) 1991-04-09 1992-06-02 Abbott Laboratories Compound optical probe employing single optical waveguide
JP2948678B2 (en) * 1991-04-24 1999-09-13 玄々化学工業株式会社 Vacuum coating equipment
US5068931A (en) 1991-06-21 1991-12-03 Smith Gene A Apparatus for lifting and turning a patient confined to a bed
US5380304A (en) 1991-08-07 1995-01-10 Cook Incorporated Flexible, kink-resistant, introducer sheath and method of manufacture
US5305740A (en) * 1991-09-12 1994-04-26 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Sealing means for endotracheal tubes
US5261887A (en) 1992-01-22 1993-11-16 Baxter International Inc. Easy-to-handle, self-guiding catheter stripper
US5284153A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5168587A (en) 1992-05-18 1992-12-08 Shutes Robert S Patient positioning device
US5354448A (en) 1992-05-22 1994-10-11 Biomedical Sensors Ltd. Electrochemical sensor
US5280130A (en) * 1992-05-22 1994-01-18 Biomedical Sensors, Ltd. Assembly of a tube and a part and apparatus and method of manufacture
US5257338A (en) 1992-05-22 1993-10-26 Biomedical Sensors, Ltd. Device for transmitting and returning light and apparatus and method of manufacture
US5230031A (en) 1992-05-22 1993-07-20 Biomedical Sensors, Ltd. Barrier for a connector
US5262037A (en) 1992-05-22 1993-11-16 Biomedical Sensors, Ltd. Electrochemical sensor
US5246109A (en) 1992-05-22 1993-09-21 Biomedical Sensors, Ltd. Package for an active medical device
US5302731A (en) * 1992-07-13 1994-04-12 Becton, Dickinson And Company Fluorescent pH indicators
JP2599994Y2 (en) * 1992-07-30 1999-09-27 株式会社堀場製作所 Automatic calibration system for laboratory ion concentration meter
US5290266A (en) * 1992-08-14 1994-03-01 General Electric Company Flexible coating for magnetic resonance imaging compatible invasive devices
JPH08501392A (en) 1992-09-14 1996-02-13 パーデュー リサーチ ファウンデーション Chemical analysis by electrophoresis
EP0596700A1 (en) 1992-11-03 1994-05-11 Hewlett-Packard Company Cis-diol detection method and solid supports
US5280548A (en) * 1993-03-11 1994-01-18 Boc Health Care, Inc. Emission based fiber optic sensors for pH and carbon dioxide analysis
CA2166201A1 (en) 1993-06-30 1995-01-12 Barry Colin Crane Biphasic material
US5527325A (en) 1993-07-09 1996-06-18 Device For Vascular Intervention, Inc. Atherectomy catheter and method
US5954651A (en) 1993-08-18 1999-09-21 Scimed Life Systems, Inc. Catheter having a high tensile strength braid wire constraint
US5334157A (en) * 1993-09-09 1994-08-02 Gesco International, Inc. Catheter introducer
US5409469A (en) * 1993-11-04 1995-04-25 Medtronic, Inc. Introducer system having kink resistant splittable sheath
GB2284809B (en) * 1993-11-07 1998-04-29 Japan Res Dev Corp A fluorescent phenylboronic acid suitable for use in the detection of saccharides
US5511547A (en) * 1994-02-16 1996-04-30 Biomedical Sensors, Ltd. Solid state sensors
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5389217A (en) * 1994-04-28 1995-02-14 Biomedical Sensors Ltd. Measurement of bladder oxygen
US5922612A (en) 1994-05-02 1999-07-13 Novartis Corporation Optical sensor system for determining pH values and ionic strengths
US5658264A (en) 1994-11-10 1997-08-19 Target Therapeutics, Inc. High performance spiral-wound catheter
DE19502183C1 (en) 1995-01-25 1996-08-14 Wolfgang Dr Fleckenstein Bracket for brain probes
JP2799837B2 (en) 1995-03-03 1998-09-21 科学技術振興事業団 Boronic acid compounds having a binaphthyl group
US5676784A (en) 1995-03-15 1997-10-14 Abbott Laboratories Method of fabricating a heater coil for a catheter used to monitor cardiac output
US5702373A (en) 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US5634911A (en) 1995-05-19 1997-06-03 General Surgical Innovations, Inc. Screw-type skin seal with inflatable membrane
US5622259A (en) 1995-06-07 1997-04-22 Church; Jonathan M. Reduction of discoloration in plastic materials
US5545179A (en) 1995-07-21 1996-08-13 Ethicon Endo-Surgery, Inc. Endoscopic access assembly
JP3183390B2 (en) * 1995-09-05 2001-07-09 キヤノン株式会社 Photoelectric conversion device and imaging device using the same
US6019736A (en) * 1995-11-06 2000-02-01 Francisco J. Avellanet Guidewire for catheter
US6174424B1 (en) * 1995-11-20 2001-01-16 Cirrex Corp. Couplers for optical fibers
US6002954A (en) 1995-11-22 1999-12-14 The Regents Of The University Of California Detection of biological molecules using boronate-based chemical amplification and optical sensors
DE69633573T2 (en) 1995-11-22 2005-10-06 Medtronic MiniMed, Inc., Northridge DETECTION OF BIOLOGICAL MOLECULES USING CHEMICAL AMPLIFICATION AND OPTICAL SENSOR
US6766183B2 (en) 1995-11-22 2004-07-20 Medtronic Minimed, Inc. Long wave fluorophore sensor compounds and other fluorescent sensor compounds in polymers
US5797876A (en) 1995-11-27 1998-08-25 Therox, Inc. High pressure perfusion device
US5951929A (en) 1995-12-12 1999-09-14 Medi-Dyne Inc. Method for forming a catheter having overlapping welds
USD388418S (en) 1996-03-18 1997-12-30 Iomega Corporation Computer screen with an icon
US5827242A (en) 1996-06-21 1998-10-27 Medtronic, Inc. Reinforced catheter body and method for its fabrication
US5755704A (en) 1996-10-29 1998-05-26 Medtronic, Inc. Thinwall guide catheter
US5747666A (en) 1997-03-26 1998-05-05 Willis; John P. Point-of-care analyzer module
US6156010A (en) * 1997-06-17 2000-12-05 Injectimed, Inc. Method and apparatus for introducing an intravenous catheter
US5947940A (en) 1997-06-23 1999-09-07 Beisel; Robert F. Catheter reinforced to prevent luminal collapse and tensile failure thereof
ES2227880T3 (en) * 1997-08-09 2005-04-01 Roche Diagnostics Gmbh ANALYSIS DEVICE FOR PERFORMING LIVE ANALYSIS IN A PATIENT'S BODY.
DE19738942A1 (en) * 1997-09-05 1999-03-25 Pulsion Verwaltungs Gmbh & Co Method and device for determining the injection time and duration of injection in thermodilution measurements
US5891114A (en) 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
AU6325798A (en) 1997-11-12 1999-05-31 Stereotaxis, Inc. Intracranial bolt and method of placing and using an intracranial bolt to position a medical device
US6299583B1 (en) * 1998-03-17 2001-10-09 Cardiox Corporation Monitoring total circulating blood volume and cardiac output
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
DE19820808C2 (en) 1998-05-09 2000-11-02 Wolfgang Fleckenstein Insertion device for brain probes
US6702972B1 (en) * 1998-06-09 2004-03-09 Diametrics Medical Limited Method of making a kink-resistant catheter
WO2000007497A1 (en) * 1998-08-07 2000-02-17 Infinite Biomedical Technologies, Incorporated Implantable myocardial ischemia detection, indication and action technology
US6304766B1 (en) 1998-08-26 2001-10-16 Sensors For Medicine And Science Optical-based sensing devices, especially for in-situ sensing in humans
JP4689825B2 (en) * 1998-08-26 2011-05-25 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド Optical detector
US6254586B1 (en) * 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
GB2342863B (en) 1998-10-02 2003-02-19 Diametrics Medical Ltd Probe
GB9821575D0 (en) 1998-10-02 1998-11-25 Diametrics Medical Limited Cranial bolt
DE29817986U1 (en) 1998-10-08 1998-12-24 Homedica Ag Probe holder
US7226467B2 (en) * 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US6187130B1 (en) * 1999-05-26 2001-02-13 Scimed Life Systems, Inc. Method of creating a tip on a catheter
ATE346287T1 (en) 1999-07-16 2006-12-15 Univ Texas METHOD AND DEVICE FOR SUPPLYING SAMPLES TO A CHEMICAL SENSOR MATRIX
US6273874B1 (en) * 1999-08-18 2001-08-14 Becton, Dickinson And Company Protected peelable U-wing introducer
US6682938B1 (en) * 1999-09-15 2004-01-27 The Regents Of The University Of California Glucose sensing molecules having selected fluorescent properties
US6464849B1 (en) 1999-10-07 2002-10-15 Pepex Biomedical, L.L.C. Sensor for measuring a bioanalyte such as lactate
US6363273B1 (en) * 1999-12-22 2002-03-26 Codman & Shurtleff, Inc. Introducer element and method of using same
US6454744B1 (en) * 1999-12-23 2002-09-24 Tfx Medical, Inc. Peelable PTFE sheaths and methods for manufacture of same
US6375627B1 (en) 2000-03-02 2002-04-23 Agilent Technologies, Inc. Physiological fluid extraction with rapid analysis
US6361508B1 (en) * 2000-04-20 2002-03-26 The United States Of America As Represented By The Secretary Of The Army Personal event monitor with linear omnidirectional response
WO2001085256A2 (en) 2000-05-05 2001-11-15 Novo Nordisk A/S Critical illness neuropathy
US7769420B2 (en) * 2000-05-15 2010-08-03 Silver James H Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
WO2001088534A2 (en) 2000-05-16 2001-11-22 Cygnus, Inc. Methods for improving performance and reliability of biosensors
EP1307464B1 (en) 2000-08-04 2013-02-13 Senseonics, Incorporated Detection of analytes in aqueous environments
US20040006379A1 (en) * 2000-10-06 2004-01-08 Expanding Concepts, L.L.C. Epidural thermal posterior annuloplasty
US6387672B1 (en) 2000-12-04 2002-05-14 Beckman Coulter, Inc. Photo-induced electron transfer fluorescent sensor molecules
US7470420B2 (en) 2000-12-05 2008-12-30 The Regents Of The University Of California Optical determination of glucose utilizing boronic acid adducts
US6653141B2 (en) 2000-12-05 2003-11-25 The Regents Of The University Of California Polyhydroxyl-substituted organic molecule sensing method and device
US6627177B2 (en) 2000-12-05 2003-09-30 The Regents Of The University Of California Polyhydroxyl-substituted organic molecule sensing optical in vivo method utilizing a boronic acid adduct and the device thereof
US6519485B2 (en) * 2000-12-13 2003-02-11 The General Hospital Corporation Minimally invasive system for assessment of organ function
US6800451B2 (en) 2001-01-05 2004-10-05 Sensors For Medicine And Science, Inc. Detection of glucose in solutions also containing an alpha-hydroxy acid or a beta-diketone
US20070038155A1 (en) * 2001-01-05 2007-02-15 Kelly Paul B Jr Attitude Indicator And Activity Monitoring Device
EP1363531B1 (en) * 2001-02-22 2010-10-20 Kao Corporation Apparatus for measuring body fat
US6544212B2 (en) 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system
US20030045798A1 (en) * 2001-09-04 2003-03-06 Richard Hular Multisensor probe for tissue identification
US20050267326A1 (en) * 2001-10-02 2005-12-01 Alfred E. Mann Institute For Biomedical Eng. At The University Of Southern California Percutaneous chemical sensor based on fluorescence resonant energy transfer (FRET)
US7349402B2 (en) * 2002-03-25 2008-03-25 Nokia Corporation Communication system and method to be performed in a communication system
JP2003287534A (en) * 2002-03-28 2003-10-10 Fuji Photo Film Co Ltd Unit and apparatus for testing humor
AU2003253590A1 (en) * 2002-03-29 2003-11-10 Board Of Regents For The Oklahoma Agricultural And Mechanical Colleges, Acting For And On Behalf Of Oklahoma State University Implantable biosensor from stratified nanostructured membranes
US6819951B2 (en) * 2002-09-24 2004-11-16 Mayo Foundation For Medical Education And Research Peripherally inserted central catheter with continuous central venous oximetry and proximal high flow port
US7226414B2 (en) 2002-10-09 2007-06-05 Biotex, Inc. Method and apparatus for analyte sensing
AU2003286049A1 (en) * 2002-11-27 2004-06-18 Z-Tech (Canada) Inc. Apparatus for determining adequacy of electrode-to-skin contact and electrode quality for bioelectrical measurements
US6973338B2 (en) * 2002-12-09 2005-12-06 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Conjunctival monitor
US7390462B2 (en) 2002-12-17 2008-06-24 The University Of Maryland Baltimore County Ratiometric fluorescent pH sensor for non-invasive monitoring
US6669929B1 (en) 2002-12-30 2003-12-30 Colgate Palmolive Company Dentifrice containing functional film flakes
US7216001B2 (en) * 2003-01-22 2007-05-08 Medtronic Xomed, Inc. Apparatus for intraoperative neural monitoring
CN1748145A (en) * 2003-02-07 2006-03-15 皇家飞利浦电子股份有限公司 Device for determining a value that is representative of accelerations as well as an ergometer
US7229450B1 (en) * 2003-02-11 2007-06-12 Pacesetter, Inc. Kink resistant introducer with mapping capabilities
DE10311452B4 (en) * 2003-03-15 2006-04-13 Roche Diagnostics Gmbh Analysis system for the reagent-free determination of the concentration of an analyte in living tissue
US7387611B2 (en) * 2003-04-10 2008-06-17 Matsushita Electric Industrial Co., Ltd. Physical movement analyzer and physical movement analyzing method
US7358094B2 (en) 2003-05-01 2008-04-15 Bell Michael L Sensor system for saccharides
US20080009687A1 (en) * 2003-06-06 2008-01-10 Smith Joseph T Coiled circuit bio-sensor
US7353055B2 (en) 2003-06-18 2008-04-01 Hogan Josh N Non-invasive analysis system
US20040267203A1 (en) * 2003-06-26 2004-12-30 Potter Daniel J. Splittable cannula having radiopaque marker
US7879024B2 (en) * 2003-06-26 2011-02-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Splittable cannula having radiopaque marker
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US20080119703A1 (en) * 2006-10-04 2008-05-22 Mark Brister Analyte sensor
AU2003904336A0 (en) * 2003-08-15 2003-08-28 Medcare Systems Pty Ltd An automated personal alarm monitor
US7559894B2 (en) 2003-09-18 2009-07-14 New Paradigm Concepts, LLC Multiparameter whole blood monitor and method
US7181260B2 (en) * 2003-11-14 2007-02-20 Guillermo Gutierrez Apparatus and method for measuring myocardial oxygen consumption
US7787923B2 (en) * 2003-11-26 2010-08-31 Becton, Dickinson And Company Fiber optic device for sensing analytes and method of making same
US7499746B2 (en) * 2004-01-30 2009-03-03 Encore Medical Asset Corporation Automated adaptive muscle stimulation method and apparatus
GB2410793B (en) 2004-02-05 2006-05-17 Elan Vital Fluid analyser systems
US20050198837A1 (en) 2004-03-11 2005-09-15 Stephen Rawle Shaving razors with multiple blades
US7981058B2 (en) * 2004-03-12 2011-07-19 The Trustees Of Dartmouth College Intelligent wearable monitor systems and methods
US20050233465A1 (en) 2004-04-14 2005-10-20 Bioprocessors Corp. Compositions of matter useful as pH indicators and related methods
US20050241959A1 (en) 2004-04-30 2005-11-03 Kenneth Ward Chemical-sensing devices
FI118951B (en) * 2004-06-04 2008-05-30 Newtest Oy Sensor unit, device arrangement and method utilizing the device arrangement to form and display an assessment of bone mass development
USD525632S1 (en) 2004-07-12 2006-07-25 Sevic System Ag Set of icons for a portion of an automotive windshield display
US7959577B2 (en) * 2007-09-06 2011-06-14 Baxano, Inc. Method, system, and apparatus for neural localization
US20090171381A1 (en) * 2007-12-28 2009-07-02 Schmitz Gregory P Devices, methods and systems for neural localization
JP2006115948A (en) 2004-10-19 2006-05-11 Hitachi Ltd Blood-sugar level measuring apparatus
US20060105174A1 (en) 2004-10-25 2006-05-18 The Research Foundation Of State University Of New York Optical pH sensor
WO2006074337A1 (en) * 2005-01-06 2006-07-13 Lightouch Medical, Inc. Specialized human servo device and process for tissue modulation of human fingertips
WO2006078432A2 (en) 2005-01-18 2006-07-27 Cyberkinetics Neurotechnology Systems, Inc. Biological interface system with automated configuration
US20060189926A1 (en) * 2005-02-14 2006-08-24 Hall W D Apparatus and methods for analyzing body fluid samples
US7625372B2 (en) * 2005-02-23 2009-12-01 Vnus Medical Technologies, Inc. Methods and apparatus for coagulating and/or constricting hollow anatomical structures
US20090088615A1 (en) * 2007-10-01 2009-04-02 Mark Ries Robinson Indwelling Fiber Optic Probe for Blood Glucose Measurements
WO2007059476A2 (en) * 2005-11-15 2007-05-24 Luminous Medical, Inc. Blood analyte determinations
DE102005035795A1 (en) * 2005-05-03 2006-11-09 Rheinisch-Westfälisch Technische Hochschule Aachen Device for detecting physiological parameters inside the body
CN101726462B (en) * 2005-09-29 2013-01-23 株式会社东芝 Optical waveguide type biochemical sensor chip and method of manufacturing the same
WO2007047962A2 (en) * 2005-10-20 2007-04-26 Biological Targets, Inc. Insecticides that target protein kinase a (pka)
USD550245S1 (en) 2005-11-10 2007-09-04 Sony Corporation Computer generated image for a display panel or screen
USD559264S1 (en) * 2005-11-10 2008-01-08 Sony Corporation Computer generated image for a display panel or screen
USD550242S1 (en) 2005-11-10 2007-09-04 Sony Corporation Computer generated image for a display panel or screen
DE102005056310B4 (en) 2005-11-25 2017-02-02 Drägerwerk AG & Co. KGaA Method and device for monitoring infusions
USD560950S1 (en) * 2005-11-28 2008-02-05 Bsh Bosch Und Siemens Hausgeraete Gmbh Coffee machine
USD544871S1 (en) 2005-12-02 2007-06-19 Samsung Electronics Co., Ltd. Generated image for a portable telephone
EP1813188B1 (en) 2006-01-30 2011-03-30 Pulsion Medical Systems AG System for providing a dilution measuring point
US20080154107A1 (en) 2006-12-20 2008-06-26 Jina Arvind N Device, systems, methods and tools for continuous glucose monitoring
JP2009533101A (en) * 2006-04-10 2009-09-17 エルンスト,アルネボルグ Portable balancing prosthesis
USD560224S1 (en) * 2006-04-17 2008-01-22 Samsung Electronics Co., Ltd. Telephone with video display
US20070265675A1 (en) * 2006-05-09 2007-11-15 Ams Research Corporation Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation
US20080021294A1 (en) * 2006-07-14 2008-01-24 Levin Paul D Disposable blood glucose sensor with internal pump
WO2008014280A2 (en) 2006-07-25 2008-01-31 Glumetrics, Inc. Flourescent dyes for use in glucose sensing
USD592223S1 (en) 2006-10-12 2009-05-12 Bystronic Laser Ag Printed material and icon for computer display, electronic screen
USD582427S1 (en) 2006-10-12 2008-12-09 Bystronic Laser Ag Printed material and icon for computer display, electronic screen
WO2008049932A1 (en) 2006-10-27 2008-05-02 Basf Se Radiation-curable mixture containing low-molecular, ethylenically unsaturated compounds having non-aromatic ring systems
US8075499B2 (en) * 2007-05-18 2011-12-13 Vaidhi Nathan Abnormal motion detector and monitor
EP2989975B1 (en) 2007-02-06 2018-06-13 Medtronic MiniMed, Inc. Optical systems and methods for rationmetric measurement of blood glucose concentration
US7824918B2 (en) * 2007-08-06 2010-11-02 Glumetrics, Inc. HPTS-Mono and BIS Cys-Ma polymerizable fluorescent dyes for use in analyte sensors
US7939664B2 (en) 2007-05-01 2011-05-10 Glumetrics Inc. Pyridinium boronic acid quenchers for use in analyte sensors
USD626143S1 (en) 2007-02-06 2010-10-26 Glumetrics, Inc. Computer-generated icon for a blood glucose display
US7751863B2 (en) 2007-02-06 2010-07-06 Glumetrics, Inc. Optical determination of ph and glucose
WO2008098011A1 (en) 2007-02-06 2008-08-14 Glumetrics, Inc. Method for polymerizing a monomer solution within a cavity to generate a smooth polymer surface
US7508999B2 (en) * 2007-03-02 2009-03-24 Johns Hopkins University Fiber optic sensor device for measuring chromophoric compounds in biological fluid
WO2008141243A2 (en) 2007-05-10 2008-11-20 Glumetrics, Inc. Device and methods for calibrating analyte sensors
JP5517919B2 (en) 2007-05-10 2014-06-11 グルメトリクス、 インク. Balanced non-consumable fluorescent sensor for immediate intravascular glucose measurement
US8600681B2 (en) * 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
USD580950S1 (en) 2007-06-15 2008-11-18 Microsoft Corporation Icon for a portion of a display screen
EP2222686B1 (en) 2007-07-11 2015-06-17 Medtronic Minimed, Inc. Polyviologen boronic acid quenchers for use in analyte sensors
US7611012B2 (en) * 2007-07-24 2009-11-03 Michelle Ross Insulin syringe storage rack
US8897868B2 (en) * 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
WO2009067626A1 (en) 2007-11-21 2009-05-28 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
US20090275815A1 (en) 2008-03-21 2009-11-05 Nova Biomedical Corporation Temperature-compensated in-vivo sensor
WO2009129186A2 (en) * 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula
USD610065S1 (en) * 2008-12-19 2010-02-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Automobile wheel
US8376968B2 (en) * 2009-05-15 2013-02-19 The Hong Kong Polytechnic University Method and system for quantifying an intention of movement of a user

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838195B2 (en) 2007-02-06 2014-09-16 Medtronic Minimed, Inc. Optical systems and methods for ratiometric measurement of blood glucose concentration
US8983565B2 (en) 2007-02-06 2015-03-17 Medtronic Minimed, Inc. Optical determination of pH and glucose
US9839378B2 (en) 2007-02-06 2017-12-12 Medtronic Minimed, Inc. Optical systems and methods for ratiometric measurement of blood glucose concentration
US8979790B2 (en) 2007-11-21 2015-03-17 Medtronic Minimed, Inc. Use of an equilibrium sensor to monitor glucose concentration
WO2012056363A1 (en) * 2010-10-27 2012-05-03 Koninklijke Philips Electronics N.V. Splittable needle with fiber probe
CN103153382A (en) * 2010-10-27 2013-06-12 皇家飞利浦电子股份有限公司 Splittable needle with fiber probe
US9072475B2 (en) 2010-10-27 2015-07-07 Koninklijke Philips N.V. Splittable needle with fiber probe
EP4230158A1 (en) * 2022-02-22 2023-08-23 BIOTRONIK SE & Co. KG Introducer tool

Also Published As

Publication number Publication date
US8512245B2 (en) 2013-08-20
US20090264719A1 (en) 2009-10-22
US20140058223A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
US8512245B2 (en) Sensor for percutaneous intravascular deployment without an indwelling cannula
Poscia et al. A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1)
US8467843B2 (en) Optical sensor configuration for ratiometric correction of blood glucose measurement
US6537243B1 (en) Device and method for obtaining interstitial fluid from a patient for diagnostic tests
EP1973503B1 (en) Oxygen sensor for internal monitoring of tissue oxygen in vivo
US8615281B2 (en) Hypodermic optical monitoring of bodily analyte
US8694069B1 (en) Fiber-optic probe with embedded peripheral sensors for in-situ continuous monitoring
US7277740B2 (en) Analysis system for reagent-free determination of the concentration of an analyte in living tissue
US20100298764A1 (en) Fluid delivery system with optical sensing of analyte concentration levels
Wickramasinghe et al. Current problems and potential techniques in in vivo glucose monitoring
US20110263953A1 (en) Deployment system and method for optical analyte sensor
US20120053427A1 (en) Optical sensor configuration and methods for monitoring glucose activity in interstitial fluid
US20130144144A1 (en) Device system and method for monitoring and controlling blood analyte levels
US9757057B2 (en) Dry insertion and one-point in vivo calibration of an optical analyte sensor
US10610134B2 (en) Methods and devices for analyte sensing in potential spaces
Volpe et al. In vivo continuous monitoring of L-lactate coupling subcutaneous microdialysis and an electrochemical biocell
Ricci et al. Ex vivo continuous glucose monitoring with microdialysis technique: The example of GlucoDay
Bartnik et al. Advancements in optical fiber sensors for in vivo applications–A review of sensors tested on living organisms
Baldini Chemical and biochemical optical fibre sensing for invasive and intracellular application: Past, present and future

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732128

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732128

Country of ref document: EP

Kind code of ref document: A1