WO2009150968A1 - プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法 - Google Patents

プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法 Download PDF

Info

Publication number
WO2009150968A1
WO2009150968A1 PCT/JP2009/060124 JP2009060124W WO2009150968A1 WO 2009150968 A1 WO2009150968 A1 WO 2009150968A1 JP 2009060124 W JP2009060124 W JP 2009060124W WO 2009150968 A1 WO2009150968 A1 WO 2009150968A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
mounting table
workpiece
plasma processing
processed
Prior art date
Application number
PCT/JP2009/060124
Other languages
English (en)
French (fr)
Inventor
秀幸 新田
卓 細野
壮史 湊
慶久 嘉瀬
真 武藤
Original Assignee
芝浦メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦メカトロニクス株式会社 filed Critical 芝浦メカトロニクス株式会社
Priority to KR1020117000322A priority Critical patent/KR101289617B1/ko
Priority to CN200980131398.XA priority patent/CN102119437B/zh
Priority to US12/996,878 priority patent/US20110092073A1/en
Publication of WO2009150968A1 publication Critical patent/WO2009150968A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Definitions

  • the present invention relates to a plasma processing apparatus, a plasma processing method, and an electronic device manufacturing method.
  • the dry process using plasma is used in a wide range of technical fields such as electronic device manufacturing, surface hardening of metal parts, surface activation of plastic parts, and non-chemical sterilization.
  • electronic device manufacturing surface hardening of metal parts
  • surface activation of plastic parts surface activation of plastic parts
  • non-chemical sterilization For example, when manufacturing electronic devices such as semiconductor devices and liquid crystal display devices, various plasma treatments such as ashing, dry etching, thin film deposition, and surface modification are performed.
  • the dry process using plasma is advantageous in that it is low-cost, high-speed, and can reduce environmental pollution because it does not use chemicals.
  • a mounting table for mounting an object to be processed (for example, a semiconductor wafer) is provided in a processing container of the plasma processing apparatus.
  • the mounting table is provided with lifter pins for delivering the object to be processed.
  • the mounting table may be provided with a heater for heating the workpiece.
  • an object to be processed is lifted from the upper surface of a mounting table by a lifter pin to process the object to be processed.
  • the plasma is generated after the object to be processed is further raised from the delivery position (see Patent Document 1). ).
  • the microwave introduced into the processing container is absorbed by the object to be processed, and the ignition rate of the plasma is reduced. There is a case.
  • the thermal influence from the heating means provided on the mounting table becomes strong, and the workpiece may be unnecessarily heated.
  • the controllability of the plasma processing may be deteriorated, for example, the processing speed is lowered or the in-plane uniformity of the processing is deteriorated.
  • the present invention provides a plasma processing apparatus, a plasma processing method, and an electronic device manufacturing method capable of improving the ignition rate of plasma.
  • a processing container capable of maintaining an atmosphere depressurized from the atmosphere, an exhaust means for reducing the inside of the processing container to a predetermined pressure, and introducing a process gas into the processing container
  • the plasma is ignited by introducing the microwave, the workpiece is supported by the lifter pin at a first position near the upper surface of the mounting table, and after the plasma is ignited
  • an object to be processed is supported on an end surface of a lifter pin that is inserted into a mounting table provided inside the processing container so as to be movable up and down.
  • a plasma processing method for reducing the pressure, introducing a process gas into the processing container, introducing a microwave into the processing container to generate plasma, and plasma-treating the object to be processed, the ignition of the plasma When performing the above process, the lifter pin supports the object to be processed at a first position near the upper surface of the mounting table, and after the plasma is ignited, the lifter pin holds the object to be processed by the lifter pin.
  • a plasma processing method is provided, characterized in that it is supported at a second position farther away from the mounting table.
  • an electronic device manufacturing method characterized by performing plasma processing on an object to be processed using the plasma processing apparatus.
  • a plasma processing apparatus a plasma processing method, and an electronic device manufacturing method capable of improving the ignition rate of plasma are provided.
  • FIG. 1 is a schematic view for illustrating a plasma processing apparatus according to an embodiment of the present invention.
  • the plasma processing apparatus 1 is provided with a substantially cylindrical processing container 2.
  • the processing container 2 can maintain an atmosphere that is decompressed more than the atmosphere.
  • the processing container 2 is formed with metal materials, such as stainless steel and an aluminum alloy.
  • An opening is provided in the upper part of the processing vessel 2, and a dielectric window 3 is provided in the opening.
  • the dielectric window 3 is made of a dielectric material such as quartz glass or alumina.
  • a sealing member such as an O-ring (not shown) is provided between the opening of the processing container 2 and the dielectric window 3 so that airtightness can be maintained.
  • a waveguide 4 is provided on the upper part of the processing container 2 including the dielectric window 3.
  • the cross section of the waveguide 4 has a rectangular shape.
  • the surface (H surface) facing the dielectric window 3 is a surface perpendicular to the electric field direction of the microwave M.
  • a plane (E plane) extending in a direction perpendicular to the H plane is a plane parallel to the direction of the electric field of the microwave, and a plane provided on the traveling side of the microwave M and perpendicular to the H plane and the E plane is reflected. It is a surface (short-circuit surface; R surface).
  • a slot (antenna means) 5 is open along the E plane on the H plane.
  • a microwave generation means (not shown) is connected to the waveguide 4 so that the microwave M generated by the microwave generation means (not shown) can be guided through the waveguide 4.
  • the slot 5 serves as a microwave introduction means for introducing the microwave M into the processing container 2.
  • a gas introduction port 6 is provided in the upper part of the side wall of the processing vessel 2 and is connected to a gas introduction means (not shown) via a pipe 6a.
  • a process gas G supplied from a gas introduction means (not shown) is introduced into the processing container 2 through a pipe 6a.
  • the gas inlet 6 is provided at a position where the process gas G can be introduced toward the generation region of the plasma P located below the dielectric window 3.
  • the process gas G is appropriately selected depending on the type of plasma processing. For example, when etching the workpiece W, oxygen gas (O 2 ) alone or a mixed gas obtained by adding a fluorine-based gas such as CF 4 , NF 3 , or SF 6 to oxygen gas, and hydrogen to these gases A gas to which a gas is added can be used.
  • oxygen gas (O 2 ) alone or a mixed gas obtained by adding a fluorine-based gas such as CF 4 , NF 3 , or SF 6 to oxygen gas
  • hydrogen hydrogen
  • the process gas G is not necessarily limited to what was illustrated, and can be changed suitably.
  • An exhaust port 7 is provided on the bottom surface of the processing container 2.
  • An exhaust means (not shown) is connected to the exhaust port 7 via an exhaust pipe 7a.
  • An exhaust means (not shown) such as a vacuum pump can reduce the inside of the processing container to a predetermined pressure.
  • an opening / closing valve (not shown), a pressure control valve such as an APC valve, and the like are appropriately provided between the exhaust port 7 and an exhaust means (not shown). Then, by controlling the exhaust means, open / close valve, pressure control valve, etc. (not shown) and exhausting the inside of the processing container 2, the atmosphere is reduced to a pressure lower than the atmospheric pressure, and this can be maintained. Yes.
  • a loading / unloading port 10 for loading and unloading the workpiece W into and from the processing container 2 is provided on the side wall of the processing container 2.
  • a load lock chamber 11 is provided facing the loading / unloading port 10.
  • the load lock chamber 11 is provided with an opening portion 11a communicating with the loading / unloading port 10 and a gate valve 12 capable of airtightly closing the opening portion 11a. Further, an opening / closing means 12a for opening and closing the opening 11a by raising and lowering the gate valve 12 is provided.
  • a mounting table 8 is provided inside the processing container 2.
  • the mounting table 8 incorporates heating means such as an electrostatic chuck and a heater (not shown).
  • heating means such as an electrostatic chuck and a heater (not shown).
  • the to-be-processed object W mounted on the upper surface of the mounting base 8 can be hold
  • a rectifying plate 9 is provided below the upper surface of the mounting table 8 and on the outer periphery of the mounting table 8.
  • the rectifying plate 9 is provided with a number of holes.
  • the current plate 9 controls the flow of gas exhausted from the surface of the workpiece W, thereby controlling the flow of gas on the surface of the workpiece W.
  • the mounting table 8 is provided with a plurality of through holes through which the lifter pins 13 are inserted, and the lifter pins 13 can project and retract from the upper surface of the mounting table 8. And the back surface of the to-be-processed object W is supported in the upper end surface of the several lifter pin 13 protruded from the upper surface of the mounting base 8.
  • FIG. That is, the lifter pin is inserted through the mounting table 8 provided inside the processing container 2 so as to be movable up and down, and can support the back surface of the workpiece W at the end surface.
  • the lower end of the lifter pin 13 is held by the lifting plate 15.
  • the lifting plate 15 is connected to lifting means 16 so that the lifting plate 15 can be lifted and lowered. Therefore, the lifter pin 13 can be protruded and subtracted from the upper surface of the mounting table 8 by moving the lifting plate 15 up and down by the lifting means 16.
  • the plasma processing apparatus 1 is provided with control means (not shown) so that the operation and processing conditions of each element provided in the plasma processing apparatus 1 can be controlled. For example, the lifting and lowering of the lifter pins 13, the introduction of the process gas G and the microwave M, the pressure inside the processing container 2, the temperature of the mounting table 8 and the like can be controlled.
  • both surfaces of the workpiece W can be processed simultaneously. Further, the temperature of the workpiece W can be controlled by moving the workpiece W up and down and changing the distance between the mounting table 8 and the workpiece W.
  • FIG. 2 is a graph for illustrating the relationship between the increase amount of the workpiece and the temperature.
  • the vertical axis represents the temperature of the workpiece W
  • the horizontal axis represents the processing time.
  • A1 is when the ascending amount is 0 mm (when placed on the upper surface of the mounting table 8)
  • A2 is 1 mm
  • A3 is 2 mm
  • A4 is 3 mm
  • A5 is 4 mm
  • A6 is 5 mm
  • A7 23 mm. is there.
  • the process gas G is a mixed gas of fluorine-based gas and oxygen gas
  • the processing pressure is 120 Pa
  • the microwave output is 2700 W
  • the temperature of the mounting table is 275 ° C. As shown in FIG.
  • the temperature increase of the workpiece W can be suppressed. Therefore, the temperature of the workpiece W can be controlled by the position (the amount of increase) of the workpiece W. In this way, temperature control with high responsiveness can be performed as compared with the case where temperature control is performed by the heating means provided on the mounting table 8, and processing at a low temperature is also possible.
  • Examples of the case where the workpiece W is lifted from the upper surface of the mounting table 8 by the lifter pins 13 and the plasma processing is performed include, for example, the case where the resist having the altered layer formed on the surface is subjected to the ashing processing.
  • the ashing process is performed at a position (amount of increase) at which the temperature is such that popping does not occur.
  • the amount of increase in the workpiece W is excessively increased, the generation of the plasma P may be inhibited. That is, there is a case where the plasma P is not ignited and the plasma P cannot be generated.
  • the microwave M introduced into the processing container 2 is treated. Since it is absorbed by the object W, the ignition of the plasma P is inhibited. In this case, when the microwave M is absorbed by the workpiece W, the temperature of the workpiece W also rises. As a result, not only the temperature controllability of the workpiece W is disturbed, but there is also a risk that the workpiece W may be deformed or damaged by heat.
  • the position (amount of increase) of the workpiece W is changed between the ignition of the plasma P and the plasma processing. That is, when the plasma P is ignited by introducing the microwave M, the workpiece W is supported at a position near the upper surface of the mounting table 8 by the lifter pins 13, and after the plasma P is ignited, the lifter pins 13 are supported. Thus, the workpiece W is supported at a position farther from the mounting table 8 than the aforementioned position, that is, at a position closer to the plasma P side.
  • the controllability of the plasma processing can be improved by raising the position to a position closer to the plasma P that generated the workpiece W, that is, a position suitable for the plasma processing.
  • the microwave M is reflected from the lower surface of the dielectric window 3 until it enters a certain distance (skin depth), and a standing wave of the microwave M is formed.
  • the And the reflective surface of the microwave M becomes a plasma excitation surface, and the stable plasma P comes to be excited by this plasma excitation surface. Therefore, even if the workpiece W is raised and moved to a position closer to the generated plasma P, the influence on the generation of the plasma P is small.
  • FIG. 3 is a graph for illustrating the relationship between the rising amount of the workpiece W and the ignition rate of plasma.
  • the vertical axis represents the ignition rate within 1 second (probability of being able to ignite within 1 second)
  • the horizontal axis represents the distance between the back surface of the workpiece W and the top surface of the mounting table 8 (the workpiece). (Increase amount of W).
  • the distance between the back surface of the workpiece W and the top surface of the mounting table 8 is 7 mm or less, reliable ignition can be performed.
  • the smaller the distance between the back surface of the workpiece W and the top surface of the mounting table 8 is, the more heat is received from the heating means provided on the mounting table 8. become.
  • the distance between the back surface of the workpiece W and the top surface of the mounting table 8 (amount of rise of the workpiece W) be 1 mm or more. That is, it is preferable that the end face of the lifter pin is in a position protruding from the upper surface of the mounting table 8 by 1 mm or more and 7 mm or less.
  • FIG. 4 is a graph for illustrating the temperature of an object to be processed in plasma processing.
  • the vertical axis represents the temperature of the object to be processed, and the horizontal axis represents the processing time.
  • B1 is a case where the distance between the back surface of the workpiece W and the top surface of the mounting table 8 is 23 mm, and the plasma P is ignited and plasma treatment is performed at that position.
  • B2 is a case where the distance between the back surface of the workpiece W and the top surface of the mounting table 8 is 23 mm and the plasma processing is not performed and the device is left at that position.
  • B3 is a case where the workpiece W is supported near the upper surface of the mounting table 8 when the plasma P is ignited, and the workpiece W is raised to a position suitable for the plasma treatment after the plasma P is ignited. That is, in B3, when the plasma P is ignited, the distance between the back surface of the workpiece W and the top surface of the mounting table 8 is 4 mm, and after the plasma P is ignited, the back surface of the processing object W and the top surface of the mounting table 8 are This is a case where the distance between them is 23 mm. Further, as processing conditions at this time, the process gas G is a mixed gas of fluorine-based gas and oxygen gas, the processing pressure is 20 Pa, the microwave output is 2700 W, and the temperature of the mounting table is 275 ° C.
  • the process gas G is a mixed gas of fluorine-based gas and oxygen gas
  • the processing pressure is 20 Pa
  • the microwave output is 2700 W
  • the temperature of the mounting table is 275 ° C.
  • the workpiece W is supported at a position near the upper surface of the mounting table 8, and the workpiece W is raised to a position suitable for the plasma processing after the plasma P is ignited. By doing so, an unintended temperature rise of the workpiece W can be suppressed.
  • the plasma ignition rate can be improved and the controllability of the plasma treatment can be improved.
  • the position of the workpiece W after the ignition of the plasma P is preferably a position where the thermal influence from a heating means (not shown) provided on the mounting table 8 is suppressed. By doing so, deformation and breakage of the workpiece W are suppressed.
  • the resist having the altered layer formed on the surface is subjected to an ashing process, the resist is preferably located at a position where popping of the resist is suppressed.
  • the operation of the plasma processing apparatus 1 will be illustrated.
  • the workpiece W is carried into the processing container 2 through the load lock chamber 11 by a conveying means (not shown).
  • a conveying means (not shown) retreats out of the processing container 2.
  • the processing container 2 is hermetically sealed by the gate valve 12.
  • the inside of the hermetically sealed processing vessel 2 is depressurized to a predetermined pressure by an exhaust means (not shown), and a predetermined process gas G is introduced. Thereafter, the microwave M is introduced into the dielectric window 3 through the slot 5.
  • the microwave M propagates on the surface of the dielectric window 3 and is radiated to the processing space in the processing container 2.
  • the plasma P of the process gas G is formed by the energy of the microwave M radiated into the processing space.
  • the microwave M is separated from the lower surface of the dielectric window 3 by a certain distance (skin It will be reflected by the depth until it enters. Therefore, a standing wave of the microwave M is formed.
  • the reflection surface of the microwave M becomes a plasma excitation surface, and the plasma P is stably excited on this plasma excitation surface.
  • the stable plasma P excited on the plasma excitation surface ions and electrons collide with the molecules of the process gas G, so that excited active species such as excited atoms, molecules, and free atoms (radicals) ( Plasma product) is generated.
  • These plasma products diffuse downward in the processing container 2 and fly to the surface of the workpiece W, whereby various plasma processing such as etching, ashing, thin film deposition, surface modification, and plasma doping are performed. .
  • the workpiece W for which the plasma processing has been completed is carried out of the processing container 2 through the load lock chamber 11. Thereafter, plasma processing of other workpieces W can be performed in the same manner.
  • the plasma processing method according to the present embodiment exemplified below is performed.
  • the position (rising amount) of the workpiece W is changed between the ignition of the plasma P and the plasma processing.
  • the workpiece W is delivered to and supported by the upper end surface of the lifter pin 13.
  • the inside of the processing container 2 is set to a predetermined pressure that is reduced from the atmosphere, and a predetermined process gas G is introduced.
  • the workpiece W is supported near the upper surface of the mounting table 8 by lowering the lifter pins 13.
  • the microwave M is introduced into the dielectric window 3 through the slot 5, and the plasma M is generated (ignited) by radiating the microwave M propagating through the surface of the dielectric window 3 to the processing space.
  • the amount of microwave M absorbed by the workpiece W can be reduced, so that reliable ignition can be achieved.
  • the end face of the lifter pin is preferably set to a position protruding from the upper surface of the mounting table 8 by 1 mm or more and 7 mm or less.
  • the workpiece W is raised to a position suitable for plasma processing. That is, after the plasma P is ignited, the workpiece W is supported by the lifter pins 13 at a position closer to the plasma side than the aforementioned position. By doing so, it is possible to improve the controllability of the plasma processing such as improvement of the processing speed and improvement of the in-plane uniformity of the processing. Moreover, since the thermal influence from the heating means (not shown) provided on the mounting table 8 is suppressed, deformation and breakage of the workpiece W are suppressed. Further, when ashing a resist having a deteriorated layer formed on the surface, resist popping is suppressed.
  • the lift control of the lifter pin 13 is controlled by a control means (not shown) as described above.
  • the ignition of plasma may be detected by, for example, a sensor for detecting plasma emission, or controlled by time obtained from an experiment. (Time control) may be used.
  • a semiconductor device manufacturing method includes a process for forming a pattern on a substrate (wafer) surface by film formation, resist coating, exposure, development, etching, resist removal, etc., an inspection process, a cleaning process, a heat treatment process, an impurity introduction process, and a diffusion process. , By repeating a plurality of steps such as a flattening step.
  • a semiconductor device can be manufactured by forming a pattern on the substrate surface using the plasma processing apparatus 1 according to the present embodiment or removing the resist. Further, for example, a semiconductor device can be manufactured by forming a pattern on the substrate surface or removing a resist using the plasma processing method according to this embodiment.
  • the semiconductor device manufacturing method is exemplified as the electronic device manufacturing method according to the embodiment of the present invention, but the present invention is not limited to this.
  • it can be applied to the manufacture of liquid crystal display devices, the manufacture of fuel cells, the manufacture of solar cells, and other various electronic components.
  • the example using the surface wave plasma as the plasma processing apparatus 1 is illustrated, it is not limited to this.
  • the present invention can be applied to various plasma processing apparatuses that form plasma by introducing microwaves into the processing container. Further, it can be applied not only to etching and ashing but also to surface modification.
  • each element included in the plasma processing apparatus 1 are not limited to those illustrated, but can be changed as appropriate.
  • the present invention it is possible to provide a plasma processing apparatus, a plasma processing method, and an electronic device manufacturing method capable of improving the plasma ignition rate.

Abstract

 本発明によるプラズマ処理装置は、大気よりも減圧された雰囲気を維持可能な処理容器と、前記処理容器の内部を所定の圧力まで減圧する排気手段と、前記処理容器の内部にプロセスガスを導入するガス導入手段と、前記処理容器の内部にマイクロ波を導入するマイクロ波導入手段と、前記処理容器の内部に設けられた載置台に昇降自在に挿通され、端面において被処理物を支持するリフタピンと、を備え、前記マイクロ波を導入してプラズマの着火を行う際には、前記リフタピンにより前記被処理物を前記載置台の上面近傍の第1の位置に支持し、前記プラズマの着火後においては、前記リフタピンにより前記被処理物を前記第1の位置よりも前記載置台から遠ざかった第2の位置に支持すること、を特徴とする。本発明によれば、プラズマの着火率を向上させることができる。

Description

プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法
 本発明は、プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法に関する。
 プラズマを利用したドライプロセスは、電子デバイスの製造、金属部品の表面硬化、プラスチック部品の表面活性化、無薬剤殺菌など、幅広い技術分野において活用されている。例えば、半導体装置や液晶ディスプレイ装置などの電子デバイスの製造に際しては、アッシング、ドライエッチング、薄膜堆積あるいは表面改質などの各種のプラズマ処理が行われている。プラズマを利用したドライプロセスは、低コストで、高速であり、薬剤を用いないために環境汚染を低減できる点でも有利である。
 また、このようなプラズマ処理を行うための各種のプラズマ処理装置が提案されている。このプラズマ処理装置の処理容器内には被処理物(例えば、半導体ウェーハなど)を載置するための載置台が設けられている。そして、載置台には、被処理物の受け渡しを行うためのリフタピンが設けられている。また、載置台には、被処理物を加熱するためのヒータが設けられる場合がある。
 ここで、リフタピンにより被処理物を載置台の上面から持ち上げて、被処理物を処理する技術が知られている。
 例えば、リフタピンにより被処理物を載置台の上面から持ち上げてプラズマ処理を行う場合には、受け渡しの位置から被処理物をさらに上昇させてからプラズマを発生させるようにしている(特許文献1を参照)。  
 この場合、被処理物の上昇量が多く被処理物と載置台との間が離れすぎると、処理容器内に導入されたマイクロ波が被処理物に吸収されてしまい、プラズマの着火率が低下する場合がある。
 逆に、被処理物の上昇量が少ないと載置台に設けられた加熱手段からの熱的影響が強くなり、被処理物が不必要に加熱されてしまう場合がある。また、被処理物と発生させたプラズマとの間が離れすぎるため、処理速度が低下したり処理の面内均一性が悪化したりするなどしてプラズマ処理の制御性が悪化するおそれもある。
特開平10-22276号公報
 本発明は、プラズマの着火率を向上させることができるプラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法を提供する。
 本発明の一態様によれば、大気よりも減圧された雰囲気を維持可能な処理容器と、前記処理容器の内部を所定の圧力まで減圧する排気手段と、前記処理容器の内部にプロセスガスを導入するガス導入手段と、前記処理容器の内部にマイクロ波を導入するマイクロ波導入手段と、前記処理容器の内部に設けられた載置台に昇降自在に挿通され、端面において被処理物を支持するリフタピンと、を備え、前記マイクロ波を導入してプラズマの着火を行う際には、前記リフタピンにより前記被処理物を前記載置台の上面近傍の第1の位置に支持し、前記プラズマの着火後においては、前記リフタピンにより前記被処理物を前記第1の位置よりも前記載置台から遠ざかった第2の位置に支持すること、を特徴とするプラズマ処理装置が提供される。
 また、本発明の他の一態様によれば、処理容器の内部に設けられた載置台に昇降自在に挿通されたリフタピンの端面において被処理物を支持し、前記処理容器の内部を大気よりも減圧し、前記処理容器の内部にプロセスガスを導入し前記処理容器の内部にマイクロ波を導入してプラズマを生起し、前記被処理物をプラズマ処理するプラズマ処理方法であって、前記プラズマの着火を行う際には、前記リフタピンにより前記被処理物を前記載置台の上面近傍の第1の位置に支持し、前記プラズマの着火後においては、前記リフタピンにより前記被処理物を前記第1の位置よりも前記載置台から遠ざかった第2の位置に支持すること、を特徴とするプラズマ処理方法が提供される。
 さらにまた、本発明の他の一態様によれば、上記のプラズマ処理装置を用いて、被処理物のプラズマ処理を行うこと、を特徴とする電子デバイスの製造方法が提供される。
 本発明によれば、プラズマの着火率を向上させることができるプラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法が提供される。
本発明の実施の形態に係るプラズマ処理装置を例示するための模式図である。 被処理物の上昇量と温度との関係を例示するためのグラフ図である。 被処理物の上昇量とプラズマの着火率との関係を例示するためのグラフ図である。 プラズマ処理における被処理物の温度を例示するためのグラフ図である。
 以下、図面を参照しつつ、本発明の実施の形態について例示をする。尚、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 図1は、本発明の実施の形態に係るプラズマ処理装置を例示するための模式図である。 図1に示すように、プラズマ処理装置1には、略円筒形状の処理容器2が設けられている。処理容器2は、大気よりも減圧された雰囲気を維持可能とされている。また、処理容器2は、ステンレスやアルミニウム合金などの金属材料で形成されている。
 処理容器2の上部には開口部が設けられ、開口部には誘電体窓3が備えられている。誘電体窓3は、石英ガラスあるいはアルミナなどの誘電体材料で形成されている。また、処理容器2の開口部と誘電体窓3との間には図示しないOリングなどのシール部材が設けられ、気密が維持できるようになっている。
 誘電体窓3を含む処理容器2の上部には導波管4が設けられている。導波管4の断面は矩形状を呈している。そして、誘電体窓3に対向する面(H面)がマイクロ波Mの電界方向に垂直な面となっている。また、H面に対して垂直方向に伸びる面(E面)がマイクロ波の電界方向に平行な面となり、マイクロ波Mの進行側に設けられH面およびE面に対して垂直な面が反射面(短絡面;R面)となっている。また、H面には、スロット(アンテナ手段)5がE面に沿って開口している。また、導波管4には図示しないマイクロ波発生手段が接続され、図示しないマイクロ波発生手段で発生させたマイクロ波Mを導波管4で導波することができるようになっている。本実施の形態においては、スロット5が処理容器2の内部にマイクロ波Mを導入するマイクロ波導入手段となる。
 処理容器2の側壁上部にはガス導入口6が設けられ、配管6aを介して図示しないガス導入手段と接続されている。図示しないガス導入手段から供給されるプロセスガスGは、配管6aを介して処理容器2の内部に導入される。また、ガス導入口6は、誘電体窓3の下方に位置するプラズマPの発生領域に向けてプロセスガスGを導入することができるような位置に設けられている。
 プロセスガスGは、プラズマ処理の種類などにより適宜選択される。例えば、被処理物Wのエッチングを行う場合には、酸素ガス(O)単体、あるいは酸素ガスにCF、NF、SFなどのフッ素系ガスを添加した混合ガス、これらのガスに水素ガスを添加したガスなどを使用することができる。なお、プロセスガスGは例示したものに限定されるわけではなく適宜変更することができる。
 処理容器2の底面には、排気口7が設けられている。排気口7には、排気管7aを介して図示しない排気手段が接続されている。真空ポンプなどの図示しない排気手段は、処理容器の内部を所定の圧力まで減圧することができる。また、排気口7と図示しない排気手段との間には図示しない開閉バルブやAPCバルブのような圧力制御バルブなどが適宜設けられている。そして、図示しない排気手段、開閉バルブ、圧力制御バルブなどを制御して処理容器2の内部を排気EXすることで大気圧よりも減圧された雰囲気とし、これを維持することができるようになっている。
 処理容器2の側壁には被処理物Wを処理容器2内部に搬入、搬出するための搬入搬出口10が設けられている。そして、搬入搬出口10に対向してロードロック室11が設けられている。ロードロック室11には、搬入搬出口10に連通する開口部11aが設けられ、開口部11aを気密に閉止することができるゲートバルブ12が設けられている。また、ゲートバルブ12を昇降させることで開口部11aの開閉を行う開閉手段12aが設けられている。
 処理容器2の内部には、載置台8が設けられている。載置台8には図示しない静電チャックやヒータなどの加熱手段が内蔵されている。そして、図示しない静電チャックにより載置台8の上面に載置された被処理物Wを保持することができるようになっている。また、図示しない加熱手段により被処理物Wの加熱ができるようになっている。
 載置台8の上面よりは下方であって載置台8の外周には、整流板9が設けられている。整流板9には多数の孔が設けられている。整流板9は、被処理物Wの表面から排気されるガスの流動を制御することで、被処理物Wの表面のガスの流れを制御する。
 載置台8にはリフタピン13を挿通させるための貫通孔が複数設けられ、リフタピン13が載置台8の上面から突没可能なっている。そして、載置台8の上面から突出した複数のリフタピン13の上端面において被処理物Wの裏面を支持するようになっている。すなわち、リフタピンは、処理容器2の内部に設けられた載置台8を昇降自在に挿通され、端面において被処理物Wの裏面を支持することができるようになっている。リフタピン13の下端は昇降板15に保持されている。また、昇降板15には昇降手段16が接続され、昇降板15を昇降させることができるようになっている。そのため、昇降手段16により昇降板15を昇降させることで、リフタピン13を載置台8の上面から突没させることができるようになっている。
 プラズマ処理装置1には図示しない制御手段が設けられ、プラズマ処理装置1に設けられた各要素の動作や処理条件などが制御できるようになっている。例えば、リフタピン13の昇降、プロセスガスGやマイクロ波Mの導入、処理容器2内部の圧力、載置台8の温度などが制御できるようになっている。
 ここで、リフタピン13を載置台8の上面から突出させ、被処理物Wを載置台8の上面から持ち上げるようにすれば、被処理物Wの両面を同時に処理することができる。また、被処理物Wを昇降させ、載置台8と被処理物Wとの距離を変えることで被処理物Wの温度制御を行うこともできる。
 図2は、被処理物の上昇量と温度との関係を例示するためのグラフ図である。なお、縦軸は被処理物Wの温度を表し、横軸は処理時間を表している。また、A1は上昇量が0mmの場合(載置台8の上面に載置された状態)、A2は1mm、A3は2mm、A4は3mm、A5は4mm、A6は5mm、A7は23mmの場合である。また、この際の処理条件としては、プロセスガスGをフッ素系ガスと酸素ガスの混合ガス、処理圧力を120Pa、マイクロ波出力を2700W、載置台の温度を275℃としている。
 図2に示すように、被処理物Wの上昇量が多くなるほど載置台8に設けられた加熱手段から受ける熱量が少なくなるので、被処理物Wの温度上昇が抑えられる。そのため、被処理物Wの位置(上昇量)により被処理物Wの温度制御をすることができる。このようにすれば、載置台8に設けられた加熱手段により温度制御を行う場合に比べて、応答性の高い温度制御を行うことができ、また低温での処理も可能となる。
 リフタピン13により被処理物Wを載置台8の上面から持ち上げてプラズマ処理する場合としては、例えば、表面に変質層が形成されたレジストをアッシング処理する場合を例示することができる。  
 表面に変質層が形成されたレジストをアッシング処理する場合には、被処理物Wの温度が上昇しすぎるとポッピングが発生するおそれがある。そのため、ポッピングが発生しないような温度となるような位置(上昇量)においてアッシング処理が行われる。
 ここで、被処理物Wの上昇量を多くしすぎるとプラズマPの発生が阻害される場合がある。すなわち、プラズマPの着火が行われず、プラズマPを発生させることができない場合がある。
 本発明者の得た知見によれば、被処理物Wと載置台8との間が離れすぎると(上昇量を多くしすぎると)、処理容器2内に導入されたマイクロ波Mが被処理物Wに吸収されるようになるので、プラズマPの着火が阻害されることになる。この場合、被処理物Wにマイクロ波Mが吸収されると、被処理物Wの温度が上昇することにもなる。その結果、被処理物Wの温度制御性が阻害されるのみならず、熱による被処理物Wの変形や破損などが生じるおそれもある。
 一方、上昇量を少なくしすぎると被処理物Wと載置台8との距離が近づくから、載置台8に設けた加熱手段から受ける熱量が増えて被処理物Wの温度が上昇し、先に述べたポッピングなどを発生させてしまうおそれがある。
 そのため、本実施の形態においては、プラズマPの着火時とプラズマ処理時とで被処理物Wの位置(上昇量)を変えるようにしている。すなわち、マイクロ波Mを導入することでプラズマPの着火を行う際には、リフタピン13により被処理物Wを載置台8の上面近傍の位置に支持し、プラズマPの着火後においては、リフタピン13により被処理物Wを前述の位置よりも載置台8から遠ざかった位置、すなわちプラズマPの側に寄った位置に支持するようにしている。
 このようにすれば、プラズマPの着火時において、プラズマPの確実な着火を図るとともに、被処理物Wへのマイクロ波Mの吸収量を減らすことで不要な温度上昇を抑制することができる。  
 また、プラズマPの着火後においては被処理物Wを発生させたプラズマPにより近い位置、すなわち、プラズマ処理に適した位置に上昇させることで、プラズマ処理の制御性を向上させることができる。
 なお、後述するように、プラズマPの着火後においては誘電体窓3の下面から一定距離(スキンデプス)だけ入るまでの間にマイクロ波Mが反射され、マイクロ波Mの定在波が形成される。そして、マイクロ波Mの反射面がプラズマ励起面となって、このプラズマ励起面で安定なプラズマPが励起されるようになる。そのため、被処理物Wを上昇させることで、発生させたプラズマPに、より近い位置に移動させても、プラズマPの発生に与える影響は少ない。
 図3は、被処理物Wの上昇量とプラズマの着火率との関係を例示するためのグラフ図である。なお、縦軸は1秒以内の着火率(1秒以内に着火することができた確率)を表し、横軸は被処理物Wの裏面と載置台8上面との間の距離(被処理物Wの上昇量)を表している。  
 図3に示すように、被処理物Wの裏面と載置台8上面との間の距離(被処理物Wの上昇量)を7mm以下とすれば確実な着火を行うことができる。この場合、被処理物Wの裏面と載置台8上面との間の距離が小さくなるほど(被処理物Wの上昇量が小さくなるほど)載置台8に設けられた加熱手段からの熱を多く受けることになる。そのため、不要な温度上昇を抑制するためには、被処理物Wの裏面と載置台8上面との間の距離(被処理物Wの上昇量)を1mm以上とすることが好ましい。すなわち、リフタピンの端面が載置台8の上面から1mm以上、7mm以下突出した位置とすることが好ましい。
 図4は、プラズマ処理における被処理物の温度を例示するためのグラフ図である。なお、縦軸は被処理物の温度を表し、横軸は処理時間を表している。また、B1は、被処理物Wの裏面と載置台8上面との間の距離を23mmとし、その位置でプラズマPの着火とプラズマ処理を行った場合である。B2は、被処理物Wの裏面と載置台8上面との間の距離を23mmとし、プラズマ処理を行わずその位置で放置した場合である。B3は、プラズマPの着火時においては載置台8の上面近傍に被処理物Wを支持し、プラズマPの着火後にプラズマ処理に適した位置に被処理物Wを上昇させた場合である。すなわち、B3においては、プラズマPの着火時においては被処理物Wの裏面と載置台8上面との間の距離を4mmとし、プラズマPの着火後に被処理物Wの裏面と載置台8上面との間の距離を23mmとした場合である。また、この際の処理条件としては、プロセスガスGをフッ素系ガスと酸素ガスの混合ガス、処理圧力を20Pa、マイクロ波出力を2700W、載置台の温度を275℃としている。
 B2の場合においては、プラズマ処理を行わずに放置するので載置台8に設けられた加熱手段からの熱のみにより被処理物Wの温度が上昇することになる。この場合、被処理物Wの裏面と載置台8上面との間の距離を23mmとすれば、載置台8に設けられた加熱手段からの熱による温度上昇をほぼなくすことができる。このように、被処理物Wの裏面と載置台8上面との間の距離(被処理物Wの上昇量)をある程度大きくすれば、載置台8に設けられた図示しない加熱手段からの熱的影響を抑制することができる。
 B1の場合においては、着火時においても被処理物Wの裏面と載置台8上面との間が離れすぎているので、被処理物Wにマイクロ波Mが吸収され被処理物Wの温度が上昇することになる。なお、B2に示すように載置台8に設けられた加熱手段からの熱的影響が少ないので、B1の場合における温度上昇はマイクロ波Mの吸収にともなうものとなる。なお、着火時に被処理物Wの裏面と載置台8上面との間が離れすぎている場合にはプラズマPの着火が困難となるが、着火された場合にはプラズマPからの熱による温度上昇が加わることになる。
 B3の場合においては、着火時における被処理物Wの裏面と載置台8上面との間の距離が小さいので、被処理物Wに吸収されるマイクロ波Mの量が抑制される。この場合、プラズマPが着火される可能性が高く、被処理物Wの温度上昇は主にプラズマPからの熱によるものとなる。
 このように、プラズマPの着火を行う際には、被処理物Wを載置台8の上面近傍の位置に支持し、プラズマPの着火後にプラズマ処理に適した位置に被処理物Wを上昇させるようにすれば、被処理物Wの意図しない温度上昇を抑制することができる。また、プラズマの着火率を向上させることができるとともに、プラズマ処理の制御性を向上させることもできる。
 また、プラズマPの着火後における被処理物Wの位置は、載置台8に設けられた図示しない加熱手段からの熱的影響が抑制されるような位置であることが好ましい。そのようにすれば、被処理物Wの変形や破損が抑制される。そして、表面に変質層が形成されたレジストをアッシング処理する場合には、レジストのポッピングが抑制される位置であることが好ましい。
 次に、プラズマ処理装置1の作用について例示をする。  
 まず、図示しない搬送手段により被処理物Wがロードロック室11を介して処理容器2の内部に搬入される。搬入された被処理物Wをリフタピン13の上端面に受け渡した後、図示しない搬送手段が処理容器2の外に退避する。その後、処理容器2がゲートバルブ12により気密に密閉される。
 気密に密閉された処理容器2の内部が図示しない排気手段により所定の圧力まで減圧されるとともに、所定のプロセスガスGが導入される。その後、スロット5を介してマイクロ波Mが誘電体窓3に導入される。マイクロ波Mは誘電体窓3の表面を伝搬して、処理容器2内の処理空間に放射される。このようにして処理空間に放射されたマイクロ波Mのエネルギーにより、プロセスガスGのプラズマPが形成される。プラズマP中の電子密度が、誘電体窓3を透過して導入されるマイクロ波Mを遮蔽できる密度(カットオフ密度)以上になると、マイクロ波Mは誘電体窓3の下面から一定距離(スキンデプス)だけ入るまでの間に反射されるようになる。そのため、マイクロ波Mの定在波が形成されることになる。
 すると、マイクロ波Mの反射面がプラズマ励起面となって、このプラズマ励起面で安定的にプラズマPが励起されるようになる。このプラズマ励起面で励起された安定的なプラズマP中においては、イオンや電子がプロセスガスGの分子と衝突することにより、励起された原子や分子、遊離原子(ラジカル)などの励起活性種(プラズマ生成物)が生成される。これらプラズマ生成物は、処理容器2内を下方に拡散して被処理物Wの表面に飛来することで、エッチング、アッシング、薄膜堆積、表面改質、プラズマドーピングなどの各種のプラズマ処理が行われる。   
 プラズマ処理が終了した被処理物Wはロードロック室11を介して処理容器2の外部に搬出される。以後、同様にして他の被処理物Wのプラズマ処理を行うこともできる。
 ここで、プラズマ処理装置1においては、以下に例示をする本実施の形態に係るプラズマ処理方法を実施するようにしている。  
 本実施の形態に係るプラズマ処理方法においては、プラズマPの着火時とプラズマ処理時とで被処理物Wの位置(上昇量)を変えるようにしている。
 まず、前述したようにリフタピン13の上端面に被処理物Wを受け渡しこれを支持する。次に、処理容器2の内部を大気よりも減圧された所定の圧力にし、所定のプロセスガスGを導入する。 
 次に、リフタピン13を下降させることで載置台8の上面近傍に被処理物Wを支持する。そして、スロット5を介してマイクロ波Mを誘電体窓3に導入し、誘電体窓3の表面を伝搬したマイクロ波Mを処理空間に放射させることでプラズマPを生起(着火)する。この際、載置台8の上面近傍に被処理物Wを支持することで、被処理物Wに吸収されるマイクロ波Mの量を減らすことができるので、確実な着火を図ることができる。また、同理由から、意図しない不要な温度上昇を抑制することもできる。この場合、前述したようにリフタピンの端面が載置台8の上面から1mm以上、7mm以下突出した位置とすることが好ましい。
 プラズマPが着火した後には、被処理物Wをプラズマ処理に適した位置に上昇させる。すなわち、プラズマPの着火後においては、リフタピン13により被処理物Wを前述の位置よりもプラズマの側に寄った位置に支持する。そのようにすれば、処理速度の向上、処理の面内均一性の向上などプラズマ処理の制御性の向上を図ることができる。また、載置台8に設けられた図示しない加熱手段からの熱的影響が抑制されるので、被処理物Wの変形や破損が抑制される。また、表面に変質層が形成されたレジストをアッシング処理する場合には、レジストのポッピングが抑制される。なお、リフタピン13の昇降制御は、先に述べたように図示しない制御手段によるが、プラズマの着火は、例えばプラズマの発光をセンサで検知するようにしても良いし、実験から求めた時間による制御(時間制御)によるものであっても良い。
 次に、本発明の実施の形態に係る電子デバイスの製造方法について例示をする。   
 尚、説明の便宜上、本発明の実施の形態に係る電子デバイスの製造方法を半導体装置の製造方法を例にとり例示をする。  
 半導体装置の製造方法は、成膜・レジスト塗布・露光・現像・エッチング・レジスト除去などにより基板(ウェーハ)表面にパターンを形成する工程、検査工程、洗浄工程、熱処理工程、不純物導入工程、拡散工程、平坦化工程などの複数の工程を繰り返すことにより実施される。
 そして、例えば、本実施の形態に係るプラズマ処理装置1を用いて基板表面にパターンを形成したり、レジストを除去したりすることで、半導体装置を製造することができる。また、例えば、本実施の形態に係るプラズマ処理方法を用いて基板表面にパターンを形成したり、レジストを除去したりすることで、半導体装置を製造することができる。
 本実施の形態に係るプラズマ処理装置、プラズマ処理方法を用いるものとすれば、生産性の向上を図ることができるとともに製品品質の向上をも図ることができる。 
 なお、本実施の形態に係るプラズマ処理装置、プラズマ処理方法以外は、既知の各工程の技術を適用することができるのでそれらの説明は省略する。
 なお、説明の便宜上、本発明の実施の形態に係る電子デバイスの製造方法として半導体装置の製造方法を例示したが、これに限定されるわけではない。例えば、液晶表示装置の製造、燃料電池の製造、太陽電池の製造、その他、各種電子部品などの製造にも適応が可能である。
 また、プラズマ処理装置1として表面波プラズマを用いるものを例示したが、これに限定されるわけではない。処理容器の内部にマイクロ波を導入することでプラズマを形成させる各種のプラズマ処理装置に適用させることができる。また、エッチング処理やアッシング処理のみならず表面改質処理などにも適用させることができる。
 以上、本発明の実施の形態について例示をした。しかし、本発明はこれらの記述に限定されるものではない。  
 前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。
 例えば、プラズマ処理装置1が備える各要素の形状、寸法、材質、配置などは、例示したものに限定されるわけではなく適宜変更することができる。
 また、前述した各実施の形態が備える各要素は、可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
 以上詳述したように、本発明によれば、プラズマの着火率を向上させることができるプラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法を提供することができる。
 1 プラズマ処理装置
 2 処理容器
 3 誘電体窓
 4 導波管
 8 載置台
 13 リフタピン
 G プロセスガス
 M マイクロ波
 P プラズマ
 W 被処理物

Claims (9)

  1.  大気よりも減圧された雰囲気を維持可能な処理容器と、
     前記処理容器の内部を減圧する排気手段と、
     前記処理容器の内部にプロセスガスを導入するガス導入手段と、
     前記処理容器の内部にマイクロ波を導入するマイクロ波導入手段と、
     前記処理容器の内部に設けられた載置台に昇降自在に挿通され、端面において被処理物を支持するリフタピンと、
     を備え、
     前記マイクロ波を導入してプラズマの着火を行う際には、前記リフタピンにより前記被処理物を前記載置台の上面近傍の第1の位置に支持し、
     前記プラズマの着火後においては、前記リフタピンにより前記被処理物を前記第1の位置よりも前記載置台から遠ざかった第2の位置に支持すること、を特徴とするプラズマ処理装置。
  2.  前記第1の位置は、前記リフタピンの端面が前記載置台の上面から1mm以上、7mm以下突出した位置であること、を特徴とする請求項1記載のプラズマ処理装置。
  3.  前記載置台に設けられた加熱手段をさらに備え、
     前記第2の位置は、前記加熱手段からの熱的影響が抑制される位置であること、を特徴とする請求項1記載のプラズマ処理装置。
  4.  前記熱的影響が抑制される位置は、前記被処理物に設けられたレジストのポッピングが抑制される位置であること、を特徴とする請求項3記載のプラズマ処理装置。
  5.  処理容器の内部に設けられた載置台に昇降自在に挿通されたリフタピンの端面において被処理物を支持し、
     前記処理容器の内部を大気よりも減圧し、
     前記処理容器の内部にプロセスガスを導入し前記処理容器の内部にマイクロ波を導入してプラズマを生起し、
     前記被処理物をプラズマ処理するプラズマ処理方法であって、
     前記プラズマの着火を行う際には、前記リフタピンにより前記被処理物を前記載置台の上面近傍の第1の位置に支持し、
     前記プラズマの着火後においては、前記リフタピンにより前記被処理物を前記第1の位置よりも前記載置台から遠ざかった第2の位置に支持すること、を特徴とするプラズマ処理方法。
  6.  前記第1の位置は、前記リフタピンの端面が前記載置台の上面から1mm以上、7mm以下突出した位置であること、を特徴とする請求項5記載のプラズマ処理方法。
  7.  前記第2の位置は、前記載置台に設けられた加熱手段からの熱的影響が抑制される位置であること、を特徴とする請求項5または6に記載のプラズマ処理方法。
  8.  前記熱的影響が抑制される位置は、前記被処理物に設けられたレジストのポッピングが抑制される位置であること、を特徴とする請求項7記載のプラズマ処理方法。
  9.  請求項1~4のいずれか1つに記載のプラズマ処理装置を用いて、被処理物のプラズマ処理を行うこと、を特徴とする電子デバイスの製造方法。
PCT/JP2009/060124 2008-06-13 2009-06-03 プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法 WO2009150968A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117000322A KR101289617B1 (ko) 2008-06-13 2009-06-03 플라즈마 처리 장치, 플라즈마 처리 방법 및 전자 디바이스의 제조 방법
CN200980131398.XA CN102119437B (zh) 2008-06-13 2009-06-03 等离子体处理装置、等离子体处理方法及电子设备的制造方法
US12/996,878 US20110092073A1 (en) 2008-06-13 2009-06-03 Plasma processing apparatus, plasma processing method, and method for manufacturing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008155101A JP5565892B2 (ja) 2008-06-13 2008-06-13 プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法
JP2008-155101 2008-06-13

Publications (1)

Publication Number Publication Date
WO2009150968A1 true WO2009150968A1 (ja) 2009-12-17

Family

ID=41416677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060124 WO2009150968A1 (ja) 2008-06-13 2009-06-03 プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法

Country Status (6)

Country Link
US (1) US20110092073A1 (ja)
JP (1) JP5565892B2 (ja)
KR (1) KR101289617B1 (ja)
CN (1) CN102119437B (ja)
TW (1) TWI387402B (ja)
WO (1) WO2009150968A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034184A1 (de) * 2010-05-04 2011-11-10 Industrial Technology Research Institute Eine mikrowellenangeregte Plasma Quelle linearer Art, welche einen geschlitzten, rechteckigen Wellenleiter als Plasma Erreger benutzt

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313612B2 (en) * 2009-03-24 2012-11-20 Lam Research Corporation Method and apparatus for reduction of voltage potential spike during dechucking
JP5236591B2 (ja) * 2009-08-04 2013-07-17 株式会社アルバック プラズマ処理装置
KR101586181B1 (ko) * 2013-03-28 2016-01-15 시바우라 메카트로닉스 가부시끼가이샤 적재대 및 플라즈마 처리 장치
CN104752290B (zh) * 2013-12-31 2017-10-20 北京北方华创微电子装备有限公司 升降系统及等离子体加工设备
EP3344794A1 (de) * 2015-09-03 2018-07-11 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung E.V. Beschichtungsanlage und verfahren zur beschichtung
WO2023042804A1 (ja) * 2021-09-14 2023-03-23 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098011A (ja) * 1995-06-15 1997-01-10 Dainippon Screen Mfg Co Ltd プラズマ処理方法及び装置
WO2003009363A1 (en) * 2001-07-10 2003-01-30 Tokyo Electron Limited Plasma processor and plasma processing method
JP2004134769A (ja) * 2002-09-10 2004-04-30 Samsung Electronics Co Ltd フォトレジスト除去方法
JP2007103509A (ja) * 2005-09-30 2007-04-19 Canon Inc レジスト処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183523A (ja) * 1989-01-10 1990-07-18 Ulvac Corp ダウンストリーム型アッシング装置
US5226056A (en) * 1989-01-10 1993-07-06 Nihon Shinku Gijutsu Kabushiki Kaisha Plasma ashing method and apparatus therefor
JPH04257217A (ja) * 1991-02-12 1992-09-11 Fuji Electric Co Ltd マイクロ波プラズマ処理装置
US6555394B2 (en) * 1995-11-28 2003-04-29 Samsung Electronics Co., Ltd. Methods of fabricating capacitors including Ta2O5 layers in a chamber including changing a Ta2O5 layer to heater separation or chamber pressure
US6177023B1 (en) * 1997-07-11 2001-01-23 Applied Komatsu Technology, Inc. Method and apparatus for electrostatically maintaining substrate flatness
US6235640B1 (en) * 1998-09-01 2001-05-22 Lam Research Corporation Techniques for forming contact holes through to a silicon layer of a substrate
JP3352418B2 (ja) * 1999-01-28 2002-12-03 キヤノン株式会社 減圧処理方法及び減圧処理装置
JP4470274B2 (ja) * 2000-04-26 2010-06-02 東京エレクトロン株式会社 熱処理装置
JP2001338916A (ja) * 2000-05-30 2001-12-07 Fujitsu Ltd 半導体装置の製造方法及びプラズマ灰化装置
US6797646B2 (en) * 2001-01-12 2004-09-28 Applied Materials Inc. Method of nitrogen doping of fluorinated silicate glass (FSG) while removing the photoresist layer
JP3887291B2 (ja) * 2002-09-24 2007-02-28 東京エレクトロン株式会社 基板処理装置
JP3877157B2 (ja) * 2002-09-24 2007-02-07 東京エレクトロン株式会社 基板処理装置
JP4256763B2 (ja) * 2003-11-19 2009-04-22 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
TWI293575B (ja) * 2005-07-28 2008-02-21 Engenuity Systems Inc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098011A (ja) * 1995-06-15 1997-01-10 Dainippon Screen Mfg Co Ltd プラズマ処理方法及び装置
WO2003009363A1 (en) * 2001-07-10 2003-01-30 Tokyo Electron Limited Plasma processor and plasma processing method
JP2004134769A (ja) * 2002-09-10 2004-04-30 Samsung Electronics Co Ltd フォトレジスト除去方法
JP2007103509A (ja) * 2005-09-30 2007-04-19 Canon Inc レジスト処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034184A1 (de) * 2010-05-04 2011-11-10 Industrial Technology Research Institute Eine mikrowellenangeregte Plasma Quelle linearer Art, welche einen geschlitzten, rechteckigen Wellenleiter als Plasma Erreger benutzt
US8776720B2 (en) 2010-05-04 2014-07-15 Industrial Technology Research Institute Linear-type microwave-excited plasma source using a slotted rectangular waveguide as the plasma exciter

Also Published As

Publication number Publication date
JP2009302285A (ja) 2009-12-24
CN102119437A (zh) 2011-07-06
JP5565892B2 (ja) 2014-08-06
KR20110016487A (ko) 2011-02-17
TWI387402B (zh) 2013-02-21
KR101289617B1 (ko) 2013-07-24
TW201004494A (en) 2010-01-16
CN102119437B (zh) 2015-02-18
US20110092073A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5565892B2 (ja) プラズマ処理装置、プラズマ処理方法、および電子デバイスの製造方法
KR100978966B1 (ko) 기판 처리 방법 및 기판 처리 장치
US9472424B2 (en) Substrate processing apparatus and a method of manufacturing a semiconductor device
TW201742147A (zh) 基板處理裝置
KR100936550B1 (ko) 석영제부재의 표면 처리 방법, 플라즈마 처리 장치 및 플라즈마 처리 방법
JP4865352B2 (ja) プラズマ処理装置及びプラズマ処理方法
KR101411171B1 (ko) 플라즈마 처리 장치
US9257271B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and non-transitory recording medium
JP4861208B2 (ja) 基板載置台および基板処理装置
JP6012933B2 (ja) 基板処理装置、半導体装置の製造方法および基板処理方法
JP5918574B2 (ja) 基板処理装置及び半導体装置の製造方法
JP5728565B2 (ja) プラズマ処理装置及びこれに用いる遅波板
JP2013042061A (ja) 基板処理装置及び半導体装置の製造方法
JP4143362B2 (ja) プラズマ処理装置
JP6427628B2 (ja) プラズマ処理装置、およびプラズマ処理方法
JP6366307B2 (ja) 洗浄システム、および洗浄方法
JP6067372B2 (ja) プラズマ処理装置
JP2018157233A (ja) 洗浄システム、および洗浄方法
KR101123538B1 (ko) 석영제부재
JP2015070040A (ja) プラズマ処理装置およびプラズマ処理方法
JP2010245145A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131398.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12996878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117000322

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09762398

Country of ref document: EP

Kind code of ref document: A1