WO2010012748A1 - Outil chirurgical modulaire - Google Patents

Outil chirurgical modulaire Download PDF

Info

Publication number
WO2010012748A1
WO2010012748A1 PCT/EP2009/059771 EP2009059771W WO2010012748A1 WO 2010012748 A1 WO2010012748 A1 WO 2010012748A1 EP 2009059771 W EP2009059771 W EP 2009059771W WO 2010012748 A1 WO2010012748 A1 WO 2010012748A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
functional
modules
functional modules
trocar
Prior art date
Application number
PCT/EP2009/059771
Other languages
English (en)
Inventor
Philippe Cinquin
Juan Carlos Avila Vilchis
Nabil Zemiti
Adriana Herlinda Vilchis Gonzalez
Original Assignee
Universite Joseph Fourier - Grenoble 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Joseph Fourier - Grenoble 1 filed Critical Universite Joseph Fourier - Grenoble 1
Priority to US13/056,273 priority Critical patent/US9451974B2/en
Priority to EP09781211.9A priority patent/EP2306911B1/fr
Publication of WO2010012748A1 publication Critical patent/WO2010012748A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00265Hand assisted surgery, i.e. minimally invasive surgery with at least part of an assisting hand inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2931Details of heads or jaws with releasable head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a modular surgical tool for minimally invasive surgery.
  • Minimally invasive surgery is a surgical approach to intervene inside the body of a patient by accessing the organs on which an intervention must be performed by practicing a minimum of openings in the body.
  • the surgeon makes incisions of small dimensions in the body of the patient, in which he inserts trocars intended to allow the passage of instruments and visualization devices, such as an endoscope or a laparoscope which allow him to observe the area of intervention.
  • Trocars allowing the passage of visualization devices are called
  • Optical trocars and generally have inner diameters of 10 mm or 12 mm.
  • Trocars that allow the passage of surgical instruments are called “trocars operators” and generally have internal diameters of 5 mm, provided that trocars 8 mm, 10 mm or 12 mm inside diameter can be used. also be used if the operation requires it.
  • Robotic tools with internal mobilities - that is to say with different degrees of freedom that can be actuated inside the patient's body - exist today in clinical routine (DaVinci robot instruments) or in the form of a laboratory prototype. research.
  • remote means for example, cables, rods, tension son, springs and belts, pulled by actuators placed on the proximal part of the instrument.
  • Another solution is to perform the internal mobilities using direct actuations (that is to say, mini-motors placed in the distal portion of the instrument).
  • US Patent 6,074,408 relates to a removable modular medical instrument to allow easier cleaning and replacement of a failed component. Its operation is based on an internal cable control.
  • WO 98/49951 describes meanwhile a modular surgical instrument allowing interchangeability of the tool through a ball ratchet system.
  • US Pat. No. 7,150,751 relates to the design of a coupling for a modular tool.
  • a first object of the invention is therefore to design a modular tool with internal mobility - that is to say, which can provide the surgeon with all the degrees of freedom he needs - and which can at the same time be assembled and disassembled easily.
  • Another object of the invention is to provide a modular tool of sufficiently small dimensions that it can be inserted into the human body through an opening of minimum diameter, in order to limit the postoperative consequences on the patient.
  • Another object of the invention is to allow the use of a non-remote power source, to avoid cable actuation which gives rise to significant mechanical stresses.
  • the modular tool should be suitable for use in a robotic system.
  • the invention proposes a system capable of realizing the internal mobilities of the tool with a modular system that uses direct actuation while retaining the non-traumatic and minimally invasive character of the surgical procedure.
  • a minimally invasive surgical intervention device comprising a panoplie to form a modular surgical tool, said set comprising a support rod and a plurality of functional modules, wherein each functional module has means for fastening to the support rod and / or to another functional module and having appropriate dimensions for insertion into the body of a patient through a trocar, said device being characterized in that:
  • each functional module has at least one degree of freedom in rotation or in translation and / or a functional end-piece such as a clamp, a hook, a scalpel,
  • the support rod and / or the functional modules comprise means for actuating said functional modules according to their degree of freedom and / or their respective function, and in that said device comprises an electromechanical interface capable of controlling the actuation of the functional modules assembled forming the tool.
  • each functional module has at least one degree of freedom in rotation or in translation, and / or a functional end such as a clamp, a hook, a scalpel.
  • the securing means comprise complementary male and female parts and / or magnetic contact adhesion surfaces.
  • the support rod and / or the functional modules comprise means for supplying energy and for controlling said functional modules.
  • the support rod has a diameter less than or equal to 8 mm, and each functional module has at least one dimension less than or equal to 12 mm.
  • the device comprises a first trocar having an internal diameter of less than or equal to 8 mm for the insertion of the rod and a second trocar having an internal diameter less than or equal to 12 mm for the insertion of the functional modules.
  • the device comprises means for imaging the inside of the patient's body, such as an endoscope or a laparoscope.
  • the device further comprises means for manipulating each functional module in the body of the patient.
  • Said handling means comprise, for example, a clamp secured to the imaging means, a magnet having a hollow cylindrical shape and capable of being mounted on the imaging means without encumbering the visual field, or a clamp inserted through a third trocar. .
  • Another object of the invention relates to a method of assembling a modular surgical tool, said tool comprising at least one functional module on a support rod, said method being characterized in that it comprises the following steps:
  • step (c) assembling said functional module on the support rod.
  • step (b) comprises the successive passage of a plurality of functional modules, the last of which has a functional end
  • step (c) comprises the successive assembly of said functional modules, so that the assembled tool has at its distal end said functional tip.
  • the method comprises a step of handling the functional modules to bring them from the output of the second trocar to the support rod.
  • FIG. 1 schematically illustrates the installation of trocars in the abdomen of a patient in the frame a minimally invasive surgical procedure
  • Figure 2 shows the range of functional modules for assembling the modular surgical tool according to the invention
  • FIG. 3 represents two particular functional modules that can be used in the context of the invention
  • FIG. 4 illustrates an example of an assembled surgical tool
  • Figure 5 illustrates another example of an assembled surgical tool
  • FIG. 6 illustrates another variant of functional module
  • Figure 7 illustrates several possible configurations of the functional module illustrated in Figure 6
  • FIG. 8 illustrates two examples of functional tips mounted at the end of the functional module represented in FIGS. 6 and 7
  • Figure 9 shows the assembly method of the modular surgical tool
  • FIG. 10 illustrates an auxiliary device for manipulating the functional modules within the patient's body
  • Figure 11 illustrates another device for handling the functional modules
  • Figure 12 illustrates two variants of a junction module for increasing the number of degrees of freedom of the surgical tool.
  • a trocar 1, a trocar 2, and a trocar 3 are placed in the abdomen 4 of a patient, as illustrated in FIG.
  • Trocars 1 and 2 generally have an internal diameter of less than or equal to 8 mm (operating trocar) and trocar 3 (optical trocar) has an internal diameter less than or equal to 12 mm.
  • Trocars 1 and 2 allow the use of surgical tools such as forceps and trocar 3 use of a laparoscope, for example.
  • Figure 2 shows the trocar 1 severed in its lower part and the support rod 5 of the surgical tool whose distal portion 6 must receive functional modules inside the abdomen of the patient.
  • the modular surgical tool according to the invention is indeed assembled from a variety of functional modules adapted to be secured to the support rod or to another functional module.
  • a degree of freedom is associated with a translation or a rotation; the operating movements of the tool (eg opening and closing of a clamp) not being considered as degrees of freedom.
  • the rod 5 serves as a basis for assembly / disassembly of a series of modules belonging to one of the following classes: module having a degree of freedom in rotation (or “module-rotation”) 7, module having a degree of freedom in translation (or “module-translation”) 8 or module having a functional endpiece, such as a gripper module 9.
  • each module has means for being secured to the support rod or to another module.
  • each module may have a female shape such as the orifice 14 shown in FIG. 2, this female form being able to be fitted and held on a complementary male shape of the support rod 5 or of another functional module (a motor shaft, for example).
  • Functional plug modules which are intended to form the end of the modular tool, may simply have an orifice 14.
  • any other form of securing means may be envisaged (complementary male / female forms, clips, screws, magnetic means, electromechanical means, ).
  • the securing means are also designed to allow the transmission of energy and operating commands to each of the modules.
  • the tool is controlled from an electromechanical interface, of the haptic interface type, by means of which the surgeon indicates the desired movements and which transmits, by means of a controller, the control signals to each module. functional.
  • the support rod 5 must be designed in such a way that its internal part contains transmission supports (electrical, fluidic or otherwise) for the supply of energy and for the exchange of information and control signals between the actuators, sensors and the system controller.
  • proximal (external to the surgical cavity) and distal (in the surgical cavity) portions of the support rod 5 comprise contactors or connectors ensuring the connections between the rod and the functional modules (actuators) on the one hand, and the support rod and the controller on the other hand.
  • each of the functional modules has its own power supply means, for example in the form of miniature batteries.
  • the support rod 5 is a simple passive rod and the power supply, the exchange of information and control signals between the actuators, the sensors and the controller of the system is done wirelessly (radio frequency, ultrasound, Bluetooth, Wifi, induction, magnetic, etc.).
  • the orifice 14 for mounting the modules may be located on the most appropriate face of each module. If, as in FIG. 2, the functional module has a cylindrical shape, for example, the orifice 14 can be placed in the base or in the lateral surface of the cylinder. If the functional module is a cube, the orifice 14 can be placed on one of the five surfaces of the cube that does not contain the motor axis of the module.
  • each module may be greater than 12 mm; however, its width will be less than 12 mm because the assembly of the tool is based on the use of the trocar 3 of internal diameter less than or equal to 12 mm in order to pass the modules defining the desired architecture, to the Inside the abdomen 4.
  • the gripper module 9 does not receive other modules, it can be mounted on the support rod 5 as first and last module, but also on a module-rotation 7 or on a translation module 8.
  • the architecture of the assembled tool can therefore have the number of degrees of freedom that one wishes, to provide the best dexterity to the doctor to perform his surgical procedure.
  • This "module-unique" class system 10 will also have a width less than
  • FIG. 3 shows the general principle of two modules of the single module-class 10; however, the design of this module class is not restricted to these two single-module examples.
  • the first module 10a has a configuration of the Rotation-Rotation-Rotation-Clamp type where R1, R2 and R3 are rotations that can be performed with respect to the axes a1, a2 and a3, respectively.
  • the second module 10b has a configuration of the type Rotation-Rotation-Translation-Clamp where R1 and R2 are the rotations made with respect to the axes a1, a2, respectively, and T1 is a translation performed along the axis a3.
  • the parts 11 in FIG. 3 are those which will be mounted on the support rod 5 thanks to the orifices 14. It is possible to observe in FIG. 3 a gripper module 9 as the final part of each single module 10.
  • the system can be updated or reconfigured at the request of the surgeon, that is to say that modules-rotation 7 or modules-translation 8 can be added or removed
  • FIG. 4 illustrates an example of a mounting with two degrees of freedom, consisting of a module-rotation 7, a translation module 8 and a gripper module 9.
  • FIG. 5 illustrates a "module-single" class module 10a mounted on the support rod 5.
  • This module 12 is also sent to the surgical cavity 4 by the trocar 3.
  • the initial part 11 of this series of submodules is the part that will be mounted on the support rod (not shown in this figure).
  • this module 12 can take a particular configuration among a number of possible configurations a priori, depending on the surgical needs.
  • Figure 7 illustrates the module 12 in a configuration before and after three rotations R12-1, R12-2 and R12-3 submodules.
  • a second configuration c2 of the module 12 is also shown in Figure 7 where the module 12 has a configuration with two branches, the first bearing a clamp at the end of the series of sub-modules and the second carrying scissors.
  • a junction module has been designed to increase the number of module assemblies within the surgical cavity.
  • Figure 12 illustrates two versions of the junction module: a female-female module 13a and a female-male module 13b.
  • the junction module 13a or 13b can receive the different classes of modules
  • junction module allows multiple mounting as that of two modules 12 shown in the right part of Figure 7 where a junction module 13b (previously mounted in the support rod 5) receives a first module 12 carrying a clip and a second module 12 carrying scissors.
  • junction module therefore increases the number of instruments inside the surgical cavity without increasing the number of surgical openings.
  • FIG. 7 illustrates the module 12 before and after three rotations R12-1, R12-2 and R12-3 of the submodules, which defines a configuration change. These rotations are performed inside the surgical cavity after mounting the module 12 in the support rod 5 or in the junction module; they are carried out thanks to a command carried out outside the surgical cavity.
  • surgeon intervenes only in the mounting of the module 12 on the support rod 5 or the junction module on the support rod 5 and modules 12 on the junction module.
  • the module 12 has a greater number of degrees of freedom thanks to the number of independent submodules 12a that constitute it and can be chosen in advance by the physician; this module 12 is redundant. This represents an increase in the degree of dexterity of the tool surgical and allows to have the desired mobilities according to the operation, without having to change instrument or add modules
  • Clamps, scissors, etc. of the module 12 are foldable tools also forming a submodule, as illustrated in FIG. 8.
  • Figure 9 illustrates the different steps required to assemble the tool inside the abdomen.
  • step (a) the modules are passed through the trocar 3 where it is possible to observe, in dotted lines, a module-rotation 7 passing through the trocar 3 and a gripper module 9 ready to be inserted in the trocar 3 .
  • the passage of the modules to the inside of the patient's abdomen for mounting the tool and their recovery after disassembly can be done using mechanical, magnetic, pneumatic or other means.
  • the modules can be sent to the inside of the abdomen by gravity where they will be recovered for assembly.
  • Step (b) corresponds to the recovery of the modules inside the abdomen using, for example, another surgical tool placed in the trocar 2, which is not shown in this figure.
  • auxiliary device 16 comprising gripping means for handling different modules.
  • the auxiliary device 16 is for example adapted to the laparoscope 17 without obstructing the field of view 18 of the camera.
  • this auxiliary device 16 must have a well-studied architecture to facilitate the identification and manipulation of the modules, by the region without interference of the field of view 18.
  • the auxiliary device 16 is mounted on the laparoscope 17 before passing the first module to the inside of the abdomen and disassembled after finishing the assembly of the tool for do not disturb the view available to the doctor.
  • the modules are assembled one after the other on the support rod 5, ending with a gripper module 9.
  • the tool is ready for the implementation of a surgical procedure defined by the surgeon and which is not the subject of the present invention.
  • the number and class of modules to be used as well as the assembly order or configuration of the module depend on the dexterity desired by the physician and the internal space available in the patient's abdomen.
  • the support rod 5 is designed according to the nature of the energy selected to ensure the power supply for all the modules defining the final architecture of the surgical tool.
  • the means used to provide power and to exchange information and control signals between the controller and the functional modules may be a conventional means (electrical wires, pneumatic, etc.) or a means wireless (radio frequency, induction, magnetic, Bluetooth, ultrasound, etc.).
  • the securing means of each functional module is designed so that it receives and transmits (with the controller and with all the modules) the information and the control signals and the energy needed.
  • the tool according to the invention can therefore be free of cable actuation, which minimizes the space generated around the surgeon.
  • the disassembly of the tool is done by disassembling one by one the modules used.
  • the modules are then removed from the inside of the abdomen through the trocar 3.
  • the auxiliary device 16 is mounted on the laparoscope 17 before beginning the disassembly of the surgical tool and disassembled after having recovered all the modules.
  • FIG. 1 Another way to retrieve the modules from the inside of the patient's abdomen is a hollow magnet mounted on the laparoscope, as shown in FIG.
  • the orifice of the magnet makes it possible to release the visual field of the laparoscope 17.
  • This system makes it possible to recover the modules one by one by simple contact with the appropriate face to ensure its passage through the trocar 3. It is also possible to use other means for depositing and retrieving the modules from the inside of the trocar. abdomen as well as to assemble / disassemble them, as for example lock systems, ball fastening systems, clipping systems or any other type of fastening system with qualities such as the speed of assembly / disassembly, usability and security.
  • an endoscopic bag usually used to extract a part of a separate organ by ablation from the surgical cavity, can also be used.
  • the materials used for the manufacture of the various elements such as the support rod 5, the modules 7, 8, 9, 10 12 and 13a or 13b, the auxiliary device 16, the magnet 20 or another fixing device used for of the invention are compatible with the sterilizability and safety conditions required in an operating room.
  • the modular tool that has just been described can be used in connection with the robotic positioning system that is the subject of the international application WO03 / 094579.
  • the proximal end of the support rod 5 is then secured to a suitable support means.
  • the surgeon can benefit from the functionality and small footprint of such a robotic system, while taking advantage of all the degrees of freedom allowed by the modular tool.
  • trocars have been given by way of example, it being understood that larger diameter trocars can be used to allow the passage of larger modules.
  • the invention has been described in the context of laparoscopy, where the surgical cavity is the abdomen, but it goes without saying that it applies to all possible interventions in minimally invasive surgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Endoscopes (AREA)

Abstract

La présente invention concerne un dispositif d'intervention chirurgicale minimalement invasive, comprenant une panoplie pour former un outil chirurgical modulaire, ladite panoplie comprenant une tige support (5) et une pluralité de modules fonctionnels (7, 8, 9, 10, 12), dans laquelle chaque module fonctionnel possède des moyens (14, 15) de solidarisation à la tige support (5) et/ou à un autre module fonctionnel et présente des dimensions appropriées pour l'insertion dans le corps d'un patient à travers un trocart, ledit dispositif étant caractérisé en ce que : - chaque module fonctionnel (7, 8, 9, 10, 12) présente au moins un degré de liberté en rotation ou en translation et/ou un embout fonctionnel tel qu'une pince, un crochet, un scalpel, - la tige support (5) et/ou les modules fonctionnels (7, 8, 9, 10, 12) comprennent des moyens d'actionnement desdits modules fonctionnels selon leur degré de liberté et/ou leur fonction respective, et en ce que ledit dispositif comprend une interface électromécanique apte à commander l'actionnement des modules fonctionnels assemblés formant l'outil.

Description

OUTIL CHIRURGICAL MODULAIRE
DOMAINE DE L'INVENTION
La présente invention concerne un outil chirurgical modulaire pour la chirurgie minimalement invasive.
ARRIERE PLAN DE L'INVENTION
La chirurgie minimalement invasive est une approche chirurgicale visant à intervenir à l'intérieur du corps d'un patient en accédant aux organes sur lesquels une intervention doit être pratiquée en pratiquant un minimum d'ouvertures dans le corps. A cet effet, le chirurgien effectue des incisions de petites dimensions dans le corps du patient, dans lesquelles il insère des trocarts destinés à permettre le passage d'instruments et d'appareils de visualisation, tels qu'un endoscope ou un laparoscope qui lui permettent d'observer la zone d'intervention. Les trocarts permettant le passage d'appareils de visualisation s'appellent des
« trocarts optiques » et ont, généralement, des diamètres intérieurs de 10 mm ou de 12 mm.
Les trocarts qui permettent le passage d'instruments de chirurgie sont dénommés « trocarts opérateurs » et ont, généralement, des diamètres intérieurs de 5 mm, étant entendu que des trocarts opérateurs de diamètre intérieur de 8 mm, de 10 mm ou de 12 mm peuvent aussi être utilisés si l'opération le nécessite.
En raison des avantages de cette technique chirurgicale pour le patient - notamment en termes de confort du patient, de rapidité de récupération postopératoire, de réduction de la durée d'hospitalisation -, de nombreux outils ont été développés pour permettre au chirurgien d'effectuer des gestes aussi précis qu'en chirurgie ouverte, dans laquelle il bénéficie d'un plus large accès à la région d'intervention.
Toutefois, les outils proposés à ce jour présentent encore des inconvénients qui entravent les progrès de la chirurgie minimalement invasive. Parmi ces problèmes, le manque de dextérité ou la faible mobilité apportée par les outils actuels a été signalée par des médecins. Des outils robotisés à mobilités internes - c'est-à-dire présentant différents degrés de liberté actionnables à l'intérieur du corps du patient - existent aujourd'hui en routine clinique (instruments du robot DaVinci) ou sous forme de prototype en laboratoire de recherche. Pour permettre l'insertion de ces outils à travers les trocarts opérateurs conventionnels, l'actionnement des mobilités internes de ces outils se fait par moyen déporté (par exemple, des câbles, des biellettes, des fils à tension, des ressorts et des courroies, tirés par des actionneurs placés sur la partie proximale de l'instrument). Ces dispositifs d'actionnement engendrent un encombrement important à l'extérieur du patient, autour du chirurgien.
Une autre solution consiste à réaliser les mobilités internes en utilisant des actionnements directs (c'est-à-dire des mini-moteurs placés dans la partie distale de l'instrument).
Pour des raisons technologiques (compromis taille/puissance des moteurs), l'outil qui en découle est très encombrant et ne passe pas par les trocarts opérateurs classiques. L'utilisation de trocarts de plus grand diamètre devient nécessaire, ce qui supprime le caractère minimalement invasif et non traumatisant de la procédure chirurgicale.
Par ailleurs, la modularité dans la conception d'un outil ou d'un système médical a été prise en compte dans plusieurs travaux.
Par exemple, le brevet US 6,074,408 porte sur un instrument médical modulaire démontable afin de permettre un nettoyage plus facile et le remplacement d'un composant défaillant. Son actionnement repose sur une commande par câble interne.
Le document WO 98/49951 décrit quant à lui un instrument chirurgical modulaire autorisant une interchangeabilité de l'outil grâce à un système de cliquet à billes.
Le brevet US 7,150,751 porte sur la conception d'un raccord pour un outil modulaire.
Cependant, ces systèmes, bien que modulaires, ont été conçus pour un assemblage externe au corps du patient. En effet, l'outil est tout d'abord complètement assemblé et ensuite introduit dans le corps du patient pour effectuer la tâche pour laquelle il a été conçu. Ceci suppose soit l'utilisation de trocarts de diamètres importants pour le passage de ces outils - avec des conséquences néfastes sur les suites postopératoires, soit la conception d'outils peu encombrants pour pouvoir passer dans des trocarts de diamètre moindre, mais au détriment des degrés de liberté. Plusieurs travaux ont proposé des architectures originales pour des outils médicaux tels que les endoscopes ou d'autres outils chirurgicaux, où les alliages à mémoire de forme sont parfois utilisés, en essayant toujours d'améliorer la dextérité du médecin lors de la réalisation du geste chirurgical.
Ainsi, un dispositif d'orientation à trois degrés de liberté et actionné par câbles fait l'objet du brevet US 6,685,698.
L'article de T. Takayama, T. Omata, T. Futami, H. Akamatsu, T. Ohya, K.Kojima, K.Takase and N. Tanaka ("Detachable-fingered hands for manipulation of large internai organs in laparoscopic surgery", Proc. of International Conférence on Robotics and Automation (ICRA), pp. 244-249, 2007), décrit quant à lui l'assemblage, à l'intérieur de l'abdomen, de doigts mécaniques constituant une « main » dont la fonction est de serrer, de manipuler ou de pousser des grands organes internes. Toutefois, dans ce dispositif, le nombre de doigts est restreint à trois. Par ailleurs, leur actionnement se fait mécaniquement, par câbles, par une action manuelle du chirurgien exercée sur la partie proximale de l'instrument. On comprend donc que le nombre de degrés de liberté que présentent en général les instruments existants pour la chirurgie minimalement invasive est trop faible, et que leur actionnement par câbles génère un encombrement important à l'extérieur du patient.
Un premier but de l'invention est donc de concevoir un outil modulaire à mobilités internes - c'est-à-dire qui puisse procurer au chirurgien tous les degrés de liberté dont il a besoin -, et qui puisse en même temps être assemblé et désassemblé facilement.
Un autre but de l'invention est de procurer un outil modulaire de dimensions suffisamment faibles pour qu'il puisse être inséré dans le corps humain à travers une ouverture de diamètre minimal, afin de limiter les conséquences postopératoires sur le patient. Un autre but de l'invention est de permettre l'emploi d'une source de puissance non déportée, afin d'éviter un actionnement par câbles qui donne lieu à des contraintes mécaniques importantes.
Enfin, l'outil modulaire devrait pouvoir être adapté à l'utilisation dans un système robotisé.
BREVE DESCRIPTION DE L'INVENTION
L'invention propose un système capable de réaliser les mobilités internes de l'outil avec un système modulaire qui utilise un actionnement direct tout en conservant le caractère non traumatisant et minimalement invasif de la procédure chirurgicale.
Conformément à l'invention, il est proposé un dispositif d'intervention chirurgicale minimalement invasive, comprenant une panoplie pour former un outil chirurgical modulaire, ladite panoplie comprenant une tige support et une pluralité de modules fonctionnels, dans laquelle chaque module fonctionnel possède des moyens de solidarisation à la tige support et/ou à un autre module fonctionnel et présente des dimensions appropriées pour l'insertion dans le corps d'un patient à travers un trocart, ledit dispositif étant caractérisé en ce que :
- chaque module fonctionnel présente au moins un degré de liberté en rotation ou en translation et/ou un embout fonctionnel tel qu'une pince, un crochet, un scalpel,
- la tige support et/ou les modules fonctionnels comprennent des moyens d'actionnement desdits modules fonctionnels selon leur degré de liberté et/ou leur fonction respective, et en ce que ledit dispositif comprend une interface électromécanique apte à commander l'actionnement des modules fonctionnels assemblés formant l'outil.
De manière particulièrement avantageuse, chaque module fonctionnel présente au moins un degré de liberté en rotation ou en translation, et/ou un embout fonctionnel tel qu'une pince, un crochet, un scalpel.
Les moyens de solidarisation comprennent des parties mâles et femelles complémentaires et/ou des surfaces d'adhésion par contact magnétique. De manière préférée, la tige support et/ou les modules fonctionnels comprennent des moyens pour alimenter en énergie et pour commander lesdits modules fonctionnels.
Selon un mode préféré de réalisation, la tige support présente un diamètre inférieur ou égal à 8 mm, et chaque module fonctionnel présente au moins une dimension inférieure ou égale à 12 mm.
Le dispositif comprend un premier trocart présentant un diamètre intérieur inférieur ou égal à 8 mm pour l'insertion de la tige et un deuxième trocart présentant un diamètre intérieur inférieur ou égal à 12 mm pour l'insertion des modules fonctionnels.
Selon un mode particulier de réalisation, le dispositif comprend des moyens d'imagerie de l'intérieur du corps du patient, tels qu'un endoscope ou un laparoscope. Avantageusement, le dispositif comprend en outre des moyens pour manipuler chaque module fonctionnel dans le corps du patient. Lesdits moyens de manipulation comprennent par exemple une pince solidaire des moyens d'imagerie, un aimant présentant une forme cylindrique creuse et apte à être monté sur les moyens d'imagerie sans en encombrer le champ visuel, ou une pince insérée à travers un troisième trocart.
Un autre objet de l'invention concerne un procédé d'assemblage d'un outil chirurgical modulaire, ledit outil comprenant au moins un module fonctionnel sur une tige support, ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes :
(a) introduction de la tige support dans un premier trocart installé au préalable dans le corps d'un patient ; (b) passage, dans un deuxième trocart installé au préalable dans le corps d'un patient, d'un module fonctionnel,
(c) assemblage dudit module fonctionnel sur la tige support. De manière avantageuse, l'étape (b) comprend le passage successif d'une pluralité de modules fonctionnels dont le dernier présente un embout fonctionnel, et l'étape (c) comprend l'assemblage successif desdits modules fonctionnels, de telle sorte que l'outil assemblé présente à son extrémité distale ledit embout fonctionnel. Entre les étapes (b) et (c), le procédé comprend une étape de manipulation des modules fonctionnels pour les amener de la sortie du deuxième trocart vers la tige support.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels : la figure 1 illustre de manière schématique l'installation des trocarts dans l'abdomen d'un patient dans le cadre d'une intervention chirurgicale minimalement invasive ; la figure 2 représente la panoplie de modules fonctionnels permettant d'assembler l'outil chirurgical modulaire conformément à l'invention ; la figure 3 représente deux modules fonctionnels particuliers pouvant être utilisés dans le cadre de l'invention ; - la figure 4 illustre un exemple d'outil chirurgical assemblé ; la figure 5 illustre un autre exemple d'outil chirurgical assemblé ; la figure 6 illustre une autre variante de module fonctionnel ; la figure 7 illustre plusieurs configurations possibles du module fonctionnel illustré à la figure 6 ; - la figure 8 illustre deux exemples d'embouts fonctionnels montés à l'extrémité du module fonctionnel représenté aux figures 6 et 7 ; la figure 9 représente le procédé d'assemblage de l'outil chirurgical modulaire ; la figure 10 illustre un dispositif auxiliaire permettant la manipulation des modules fonctionnels à l'intérieur du corps du patient ; la figure 11 illustre un autre dispositif permettant la manipulation des modules fonctionnels ; la figure 12 illustre deux variantes d'un module jonction permettant d'augmenter le nombre de degrés de liberté de l'outil chirurgical. DESCRIPTION DETAILLEE DE L'INVENTION
Dispositif d'intervention chirurgicale
Lors d'une intervention chirurgicale minimalement invasive pratiquée dans la zone abdominale (ou laparoscopie), un trocart 1 , un trocart 2, et un trocart 3 sont placés dans l'abdomen 4 d'un patient, comme illustré sur la figure 1.
Les trocarts 1 et 2 ont, généralement, un diamètre intérieur inférieur ou égal à 8 mm (trocart opérateur) et le trocart 3 (trocart optique) présente un diamètre intérieur inférieur ou égal à 12 mm.
Les trocarts 1 et 2 permettent l'utilisation d'outils chirurgicaux comme des pinces et le trocart 3 l'utilisation d'un laparoscope, par exemple.
La figure 2 montre le trocart 1 sectionné dans sa partie inférieure et la tige support 5 de l'outil chirurgical dont la partie distale 6 doit recevoir des modules fonctionnels à l'intérieur de l'abdomen du patient.
L'outil chirurgical modulaire conforme à l'invention est en effet assemblé à partir d'une panoplie de modules fonctionnels aptes à être solidarisés à la tige support ou à un autre module fonctionnel.
Par modulaire, on entend dans ce texte le fait que l'outil soit assemblé au cas par cas avec les degrés de liberté ou les fonctions souhaités par le chirurgien.
On précise par ailleurs que dans ce texte un degré de liberté est associé à une translation ou à une rotation ; les mouvements de fonctionnement de l'outil (par exemple ouverture et fermeture d'une pince) n'étant pas considérés comme des degrés de liberté.
La tige 5 sert de base pour l'assemblage/désassemblage d'une série de modules appartenant à l'une des classes suivantes : module présentant un degré de liberté en rotation (ou « module-rotation ») 7, module présentant un degré de liberté en translation (ou « module-translation ») 8 ou module présentant un embout fonctionnel, tel qu'un module-pince 9.
Bien sûr, l'embout fonctionnel peut être tout instrument dont le chirurgien peut avoir besoin lors de l'intervention, comme par exemple un crochet, un scalpel, une aiguille... A cet effet, chaque module présente des moyens pour être solidarisé à la tige support ou à un autre module. Par exemple, chaque module peut présenter une forme femelle telle que l'orifice 14 représenté sur la figure 2, cette forme femelle étant apte à être emboîtée et maintenue sur une forme mâle 15 complémentaire de la tige support 5 ou d'un autre module fonctionnel (un arbre moteur, par exemple).
Les modules à embout fonctionnel, qui sont destinés à constituer l'extrémité de l'outil modulaire, peuvent présenter simplement un orifice 14.
Bien sûr, toute autre forme des moyens de solidarisation peut être envisagée (formes complémentaires mâle/femelle, clips, vis, moyens magnétiques, moyens électromécaniques, ...).
Par ailleurs, les moyens de solidarisation sont également conçus pour permettre la transmission de l'énergie et des commandes de fonctionnement à chacun des modules.
En particulier, l'outil est commandé à partir d'une interface électromécanique, du type interface haptique, au moyen de laquelle le chirurgien indique les mouvements souhaités et qui transmet, par le biais d'un contrôleur, les signaux de commande à chaque module fonctionnel.
La tige support 5 doit être conçue de telle sorte que sa partie interne contienne des supports de transmission (électrique, fluidique ou autre) pour l'alimentation en énergie et pour l'échange d'information et de signaux de commande entre les actionneurs, les capteurs et le contrôleur du système.
Par ailleurs, les parties proximale (externe à la cavité chirurgicale) et distale (dans la cavité chirurgicale) de la tige support 5 comprennent des contacteurs ou des connecteurs assurant les liaisons entre la tige et les modules fonctionnels (actionneurs) d'une part, et la tige support et le contrôleur d'autre part.
Selon une variante, on peut imaginer que chacun des modules fonctionnels dispose de ses propres moyens d'alimentation en énergie, par exemple sous la forme de batteries miniatures.
Aussi, selon un autre mode de réalisation de l'invention, la tige support 5 est une simple tige passive et l'alimentation en énergie, l'échange d'information et de signaux de commande entre les actionneurs, les capteurs et le contrôleur du système se fait par voie sans fil (radio fréquence, ultrason, Bluetooth, Wifi, induction, magnétique, etc.).
L'orifice 14 servant au montage des modules peut être situé sur la face la plus appropriée de chaque module. Si, comme sur la figure 2, le module fonctionnel a une forme cylindrique, par exemple, l'orifice 14 peut être placé dans la base ou dans la surface latérale du cylindre. Si le module fonctionnel est un cube, l'orifice 14 peut être placé sur l'une des cinq surfaces du cube ne contenant pas l'axe moteur du module.
De manière alternative, on n'utilisera pas des parties mâles et femelles complémentaires mais des surfaces d'adhésion par contact magnétique.
La longueur de chaque module peut être supérieure à 12 mm ; cependant, sa largeur sera inférieure à 12 mm car l'assemblage de l'outil est basé sur l'utilisation du trocart 3 de diamètre intérieur inférieur ou égal à 12 mm afin de faire passer les modules définissant l'architecture souhaitée, vers l'intérieur de l'abdomen 4. Sur chaque module-rotation 7 ou sur chaque module-translation 8, il est possible de monter/démonter d'autres modules sans aucune restriction de classe.
Le module-pince 9 ne reçoit pas d'autres modules, il peut être monté sur la tige support 5 en tant que premier et dernier module, mais aussi sur un module-rotation 7 ou sur un module-translation 8. L'architecture de l'outil assemblé peut donc avoir le nombre de degrés de liberté que l'on souhaite, afin de procurer la meilleure dextérité au médecin pour réaliser son geste chirurgical.
Selon une variante, on peut envisager un module fonctionnel à plusieurs degrés de liberté et intégrant en outre un embout fonctionnel. Ce système de classe « module-unique » 10 aura aussi une largeur inférieure à
12 mm et son architecture dépendra des besoins médicaux.
La figure 3 montre le principe général de deux modules de la classe module- unique 10 ; cependant, la conception de cette classe de modules n'est pas restreinte à ces deux exemples de module-unique. Le premier module 10a possède une configuration du type Rotation-Rotation- Rotation-Pince où R1 , R2 et R3 sont des rotations qui peuvent être réalisées par rapport aux axes ai , a2 et a3, respectivement.
Le deuxième module 10b a une configuration du type Rotation-Rotation- Translation-Pince où R1 et R2 sont les rotations réalisées par rapport aux axes ai , a2, respectivement, et T1 est une translation effectuée le long de l'axe a3.
Les parties 11 dans la figure 3 sont celles qui seront montées sur la tige support 5 grâce aux orifices 14. Il est possible d'observer sur la figure 3 un module-pince 9 comme partie finale de chaque module-unique 10. En fonction des besoins chirurgicaux et/ou du degré de dextérité requis lors d'une opération, le système peut être mis à jour ou reconfiguré à la demande du chirurgien, c'est-à-dire que des modules-rotation 7 ou des modules-translation 8 peuvent être rajoutés ou enlevés
La figure 4 illustre un exemple de montage à deux degrés de liberté, constitué d'un module-rotation 7, d'un module-translation 8 et d'un module-pince 9.
La figure 5 illustre un module 10a de classe « module-unique » monté sur la tige support 5.
La récupération des modules de classe « module-unique » 10 se fera après l'avoir démonté de la tige support 5, par un des moyens mentionnés plus loin dans ce document.
Selon une autre variante de la panoplie, on peut prévoir une classe particulière de module unique 12 constitué d'une série de sous-modules indépendants 12a comme illustré à la figure 6.
Ce module 12 est aussi envoyé vers la cavité chirurgicale 4 par le trocart 3. La partie initiale 11 de cette série de sous-modules est la partie qui sera montée sur la tige support (non montrée sur cette figure).
Une fois assemblé sur la tige support, ce module 12 pourra prendre une configuration particulière parmi un certain nombre de configurations possibles a priori, en fonction des besoins chirurgicaux. Ainsi, la figure 7 illustre le module 12 dans une configuration d avant et après trois rotations R12-1 , R12-2 et R12-3 des sous-modules. Une deuxième configuration c2 du module 12 est aussi montrée à la figure 7 où le module 12 a pris une configuration à deux branches, la première portant une pince à la fin de la série de sous-modules et la deuxième portant des ciseaux.
Le chirurgien intervient uniquement dans le montage du module 12 sur la tige support 5.
Un module jonction a été conçu afin d'augmenter le nombre de montages des modules à l'intérieur de la cavité chirurgicale.
La figure 12 illustre deux versions du module jonction : un module femelle- femelle 13a et un module femelle-mâle 13b. Le module jonction 13a ou 13b peut recevoir les différentes classes de modules
7, 8, 9, 10 ou 12.
En effet, l'utilisation du module jonction permet un montage multiple comme celui de deux modules 12 illustré dans la partie droite de la figure 7 où un module jonction 13b (monté au préalable dans la tige support 5) reçoit un premier module 12 portant une pince et un deuxième module 12 portant des ciseaux.
L'utilisation du module jonction permet donc d'augmenter le nombre d'instruments à l'intérieur de la cavité chirurgicale sans pourtant augmenter le nombre d'orifices chirurgicaux.
La partie gauche de la figure 7 illustre le module 12 avant et après trois rotations R12-1 , R12-2 et R12-3 des sous-modules, ce qui définit un changement de configuration. Ces rotations sont effectuées à l'intérieur de la cavité chirurgicale après montage du module 12 dans la tige support 5 ou dans le module jonction ; elles s'effectuent grâce à une commande réalisée à l'extérieur de la cavité chirurgicale.
Dans ce cas, le chirurgien intervient uniquement dans le montage du module 12 sur la tige support 5 ou du module jonction sur la tige support 5 et des modules 12 sur le module jonction.
Par rapport au module unique 10, le module 12 possède un plus grand nombre de degrés de liberté grâce au nombre de sous-modules indépendants 12a qui le constituent et qui peuvent être choisis à l'avance par le médecin ; ce module 12 est donc redondant. Ceci représente une augmentation du degré de dextérité de l'outil chirurgical et permet d'avoir les mobilités souhaitées selon l'opération, sans avoir à changer d'instrument ou à rajouter des modules
Les pinces, ciseaux, etc. du module 12 sont des outils dépliables formant aussi un sous-module, comme il est illustré dans la figure 8. Procédé d'assemblage de l'outil modulaire
La figure 9 illustre les différentes étapes nécessaires pour assembler l'outil à l'intérieur de l'abdomen.
Dans l'étape (a) les modules sont passés par le trocart 3 où il est possible d'observer, en pointillées, un module-rotation 7 passant par le trocart 3 et un module- pince 9 prêt à être inséré dans le trocart 3.
Le passage des modules vers l'intérieur de l'abdomen du patient pour le montage de l'outil et leur récupération après démontage, peuvent se faire en utilisant des moyens mécaniques, magnétiques, pneumatiques ou autres.
Les modules peuvent ainsi être envoyés vers l'intérieur de l'abdomen par gravité où ils seront récupérés pour leur assemblage.
L'étape (b) correspond à la récupération des modules à l'intérieur de l'abdomen en utilisant, par exemple, un autre outil chirurgical placé dans le trocart 2, qui n'est pas représenté sur cette figure.
Selon un autre mode de réalisation de l'invention, illustré à la figure 10, on utilise un dispositif auxiliaire 16 comprenant des moyens de préhension pour manipuler des différents modules.
Le dispositif auxiliaire 16 est par exemple adapté au laparoscope 17 sans obstruer le champ visuel 18 de la caméra.
En effet, ce dispositif auxiliaire 16 doit avoir une architecture bien étudiée afin de faciliter le repérage et la manipulation des modules, par la région sans interférence du champ visuel 18.
Pour la phase d'assemblage de l'outil chirurgical, le dispositif auxiliaire 16 est monté sur le laparoscope 17 avant de faire passer le premier module vers l'intérieur de l'abdomen et démonté après avoir fini l'assemblage de l'outil pour ne pas gêner la vue disponible pour le médecin. Dans l'étape (c), les modules sont assemblés l'un après l'autre sur la tige support 5, en terminant par un module-pince 9.
Une fois assemblé, l'outil est prêt pour la mise en œuvre d'une procédure chirurgicale définie par le chirurgien et qui ne fait pas l'objet de la présente invention. Le nombre et la classe de modules à utiliser ainsi que l'ordre de montage ou la configuration du module dépendent de la dextérité souhaitée par le médecin et de l'espace interne disponible dans l'abdomen du patient.
Pour actionner les différents modules, l'utilisation de n'importe quelle sorte d'énergie peut être envisagée. La sélection du type d'énergie à utiliser dépendra des contraintes médicales pour chaque application et de la disponibilité technologique du moment.
La tige support 5 est conçue en fonction de la nature de l'énergie sélectionnée afin d'assurer l'alimentation en énergie pour tous les modules définissant l'architecture finale de l'outil chirurgical. Comme expliqué plus haut, le moyen utilisé pour fournir de l'énergie et d'échanger les informations et les signaux de commande entre le contrôleur et les modules fonctionnels peut être un moyen conventionnel (fils électriques, pneumatique, etc.) ou bien un moyen sans fil (radio fréquence, induction, magnétique, Bluetooth, ultrason, etc.). Dans le cas d'une transmission conventionnelle, le moyen de solidarisation de chaque module fonctionnel est donc conçu de telle sorte qu'il reçoive et transmette (avec le contrôleur et avec tous les modules) les informations et les signaux de commande ainsi que l'énergie nécessaire.
Contrairement aux outils de l'art antérieur, l'outil conforme à l'invention peut donc s'affranchir d'un actionnement par câbles, ce qui minimise l'encombrement généré autour du chirurgien.
Le désassemblage de l'outil est effectué en démontant un par un les modules utilisés. Les modules sont ensuite retirés de l'intérieur de l'abdomen à travers le trocart 3. Par exemple, le dispositif auxiliaire 16 est monté sur le laparoscope 17 avant de commencer le désassemblage de l'outil chirurgical et démonté après avoir récupéré tous les modules.
Un autre moyen pour récupérer les modules de l'intérieur de l'abdomen du patient est un aimant creux 20 monté sur le laparoscope, comme illustré à la figure 11.
L'orifice de l'aimant permet de libérer le champ visuel du laparoscope 17.
Ce système permet de récupérer les modules un par un par simple contact avec la face adéquate pour garantir son passage par le trocart 3. II est possible aussi d'utiliser d'autres moyens pour déposer et pour récupérer les modules de l'intérieur de l'abdomen ainsi que pour les monter/démonter, comme par exemple les systèmes à verrou, les systèmes de fixation à billes, les systèmes de clipsage ou n'importe quel autre type de système de fixation ayant des qualités telles que la rapidité de montage/démontage, la facilité d'utilisation et la sécurité. Parmi les moyens de récupération des modules, un sac endoscopique, utilisé habituellement pour extraire de la cavité chirurgicale une partie d'un organe séparée par ablation, peut aussi être utilisé.
Les matériaux utilisés pour la fabrication des différents éléments tels que la tige support 5, les modules 7, 8, 9 ,10 12 et 13a ou 13b, le dispositif auxiliaire 16, l'aimant 20 ou un autre dispositif de fixation servant à la mise en œuvre de l'invention, sont compatibles avec les conditions de stérilisabilité et de sécurité requises dans une salle d'opérations.
De manière particulièrement avantageuse, l'outil modulaire qui vient d'être décrit peut être utilisé en relation avec le système de positionnement robotisé faisant l'objet de la demande internationale WO03/094579. L'extrémité proximale de la tige support 5 est alors solidarisée à un moyen de support approprié. Ainsi, le chirurgien peut bénéficier des fonctionnalités et du faible encombrement d'un tel système robotisé, tout en profitant de tous les degrés de liberté autorisés par l'outil modulaire.
Bien sûr, les dimensions des trocarts ont été données à titre d'exemple, étant entendu que des trocarts de plus grand diamètre peuvent être utilisés pour permettre le passage de modules plus volumineux. Enfin, l'invention a été décrite dans le cadre de la laparoscopie, où la cavité chirurgicale est l'abdomen, mais il va de soi qu'elle s'applique à toutes les interventions envisageables en chirurgie minimalement invasive.

Claims

REVENDICATIONS
1. Dispositif d'intervention chirurgicale minimalement invasive, comprenant une panoplie pour former un outil chirurgical modulaire, ladite panoplie comprenant une tige support (5) et une pluralité de modules fonctionnels (7, 8, 9, 10, 12), dans laquelle chaque module fonctionnel possède des moyens (14, 15) de solidarisation à la tige support (5) et/ou à un autre module fonctionnel et présente des dimensions appropriées pour l'insertion dans le corps d'un patient à travers un trocart, ledit dispositif étant caractérisé en ce que :
- chaque module fonctionnel (7, 8, 9, 10, 12) présente au moins un degré de liberté en rotation ou en translation et/ou un embout fonctionnel tel qu'une pince, un crochet, un scalpel,
- la tige support (5) et/ou les modules fonctionnels (7, 8, 9, 10, 12) comprennent des moyens d'actionnement desdits modules fonctionnels selon leur degré de liberté et/ou leur fonction respective, et en ce que ledit dispositif comprend une interface électromécanique apte à commander l'actionnement des modules fonctionnels assemblés formant l'outil.
2. Dispositif selon la revendication 1 , caractérisé en ce que les moyens de solidarisation comprennent des parties mâles et femelles complémentaires et/ou des surfaces d'adhésion par contact magnétique.
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que la tige support (5) et/ou les modules fonctionnels (7, 8, 9, 10, 12) comprennent des moyens pour alimenter en énergie lesdits modules fonctionnels.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que la tige support (5) présente un diamètre inférieur ou égal à 8 mm, et en ce que chaque module fonctionnel (7, 8, 9, 10, 12) présente au moins une dimension inférieure ou égale à 12 mm.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend des moyens d'imagerie de l'intérieur du corps du patient, tels qu'un endoscope ou un laparoscope.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce qu'il comprend en outre des moyens (16, 20) pour manipuler chaque module fonctionnel dans le corps du patient.
7. Dispositif selon la revendication 6 dans sa relation de dépendance vis-à-vis de la revendication 5, caractérisé en ce que lesdits moyens de manipulation comprennent une pince solidaire des moyens d'imagerie.
8. Dispositif selon la revendication 7, caractérisé en ce que les moyens de manipulation comprennent un aimant présentant une forme cylindrique creuse et apte à être monté sur les moyens d'imagerie sans en encombrer le champ visuel.
9. Dispositif selon la revendication 8, caractérisé en ce que lesdits moyens de manipulation comprennent une pince insérée à travers un troisième trocart (2).
10. Dispositif selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend un premier trocart (1 ) présentant un diamètre intérieur inférieur ou égal à 8 mm pour l'insertion de la tige et un deuxième trocart (3) présentant un diamètre intérieur inférieur ou égal à 12 mm pour l'insertion des modules fonctionnels.
PCT/EP2009/059771 2008-07-29 2009-07-28 Outil chirurgical modulaire WO2010012748A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/056,273 US9451974B2 (en) 2008-07-29 2009-07-28 Modular surgical tool
EP09781211.9A EP2306911B1 (fr) 2008-07-29 2009-07-28 Outil chirurgical modulaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855188 2008-07-29
FR0855188A FR2934486B1 (fr) 2008-07-29 2008-07-29 Outil chirurgical modulaire

Publications (1)

Publication Number Publication Date
WO2010012748A1 true WO2010012748A1 (fr) 2010-02-04

Family

ID=40434243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059771 WO2010012748A1 (fr) 2008-07-29 2009-07-28 Outil chirurgical modulaire

Country Status (4)

Country Link
US (1) US9451974B2 (fr)
EP (1) EP2306911B1 (fr)
FR (1) FR2934486B1 (fr)
WO (1) WO2010012748A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180000531A1 (en) * 2011-01-19 2018-01-04 Covidien Lp Surgical Instrument Including Inductively Coupled Accessory
US10820922B2 (en) 2008-07-29 2020-11-03 Universite Joseph Fourier—Grenoble 1 Device for positioning a surgical tool in the body of a patient

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504767A (ja) 2007-11-26 2011-02-17 イースタン バージニア メディカル スクール マグナレトラクタシステムおよび方法
CL2009000279A1 (es) 2009-02-06 2009-08-14 Biotech Innovations Ltda Sistema de guia y traccion remota para cirugia mini-invasiva, que comprende: al menos una endopinza quirurgica y desprendible con medios de enganches y una porcion de material ferro magnaetico, una guia de introduccion de forma cilindrica, un mecanismo de desprendimiento, y al menos un medio de traccion remota con iman.
US9138207B2 (en) 2009-05-19 2015-09-22 Teleflex Medical Incorporated Methods and devices for laparoscopic surgery
JP5992834B2 (ja) 2010-01-20 2016-09-21 イーオン サージカル リミテッド 腔内における細長ユニットの展開システム
US8721539B2 (en) 2010-01-20 2014-05-13 EON Surgical Ltd. Rapid laparoscopy exchange system and method of use thereof
CA2811730C (fr) 2010-09-19 2017-12-05 EON Surgical Ltd. Dispositifs de micro-laparoscopie et mise en oeuvre desdits dispositifs
US10307038B2 (en) 2011-03-29 2019-06-04 Covidien Lp System and method for performing surgical procedures with a modular surgical system
US9700288B2 (en) 2011-03-29 2017-07-11 Covidien Lp System and method for performing surgical procedures with a modular surgical system having a rail mechanism
US9339285B2 (en) * 2013-03-12 2016-05-17 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning
WO2014159023A1 (fr) 2013-03-14 2014-10-02 Levita Magnetics International Corp. Ensembles de commande magnétique et systèmes associés
WO2015112645A1 (fr) 2014-01-21 2015-07-30 Levita Magnetics International Corp. Moyens de préhension laparoscopique et systèmes associés
EP3282954B1 (fr) 2015-04-13 2021-07-28 Levita Magnetics International Corp. Pince à positionnement commandé magnétiquement
WO2016168377A1 (fr) 2015-04-13 2016-10-20 Levita Magnetics International Corp. Systèmes d'écarteur, dispositifs, et procédés d'utilisation
CN106264626B (zh) * 2016-08-27 2018-07-24 天津大学 一种基于自然腔道的微创手术装置
US11020137B2 (en) 2017-03-20 2021-06-01 Levita Magnetics International Corp. Directable traction systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352219A (en) * 1992-09-30 1994-10-04 Reddy Pratap K Modular tools for laparoscopic surgery
US5752972A (en) * 1995-11-09 1998-05-19 Hoogeboom; Thomas J. Modular endoscopic surgical instrument
US6074408A (en) * 1998-10-13 2000-06-13 Freeman; Kenneth V. Modular medical instrument and method of using same
US20040133189A1 (en) * 2002-12-27 2004-07-08 Olympus Corporation Surgical operation apparatus and control method thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691093B1 (fr) 1992-05-12 1996-06-14 Univ Joseph Fourier Robot de guidage de gestes et procede de commande.
FR2712650B1 (fr) 1993-11-19 1996-02-02 Univ Joseph Fourier Roue libre débrayable.
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5810716A (en) 1996-11-15 1998-09-22 The United States Of America As Represented By The Secretary Of The Navy Articulated manipulator for minimally invasive surgery (AMMIS)
DE19709960A1 (de) 1997-03-11 1998-09-24 Aesculap Ag & Co Kg Verfahren und Vorrichtung zur präoperativen Bestimmung der Positionsdaten von Endoprothesenteilen
FR2762985B1 (fr) 1997-05-06 1999-08-20 Visco Dispositif de chirurgie modulaire pour la chirurgie endoscopique et la chirurgie classique
US7214230B2 (en) 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US6309403B1 (en) 1998-06-01 2001-10-30 Board Of Trustees Operating Michigan State University Dexterous articulated linkage for surgical applications
US6932089B1 (en) 1999-07-15 2005-08-23 Universite Joseph Fourier Remotely controllable system for positioning on a patient an observation/intervention device
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
IL140494A0 (en) 2000-12-22 2002-02-10 Pneumatic control system for a biopsy device
KR100797573B1 (ko) 2001-02-10 2008-01-24 프리사이메드 에스.에이. 모듈식 기구 연결 조립체
WO2003013374A1 (fr) 2001-08-06 2003-02-20 Penn State Research Foundation Outil a fonctions multiples et procede destines a la chirurgie effractive minimale
US20030055436A1 (en) 2001-09-14 2003-03-20 Wolfgang Daum Navigation of a medical instrument
GB2390203A (en) 2002-04-30 2003-12-31 Environmental Man Ltd Electronic control system uses two command strings for a single system command
FR2839440B1 (fr) 2002-05-13 2005-03-25 Perception Raisonnement Action Systeme de positionnement sur un patient d'un dispositif d'observation et/ou d'intervention
US7086309B2 (en) 2002-09-19 2006-08-08 The Johns Hopkins University Planetary-harmonic motor
US7042184B2 (en) 2003-07-08 2006-05-09 Board Of Regents Of The University Of Nebraska Microrobot for surgical applications
FR2875123B1 (fr) 2004-09-13 2007-11-23 Univ Grenoble 1 Systeme de positionnement sur un patient d'un dispositif d'observation et/ou d'intervention
US8061262B2 (en) 2005-08-09 2011-11-22 The Johns Hopkins University Pneumatic stepper motor
US7752972B1 (en) 2005-08-23 2010-07-13 The United States Of America As Represented By The Secretary Of The Army Low reaction rate, high blast shaped charge waveshaper
EP2062530A3 (fr) 2005-11-29 2009-08-12 Surgi-Vision, Inc. Systèmes de mise en place de dérivation et/ou de localisation guidés par IRM et procédés, dispositifs et programmes informatiques associés
US8679096B2 (en) * 2007-06-21 2014-03-25 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
JP5591696B2 (ja) * 2007-07-12 2014-09-17 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ 生検要素、アーム装置、および医療装置
FR2934487B1 (fr) 2008-07-29 2010-08-27 Univ Joseph Fourier Grenoble I Dispositif de positionnement d'un outil chirurgical dans le corps d'un patient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352219A (en) * 1992-09-30 1994-10-04 Reddy Pratap K Modular tools for laparoscopic surgery
US5752972A (en) * 1995-11-09 1998-05-19 Hoogeboom; Thomas J. Modular endoscopic surgical instrument
US6074408A (en) * 1998-10-13 2000-06-13 Freeman; Kenneth V. Modular medical instrument and method of using same
US20040133189A1 (en) * 2002-12-27 2004-07-08 Olympus Corporation Surgical operation apparatus and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIO TAKAYAMA ET AL: "Detachable-Fingered Hands for Manipulation of Large Internal Organs in Laparoscopic Surgery", ROBOTICS AND AUTOMATION, 2007 IEEE INTERNATIONAL CONFERENCE ON, IEEE, PI, 1 April 2007 (2007-04-01), pages 244 - 249, XP031090816, ISBN: 978-1-4244-0601-2 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820922B2 (en) 2008-07-29 2020-11-03 Universite Joseph Fourier—Grenoble 1 Device for positioning a surgical tool in the body of a patient
US20180000531A1 (en) * 2011-01-19 2018-01-04 Covidien Lp Surgical Instrument Including Inductively Coupled Accessory
US10463419B2 (en) * 2011-01-19 2019-11-05 Covidien Lp surgical instrument including inductively coupled accessory

Also Published As

Publication number Publication date
FR2934486B1 (fr) 2012-08-17
EP2306911B1 (fr) 2015-01-28
EP2306911A1 (fr) 2011-04-13
US20110130787A1 (en) 2011-06-02
FR2934486A1 (fr) 2010-02-05
US9451974B2 (en) 2016-09-27

Similar Documents

Publication Publication Date Title
EP2306911B1 (fr) Outil chirurgical modulaire
US10406026B2 (en) System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye
EP2410935B1 (fr) Canule à caméra et éclairage intégrés
EP2908742B1 (fr) Appareil à panier de récupération
EP1716810B1 (fr) Instrument chirurgical endoscopique
US6676684B1 (en) Roll-pitch-roll-yaw surgical tool
KR101999802B1 (ko) 독립적으로 회전하는 부재 내의 병렬 구동 샤프트들을 위한 모터 연접부
DK2079376T3 (en) SURGICAL EXTRACTION DEVICE
Szewczyk et al. An active tubular polyarticulated micro-system for flexible endoscope
US20210085304A1 (en) Electromechanical surgical system
JP2009078032A (ja) クリップアプライヤ
EP2523626A2 (fr) Appareil, système et procédé destinés à la microchirurgie robotisée
EP3108845B1 (fr) Dispositif de commande de manipulateur chirurgical et système de manipulateur chirurgical
FR2927011A1 (fr) Manipulateur a decouplage des mouvements, et application aux instruments pour la chirurgie mini invasive
FR3037249A1 (fr) Procede robotise d'entrainement de catheter et de guide de catheter
EP1196108B1 (fr) Systeme telecommandable de positionnement sur un patient d'un dispositif d'observation/intervention
Yung et al. A single-port robotic platform for laparoscopic surgery with a large central channel for additional instrument
EP2124709B1 (fr) Dispositif d'endoscope flexible a asservissement visuel
JP4382894B2 (ja) 視野移動内視鏡システム
JP2020156645A (ja) 術具並びに医療用マニピュレータシステム
JP5853159B2 (ja) 内視鏡
US20200205909A1 (en) Compact actuation configuration and expandable instrument receiver for robotically controlled surgical instruments
Saedi et al. A local hybrid actuator for robotic surgery instruments
Dennis et al. Considering Endoscopic Design: A Snakebot Prototype
WO2022009712A1 (fr) Système d'observation médicale, dispositif de commande, procédé de commande et programme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09781211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13056273

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009781211

Country of ref document: EP