WO2010019481A1 - Systems and methods for treating dyspnea, including via electrical afferent signal blocking - Google Patents

Systems and methods for treating dyspnea, including via electrical afferent signal blocking Download PDF

Info

Publication number
WO2010019481A1
WO2010019481A1 PCT/US2009/053190 US2009053190W WO2010019481A1 WO 2010019481 A1 WO2010019481 A1 WO 2010019481A1 US 2009053190 W US2009053190 W US 2009053190W WO 2010019481 A1 WO2010019481 A1 WO 2010019481A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
electrical signal
signal
delivery
directing
Prior art date
Application number
PCT/US2009/053190
Other languages
French (fr)
Inventor
Edwin J. Hlavka
Lynn Elliott
Original Assignee
Conceptx Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conceptx Medical, Inc. filed Critical Conceptx Medical, Inc.
Publication of WO2010019481A1 publication Critical patent/WO2010019481A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3601Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0556Cuff electrodes

Definitions

  • the present disclosure is directed generally to systems and methods for treating dyspnea, including via electrical signals that block or inhibit afferent neural signals from a patient's carotid bodies.
  • Dyspnea is the chief patient complaint in a variety of diseases of the pulmonary system. These diseases include chronic bronchitis (12.5 million US patients), emphysema (1.7 million US patients), and asthma (18 million US patients), collectively referred to as Chronic Obstructive Pulmonary Diseases, or COPD. Dyspnea is also reported by patients suffering from combinations of the foregoing diseases, and/or other pulmonary diseases, and non-pulmonary diseases (notably in heart failure). Dyspnea, while a common medical term, is actually poorly defined and ultimately subjective since it is generally the perception of difficulty breathing or difficulty catching one's breath, and more generally, an uncomfortable sensation of breathing.
  • the severity of pulmonary diseases can typically be measured using objective techniques, such as FEV1 (the patient's forced expiratory volume in the first second of exhalation), minute ventilation (the volume inhaled or exhaled by the patient in one minute), arterial blood gas levels (e.g., of oxygen or carbon dioxide), among others.
  • FEV1 the patient's forced expiratory volume in the first second of exhalation
  • minute ventilation the volume inhaled or exhaled by the patient in one minute
  • arterial blood gas levels e.g., of oxygen or carbon dioxide
  • the patient's dyspnea experience can be simply one of difficulty breathing, ultimately leading to a reduction or elimination of physical activity due to this discomfort. That is, the patient complaint is of dyspnea and a loss of mobility or physical function, not of a decreased FEV1.
  • dyspnea can be analogous to the perception of pain. While an organic source of the pain may be present (a broken bone, for example), the pain itself can be a problem and may require palliative treatment. Furthermore, in the same way that an individual can suffer from chronic pain for which an organic cause is either absent or inadequate to cause the pain, some patients can suffer from severe dyspnea despite relatively normal objective measures of pulmonary performance.
  • dyspnea The origins of dyspnea remain unclear. Studies and experience have yielded confusing and often seemingly contradictory results. Treatments for dyspnea range from supplemental oxygen therapy to sitting in front of a fan to systemic opiates. Furthermore, dyspnea can be experimentally induced by vigorous exercise, breath-holding, breathing through a restrictive mouthpiece, or breathing carbon dioxide in symptomatic pulmonary disease patients. A common, though unproven theory, is that dyspnea derives from a mismatch between outgoing motor signals to the respiratory muscles and incoming afferent information. In one example, under a give set of conditions, the brain can expect a certain pattern of ventilation and associated afferent feedback. Deviations from this pattern can cause or intensify the sensation of dyspnea.
  • dyspnea is often the chief complaint of a patient, there is currently no pharmacologic agent that primarily treats dyspnea. That is, a variety of bronchodilators are used to treat asthma and other COPD, and while they demonstrably increase FEV1 , their effects on dyspnea can be modest and can fall below that of clinical significance. Accordingly, there remains a need for methods and devices that effectively treat dyspnea.
  • Figure 1 is a partially cutaway, partially schematic illustration of the vascular and neural structure of a patient's neck, based on plate 124 of "Atlas of Human Anatomy", 2nd Edition, by Frank Netter (Icon Learning Systems, 2001).
  • Figure 2 is a partially schematic illustration of a system for delivering inhibitory signals to a patient's afferent chemoreceptor neural pathways in accordance with an embodiment of the disclosure.
  • Figure 3 is a partially schematic, generally ventral view of a patient's carotid arteries and carotid branch, based on Figure 1 of an article titled "Bilateral Carotid Body Resection for Asthma and Emphysema” (Winter, International Surgery, Volume 57, No. 6, June 1972, hereinafter "Winter”).
  • Figure 4 is a partially schematic lateral view of the patient's carotid artery region, based on Figure 4 of Winter.
  • Figure 5 is a partially schematic illustration of a lead suitable for providing signals in accordance with an embodiment of the disclosure.
  • Figure 6 is a block diagram illustrating a method for treating a patient in accordance with an embodiment of the disclosure.
  • Figure 7 is a block diagram illustrating a method for diagnosing and treating a patient in accordance with another embodiment of the disclosure.
  • the present disclosure is directed generally to systems and methods for treating dyspnea, including via electrical afferent signal inhibition.
  • Specific details of several embodiments of the disclosure are described below with reference to particular implementations to provide a thorough understanding of these embodiments, but in other embodiments, the systems and methods may have different features.
  • Several details describing structures or processes that are well-known and often associated with related systems and techniques, but that may unnecessarily obscure some significant aspects of the present disclosure, are not set forth in the following description for purposes of clarity.
  • the following disclosure sets forth several embodiments of different aspects of the invention, several other embodiments can have different configurations or different components than those described in this section. As such, the disclosure may include other embodiments with additional elements, or without several of the elements described below with reference to Figures 1-7.
  • Several embodiments of the present disclosure are directed to using electrical signals to block, partially block, or otherwise inhibit afferent chemoreceptor signals in a patient suffering from dyspnea.
  • the chemoreceptors provide signals to the patient's brain indicating a low level of oxygen or a high level of carbon dioxide in the patients' blood.
  • Electrical signals provided in accordance with the technology described herein can interrupt the neuronal signals otherwise transmitted to the patient's brain by the patient's chemoreceptors, thus alleviating or eliminating the patient's sensation of breathlessness.
  • this approach can have significant advantages over existing surgical techniques, which are irreversible and not adjustable. These and other advantages are described further below.
  • Figure 1 is a partially schematic, partially cutaway illustration of the neck region 101 of a patient 100. For purposes of clarity, many anatomical features in the neck region 101 have been eliminated in Figure 1.
  • Figure 1 illustrates several relevant structures located on the right side of the patient's midline; however, the following discussion applies equally to contralateral structures located on the left side of the patient's midline. As will also be discussed further below, certain procedures may be conducted unilaterally (on either the left or right structure) or bilaterally (on both the left and right structures).
  • the common carotid artery 102 supplies blood to the patient's head, and splits to form the internal carotid artery 103 and the external carotid artery 104 in the neck region 101.
  • the carotid sinus 105 is located in the region of the split between the internal carotid artery 103 and the external carotid artery 104.
  • the carotid body 106 is a small sensory organ located high in the neck region 101 , posterior to the patient's lower jaw and generally in the bifurcation region between the internal carotid artery 103 and the external carotid artery 104.
  • the carotid body 106 is perfused by blood flow in the carotid arteries 102-104.
  • the carotid body 106 generally includes peripheral chemoreceptors that can sense the oxygen level, carbon dioxide level, and possibly pH or other factors in the arterial blood flow.
  • chemoreceptors provide the large majority of the patient's ability to sense oxygen, and also provide approximately one-third of the patient's ability to sense carbon dioxide.
  • Other chemoreceptors are included at the aortic body, and in the medulla of the patient's brain. Chemoreceptors in the medulla provide approximately two-thirds of the patient's ability to sense carbon dioxide.
  • Afferent signals travel from the carotid body 106 to the patient's brain via the carotid branch 108 of the patient's glossopharyngeal nerve 109.
  • the glossopharyngeal nerve 109 is the ninth cranial nerve, and descends alongside the vagus nerve or tenth cranial nerve 110.
  • other cranial nerves are not specifically identified in Figure 1.
  • the carotid body 106, the carotid branch 108, and the glossopharyngeal nerve 109 form an afferent neural pathway 107 along which afferent signals from the chemoreceptors of the carotid body 106 are transmitted to the patient's brain.
  • a rare genetic mutation results in glomus cell tumors of the carotid body, requiring their removal via Carotid Body Resection or CBR.
  • CBR Carotid Body Resection
  • bilateral tumors have required the removal of both carotid bodies.
  • These patients typically exhibit increased exercise capacity, decreased dyspnea, increased breath- holding capacity, and a blunted ventilatory response to exercise.
  • these effects may be transitory and that the body may accommodate to the loss of the carotid bodies after some period of time.
  • CBR has also been associated with a significant decrease in dyspnea and a corresponding increase in exercise capacity. While blood gases are impacted, most authors appear to judge these changes to be relatively minor in many or most cases. For example, typical sequela to the chronic loss of carotid body function (in patients presumably not suffering from pulmonary disease) is a modest 6 mm Hg rise in PaCO 2 , where "PaCO 2 " refers to the partial pressure of carbon dioxide in the patient's arterial blood.
  • patients selected for CBR have PaCO 2 ⁇ 45 mm Hg and PaO 2 >65 mm Hg (where "PaO 2 " refers to the partial pressure of oxygen in the patients' arterial blood), in order to ensure only a modest impact. In certain examples, many patients can have either improvements or minimal degradations in blood gases. [0025]
  • the literature and experience are mixed regarding the permanence of the effect of CBR. In certain examples, the effect of CBR decreases over time as the body compensates for the loss of signaling from the carotid bodies. In other examples, after CBR, other chemoreceptors can increase their responsiveness to carbon dioxide, raising the total body response back to normal levels, while having little to no compensatory change in the body's response to oxygen levels.
  • aspects of the present disclosure are directed to replacing, in whole or in part, the foregoing resection procedure with an electrical stimulator implant procedure.
  • the implanted stimulator can apply an inhibitory electrical signal to the afferent neural pathway 107, thus emulating at least in part the results of carotid body resection, but with additional control over the chemoreceptor inhibition and/or without several of the foregoing drawbacks.
  • Figure 2 is a partially schematic, isometric illustration of a system 120 suitable for delivering inhibitory electrical signals to the afferent neural pathway 107 described above with reference to Figure 1. Accordingly, by blocking, at least partially blocking, and/or otherwise inhibiting afferent neural signals from the chemoreceptors at the carotid body 106 ( Figure 1 ), the patient's dyspneic symptoms can be reduced, alleviated and/or eliminated. As described further below, this can be done without unduly interfering with the body's ability to detect and respond to low blood oxygen levels and/or high blood carbon dioxide levels.
  • the system 120 can include a signal delivery device 121 coupled to a controller 122 with a communication link 126.
  • the signal delivery device 121 can include a cuff electrode 123 that in turn includes a cuff or other support body 124 carrying one or more arcuate electrical contacts 125 (three are shown in Figure 2 as first, second, and third electrical contacts 125a, 125b, 125c).
  • the cuff electrode 123 can have a tripolar arrangement, with the first and third contacts 125a, 125c connected to an anodic potential, and the second contact 125b connected to a cathodic potential.
  • the outer anodic contacts 125a, 125c can direct the field lines emanating from the central cathodic contact 125b to a target neural population.
  • the cuff electrode 123 can include other arrangements of contacts, e.g., to provide monopolar or bipolar signals.
  • the cuff electrode 123 can be positioned around or adjacent to any suitable portion of the afferent neural pathway 107 ( Figure 1 ), including the carotid body 106 itself and/or the carotid branch 108. The particular location at which the cuff electrode 123 is placed can be selected based on factors including an individual patient's physiology, characteristic chemoreceptor responsiveness and/or characteristic baroreceptor responsiveness.
  • the signal delivery device 121 is coupled to the controller 122 via a communication link 126 having a first connector 127a that may be releasably engaged with a second connector 127b.
  • the second connector 127b is electrically coupled to the controller 122, and both the second connector 127b and the controller 122 can be carried by an enclosed, hermetically sealed housing 128.
  • the housing 128 can also enclose an internal power source 129 which provides power to a pulse generator 130.
  • the pulse generator 130 generates pulses (e.g., square wave, biphasic, charge-balanced and/or other suitable pulses) that are transmitted to the signal delivery device 121 via the communication link 126, under the direction of the controller 122.
  • the controller 122 can accordingly include a memory 131 , a processor 132, and a receiver/transmitter 133. Instructions for delivering the electrical signal to the patient via the signal delivery device 121 can be stored in or on one or more computer readable media of the controller 122, e.g., the memory 131 and/or the processor 132. Accordingly, the controller 122 can include a specially programmed computer device.
  • the receiver/transmitter 133 can receive inputs from devices within or outside the housing 128 to operate in an open loop manner and/or a closed loop manner.
  • the system 120 can include an external controller 134 that communicates instructions to the receiver/transmitter 133 via a wireless link.
  • a physician can use an external controller 134 to change the instructions carried out by the controller 122.
  • the patient can use an external controller 134 to start and/or stop the signals directed by the controller 122 to the signal delivery device 121.
  • the physician and the patient can each have separate external controllers 134, with the physician's external controller 134 able to carry out a broader range of control tasks than the patient's external controller 134. This arrangement can prevent the patient from inadvertently changing signal delivery parameters in an undesirable manner, while still allowing the patient to control certain tasks e.g., starting and stopping the electrical signals.
  • the receiver/transmitter 133 can also receive information from one or more sensors 136.
  • the sensors 136 can be configured and positioned to provide information to the controller 122 useful for determining when and in what manner to provide electrical signals to the signal delivery device 121.
  • the sensor 136 can include an oxygen sensor (e.g., an implanted oxygen sensor, or an external fingertip-mounted oxygen sensor) that identifies the patient's blood oxygen levels.
  • the sensor 136 can include an accelerometer or other device that detects the patient's activity level.
  • the sensor 136 can include a clock or timer that senses the passage of time, which, as described further below, may also be used to control the manner in which electrical signals are delivered to the patient.
  • the internal power source 129 can be included in the implantable housing 128.
  • the housing 128 can be implanted at a subclavicular location in the patient's chest, or at another suitable location.
  • the system 120 can include an external power source 135 that is used to recharge the internal power source 129 within the implanted housing 128.
  • the external power source 135 can recharge the internal power source 129 via inductive coupling.
  • the internal power source 129 can be eliminated, and the external power source 135 alone can provide power to implanted controller 122.
  • the controller 122 and the other components located in the housing 128 can be positioned outside the patient's body.
  • these components can be placed in an external housing and worn by the patient, e.g., beneath the patient's clothing.
  • the controller 122 can be connected to the signal delivery device 121 via a hardwired transdermal communication link, or via a wireless transcutaneous link. Any one or combination of the foregoing arrangements can be used to transmit suitable electrical signals to the signal delivery device 121.
  • Figure 3 is a partially schematic, ventral illustration of a portion of the anatomy shown in Figure 1 , illustrating a technique for implanting a signal delivery device in accordance with an embodiment of the disclosure. Certain aspects of this technique are generally similar to those disclosed by Winter in an article titled “Bilateral Carotid Body Resection for Asthma and Emphysema,” (International Surgery, Volume 7, No. 6, June 1972, hereinafter "Winter"), incorporated herein by reference.
  • Figure 3 illustrates the region at which the common carotid artery 102 bifurcates into the internal carotid artery 103 and the external carotid artery 104. Arrows M and L identify medial and lateral directions, respectively.
  • the carotid branch 108 includes baroreceptor neurons 112 and chemoreceptor neurons 111 that extend to the carotid sinus 104 and the carotid body 106 to transmit afferent neural signals from the patient's baroreceptors and chemoreceptors, respectively.
  • a probe 137 or other surgical implement can be used to separate or divide the chemoreceptor neurons 111 from the baroreceptor neurons 112, thus allowing a representative signal delivery device 121 ( Figure 2) to be positioned in a manner that preferentially directs signals to the chemoreceptor neurons 111 over the baroreceptor neurons 112.
  • the cuff electrode 123 ( Figure 2) can be positioned around the chemoreceptor neurons 111 , with the electrode contacts 125a-c preferentially positioned to direct signals to the chemoreceptor neurons 111 over the baroreceptor neurons 112.
  • this arrangement can more significantly inhibit or block afferent signals transmitted along the chemoreceptor neurons 111 , without unduly interfering with afferent signals transmitted by the baroreceptor neurons 112.
  • Figure 4 is a partially schematic, left lateral view of the anatomy shown in Figure 3, also based on Winter, and illustrating the chemoreceptor neurons 111 after having been divided from the baroreceptor neurons 112. Arrows D and V identify dorsal and ventral directions, respectively.
  • a suitable signal delivery device 121 ( Figure 2) can be positioned so as to preferentially direct electrical signals to the chemoreceptor neurons 111.
  • the characteristics of the signal delivery device 121 itself and the orientation of the signal delivery device 121 will preferentially direct signals to the chemoreceptor neurons 111.
  • the physician can implant an insulating shield 138 between the chemoreceptor neurons 111 and the baroreceptor neurons 112 so as to restrict or prevent electrical signals directed to the chemoreceptor neurons 111 from unduly affecting the baroreceptor neurons 112, and/or other nearby or neighboring structures.
  • the shield 138 can be held in place with a suitable adhesive, suitable friction features (e.g., nubs) and/or other arrangements.
  • the signal delivery device 121 positioned in signal communication with the chemoreceptor neurons 111 can have an arrangement generally similar to that shown in Figure 2, or in other embodiments, it can have other arrangements.
  • Figure 5 illustrates a signal delivery device 521 that includes a lead 539 typically used for spinal cord stimulation.
  • the lead 539 can carry a plurality of electrical contacts 525 (eight are shown in Figure 5 as contacts 525a, 525b...525h).
  • Each of the contacts 525 can have an annular ring shape with an outer surface exposed at the outer surface of the lead 539.
  • Each contact 525 can be connected to an individual electrical conductor 540 (e.g., a wire) so as to receive a separately programmable electrical signal.
  • the individual conductors 540 can form a communication link 526 via which the contacts 525 are connected to the controller 122 ( Figure 2).
  • the individual contacts 525a-525h can be selectively activated to provide suitable inhibitory signals, without unnecessarily stimulating adjacent structures. Individual active contacts may selectively be activated or deactivated to avoid habituation and/or tissue necrosis.
  • the lead 539 can be delivered percutaneously and positioned alongside the chemoreceptor neurons 111 shown in Figure 4, and can be secured in place using suitable sutures or other securement techniques.
  • the practitioner e.g., a surgeon or other physician
  • the practitioner can apply the dividing technique and the signal delivery device implanting technique described above to both left and right carotid branches. Accordingly, the practitioner can implant two bilaterally positioned signal delivery devices, coupled to a common implanted or externally-worn controller.
  • the chemoreceptor neurons and/or the carotid body on one side of the patient's midline can be resected, ligated or otherwise surgically disabled, and the contralateral structures can receive inhibitory signals from an implanted electrical signal delivery element.
  • the resection process can include resecting both the chemoreceptor neurons and the baroreceptor neurons by resecting the carotid branch 108 or the carotid body 106. Due to the body's other still-active baroreceptors, the effect of this procedure on the body's overall baroreceptor functioning is not expected to be significant for at least some classes of patients. Due to the combination of surgically disabling chemoreceptor pathways on one side of the patient's body, and applying inhibitory electrical stimulation to the chemoreceptor pathways on the opposite side of the patient's body, the patient's dyspneic effects can be controlled.
  • the process of resecting one chemoreceptor pathway may be advantageous because it can simplify the surgical procedure, and/or it can conserve battery power. For example, it may be simpler for the practitioner to implant a signal delivery device at the patient's right side chemoreceptor pathway and then resect the patient's left side chemoreceptor pathway than it is for the practitioner to implant a second signal delivery device and tunnel the associated communication link to an implanted controller. In addition, one signal delivery device is expected to consume less power than two. Conversely, some patients may benefit from the ability to reactivate and/or modulate chemoreceptor functioning on both sides of the midline. In such cases, the practitioner may implant bilateral signal delivery devices, as discussed above, rather than surgically disable one chemoreceptor afferent neural pathway.
  • FIG. 6 is a block diagram illustrating a process or method 660 for treating a patient in accordance with a particular embodiment of the present disclosure.
  • the process 660 includes identifying a patient as suffering from dyspnea (process portion 661).
  • the process 660 can further include implanting an electrical signal delivery element within the patient to be in signal communication with an afferent neural pathway of a carotid body chemoreceptor, based at least in part on identifying the patient as suffering from dyspnea (process portion 662).
  • the process 600 can include deliberately tying a diagnosis of dyspnea to treatment of dyspneic symptoms via specifically directed inhibitory electrical signals provided by an electrical signal delivery element in signal communication with target neurons of the afferent neural pathway.
  • signal communication means that electrical signals emanating from the electrical signal delivery element have a direct effect on the afferent neural pathway by virtue of interactions between the electrical signal and the neurons of the afferent neural pathway.
  • the electrical signal delivery element can include one or more electrical contacts positioned along the carotid branch 108 of the glossopharyngeal nerve 109 ( Figure 1).
  • the electrical contacts can be positioned at or up to about five centimeters superior to the carotid body 106.
  • the electrical contacts can be in physical contact with the adjacent neural tissue, or otherwise close enough to the neural tissue to have the desired inhibitory effect on the afferent signals.
  • the contacts can accordingly be positioned to preferentially direct signals to the chemoreceptor neurons, as described above with reference to Figures 4 and 5.
  • the process 660 can further include at least reducing dyspneic sensations in the patient and/or increasing the patient's capacity for exercise by directing an electrical signal from the electrical signal delivery element to the neural pathway to at least partially block afferent signals from the chemoreceptor (process portion 663).
  • the electrical signal delivery element can direct biphasic, square wave, charge-balanced pulses at a frequency from about 1 ,000 Hz to about 10,000 Hz, an amplitude of up to about 12 volts or up to about 10 milliamps, with individual pulses having a duration of from about 10 microseconds to about 1 ,000 microseconds.
  • the frequency is selected to be about 5,000 Hz
  • the pulse width is selected to be 30-50 microseconds
  • the amplitude is selected to be from about 1 mA to about 5 mA, with the selected value chosen to avoid muscle capture.
  • the pulses can be applied unilaterally to the afferent neural pathway associated with either the left side or right side carotid body.
  • the signals can be provided in a burst lasting about 120 seconds.
  • the resulting block or partial block provided by the applied signals can have a persistence (e.g., an effective duration after the end of the burst) that lasts for approximately 90 to 120 seconds.
  • the signal can be applied with a duty cycle of about 50% in a particular embodiment, or other suitable values selected to provide efficacy while conserving power in other embodiments.
  • the level of efficacy can be based at least in part on the persistence effect of the signal.
  • the stimulation can be provided bilaterally, via one signal delivery device positioned along one afferent neural pathway, and another signal delivery device positioned along the contralateral afferent neural pathway.
  • Each of the signal delivery devices can be connected to a common controller.
  • delivering bilateral electrical signals can produce the desired inhibitory effect on afferent signals transmitted from the chemoreceptors that lasts for hours rather than minutes.
  • the process 660 can further include controlling the delivery of the electrical signals provided to the signal delivery element (process portion 664).
  • the signals can be controlled in a manner that is responsive to one or more inputs 668.
  • the electrical signals can be controlled in part by alternating between an enable mode and a disable mode (process portion 665).
  • the enable mode signals may be selectively turned on and off (process portion 666) via a separate instruction.
  • the signals are the delivered in accordance with suitable signal delivery parameters 667, including the frequencies, amplitudes and pulse widths described above.
  • signals may not be selectively turned on or off, despite the separate instruction.
  • the system can enter the enable mode during normal waking hours, allowing the patient to activate the signal delivery element on an as-needed basis via a separate, patient-directed input.
  • the system can enter the disable mode, during which the system will not direct electrical signals, even if concurrently requested by the patient.
  • This arrangement can prevent the patient from inadvertently inhibiting the carotid body chemoreceptors at night, so as to reduce or eliminate the possibility of inducing sleep apnea.
  • the patient can selectively inhibit chemoreceptor afferent signals, for example, before and/or during exercise, by providing a separate instruction.
  • the instruction can be provided when the patient presses a button or otherwise enters an input signal via the external patient controller 134 described above with reference to Figure 2.
  • the foregoing example is representative of one in which the system responds to a time input (e.g. normal waking hours and normal sleeping hours) and a patient request (e.g. a specific request for inhibitory electrical signals).
  • the system can respond to other time-based and/or patient-based inputs.
  • the system can remain on (e.g. actively delivering signals to the signal delivery element) for a period of 30 minutes or another suitable period, in response to receiving a patient request.
  • the patient request can come in the form of an input from a simple electronic device (e.g., the patient controller 134 described above with reference to Figure 2), or a magnet that activates a reed switch.
  • the patient request can arrive in anticipation of carrying out an activity (e.g. exercise), and/or can be provided during an activity.
  • the system can automatically provide for a maximum active signal time per patient-initiated or otherwise-initiated activation.
  • the system can automatically provide for a minimum inactive time or off time between patient or otherwise initiated activations.
  • the system can automatically track a maximum amount of signal delivery time per suitable time interval. For example, the system can track a maximum number of hours of active signal time per day. If the patient requests more than this amount of time, the system can prevent further activations, or require a particular activation sequence or physician intervention before authorizing additional activations.
  • Representative suitable activation times per day include 1 , 2, 4, 6 or 8 hours.
  • process portion 664 can include receiving inputs relating to patient state or condition.
  • the system can deliver or enable delivery of the electrical signals in response to an indication that the patient is physically active (a first state or condition), and disable or cease delivering the signals when the patient is resting or relaxing (a second state or condition).
  • an accelerometer or other motion detection device can provide suitable inputs for this mode of operation.
  • an electrocardiogram can provide a generally similar function by providing an indication of the patient's heart rate.
  • indications of the patient's condition can be used to provide alerts and/or to prevent the inhibitory signals from being directed to the chemoreceptors.
  • the input can include an indication of the patient's blood oxygen level, and can prevent the system from delivering electrical signals if the blood oxygen level is below a particular threshold.
  • the system can deliver signals when the blood oxygen level is at or above a first threshold of 89%, 90%, 91%, 92% or 93%, and can cease delivering signals when the blood oxygen level is at or below a second threshold of 93%, 92%, 91%, 90% or 89%.
  • these values can be based on partial pressures (e.g., 60, 65 or 70 mm PaO 2 ).
  • the foregoing activation determination can be based on blood carbon dioxide levels (e.g., less than 35, 40, 45 or 50 mm PaCO 2 ).
  • the foregoing actions can be accompanied by an alarm function, or the alarm function can be provided without the automatic shutdown feature, but with the patient taking the separate step of shutting the system down.
  • This arrangement can make use of an external or internal pulse-oxymeter, such as a light- sensitive oxymeter worn on the patient's fingertip.
  • the detector can detect breathing motion and/or other pulmonary indicators. Any of the foregoing detection techniques can be used to monitor the patient, alert the patient, and/or automatically or manually shut the system off or otherwise disable or deactivate the system, while the patient is awake and inactive, while the patient is awake and active, or while the patient is asleep. In any of these embodiments, the system can be subsequently reactivated or enabled, e.g. by a physician or other practioner, or by the patient.
  • FIG. 7 is a block diagram illustrating a method 760 that includes diagnosing and/or screening patients in accordance with a particular embodiment of the disclosure.
  • the foregoing procedures for treating dyspnea may be applied to patients with severe or very severe COPD, as evidenced by FEVI values of between about 20% and about 40%. Such patients may also demonstrate exercise limited by dyspnea (e.g. a value of 3-4 on the MRC 1-5 point scale). Such patients may have similar blood chemistries to those selected for CBR, e.g., PaCO 2 ⁇ 45 mm Hg and PaO 2 >65 mm Hg.
  • Process portion 761 includes using a non-invasive, physiological-functioning screening procedure to assess the patient's suitability for a dyspnea treatment regimen.
  • This process can include, for example, simulating chemoreceptor inhibition to determine or estimate the likelihood that the patient will respond to the subsequent inhibition provided by an implanted signal delivery device and/or resection.
  • the process can, in addition to or in lieu of the foregoing screen, include assessing the patient's baroreceptor functioning level, which can be used to aid the physician in determining whether some of the patient's baroreceptor functions can be reduced or eliminated in combination with inhibiting chemoreceptor functions.
  • the practitioner can employ one or more of several techniques for reversibly simulating the effects of chemoreceptor inhibition before undertaking a resection or implant procedure.
  • the patient can receive a locally injected anesthetic applied to the carotid bodies during or before an exercise test to determine the impact of carotid body blocking on exercise capacity and/or perceived dyspnea.
  • the dyspneic relief and/or increase in exercise capacity can be compared to the impact on the patient's blood gasses to determine a suitable treatment.
  • the patient reports a positive effect on the dyspneic symptoms and/or an increased capacity for exercise, and results indicate an acceptable effect on the patient's blood gasses (e.g. an acceptable reduction in blood oxygen), the patient may be identified as a suitable candidate for further treatment.
  • a representative acceptable reduction in blood oxygen level is about 6 mm Hg PaO 2 , or less.
  • the carotid body's output can be artificially suppressed by the inhalation of high fraction oxygen (a gas mixture of greater than approximately 30% oxygen).
  • high fraction oxygen a gas mixture of greater than approximately 30% oxygen.
  • process portion 761 is assessing the patient's baroreceptor functioning level.
  • known reversible techniques such as carotid sinus massage or intraoperative anesthetic applied to the carotid sinus can be used to determine the functioning of the baroreceptors carried by the patient's carotid bodies.
  • these techniques can be used to determine if disabling the carotid sinus baroreceptor function has an effect on the patient's overall barosensing function, and/or to determine the patient's sensitivity to loss of sinus cavity barosense function. If it is determined that the patient's overall baroreceptor functioning is adequate without the specific feedback provided by the carotid body baroreceptors (e.g.
  • the practitioner can undertake procedures that may inhibit the baroreceptor functioning of the carotid bodies in addition to the chemosensing functioning of the carotid bodies. For example, when resecting the carotid body or carotid nerve, the practitioner can resect both the chemoreceptor neurons and the baroreceptor neurons if doing so will not unacceptably affect the patient's baroreceptor functioning.
  • the practitioner can implant the signal delivery device in a manner that may inhibit afferent signals from the carotid body baroreceptors (e.g., without preference to inhibiting only chemoreceptor neurons) if doing so is not expected to unacceptably affect the overall baroreceptor functioning of the patient. If the patient's barosense function is significantly affected by temporarily reducing or eliminating the carotid sinus barosense function, the practitioner can take appropriate steps to preferentially direct inhibitory signals to the chemoreceptor neurons to avoid unnecessarily obstructing the functioning of the baroreceptor neurons.
  • the patient may be selected for dyspnea treatment (process portion 762).
  • the dyspnea treatment can include, for example, the techniques described above with reference to Figures 1-6.
  • the screening techniques shown in Figure 7 can be used as a precursor to other dyspnea therapies.
  • One aspect of several of the embodiments described above is that the foregoing systems and methods can relieve the patient's dyspnea while the patient is exercising and/or engaging in other waking activities, with an expected modest degradation of blood gasses.
  • An advantage of this arrangement is that by reducing dyspneic symptoms, the patient can be more relaxed and more likely to engage in exercise, and/or engage in exercise more often, and/or engage in more strenuous exercise, which can facilitate the patient's participation in pulmonary rehabilitation.
  • the patient may have a brief reduction in blood oxygen (e.g. from 95% to 92%), but the short- term effect of this reduction may be more than offset by the long-term effects of increased exercise.
  • dyspneic spiral This can halt or even reverse what has been viewed as a dyspneic spiral in which (a) the patient suffers from COPD and dyspnea, (b) the dyspnea discourages the patient from engaging in exercise, which (c) exacerbates the COPD and dyspnea.
  • reducing the patient's dyspnea can allow the patient to engage in activity despite the existence of an underlying condition, and in at least some instances, to an extent that treats the underlying condition.
  • embodiments of the foregoing systems and methods can increase the patient's level of other activities, e.g., activities of daily living.
  • aspects of the foregoing systems and methods can improve the patient's quality of life by eliminating or reducing the patient's use of and/or reliance on supplemental oxygen, which is typically carried by the patient in a heavy, awkward tank. Eliminating or reducing the use of supplemental oxygen is expected to further increase the likelihood and/or frequency with which the patient exercises.
  • Another feature of several of the foregoing embodiments is that the effect of the electrical signal on the chemoreceptor afferent neural pathway is controllable and reversible. Accordingly, the signal can be halted while the patient is sleeping, resting, relaxing, or otherwise not engaged in strenuous activity. This can allow the afferent neurons to return to a normal state and, correspondingly allow the patient's blood gasses to return to normal (or at least normal for that patient) levels.
  • the system can be deactivated. The system can subsequently be reactivated if inhibiting the chemoreceptors again becomes part of a suitable therapy.
  • Still another feature of at least some of the foregoing embodiments is that the system can automatically monitor and respond to changes, and can control the delivery of electrical signals accordingly. For example, the system can automatically disable electrical signal delivery during normal sleeping hours to avoid apnea. The system can automatically disable electrical signal delivery if blood gasses degrade below desired levels. This level of automation takes advantage of and builds on the fact that the effect of the electrical signals is reversible and haltable.
  • the system can be selectively activated and deactivated as part of an overall treatment regimen that includes exercise.
  • the system can be activated during high intensity exercise experienced during pulmonary rehabilitation or post rehabilitation maintenance. At other times, the system can be deactivated.
  • the degree to which the system inhibits the afferent signals from the chemoreceptors can be controlled. For example, the amplitude and/or duty cycle of the signal applied to the neural pathways can be increased for additional inhibition and decreased for less inhibition.
  • the carotid body chemoreceptors on one side of the patient's midline can be inhibited while those on the other side are not.
  • the system can alternate between inhibiting chemoreceptors on one side of the midline and those on the other. This arrangement can be used to forestall or prevent patient habituation to the electrical signals.
  • the signal delivery parameters e.g., signal amplitude, frequency, pulse width, and/or parameters
  • the system can be activated only at selected times (e.g., during exercise) to reduce habituation. Accordingly, the foregoing processes can extend the effectiveness of the therapy for a longer, controlled period of time.
  • the particular signal delivery parameters described above can have other values in other embodiments.
  • the particular electrodes described above can have other configurations and other embodiments.
  • the system can include sensors other than those specifically identified above. Certain aspects of the disclosure described in the context of particular embodiments may be combined or eliminated in other embodiments.
  • the patient may receive an electrode device of the type shown in Figure 2 on one side of the body, and an electrode device of the type shown in Figure 5 on the other side.

Abstract

Systems and methods for treating a patient with dyspnea are disclosed. A method in accordance with a particular embodiment includes identifying the patient as suffering from dyspnea, and, based at least in part on identifying the patient as suffering from dyspnea, implanting an electrical signal delivery element within the patient in signal communication with an afferent neural pathway of a carotid body chemoreceptor. The method can further include at least reducing dyspneic sensations in the patient by directing an electrical signal from the electrical signal delivery element to the neural pathway to at least partially block afferent signals from the chemoreceptor.

Description

SYSTEMS AND METHODS FOR TREATING DYSPNEA, INCLUDING VIA ELECTRICAL AFFERENT SIGNAL BLOCKING
CROSS-REFERENCE TO RELATED APPLICATION
[0001] The present application claims priority to U.S. Provisional Application 61/087,945, filed on August 11 , 2008 and incorporated herein by reference.
TECHNICAL FIELD
[0002] The present disclosure is directed generally to systems and methods for treating dyspnea, including via electrical signals that block or inhibit afferent neural signals from a patient's carotid bodies.
BACKGROUND
[0003] Dyspnea is the chief patient complaint in a variety of diseases of the pulmonary system. These diseases include chronic bronchitis (12.5 million US patients), emphysema (1.7 million US patients), and asthma (18 million US patients), collectively referred to as Chronic Obstructive Pulmonary Diseases, or COPD. Dyspnea is also reported by patients suffering from combinations of the foregoing diseases, and/or other pulmonary diseases, and non-pulmonary diseases (notably in heart failure). Dyspnea, while a common medical term, is actually poorly defined and ultimately subjective since it is generally the perception of difficulty breathing or difficulty catching one's breath, and more generally, an uncomfortable sensation of breathing.
[0004] The severity of pulmonary diseases can typically be measured using objective techniques, such as FEV1 (the patient's forced expiratory volume in the first second of exhalation), minute ventilation (the volume inhaled or exhaled by the patient in one minute), arterial blood gas levels (e.g., of oxygen or carbon dioxide), among others. By contrast, the patient's dyspnea experience can be simply one of difficulty breathing, ultimately leading to a reduction or elimination of physical activity due to this discomfort. That is, the patient complaint is of dyspnea and a loss of mobility or physical function, not of a decreased FEV1.
[0005] In many ways dyspnea can be analogous to the perception of pain. While an organic source of the pain may be present (a broken bone, for example), the pain itself can be a problem and may require palliative treatment. Furthermore, in the same way that an individual can suffer from chronic pain for which an organic cause is either absent or inadequate to cause the pain, some patients can suffer from severe dyspnea despite relatively normal objective measures of pulmonary performance.
[0006] The origins of dyspnea remain unclear. Studies and experience have yielded confusing and often seemingly contradictory results. Treatments for dyspnea range from supplemental oxygen therapy to sitting in front of a fan to systemic opiates. Furthermore, dyspnea can be experimentally induced by vigorous exercise, breath-holding, breathing through a restrictive mouthpiece, or breathing carbon dioxide in symptomatic pulmonary disease patients. A common, though unproven theory, is that dyspnea derives from a mismatch between outgoing motor signals to the respiratory muscles and incoming afferent information. In one example, under a give set of conditions, the brain can expect a certain pattern of ventilation and associated afferent feedback. Deviations from this pattern can cause or intensify the sensation of dyspnea.
[0007] While dyspnea is often the chief complaint of a patient, there is currently no pharmacologic agent that primarily treats dyspnea. That is, a variety of bronchodilators are used to treat asthma and other COPD, and while they demonstrably increase FEV1 , their effects on dyspnea can be modest and can fall below that of clinical significance. Accordingly, there remains a need for methods and devices that effectively treat dyspnea.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Figure 1 is a partially cutaway, partially schematic illustration of the vascular and neural structure of a patient's neck, based on plate 124 of "Atlas of Human Anatomy", 2nd Edition, by Frank Netter (Icon Learning Systems, 2001). [0009] Figure 2 is a partially schematic illustration of a system for delivering inhibitory signals to a patient's afferent chemoreceptor neural pathways in accordance with an embodiment of the disclosure.
[0010] Figure 3 is a partially schematic, generally ventral view of a patient's carotid arteries and carotid branch, based on Figure 1 of an article titled "Bilateral Carotid Body Resection for Asthma and Emphysema" (Winter, International Surgery, Volume 57, No. 6, June 1972, hereinafter "Winter").
[0011] Figure 4 is a partially schematic lateral view of the patient's carotid artery region, based on Figure 4 of Winter.
[0012] Figure 5 is a partially schematic illustration of a lead suitable for providing signals in accordance with an embodiment of the disclosure.
[0013] Figure 6 is a block diagram illustrating a method for treating a patient in accordance with an embodiment of the disclosure.
[0014] Figure 7 is a block diagram illustrating a method for diagnosing and treating a patient in accordance with another embodiment of the disclosure.
DETAILED DESCRIPTION
[0015] The present disclosure is directed generally to systems and methods for treating dyspnea, including via electrical afferent signal inhibition. Specific details of several embodiments of the disclosure are described below with reference to particular implementations to provide a thorough understanding of these embodiments, but in other embodiments, the systems and methods may have different features. Several details describing structures or processes that are well-known and often associated with related systems and techniques, but that may unnecessarily obscure some significant aspects of the present disclosure, are not set forth in the following description for purposes of clarity. Moreover, although the following disclosure sets forth several embodiments of different aspects of the invention, several other embodiments can have different configurations or different components than those described in this section. As such, the disclosure may include other embodiments with additional elements, or without several of the elements described below with reference to Figures 1-7.
[0016] The present disclosure incorporates several documents by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document. For irreconcilable inconsistencies, the usage in this document controls.
Overview
[0017] Several embodiments of the present disclosure are directed to using electrical signals to block, partially block, or otherwise inhibit afferent chemoreceptor signals in a patient suffering from dyspnea. The chemoreceptors provide signals to the patient's brain indicating a low level of oxygen or a high level of carbon dioxide in the patients' blood. Electrical signals provided in accordance with the technology described herein can interrupt the neuronal signals otherwise transmitted to the patient's brain by the patient's chemoreceptors, thus alleviating or eliminating the patient's sensation of breathlessness. As will be discussed in further detail later, this approach can have significant advantages over existing surgical techniques, which are irreversible and not adjustable. These and other advantages are described further below.
Relevant Physiology
[0018] Figure 1 is a partially schematic, partially cutaway illustration of the neck region 101 of a patient 100. For purposes of clarity, many anatomical features in the neck region 101 have been eliminated in Figure 1. Figure 1 illustrates several relevant structures located on the right side of the patient's midline; however, the following discussion applies equally to contralateral structures located on the left side of the patient's midline. As will also be discussed further below, certain procedures may be conducted unilaterally (on either the left or right structure) or bilaterally (on both the left and right structures). [0019] As shown in Figure 1 , the common carotid artery 102 supplies blood to the patient's head, and splits to form the internal carotid artery 103 and the external carotid artery 104 in the neck region 101. The carotid sinus 105 is located in the region of the split between the internal carotid artery 103 and the external carotid artery 104. The carotid body 106 is a small sensory organ located high in the neck region 101 , posterior to the patient's lower jaw and generally in the bifurcation region between the internal carotid artery 103 and the external carotid artery 104. The carotid body 106 is perfused by blood flow in the carotid arteries 102-104. The carotid body 106 generally includes peripheral chemoreceptors that can sense the oxygen level, carbon dioxide level, and possibly pH or other factors in the arterial blood flow. These chemoreceptors provide the large majority of the patient's ability to sense oxygen, and also provide approximately one-third of the patient's ability to sense carbon dioxide. Other chemoreceptors are included at the aortic body, and in the medulla of the patient's brain. Chemoreceptors in the medulla provide approximately two-thirds of the patient's ability to sense carbon dioxide.
[0020] Afferent signals travel from the carotid body 106 to the patient's brain via the carotid branch 108 of the patient's glossopharyngeal nerve 109. The glossopharyngeal nerve 109 is the ninth cranial nerve, and descends alongside the vagus nerve or tenth cranial nerve 110. For purposes of simplicity, other cranial nerves are not specifically identified in Figure 1. The carotid body 106, the carotid branch 108, and the glossopharyngeal nerve 109 form an afferent neural pathway 107 along which afferent signals from the chemoreceptors of the carotid body 106 are transmitted to the patient's brain.
[0021] While the exact roles and interrelationships of the various chemoreceptors remain unknown, it is commonly accepted that they can react to low levels of oxygen or high levels of carbon dioxide, and can send afferent signals to the central respiratory center that can increase the patient's ventilatory drive in order to normalize the concentration of blood gases. Conversely, removing or debilitating the carotid body 106 can render it less able to support the body's response to changing levels of blood gases by eliminating an input to the central respiratory center. In certain examples, a complete lack of response to low oxygen levels (hypoxia) or high levels of carbon dioxide (hypercapnia) can be life threatening.
Carotid Body Resection
[0022] A rare genetic mutation (often in Dutch patients) results in glomus cell tumors of the carotid body, requiring their removal via Carotid Body Resection or CBR. In some patients, bilateral tumors have required the removal of both carotid bodies. These patients typically exhibit increased exercise capacity, decreased dyspnea, increased breath- holding capacity, and a blunted ventilatory response to exercise. However, there is also evidence that these effects may be transitory and that the body may accommodate to the loss of the carotid bodies after some period of time.
[0023] Despite its current use for tumor resection, intentional CBR to treat pulmonary conditions is not currently in favor. Generally, CBR was used from the 1940's to the 1980's to treat dyspnea, including in asthmatic patients. The current disfavor derives from uncertainties about proper patient selection criteria, from concerns about inducing central sleep apnea, from possibly detrimental blood gas changes, and from the radical and irreversible nature of the surgery. Much of the disfavor derives from the history of treating asthmatic children, whose lack of response to hypoxia led them to delay treatment of acute status asthmaticus, resulting in several deaths.
[0024] Despite the foregoing drawbacks, CBR has also been associated with a significant decrease in dyspnea and a corresponding increase in exercise capacity. While blood gases are impacted, most authors appear to judge these changes to be relatively minor in many or most cases. For example, typical sequela to the chronic loss of carotid body function (in patients presumably not suffering from pulmonary disease) is a modest 6 mm Hg rise in PaCO2, where "PaCO2" refers to the partial pressure of carbon dioxide in the patient's arterial blood. In certain examples, patients selected for CBR have PaCO2<45 mm Hg and PaO2>65 mm Hg (where "PaO2" refers to the partial pressure of oxygen in the patients' arterial blood), in order to ensure only a modest impact. In certain examples, many patients can have either improvements or minimal degradations in blood gases. [0025] The literature and experience are mixed regarding the permanence of the effect of CBR. In certain examples, the effect of CBR decreases over time as the body compensates for the loss of signaling from the carotid bodies. In other examples, after CBR, other chemoreceptors can increase their responsiveness to carbon dioxide, raising the total body response back to normal levels, while having little to no compensatory change in the body's response to oxygen levels.
Inhibitory Electrical Stimulation
[0026] Aspects of the present disclosure are directed to replacing, in whole or in part, the foregoing resection procedure with an electrical stimulator implant procedure. The implanted stimulator can apply an inhibitory electrical signal to the afferent neural pathway 107, thus emulating at least in part the results of carotid body resection, but with additional control over the chemoreceptor inhibition and/or without several of the foregoing drawbacks.
[0027] Figure 2 is a partially schematic, isometric illustration of a system 120 suitable for delivering inhibitory electrical signals to the afferent neural pathway 107 described above with reference to Figure 1. Accordingly, by blocking, at least partially blocking, and/or otherwise inhibiting afferent neural signals from the chemoreceptors at the carotid body 106 (Figure 1 ), the patient's dyspneic symptoms can be reduced, alleviated and/or eliminated. As described further below, this can be done without unduly interfering with the body's ability to detect and respond to low blood oxygen levels and/or high blood carbon dioxide levels.
[0028] As shown in Figure 2, the system 120 can include a signal delivery device 121 coupled to a controller 122 with a communication link 126. In one aspect of this embodiment, the signal delivery device 121 can include a cuff electrode 123 that in turn includes a cuff or other support body 124 carrying one or more arcuate electrical contacts 125 (three are shown in Figure 2 as first, second, and third electrical contacts 125a, 125b, 125c). In this embodiment, the cuff electrode 123 can have a tripolar arrangement, with the first and third contacts 125a, 125c connected to an anodic potential, and the second contact 125b connected to a cathodic potential. Accordingly, the outer anodic contacts 125a, 125c can direct the field lines emanating from the central cathodic contact 125b to a target neural population. In other embodiments, the cuff electrode 123 can include other arrangements of contacts, e.g., to provide monopolar or bipolar signals. In any of these embodiments, the cuff electrode 123 can be positioned around or adjacent to any suitable portion of the afferent neural pathway 107 (Figure 1 ), including the carotid body 106 itself and/or the carotid branch 108. The particular location at which the cuff electrode 123 is placed can be selected based on factors including an individual patient's physiology, characteristic chemoreceptor responsiveness and/or characteristic baroreceptor responsiveness.
[0029] The signal delivery device 121 is coupled to the controller 122 via a communication link 126 having a first connector 127a that may be releasably engaged with a second connector 127b. The second connector 127b is electrically coupled to the controller 122, and both the second connector 127b and the controller 122 can be carried by an enclosed, hermetically sealed housing 128. The housing 128 can also enclose an internal power source 129 which provides power to a pulse generator 130. The pulse generator 130 generates pulses (e.g., square wave, biphasic, charge-balanced and/or other suitable pulses) that are transmitted to the signal delivery device 121 via the communication link 126, under the direction of the controller 122. The controller 122 can accordingly include a memory 131 , a processor 132, and a receiver/transmitter 133. Instructions for delivering the electrical signal to the patient via the signal delivery device 121 can be stored in or on one or more computer readable media of the controller 122, e.g., the memory 131 and/or the processor 132. Accordingly, the controller 122 can include a specially programmed computer device.
[0030] In a particular embodiment, the receiver/transmitter 133 can receive inputs from devices within or outside the housing 128 to operate in an open loop manner and/or a closed loop manner. For example, the system 120 can include an external controller 134 that communicates instructions to the receiver/transmitter 133 via a wireless link. A physician can use an external controller 134 to change the instructions carried out by the controller 122. In another embodiment, the patient can use an external controller 134 to start and/or stop the signals directed by the controller 122 to the signal delivery device 121. The physician and the patient can each have separate external controllers 134, with the physician's external controller 134 able to carry out a broader range of control tasks than the patient's external controller 134. This arrangement can prevent the patient from inadvertently changing signal delivery parameters in an undesirable manner, while still allowing the patient to control certain tasks e.g., starting and stopping the electrical signals.
[0031] The receiver/transmitter 133 can also receive information from one or more sensors 136. The sensors 136 can be configured and positioned to provide information to the controller 122 useful for determining when and in what manner to provide electrical signals to the signal delivery device 121. For example, the sensor 136 can include an oxygen sensor (e.g., an implanted oxygen sensor, or an external fingertip-mounted oxygen sensor) that identifies the patient's blood oxygen levels. In another embodiment, the sensor 136 can include an accelerometer or other device that detects the patient's activity level. In still another embodiment, the sensor 136 can include a clock or timer that senses the passage of time, which, as described further below, may also be used to control the manner in which electrical signals are delivered to the patient.
[0032] As shown in Figure 2, the internal power source 129 can be included in the implantable housing 128. The housing 128 can be implanted at a subclavicular location in the patient's chest, or at another suitable location. In a particular embodiment (e.g., when the internal power source 129 includes a rechargeable battery), the system 120 can include an external power source 135 that is used to recharge the internal power source 129 within the implanted housing 128. For example, the external power source 135 can recharge the internal power source 129 via inductive coupling. In another embodiment, the internal power source 129 can be eliminated, and the external power source 135 alone can provide power to implanted controller 122. In still another embodiment, the controller 122 and the other components located in the housing 128 can be positioned outside the patient's body. For example, these components can be placed in an external housing and worn by the patient, e.g., beneath the patient's clothing. The controller 122 can be connected to the signal delivery device 121 via a hardwired transdermal communication link, or via a wireless transcutaneous link. Any one or combination of the foregoing arrangements can be used to transmit suitable electrical signals to the signal delivery device 121.
[0033] Figure 3 is a partially schematic, ventral illustration of a portion of the anatomy shown in Figure 1 , illustrating a technique for implanting a signal delivery device in accordance with an embodiment of the disclosure. Certain aspects of this technique are generally similar to those disclosed by Winter in an article titled "Bilateral Carotid Body Resection for Asthma and Emphysema," (International Surgery, Volume 7, No. 6, June 1972, hereinafter "Winter"), incorporated herein by reference. Figure 3 illustrates the region at which the common carotid artery 102 bifurcates into the internal carotid artery 103 and the external carotid artery 104. Arrows M and L identify medial and lateral directions, respectively. Most of the external carotid artery 104 has been cut away so as to illustrate the carotid branch 108 located between the internal carotid artery 103 and the external carotid artery 104. The carotid branch 108 includes baroreceptor neurons 112 and chemoreceptor neurons 111 that extend to the carotid sinus 104 and the carotid body 106 to transmit afferent neural signals from the patient's baroreceptors and chemoreceptors, respectively. In a particular embodiment of the method disclosed herein, a probe 137 or other surgical implement can be used to separate or divide the chemoreceptor neurons 111 from the baroreceptor neurons 112, thus allowing a representative signal delivery device 121 (Figure 2) to be positioned in a manner that preferentially directs signals to the chemoreceptor neurons 111 over the baroreceptor neurons 112. For example, the cuff electrode 123 (Figure 2) can be positioned around the chemoreceptor neurons 111 , with the electrode contacts 125a-c preferentially positioned to direct signals to the chemoreceptor neurons 111 over the baroreceptor neurons 112. While some electrical signals may still reach the baroreceptor neurons 112, this arrangement can more significantly inhibit or block afferent signals transmitted along the chemoreceptor neurons 111 , without unduly interfering with afferent signals transmitted by the baroreceptor neurons 112.
[0034] Figure 4 is a partially schematic, left lateral view of the anatomy shown in Figure 3, also based on Winter, and illustrating the chemoreceptor neurons 111 after having been divided from the baroreceptor neurons 112. Arrows D and V identify dorsal and ventral directions, respectively. As discussed above, a suitable signal delivery device 121 (Figure 2) can be positioned so as to preferentially direct electrical signals to the chemoreceptor neurons 111. In at least some embodiments, the characteristics of the signal delivery device 121 itself and the orientation of the signal delivery device 121 will preferentially direct signals to the chemoreceptor neurons 111. In other embodiments, the physician can implant an insulating shield 138 between the chemoreceptor neurons 111 and the baroreceptor neurons 112 so as to restrict or prevent electrical signals directed to the chemoreceptor neurons 111 from unduly affecting the baroreceptor neurons 112, and/or other nearby or neighboring structures. The shield 138 can be held in place with a suitable adhesive, suitable friction features (e.g., nubs) and/or other arrangements.
[0035] The signal delivery device 121 positioned in signal communication with the chemoreceptor neurons 111 can have an arrangement generally similar to that shown in Figure 2, or in other embodiments, it can have other arrangements. For example, Figure 5 illustrates a signal delivery device 521 that includes a lead 539 typically used for spinal cord stimulation. The lead 539 can carry a plurality of electrical contacts 525 (eight are shown in Figure 5 as contacts 525a, 525b...525h). Each of the contacts 525 can have an annular ring shape with an outer surface exposed at the outer surface of the lead 539. Each contact 525 can be connected to an individual electrical conductor 540 (e.g., a wire) so as to receive a separately programmable electrical signal. The individual conductors 540 can form a communication link 526 via which the contacts 525 are connected to the controller 122 (Figure 2). The individual contacts 525a-525h can be selectively activated to provide suitable inhibitory signals, without unnecessarily stimulating adjacent structures. Individual active contacts may selectively be activated or deactivated to avoid habituation and/or tissue necrosis. The lead 539 can be delivered percutaneously and positioned alongside the chemoreceptor neurons 111 shown in Figure 4, and can be secured in place using suitable sutures or other securement techniques.
[0036] In one embodiment, the practitioner (e.g., a surgeon or other physician) can apply the dividing technique and the signal delivery device implanting technique described above to both left and right carotid branches. Accordingly, the practitioner can implant two bilaterally positioned signal delivery devices, coupled to a common implanted or externally-worn controller. In another embodiment, the chemoreceptor neurons and/or the carotid body on one side of the patient's midline can be resected, ligated or otherwise surgically disabled, and the contralateral structures can receive inhibitory signals from an implanted electrical signal delivery element. In a further aspect of this embodiment, the resection process can include resecting both the chemoreceptor neurons and the baroreceptor neurons by resecting the carotid branch 108 or the carotid body 106. Due to the body's other still-active baroreceptors, the effect of this procedure on the body's overall baroreceptor functioning is not expected to be significant for at least some classes of patients. Due to the combination of surgically disabling chemoreceptor pathways on one side of the patient's body, and applying inhibitory electrical stimulation to the chemoreceptor pathways on the opposite side of the patient's body, the patient's dyspneic effects can be controlled.
[0037] The process of resecting one chemoreceptor pathway (and optionally one baroreceptor pathway) may be advantageous because it can simplify the surgical procedure, and/or it can conserve battery power. For example, it may be simpler for the practitioner to implant a signal delivery device at the patient's right side chemoreceptor pathway and then resect the patient's left side chemoreceptor pathway than it is for the practitioner to implant a second signal delivery device and tunnel the associated communication link to an implanted controller. In addition, one signal delivery device is expected to consume less power than two. Conversely, some patients may benefit from the ability to reactivate and/or modulate chemoreceptor functioning on both sides of the midline. In such cases, the practitioner may implant bilateral signal delivery devices, as discussed above, rather than surgically disable one chemoreceptor afferent neural pathway.
[0038] Figure 6 is a block diagram illustrating a process or method 660 for treating a patient in accordance with a particular embodiment of the present disclosure. The process 660 includes identifying a patient as suffering from dyspnea (process portion 661). The process 660 can further include implanting an electrical signal delivery element within the patient to be in signal communication with an afferent neural pathway of a carotid body chemoreceptor, based at least in part on identifying the patient as suffering from dyspnea (process portion 662). Accordingly, the process 600 can include deliberately tying a diagnosis of dyspnea to treatment of dyspneic symptoms via specifically directed inhibitory electrical signals provided by an electrical signal delivery element in signal communication with target neurons of the afferent neural pathway. As used in this context, signal communication means that electrical signals emanating from the electrical signal delivery element have a direct effect on the afferent neural pathway by virtue of interactions between the electrical signal and the neurons of the afferent neural pathway. For example, the electrical signal delivery element can include one or more electrical contacts positioned along the carotid branch 108 of the glossopharyngeal nerve 109 (Figure 1). In particular embodiments, the electrical contacts can be positioned at or up to about five centimeters superior to the carotid body 106. The electrical contacts can be in physical contact with the adjacent neural tissue, or otherwise close enough to the neural tissue to have the desired inhibitory effect on the afferent signals. The contacts can accordingly be positioned to preferentially direct signals to the chemoreceptor neurons, as described above with reference to Figures 4 and 5.
[0039] The process 660 can further include at least reducing dyspneic sensations in the patient and/or increasing the patient's capacity for exercise by directing an electrical signal from the electrical signal delivery element to the neural pathway to at least partially block afferent signals from the chemoreceptor (process portion 663). For example, the electrical signal delivery element can direct biphasic, square wave, charge-balanced pulses at a frequency from about 1 ,000 Hz to about 10,000 Hz, an amplitude of up to about 12 volts or up to about 10 milliamps, with individual pulses having a duration of from about 10 microseconds to about 1 ,000 microseconds. In a particular embodiment, the frequency is selected to be about 5,000 Hz, the pulse width is selected to be 30-50 microseconds, and the amplitude is selected to be from about 1 mA to about 5 mA, with the selected value chosen to avoid muscle capture. In a particular embodiment, the pulses can be applied unilaterally to the afferent neural pathway associated with either the left side or right side carotid body. In a particular aspect of this embodiment, the signals can be provided in a burst lasting about 120 seconds. The resulting block or partial block provided by the applied signals can have a persistence (e.g., an effective duration after the end of the burst) that lasts for approximately 90 to 120 seconds. The signal can be applied with a duty cycle of about 50% in a particular embodiment, or other suitable values selected to provide efficacy while conserving power in other embodiments. The level of efficacy can be based at least in part on the persistence effect of the signal.
[0040] In another embodiment, the stimulation can be provided bilaterally, via one signal delivery device positioned along one afferent neural pathway, and another signal delivery device positioned along the contralateral afferent neural pathway. Each of the signal delivery devices can be connected to a common controller. In this arrangement, delivering bilateral electrical signals can produce the desired inhibitory effect on afferent signals transmitted from the chemoreceptors that lasts for hours rather than minutes.
[0041] The process 660 can further include controlling the delivery of the electrical signals provided to the signal delivery element (process portion 664). The signals can be controlled in a manner that is responsive to one or more inputs 668. In a particular embodiment, the electrical signals can be controlled in part by alternating between an enable mode and a disable mode (process portion 665). In the enable mode, signals may be selectively turned on and off (process portion 666) via a separate instruction. The signals are the delivered in accordance with suitable signal delivery parameters 667, including the frequencies, amplitudes and pulse widths described above. In the disable mode, signals may not be selectively turned on or off, despite the separate instruction. For example, the system can enter the enable mode during normal waking hours, allowing the patient to activate the signal delivery element on an as-needed basis via a separate, patient-directed input. During normal sleeping hours, the system can enter the disable mode, during which the system will not direct electrical signals, even if concurrently requested by the patient. This arrangement can prevent the patient from inadvertently inhibiting the carotid body chemoreceptors at night, so as to reduce or eliminate the possibility of inducing sleep apnea. During waking hours, with the system in the enable mode, the patient can selectively inhibit chemoreceptor afferent signals, for example, before and/or during exercise, by providing a separate instruction. The instruction can be provided when the patient presses a button or otherwise enters an input signal via the external patient controller 134 described above with reference to Figure 2. [0042] The foregoing example is representative of one in which the system responds to a time input (e.g. normal waking hours and normal sleeping hours) and a patient request (e.g. a specific request for inhibitory electrical signals). In other embodiments, the system can respond to other time-based and/or patient-based inputs. For example, the system can remain on (e.g. actively delivering signals to the signal delivery element) for a period of 30 minutes or another suitable period, in response to receiving a patient request. The patient request can come in the form of an input from a simple electronic device (e.g., the patient controller 134 described above with reference to Figure 2), or a magnet that activates a reed switch. The patient request can arrive in anticipation of carrying out an activity (e.g. exercise), and/or can be provided during an activity. Accordingly, the system can automatically provide for a maximum active signal time per patient-initiated or otherwise-initiated activation. In another embodiment, the system can automatically provide for a minimum inactive time or off time between patient or otherwise initiated activations. In still a further embodiment, the system can automatically track a maximum amount of signal delivery time per suitable time interval. For example, the system can track a maximum number of hours of active signal time per day. If the patient requests more than this amount of time, the system can prevent further activations, or require a particular activation sequence or physician intervention before authorizing additional activations. Representative suitable activation times per day include 1 , 2, 4, 6 or 8 hours.
[0043] In still further embodiments, process portion 664 can include receiving inputs relating to patient state or condition. For example, the system can deliver or enable delivery of the electrical signals in response to an indication that the patient is physically active (a first state or condition), and disable or cease delivering the signals when the patient is resting or relaxing (a second state or condition). In a particular example, an accelerometer or other motion detection device can provide suitable inputs for this mode of operation. In another embodiment, an electrocardiogram can provide a generally similar function by providing an indication of the patient's heart rate. In still further embodiments, indications of the patient's condition can be used to provide alerts and/or to prevent the inhibitory signals from being directed to the chemoreceptors. For example, the input can include an indication of the patient's blood oxygen level, and can prevent the system from delivering electrical signals if the blood oxygen level is below a particular threshold. In representative embodiments, the system can deliver signals when the blood oxygen level is at or above a first threshold of 89%, 90%, 91%, 92% or 93%, and can cease delivering signals when the blood oxygen level is at or below a second threshold of 93%, 92%, 91%, 90% or 89%. In other embodiments, these values can be based on partial pressures (e.g., 60, 65 or 70 mm PaO2). In still further embodiments, the foregoing activation determination can be based on blood carbon dioxide levels (e.g., less than 35, 40, 45 or 50 mm PaCO2). The foregoing actions can be accompanied by an alarm function, or the alarm function can be provided without the automatic shutdown feature, but with the patient taking the separate step of shutting the system down. This arrangement can make use of an external or internal pulse-oxymeter, such as a light- sensitive oxymeter worn on the patient's fingertip.
[0044] In other embodiments, the detector can detect breathing motion and/or other pulmonary indicators. Any of the foregoing detection techniques can be used to monitor the patient, alert the patient, and/or automatically or manually shut the system off or otherwise disable or deactivate the system, while the patient is awake and inactive, while the patient is awake and active, or while the patient is asleep. In any of these embodiments, the system can be subsequently reactivated or enabled, e.g. by a physician or other practioner, or by the patient.
[0045] Figure 7 is a block diagram illustrating a method 760 that includes diagnosing and/or screening patients in accordance with a particular embodiment of the disclosure. In general, the foregoing procedures for treating dyspnea may be applied to patients with severe or very severe COPD, as evidenced by FEVI values of between about 20% and about 40%. Such patients may also demonstrate exercise limited by dyspnea (e.g. a value of 3-4 on the MRC 1-5 point scale). Such patients may have similar blood chemistries to those selected for CBR, e.g., PaCO2<45 mm Hg and PaO2>65 mm Hg.
[0046] Process portion 761 includes using a non-invasive, physiological-functioning screening procedure to assess the patient's suitability for a dyspnea treatment regimen. This process can include, for example, simulating chemoreceptor inhibition to determine or estimate the likelihood that the patient will respond to the subsequent inhibition provided by an implanted signal delivery device and/or resection. The process can, in addition to or in lieu of the foregoing screen, include assessing the patient's baroreceptor functioning level, which can be used to aid the physician in determining whether some of the patient's baroreceptor functions can be reduced or eliminated in combination with inhibiting chemoreceptor functions. Each of these assessments is described in turn below.
[0047] The practitioner can employ one or more of several techniques for reversibly simulating the effects of chemoreceptor inhibition before undertaking a resection or implant procedure. For example, the patient can receive a locally injected anesthetic applied to the carotid bodies during or before an exercise test to determine the impact of carotid body blocking on exercise capacity and/or perceived dyspnea. The dyspneic relief and/or increase in exercise capacity can be compared to the impact on the patient's blood gasses to determine a suitable treatment. For example, if the patient reports a positive effect on the dyspneic symptoms and/or an increased capacity for exercise, and results indicate an acceptable effect on the patient's blood gasses (e.g. an acceptable reduction in blood oxygen), the patient may be identified as a suitable candidate for further treatment. A representative acceptable reduction in blood oxygen level is about 6 mm Hg PaO2, or less.
[0048] In another example, the carotid body's output can be artificially suppressed by the inhalation of high fraction oxygen (a gas mixture of greater than approximately 30% oxygen). Aspects of a representative process carried out on COPD patients are described by Somfay et al. in "Dose-reponse effect of oxygen on hyperinflation and exercise endurance in nonhypoxaemic COPD patients" (European Respiratory Journal, vol. 18, 77- 88, 2001 , incorporated herein by reference). These individuals exhibited significantly increased exercise capacity due to the elimination of carotid body nervous signaling. Accordingly, breathing such a hyperoxic gas mixture can be used both to quantify the magnitude of the effect of inhibitory electrical stimulation or combined electrical stimulation and resection. Suitable levels of oxygen for the foregoing screening procedure include at least 30%, at least 40%, at least 50% and about 100%.
[0049] Another aspect of process portion 761 is assessing the patient's baroreceptor functioning level. For example, known reversible techniques such as carotid sinus massage or intraoperative anesthetic applied to the carotid sinus can be used to determine the functioning of the baroreceptors carried by the patient's carotid bodies. In particular, these techniques can be used to determine if disabling the carotid sinus baroreceptor function has an effect on the patient's overall barosensing function, and/or to determine the patient's sensitivity to loss of sinus cavity barosense function. If it is determined that the patient's overall baroreceptor functioning is adequate without the specific feedback provided by the carotid body baroreceptors (e.g. if other baroreceptors located in the brain or elsewhere by themselves provide a suitable functioning level at or above a selected threshold), then the practitioner can undertake procedures that may inhibit the baroreceptor functioning of the carotid bodies in addition to the chemosensing functioning of the carotid bodies. For example, when resecting the carotid body or carotid nerve, the practitioner can resect both the chemoreceptor neurons and the baroreceptor neurons if doing so will not unacceptably affect the patient's baroreceptor functioning. Similarly, the practitioner can implant the signal delivery device in a manner that may inhibit afferent signals from the carotid body baroreceptors (e.g., without preference to inhibiting only chemoreceptor neurons) if doing so is not expected to unacceptably affect the overall baroreceptor functioning of the patient. If the patient's barosense function is significantly affected by temporarily reducing or eliminating the carotid sinus barosense function, the practitioner can take appropriate steps to preferentially direct inhibitory signals to the chemoreceptor neurons to avoid unnecessarily obstructing the functioning of the baroreceptor neurons.
[0050] After the chemoreceptor and/or baroreceptor screening functions have been conducted (process portion 761 ), the patient may be selected for dyspnea treatment (process portion 762). The dyspnea treatment can include, for example, the techniques described above with reference to Figures 1-6. In other embodiments, the screening techniques shown in Figure 7 can be used as a precursor to other dyspnea therapies.
[0051] One aspect of several of the embodiments described above is that the foregoing systems and methods can relieve the patient's dyspnea while the patient is exercising and/or engaging in other waking activities, with an expected modest degradation of blood gasses. An advantage of this arrangement is that by reducing dyspneic symptoms, the patient can be more relaxed and more likely to engage in exercise, and/or engage in exercise more often, and/or engage in more strenuous exercise, which can facilitate the patient's participation in pulmonary rehabilitation. The patient may have a brief reduction in blood oxygen (e.g. from 95% to 92%), but the short- term effect of this reduction may be more than offset by the long-term effects of increased exercise. This can halt or even reverse what has been viewed as a dyspneic spiral in which (a) the patient suffers from COPD and dyspnea, (b) the dyspnea discourages the patient from engaging in exercise, which (c) exacerbates the COPD and dyspnea. Thus, in a manner analogous to pain treatment, reducing the patient's dyspnea can allow the patient to engage in activity despite the existence of an underlying condition, and in at least some instances, to an extent that treats the underlying condition.
[0052] In addition to or in lieu of increasing the patient's level of exercise, embodiments of the foregoing systems and methods can increase the patient's level of other activities, e.g., activities of daily living. In addition to, or in lieu of the foregoing advantages, aspects of the foregoing systems and methods can improve the patient's quality of life by eliminating or reducing the patient's use of and/or reliance on supplemental oxygen, which is typically carried by the patient in a heavy, awkward tank. Eliminating or reducing the use of supplemental oxygen is expected to further increase the likelihood and/or frequency with which the patient exercises.
[0053] Another feature of several of the foregoing embodiments is that the effect of the electrical signal on the chemoreceptor afferent neural pathway is controllable and reversible. Accordingly, the signal can be halted while the patient is sleeping, resting, relaxing, or otherwise not engaged in strenuous activity. This can allow the afferent neurons to return to a normal state and, correspondingly allow the patient's blood gasses to return to normal (or at least normal for that patient) levels. In addition, if inhibiting the chemoreceptor afferent neural pathway later becomes undesirable, the system can be deactivated. The system can subsequently be reactivated if inhibiting the chemoreceptors again becomes part of a suitable therapy. This is unlike resection, which is generally irreversible. [0054] Still another feature of at least some of the foregoing embodiments is that the system can automatically monitor and respond to changes, and can control the delivery of electrical signals accordingly. For example, the system can automatically disable electrical signal delivery during normal sleeping hours to avoid apnea. The system can automatically disable electrical signal delivery if blood gasses degrade below desired levels. This level of automation takes advantage of and builds on the fact that the effect of the electrical signals is reversible and haltable.
[0055] Still another aspect of several of the foregoing embodiments is that the system can be selectively activated and deactivated as part of an overall treatment regimen that includes exercise. For example, the system can be activated during high intensity exercise experienced during pulmonary rehabilitation or post rehabilitation maintenance. At other times, the system can be deactivated. In still a further embodiment, the degree to which the system inhibits the afferent signals from the chemoreceptors can be controlled. For example, the amplitude and/or duty cycle of the signal applied to the neural pathways can be increased for additional inhibition and decreased for less inhibition. In another approach that can be used in addition to or in lieu of the foregoing approach, the carotid body chemoreceptors on one side of the patient's midline can be inhibited while those on the other side are not. In yet a further embodiment, the system can alternate between inhibiting chemoreceptors on one side of the midline and those on the other. This arrangement can be used to forestall or prevent patient habituation to the electrical signals. In addition to or in lieu of this arrangement, the signal delivery parameters (e.g., signal amplitude, frequency, pulse width, and/or parameters) can be varied to forestall or prevent habituation. In still another embodiment, the system can be activated only at selected times (e.g., during exercise) to reduce habituation. Accordingly, the foregoing processes can extend the effectiveness of the therapy for a longer, controlled period of time.
[0056] From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. For example, the particular signal delivery parameters described above can have other values in other embodiments. The particular electrodes described above can have other configurations and other embodiments. The system can include sensors other than those specifically identified above. Certain aspects of the disclosure described in the context of particular embodiments may be combined or eliminated in other embodiments. For example the patient may receive an electrode device of the type shown in Figure 2 on one side of the body, and an electrode device of the type shown in Figure 5 on the other side. Further, while advantages associated with certain embodiments have been described herein in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the present invention. Accordingly, the disclosure can include other embodiments not explicitly shown or described above.

Claims

CLAIMSI/We claim:
1. A method for treating a patient, comprising: identifying the patient as suffering from dyspnea; based at least in part on identifying the patient as suffering from dyspnea, implanting an electrical signal delivery element within the patient in signal communication with an afferent neural pathway of a carotid body chemoreceptor; and at least reducing dyspneic sensations in the patient, or increasing an exercise capacity of the patient, or both, by directing an electrical signal from the electrical signal delivery element to the neural pathway to at least partially block afferent signals from the chemoreceptor.
2. The method of claim 1 , further comprising; automatically enabling delivery of the electrical signal during normal waking hours; automatically disabling delivery of the electrical signal during normal sleeping hours; directing the electrical signal only when both (a) the delivery of the electrical signal is enabled, and (b) the patient initiates a concurrent request for signal delivery; and preventing delivery of the electrical signal when (c) the delivery of the electrical signal is enabled, even if (d) the patient initiates a concurrent request for signal delivery.
3. The method of claim 1 wherein directing the electrical signal includes directing the electrical signal while the patient is exercising.
4. The method of claim 3, further comprising increasing the patient's level of exercise while the electrical signal is directed to the neural pathway, relative to the patient's exercise level when the electrical signal is not directed to the neural pathway.
5. The method of claim 1 , further comprising increasing the patient's activity level while the electrical signal is directed to the neural pathway, relative to the patient's activity level when the electrical signal is not directed to the neural pathway.
6. The method of claim 1 , further comprising controlling delivery of the electrical signal to the neural pathway in response to receiving an input.
7. The method of claim 6 wherein the input includes a time input.
8. The method of claim 7 wherein controlling delivery of the electrical signal includes directing the electrical signal during normal waking hours and halting the electrical signal during normal sleeping hours.
9. The method of claim 7 wherein controlling delivery of the electrical signal includes directing the electrical signal during a first predetermined period of time and halting the electrical signal during a second predetermined period of time.
10. The method of claim 7 wherein controlling delivery of the electrical signal includes directing the electrical signal for a predetermined cumulative maximum period of time per day.
11. The method of claim 7 wherein controlling delivery of the electrical signal includes preventing the initiation of the electrical signal for a predetermined period of time after the previous initiation of the electrical signal.
12. The method of claim 6 wherein receiving an input includes receiving an input corresponding to a patient activity level.
13. The method of claim 12 wherein the input includes an accelerometer input.
14. The method of claim 12 wherein the input includes a heart rate input.
15. The method of claim 12 wherein controlling delivery of the electrical signal includes: directing the signal or increasing an inhibitory effect of the signal on the afferent neural pathway in response to an increase in patent activity level; and halting the signal or decreasing an inhibitory effect of the signal on the afferent neural pathway in response to a decrease in patent activity level
16. The method of claim 6 wherein the input includes a manual patient input.
17. The method of claim 1 , further comprising providing a patient alert in response to a detected condition.
18. The method of claim 17 wherein providing a patient alert includes providing a patient alert in response to a detected pulmonary condition.
19. The method of claim 18 wherein providing a patient alert includes providing a patient alert in response to a detected patient breathing rate.
20. The method of claim 18 wherein providing a patient alert includes providing a patient alert in response to a detected patient blood oxygen level.
21. The method of claim 17, further comprising controlling delivery of the electrical signal in response to the detected condition.
22. The method of claim 1 , further comprising; automatically enabling delivery of the electrical signal when the patient is in a first state; and automatically disabling delivery of the electrical signal when the patient is in a second state different than the first state.
23. The method of claim 22 wherein the first state corresponds to a first patient blood oxygen level, and wherein the second state corresponds to a second blood oxygen level lower than the first.
24. The method of claim 22, further comprising automatically directing the electrical signal in response to an indication that delivery of the electrical signal is enabled.
25. The method of claim 22, further comprising only directing the electrical signal in response to (a) an indication that delivery of the electrical signal is enabled, and (b) a concurrent patient request for signal delivery.
26. The method of claim 1 wherein the carotid body chemoreceptor is one of two carotid body chemoreceptors spaced apart laterally on opposite sides of the patient's midline, and wherein implanting the signal delivery device includes implanting the signal delivery device unilaterally to be in signal communication with the afferent neural pathway of one of the carotid body chemoreceptors.
27. The method of claim 26, further comprising resecting the afferent neural pathway of the contralateral chemoreceptor.
28. The method of claim 1 wherein the carotid body chemoreceptor is one of two carotid body chemoreceptors spaced apart laterally on opposite sides of the patient's midline, and wherein implanting the signal delivery device includes implanting one or more signal delivery devices to be in signal communication with afferent neural pathways of both the carotid chemoreceptors.
29. The method of claim 1 , further comprising positioning the electrical signal delivery device to direct signals preferentially to chemoreceptor neurons over baroreceptor neurons.
30. The method of claim 29, further comprising electrically insulating structures neighboring the afferent neural pathway from effects of the signal.
31. The method of claim 1 , further comprising: assessing a baroreceptor function level of the patient; if the patient's sensitivity to loss of barosense function has a first level, positioning the electrical signal delivery device to direct signals preferentially to chemoreceptor neurons over baroreceptor neurons; and if the patient's sensitivity to loss of barosense function has a second level less than the first, positioning the electrical signal delivery device to direct signals without preference to affecting chemoreceptor neurons over baroreceptor neurons.
32. The method of claim 1 wherein directing an electrical signal from the electrical signal delivery element to the neural pathway includes directing the signal to a portion of the pathway at or superior to the patient's carotid body.
33. The method of claim 32 wherein directing an electrical signal from the electrical signal delivery element to the neural pathway includes directing the signal to a portion of the pathway no greater than 5 centimeters superior to the patient's carotid body
34. The method of claim 1 wherein directing an electrical signal includes directing a varying electrical signal at a frequency of from about 1 KHz to about 10KHz, a pulse width of from about 10 microseconds to about 100 microseconds, and a pulse amplitude of up to about 12 volts or up to about 10 milliamps.
35. The method of claim 1 , further comprising varying a degree to which the afferent signals are blocked by varying an amplitude of the electrical signal.
36. The method of claim 1 , further comprising: halting the signal; identifying a persistence period occurring after the signal is halted and during which dyspneic symptoms remain at least reduced; and based at least in part on identifying the persistence period, directing additional signals in accordance with a duty cycle having quiescent periods selected to be less than the persistence period.
37. A method for treating a patient, comprising: using a non-invasive, physiological-functioning screening procedure, assessing the patient's suitability for a dyspnea treatment regimen; and based at least in part on a positive result from the screening procedure, engaging the patient in the treatment regimen.
38. The method of claim 37 wherein assessing the patient's suitability for a dyspnea treatment regimen includes: directing the patient to breathe a gas having an elevated oxygen content compared to standard air; and receiving an indication from the patient identifying a change or lack of change in dyspneic symptoms, exercise capacity, or both.
39. The method of claim 38 wherein the gas is at least 30% oxygen.
40. The method of claim 38 wherein the gas is at least 50% oxygen.
41. The method of claim 38 wherein the gas is approximately 100% oxygen.
42. The method of claim 37 wherein engaging the patient in a treatment regimen includes at least reducing dyspneic sensations in the patient by directing an electrical signal from the electrical signal delivery element to the neural pathway to at least partially block afferent signals from the chemoreceptor.
43. The method of claim 42 wherein using a non-invasive, physiological- functioning screening procedure includes assessing a baroreceptor function level of the patient, and wherein the method further comprises: if the patient's sensitivity to loss of barosense function has a first level, positioning the electrical signal delivery device to direct signals preferentially to chemoreceptor neurons over baroreceptor neurons; and if the patient's sensitivity to loss of barosense function has a second level less than the first, positioning the electrical signal delivery device to direct signals without preference to affecting chemoreceptor neurons over baroreceptor neurons.
44. A system for treating a patient, comprising: an implantable electrical signal delivery element configured to direct electrical signals to a patient's neural pathway; a power source coupled to the signal delivery element; an oxygen sensor configured to transmit a signal corresponding to the patient's blood oxygen level; and a controller coupled to the power source and the oxygen sensor, the controller being programmed with instructions that, when executed: direct an inhibitory electrical signal to the signal delivery element when the oxygen sensor indicates a blood oxygen level above a first threshold; and cease directing the inhibitory signal when the oxygen sensor indicates a blood oxygen level below a second threshold.
45. The system of claim 44 wherein the first and second thresholds are the same.
46. The system of claim 44 wherein the first threshold has a value in the range of from about 89% to about 93%.
47. The system of claim 44 wherein the second threshold has a value in the range of from about 93% to about 89%.
48. The system of claim 44 wherein the power source is implantable within the patient.
49. The system of claim 44 wherein the power source is an external power source.
50. The system of claim 44 wherein the signal delivery element includes a cuff electrode.
51. The system of claim 44 wherein the signal delivery element includes an elongated lead having a plurality of axially spaced-apart ring contacts.
PCT/US2009/053190 2008-08-11 2009-08-07 Systems and methods for treating dyspnea, including via electrical afferent signal blocking WO2010019481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8794508P 2008-08-11 2008-08-11
US61/087,945 2008-08-11

Publications (1)

Publication Number Publication Date
WO2010019481A1 true WO2010019481A1 (en) 2010-02-18

Family

ID=41669218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/053190 WO2010019481A1 (en) 2008-08-11 2009-08-07 Systems and methods for treating dyspnea, including via electrical afferent signal blocking

Country Status (2)

Country Link
US (4) US9089700B2 (en)
WO (1) WO2010019481A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109015A1 (en) * 2014-01-17 2015-07-23 Cardiac Pacemakers, Inc. Systems and methods for selective stimulation of nerve fibers in carotid sinus
US10201709B2 (en) 2014-01-17 2019-02-12 Cardiac Pacemakers, Inc. Depletion block to block nerve communication

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
ES2398052T5 (en) 2008-05-09 2021-10-25 Nuvaira Inc Systems for treating a bronchial tree
WO2010019481A1 (en) 2008-08-11 2010-02-18 Conceptx Medical, Inc. Systems and methods for treating dyspnea, including via electrical afferent signal blocking
EP2493408B1 (en) 2009-10-27 2015-06-24 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
KR101820542B1 (en) 2009-11-11 2018-01-19 호라이라 인코포레이티드 Systems, apparatuses, and methods for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
EP2640293B1 (en) * 2010-11-17 2022-09-07 Medtronic Ireland Manufacturing Unlimited Company Systems for therapeutic renal neuromodulation for treating dyspnea
US20120130201A1 (en) * 2010-11-24 2012-05-24 Fujitsu Limited Diagnosis and Monitoring of Dyspnea
WO2012092364A2 (en) 2010-12-28 2012-07-05 G & L Consulting, Llc Method for sympathetic rebalancing of patient
US20140180307A1 (en) * 2011-08-02 2014-06-26 Alon Shalev Electrostimulation in treating cerebrovascular conditions
US8983611B2 (en) 2011-09-27 2015-03-17 Cardiac Pacemakers, Inc. Neural control of central sleep apnea
WO2013149034A2 (en) 2012-03-28 2013-10-03 Cibiem, Inc. Carotid body modulation planning and assessment
EP2840993A4 (en) 2012-04-24 2016-03-30 Cibiem Inc Endovascular catheters and methods for carotid body ablation
US9402677B2 (en) 2012-06-01 2016-08-02 Cibiem, Inc. Methods and devices for cryogenic carotid body ablation
EP2854681A4 (en) 2012-06-01 2016-02-17 Cibiem Inc Percutaneous methods and devices for carotid body ablation
WO2014005155A1 (en) 2012-06-30 2014-01-03 Cibiem, Inc. Carotid body ablation via directed energy
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
EP3030167A4 (en) 2013-08-07 2017-03-22 Cibiem, Inc. Carotid body ablation via directed energy
EP3116408B1 (en) 2014-03-12 2018-12-19 Cibiem, Inc. Ultrasound ablation catheter
EP3326689B1 (en) * 2014-11-03 2022-03-30 Presidio Medical, Inc. Neuromodulation device
CA3085452A1 (en) 2017-12-13 2019-06-20 Neuros Medical, Inc. Nerve cuff deployment devices
BR112020020867A2 (en) 2018-04-09 2021-01-26 Neuros Medical, Inc. apparatus and methods for adjusting electrical dose
WO2021163308A1 (en) 2020-02-11 2021-08-19 Neuros Medical, Inc. System and method for quantifying qualitative patient-reported data sets

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960133A (en) * 1988-11-21 1990-10-02 Brunswick Manufacturing Co., Inc. Esophageal electrode
WO1998043701A1 (en) * 1997-03-27 1998-10-08 Alfred E. Mann Foundation For Scientific Research System of implantable devices for monitoring and/or affecting body parameters
DE10151797A1 (en) * 2001-10-19 2003-05-08 Univ Halle Wittenberg Device for continuous and simultaneous monitoring of autonomous bodily processes for use in patient monitoring combines a number of stand alone monitoring systems into a single integrated device
US20060282131A1 (en) * 2005-06-13 2006-12-14 Cardiac Pacemakers, Inc. System for neural control of respiration
US7155284B1 (en) * 2002-01-24 2006-12-26 Advanced Bionics Corporation Treatment of hypertension
US20070150006A1 (en) * 2005-12-28 2007-06-28 Imad Libbus Neural stimulator to treat sleep disordered breathing
US20070299476A1 (en) * 2006-06-23 2007-12-27 Euljoon Park Sympathetic afferent activation for adjusting autonomic tone

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE346468B (en) 1969-02-24 1972-07-10 Lkb Medical Ab
DE2513868C2 (en) 1974-04-01 1982-11-04 Olympus Optical Co., Ltd., Tokyo Bipolar electrodiathermy forceps
ES226859Y (en) 1977-03-03 1977-11-16 RHYTHM CONTROLLED CARDIAC PACEMAKERS BY REGULATORY SIGNALS DETECTED IN THE TRUNKS AND NOT THE NERVOUS RECEPTORS.
US5431621A (en) 1984-11-26 1995-07-11 Edap International Process and device of an anatomic anomaly by means of elastic waves, with tracking of the target and automatic triggering of the shootings
US4791931A (en) 1987-08-13 1988-12-20 Pacesetter Infusion, Ltd. Demand pacemaker using an artificial baroreceptor reflex
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5125928A (en) 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5435311A (en) 1989-06-27 1995-07-25 Hitachi, Ltd. Ultrasound therapeutic system
US5893863A (en) 1989-12-05 1999-04-13 Yoon; Inbae Surgical instrument with jaws and movable internal hook member for use thereof
US5851206A (en) 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5147294A (en) 1990-10-01 1992-09-15 Trustees Of Boston University Therapeutic method for reducing chronic pain in a living subject
US5139496A (en) 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
US5957882A (en) 1991-01-11 1999-09-28 Advanced Cardiovascular Systems, Inc. Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5476495A (en) 1993-03-16 1995-12-19 Ep Technologies, Inc. Cardiac mapping and ablation systems
WO1995001751A1 (en) 1993-07-01 1995-01-19 Boston Scientific Corporation Imaging, electrical potential sensing, and ablation catheters
US5354271A (en) 1993-08-05 1994-10-11 Voda Jan K Vascular sheath
GB2287375B (en) 1994-03-11 1998-04-15 Intravascular Res Ltd Ultrasonic transducer array and method of manufacturing the same
US5492126A (en) 1994-05-02 1996-02-20 Focal Surgery Probe for medical imaging and therapy using ultrasound
EP0819014B1 (en) 1995-03-30 2003-02-05 Heartport, Inc. Endovascular cardiac venting catheter
DE69634714T2 (en) 1995-03-31 2006-01-19 Kabushiki Kaisha Toshiba, Kawasaki Therapeutic ultrasound device
US5735280A (en) 1995-05-02 1998-04-07 Heart Rhythm Technologies, Inc. Ultrasound energy delivery system and method
US6228082B1 (en) 1995-11-22 2001-05-08 Arthrocare Corporation Systems and methods for electrosurgical treatment of vascular disorders
US5733301A (en) 1996-01-11 1998-03-31 Schneider (Usa) Inc. Laser ablation of angioplasty catheters and balloons
WO1997025916A1 (en) 1996-01-19 1997-07-24 Ep Technologies, Inc. Expandable-collapsible electrode structures with electrically conductive walls
US20070208388A1 (en) 1996-04-30 2007-09-06 Jahns Scott E Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
US20050245894A1 (en) 1996-05-20 2005-11-03 Medtronic Vascular, Inc. Methods and apparatuses for drug delivery to an intravascular occlusion
US20010049517A1 (en) 1997-03-06 2001-12-06 Gholam-Reza Zadno-Azizi Method for containing and removing occlusions in the carotid arteries
US5800486A (en) 1996-06-17 1998-09-01 Urologix, Inc. Device for transurethral thermal therapy with cooling balloon
US6830577B2 (en) 1996-07-26 2004-12-14 Kensey Nash Corporation System and method of use for treating occluded vessels and diseased tissue
US7052493B2 (en) 1996-10-22 2006-05-30 Epicor Medical, Inc. Methods and devices for ablation
US6071279A (en) 1996-12-19 2000-06-06 Ep Technologies, Inc. Branched structures for supporting multiple electrode elements
US5910104A (en) 1996-12-26 1999-06-08 Cryogen, Inc. Cryosurgical probe with disposable sheath
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US5879295A (en) 1997-04-02 1999-03-09 Medtronic, Inc. Enhanced contact steerable bowing electrode catheter assembly
US6411852B1 (en) 1997-04-07 2002-06-25 Broncus Technologies, Inc. Modification of airways by application of energy
US5906580A (en) 1997-05-05 1999-05-25 Creare Inc. Ultrasound system and method of administering ultrasound including a plurality of multi-layer transducer elements
US6217576B1 (en) 1997-05-19 2001-04-17 Irvine Biomedical Inc. Catheter probe for treating focal atrial fibrillation in pulmonary veins
US6251109B1 (en) 1997-06-27 2001-06-26 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6071281A (en) 1998-05-05 2000-06-06 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6522930B1 (en) 1998-05-06 2003-02-18 Atrionix, Inc. Irrigated ablation device assembly
US6315777B1 (en) 1998-07-07 2001-11-13 Medtronic, Inc. Method and apparatus for creating a virtual electrode used for the ablation of tissue
US6125857A (en) 1998-07-13 2000-10-03 Silber; David Dual sideburn trimmer
US6425867B1 (en) 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
DE69835838T2 (en) 1998-10-31 2006-12-21 Akbar Abdolmohammadi Endocardial catheter system for wavelength measurement, multi-dimensional representation
US6206831B1 (en) 1999-01-06 2001-03-27 Scimed Life Systems, Inc. Ultrasound-guided ablation catheter and methods of use
US6398736B1 (en) 1999-03-31 2002-06-04 Mayo Foundation For Medical Education And Research Parametric imaging ultrasound catheter
US6129359A (en) 1999-04-27 2000-10-10 Lockheed Martin Corporation Sealing assembly for sealing a port and the like
US6436071B1 (en) 1999-06-08 2002-08-20 The Trustees Of Columbia University In The City Of New York Intravascular systems for corporeal cooling
US6235024B1 (en) 1999-06-21 2001-05-22 Hosheng Tu Catheters system having dual ablation capability
EP1207788A4 (en) 1999-07-19 2009-12-09 St Jude Medical Atrial Fibrill Apparatus and method for ablating tissue
US6306133B1 (en) 1999-10-02 2001-10-23 Quantum Cor Incorporated Ablation catheter system and methods for repairing a valvular annulus
US6660013B2 (en) 1999-10-05 2003-12-09 Omnisonics Medical Technologies, Inc. Apparatus for removing plaque from blood vessels using ultrasonic energy
AU2619301A (en) 1999-10-25 2001-06-06 Therus Corporation Use of focused ultrasound for vascular sealing
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
US7097641B1 (en) 1999-12-09 2006-08-29 Cryocath Technologies Inc. Catheter with cryogenic and heating ablation
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US7137395B2 (en) 2000-02-29 2006-11-21 The Johns Hopkins University Circumferential pulmonary vein ablation using a laser and fiberoptic balloon catheter
US6379348B1 (en) 2000-03-15 2002-04-30 Gary M. Onik Combined electrosurgical-cryosurgical instrument
US6558382B2 (en) 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
AU5662001A (en) 2000-05-08 2001-11-20 Brainsgate Ltd. Method and apparatus for stimulating the sphenopalatine ganglion to modify properties of the bbb and cerebral blood flow
JP4099388B2 (en) 2000-07-13 2008-06-11 プロリズム,インコーポレイテッド A device for applying energy to the body of a living organism
CA2416581A1 (en) 2000-07-25 2002-04-25 Rita Medical Systems, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
EP2248543A1 (en) 2000-08-24 2010-11-10 Cordis Corporation Fluid delivery systems for delivering fluids to multi-lumen catheters
US7499742B2 (en) 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US6522926B1 (en) 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US6673066B2 (en) 2000-11-10 2004-01-06 Cardiostream, Inc. Apparatus and method to diagnose and treat vulnerable plaque
US20020087151A1 (en) 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
AU2003212640A1 (en) 2002-03-14 2003-09-22 Brainsgate Ltd. Technique for blood pressure regulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US20130197555A1 (en) 2002-07-01 2013-08-01 Recor Medical, Inc. Intraluminal devices and methods for denervation
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US7458967B2 (en) 2003-10-31 2008-12-02 Angiodynamics, Inc. Endovascular treatment apparatus and method
US7137963B2 (en) 2002-08-26 2006-11-21 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US20040116921A1 (en) 2002-12-11 2004-06-17 Marshall Sherman Cold tip rf/ultrasonic ablation catheter
US8192425B2 (en) 2006-09-29 2012-06-05 Baylis Medical Company Inc. Radiofrequency perforation apparatus
IL154801A0 (en) 2003-03-06 2003-10-31 Karotix Internat Ltd Multi-channel and multi-dimensional system and method
US6939348B2 (en) 2003-03-27 2005-09-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US9149322B2 (en) 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
CA2521019A1 (en) 2003-04-03 2004-10-14 Galil Medical Ltd. Apparatus and method for accurately delimited cryoablation
JP2007500576A (en) 2003-05-16 2007-01-18 サイエンス・メディカス・インコーポレイテッド Respiration control using neuro-electrically encoded signals
US20060064137A1 (en) 2003-05-16 2006-03-23 Stone Robert T Method and system to control respiration by means of simulated action potential signals
US20060287679A1 (en) 2003-05-16 2006-12-21 Stone Robert T Method and system to control respiration by means of confounding neuro-electrical signals
US7285120B2 (en) 2003-05-27 2007-10-23 Venture Manufacturing, Llc Balloon centered radially expanding ablation device
EP1635736A2 (en) 2003-06-05 2006-03-22 FlowMedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7738952B2 (en) 2003-06-09 2010-06-15 Palo Alto Investors Treatment of conditions through modulation of the autonomic nervous system
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
US7628785B2 (en) 2003-06-13 2009-12-08 Piezo Technologies Endoscopic medical treatment involving acoustic ablation
DE202004021942U1 (en) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US7502650B2 (en) 2003-09-22 2009-03-10 Cvrx, Inc. Baroreceptor activation for epilepsy control
US20050143378A1 (en) 2003-12-29 2005-06-30 Yun Anthony J. Treatment of conditions through pharmacological modulation of the autonomic nervous system
US20050153885A1 (en) 2003-10-08 2005-07-14 Yun Anthony J. Treatment of conditions through modulation of the autonomic nervous system
US7645296B2 (en) 2003-10-16 2010-01-12 Minvasys Catheter system for protected angioplasty and stenting at a carotid bifurcation
US7207989B2 (en) 2003-10-27 2007-04-24 Biosense Webster, Inc. Method for ablating with needle electrode
US7998104B2 (en) 2003-11-21 2011-08-16 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
CN100534392C (en) 2003-11-21 2009-09-02 戴维·W·常 Method and apparatus for treating a carotid artery
CA2552198A1 (en) 2003-12-31 2005-07-21 Biosense Webster, Inc. Circumferential ablation device assembly with an expandable member
WO2006007048A2 (en) 2004-05-04 2006-01-19 The Cleveland Clinic Foundation Methods of treating medical conditions by neuromodulation of the sympathetic nervous system
US7288088B2 (en) 2004-05-10 2007-10-30 Boston Scientific Scimed, Inc. Clamp based low temperature lesion formation apparatus, systems and methods
US7374553B2 (en) 2004-06-24 2008-05-20 Cryocor, Inc. System for bi-directionally controlling the cryo-tip of a cryoablation catheter
US20060135962A1 (en) 2004-09-09 2006-06-22 Kick George F Expandable trans-septal sheath
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US20060069385A1 (en) 2004-09-28 2006-03-30 Scimed Life Systems, Inc. Methods and apparatus for tissue cryotherapy
WO2006055826A2 (en) 2004-11-18 2006-05-26 Chang David W Endoluminal delivery of anesthesia
WO2006060779A2 (en) 2004-12-03 2006-06-08 Case Western Reserve University Novel methods, compositions and devices for inducing neovascularization
US8007440B2 (en) 2005-02-08 2011-08-30 Volcano Corporation Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions
US7680534B2 (en) 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US20060224110A1 (en) 2005-03-17 2006-10-05 Scott Michael J Methods for minimally invasive vascular access
WO2006105121A2 (en) 2005-03-28 2006-10-05 Minnow Medical, Llc Intraluminal electrical tissue characterization and tuned rf energy for selective treatment of atheroma and other target tissues
US7561923B2 (en) 2005-05-09 2009-07-14 Cardiac Pacemakers, Inc. Method and apparatus for controlling autonomic balance using neural stimulation
US7734348B2 (en) 2005-05-10 2010-06-08 Cardiac Pacemakers, Inc. System with left/right pulmonary artery electrodes
US7850683B2 (en) 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
KR20070009306A (en) 2005-07-15 2007-01-18 삼성에스디아이 주식회사 White organic light-emitting devices
US7819862B2 (en) 2005-08-11 2010-10-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Method for arrhythmias treatment based on spectral mapping during sinus rhythm
US8167805B2 (en) 2005-10-20 2012-05-01 Kona Medical, Inc. Systems and methods for ultrasound applicator station keeping
US10716749B2 (en) 2005-11-03 2020-07-21 Palo Alto Investors Methods and compositions for treating a renal disease condition in a subject
US7766833B2 (en) 2005-11-23 2010-08-03 General Electric Company Ablation array having independently activated ablation elements
WO2007075593A1 (en) 2005-12-20 2007-07-05 The Cleveland Clinic Foundation Apparatus and method for modulating the baroreflex system
EP1981584B1 (en) 2006-02-03 2015-05-13 Interventional Autonomics Corporation Intravascular device for neuromodulation
EP2001383A4 (en) 2006-03-17 2011-01-19 Microcube Llc Devices and methods for creating continuous lesions
EP2018129B1 (en) 2006-05-12 2020-04-01 Vytronus, Inc. Device for ablating body tissue
US20080009916A1 (en) 2006-05-19 2008-01-10 Cvrx, Inc. Applications of heart rate variability analysis in electrotherapy affecting autonomic nervous system response
WO2007139861A2 (en) 2006-05-22 2007-12-06 The Trustees Of The University Of Pennsylvania Method and device for the recording, localization and stimulation-based mapping of epileptic seizures and brain function utilizing the intracranial and extracranial cerebral vasulature and/or central and/or peripheral nervous system
US7647101B2 (en) 2006-06-09 2010-01-12 Cardiac Pacemakers, Inc. Physical conditioning system, device and method
US20080039727A1 (en) 2006-08-08 2008-02-14 Eilaz Babaev Ablative Cardiac Catheter System
US8457734B2 (en) 2006-08-29 2013-06-04 Cardiac Pacemakers, Inc. System and method for neural stimulation
EP2063823B1 (en) 2006-09-01 2018-10-31 Carag AG Devices, system, kit and method for epicardial access
US20100262013A1 (en) 2009-04-14 2010-10-14 Smith David M Universal Multiple Aperture Medical Ultrasound Probe
US7925342B2 (en) 2006-10-06 2011-04-12 Cardiac Pacemakers, Inc. Implantable device for responsive neural stimulation therapy
US8192760B2 (en) 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US8187267B2 (en) 2007-05-23 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip and methods of making the same
DE602008002644D1 (en) 2007-06-25 2010-11-04 Terumo Corp Medical device
US20100217151A1 (en) 2007-07-11 2010-08-26 Zach Gostout Methods and Systems for Performing Submucosal Medical Procedures
US8157136B2 (en) 2007-07-16 2012-04-17 Egr Holdings, Inc. Mobile confectionary apparatus with protectible dispensing system
WO2009012473A2 (en) 2007-07-18 2009-01-22 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US8353900B2 (en) 2007-08-08 2013-01-15 Boston Scientific Scimed, Inc. Miniature circular mapping catheter
US7922663B2 (en) 2007-09-24 2011-04-12 Cardiac Pacemakers, Inc. Implantable ultrasound system for maintaining vessel patency and perfusion
US20090131798A1 (en) 2007-11-19 2009-05-21 Minar Christopher D Method and apparatus for intravascular imaging and occlusion crossing
CN101868188B (en) 2007-11-21 2013-10-16 恩多凯尔有限公司 Flexible multi-tubular cryoprobe
US8740892B2 (en) 2007-11-21 2014-06-03 Endocare, Inc. Expandable multi-tubular cryoprobe
US7949398B1 (en) 2007-12-27 2011-05-24 Pacesetter, Inc. Acquiring nerve activity from carotid body and/or sinus
US7848816B1 (en) 2007-12-27 2010-12-07 Pacesetter, Inc. Acquiring nerve activity from carotid body and/or sinus
US7901450B2 (en) 2008-03-13 2011-03-08 Pacesetter, Inc. Vascular anchoring system and method
WO2009120953A2 (en) 2008-03-27 2009-10-01 Mayo Foundation For Medical Education And Research Navigation and tissue capture systems and methods
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
WO2010019481A1 (en) * 2008-08-11 2010-02-18 Conceptx Medical, Inc. Systems and methods for treating dyspnea, including via electrical afferent signal blocking
US10842555B2 (en) 2008-08-20 2020-11-24 Prostacare Pty Ltd Catheter for treating tissue with non-thermal ablation
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
AU2009314133B2 (en) 2008-11-17 2015-12-10 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9144461B2 (en) 2008-12-03 2015-09-29 Koninklijke Philips N.V. Feedback system for integrating interventional planning and navigation
JP5789195B2 (en) 2008-12-08 2015-10-07 シリコンバレー メディカル インスツルメンツ インコーポレイテッド Catheter system for image guidance
US20100160781A1 (en) 2008-12-09 2010-06-24 University Of Washington Doppler and image guided device for negative feedback phased array hifu treatment of vascularized lesions
US20100168739A1 (en) 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8974445B2 (en) 2009-01-09 2015-03-10 Recor Medical, Inc. Methods and apparatus for treatment of cardiac valve insufficiency
US8945117B2 (en) 2009-02-11 2015-02-03 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
DE102009018291A1 (en) 2009-04-21 2010-10-28 Erbe Elektromedizin Gmbh Cryosurgical instrument
NZ619320A (en) 2009-04-22 2015-08-28 Mercator Medsystems Inc Use of guanethidine for treating hypertension by local vascular delivery
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
WO2010131219A1 (en) 2009-05-14 2010-11-18 Samson Neurosciences Ltd. Endovascular electrostimulation near a carotid bifurcation in treating cerebrovascular conditions
US9402682B2 (en) 2010-09-24 2016-08-02 Ethicon Endo-Surgery, Llc Articulation joint features for articulating surgical device
WO2012092364A2 (en) 2010-12-28 2012-07-05 G & L Consulting, Llc Method for sympathetic rebalancing of patient
WO2013149034A2 (en) 2012-03-28 2013-10-03 Cibiem, Inc. Carotid body modulation planning and assessment
EP2840993A4 (en) 2012-04-24 2016-03-30 Cibiem Inc Endovascular catheters and methods for carotid body ablation
EP2854681A4 (en) 2012-06-01 2016-02-17 Cibiem Inc Percutaneous methods and devices for carotid body ablation
US20150045675A1 (en) 2012-06-01 2015-02-12 Ary Chernomorsky Percutaneous methods and devices for carotid body ablation
US9402677B2 (en) 2012-06-01 2016-08-02 Cibiem, Inc. Methods and devices for cryogenic carotid body ablation
WO2014005155A1 (en) 2012-06-30 2014-01-03 Cibiem, Inc. Carotid body ablation via directed energy
US20140350401A1 (en) 2012-06-30 2014-11-27 Yegor D. Sinelnikov Carotid body ablation via directed energy
EP2869751A4 (en) 2012-07-04 2016-04-13 Cibiem Inc Devices and systems for carotid body ablation
US20140243809A1 (en) 2013-02-22 2014-08-28 Mark Gelfand Endovascular catheters for trans-superficial temporal artery transmural carotid body modulation
US20160000499A1 (en) 2013-03-15 2016-01-07 Cibiem, Inc. Endovascular catheters for carotid body ablation utilizing an ionic liquid stream
EP3116408B1 (en) 2014-03-12 2018-12-19 Cibiem, Inc. Ultrasound ablation catheter
US20160374710A1 (en) 2014-03-12 2016-12-29 Yegor D. Sinelnikov Carotid body ablation with a transvenous ultrasound imaging and ablation catheter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960133A (en) * 1988-11-21 1990-10-02 Brunswick Manufacturing Co., Inc. Esophageal electrode
WO1998043701A1 (en) * 1997-03-27 1998-10-08 Alfred E. Mann Foundation For Scientific Research System of implantable devices for monitoring and/or affecting body parameters
DE10151797A1 (en) * 2001-10-19 2003-05-08 Univ Halle Wittenberg Device for continuous and simultaneous monitoring of autonomous bodily processes for use in patient monitoring combines a number of stand alone monitoring systems into a single integrated device
US7155284B1 (en) * 2002-01-24 2006-12-26 Advanced Bionics Corporation Treatment of hypertension
US20060282131A1 (en) * 2005-06-13 2006-12-14 Cardiac Pacemakers, Inc. System for neural control of respiration
US20070150006A1 (en) * 2005-12-28 2007-06-28 Imad Libbus Neural stimulator to treat sleep disordered breathing
US20070299476A1 (en) * 2006-06-23 2007-12-27 Euljoon Park Sympathetic afferent activation for adjusting autonomic tone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109015A1 (en) * 2014-01-17 2015-07-23 Cardiac Pacemakers, Inc. Systems and methods for selective stimulation of nerve fibers in carotid sinus
US10201709B2 (en) 2014-01-17 2019-02-12 Cardiac Pacemakers, Inc. Depletion block to block nerve communication
US10413731B2 (en) 2014-01-17 2019-09-17 Cardiac Pacemakers, Inc. Selective nerve stimulation using presynaptic terminal depletion block
US10639477B2 (en) 2014-01-17 2020-05-05 Cardiac Pacemakers, Inc. Systems and methods for delivering pulmonary therapy

Also Published As

Publication number Publication date
US20180236227A1 (en) 2018-08-23
US9795784B2 (en) 2017-10-24
US9433784B2 (en) 2016-09-06
US9089700B2 (en) 2015-07-28
US20100070004A1 (en) 2010-03-18
US20160375241A1 (en) 2016-12-29
US20150328452A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
US9795784B2 (en) Systems and methods for treating dyspnea, including via electrical afferent signal blocking
JP6759239B2 (en) Headache treatment with electrical stimulation
CN110062643B (en) High frequency neural stimulation for pelvic symptom control
US9446235B2 (en) Low frequency electrical stimulation therapy for pelvic floor disorders
US7840280B2 (en) Cranial nerve stimulation to treat a vocal cord disorder
US8660647B2 (en) Stimulating cranial nerve to treat pulmonary disorder
US8755892B2 (en) Systems for stimulating neural targets
ES2566730T3 (en) Synchronization of vagus nerve stimulation with a patient&#39;s cardiac cycle
JP2023055798A (en) Accessing spinal network to enable respiratory function
US20110230702A1 (en) Device, System, And Method For Treating Sleep Apnea
EP2961474B1 (en) Cosmetic method for altering body mass composition using galvanic vestibular stimulation
US11911617B2 (en) Methods for treatment of disease using galvanic vestibular stimulation
AU2011353038A1 (en) Neuro cardiac therapy using electrical impedance
US10569084B2 (en) Method and system for altering body mass composition using galvanic vestibular stimulation
JP2019506960A (en) Neural modulation device
CA3069251A1 (en) Method and system for altering body mass composition using galvanic vestibular stimulation
Class et al. Patent application title: METHOD AND SYSTEM FOR ALTERING BODY MASS COMPOSITION USING GALVANIC VESTIBULAR STIMULATION Inventors: Paul Duncan Mcgeoch (La Jolla, CA, US) Vilayanur S. Ramachandran (La Jolla, CA, US)
Taira et al. Diaphragm Pacing with a Spinal Cord Stimulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09807113

Country of ref document: EP

Kind code of ref document: A1