WO2010024849A1 - Prosthesis with moveable fenestration - Google Patents

Prosthesis with moveable fenestration Download PDF

Info

Publication number
WO2010024849A1
WO2010024849A1 PCT/US2009/004570 US2009004570W WO2010024849A1 WO 2010024849 A1 WO2010024849 A1 WO 2010024849A1 US 2009004570 W US2009004570 W US 2009004570W WO 2010024849 A1 WO2010024849 A1 WO 2010024849A1
Authority
WO
WIPO (PCT)
Prior art keywords
biocompatible material
fenestration
yarns
graft
prosthesis according
Prior art date
Application number
PCT/US2009/004570
Other languages
French (fr)
Inventor
Darin G. Schaeffer
Shyam Sv Kuppurathanam
Original Assignee
Cook Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cook Incorporated filed Critical Cook Incorporated
Priority to EP09789101.4A priority Critical patent/EP2331011B1/en
Publication of WO2010024849A1 publication Critical patent/WO2010024849A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/02Tubular fabrics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/061Blood vessels provided with means for allowing access to secondary lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • A61F2250/0017Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight differing in yarn density
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/06Vascular grafts; stents

Definitions

  • This invention relates to endoluminal medical devices for implantation within the human or animal body for treatment of endovascular disease.
  • the functional vessels of human and animal bodies such as blood vessels and ducts, occasionally weaken or even rupture.
  • the aortic wall can weaken, resulting in an aneurysm.
  • Stent grafts for endoluminal deployment are generally formed from a tube of a biocompatible material in combination with one or more stents to maintain a lumen. Stent grafts effectively exclude the defect by sealing both proximally and distally the defect, and shunting blood through its length. In many cases, however, the damaged or defected portion of the vasculature may include a branch vessel.
  • the abdominal aorta there are at least three major branch vessels, including the celiac, mesenteric, and renal arteries, leading to various other body organs.
  • the damaged portion of the vessel includes one or more of these branch vessels, some accommodation must be made to ensure that the prosthesis does not block or hinder blood flow through the branch vessel.
  • Attempts to maintain blood flow to branch vessels have included providing one or more fenestrations or holes in the side wall of the prosthesis.
  • a balloon expandable bare stent is deployed into the renal arteries through the fenestration in the main graft to assure alignment is maintained while the stent-graft is being delivered (e.g., manipulated) and continues to maintain patency post-procedure.
  • the arterial tree is constantly under pulsatile motion due to the flow of blood through the arteries.
  • the deployed bare metal secondary stent is often under severe and complicated loading conditions which must be borne entirely through the narrow interface presented by fenestrated prosthesis and the bare secondary stent.
  • a prosthesis including a tubular graft body provided with a proximal end, a distal end, at least one fenestration disposed in a sidewall of the tubular body between the proximal end and the distal end, a first biocompatible graft material, and a second biocompatible graft material adjacent the perimeter of the at least one fenestration, wherein the second biocompatible material is of greater flexibility than the first biocompatible material such that movement of the fenestration relative to the surface plane of the tubular graft body is permitted.
  • the second biocompatible material may be the same material used for the graft or a different material so long as the graft material surrounding the fenestration has sufficient give or flexibility to permit a branch vessel device inserted through the fenestration to move relative to the fenestration in response to biological or other forces.
  • the second biocompatible material may comprise a graft material of a heavier denier than the graft material of the main body to provide more durability to the flexible fenestration.
  • the graft material surrounding the fenestration may be a flexible, tapered sleeve integrally formed into the graft material.
  • Figure 1 depicts a prosthesis with a protrusion of graft material.
  • Figure 2 depicts a prosthesis having a flexible fenestration.
  • Figure 3 shows a perspective view of a prosthesis with an integral flexible fenestration.
  • Figure 4 shows a perspective view of a prosthesis having a flexible fenestration.
  • Figure 5 shows a cross-sectional view of a prosthesis where a secondary branch stent is deployed into a branch vessel.
  • Figure 6A shows a prosthesis with a flexible fenestration sleeve and a second fenestration in the wall of the prosthesis.
  • Figure 6B shows the prosthesis of Figure 6A where secondary branch stents are deployed into branch vessels.
  • distal and distal are intended to refer to a location or direction that is, or a portion of a device that when implanted is further downstream in the direction of or with respect to blood flow.
  • prosthesis means any replacement for a body part or function of that body part. It can also mean a device that enhances or adds functionality to a physiological system.
  • prosthesis is therefore intended to include all forms of implantable endoluminal devices, including devices intended to be implanted endoluminally in a patient.
  • tubular refers to the general shape of an endoluminal device which allows the module to carry fluid along a distance or fit within a tubular structure such as an artery.
  • Tubular prosthetic devices include single and both branched and bifurcated devices.
  • Tubular as used herein is intended to include a shape with a non-cylindrical configuration.
  • endoluminal refers to or describes objects that can be placed inside a lumen or a body passageway in a human or animal body.
  • a lumen or a body passageway can be an existing lumen or a lumen created by surgical intervention.
  • the terms “lumen” or “body passageway” are intended to have a broad meaning and encompasses any duct (e.g., natural or iatrogenic) within the human body and can include a member selected from the group comprising: blood vessels, respiratory ducts, gastrointestinal ducts, and the like.
  • Endoluminal device or “endoluminal prosthesis” thus describes devices that can be placed inside one of these lumens.
  • stent means any device or structure that adds rigidity, expansion force or support to a prosthesis.
  • a stent is used to obtain and maintain the patency of the body passageway while maintaining the integrity of the passageway.
  • the stent may be used to form a seal.
  • the stent may be located on the exterior of the device, the interior of the device, or both.
  • a stent may be self-expanding, balloon-expandable or may have characteristics of both. A variety of other stent configurations are also contemplated by the use of the term "stent.”
  • fused refers to a length of a continuous thread or strand of one or more filaments or fibers, with or without twist, suitable for weaving, knitting or otherwise intertwining to form a textile fabric.
  • graft or "graft material” describes an object, device, or structure that is joined to or that is capable of being joined to a body part to enhance, repair, or replace a portion or a function of that body part.
  • a graft by itself or with the addition of other elements, such as structural components, can be an endoluminal prosthesis.
  • the graft comprises a single material, a blend of materials, a weave, a laminate, or a composite of two or more materials.
  • the graft can also comprise polymer material that may be layered onto a mandrel.
  • polymers of the present invention although added in layers onto the mandrel, after curing, result in one layer that encapsulates a stent or woven graft. This also aids in decreasing the incidence of delamination of the resulting endovascular prosthesis.
  • a stent may be attached to a graft to form a "stent graft.”
  • branch vessel refers to a vessel that branches off from a main vessel.
  • examples are the celiac and renal arteries which are branch vessels to the aorta (that is, the main vessel in this context).
  • the hypogastric artery is a branch vessel to the common iliac, which is a main vessel in this context.
  • Longitudinally refers to a direction, position or length substantially parallel with a longitudinal axis of a reference, and is the length-wise component of the helical orientation.
  • Circumferentially refers to a direction, position, or length that encircles a longitudinal axis of reference. Circumferential is not restricted to a full 360° circumferential turn nor a constant radius.
  • patient refers to any mammal, especially humans.
  • the preferred embodiments provide prostheses with moveable fenestrations comprising a wall made from graft material formed into a tube. A lumen extends longitudinally throughout the prosthesis.
  • the moveable fenestration is configured such that it permits a branch prosthesis that is inserted into and through the fenestration to move relative to the plane of the wall of the main prosthesis.
  • the moveable fenestration may be a flexible fenestrated sleeve.
  • the flexible fenestrated sleeve is tapered. Further, the flexible fenestrated sleeve may have ability to move telescopically. Once a secondary branch stent is deployed into a branch vessel through the flexible fenestrated sleeve, the flexible fenestrated sleeve works to maintain alignment of the fenestration and a branch vessel.
  • FIG. 1 illustrates a prosthesis 10 in accordance with an embodiment of the present invention.
  • the prosthesis 10 comprises a tubular graft 12 configured to be placed within a diseased vessel of a patient.
  • the prosthesis 10 is formed from a first biocompatible material 16.
  • the graft material 16 may be constructed from a biocompatible textile fabric, a polymer, biomaterial, or a composite thereof. Examples of biocompatible materials from which textile graft material can be formed include polyesters, such as polyethylene terephthalate); fluorinated polymers, such as polytetrafluoroethylene (PTFE) and fibers of expanded PTFE; and polyurethanes.
  • the graft material 16 is a woven polyester.
  • the graft material 16 is a polyethylene terephthalate (PET), such as DACRON® (DUPONT 1 Wilmington, DE) or TWI LLWEAVE MICREL® (VASCUTEK, Renfrewshire, Scotland).
  • PET polyethylene terephthalate
  • DACRON® DUPONT 1 Wilmington, DE
  • TWI LLWEAVE MICREL® VASCUTEK, Renfrewshire, Scotland.
  • the tubular graft 12 includes a sidewall 14 containing a protrusion 18 of a second biocompatible material 17.
  • the protrusion 18 is integrally formed from the body of the tubular graft 12, and extends outward radially in a bubble like formation.
  • the protrusion 18 may be created during the weaving process used to create the tubular graft 12.
  • the prosthesis 10 may comprise any kind of weave.
  • the tubular graft 12 may include, but is not limited to, weaves such as plain weaves, basket weaves, rep or rib weaves, twill weaves (e.g., straight twill, reverse twill, herringbone twill), satin weaves, and double weaves (e.g., double-width, tubular double weave, reversed double weave).
  • the weave comprises a tubular double layer weave.
  • the tubular graft 12 and the protrusion 18 may be woven in any suitable manner.
  • the fabric may be woven on a table loom, a floor loom, a jacquard loom, a counterbalance loom, a jack loom, or an upright loom.
  • the fabric is woven on a floor loom.
  • the fabric may have any configuration possible, but preferably has warp and weft yarns. In one embodiment, both the warp yarns and the weft yarns are textile yarns.
  • the sett and pick count are kept constant.
  • the sett may be between about 50 and about 300 ends per inch and the pick count may be between about 50 and about 300 picks per inch.
  • An "end” refers to an individual warp yarn, and a "pick” refers to an individual weft yarn.
  • the textile graft comprises a plain weave having 150 ends per inch and 250 picks per inch.
  • the number of warp yarns used while weaving the prosthesis 10 is increased in the region where the protrusion 18 is desired. While the additional warp yarns are weaved into the prosthesis 10, the number of weft yarns is kept constant.
  • the second biocompatible material 17 expands outwardly in the radial direction.
  • the number of warp yarns is increased until a pre-determined diameter has been reached.
  • the predetermined diameter of the protrusion 18 may range from about 2 mm to about 10 mm.
  • the number of warp yarns introduced into the weaving apparatus is decreased until the number of warp yarns is equal to the number of weft yarns used to form the remainder of the graft 12.
  • the sett and pick count are kept constant due to the increasing diameter of the graft 12 in the area of the protrusion 18. Further, the density of the protrusion 18 is kept constant by weaving the weft yarns at the same speed.
  • the density of the protrusion 18 may be altered based on the needs of the patient. For example, one may achieve a protrusion 18 of an increased density in the direction of the warp yarns by weaving the weft yarns at a slower speed and by changing the sett and pick count of the weave. This increased density provides increased structural support for the graft 12, which can benefit a patient suffering from vessels having an advanced diseased state.
  • the density of the protrusion 18 in the direction of the warp yarns may be decreased by weaving the weft yarns at a faster speed. Further, the change in density allows for increased control of the desired shape of the protrusion 18.
  • yarns having a heavier denier may be used to create the protrusion 18 in order to increase the durability of the protrusion 18.
  • the graft material 16 of the tubular graft 12 may be formed of a plurality of yarns having a denier of about 100.
  • graft material 17 composed of a plurality of yarns having a denier of about 120 may be weaved into the graft to form the protrusion 18 during the process used to produce the prosthesis.
  • the protrusion 18 may also be tapered in order to generate a cone effect at the position of the fenestration.
  • Figure 2 illustrates one embodiment of a tubular graft 12 containing a moveable fenestration 22.
  • the moveable fenestration 22 is disposed through the protrusion 18 and the sidewall 14 such that the fenestration 22 is in fluid communication with a lumen 20 of the graft 12.
  • the fenestration 22 is created through the protrusion 18 by applying heat to the center of the protrusion 18 at a temperature of at least 260 0 C. The application of heat causes the fibers of the graft material 16 to melt together, which helps prevent fraying.
  • the fenestration 22 may be created by cutting the protrusion 18 may be cut in the center in order to form an opening.
  • an adhesive may be applied to edges of the fenestration 22 to prevent the fibers from fraying.
  • the diameter of the fenestration 22 may be modified depending on the size of the patient's vessels.
  • the diameter of the fenestration may range from about 2 mm to about 10 mm.
  • the additional graft material surrounding the moveable fenestration 22 has a diameter that is at least 10% greater than the diameter of the graft.
  • a Nitinol ring 24 may be placed about the moveable fenestration 22 in order to prevent it from closing.
  • the Nitinol ring 24 may be secured about the fenestration 22 by suture material.
  • the moveable fenestration 22 may be prevented from closing by placing a seam comprised of biocompatible materials, such as suture material, about the circumference of the fenestration 22. Any excess material suture material present after creating the seam may be removed by cutting the material within the circumference of the moveable fenestration 22.
  • the moveable fenestration 22 may be configured to move telescopically within a certain range.
  • the telescopic range 26 spans from the edge of the fenestration 22 to the sidewall 14 of the tubular graft 12.
  • the telescopic range 28 allows the moveable fenestration 22 to be pushed flush with the diameter of the tubular graft 11. Once the moveable fenestration 22 is flush with the wall 14 of the tubular graft 12, a wrinkle is formed by the additional graft material remaining from the protrusion 18 surrounding the fenestration 22. This wrinkle provides for the relative movement of the fenestration 22 and the tubular graft 12 without transmitting significant load to the fenestration 22.
  • the protrusion 18 or area surrounding the fenestration may be comprised of biocompatible materials that are different than the biocompatible material used to form the tubular graft 12.
  • suitable biocompatible materials include: polyurethane, silicone infused polyurethane, such as Thoralon® (Thoratec, Pleasanton, California), or Biospan®, Bionate®, Elasthane®, Pursil® And Carbosil® (Polymer Technology Group, Berkeley, California).
  • FIGs 3 and 4 illustrate embodiments of a prosthesis for deployment in the abdominal aorta.
  • the prosthesis 10 comprises a tubular stent graft 30 with a wall 34 and a lumen 32 disposed longitudinally therein.
  • the tubular stent graft 30 includes a fenestration 22 disposed through additional graft material added during the weaving process to create a flexible fenestration 22.
  • the fenestration 22 is in communication with the lumen 32 of the tubular stent graft 30.
  • the prosthesis 10 also includes a plurality of expandable stents 36 affixed to the wall 34 of the tubular stent graft 30.
  • the expandable stents 36 maintain the patency of the prosthesis and ensure adequate sealing against the surrounding vascular tissue.
  • the Z-stent design is preferred for straight sections of the aorta; it provides both significant radial force as well as some longitudinal support. In some instances, it may be desirable to affix some of the stents to the internal surface of the prosthesis. Stent amplitude, spacing and stagger are preferably optimized for each prosthesis design.
  • the expandable stents 36 include struts 38 that are spaced apart from each other. The strut spacing is measured from peak-to-peak. The peaks 40 of the struts 38 may be staggered for minimal contact with each other.
  • the stent may be formed of Nitinol, stainless steel, tantalum, titanium, gold, platinum, inconel, iridium, silver, tungsten, cobalt, chromium, or another biocompatible metal, or alloys of any of these.
  • Examples of other materials that may be used to form stents include carbon or carbon fiber; cellulose acetate, cellulose nitrate, silicone, polyethylene teraphthalate, polyurethane, polyamide, polyester, polyorthoester, polyanhydride, polyether sulfone, polycarbonate, polypropylene, high molecular weight polyethylene, polytetrafluoroethylene, or another biocompatible polymeric material, or mixtures or copolymers of these; polylactic acid, polyglycolic acid or copolymers thereof; a polyanhydride, polycaprolactone, polyhydroxybutyrate valerate or another biodegradable polymer, or mixtures or copolymers of these; a protein, an extracellular matrix component, collagen, fibrin, or another biologic agent; or a suitable mixture of any of these.
  • the stent is a Nitinol or stainless steel stent. Any of the stents mentioned herein may have barbs to help decrease prosthesis migration.
  • the moveable fenestration 22 is flush with the diameter of the tubular stent graft 30.
  • Radio opaque markers 42 may be placed around the fenestration 22 in order to assist with proper alignment of the tubular stent graft 30 when deployed within the patient.
  • the radio opaque markers 42 may be sewn to the wall 34 of the tubular stent graft 30. Radio opaque materials such as gold, platinum, tungsten, or any other high density material may be used.
  • an opening is cut into the wall 34 of the tubular stent graft 30, and a flexible tube 44 is affixed about the opening.
  • the tube 44 also includes a first end 46 and a second end 48, and it may also be tapered.
  • the tube 44 is affixed to the wall 34 of the tubular graft 30 by suturing the proximal end of the tube 44 circumferentially about the opening.
  • the second end 48 of the tube 44 is in communication with the opening.
  • a Nitinol ring 26 may be placed about the second end 48 of the solid tube 44.
  • the second end 48 of the solid tube 44 may also be maintained in an open configuration by means other suitable means known by a person of the ordinary skill in the art.
  • FIG. 5 depicts an exemplary prosthesis deployed in a patient.
  • the prosthesis 10 comprising a tubular graft 12 is deployed in the main vessel 50 of the patient.
  • the tubular graft 12 includes a moveable fenestration 22 in communication with the lumen 20.
  • a secondary branch prosthesis 54 such as a stent, is deployed into a branch vessel 52 to maintain the alignment of the flexible fenestration 22 and the branch vessel 52.
  • the secondary branch prosthesis 54 is formed from biocompatible material is comprised of a plurality of struts 58 that extend circumferentially about a longitudinal axis and form a lumen 56 extending longitudinally within the secondary branch prosthesis 54. Examples of acceptable biocompatible metals are discussed above.
  • a prosthesis 110 includes a tubular graft 112 comprising a first fenestration 122 and a second fenestration 123 disposed through the wall 114 of the tubular graft 112.
  • the tubular graft 112 also includes a lumen 120.
  • This embodiment is suitable for implantation in an abdominal aortic aneurysm where two branch vessels may be occluded during the deployment of the tubular graft.
  • the second fenestration 123 may be a fixed fenestration or it may be disposed through a protrusion formed from the weaving of additional graft material.
  • the second fenestration 123 is in communication with the lumen 120 of the tubular graft 112.
  • Radio opaque markers (not shown) may be placed about the flexible fenestrated sleeve and the second fenestration 123 in order to assist the physician with placement of the tubular graft 112.
  • the second fenestration 123 may be created in the tubular graft 112 relative to the location of the first fenestration 122 on the tubular graft 112.
  • patients suffering from abdominal aortic aneurysms may have branch vessels that are not aligned.
  • the second fenestration 123 may be formed after the first fenestration 122 is created from a protrusion formed of additional graft material.
  • the length of the tubular graft 112 may also be altered relative to the flexible fenestration 122 in order to configure the tubular graft 112 with vasculature of the patient.
  • a tubular graft 112 of the example shown in Figure 6A is deployed in the main vessel 50 of the patient to occlude an aneurysm.
  • the flexible fenestration 122 is flush with the diameter of the wall 114 of the tubular graft 112 such that a wrinkle is created.
  • Two secondary branch stents 54 are deployed in the branch vessels.
  • the secondary branch prostheses 54 help maintain alignment of the tubular graft 112 to provide for proper blood flow to the branch vessels 52, 62.
  • the secondary branch prostheses 54 are received through the first fenestration 122 and the second fenestration 123, respectively.
  • the first fenestration 122 may not be aligned with the branch vessel 52.
  • the wrinkle of graft material of the first fenestration 122 allows for some movement of the first fenestration 122 relative to the surface plane of the tubular graft 112 without transmitting direct force to the secondary branch stent 54, which helps to provide alignment between the first fenestration 122 and the branch vessel 52.

Abstract

A prosthesis with a moveable fenestration includes a tubular graft body having a proximal end, a distal end, at least one fenestration disposed in a sidewall of the tubular body between the proximal end and the distal end, a first biocompatible graft material, and a second biocompatible graft material adjacent the perimeter of the at least one fenestration, wherein the second biocompatible material is of greater flexibility than the first biocompatible material such that movement of the fenestration relative to the surface plane of the tubular graft body is permitted.

Description

PROSTHESIS WITH MOVEABLE FENESTRATION
Technical Field This invention relates to endoluminal medical devices for implantation within the human or animal body for treatment of endovascular disease. Background Art
The functional vessels of human and animal bodies, such as blood vessels and ducts, occasionally weaken or even rupture. For example, the aortic wall can weaken, resulting in an aneurysm.
One surgical intervention for weakened, aneurismal, or ruptured vessels involves the use of an endoluminal prosthesis to provide some or all of the functionality of the original, healthy vessel and/or preserve any remaining vascular integrity by replacing a length of the existing vessel wall that spans the site of vessel failure. Stent grafts for endoluminal deployment are generally formed from a tube of a biocompatible material in combination with one or more stents to maintain a lumen. Stent grafts effectively exclude the defect by sealing both proximally and distally the defect, and shunting blood through its length. In many cases, however, the damaged or defected portion of the vasculature may include a branch vessel. For example, in the case of the abdominal aorta, there are at least three major branch vessels, including the celiac, mesenteric, and renal arteries, leading to various other body organs. Thus, when the damaged portion of the vessel includes one or more of these branch vessels, some accommodation must be made to ensure that the prosthesis does not block or hinder blood flow through the branch vessel.
Attempts to maintain blood flow to branch vessels have included providing one or more fenestrations or holes in the side wall of the prosthesis. Conventionally, a balloon expandable bare stent is deployed into the renal arteries through the fenestration in the main graft to assure alignment is maintained while the stent-graft is being delivered (e.g., manipulated) and continues to maintain patency post-procedure. The arterial tree is constantly under pulsatile motion due to the flow of blood through the arteries. Thus, the deployed bare metal secondary stent is often under severe and complicated loading conditions which must be borne entirely through the narrow interface presented by fenestrated prosthesis and the bare secondary stent. These conditions may cause deterioration of the secondary stent, and may put the patient at risk of injury. Furthermore, since conventional fenestrated grafts have a fixed interface, there is little room for error when deploying the prosthesis for treatment of the aneurysm. The deployment of the prosthesis has to be extremely precise to assure that the fenestrations are aligned with the branch vessels. If these branch vessels are blocked by the prosthesis, the original blood circulation is impeded, and the patient can suffer. The blockage of any branch vessel is usually associated with unpleasant or even life-threatening symptoms. Disclosure of the Invention
The present invention seeks to provide an improved implantable medical device such as a prosthesis. According to an aspect of the present invention, there is provided a prosthesis including a tubular graft body provided with a proximal end, a distal end, at least one fenestration disposed in a sidewall of the tubular body between the proximal end and the distal end, a first biocompatible graft material, and a second biocompatible graft material adjacent the perimeter of the at least one fenestration, wherein the second biocompatible material is of greater flexibility than the first biocompatible material such that movement of the fenestration relative to the surface plane of the tubular graft body is permitted.
The second biocompatible material may be the same material used for the graft or a different material so long as the graft material surrounding the fenestration has sufficient give or flexibility to permit a branch vessel device inserted through the fenestration to move relative to the fenestration in response to biological or other forces. For example, the second biocompatible material may comprise a graft material of a heavier denier than the graft material of the main body to provide more durability to the flexible fenestration. In one example, the graft material surrounding the fenestration may be a flexible, tapered sleeve integrally formed into the graft material. Brief Description of the Drawings
Embodiments of the present invention are described below, by way of example only, with reference to the accompanying drawings, in which:
Figure 1 depicts a prosthesis with a protrusion of graft material. Figure 2 depicts a prosthesis having a flexible fenestration.
Figure 3 shows a perspective view of a prosthesis with an integral flexible fenestration.
Figure 4 shows a perspective view of a prosthesis having a flexible fenestration. Figure 5 shows a cross-sectional view of a prosthesis where a secondary branch stent is deployed into a branch vessel.
Figure 6A shows a prosthesis with a flexible fenestration sleeve and a second fenestration in the wall of the prosthesis.
Figure 6B shows the prosthesis of Figure 6A where secondary branch stents are deployed into branch vessels. Description of the Preferred Embodiments
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. The terms "distal" and "distally" are intended to refer to a location or direction that is, or a portion of a device that when implanted is further downstream in the direction of or with respect to blood flow. The terms "proximal" and "proximally" are intended to refer to a location or direction that is, or a portion of a device that when implanted is further upstream in the direction of or with respect to blood flow.
The term "prosthesis" means any replacement for a body part or function of that body part. It can also mean a device that enhances or adds functionality to a physiological system. The term prosthesis is therefore intended to include all forms of implantable endoluminal devices, including devices intended to be implanted endoluminally in a patient.
The term "tubular" refers to the general shape of an endoluminal device which allows the module to carry fluid along a distance or fit within a tubular structure such as an artery. Tubular prosthetic devices include single and both branched and bifurcated devices. Tubular as used herein is intended to include a shape with a non-cylindrical configuration.
The term "endoluminal" refers to or describes objects that can be placed inside a lumen or a body passageway in a human or animal body. A lumen or a body passageway can be an existing lumen or a lumen created by surgical intervention. As used in this specification, the terms "lumen" or "body passageway" are intended to have a broad meaning and encompasses any duct (e.g., natural or iatrogenic) within the human body and can include a member selected from the group comprising: blood vessels, respiratory ducts, gastrointestinal ducts, and the like. "Endoluminal device" or "endoluminal prosthesis" thus describes devices that can be placed inside one of these lumens. The term "stent" means any device or structure that adds rigidity, expansion force or support to a prosthesis. A stent is used to obtain and maintain the patency of the body passageway while maintaining the integrity of the passageway. Also, the stent may be used to form a seal. The stent may be located on the exterior of the device, the interior of the device, or both. A stent may be self-expanding, balloon-expandable or may have characteristics of both. A variety of other stent configurations are also contemplated by the use of the term "stent."
The term "yarn" refers to a length of a continuous thread or strand of one or more filaments or fibers, with or without twist, suitable for weaving, knitting or otherwise intertwining to form a textile fabric.
The term "graft" or "graft material" describes an object, device, or structure that is joined to or that is capable of being joined to a body part to enhance, repair, or replace a portion or a function of that body part. A graft by itself or with the addition of other elements, such as structural components, can be an endoluminal prosthesis. The graft comprises a single material, a blend of materials, a weave, a laminate, or a composite of two or more materials. The graft can also comprise polymer material that may be layered onto a mandrel. Preferably, polymers of the present invention, although added in layers onto the mandrel, after curing, result in one layer that encapsulates a stent or woven graft. This also aids in decreasing the incidence of delamination of the resulting endovascular prosthesis. A stent may be attached to a graft to form a "stent graft."
The term "branch vessel" refers to a vessel that branches off from a main vessel. Examples are the celiac and renal arteries which are branch vessels to the aorta (that is, the main vessel in this context). As another example, the hypogastric artery is a branch vessel to the common iliac, which is a main vessel in this context. Thus, it should be seen that "branch vessel" and "main vessel" are relative terms.
"Longitudinally" refers to a direction, position or length substantially parallel with a longitudinal axis of a reference, and is the length-wise component of the helical orientation.
"Circumferentially" refers to a direction, position, or length that encircles a longitudinal axis of reference. Circumferential is not restricted to a full 360° circumferential turn nor a constant radius. The terms "patient," "subject," and "recipient" as used in this application refer to any mammal, especially humans.
The preferred embodiments provide prostheses with moveable fenestrations comprising a wall made from graft material formed into a tube. A lumen extends longitudinally throughout the prosthesis. The moveable fenestration is configured such that it permits a branch prosthesis that is inserted into and through the fenestration to move relative to the plane of the wall of the main prosthesis. The moveable fenestration may be a flexible fenestrated sleeve.
In some embodiments, the flexible fenestrated sleeve is tapered. Further, the flexible fenestrated sleeve may have ability to move telescopically. Once a secondary branch stent is deployed into a branch vessel through the flexible fenestrated sleeve, the flexible fenestrated sleeve works to maintain alignment of the fenestration and a branch vessel.
Figure 1 illustrates a prosthesis 10 in accordance with an embodiment of the present invention. The prosthesis 10 comprises a tubular graft 12 configured to be placed within a diseased vessel of a patient. The prosthesis 10 is formed from a first biocompatible material 16. The graft material 16 may be constructed from a biocompatible textile fabric, a polymer, biomaterial, or a composite thereof. Examples of biocompatible materials from which textile graft material can be formed include polyesters, such as polyethylene terephthalate); fluorinated polymers, such as polytetrafluoroethylene (PTFE) and fibers of expanded PTFE; and polyurethanes. Preferably, the graft material 16 is a woven polyester. More preferably, the graft material 16 is a polyethylene terephthalate (PET), such as DACRON® (DUPONT1 Wilmington, DE) or TWI LLWEAVE MICREL® (VASCUTEK, Renfrewshire, Scotland).
In this embodiment, the tubular graft 12 includes a sidewall 14 containing a protrusion 18 of a second biocompatible material 17. The protrusion 18 is integrally formed from the body of the tubular graft 12, and extends outward radially in a bubble like formation. The protrusion 18 may be created during the weaving process used to create the tubular graft 12. The prosthesis 10 may comprise any kind of weave. For example, the tubular graft 12 may include, but is not limited to, weaves such as plain weaves, basket weaves, rep or rib weaves, twill weaves (e.g., straight twill, reverse twill, herringbone twill), satin weaves, and double weaves (e.g., double-width, tubular double weave, reversed double weave). Desirably, the weave comprises a tubular double layer weave. The tubular graft 12 and the protrusion 18 may be woven in any suitable manner. For example, the fabric may be woven on a table loom, a floor loom, a jacquard loom, a counterbalance loom, a jack loom, or an upright loom. Desirably, the fabric is woven on a floor loom. The fabric may have any configuration possible, but preferably has warp and weft yarns. In one embodiment, both the warp yarns and the weft yarns are textile yarns.
During the weaving process to create the graft, the sett and pick count are kept constant. The sett may be between about 50 and about 300 ends per inch and the pick count may be between about 50 and about 300 picks per inch. An "end" refers to an individual warp yarn, and a "pick" refers to an individual weft yarn. In one embodiment, the textile graft comprises a plain weave having 150 ends per inch and 250 picks per inch. In order to create the protrusion 18, the number of warp yarns used while weaving the prosthesis 10 is increased in the region where the protrusion 18 is desired. While the additional warp yarns are weaved into the prosthesis 10, the number of weft yarns is kept constant. By increasing the number of warp yarns while holding the number of weft yarns constant, the second biocompatible material 17 expands outwardly in the radial direction. The number of warp yarns is increased until a pre-determined diameter has been reached. The predetermined diameter of the protrusion 18 may range from about 2 mm to about 10 mm. Once the desired diameter for the protrusion 18 is reached, the number of warp yarns introduced into the weaving apparatus is decreased until the number of warp yarns is equal to the number of weft yarns used to form the remainder of the graft 12. During this weaving process, the sett and pick count are kept constant due to the increasing diameter of the graft 12 in the area of the protrusion 18. Further, the density of the protrusion 18 is kept constant by weaving the weft yarns at the same speed.
In another embodiment, the density of the protrusion 18 may be altered based on the needs of the patient. For example, one may achieve a protrusion 18 of an increased density in the direction of the warp yarns by weaving the weft yarns at a slower speed and by changing the sett and pick count of the weave. This increased density provides increased structural support for the graft 12, which can benefit a patient suffering from vessels having an advanced diseased state. Alternative, the density of the protrusion 18 in the direction of the warp yarns may be decreased by weaving the weft yarns at a faster speed. Further, the change in density allows for increased control of the desired shape of the protrusion 18.
In other embodiments, yarns having a heavier denier may be used to create the protrusion 18 in order to increase the durability of the protrusion 18. For example, the graft material 16 of the tubular graft 12 may be formed of a plurality of yarns having a denier of about 100. In order to provide added strength and durability for the flexible sleeve, graft material 17 composed of a plurality of yarns having a denier of about 120 may be weaved into the graft to form the protrusion 18 during the process used to produce the prosthesis. The protrusion 18 may also be tapered in order to generate a cone effect at the position of the fenestration. Figure 2 illustrates one embodiment of a tubular graft 12 containing a moveable fenestration 22. The moveable fenestration 22 is disposed through the protrusion 18 and the sidewall 14 such that the fenestration 22 is in fluid communication with a lumen 20 of the graft 12. In some embodiments, the fenestration 22 is created through the protrusion 18 by applying heat to the center of the protrusion 18 at a temperature of at least 260 0C. The application of heat causes the fibers of the graft material 16 to melt together, which helps prevent fraying. Alternatively, the fenestration 22 may be created by cutting the protrusion 18 may be cut in the center in order to form an opening. In this embodiment, an adhesive may be applied to edges of the fenestration 22 to prevent the fibers from fraying. The diameter of the fenestration 22 may be modified depending on the size of the patient's vessels. The diameter of the fenestration may range from about 2 mm to about 10 mm. Preferably, the additional graft material surrounding the moveable fenestration 22 has a diameter that is at least 10% greater than the diameter of the graft.
As shown in Figure 2, a Nitinol ring 24 may be placed about the moveable fenestration 22 in order to prevent it from closing. The Nitinol ring 24 may be secured about the fenestration 22 by suture material. In other embodiments, the moveable fenestration 22 may be prevented from closing by placing a seam comprised of biocompatible materials, such as suture material, about the circumference of the fenestration 22. Any excess material suture material present after creating the seam may be removed by cutting the material within the circumference of the moveable fenestration 22.
The moveable fenestration 22 may be configured to move telescopically within a certain range. The telescopic range 26 spans from the edge of the fenestration 22 to the sidewall 14 of the tubular graft 12. The telescopic range 28 allows the moveable fenestration 22 to be pushed flush with the diameter of the tubular graft 11. Once the moveable fenestration 22 is flush with the wall 14 of the tubular graft 12, a wrinkle is formed by the additional graft material remaining from the protrusion 18 surrounding the fenestration 22. This wrinkle provides for the relative movement of the fenestration 22 and the tubular graft 12 without transmitting significant load to the fenestration 22. This movement reduces the amount of stress applied to a secondary branch stent when it is deployed into a branch vessel. In some embodiments, the protrusion 18 or area surrounding the fenestration may be comprised of biocompatible materials that are different than the biocompatible material used to form the tubular graft 12. Examples of suitable biocompatible materials include: polyurethane, silicone infused polyurethane, such as Thoralon® (Thoratec, Pleasanton, California), or Biospan®, Bionate®, Elasthane®, Pursil® And Carbosil® (Polymer Technology Group, Berkeley, California).
Figures 3 and 4 illustrate embodiments of a prosthesis for deployment in the abdominal aorta. As seen in Figure 3, the prosthesis 10 comprises a tubular stent graft 30 with a wall 34 and a lumen 32 disposed longitudinally therein. The tubular stent graft 30 includes a fenestration 22 disposed through additional graft material added during the weaving process to create a flexible fenestration 22. The fenestration 22 is in communication with the lumen 32 of the tubular stent graft 30. The prosthesis 10 also includes a plurality of expandable stents 36 affixed to the wall 34 of the tubular stent graft 30. The expandable stents 36 maintain the patency of the prosthesis and ensure adequate sealing against the surrounding vascular tissue. The Z-stent design is preferred for straight sections of the aorta; it provides both significant radial force as well as some longitudinal support. In some instances, it may be desirable to affix some of the stents to the internal surface of the prosthesis. Stent amplitude, spacing and stagger are preferably optimized for each prosthesis design. The expandable stents 36 include struts 38 that are spaced apart from each other. The strut spacing is measured from peak-to-peak. The peaks 40 of the struts 38 may be staggered for minimal contact with each other. The stent may be formed of Nitinol, stainless steel, tantalum, titanium, gold, platinum, inconel, iridium, silver, tungsten, cobalt, chromium, or another biocompatible metal, or alloys of any of these. Examples of other materials that may be used to form stents include carbon or carbon fiber; cellulose acetate, cellulose nitrate, silicone, polyethylene teraphthalate, polyurethane, polyamide, polyester, polyorthoester, polyanhydride, polyether sulfone, polycarbonate, polypropylene, high molecular weight polyethylene, polytetrafluoroethylene, or another biocompatible polymeric material, or mixtures or copolymers of these; polylactic acid, polyglycolic acid or copolymers thereof; a polyanhydride, polycaprolactone, polyhydroxybutyrate valerate or another biodegradable polymer, or mixtures or copolymers of these; a protein, an extracellular matrix component, collagen, fibrin, or another biologic agent; or a suitable mixture of any of these. Preferably, the stent is a Nitinol or stainless steel stent. Any of the stents mentioned herein may have barbs to help decrease prosthesis migration.
As illustrated in Figure 3, the moveable fenestration 22 is flush with the diameter of the tubular stent graft 30. Radio opaque markers 42 may be placed around the fenestration 22 in order to assist with proper alignment of the tubular stent graft 30 when deployed within the patient. The radio opaque markers 42 may be sewn to the wall 34 of the tubular stent graft 30. Radio opaque materials such as gold, platinum, tungsten, or any other high density material may be used. In another embodiment, depicted in Figure 4, an opening is cut into the wall 34 of the tubular stent graft 30, and a flexible tube 44 is affixed about the opening. The tube 44 also includes a first end 46 and a second end 48, and it may also be tapered. The tube 44 is affixed to the wall 34 of the tubular graft 30 by suturing the proximal end of the tube 44 circumferentially about the opening. The second end 48 of the tube 44 is in communication with the opening. In order to keep the fenestration in an open configuration, a Nitinol ring 26 may be placed about the second end 48 of the solid tube 44. The second end 48 of the solid tube 44 may also be maintained in an open configuration by means other suitable means known by a person of the ordinary skill in the art.
Figure 5 depicts an exemplary prosthesis deployed in a patient. The prosthesis 10 comprising a tubular graft 12 is deployed in the main vessel 50 of the patient. The tubular graft 12 includes a moveable fenestration 22 in communication with the lumen 20. A secondary branch prosthesis 54, such as a stent, is deployed into a branch vessel 52 to maintain the alignment of the flexible fenestration 22 and the branch vessel 52. The secondary branch prosthesis 54 is formed from biocompatible material is comprised of a plurality of struts 58 that extend circumferentially about a longitudinal axis and form a lumen 56 extending longitudinally within the secondary branch prosthesis 54. Examples of acceptable biocompatible metals are discussed above. The fenestration 22 receives the secondary branch prosthesis 54. The graft material surrounding the fenestration 22 wrinkles when it is flush with the diameter of tubular graft 12, which allows for some movement of the fenestration 22 relative to the surface plane of the tubular graft 12 without transmitting direct force to the secondary branch prosthesis 54. Figures 6A and 6B illustrate another embodiment. As shown by Figure 6A, a prosthesis 110 includes a tubular graft 112 comprising a first fenestration 122 and a second fenestration 123 disposed through the wall 114 of the tubular graft 112. The tubular graft 112 also includes a lumen 120. This embodiment is suitable for implantation in an abdominal aortic aneurysm where two branch vessels may be occluded during the deployment of the tubular graft. The second fenestration 123 may be a fixed fenestration or it may be disposed through a protrusion formed from the weaving of additional graft material. The second fenestration 123 is in communication with the lumen 120 of the tubular graft 112. Radio opaque markers (not shown) may be placed about the flexible fenestrated sleeve and the second fenestration 123 in order to assist the physician with placement of the tubular graft 112.
The second fenestration 123 may be created in the tubular graft 112 relative to the location of the first fenestration 122 on the tubular graft 112. For example, patients suffering from abdominal aortic aneurysms may have branch vessels that are not aligned. Thus, in order to facilitate alignment of the tubular graft 112 within the vasculature of the patient, the second fenestration 123 may be formed after the first fenestration 122 is created from a protrusion formed of additional graft material. In addition, the length of the tubular graft 112 may also be altered relative to the flexible fenestration 122 in order to configure the tubular graft 112 with vasculature of the patient.
As shown in Figure 6B, a tubular graft 112 of the example shown in Figure 6A is deployed in the main vessel 50 of the patient to occlude an aneurysm. The flexible fenestration 122 is flush with the diameter of the wall 114 of the tubular graft 112 such that a wrinkle is created. Two secondary branch stents 54 are deployed in the branch vessels. The secondary branch prostheses 54 help maintain alignment of the tubular graft 112 to provide for proper blood flow to the branch vessels 52, 62. The secondary branch prostheses 54 are received through the first fenestration 122 and the second fenestration 123, respectively.
In some instances, the first fenestration 122 may not be aligned with the branch vessel 52. In this example, the wrinkle of graft material of the first fenestration 122 allows for some movement of the first fenestration 122 relative to the surface plane of the tubular graft 112 without transmitting direct force to the secondary branch stent 54, which helps to provide alignment between the first fenestration 122 and the branch vessel 52.
Throughout this specification various indications have been given as to preferred and alternative examples and aspects of the invention. However, the foregoing detailed description is to be regarded as illustrative rather than limiting and the invention is not limited to any one of the disclosed embodiments. It should be understood that it is the appended claims, including all equivalents, that are intended to define the scope of this invention. The disclosures in United States patent application no 61/093,202, from which this application claims priority, and in the abstract accompanying this application are incorporated herein by reference.

Claims

1. An endoluminal prosthesis, including: a tubular graft body including a proximal end; a distal end; at least one fenestration disposed in a sidewall of the tubular body between the proximal end and the distal end; a first biocompatible graft material; and a second biocompatible graft material adjacent the perimeter of the at least one fenestration; wherein the second biocompatible material is of greater flexibility than the first biocompatible material such that movement of the fenestration relative to the surface plane of the tubular graft body is permitted.
2. A prosthesis according to claim 1 , wherein the second biocompatible material is in a radially telescopic relationship relative to the surface plane of the tubular graft body.
3. A prosthesis according to claim 1 or 2, wherein the second biocompatible material is provided by a woven fabric including yarns aligned in a first direction interwoven with yarns aligned in a second direction, wherein the number of yarns aligned in the first direction are increased and then decreased while the yarns in the second direction are held constant such that a protrusion is formed in the area of the tubular body comprising the fenestration.
4. A prosthesis according to claim 3, wherein the yarns aligned in the first direction include warp yarns, and the yarns aligned in the second direction include weft yarns.
5. A prosthesis according to claim 4, wherein the second biocompatible material includes between about 50 and about 300 weft yarns per inch and between about 50 and about 300 warp yarns per inch.
6. A prosthesis according to any one of claims 3 to 5, wherein the second biocompatible material is formed of yarn having a higher denier than the first biocompatible material of the main body.
7. A prosthesis according to any one of claims 3 to 6, wherein the textile yarns in the first direction comprise biocompatible polyurethane.
8. A prosthesis according to any preceding claim, wherein the density of the second biocompatible material is equal to the density of the first biocompatible material.
9. A prosthesis according to any one of claims 1 to 7, wherein density of the second biocompatible material is greater than the density of the first biocompatible material.
10. A prosthesis according to any preceding claim, wherein the second biocompatible material includes a tube provided a first end and a second end.
11. A prosthesis according to any preceding claim, wherein the second biocompatible material has a diameter that is at least 10% greater than the diameter of the tubular graft body.
12. A prosthesis according to claim 11 , wherein the second biocompatible material has a diameter of about 2 to about 10 millimeters.
13. An implantable prosthesis for treatment of a main vessel defect near one or more branch vessels, including: a graft including a first biocompatible material forming a tubular main body defining a lumen with a proximal end and a distal end; at least one fenestration disposed within a sidewall of the main body including a second biocompatible material positioned intermediate the proximal and distal ends, the second biocompatible material defined by a woven fabric comprising yarns aligned in a first direction interwoven with yarns aligned in a second direction, wherein yarns aligned in the first direction are increased and decreased while the yarns in the second direction are held constant to form a protrusion; wherein the second biocompatible material is of a greater flexibility than the first biocompatible material such that movement of the fenestration relative to the surface plane of the main graft is facilitated.
14. A prosthesis according to claim 12, wherein the at least one fenestration is capable of telescopic movement in the radial direction relative to the main tubular graft.
15. A prosthesis according to claim 12 or 13, wherein density of the second biocompatible material is equal to the density of the first biocompatible material.
16. A prosthesis according to any one of claims 12 to 15, wherein the density of the second biocompatible material is greater than the density of the first biocompatible material.
17. A prosthesis according to any one of claims 12 to 16, wherein the at least one fenestration is formed from a tube provided a first end and a second end.
18. A prosthesis according to any one of claims 12 to 17, wherein the second biocompatible material has a diameter that is at least 10% greater than the diameter of the tubular graft body.
19. A prosthesis according to any one of claims 12 to 18, wherein the second biocompatible material has a diameter of about 2 to about 10 millimeters.
20. A method of producing a graft, including the steps of: providing textile yarns to be aligned in a first direction and a second direction; weaving the textile yarns to produce the woven graft; introducing additional textile yarns in the first direction while keeping the number of textile yarns in the second direction constant; withdrawing the added textile yarns in the first direction at the same rate to create a protrusion; creating a fenestration through the protrusion.
PCT/US2009/004570 2008-08-29 2009-08-10 Prosthesis with moveable fenestration WO2010024849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09789101.4A EP2331011B1 (en) 2008-08-29 2009-08-10 Prosthesis with moveable fenestration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9320208P 2008-08-29 2008-08-29
US61/093,202 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010024849A1 true WO2010024849A1 (en) 2010-03-04

Family

ID=41165604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/004570 WO2010024849A1 (en) 2008-08-29 2009-08-10 Prosthesis with moveable fenestration

Country Status (3)

Country Link
US (1) US8915956B2 (en)
EP (1) EP2331011B1 (en)
WO (1) WO2010024849A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010202544B1 (en) * 2010-06-18 2010-08-26 Cook Incorporated Side branch stent graft
WO2010120550A1 (en) * 2009-04-17 2010-10-21 Medtronic Vascular, Inc. Mobile external coupling for branch vessel connection
US8506622B2 (en) 2009-04-17 2013-08-13 Medtronic Vascular, Inc. Mobile external coupling for branch vessel connection
WO2013167492A1 (en) * 2012-05-07 2013-11-14 Jotec Gmbh Intraluminal vascular prosthesis having in-situ fenestration
EP3132771A1 (en) * 2015-08-19 2017-02-22 Cook Medical Technologies LLC Stent graft with fenestration

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US8388679B2 (en) 2007-01-19 2013-03-05 Maquet Cardiovascular Llc Single continuous piece prosthetic tubular aortic conduit and method for manufacturing the same
US8177834B2 (en) 2007-03-12 2012-05-15 Cook Medical Technologies Llc Woven fabric with shape memory element strands
US8187316B2 (en) * 2007-12-27 2012-05-29 Cook Medical Technologies Llc Implantable graft device having treated yarn and method for making same
US20090171451A1 (en) * 2007-12-27 2009-07-02 Cook Incorporated Implantable device having composite weave
US8834552B2 (en) * 2007-12-27 2014-09-16 Cook Medical Technologies Llc Stent graft having floating yarns
WO2009105699A1 (en) 2008-02-22 2009-08-27 Endologix, Inc. Design and method of placement of a graft or graft system
EP2429452B1 (en) 2009-04-28 2020-01-15 Endologix, Inc. Endoluminal prosthesis system
AU2010306961B2 (en) 2009-10-13 2013-10-10 Cook Medical Technologies Llc Paraplegia prevention stent graft
US9095456B2 (en) 2009-10-13 2015-08-04 Cook Medical Technologies Llc Paraplegia prevention stent graft
EP2533721B1 (en) 2010-02-09 2016-03-30 Cook Medical Technologies LLC Thoracic aorta stent graft
US8870939B2 (en) 2010-08-21 2014-10-28 Cook Medical Technologies Llc Prosthesis having pivoting fenestration
US8771336B2 (en) 2010-08-21 2014-07-08 Cook Medical Technologies Llc Endoluminal prosthesis comprising a valve replacement and at least one fenestration
US8702786B2 (en) 2010-08-21 2014-04-22 Cook Medical Technologies Llc Prosthesis having pivoting fenestration
CA2748206C (en) 2010-08-21 2015-06-23 Blayne A. Roeder Prosthesis having pivoting fenestration
EP2635241B1 (en) 2010-11-02 2019-02-20 Endologix, Inc. Apparatus for placement of a graft or graft system
US8696741B2 (en) 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
US20120203329A1 (en) * 2011-02-07 2012-08-09 Heuser Richard R Bifurcated stent and method of use
EP2517671B1 (en) 2011-04-28 2016-05-11 Cook Medical Technologies LLC Apparatus for facilitating deployment of an endoluminal prosthesis
US8551158B2 (en) 2011-05-13 2013-10-08 Cook Medical Technologies Llc Steerable iliac branch device
US9662196B2 (en) 2011-09-27 2017-05-30 Cook Medical Technologies Llc Endoluminal prosthesis with steerable branch
US8728148B2 (en) 2011-11-09 2014-05-20 Cook Medical Technologies Llc Diameter reducing tie arrangement for endoluminal prosthesis
AU2012268911B2 (en) * 2011-12-22 2014-04-24 Cook Medical Technologies Llc Endoluminal prosthesis comprising a valve replacement and at least one fenestration
EP2709556A1 (en) 2012-02-29 2014-03-26 Cook Medical Technologies LLC Prosthesis
US9811613B2 (en) 2012-05-01 2017-11-07 University Of Washington Through Its Center For Commercialization Fenestration template for endovascular repair of aortic aneurysms
EP2749252B1 (en) 2012-12-26 2017-02-01 Cook Medical Technologies LLC Prosthesis system
CN103908356A (en) * 2012-12-28 2014-07-09 库克医学技术有限责任公司 Prosthesis having pivoting fenestration
US9402751B2 (en) * 2013-03-13 2016-08-02 W. L. Gore & Associates, Inc. Devices and methods for treatment of the aortic arch
US10265202B2 (en) 2013-03-14 2019-04-23 Cook Medical Technologies Llc Prosthesis having an everting pivoting fenestration
US9662232B2 (en) * 2014-04-11 2017-05-30 Red Vascular Technologies, LLC Alignment system for multiple branch endografts
US20160324670A1 (en) * 2015-05-08 2016-11-10 Dean Jared Yamaguchi Branched Stent Grafts And Stent Graft Delivery System And Methods
WO2017004265A1 (en) 2015-06-30 2017-01-05 Endologix, Inc. Locking assembly for coupling guidewire to delivery system
EP3468505B1 (en) * 2016-06-13 2021-02-24 Aortica Corporation Systems and devices for marking and/or reinforcing fenestrations in prosthetic implants
EP3493766B1 (en) 2016-08-02 2024-03-06 Bolton Medical, Inc. Assembly for coupling a prosthetic implant to a fenestrated body
WO2018132820A1 (en) * 2017-01-13 2018-07-19 Atex Technologies, Inc. Integrally woven or knitted textile with pouch and methods of making the same
US10772719B2 (en) 2017-02-14 2020-09-15 Cook Medical Technologies Llc Method of making a contoured internal limb for a prosthesis and prosthesis with a contoured internal limb
US10729532B2 (en) 2017-02-14 2020-08-04 Cook Medical Technologies Llc Bifurcated prosthesis with an internal limb
WO2018156848A1 (en) * 2017-02-24 2018-08-30 Bolton Medical, Inc. Vascular prosthesis with crimped adapter and methods of use
US11446168B2 (en) 2017-04-25 2022-09-20 Cook Medical Technologies Llc Prosthesis with side branch and method of making the same
CN111148484B (en) 2017-09-25 2022-12-30 波尔顿医疗公司 Systems, devices, and methods for coupling a prosthetic implant to an open window
US11173024B2 (en) 2018-06-04 2021-11-16 Cook Medical Technologies Llc Branched frozen elephant trunk device and method
US10905541B2 (en) 2018-06-04 2021-02-02 Cook Medical Technologies Llc Branched frozen elephant trunk device and method
US10987207B2 (en) 2018-06-04 2021-04-27 Cook Medical Technologies Llc Branched frozen elephant trunk device and method
WO2020191203A1 (en) 2019-03-20 2020-09-24 inQB8 Medical Technologies, LLC Aortic dissection implant
WO2022053809A1 (en) * 2020-09-09 2022-03-17 Vascutek Limited Vascular prostheses, delivery systems, and methods to treat aortic aneurysms and dissections

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034810A1 (en) * 2003-10-10 2005-04-21 Cook Incorporated Stretchable prosthesis fenestration
US20050273155A1 (en) * 2002-08-20 2005-12-08 Bahler Clinton D Endoluminal device with extracellular matrix material and methods
EP1847234A1 (en) 2006-04-18 2007-10-24 Medtronic Vascular, Inc. Device for controlling the positioning of a stent graft fenestration

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425765A (en) 1993-06-25 1995-06-20 Tiefenbrun; Jonathan Surgical bypass method
US5445600A (en) 1994-04-29 1995-08-29 Abdulla; Ra-Id Flow control systemic to pulmonary arterial shunt
US6150164A (en) 1996-09-30 2000-11-21 The Regents Of The University Of Michigan Methods and compositions of a bioartificial kidney suitable for use in vivo or ex vivo
EP1018982B1 (en) 1996-12-03 2005-03-09 Osteobiologics, Inc. Biodegradable polymeric film
AUPP083597A0 (en) 1997-12-10 1998-01-08 William A Cook Australia Pty Ltd Endoluminal aortic stents
US6814754B2 (en) * 2000-10-30 2004-11-09 Secant Medical, Llc Woven tubular graft with regions of varying flexibility
US20040106972A1 (en) 2000-11-20 2004-06-03 Deaton David H. Fenestrated endovascular graft
AU2003224769B2 (en) 2002-03-25 2007-10-18 Cook Incorporated Branched vessel prothesis
US7438721B2 (en) 2003-04-25 2008-10-21 Medtronic Vascular, Inc. Universal modular stent graft assembly to accommodate flow to collateral branches
US7413573B2 (en) 2003-10-10 2008-08-19 William A. Cook Australia Pty. Ltd. Fenestrated stent grafts
EP1673039B1 (en) * 2003-10-10 2008-12-03 William A. Cook Australia Pty. Ltd. Stent graft fenestration
US8012193B2 (en) 2003-10-14 2011-09-06 William A. Cook Australia Pty, Ltd Introducer for an iliac side branch device
US9078780B2 (en) 2003-11-08 2015-07-14 Cook Medical Technologies Llc Balloon flareable branch vessel prosthesis and method
US8048140B2 (en) 2004-03-31 2011-11-01 Cook Medical Technologies Llc Fenestrated intraluminal stent system
US7758633B2 (en) * 2004-04-12 2010-07-20 Boston Scientific Scimed, Inc. Varied diameter vascular graft
US20060247760A1 (en) * 2005-04-29 2006-11-02 Medtronic Vascular, Inc. Methods and apparatus for treatment of aneurysms adjacent branch arteries
US8961586B2 (en) * 2005-05-24 2015-02-24 Inspiremd Ltd. Bifurcated stent assemblies
US7678141B2 (en) * 2006-04-18 2010-03-16 Medtronic Vascular, Inc. Stent graft having a flexible, articulable, and axially compressible branch graft
US20090030502A1 (en) 2007-07-26 2009-01-29 Jichao Sun Socket For Fenestrated Tubular Prosthesis
GB0721459D0 (en) 2007-11-01 2007-12-12 Vascutek Ltd Apparatus and method
US8100960B2 (en) * 2008-03-20 2012-01-24 Medtronic Vascular, Inc. Bloused stent-graft and fenestration method
US20090259290A1 (en) * 2008-04-14 2009-10-15 Medtronic Vascular, Inc. Fenestration Segment Stent-Graft and Fenestration Method
US8206430B2 (en) * 2008-04-21 2012-06-26 Medtronic Vascular, Inc. Endolumenal sealant delivery apparatus and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050273155A1 (en) * 2002-08-20 2005-12-08 Bahler Clinton D Endoluminal device with extracellular matrix material and methods
WO2005034810A1 (en) * 2003-10-10 2005-04-21 Cook Incorporated Stretchable prosthesis fenestration
EP1847234A1 (en) 2006-04-18 2007-10-24 Medtronic Vascular, Inc. Device for controlling the positioning of a stent graft fenestration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120550A1 (en) * 2009-04-17 2010-10-21 Medtronic Vascular, Inc. Mobile external coupling for branch vessel connection
US8506622B2 (en) 2009-04-17 2013-08-13 Medtronic Vascular, Inc. Mobile external coupling for branch vessel connection
US8540764B2 (en) 2009-04-17 2013-09-24 Medtronic Vascular, Inc. Mobile external coupling for branch vessel connection
AU2010202544B1 (en) * 2010-06-18 2010-08-26 Cook Incorporated Side branch stent graft
WO2011159324A1 (en) 2010-06-18 2011-12-22 William A. Cook Australia Pty. Ltd. Side branch stent graft
US9011517B2 (en) 2010-06-18 2015-04-21 Cook Medical Technologies Llc Side branch stent graft
WO2013167492A1 (en) * 2012-05-07 2013-11-14 Jotec Gmbh Intraluminal vascular prosthesis having in-situ fenestration
EP3132771A1 (en) * 2015-08-19 2017-02-22 Cook Medical Technologies LLC Stent graft with fenestration
US10213326B2 (en) 2015-08-19 2019-02-26 Cook Medical Technologies Llc Stent graft with fenestration

Also Published As

Publication number Publication date
EP2331011B1 (en) 2015-01-14
US8915956B2 (en) 2014-12-23
EP2331011A1 (en) 2011-06-15
US20100063576A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
EP2331011B1 (en) Prosthesis with moveable fenestration
US10159560B2 (en) Prosthesis having pivoting fenestration
US10188503B2 (en) Prosthesis having pivoting fenestration
EP2749252B1 (en) Prosthesis system
US8702786B2 (en) Prosthesis having pivoting fenestration
EP2749250B1 (en) Endoluminal prosthesis
EP2606852B1 (en) Endoluminal prosthesis comprising a valve replacement and at least one fenestration
US8771336B2 (en) Endoluminal prosthesis comprising a valve replacement and at least one fenestration
EP3449871A2 (en) Endoluminal prosthesis with an aortic sinus stent assembly
WO2013130390A1 (en) Prosthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09789101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009789101

Country of ref document: EP