WO2010032808A1 - 分離膜およびその製造方法 - Google Patents

分離膜およびその製造方法 Download PDF

Info

Publication number
WO2010032808A1
WO2010032808A1 PCT/JP2009/066331 JP2009066331W WO2010032808A1 WO 2010032808 A1 WO2010032808 A1 WO 2010032808A1 JP 2009066331 W JP2009066331 W JP 2009066331W WO 2010032808 A1 WO2010032808 A1 WO 2010032808A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
membrane
functional layer
polyvinylidene fluoride
separation membrane
Prior art date
Application number
PCT/JP2009/066331
Other languages
English (en)
French (fr)
Inventor
研司 小森
利之 石崎
健太 岩井
▲しゅん▼瑶 付
進一 峯岸
尚 皆木
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42039629&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010032808(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CA2734378A priority Critical patent/CA2734378A1/en
Priority to EP09814652A priority patent/EP2332639A1/en
Priority to CN200980136521.7A priority patent/CN102159305B/zh
Priority to JP2009545418A priority patent/JP5732719B2/ja
Priority to AU2009293694A priority patent/AU2009293694A1/en
Priority to US13/119,071 priority patent/US9174174B2/en
Publication of WO2010032808A1 publication Critical patent/WO2010032808A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/088Co-extrusion; Co-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration

Definitions

  • the present invention relates to a separation membrane suitable for the water treatment field, the pharmaceutical production field, the food industry field, the blood purification membrane field, and the like, and a method for producing the same.
  • the present invention relates to a separation membrane suitable for removing minute substances such as viruses in a liquid and a method for producing the same.
  • separation membranes have been used in various fields such as the water treatment field and the food industry field.
  • the water treatment field such as drinking water production, water purification treatment, and wastewater treatment
  • separation membranes have been used to remove impurities in water as an alternative to the conventional sand filtration step or coagulation sedimentation step.
  • a disinfectant such as sodium hypochlorite is added to the membrane module part, or the membrane itself is washed with acid, alkali, chlorine, surfactant, etc.
  • the separation membrane used is required to have high chemical strength. Further, the separation membrane is required to have high physical strength so that it does not break during use.
  • the separation membrane is required to have high chemical strength and physical strength in addition to excellent pure water permeation performance and separation performance. Therefore, in recent years, a separation membrane using a polyvinylidene fluoride resin having both chemical strength and physical strength has been used.
  • viruses are the smallest, including parvoviruses and polioviruses with a diameter of 20 to 30 nm, and underwater pathogenic viruses include noroviruses with a diameter of 25 to 35 nm and adenoviruses with a diameter of 70 to 90 nm.
  • Various separation membranes capable of removing such virus groups have been disclosed.
  • Patent Document 1 discloses a hollow fiber membrane used for medical use, which is made of polyvinylidene fluoride resin, has a maximum pore diameter of 10 to 100 nm determined by a bubble point method, and a dense structure layer has a thickness of 50 over the entire thickness.
  • a hollow fiber membrane that exhibits high virus removal performance when it is at least%.
  • the physical strength per hollow fiber membrane is low and it cannot be applied to water treatment applications.
  • the dense layer is too thick, the pure water permeation performance is low despite the thin film thickness.
  • Patent Document 2 discloses a porous film made of a polyvinylidene fluoride-based resin. By adding a high molecular weight polyvinylidene fluoride-based resin, the porosity is 55 to 90%, the tensile strength is 5 MPa or more, and fracture occurs. A film having an elongation of 5% or more is disclosed. However, this document does not describe or suggest various parameters and mechanisms for improving virus removability. When a porous membrane made of a polyvinylidene fluoride resin having a molecular weight shown in the Examples of the same document was used, sufficient virus removability was not obtained.
  • Patent Document 3 describes a porous film made of a polyvinylidene fluoride-based resin having reinforcing fibers and having a support layer and a dense layer exhibiting separation characteristics.
  • this document neither describes nor suggests various parameters and mechanisms for improving virus removability.
  • a porous membrane made of a polyvinylidene fluoride resin shown in Examples of the same document was used, sufficient virus removability was not obtained.
  • Patent Document 4 includes a hydrophobic polymer and a hydrophilic polymer, has a dense layer on the inner surface and the outer surface, and initially has an increased porosity from the inner surface toward the outer surface.
  • a description of a polymer porous hollow fiber membrane having a characteristic structure in which the porosity decreases on the outer surface side after passing through the maximum portion, and the pore diameter on the inner surface and the exclusion limit particle diameter are in a specific relationship is there.
  • this document neither describes nor suggests various parameters and mechanisms for improving virus removability.
  • the polyvinylidene fluoride resin was specifically used in the examples.
  • separation membranes that remove contaminants including viruses can satisfy high removal performance and high physical durability, but in addition, it has been extremely difficult to satisfy high permeation performance.
  • the reason is as follows. First, in order to obtain a high removal performance, it is necessary to form a film having a dense structure from a high concentration resin stock solution. When a high concentration resin stock solution is used, the physical strength is improved, but the permeation performance is lowered because the porosity inside the membrane is lowered. In order to increase the permeation performance, it is necessary to reduce the thickness of the film, resulting in a decrease in physical strength. If the physical strength of the separation membrane is low, the pores are deformed when pressure is applied to the separation membrane by operations such as filtration and washing.
  • the pore diameter Due to the deformation of the pores, when the pore diameter is enlarged, minute components such as viruses in the pollutant leak, and conversely, if the pore diameter is reduced, the permeation performance is lowered. In addition, surface rubs or breaks due to turbidity in the separation target solution, and contaminants such as viruses leak. Furthermore, by reducing the thickness of the film, the virus removal performance, which is the original purpose, may not be exhibited. When used for water treatment, a particularly large external force is applied to the separation membrane. Therefore, it is indispensable to increase the physical strength especially when the purpose is to remove minute components such as viruses.
  • the present invention provides a separation membrane having high virus removal performance, high pure water permeation performance, high physical strength and high chemical strength that can be used in water treatment applications.
  • the purpose is to do.
  • the inventors of the present inventors have used a polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or higher, which has not been used in the past, as a three-dimensional network.
  • the present inventors succeeded in obtaining a separation functional layer that has better chemical and physical strength than conventional ones and that exhibits high virus removal performance even when thinned.
  • the inventors have excellent chemical and physical strength by adopting a multi-layer structure of a separation functional layer having both high permeation performance and virus removal performance, and a support layer that bears high physical strength, We have developed a separation membrane that has both high pure water permeation performance and high virus removal performance.
  • the present invention is a separation membrane having a separation functional layer
  • the separation functional layer contains a polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or more
  • the separation functional layer has a three-dimensional network structure. Is a separation membrane.
  • a polymer solution containing a polyvinylidene fluoride resin is applied to at least one surface of a support, and then immersed in a coagulation liquid to solidify the polymer solution to form a three-dimensional network structure.
  • the present invention uses a triple-tube die, a polymer solution that forms a separation functional layer from an outer tube, a polymer solution that forms a support layer from an intermediate tube, and a hollow portion from an inner tube.
  • a separation membrane manufacturing method for manufacturing a hollow fiber membrane in which a separation functional layer is disposed in an outer layer and a support layer is disposed in an inner layer by simultaneously discharging the forming liquid and solidifying the discharged polymer solution in a coagulation bath .
  • the separation membrane of the present invention is a separation membrane having a separation functional layer, the separation functional layer contains a polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or more, and the separation functional layer has a three-dimensional network shape. It has a structure.
  • the polyvinylidene fluoride resin means a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer, and may contain a plurality of vinylidene fluoride resins.
  • the vinylidene fluoride copolymer is a copolymer containing a monomer unit of vinylidene fluoride, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers.
  • the copolymer examples include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride chloride. Further, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized to such an extent that the effects of the present invention are not impaired. Among these, it is preferable to use a resin made of vinylidene fluoride homopolymer because of its high chemical strength and physical strength.
  • the polyvinylidene fluoride resin needs to have a melt viscosity of 3300 Pa ⁇ s or more.
  • Polyvinylidene fluoride resins having a high melt viscosity are superior in chemical and physical strength to those having a low melt viscosity, but have problems such as poor moldability and difficulty in controlling the structure. Even when a polyvinylidene fluoride resin with a low melt viscosity is used, it has sufficient strength compared to other resins that can be used in the separation membrane, so the polyvinylidene fluoride resin with a high melt viscosity is separated. It was not adopted as a membrane material.
  • the present invention by using a polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or more, not only the physical strength of the resulting separation functional layer is improved, but also a dense network structure that exhibits virus removal performance It is considered that the effects of the present invention can be obtained because the formation of macrovoids and the generation of macrovoids that degrade the separation characteristics can be suppressed. Since the polyvinylidene fluoride resin used in the present invention is an ultra-high molecular weight type, the weight average molecular weight exceeds the limit of analysis in ordinary chromatography and cannot be directly calculated. The approximate weight average molecular weight can be estimated from the viscosity of the solution developed in the solvent.
  • the weight average molecular weight corresponding to a melt viscosity of 3300 Pa ⁇ s is about 800,000.
  • Examples of the vinylidene fluoride homopolymer having a melt viscosity of 3300 Pa ⁇ s or higher used in the present invention include Kynar (registered trademark) HSV900 (emulsion polymerization product) manufactured by Arkema.
  • the melt viscosity of the polyvinylidene fluoride resin can be measured under the condition of ASTM D3835 / 230 ° C. and a shear rate of 100 seconds ⁇ 1 .
  • a method of increasing the molecular weight by increasing the polymerization degree of the polyvinylidene fluoride-based resin or introducing side chains is preferable. .
  • a method of increasing the molecular weight by increasing the degree of polymerization is more preferable because of high chemical strength and physical strength.
  • two or more kinds of polyvinylidene fluoride resins having different melt viscosities may be mixed, and the melt viscosity of the mixture may be 3300 Pa ⁇ s or more.
  • the melt viscosity of the polyvinylidene fluoride resin is more preferably 3800 Pa ⁇ s or more, and further preferably 4400 Pa ⁇ s or more.
  • the weight average molecular weight corresponding to a melt viscosity of 3800 Pa ⁇ s is about 880,000, and the weight average molecular weight corresponding to a melt viscosity of 4400 Pa ⁇ s is about 1 million.
  • the melt viscosity of a polyvinylidene fluoride-type resin since there exists a possibility that the water permeability of a separation membrane may fall when it exceeds 7000 Pa.s or a weight average molecular weight exceeds 1.6 million. It is not preferable.
  • the separation functional layer further contains a hydrophilic polymer, so that the pure water permeation performance and stain resistance of the separation membrane are improved, which is more preferable.
  • the hydrophilic polymer is a polymer having a high affinity for water, and refers to a polymer that is dissolved in water or has a smaller contact angle with water than that of the polyvinylidene fluoride resin.
  • Preferred examples of the hydrophilic polymer include acrylic resins such as polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, polyacrylic acid and polymethyl methacrylate, cellulose ester resins, polyacrylonitrile and polysulfone.
  • a hydrophilic polyolefin resin obtained by copolymerizing a hydrophilic group with an olefin monomer such as ethylene, propylene, or vinylidene fluoride can also be used as the hydrophilic polymer.
  • an olefin monomer such as ethylene, propylene, or vinylidene fluoride
  • at least one selected from polyvinyl pyrrolidone resins, acrylic resins, and cellulose ester resins is preferable in terms of improving stain resistance.
  • the polyvinyl pyrrolidone resin refers to a vinyl pyrrolidone homopolymer and / or a copolymer of vinyl pyrrolidone and other polymerizable vinyl monomers.
  • the molecular weight of the polyvinylpyrrolidone-based resin is not particularly limited, but the weight average molecular weight is preferably 10,000 or more and 5,000,000 or less from the viewpoint of the water permeability, separation property and moldability of the membrane. When the weight average molecular weight is less than 10,000, the polyvinylpyrrolidone resin tends to flow out of the membrane as a pore-opening agent in the film-forming stage, and the fouling resistance of the membrane is lowered. When the weight average molecular weight exceeds 5,000,000, the viscosity of the polymer solution is too high, so that the moldability is lowered and defects are easily formed.
  • Polyvinyl pyrrolidone resin is poorly compatible with polyvinylidene fluoride resin, so it may not be possible to maintain low fouling because the polyvinyl pyrrolidone resin elutes out of the film while it is used in water. It is known. However, in the present invention, elution of the polyvinylpyrrolidone resin can be suppressed by using a high molecular weight polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or more for the separation functional membrane.
  • the acrylic resin is not particularly limited as long as it is synthesized from an unsaturated carboxylic acid and a monomer such as an ester or amide thereof, but an acrylic ester polymer or a methacrylic ester polymer, and those A copolymer is particularly preferably used.
  • acrylic acid ester polymers examples include acrylic acid such as methyl acrylate, ethyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, hydroxyethyl acrylate, and hydroxypropyl acrylate.
  • acrylic acid ester polymers include acrylic acid such as methyl acrylate, ethyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, hydroxyethyl acrylate, and hydroxypropyl acrylate.
  • examples include homopolymers of ester monomers, copolymers of these monomers, and copolymers of these monomers with other copolymerizable vinyl monomers.
  • Methacrylic acid ester monomers include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate. Homopolymers of these, copolymers thereof, and copolymers with other copolymerizable vinyl monomers are exemplified.
  • the molecular weight of the acrylic resin used in the present invention is preferably 100,000 to 5,000,000, more preferably 300,000 to 4,000,000 from the viewpoint of mechanical strength and chemical strength.
  • the weight average molecular weight is less than 100,000, the mechanical strength is low, and when the weight average molecular weight exceeds 5,000,000, moldability is lowered and defects are likely to occur.
  • a polyvinyl pyrrolidone resin and an acrylic resin in combination.
  • acrylic resins such as polymethacrylic acid esters and polyacrylic acid esters are hydrophilic and are known to be compatible with polyvinylidene fluoride resins at the molecular level. It is also known that acrylic resins have affinity for polyvinyl pyrrolidone resins. Therefore, the acrylic resin acts as a compatibilizing agent, making the polyvinylpyrrolidone resin easily compatible in the polyvinylidene fluoride resin film, and the polyvinylpyrrolidone resin goes out of the film when the film is used in water. Furthermore, since it becomes difficult to elute, it is thought that stain resistance can be maintained.
  • the cellulose ester resin is not particularly limited as long as it has a cellulose ester as a molecular unit in the main chain and / or side chain, and other molecular units may be present.
  • the molecular unit other than cellulose ester include alkene such as ethylene and propylene, alkyne such as acetylene, vinyl halide, vinylidene halide, methyl methacrylate, and methyl acrylate.
  • alkene such as ethylene and propylene
  • alkyne such as acetylene
  • vinyl halide vinylidene halide
  • methyl methacrylate and methyl acrylate.
  • ethylene, methyl methacrylate, and methyl acrylate are preferably used because they are available at low cost and can be easily introduced into the main chain and / or side chain.
  • a homopolymer having substantially only a cellulose ester as a molecular unit is preferably used because it can be obtained at low cost and is easy to handle.
  • Such homopolymers include cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and the like.
  • the cellulose ester resin is used to form a separation functional layer together with the polyvinylidene fluoride resin, it is preferably mixed with the polyvinylidene fluoride resin under appropriate conditions. Furthermore, when the cellulose ester resin and the polyvinylidene fluoride resin are mixed and dissolved in the good solvent of the polyvinylidene fluoride resin, it is particularly preferable because the handling becomes easy.
  • Hydrolysis of a part of the ester of the cellulose ester resin produces a hydroxyl group that is more hydrophilic than the ester.
  • the ratio of the hydroxyl group is increased, the miscibility with the polyvinylidene fluoride-based resin that is hydrophobic decreases, but the hydrophilicity of the resulting separation membrane increases, and the water permeability and stain resistance are improved. Therefore, the method of hydrolyzing the ester within the range of being mixed with the polyvinylidene fluoride resin can be preferably employed from the viewpoint of improving the membrane performance.
  • the weight ratio of the polyvinylidene fluoride resin and the hydrophilic polymer is preferably 60/40 to 99/1, more preferably 70/30 to 95/5, still more preferably Is 80/20 to 90/10.
  • the weight ratio of the polyvinylidene fluoride resin is less than 60% by weight, the high virus removal performance and high physical durability, which are the features of the present invention, cannot be expressed.
  • the weight ratio of the hydrophilic polymer is less than 1% by weight, the improvement in stain resistance is small.
  • the three-dimensional network structure of the separation functional layer refers to a structure in which solid content spreads in a three-dimensional network.
  • the number of thin layers having a maximum pore diameter of 0.03 ⁇ m or more and 0.6 ⁇ m or less is 50 or more and 400 or less, and the maximum pore diameter is The number of thin layers having a thickness of less than 0.03 ⁇ m is preferably 2 or less.
  • the number of thin layers having a maximum pore size of 0.03 ⁇ m or more and 0.6 ⁇ m or less is less than 50, the virus removal performance is lowered.
  • the number of thin layers having a maximum pore diameter of 0.03 ⁇ m or more and 0.6 ⁇ m or less exceeds 400, pure water permeation performance is lowered.
  • the maximum pore diameter of a thin layer having a thickness of 0.2 ⁇ m can be measured as follows. Using a scanning electron microscope or the like, the cross section of the separation functional layer is continuously photographed from the outer surface to the inner surface at a magnification at which the structure can be clearly confirmed, preferably at a magnification of 60,000 times or more. Starting from the outer surface of the separation functional layer, the inner surface is divided into thin layers having a thickness of 0.2 ⁇ m in the thickness direction of the separation functional layer, and the maximum hole diameter of the holes in each layer is measured.
  • the hole refers to a region surrounded by a solid part, and the maximum hole diameter of the hole represents the short diameter of the hole having the largest short diameter among the holes in the layer.
  • the major axis of the hole is the length between the two most distant points on the boundary between the hole and the solid content.
  • the minor axis of the hole is the length between two points where the perpendicular bisector of the major axis of the hole intersects the hole.
  • the separation functional layer of the present invention has a very high removal performance against the smallest virus.
  • the smallest virus has a size of about 0.02 ⁇ m, and the separation functional layer has a thin layer of 0.2 ⁇ m in thickness having a maximum pore size of 0.03 ⁇ m or more and 0.6 ⁇ m or less in a range of 50 to 400, A layer containing a pore size slightly larger than the smallest virus will be present with a certain thickness.
  • each thin layer having a maximum pore size of 0.03 ⁇ m or more and 0.6 ⁇ m or less and a thickness of 0.2 ⁇ m is not high, the presence of several such thin layers allows a multistage filtration mechanism. So-called depth filtration is used to enhance the removal performance. Depth filtration is a separation functional layer compared to so-called surface filtration, which removes viruses by a thin dense layer (mostly present on the membrane surface) that does not contain pores larger than viruses, with a thickness of about 0.6 ⁇ m. Since the virus removal performance is expressed as a whole, the virus removal performance can be maintained even when defects such as pin poles and cracks occur. Furthermore, since it does not have a dense layer, high pure water permeation performance can be expressed.
  • pure water permeation performance is proportional to the fourth power of the pore diameter (Poiseuille's law) and inversely proportional to the first power of the layer thickness. That is, the decrease in pure water permeation performance is smaller when the layer is thicker than when the hole is small.
  • the maximum pore size is 0.2 ⁇ m or more when divided into thin layers each having a thickness of 0.2 ⁇ m in the thickness direction.
  • Number of thin layers having a maximum pore diameter of 0.1 to 0.2 ⁇ m and a maximum pore diameter of 0.03 to 0.1 ⁇ m. Is 30 or less, and the number of thin layers having a maximum pore diameter of less than 0.03 ⁇ m is 2 or less.
  • the number of thin layers having a maximum pore diameter of less than 0.03 ⁇ m is more preferably 1 or less, most preferably 0 or less.
  • having a depth filtration structure in which the relationship between the maximum pore diameter and the thickness is appropriately controlled is effective for enhancing the effect of the present invention. .
  • the three-dimensional network structure of the separation functional layer is preferably a three-dimensional network structure having an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the average pore size of the three-dimensional network structure of the separation functional layer is more preferably 0.03 ⁇ m to 0.5 ⁇ m, and still more preferably 0.05 ⁇ m to 0.2 ⁇ m.
  • the average pore diameter of the three-dimensional network structure in the separation functional layer was obtained by taking an image photograph at 6,000 times or 10,000 times at 20 sections of the separation membrane using a scanning electron microscope. The results of measuring the major and minor diameters of 20 holes arbitrarily selected at a depth of 2 ⁇ m from the outer surface layer of the photograph can be obtained by number averaging.
  • the average pore diameter of the outermost surface of the separation functional layer of the present invention is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and still more preferably 0.01 ⁇ m or less. If the average pore diameter on the outermost surface exceeds 1 ⁇ m, dirt components in water will enter the pores of the membrane, and membrane stains are likely to occur.
  • the average pore size of the outermost surface of the separation functional layer was selected arbitrarily by taking a picture of the surface of the composite film at 20 locations at 30,000 times or 60,000 times using a scanning electron microscope. The results obtained by measuring the major and minor diameters of the 20 holes can be obtained by number averaging.
  • the three-dimensional network structure of the separation functional layer of the present invention can be obtained by a so-called non-solvent induced phase separation method in which a solution comprising a polyvinylidene fluoride resin and a good solvent is solidified in a non-solvent bath.
  • a polyvinylidene fluoride resin has strong cohesiveness, and therefore only a structure having a macrovoid can be obtained.
  • the macro void is a hole having a void several tens or more times larger than a normal hole of a three-dimensional network structure. Macrovoids show little resistance to filtered fluids, and can be expected to improve pure water permeation performance.
  • a macrovoid is a general term for voids that exist in the membrane of the separation functional layer, have a size of 5 ⁇ m or more, and most are 5 to 200 ⁇ m, and have a spherical, spindle, or cylindrical shape. is there.
  • a macro void of 5 ⁇ m or more is a hole having a major axis of 5 ⁇ m or more when a cross section of the separation functional layer is photographed 3000 times using a scanning electron microscope.
  • a circle having an area equal to the area of the hole is obtained by an image processing apparatus or the like, and the equivalent circle diameter is obtained by a method of setting the major diameter of the hole.
  • substantially no macrovoids of 5 ⁇ m or more are present is made by observing cross-sectional photographs at least at 30 different locations, and when no macrovoids of 5 ⁇ m or more can be confirmed at all, it is substantially 5 ⁇ m. It shall not contain the above macro voids. Further, the separation function layer may have macrovoids of less than 5 ⁇ m, but the smaller the number, the better.
  • non-solvent induced phase separation method not only the composition of the polymer solution changes over time due to the penetration of the non-solvent into the polymer solution, but also the rapid change makes it difficult to track, and the mechanism of phase separation is analyzed That is still attracting academic interest. In particular, it is said that statistical analysis is almost impossible when the fourth and subsequent components are added in addition to the resin, good solvent, and non-solvent. Furthermore, in non-solvent-induced phase separation, in addition to the composition, a number of factors such as the temperature and viscosity of the polymer solution, the composition and temperature of the coagulation bath, and the coagulation time influence the phase separation. The contribution ratios of the affecting factors are also different.
  • the inventors have found that in the phase separation of a polyvinylidene fluoride polymer solution, the viscosity of the polymer solution greatly affects macrovoid formation. It was. That is, when the viscosity of the polyvinylidene fluoride resin solution is increased, the macrovoids tend to disappear. It is difficult to clarify the details of this phenomenon, but it is because the increase in the viscosity of the polymer solution led to a decrease in the penetration rate of the non-solvent and a decrease in the aggregation rate of the resin, and phase separation occurred in a very small part. Conceivable.
  • the solution viscosity at 50 ° C. of the polyvinylidene fluoride resin solution for forming such a three-dimensional network structure exhibiting such virus removability and suppressing the formation of macrovoids is 1 Pa ⁇ s to 100 Pa ⁇ s.
  • the melt viscosity at 50 ° C. can be measured by a viscosity measuring device such as a B-type viscometer. If the solution viscosity is less than 1 Pa ⁇ s, the effect of lowering the penetration rate of the non-solvent and lowering the aggregation rate becomes insufficient, and macrovoids are generated. On the other hand, if the solution viscosity exceeds 100 Pa ⁇ s, a homogeneous solution cannot be obtained, and defects may occur in the three-dimensional network structure.
  • the concentration of the polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or more is in the range of 5 wt% to 30 wt%, preferably 8 wt% to 25 wt%. It is preferably employed to prepare such that In particular, in order to express high virus removal performance, it is preferable to adjust the concentration of the polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or higher in the polymer solution to 9 wt% or higher.
  • the polymer solution contains a resin other than a polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or more, the sum of the concentrations of these resins is preferably in the above range.
  • the good solvent used for the polyvinylidene fluoride resin solution that forms the separation functional layer dissolves the polyvinylidene fluoride resin that constitutes the separation functional layer and other resins as necessary, and uses a non-solvent organic phase separation method.
  • a non-solvent organic phase separation method There is no particular limitation as long as it can form a three-dimensional network structure, but N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethyl
  • Preferred examples include solvents such as urea and trimethyl phosphate and mixed solvents thereof.
  • dimethyl sulfoxide is preferably used because it is easy to obtain a highly viscous polyvinylidene fluoride resin solution.
  • Non-solvents that exhibit non-solvent induced phase separation include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol. , Propylene glycol, butylene glycol, pentanediol, hexanediol, aliphatic hydrocarbons such as low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons and mixtures thereof A solvent is mentioned. For the purpose of reducing the speed of non-solvent induced phase separation, it is preferable to add 5 to 90% by weight, more preferably 10 to 80% by weight, and further preferably 20 to 70% by weight of a good solvent to the non-solvent.
  • the separation membrane of the present invention may be a single-layer membrane composed of a single separation functional layer, but in order to increase the physical strength while maintaining the permeation performance of the entire separation membrane, the separation functional layer and the support layer It is more preferable to have a multilayer structure in which
  • the material of the support layer is not particularly limited as long as it achieves the above-mentioned object. Hydrophilic polyolefin resins such as polyethylene, cellulose ester resins, polyester resins, polyamide resins, polyethersulfone resins, etc. are preferably used. Copolymers of these resins or those having substituents introduced into them It may be. Further, a fibrous substance or the like may be contained in these resins as a reinforcing agent.
  • As the material for the support layer it is more preferable to use a polyvinylidene fluoride resin because it requires high chemical durability as well as physical strength.
  • the structure of the support layer is more preferably a spherical structure from the viewpoint of physical strength and water permeability.
  • the spherical structure refers to a structure in which a large number of spherical (including substantially spherical) solids are connected by sharing a part thereof.
  • the spherical solid content is a solid content having a roundness ratio (major axis / minor axis) of 2 or less.
  • the three-dimensional network structure has a structure in which streaky solids are uniformly connected three-dimensionally, and the spherical solids are non-uniformly shared with each other to form a strongly connected spherical structure. In comparison, the hole diameter is reduced. Therefore, it is considered that the pure water permeation performance is lowered even with the same high elongation performance.
  • the weight average molecular weight of the polyvinylidene fluoride resin used for the support layer may be appropriately selected depending on the required strength of the separation membrane and the water permeability, but if the weight average molecular weight increases, the water permeability decreases and the weight The strength decreases as the average molecular weight decreases. For this reason, the weight average molecular weight is preferably 50,000 to 1.6 million. In the case of a water treatment application in which the polymer separation membrane is exposed to chemical cleaning, the weight average molecular weight is more preferably from 100,000 to 700,000, and even more preferably from 150,000 to 600,000.
  • the average diameter of the spherical solid content is preferably 0.1 ⁇ m or more and 5 ⁇ m or less so that the support layer has sufficient physical strength.
  • the diameter of each spherical solid content is an average value of the major axis and the minor axis.
  • the average diameter of the spherical solid content is less than 0.1 ⁇ m, the gap formed between the solid content is small, and the transmission performance is low.
  • the average diameter of the spherical solid content exceeds 5 ⁇ m, the solid content is reduced and the physical strength is lowered.
  • the average diameter of the spherical structure was determined by taking a photograph of 20 arbitrary places at 3000 magnifications using a scanning electron microscope, with a layer of the spherical structure having a cross section from the outer surface of the separation membrane toward the inner surface.
  • the diameter of 20 or more arbitrary spherical solid contents can be measured and averaged.
  • An equivalent circular diameter can be obtained from a cross-sectional photograph using an image processing apparatus or the like, and the average diameter of the spherical structure can be preferably employed.
  • the support layer preferably has a homogeneous structure in order to achieve both a high level of pure water permeation performance and physical strength. If it has a dense layer or the structure changes in an inclined manner, it is difficult to achieve both pure water permeation performance and physical strength.
  • the separation functional layer and the support layer preferably have a laminated structure in order to balance the performance of each layer at a high level.
  • the layers enter each other at the interface of each layer and become dense, resulting in a decrease in transmission performance. If the layers do not penetrate each other, the permeation performance does not decrease, but the adhesive strength decreases. Therefore, it is preferable that the number of laminated layers is small, and it is preferable that the number of laminated layers is two layers of one separation functional layer and one support layer. Either of them may be an outer layer or an inner layer, but it is preferable that the separation functional layer is disposed on the separation target side because the separation functional layer bears the separation function and the support layer bears the physical strength.
  • the separation membrane of the present invention has a pure water permeation performance at 50 kPa and 25 ° C. of 0.05 m 3 / m 2 / hr to 10 m 3 / m 2 / hr, a breaking strength of 6 MPa or more, a film thickness of 125 ⁇ m to 600 ⁇ m,
  • the removal rate for ms-2 phage is preferably 4 log or more.
  • the pure water permeation performance is more preferably 0.15 m 3 / m 2 / hr or more and 7 m 3 / m 2 / hr or less.
  • the breaking strength is more preferably 8 MPa or more, and further preferably 10 MPa or more.
  • the film thickness is more preferably 175 ⁇ m or more and 400 ⁇ m or less.
  • the pure water permeation performance is a unit membrane area and a permeate amount per unit time measured using pure water at 25 ° C. under a pressure of 50 kPa.
  • the breaking strength is a value obtained by dividing the maximum point load required until the separation membrane breaks by the cross-sectional area of the separation membrane, and can be measured using a tensile tester or the like.
  • the thickness of the separation membrane can be measured with a combination of a stereomicroscope and a digital length measuring device, an electron microscope, or the like.
  • the removal rate for the ms-2 phage is as follows: sterile distilled water containing bacteriophage MS-2 (Bacteriophage MS-2 ATCC 15597-B1) with a size of about 1.0 ⁇ 10 7 PFU / ml.
  • the aqueous solution was filtered through a separation membrane, and the method for dilution according to the method for dilution of Overlay agar assay, Standard Method 9211-D (APHA, 1998, Standard methods for the examination of water and wastewater, 18th ed.) was used.
  • the concentration of bacteriophage MS-2 is determined by inoculating a petri dish and counting the plaques.
  • the removal performance is expressed in logarithm. For example, 2 log means 2 log 10 and means that the residual concentration is 1/100.
  • the separation membrane of the present invention can be preferably used in any form of a hollow fiber membrane and a flat membrane, but the hollow fiber membrane can be efficiently filled into a module, and the effective membrane area per unit volume is increased. It can be used preferably.
  • the method for producing a polyvinylidene fluoride resin separation membrane according to the present invention is not particularly limited as long as a polyvinylidene fluoride separation membrane satisfying the above-mentioned desired characteristics is obtained.
  • it can be produced as follows.
  • a polymer solution containing a polyvinylidene fluoride resin having a melt viscosity of 3300 Pa ⁇ s or more as a solid content is formed into a sheet shape or a hollow fiber shape with a T die, a double tube die, etc. It can be manufactured by forming a separation functional layer having a three-dimensional network structure by forming it into contact with a coagulating liquid.
  • the multilayer structure separation membrane composed of the separation functional layer and the support layer can be produced by various methods. As an example, a method for laminating a separation functional layer on a support having a spherical structure will be described.
  • a support having a spherical structure is manufactured.
  • a method for producing a hollow fiber membrane using a polyvinylidene fluoride resin will be described.
  • a support having a spherical structure is produced by a thermally induced phase separation method in which a polyvinylidene fluoride resin solution is phase-separated by cooling.
  • the polyvinylidene fluoride resin solution is discharged from the outer tube of the double tube die for spinning the hollow fiber membrane, and the liquid forming the hollow part is cooled and solidified in the cooling bath while being discharged from the inner tube of the double tube die.
  • the above-mentioned polyvinylidene fluoride resin solution dissolves the polyvinylidene fluoride resin in a poor solvent or a good solvent of the resin at a temperature higher than the crystallization temperature at a relatively high concentration of 20 wt% to 60 wt%. If the resin concentration is increased, a support having high strength and elongation characteristics can be obtained. However, if the resin concentration is too high, the porosity of the produced separation membrane is decreased and the permeation performance is decreased. Moreover, when shape
  • a mixed liquid comprising a poor solvent or a good solvent having a temperature of 0 ° C. to 30 ° C. and a concentration of 50% to 95% by weight, and a non-solvent having a concentration of 5% to 50% by weight.
  • a poor solvent as the polymer solution as the poor solvent because it is easy to maintain the cooling bath composition.
  • a poor solvent and a good solvent may be mixed as long as the concentration range is not deviated.
  • a high concentration non-solvent is used, a dense layer is formed on the outer surface of the hollow fiber membrane, and the pure water permeation performance may be significantly reduced.
  • a mixed liquid comprising a poor solvent or a good solvent having a concentration of 50% by weight or more and 95% by weight or less and a non-solvent having a concentration of 5% by weight or more and 50% by weight or less is preferable as in the cooling bath.
  • the poor solvent means that the polyvinylidene fluoride resin cannot be dissolved by 5% by weight or more at a low temperature of less than 60 ° C., but it is 60 ° C. or more and below the melting point of the polyvinylidene fluoride resin (for example, polyvinylidene fluoride resin In the case of a vinylidene fluoride homopolymer, it is a solvent that can be dissolved by 5% by weight or more in a high temperature region (about 178 ° C.). A solvent capable of dissolving 5% by weight or more of the polyvinylidene fluoride resin at a low temperature of less than 60 ° C.
  • a solvent that does not dissolve or swell is defined as a non-solvent.
  • examples of the poor solvent for the polyvinylidene fluoride resin include medium chain length alkyl ketones such as cyclohexanone, isophorone, ⁇ -butyrolactone, methyl isoamyl ketone, and propylene carbonate, fatty acid esters, alkyl carbonates, and the like, and mixed solvents thereof.
  • medium chain length alkyl ketones such as cyclohexanone, isophorone, ⁇ -butyrolactone, methyl isoamyl ketone, and propylene carbonate, fatty acid esters, alkyl carbonates, and the like, and mixed solvents thereof.
  • Examples of good solvents include lower alkyl ketones such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethyl urea, and trimethyl phosphate.
  • Examples thereof include esters, amides and the like and mixed solvents thereof.
  • Non-solvents include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, pentanediol.
  • phase separation mechanism there are mainly two types of phase separation mechanisms.
  • One is a liquid-liquid phase separation method in which a polymer solution that is uniformly dissolved at a high temperature is separated into a polymer rich phase and a dilute phase due to a decrease in the solution dissolving ability when the temperature is lowered, and then the structure is fixed by crystallization.
  • the other is a solid-liquid phase separation method in which a polymer solution uniformly dissolved at a high temperature causes crystallization of the polymer when the temperature is lowered, and phase separation into a polymer solid phase and a solvent phase.
  • a three-dimensional network structure is mainly formed
  • a spherical structure mainly composed of a spherical structure is formed.
  • the latter phase separation mechanism is used.
  • the combination of the solvent of the polymer solution in which solid-liquid phase separation is induced, the resin concentration and temperature, the composition and temperature of the cooling bath are important.
  • Stretching is performed by a normal tenter method, roll method, rolling method, or a combination thereof.
  • the temperature range during stretching is preferably 50 ° C or higher and 140 ° C or lower, more preferably 55 ° C or higher and 120 ° C or lower, and further preferably 60 ° C or higher and 100 ° C or lower.
  • the draw ratio is preferably 1.1 to 4 times, more preferably 1.1 to 2 times.
  • stretching is preferably performed in a liquid because temperature control is easy, but may be performed in a gas such as steam.
  • water is simple and preferable as the liquid, but when stretching at about 90 ° C. or higher, it is also possible to preferably employ low molecular weight polyethylene glycol or the like.
  • the permeation performance and the breaking strength are reduced as compared with the stretching, but the breaking elongation and removal performance are improved. Therefore, the presence / absence of the stretching step and the stretching ratio of the stretching step can be appropriately set according to the use of the separation membrane.
  • a separation functional layer having a three-dimensional network structure is formed on the hollow fiber membrane having the spherical structure thus formed.
  • the method is not particularly limited, but after applying a polymer solution comprising a polyvinylidene fluoride resin and its good solvent to the surface of the hollow fiber membrane having a spherical structure, a coagulation bath mainly comprising a non-solvent of the polyvinylidene fluoride resin A method of coating the separation functional layer by solidifying in it is preferable.
  • the method of applying the polyvinylidene fluoride resin solution is not particularly limited, but a method of immersing the hollow fiber membrane in the polymer solution or spray coating the polymer solution on the hollow fiber membrane is preferably used.
  • the coagulation bath is mainly composed of a non-solvent of a polyvinylidene fluoride resin, and may contain a good solvent or a poor solvent of the polyvinylidene fluoride resin in a range of 0% to 30%.
  • the temperature of the coagulation bath is preferably 0 ° C. or higher and 70 ° C. or lower, more preferably 5 ° C. or higher and 50 ° C. or lower.
  • a method for producing a separation membrane according to the present invention a method in which a polymer solution for forming a separation functional layer and a polymer solution for forming a support layer are simultaneously discharged from a triple tube die and solidified is preferably employed. That is, when producing a composite hollow fiber membrane in which the separation functional layer is disposed on the outer layer of the hollow fiber membrane and the support layer is disposed on the inner layer, the support layer is formed from the outer tube with the polymer solution forming the separation functional layer.
  • the target composite hollow fiber membrane can be obtained by simultaneously discharging the polymer solution from the intermediate tube and the hollow portion forming liquid from the inner tube and solidifying in the coagulation bath.
  • the thicknesses of the separation functional layer and the support layer are also important.
  • the separation functional layer is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 15 ⁇ m or more and 150 ⁇ m or less, more preferably 20 ⁇ m or more and 150 ⁇ m or less, and further preferably 25 ⁇ m or more and 100 ⁇ m or less. If the separation functional layer is formed with a thickness of less than 2 ⁇ m, defects are likely to occur, and the removal performance is degraded.
  • the thickness of the layer exceeds 200 ⁇ m, the effect of imparting pressure resistance to the separation functional layer by the support layer is reduced, and the separation functional layer is deformed.
  • the pore diameter of the separation functional layer is enlarged, the removal performance is lowered, and conversely, when the pore diameter is reduced, the pure water permeation performance is lowered.
  • the thickness of the support layer is preferably 110 ⁇ m or more and 400 ⁇ m or less, more preferably 150 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the support layer is less than 110 ⁇ m, the physical strength is low, and when it exceeds 400 ⁇ m, the pure water permeation performance decreases.
  • the respective thicknesses of the separation functional layer and the support layer are obtained by photographing a cross section from the outer surface to the inner surface direction of the entire separation membrane at a magnification of 300 to 1000 times using a scanning electron microscope. It can be determined by measuring the thickness of the separation functional layer and the thickness of the support layer and averaging the numbers.
  • melt viscosity The melt viscosity was measured at a temperature of 230 ° C and a shear rate of 100 seconds -1 according to ASTM D3835 using a Capillograph 1C (die diameter ⁇ 1 mm, die length 10 mm) manufactured by Toyo Seiki Co., Ltd.
  • the number of thin layers and the number of thin layers having a maximum pore diameter exceeding 0.6 ⁇ m were determined.
  • Average diameter of the spherical solid content of the support layer having a spherical structure The spherical structure layer having a cross section from the outer surface to the inner surface direction of the separation membrane can be obtained at any 20 locations at 3000 times using a scanning electron microscope. A photo of was taken. About each photograph, the diameter of arbitrary 20 spherical solid content was measured, respectively, and all of them were averaged and the average diameter was calculated
  • Thickness and thickness of separation functional layer and support layer A cross section from the outer surface to the inner surface of the separation membrane was photographed at 300 to 1000 times using a scanning electron microscope, and the film at any 20 locations The thickness, the thickness of the separation functional layer, and the thickness of the support layer were measured and averaged respectively.
  • Virus removal performance An aqueous solution of distilled water containing bacteriophage MS-2 (Bacteriophage MS-2 ATCC 15597-B1) having a size of about 25 nm and a concentration of about 1.0 ⁇ 10 7 PFU / ml As prepared.
  • the distilled water used here was distilled water from a pure water production apparatus Auto Still (manufactured by Yamato Kagaku) and subjected to high-pressure steam sterilization at 121 ° C. for 20 minutes.
  • the separation membrane was a hollow fiber membrane, a small module made of glass having a length of about 200 mm consisting of about two hollow fiber membranes was produced.
  • the separation membrane was a flat membrane, it was cut into a circle with a diameter of 43 mm and set in a cylindrical filtration holder.
  • the virus stock solution was fed to the module under conditions of a temperature of about 20 ° C. and a filtration differential pressure of about 10 kPa (external pressure). After about 10 ml of filtration, about 5 ml of the filtrate was collected and diluted 0 to 1000 times with distilled water. Based on the method of Overlay agar assay, Standard Method 9211-D (APHA, 1998, Standard methods for the examination of water and wastewater, 18th ed.) To determine the concentration of bacteriophage MS-2. Removal performance was expressed logarithmically. For example, 2 log means 2 log 10 and means that the concentration of MS-2 after filtration is 1/100 of the concentration of MS-2 before filtration. When no plaque was measured in the filtrate, ⁇ 7 log was set.
  • Raw water was put into a 10 L stainless steel pressurized tank ADVANTEC PRESSURE VESSSEL DV-10 equipped with a pressure gauge.
  • distilled water made by Wako Pure Chemical Industries, Ltd. was placed in a 40 L stainless steel pressurized tank ADVANTEC PRESSURE VESSSEL DV-40 equipped with a pressure gauge.
  • Each tank was connected to a two-way cock at the water outlet.
  • Lake Biwa water (turbidity 1.0 NTU or less, TOC (total organic carbon) 1.2 mg / L, calcium concentration 15 mg / L, silicon concentration 0.5, manganese concentration 0.01 mg / L or less, iron concentration 0) .01 mg / below) was used.
  • raw water tank connects the two-way cock of the pressurized tank with raw water (hereinafter referred to as raw water tank) and the point A of the miniature membrane module with a Teflon (registered trademark) tube via the three-way cock, and pressurize the tank with distilled water (hereinafter referred to as distilled water).
  • the two-way cock of the tank) and point B of the miniature membrane module were connected with a Teflon (registered trademark) tube.
  • the point C of the miniature membrane module was sealed with a resin cap so that permeated water was discharged from point D.
  • Permeated water weight was measured every 5 seconds with an electronic balance AND HF-6000 connected to a personal computer, and the continuous recording program AND RsCom ver. Recorded using 2.40. Since the data obtained in this experiment is the permeated water weight per 5 seconds, the filtration resistance was calculated using the following equation.
  • Filtration resistance (1 / m) (filtration pressure (kPa)) ⁇ 10 3 ⁇ 5 ⁇ (membrane area (m 2 )) ⁇ 10 6 / ((permeated water viscosity (Pa ⁇ s) ⁇ (permeation per 5 seconds) Water weight (g / s)) ⁇ (permeate density (g / ml)))
  • the two-way cock of the raw water tank was closed to complete the filtration step.
  • the three-way cock between the miniature membrane module was opened in all three directions, and the permeate outlet (point D) of the miniature membrane module was sealed with a resin cap.
  • Compressed air of 0.4 MPa was adjusted to 150 KPa with an SMC regulator (AF2000-02, AR2000-02G), pressure was applied to the distilled water tank, the two-way cock was opened, and distilled water was fed into the miniature module. By this operation, the backwash process was started. The backwashing process was continued until the backwashing drainage flowing out from the 3-way cock reached 10 ml, and then the backwashing process was completed by closing the 2-way cock of the distilled water tank.
  • SMC regulator AF2000-02, AR2000-02G
  • the above operation was continuously carried out 10 times for one membrane module, and the total filtration water amount was plotted on the horizontal axis and the calculated filtration resistance was plotted on the vertical axis.
  • the plot was started 30 seconds after the start of each filtration. Moreover, since the amount of permeated water decreases as the filtration resistance increases, the permeated water weight per 5 seconds decreases. Since the filtration resistance is calculated from the permeated water weight per 5 seconds according to the above formula, when the permeated water weight decreases, the influence of the variation on the calculated filtration resistance increases. Therefore, when the decrease in permeate weight was significant, the graph was corrected by taking a moving average approximation of the graph created as appropriate.
  • Example 1 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of ⁇ -butyrolactone were dissolved at 160 ° C. This polymer solution is discharged from the outer tube of the double-tube base, and at the same time, an 85% by weight aqueous solution of ⁇ -butyrolactone is discharged from the inner tube of the double-tube base, and the temperature of the aqueous solution of 85% by weight of ⁇ -butyrolactone is 10%. Solidified in a bath at 0 ° C. The obtained film was stretched 1.5 times in 90 ° C. water. The obtained membrane was a hollow fiber membrane having a spherical structure, and this membrane was used as a support.
  • This membrane-forming stock solution is uniformly applied to the surface of the hollow fiber membrane, and then solidified in water at 23 ° C. to form a separation function layer having a three-dimensional network structure on a spherical support layer.
  • a membrane was prepared. Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Example 2 12% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 6400 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) HSV900) was dissolved in N-methyl-2-pyrrolidone to obtain a membrane-forming stock solution for the separation functional layer . After this membrane-forming stock solution was uniformly applied to the surface of the hollow fiber membrane obtained in Example 1, it was solidified in water at 23 ° C., and a separation functional layer having a three-dimensional network structure was formed on the support layer having a spherical structure. The formed hollow fiber separation membrane was produced. Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Example 3 9.6% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 6400 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) HSV900) and a maleic anhydride-modified polyvinylidene fluoride homopolymer "manufactured by Arkema, Kynar (registered trademark) ADX -111 "2.4 wt% was dissolved in N-methyl-2-pyrrolidone to obtain a membrane-forming stock solution for the separation functional layer.
  • a polyvinylidene fluoride homopolymer having a melt viscosity of 6400 Pa ⁇ s manufactured by Arkema, Kynar (registered trademark) HSV900
  • a maleic anhydride-modified polyvinylidene fluoride homopolymer manufactured by Arkema, Kynar (registered trademark) ADX -111 "2.4 wt% was
  • Example 1 After this membrane-forming stock solution was uniformly applied to the surface of the hollow fiber membrane obtained in Example 1, it was solidified in water at 23 ° C., and a separation functional layer having a three-dimensional network structure was formed on the support layer having a spherical structure. The formed hollow fiber separation membrane was produced. Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Example 4 Polyvinylidene fluoride homopolymer having a melt viscosity of 6400 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900) 9.6% by weight, cellulose diacetate (Eastman Chemical, CA-398-3) 1.2% by weight In addition, 1.2% by weight of cellulose triacetate (manufactured by Eastman Chemical Co., CA-436-80S) was dissolved in N-methyl-2-pyrrolidone to obtain a membrane forming stock solution for the separation functional layer.
  • cellulose diacetate Eastman Chemical, CA-398-3
  • cellulose triacetate manufactured by Eastman Chemical Co., CA-436-80S
  • Example 1 After this membrane-forming stock solution was uniformly applied to the surface of the hollow fiber membrane obtained in Example 1, it was solidified in water at 23 ° C., and a separation functional layer having a three-dimensional network structure was formed on the support layer having a spherical structure. The formed hollow fiber separation membrane was produced. Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Example 5 Polyvinylidene fluoride homopolymer having a melt viscosity of 6400 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900), 9.6% by weight, polymethylmethacrylate resin (Aldrich, weight average molecular weight: 3.5 ⁇ 10 5 ) 2 4% by weight was dissolved in N-methyl-2-pyrrolidone to obtain a membrane-forming stock solution for the separation functional layer. After this membrane-forming stock solution was uniformly applied to the surface of the hollow fiber membrane obtained in Example 1, it was solidified in water at 23 ° C., and a separation functional layer having a three-dimensional network structure was formed on the support layer having a spherical structure. The formed hollow fiber separation membrane was produced. Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Example 6 Polyvinylidene fluoride homopolymer having a melt viscosity of 6400 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900) 9.6% by weight, polyvinylpyrrolidone (BASF, K90) 2.4% by weight of N-methyl-2- Dissolved in pyrrolidone to obtain a membrane-forming stock solution for the separation functional layer.
  • this membrane-forming stock solution was uniformly applied to the surface of the hollow fiber membrane obtained in Example 1, it was solidified in water at 23 ° C., and a separation functional layer having a three-dimensional network structure was formed on the support layer having a spherical structure.
  • Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Comparative Example 1 12% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 3200 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) 760) was dissolved in N-methyl-2-pyrrolidone to obtain a membrane forming stock solution for a separation functional layer . After this membrane-forming stock solution was uniformly applied to the surface of the hollow fiber membrane obtained in Example 1, it was solidified in water at 23 ° C., and a separation functional layer having a three-dimensional network structure was formed on the support layer having a spherical structure. The formed hollow fiber separation membrane was produced. Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Example 2 A film forming stock solution was obtained by dissolving 12% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 6400 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) HSV900) in ⁇ -butyrolactone. After this membrane-forming stock solution was uniformly applied to the surface of the hollow fiber membrane obtained in Example 1, it was solidified in a bath composed of an 85% by weight aqueous solution of ⁇ -butyrolactone at a temperature of 10 ° C. The obtained separation membrane was a hollow fiber-like separation membrane in which a spherical structure layer was formed on a spherical structure support layer. Table 1 shows the membrane structure and membrane performance of the obtained separation membrane.
  • Example 7 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of ⁇ -butyrolactone were dissolved at 160 ° C.
  • This polymer solution is discharged from the outer tube of the double-tube base, and at the same time, an 85% by weight aqueous solution of ⁇ -butyrolactone is discharged from the inner tube of the double-tube base, and the temperature of the aqueous solution of 85% by weight of ⁇ -butyrolactone is 10%.
  • the obtained film was stretched 1.5 times in 90 ° C. water.
  • the obtained membrane was a hollow fiber membrane having a spherical structure.
  • the obtained separation membrane had an outer diameter of 1430 ⁇ m and an inner diameter of 880 ⁇ m.
  • the membrane structure and membrane performance are shown in Table 2.
  • Example 8 a hollow fiber membrane having a spherical structure was produced in the same manner as in Example 7. Next, 18% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 4700 Pa ⁇ s and 2% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 2600 Pa ⁇ s were dissolved in dimethyl sulfoxide to obtain a film forming stock solution. The solution viscosity at 50 ° C. of this film-forming stock solution was 365 Pa ⁇ s.
  • This membrane-forming stock solution is uniformly applied to the surface of the hollow fiber membrane having a spherical structure, and then solidified in a 60% by weight dimethyl sulfoxide aqueous solution at 23 ° C. to separate the three-dimensional network structure on the spherical support layer.
  • a hollow fiber separation membrane having a functional layer was produced.
  • the obtained separation membrane had an outer diameter of 1480 ⁇ m and an inner diameter of 870 ⁇ m.
  • the membrane structure and membrane performance are shown in Table 2.
  • Example 9 First, a hollow fiber membrane having a spherical structure was produced in the same manner as in Example 7. Next, 10% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 4700 Pa ⁇ s and 5% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 800 Pa ⁇ s were dissolved in dimethyl sulfoxide to obtain a film forming stock solution. The solution viscosity at 50 ° C. of this film-forming stock solution was 8 Pa ⁇ s.
  • This membrane-forming stock solution is uniformly applied to the surface of the hollow fiber membrane having a spherical structure, and then solidified in a 60% by weight dimethyl sulfoxide aqueous solution at 23 ° C. to separate the three-dimensional network structure on the spherical support layer.
  • a hollow fiber separation membrane having a functional layer was produced.
  • the obtained separation membrane had an outer diameter of 1410 ⁇ m and an inner diameter of 880 ⁇ m.
  • the membrane structure and membrane performance are shown in Table 2.
  • Example 10 a hollow fiber membrane having a spherical structure was produced in the same manner as in Example 7. Next, 5% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 4700 Pa ⁇ s and 10% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 2300 Pa ⁇ s were dissolved in dimethyl sulfoxide to obtain a film forming stock solution. The solution viscosity at 50 ° C. of this film-forming stock solution was 5.6 Pa ⁇ s.
  • This membrane-forming stock solution is uniformly applied to the surface of the hollow fiber membrane having a spherical structure, and then solidified in a 60% by weight dimethyl sulfoxide aqueous solution at 23 ° C. to separate the three-dimensional network structure on the spherical support layer.
  • a hollow fiber separation membrane having a functional layer was produced.
  • the obtained separation membrane had an outer diameter of 1480 ⁇ m and an inner diameter of 870 ⁇ m.
  • the membrane structure and membrane performance are shown in Table 2.
  • Example 3 a hollow fiber membrane having a spherical structure was produced in the same manner as in Example 7. Next, 10% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 2600 Pa ⁇ s and 5% by weight of a polyvinylidene fluoride homopolymer having a melt viscosity of 800 Pa ⁇ s were dissolved in dimethyl sulfoxide to obtain a film forming stock solution. The solution viscosity at 50 ° C. of the film-forming stock solution was 2.4 Pa ⁇ s.
  • This membrane-forming stock solution is uniformly applied to the surface of the hollow fiber membrane having a spherical structure, and then solidified in a 60% by weight dimethyl sulfoxide aqueous solution at 23 ° C. to separate the three-dimensional network structure on the spherical support layer.
  • a hollow fiber separation membrane having a functional layer was produced.
  • the obtained separation membrane had an outer diameter of 1420 ⁇ m and an inner diameter of 880 ⁇ m.
  • the membrane structure and membrane performance are shown in Table 2.
  • Example 7 a separation membrane having high virus removal performance, high pure water permeation performance, and high physical strength has been achieved.
  • the polymer forming the separation functional layer has a low melt viscosity, so that the separation membrane has low virus removal performance.
  • Example 11 A vinylidene fluoride homopolymer having a weight average molecular weight of 420,000 (Kureha Chemical Industry Co., Ltd., KF Polymer T # 1300) 38% by weight and ⁇ -butyrolactone (Mitsubishi Chemical Co., Ltd .: the same applies below) 62% by weight were dissolved at 160 ° C. A polymer solution B for supporting membrane was obtained.
  • a vinylidene fluoride homopolymer having a measured melt viscosity of 3300 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300 to 5500 Pa ⁇ s described in the catalog) 9% by weight, polymethyl methacrylate (Aldrich) , Weight average molecular weight: 3.5 ⁇ 10 5 ) 2% by weight and 89% by weight of dimethyl sulfoxide (manufactured by Toray Fine Chemical Co., Ltd., the same shall apply hereinafter) are mixed and dissolved at a temperature of 140 ° C., and the separation functional layer has a solution viscosity of 6 Pa ⁇ s.
  • Polymer solution A1 was obtained.
  • the polymer solution B for the support membrane was simultaneously and concentrically discharged from the outer slit of the double tube die through an 85% by weight aqueous solution of ⁇ -butyrolactone from the central pipe of the double tube die, and the temperature was 10 ° C. ⁇ -butyrolactone.
  • After solidifying in an 85% by weight aqueous solution a hollow fiber-shaped support membrane was obtained through a 1.5-fold stretching step, a solvent removal step, and a drying step.
  • This support membrane is supplied into a coating nozzle, and after coating the polymer solution A1 on the support membrane, the polymer solution A1 is coagulated in water having a coagulation bath temperature of 40 ° C., and is further subjected to a solvent removal step to form a hollow fiber-like separation membrane. (Hereinafter referred to as a composite hollow fiber membrane).
  • Table 3 shows the structure and performance of the obtained film.
  • Example 12 A vinylidene fluoride homopolymer having a measured melt viscosity of 5400 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300 to 5500 Pa ⁇ s described in the catalog) 8% by weight, methyl methacrylate-alkyl acrylate copolymer 2% by weight of polymer (Made by Mitsubishi Rayon, Metabrene (registered trademark) P-531A, weight average molecular weight: 4.0 ⁇ 10 6 ), and 90% by weight of N-methyl-2-pyrrolidone (manufactured by BASF: hereinafter the same) % was dissolved at a temperature of 140 ° C.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 11 except that the polymer solution A2 was used instead of the polymer solution A1.
  • Table 3 shows the structure and performance of the obtained film.
  • Example 13 Vinylidene fluoride homopolymer having a measured melt viscosity of 4700 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog) 13% by weight, polymethyl methacrylate (Aldrich, weight) Average molecular weight: 9.96 ⁇ 10 5 ) 4% by weight and N-methyl-2-pyrrolidone in a proportion of 83% by weight were dissolved at a temperature of 140 ° C. to obtain a polymer solution A3 having a solution viscosity of 50 Pa ⁇ s.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 11 except that the polymer solution A3 was used instead of the polymer solution A1 and the coagulation bath was changed to water at a temperature of 60 ° C. Table 3 shows the structure and performance of the obtained film.
  • ⁇ Example 14 11% by weight of vinylidene fluoride homopolymer having a measured melt viscosity of 4700 Pa ⁇ s (manufactured by Arkema, Kynar® HSV900, melt viscosity of 3300 to 5500 Pa ⁇ s described in the catalog), methyl methacrylate-alkyl acrylate copolymer polymer (Mitsubishi Rayon Co., Ltd., Metablen (registered trademark) P-551A, weight average molecular weight: 1.5 ⁇ 10 6) 0.5 wt%, and 88.5 wt% of dimethyl sulfoxide in a mixed to a temperature 140 ° C.
  • the polymer solution A4 having a solution viscosity of 9 Pa ⁇ s was obtained by dissolution.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 11 except that the polymer solution A4 was used instead of the polymer solution A1.
  • Table 3 shows the structure and performance of the obtained film.
  • Example 15 9% by weight of a vinylidene fluoride homopolymer having a melt viscosity of 4300 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog), polymethyl methacrylate (Aldrich, weight) Average molecular weight: 1.2 ⁇ 10 5 ) 2 wt% and dimethyl sulfoxide 89 wt% were mixed and dissolved at a temperature of 140 ° C. to obtain a polymer solution A5 having a solution viscosity of 4 Pa ⁇ s.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 11 except that the polymer solution A5 was used instead of the polymer solution A1, and the coagulation bath was changed to a 60 wt% dimethyl sulfoxide aqueous solution at a temperature of 30 ° C.
  • Table 3 shows the structure and performance of the obtained film.
  • Example 16> A vinylidene fluoride homopolymer having a measured melt viscosity of 3900 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog) 6% by weight, polymethyl methacrylate (Aldrich, weight) Average molecular weight: 1.2 ⁇ 10 5 ) 0.1 wt% and N-methyl-2-pyrrolidone 93.9 wt% are mixed and dissolved at a temperature of 140 ° C., and a polymer solution having a solution viscosity of 0.8 Pa ⁇ s A6 was obtained.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 11 except that the polymer solution A6 was used instead of the polymer solution A1, and the coagulation bath was changed to water at a temperature of 60 ° C. Table 3 shows the structure and performance of the obtained film.
  • Example 17 The same support membrane polymer solution and separation functional layer polymer solution as in Example 11 were used.
  • the polymer solution for the supporting membrane is extruded from the inner slit of the triple tube type die, the polymer solution for the separation functional layer is extruded from the outer layer slit, and the 85% by weight ⁇ -butyrolactone aqueous solution is simultaneously extruded concentrically from the center pipe, and dimethyl at a temperature of 10 ° C.
  • a composite hollow fiber membrane was obtained through a solvent removal step. Table 3 shows the structure and performance of the obtained film.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 11 except that the polymer solution A7 was used instead of the polymer solution A1. Table 3 shows the structure and performance of the obtained film.
  • ⁇ Comparative Example 5 20% by weight of a vinylidene fluoride homopolymer having a measured melt viscosity of 2400 Pa ⁇ s (Arkema, KYNAR® 760, melt viscosity of 2300 to 2900 Pa ⁇ s described in the catalog), methyl methacrylate-alkyl acrylate copolymer 5% by weight (Made by Mitsubishi Rayon, Metabrene (registered trademark) P-531A, weight average molecular weight: 4.0 ⁇ 10 6 ) and 75% by weight dimethyl sulfoxide were mixed and dissolved at a temperature of 140 ° C. A 3 Pa ⁇ s polymer solution A8 was obtained.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 11 except that the polymer solution A8 was used instead of the polymer solution A1 and the coagulation bath was changed to water at a temperature of 60 ° C.
  • Table 3 shows the structure and performance of the obtained film.
  • Example 18 A vinylidene fluoride homopolymer having a weight average molecular weight of 420,000 (Kureha Chemical Industry Co., Ltd., KF Polymer T # 1300) 38% by weight and ⁇ -butyrolactone (Mitsubishi Chemical Co., Ltd .: the same applies below) 62% by weight were dissolved at 160 ° C. A polymer solution B for supporting membrane was obtained.
  • a vinylidene fluoride homopolymer having a measured melt viscosity of 5500 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300 to 5500 Pa ⁇ s described in the catalog) 9% by weight, polyvinylpyrrolidone (manufactured by BASF, 1% by weight of K90HM) and 90% by weight of N-methyl-2-pyrrolidone were mixed and dissolved at a temperature of 120 ° C. to obtain a polymer solution A9 for the separation functional layer.
  • the polymer solution B for the supporting membrane was simultaneously and concentrically discharged from the outer slit of the double tube die through an 85% by weight aqueous solution of ⁇ -butyrolactone from the central pipe of the double tube die, and the temperature was 10 ° C.
  • ⁇ -butyrolactone 85 After solidifying in a weight% aqueous solution, a hollow fiber-shaped support membrane was obtained through a solvent removal step, a 1.5-fold stretching step, and a drying step.
  • This support membrane is supplied into a coating nozzle, and after the polymer solution A9 is coated on the support membrane, a hollow fiber-like separation membrane (hereinafter referred to as composite hollow fiber) is passed through a step of solidifying in water at a temperature of 40 ° C. and a solvent removal step. Called a membrane).
  • Table 4 shows the structure and performance of the obtained film.
  • Example 19 Vinylidene fluoride homopolymer having a measured value of melt viscosity of 4500 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog) 9% by weight, polyvinylpyrrolidone (BASF, K90) 1% by weight and 90% by weight of dimethyl sulfoxide (manufactured by Toray Fine Chemical Co., Ltd .: the same applies below) were mixed and dissolved at a temperature of 120 ° C. to obtain a polymer solution A10 for the separation functional layer.
  • melt viscosity of 4500 Pa ⁇ s Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog
  • BASF, K90 polyvinylpyrrolidone
  • dimethyl sulfoxide manufactured by Toray Fine Chemical Co., Ltd .: the same applies below
  • a composite hollow fiber membrane was obtained in the same manner as in Example 18 except that the polymer solution A10 was used instead of the polymer solution A9 and the coagulation bath was changed to water at a temperature of 20 ° C.
  • Table 4 shows the structure and performance of the obtained film.
  • Example 20> A vinylidene fluoride homopolymer having a measured melt viscosity of 5200 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300 to 5500 Pa ⁇ s described in the catalog) 9% by weight, polyvinylpyrrolidone (BASF, K30) 1% by weight and 90% by weight of N-methyl-2-pyrrolidone were mixed and dissolved at a temperature of 120 ° C. to obtain a polymer solution A11.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 18 except that the polymer solution A11 was used instead of the polymer solution A9 and the coagulation bath was changed to water at a temperature of 60 ° C.
  • Table 4 shows the structure and performance of the obtained film.
  • Example 21 12% by weight of vinylidene fluoride homopolymer having a measured melt viscosity of 4800 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog), polyvinylpyrrolidone (manufactured by BASF, K90HM) 0.5% by weight and 87.5% by weight of dimethyl sulfoxide were mixed and dissolved at a temperature of 120 ° C. to obtain a polymer solution A12.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 18 except that the polymer solution A12 was used instead of the polymer solution A9, and the coagulation bath was changed to a 60 wt% dimethylsulfoxide aqueous solution at a temperature of 25 ° C.
  • Table 4 shows the structure and performance of the obtained film.
  • Example 22 12% by weight of vinylidene fluoride homopolymer having a measured melt viscosity of 5200 Pa ⁇ s (manufactured by Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog), polyvinylpyrrolidone (manufactured by BASF, K90HM) 0.5% by weight and 87.5% by weight of N-methyl-2-pyrrolidone were mixed and dissolved at a temperature of 120 ° C. to obtain a polymer solution A13.
  • polyvinylpyrrolidone manufactured by BASF, K90HM
  • Hollow support membrane made of polyethylene (Made by Mitsubishi Rayon, outer diameter 450 ⁇ m, inner diameter 280 ⁇ m, nominal pore diameter 0.1 ⁇ m, 50 kPa, pure water permeability at 25 ° C. 0.58 m 3 / m 2 / hr, breaking strength 4.2 MPa, (Breaking elongation 42%) was supplied into the coating nozzle, and after coating the polymer solution A13 on the support membrane, a composite hollow fiber membrane was obtained through a step of solidifying in water at a temperature of 40 ° C. and a solvent removal step. Table 4 shows the structure and performance of the obtained film.
  • Example 23 A vinylidene fluoride homopolymer having a melt viscosity measurement value of 5500 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300-5500 Pa ⁇ s described in the catalog) 10% by weight, polyvinylpyrrolidone (BASF, K30) ) 0.5 wt%, polymethyl methacrylate (Aldrich, weight average molecular weight: 1.2 ⁇ 10 5 ) 1 wt%, and N-methyl-2-pyrrolidone 88.5 wt% were mixed at a temperature of 120 ° C. It melt
  • a composite hollow fiber membrane was obtained in the same manner as in Example 18 except that the polymer solution A14 was used instead of the polymer solution A9. Table 4 shows the structure and performance of the obtained film.
  • Example 24 A vinylidene fluoride homopolymer having a measured melt viscosity of 5000 Pa ⁇ s (Arkema, Kynar (registered trademark) HSV900, melt viscosity 3300 to 5500 Pa ⁇ s described in the catalog) 10% by weight, polyvinylpyrrolidone (BASF, K90HM) ) 0.5 wt%, polymethyl methacrylate (Aldrich, weight average molecular weight: 1.2 ⁇ 10 5 ) 1 wt%, and N-methyl-2-pyrrolidone 88.5 wt% were mixed at a temperature of 120 ° C. It melt
  • a composite hollow fiber membrane was obtained in the same manner as in Example 18 except that the polymer solution A15 was used instead of the polymer solution A9. Table 4 shows the structure and performance of the obtained film.
  • Example 25 A composite hollow fiber membrane was obtained in the same manner as in Example 18 except that the same polymer solution A15 as in Example 24 and the same polyethylene support membrane as in Example 22 were used. Table 4 shows the structure and performance of the obtained film.
  • Example 26 The same support membrane polymer solution B and separation functional layer polymer solution A9 as in Example 18 were used.
  • the polymer solution B for the supporting membrane is discharged from the inner slit of the triple tube type die, the polymer solution A9 is discharged from the outer layer slit, and the 85% by weight ⁇ -butyrolactone aqueous solution is simultaneously discharged concentrically from the center pipe, and the temperature is 10 ° C.
  • Example 27 The same support membrane polymer solution B and separation functional layer polymer solution A15 as in Example 24 were used.
  • the polymer solution B for the supporting membrane is discharged from the inner slit of the triple tube type die, the polymer solution A15 is discharged from the outer layer slit, and the 85% by weight ⁇ -butyrolactone aqueous solution is simultaneously discharged concentrically from the center pipe, and the coagulation temperature is 10 ° C.
  • Table 4 shows the structure and performance of the obtained film.
  • a composite hollow fiber membrane was obtained in the same manner as in Example 18 except that the polymer solution A16 was used instead of the polymer solution A9. Table 4 shows the structure and performance of the obtained film.
  • the separation membrane of the present invention is suitable for the water treatment field, the pharmaceutical production field, the food industry field, the blood purification membrane field, and the like.

Abstract

 分離機能層を有する分離膜であって、該分離機能層が溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を含有し、かつ、該分離機能層が三次元網目状構造を有する分離膜。本発明は、水処理用途にも使用可能である、高いウイルス除去性能、高い純水透過性能、および高い物理的耐久性および高い化学的強度を有する分離膜を提供する。

Description

分離膜およびその製造方法
 本発明は、水処理分野、医薬品製造分野、食品工業分野、血液浄化用膜分野等に好適な分離膜およびその製造方法に関する。とりわけ、本発明は、液体中のウイルス等の微少物の除去に好適な分離膜およびその製造方法に関する。
 近年、分離膜は、水処理分野、食品工業分野等様々な方面で利用されている。飲料水製造、浄水処理、排水処理などの水処理分野においては、分離膜が従来の砂ろ過工程または凝集沈殿工程の代替として水中の不純物を除去するために用いられるようになってきている。膜のバイオファウリング防止の目的で次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、酸、アルカリ、塩素、界面活性剤などで膜そのものを洗浄したりするため、浄水処理で用いられる分離膜には高い化学的強度が求められる。さらに、分離膜には、使用中に破断が起こらないように高い物理的強度が要求される。
 このように、分離膜には、優れた純水透過性能と分離性能に加え、高い化学的強度および物理的強度が求められる。そこで、近年では化学的強度と物理的強度を併せ有するポリフッ化ビニリデン系樹脂を用いた分離膜が使用されるようになってきた。
 また、飲料水製造、医薬品製造および食品工業分野では、工程内にウイルス等の病原体が混入すると、製造ラインが汚染されるだけでなく、消費者の集団感染を引き起こす危険があるため、種々の殺菌技術が用いられている。殺菌方法としては、加熱処理や塩素等の化学薬品処理が挙げられるが、熱耐性や薬品耐性を持つウイルスには効果が薄い。そこで、ウイルスを物理的に除去する方法として、分離膜を用いた膜ろ過が注目を集めるようになってきた。膜ろ過ではウイルスの100%除去が可能である、分離速度が速い、不純物の混合が必要ないなど利点が多い。
 実際のウイルスの種類としては、最も小さいもので直径20~30nmのパルボウイルスやポリオウイルス等があり、水中病原ウイルスとしては直径25~35nmのノロウイルスや直径70~90nmのアデノウイルス等がある。このようなウイルス群を除去できる分離膜としては、種々のものが開示されている。
 例えば特許文献1には、医療用途に利用する中空糸膜であって、ポリフッ化ビニリデン樹脂からなり、バブルポイント法で求めた最大孔径が10~100nm、緻密構造層の厚みが膜厚全体の50%以上とすることで高いウイルス除去性能を示す中空糸膜の記載がある。しかし、粗大構造を含む連続した構造の一層から形成され、さらに膜厚が薄いため、中空糸膜1本あたりの物理的強力が低く、水処理用途には適用できない。また、緻密層が厚すぎるため、膜厚が薄いにも関わらず、純水透過性能は低くなっている。
 特許文献2には、ポリフッ化ビニリデン系樹脂からなる多孔質膜であって、高分子量のポリフッ化ビニリデン系樹脂を添加することにより、空孔率が55~90%、引張り強度が5MPa以上、破断伸度が5%以上を示す膜について開示されている。しかし、同文献ではウイルス除去性を向上させるための各種パラメータやメカニズムについては記述も示唆もされていない。同文献の実施例で示されている分子量のポリフッ化ビニリデン系樹脂からなる多孔質膜を用いた場合、十分なウイルス除去性は得られなかった。
 特許文献3には、補強用繊維を有し、支持層と分離特性を示す緻密層を有するポリフッ化ビニリデン系樹脂からなる多孔質膜についての記載がある。しかし、同文献においてもウイルス除去性を向上させるための各種パラメータやメカニズムについては記述も示唆もされていない。同文献の実施例で示されているポリフッ化ビニリデン系樹脂からなる多孔質膜を用いた場合、十分なウイルス除去性は得られなかった。
 特許文献4には、疎水性高分子と親水性高分子を含み、内表面および外表面に緻密層を有し、内表面から外表面に向かって当初は空孔率が増大し、少なくともひとつの極大部を通過後、外表面側で空孔率が減少する特徴的な構造を有し、内表面の孔径と排除限界粒子径が特定の関係にある高分子多孔質中空糸膜についての記載がある。しかし、同文献にもウイルス除去性を向上させるための各種パラメータやメカニズムについては記述も示唆もされていない。また、実施例に、具体的にポリフッ化ビニリデン系樹脂を使用したという記載は無かった。
国際公開第03/26779号パンフレット 国際公開第04/81109号パンフレット 特開2002-166141号公報 特開2007-289886号公報
 従来、ウイルスを含む汚染物質を除去する分離膜は、高い除去性能および高い物理的耐久性を満たすことは可能であるが、それに加えて高い透過性能を満たすことは非常に困難であった。その理由を述べると、まず高い除去性能を得るためには高濃度の樹脂原液から緻密な構造を有する膜を形成する必要がある。高濃度の樹脂原液を用いると物理的強度は向上するが、膜内部の空隙率が低くなるため透過性能が低下してしまう。透過性能を高くするためには、膜の厚みを薄くすることが必要となり、結果的に物理的強度は低下してしまう。分離膜の物理的強度が低いと、ろ過や洗浄などの操作によって分離膜に圧力を加えた際に孔が変形する。孔の変形によって、孔径が拡大すると汚染物質中のウイルスなどの微小成分が漏洩し、逆に孔径が縮小すると透過性能が低下してしまう。また、分離対象溶液中の濁質などによって表面の擦過や破損が起こり、ウイルスなどの汚染物質が漏洩するようになる。さらには、膜の厚みを薄くすることにより、本来の目的であるウイルス除去性能を発現しなくなる場合もある。水処理用途に用いる場合は、特に大きな外力が分離膜に付与されるため、特にウイルスなどの微小成分を除去することを目的とする際には、物理的強度を高めることが必要不可欠である。
 本発明では上記のような問題点に鑑み、水処理用途にも使用可能であるような、高いウイルス除去性能、高い純水透過性能、高い物理的強度および高い化学的強度を有する分離膜を提供することを目的とする。
 本発明者の発明者らはこのような問題点に対し鋭意検討した結果、従来使用されることのなかった溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を高濃度で用いて三次元網目状構造を形成させることにより、化学的および物理的強度が従来よりもさらに優れ、かつ薄膜化した際にも高いウイルス除去性能を発現する分離機能層を得ることに成功した。さらに発明者らは、透過性能とウイルス除去性能を高いレベルで両立した分離機能層と、高い物理的強度を担う支持体層との多層構造とすることにより、化学的および物理的強度に優れ、高い純水透過性能と高いウイルス除去性能を両立する分離膜を開発するに至った。
 すなわち、本発明は、分離機能層を有する分離膜であって、該分離機能層が溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を含有し、かつ、該分離機能層が三次元網目状構造を有する分離膜である。
 また、本発明は、支持体の少なくとも一方の表面に、ポリフッ化ビニリデン系樹脂を含有するポリマー溶液を塗布した後、凝固液に浸漬することで、ポリマー溶液を固化させて三次元網目状構造を有する分離機能膜を形成し、分離機能層と支持体層とが積層された多層構造を有する分離膜を製造する方法であって、前記ポリマー溶液が溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を5重量%以上30重量%以下含有する分離膜の製造方法を含む。
 また、本発明は、三重管式口金を用いて、外側の管から分離機能層を形成するポリマー溶液を、中間の管から支持体層を形成するポリマー溶液を、および、内側の管から中空部形成液体を同時に吐出して、吐出したポリマー溶液を凝固浴中で固化せしめることで、分離機能層が外層、支持体層が内層に配置された中空糸膜を製造する分離膜の製造方法を含む。
 本発明によれば、化学的および物理的強度に優れ、高い純水透過性能と高いウイルス除去性能を両立するポリフッ化ビニリデン系樹脂製分離膜およびその製造方法が提供される。
実施例で用いたろ過抵抗上昇度の評価モジュールの概略構成図である。
 以下、本発明の具体的な実施形態について述べる。
本発明の分離膜は、分離機能層を有する分離膜であって、該分離機能層が溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を含有し、かつ、該分離機能層が三次元網目状構造を有するものである。 
 ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂を意味し、複数のフッ化ビニリデン系樹脂を含有しても構わない。フッ化ビニリデン共重合体とは、フッ化ビニリデンのモノマー単位を含有する共重合体であり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーとの共重合体である。かかる共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレンおよび三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。また、本発明の効果を損なわない程度に、前記フッ素系モノマー以外の例えばエチレンなどのモノマーが共重合されていても良い。これらのなかでも、化学的強度および物理的強度の高さから、フッ化ビニリデンホモポリマーからなる樹脂を用いることが好ましい。
 前記ポリフッ化ビニリデン系樹脂は、溶融粘度が3300Pa・s以上であることが必要である。溶融粘度の高いポリフッ化ビニリデン系樹脂は、溶融粘度の低いものと比べて化学的および物理的強度に優れるものの、成形性が悪い、構造の制御が困難である等の問題があった。さらに溶融粘度の低いポリフッ化ビニリデン系樹脂を用いた場合でも、分離膜に使用され得る他の樹脂と比較して十分な強度を有しているため、溶融粘度の高いポリフッ化ビニリデン系樹脂は分離膜素材としては採用されていなかった。本発明においては、溶融粘度が3300Pa・s以上であるポリフッ化ビニリデン系樹脂を用いることで、得られる分離機能層の物理的強度が向上するだけではなく、ウイルス除去性能を発現する緻密な網目構造を形成させ、かつ、分離特性を低下させるマクロボイドの発生を抑制できるため、本発明の効果が得られるものと考えられる。本発明に用いられるポリフッ化ビニリデン系樹脂は超高分子量タイプであるため、重量平均分子量は通常のクロマトグラフィーでの分析の限界を超えるため直接算出することはできないが、上述の溶融粘度や、特定の溶媒に展開した溶液の粘度から、おおよその重量平均分子量を概算することができる。フッ化ビニリデンホモポリマーの場合、溶融粘度3300Pa・sに相当する重量平均分子量は、約80万である。本発明に用いられる溶融粘度3300Pa・s以上のフッ化ビニリデンホモポリマーとしては、例えばアルケマ社製のKynar(登録商標)HSV900(乳化重合品)などが挙げられる。ここで、ポリフッ化ビニリデン系樹脂の溶融粘度は、ASTM D3835/230℃において剪断速度100秒-1の条件下で測定することができる。
 ポリフッ化ビニリデン系樹脂の溶融粘度を3300Pa・s以上にするためには、ポリフッ化ビニリデン系樹脂の重合度を上げたり、側鎖を導入したりすることなどによって分子量を増加させる方法が簡便で好ましい。なかでも重合度を上げて分子量を増加させる方法が、化学的強度および物理的強度の高さからより好ましい。また、異なる溶融粘度からなる2種以上のポリフッ化ビニリデン系樹脂を混合し、混合物の溶融粘度を3300Pa・s以上としても良い。
 ポリフッ化ビニリデン系樹脂の溶融粘度は3800Pa・s以上であることがより好ましく、4400Pa・s以上であることがさらに好ましい。溶融粘度3800Pa・sに相当する重量平均分子量は約88万、溶融粘度4400Pa・sに相当する重量平均分子量は約100万である。ここで、ポリフッ化ビニリデン系樹脂の溶融粘度の上限については特に制限はないが、7000Pa・sを超える、あるいは重量平均分子量が160万を超えると、分離膜の透水性が低下する懸念があるため、好ましくない。
 また、分離機能層に、ポリフッ化ビニリデン系樹脂に加えて、親水性ポリマーをさらに含有することにより、分離膜の純水透過性能および耐汚れ性が向上するので、より好ましい。ここで親水性ポリマーとは、水と親和性の高いポリマーのことであり、水に溶解するか、または、水に対する接触角がポリフッ化ビニリデン系樹脂よりも小さいポリマーを指す。親水性ポリマーとしては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸メチルなどのアクリル樹脂、セルロースエステル系樹脂、ポリアクリロニトリル、ポリスルホンなどが好ましい例として挙げられる。またエチレン、プロピレン、フッ化ビニリデンなどのオレフィン系モノマーと親水基を共重合した親水化ポリオレフィン系樹脂も親水性ポリマーとして使用することができる。これらの中でもとりわけ、ポリビニルピロリドン系樹脂、アクリル樹脂およびセルロースエステル系樹脂から選ばれる少なくとも1種以上を含有させることが耐汚れ性の向上の点で好ましい。
 ポリビニルピロリドン系樹脂とは、ビニルピロリドン単独重合体および/またはビニルピロリドンと他の重合可能なビニル系モノマーとの共重合体を示す。ポリビニルピロリドン系樹脂の分子量は特に限られないが、膜の透水性や分離性および成形性などの観点から重量平均分子量は1万以上、500万以下が好ましい。重量平均分子量が1万未満の場合はポリビニルピロリドン系樹脂が製膜段階で開孔剤として膜から流出しやすくなり、膜の耐ファウリング性が低下する。重量平均分子量が500万を超える場合はポリマー溶液の粘度が高すぎるので、成形性が低下し欠点ができやすくなる。
 ポリビニルピロリドン系樹脂はポリフッ化ビニリデン系樹脂との相溶性が悪いため、作製した膜を水中で使用する間にポリビニルピロリドン系樹脂が膜外へ溶出し、低ファウリング性を維持できない可能性があることが知られている。しかし、本発明においては、分離機能膜に溶融粘度3300Pa・s以上の高分子量のポリフッ化ビニリデン系樹脂を使用することにより、ポリビニルピロリドン系樹脂の溶出を抑制することができる。
 アクリル系樹脂としては、不飽和カルボン酸と、それらのエステルまたはアミドなどのモノマーから合成されるものであれば特に限定されないが、アクリル酸エステルの重合体やメタクリル酸エステルの重合体、およびそれらの共重合体が特に好ましく用いられる。
 アクリル酸エステルの重合体としては、例えばメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、tert-ブチルアクリレート、2-エチルヘキシルアクリレート、グリシジルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレートなどのアクリル酸エステルモノマーの単独重合体、これらのモノマーの共重合体、および、これらのモノマーと他の共重合可能なビニルモノマーとの共重合体が例示される。
 メタクリル酸エステルの重合体としては、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、iso-ブチルメタクリレート、tert-ブチルメタクリレート、2-エチルヘキシルメタクリレート、グリシジルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレートなどメタクリル酸エステルモノマーの単独重合体、これらの共重合体、さらには他の共重合可能なビニルモノマーとの共重合体が例示される。
 また、本発明に用いられるアクリル系樹脂の分子量は、機械的強度や化学的強度の観点から重量平均分子量が好ましくは10万以上500万以下、より好ましくは30万以上400万以下である。重量平均分子量が10万未満の場合は機械的強度が低く、重量平均分子量が500万を超える場合は成形性が低下し欠点ができやすくなる。
 また、ポリビニルピロリドン系樹脂とアクリル系樹脂を併用することも好ましい。例えばポリメタクリル酸エステルやポリアクリル酸エステルなどのアクリル系樹脂は、親水性で、ポリフッ化ビニリデン系樹脂に対し分子レベルで相溶することがわかっている。また、アクリル系樹脂は、ポリビニルピロリドン系樹脂に対しても親和性があることが知られている。このことから、アクリル系樹脂が相溶化剤として働き、ポリビニルピロリドン系樹脂をポリフッ化ビニリデン系樹脂製の膜中で相溶しやすくし、膜を水中で使用する時にポリビニルピロリドン系樹脂が膜外へさらに溶出しにくくなるため、耐汚れ性を維持できると考えられる。
 セルロースエステル系樹脂としては、主鎖および/または側鎖に分子ユニットとしてセルロースエステルを有するものであれば特に限定されず、これら以外の分子ユニットが存在しても良い。セルロースエステル以外の分子ユニットとしては、例えば、エチレン、プロピレンなどのアルケン、アセチレンなどのアルキン、ハロゲン化ビニル、ハロゲン化ビニリデン、メチルメタクリレート、メチルアクリレートなどが挙げられる。特に、エチレン、メチルメタクリレート、メチルアクリレートは安価に入手可能であり、主鎖および/または側鎖に導入しやすいため好ましく用いられる。導入方法としては、ラジカル重合、アニオン重合、カチオン重合などの公知の重合技術を用いることができる。実質的にセルロースエステルのみを分子ユニットとするホモポリマーは、安価に入手することができ、取り扱いが容易なため好ましく用いられる。このようなホモポリマーとしては、セルロールアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどが挙げられる。
 セルロースエステル系樹脂は、ポリフッ化ビニリデン系樹脂とともに分離機能層を形成するために用いるので、ポリフッ化ビニリデン系樹脂と適当な条件で混和することが好ましい。さらには、ポリフッ化ビニリデン系樹脂の良溶媒に、セルロースエステル系樹脂とポリフッ化ビニリデン系樹脂が混和溶解する場合には、取り扱いが容易になるので特に好ましい。
 セルロースエステル系樹脂のエステルの一部を加水分解すると、エステルよりも親水性が高い水酸基が生成する。水酸基の割合が大きくなると、疎水性であるポリフッ化ビニリデン系樹脂との混和性は低下するが、得られる分離膜の親水性が増大し、透水性能や耐汚れ性は向上する。従って、ポリフッ化ビニリデン系樹脂と混和する範囲で、エステルを加水分解する手法は、膜性能向上の観点から好ましく採用できる。
 分離機能層に親水性ポリマーを含有させる場合、ポリフッ化ビニリデン系樹脂と親水性ポリマーとの重量比率は、60/40~99/1が好ましく、より好ましくは70/30~95/5、さらに好ましくは80/20~90/10である。ポリフッ化ビニリデン系樹脂の重量比が60重量%未満の場合、本発明の特長である高いウイルス除去性能と高い物理的耐久性を発現できない。親水性ポリマーの重量比が1重量%未満の場合、耐汚れ性の向上が小さい。
 分離機能層が有する三次元網目状構造とは、固形分が三次元的に網目状に広がっている構造のことをいう。
 分離機能層は、厚み方向に厚さ0.2μmの薄層ごとに分割した場合に、最大孔径0.03μm以上0.6μm以下の薄層の数が50以上400以下であり、かつ、最大孔径が0.03μm未満の薄層の数が2以下であることが好ましい。最大孔径0.03μm以上0.6μm以下の薄層の数が50未満ではウイルス除去性能が低くなる。最大孔径が0.03μm以上0.6μm以下の薄層の数が400を超えると、純水透過性能が低くなる。また、最大孔径が0.03μm未満の薄層が3以上存在した場合、純水透過性能が低下し、最大孔径が0.6μmを超える薄層を400程度有しても十分なウイルス除去性能を得ることが困難となる。
 ここで厚さ0.2μmの薄層の最大孔径は次のようにして測定することができる。走査型電子顕微鏡等を用いて、分離機能層の断面を外表面から内表面まで連続的に、構造が明瞭に確認できる倍率、好ましくは6万倍以上の倍率で撮影する。分離機能層の外表面を起点とし、内表面までを分離機能層の厚み方向に厚さ0.2μmの薄層ごとに分け、各層にある孔の最大孔径を測定する。孔は固形部で囲まれた領域を指し、孔の最大孔径とは、層内にある孔のなかで、短径が最大の孔の短径を表す。孔の長径は孔と固形分の境界線上のもっとも離れた2点間の長さとする。孔の短径は、孔の長径の線分の垂直二等分線が孔と交わる2点間の長さとする。また複数の層をまたいで孔が存在する場合は、すべての層がその孔を有していることとする。
 本発明の分離機能層は、もっとも小さいウイルスに対して非常に高い除去性能を有する。もっとも小さいウイルスの大きさは約0.02μmであり、分離機能層が、最大孔径が0.03μm以上0.6μm以下である厚さ0.2μmの薄層を50以上400以下有するということは、もっとも小さいウイルスよりも少し大きい孔径を含む層がある程度以上の厚みをもって存在することになる。
 最大孔径が0.03μm以上0.6μm以下である厚さ0.2μmの各薄層のウイルス除去性能は高くないが、そのような薄層が幾層か存在することで、多段的なろ過機構により除去性能を高める、いわゆるデプスろ過を利用している。厚みが0.6μm程度の、ウイルスよりも大きな孔を含まない膜厚の薄い緻密層(多くは膜表面に存在)によりウイルスを除去する、いわゆる表面ろ過と比べると、デプスろ過は、分離機能層全体でウイルス除去性能を発現しているため、ピンポールや亀裂などの欠陥が生じた場合でも、ウイルス除去性能の維持が可能である。さらには、緻密層を有さないため、高い純水透過性能を発現させることができる。なぜなら、純水透過性能は孔径の4乗に比例し(ポワズイユの法則)、層の厚みの1乗に反比例するからである。すなわち孔を小さくするよりも、層を厚くする方が、純水透過性能の低下が小さくなる。
 このことから、ウイルス除去性能と純水透過性能を考慮した、より効果の高い膜形態としては、厚み方向に厚さ0.2μmの薄層ごとに分割した場合に、最大孔径0.2μm以上0.6μm以下の薄層の数が50以上400以下、かつ最大孔径0.1μm以上0.2μm未満の薄層の数が100以下、かつ最大孔径0.03μm以上0.1μm未満の薄層の数が30以下であり、かつ最大孔径0.03μm未満の薄層の数が2以下である。純水透過性能を低下させないために、最大孔径が0.03μm未満の薄層の数が1以下であることがより好ましく、0以下であることが最も好ましい。このように除去性能と純水透過性能を最大限高くするために、最大孔径と厚さの関係を適切に制御したデプスろ過の構造を有することが、本発明の効果を高めるために有効である。
 分離機能層の三次元網目状構造は、平均孔径0.01μm以上1μm以下の三次元網目状構造であることが好ましい。この場合、より好ましくウイルスなどの除去を行えることから、本発明に係る分離機能層においては、ウイルスより小さい孔径でろ過を行うシービング(篩い分け)ろ過よりも、小さい粒子やウイルスを細孔内で捕捉する、いわゆるデプスろ過が支配的に起こると考えられる。分離機能層の三次元網目状構造の平均孔径は、より好ましくは0.03μm以上0.5μm以下、さらに好ましくは0.05μm以上、0.2μm以下である。平均孔径が0.01μm未満であると膜透過性が低下しやすくなる傾向があり、逆に1μmを超えるとウイルスの阻止率が低下してしまう懸念がある。ここで、分離機能層中の三次元網目状構造の平均孔径は、走査型電子顕微鏡を用いて、分離膜の断面20箇所を6,000倍あるいは10,000倍で画像写真撮影し、それぞれの写真の外表層から2μmの深さで任意に選んだ20箇所の孔の長径と短径を測定した結果を数平均して求めることができる。
 また、本発明の分離機能層最表面の平均孔径は1μm以下が好ましく、より好ましくは0.1μm以下、さらに好ましくは0.01μm以下である。最表面の平均孔径が1μmを超えると水中の汚れ成分が膜の細孔に入り込み、膜汚れが発生し易くなる。ここで、分離機能層最表面の平均孔径は、走査型電子顕微鏡を用いて、複合膜の表面20箇所を30,000倍あるいは60,000倍で画像写真撮影し、それぞれの写真の任意に選んだ20箇所の孔の長径と短径を測定した結果を数平均して求めることができる。
 本発明の分離機能層の三次元網目状構造は、ポリフッ化ビニリデン系樹脂と良溶媒からなる溶液を非溶媒浴中で凝固せしめる、いわゆる非溶媒誘起相分離法によって得られる。一般的にポリフッ化ビニリデン系樹脂は凝集性が強いために、マクロボイドを有する構造しか得られない。ここで、マクロボイドとは三次元網目状構造の通常の孔の数十倍以上の空隙を有する孔のことである。マクロボイドは、ろ過流体に対してほとんど抵抗を示さないため、純水透過性能の向上が期待できるが、空隙であるため分離機能を有さず、欠点やピンホール等によりウイルスの裏抜けを引き起こす。具体的には、マクロボイドとは、分離機能層の膜内に存在し、5μm以上、多くは5~200μm、の大きさを有し、球形、紡錘形または円筒形の形状を有する空隙の総称である。
 分離機能層の物理的強度やウイルス除去の信頼性を考慮すると、実質的に5μm以上のマクロボイドは形成されないことが好ましい。実質的に5μm以上のマクロボイドとは、分離機能層の断面を、走査型電子顕微鏡を用いて3000倍で写真撮影した際に、長径が5μm以上となる孔のことである。長径を判断することが困難な場合、画像処理装置等によって、孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を孔の長径とする方法により求められる。実質的に5μm以上のマクロボイドを有さないことの確認は、少なくとも異なる30箇所における断面写真を観察して、実質的に5μm以上のマクロボイドが全く確認できなかった場合に、実質的に5μm以上のマクロボイドを含有しないこととする。また、分離機能層は5μm未満のマクロボイドを有していても良いが、ウイルス除去性の観点からその数は少ないほど良く、全くないことが最良である。
 マクロボイドの形成を抑制するためには、ポリフッ化ビニリデン系樹脂の凝集を抑制する必要があり、従来から検討が行われてきている。例えば、非溶媒の侵入速度を低下させるために、ポリフッ化ビニリデン系樹脂の良溶媒を凝固浴に添加して凝固浴中の非溶媒濃度を下げる方法がある。この方法は濃度管理が容易であり、さらに分離機能層に厚い緻密層を形成させないため、本発明において特に好ましく採用できる。
 非溶媒誘起相分離法では、ポリマー溶液への非溶媒の侵入により、ポリマー溶液の組成が経時的に変化するだけでなく、変化が急速なため追跡が困難であり、相分離のメカニズムを解析することは現在も学術的関心を集めている。特に、樹脂、良溶媒および非溶媒の3成分に加えて第4成分以降を添加した場合、統計的な解析はほとんど不可能と言われている。さらに、非溶媒誘起相分離では、組成以外にも、ポリマー溶液の温度および粘度、凝固浴の組成および温度、凝固時間などの多数の因子が影響を及ぼし、ポリマー溶液の組成によって相分離に影響を及ぼす因子の寄与率もそれぞれ異なる。発明者らは、種々の因子についてマクロボイド形成に影響を及ぼすか否かを検討した結果、ポリフッ化ビニリデン系ポリマー溶液の相分離ではポリマー溶液の粘度がマクロボイド形成に大きく影響を及ぼすことを見出した。すなわち、ポリフッ化ビニリデン系樹脂溶液を高粘度にすると、マクロボイドが消失する傾向にあった。この現象の詳細を明らかにすることは困難であるが、ポリマー溶液の高粘度化により非溶媒の侵入速度低下と、樹脂の凝集速度低下を導き、極微小部分で相分離が発生したためであると考えられる。
 このようなウイルス除去性を発現し、かつ、マクロボイドの形成を抑制した三次元網目状構造を形成するための、ポリフッ化ビニリデン樹脂溶液の50℃における溶液粘度は、1Pa・s以上100Pa・s以下が好ましい。ここで、50℃における溶融粘度はB型粘度計などの粘度測定装置によって測定できる。溶液粘度が1Pa・s未満では非溶媒の侵入速度低下と、凝集速度低下の効果が不十分となりマクロボイドが発生してしまう。また、溶液粘度が100Pa・sを超えると均質な溶液が得られず、三次元網目状構造に欠陥が発生するおそれがある。
 このような溶液粘度を有するポリフッ化ビニリデン樹脂溶液は、溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂の濃度を5重量%以上30重量%以下、好ましくは8重量%以上25重量%以下の範囲になるように調製することが好ましく採用される。とりわけ、高度なウイルス除去性能を発現するためには、ポリマー溶液における溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂の濃度を9重量%以上となるように調整することが好ましい。なお、ポリマー溶液に溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂以外の樹脂を含む場合は、それらの樹脂の濃度の和が上記の範囲にあることが好ましい。
 分離機能層を形成するポリフッ化ビニリデン系樹脂溶液に用いられる良溶媒は、分離機能層を構成するポリフッ化ビニリデン系樹脂および必要に応じてそれ以外の樹脂を溶解し、非溶媒有機相分離法により三次元網目状構造を形成できるものであればとくに制限されないが、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等溶媒およびそれらの混合溶媒が好ましい例として挙げられる。なかでもジメチルスルホキシドが、高粘度のポリフッ化ビニリデン系樹脂溶液を得やすいため好ましく用いられる。
 また、非溶媒誘起相分離を発現する非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o-ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素およびそれらの混合溶媒が挙げられる。また、非溶媒誘起相分離の速度低下を目的として、非溶媒に5~90重量%、より好ましくは10~80重量%、さらに好ましくは20~70重量%の良溶媒を添加することが好ましい。
 本発明の分離膜は、分離機能層単独からなる単層膜であっても良いが、分離膜全体の透過性能を維持しつつ、物理的強度を高くするために、分離機能層と支持体層が積層された多層構造を有することがより好ましい。支持体層の材料としては、上記目的を達成するものであれば、特に限定するものではないが、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、ポリプロピレンなどのポリオレフィン系樹脂、親水化ポリエチレンなどの親水化ポリオレフィン系樹脂、セルロースエステル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリエーテルスルホン系樹脂などが好ましく用いられ、これらの樹脂の共重合体や一部に置換基を導入したものであっても良い。またこれらの樹脂に繊維状物質などを補強剤として含有させても良い。支持体層の材料としては、物理的強度とともに高い化学的耐久性を必要とするため、ポリフッ化ビニリデン系樹脂を用いることがより好ましい。
 また支持体層の構造としては、物理的強度と透水性の観点から、球状構造からなることがより好ましい。球状構造とは、多数の球状(略球状の場合を含む)の固形分が、互いにその一部を共有することで連結している構造のことをいう。ここで、球状の固形分とは真円率(長径/短径)が2以下である固形分とする。また、球状の固形分以外に、真円率(長径/短径)が2を超える、柱状の固形分を含むことは、物理的強度がさらに高くなるため好ましい。三次元網目状構造は筋状の固形分が三次元的に均一に連結した構造をしており、球状の固形分が不均一に互いにその一部を共有することで強固に連結した球状構造に比べて、孔径が小さくなる。そのため、同じ強伸度性能でも純水透過性能が低くなると考えられる。
 また、支持体層に用いられるポリフッ化ビニリデン系樹脂の重量平均分子量は、要求される分離膜の強度と透水性能によって適宜選択すれば良いが、重量平均分子量が大きくなると透水性能が低下し、重量平均分子量が小さくなると強度が低下する。このため、重量平均分子量は5万以上160万以下が好ましい。高分子分離膜が薬液洗浄に晒される水処理用途の場合、重量平均分子量は10万以上70万以下がより好ましく、15万以上60万以下がさらに好ましい。
 球状構造からなる支持体層において、支持体層が十分な物理的強度を有するために、球状の固形分の平均直径が0.1μm以上5μm以下であることが好ましい。各球状の固形分の直径は、長径と短径の平均値とする。球状の固形分の平均直径が0.1μm未満の場合、固形分の間に形成される空隙が小さくなり、透過性能が低くなる。球状の固形分の平均直径が、5μmを超えると、固形分のつながりが少なくなり、物理的強度が低くなる。ここで、球状構造の平均直径は、分離膜外表面から内表面方向への断面の球状構造の層を、走査型電子顕微鏡を用いて3000倍で任意の20箇所の写真を撮影し、10個以上、好ましくは20個以上の任意の球状の固形分の直径を測定し、数平均して求めることができる。画像処理装置等を用いて断面写真から等価円直径を求め、球状構造の平均直径とすることも好ましく採用できる。
 また、支持体層は、純水透過性能と物理的強度を高いレベルで両立させるために、均質な構造であることが好ましい。緻密な層を有したり、傾斜的に構造が変化していたりすると、純水透過性能と物理的強度の両立が困難になる。
 分離機能層と支持体層は各層の性能を高いレベルでバランスさせるため、積層された構造であることが好ましい。一般に層を多段に重ねると、各層の界面では層同士が互いに入り込むために緻密になり、透過性能が低下する。層が互いに入り込まない場合は、透過性能は低下しないが、接着強度が低下する。従って積層数は少ない方が好ましく、分離機能層1層と支持体層1層の合計2層からなることが好ましい。どちらが外層あるいは内層であってもよいが、分離機能層が分離機能を担い、支持体層が物理的強度を担うため、分離機能層が分離対象側に配置されることが好ましい。
 本発明の分離膜は、50kPa、25℃における純水透過性能が0.05m /m/hr以上10m/m/hr以下、破断強度が6MPa以上、膜厚が125μm以上600μm以下、かつ、ms-2ファージに対する除去率が4log以上であることが好ましい。純水透過性能は、より好ましくは0.15m/m/hr以上7m/m/hr以下である。破断強度は、より好ましくは8MPa以上、さらに好ましくは10MPa以上である。膜厚は、より好ましくは175μm以上400μm以下である。以上の条件を満たすことで、水処理分野、医薬品製造分野、食品工業分野、血液浄化用膜分野等の用途に十分な強度および透水性能を有し、さらにウイルス除去が可能な分離膜を得ることができる。
 純水透過性能は25℃において、50kPaの圧力下にて、純水を用いて測定される単位膜面積および単位時間あたりの透過水量である。破断強度は、分離膜の破断までに要する最大点荷重を分離膜の断面積で除した値であり、引っ張り試験機などを用いて測定することができる。膜厚は、分離膜の断面を実体顕微鏡とデジタル測長器を組み合わせたものや、電子顕微鏡などで測定することができる。
 ms-2ファージに対する除去率は、大きさが約25nmのバクテリオファージMS-2(Bacteriophage MS-2 ATCC 15597-B1)を約1.0×10PFU/mlの濃度で含有する滅菌蒸留水の水溶液を分離膜でろ過し、Overlay agar assay、Standard Method 9211-D(APHA、1998、Standard methods for the examination of water and wastewater, 18th ed.)の方法に基づいて、希釈したろ液1mlを検定用シャーレに接種し、プラックを計数することによってバクテリオファージMS-2の濃度を求める。除去性能は対数で表され、例えば2logとは2log10のことであり、残存濃度が100分の1であることを意味する。
 本発明の分離膜は、中空糸膜および平膜のいずれの形態でも好ましく用いることができるが、中空糸膜は効率良くモジュールに充填することが可能であり、単位体積当たりの有効膜面積を増大させることができるため好ましく用いられる。
 本発明のポリフッ化ビニリデン系樹脂製分離膜の製造方法は、上述した所望の特徴を満たすポリフッ化ビニリデン系分離膜が得られれば特に制限されないが、例えば以下のようにして製造することができる。
 分離機能層単独からなる単層分離膜の場合、固形分として溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を含有するポリマー溶液をTダイ、二重管式口金などで、シート状あるいは中空糸状に賦形して、凝固液に接触させることで、三次元網目状構造を有する分離機能層を形成することにより製造することができる。
 また、分離機能層と支持体層から構成される多層構造分離膜は、種々の方法で製造することができる。例として、球状構造からなる支持体の上に、分離機能層を積層する方法について説明する。
 まず球状構造からなる支持体を製造する。支持体の例として、ポリフッ化ビニリデン系樹脂を使用した中空糸膜の製造方法について述べる。球状構造からなる支持体は、ポリフッ化ビニリデン系樹脂溶液を冷却により相分離させる熱誘起相分離法により製造される。ポリフッ化ビニリデン系樹脂溶液を中空糸膜紡糸用の二重管式口金の外側の管から吐出し、中空部形成液体を二重管式口金の内側の管から吐出しながら冷却浴中で冷却固化する。
 上記ポリフッ化ビニリデン系樹脂溶液は、ポリフッ化ビニリデン系樹脂を20重量%以上60重量%以下の比較的高濃度で、該樹脂の貧溶媒もしくは良溶媒に結晶化温度以上の温度で溶解する。樹脂濃度は高くなれば高い強伸度特性を有する支持体が得られるが、高すぎると製造した分離膜の空孔率が小さくなり、透過性能が低下する。また支持体を中空糸状に成形する場合は、調整したポリマー溶液の粘度が適正範囲にある必要がある。従って樹脂濃度は30重量%以上50重量%以下の範囲とすることがより好ましい。
 冷却浴としては、温度が0℃以上30℃以下で、濃度が50重量%以上95重量%以下の貧溶媒あるいは良溶媒と、濃度が5重量%以上50重量%以下の非溶媒からなる混合液体が好ましい。さらに貧溶媒としてはポリマー溶液と同じ貧溶媒を用いることが、冷却浴組成を維持しやすいことから好ましく採用される。ただし高濃度の良溶媒を用いるときは温度を十分に低くしないと凝固しなかったり、凝固が遅く中空糸膜表面が平滑にならなかったりする場合がある。また、前記の濃度範囲を外れない限りにおいて、貧溶媒と良溶媒を混合しても良い。ただし、高濃度の非溶媒を用いると中空糸膜の外表面に緻密層が形成され、純水透過性能が著しく低下する場合がある。
 また、中空部形成液体としては、冷却浴同様、濃度が50重量%以上95重量%以下の貧溶媒あるいは良溶媒と、濃度が5重量%以上50重量%以下の非溶媒からなる混合液体が好ましい。さらに貧溶媒としてはポリマー溶液と同じ貧溶媒を用いることが好ましく採用される。
 ここで貧溶媒とは、ポリフッ化ビニリデン系樹脂を60℃未満の低温では5重量%以上溶解させることができないが、60℃以上かつポリフッ化ビニリデン系樹脂の融点以下(例えばポリフッ化ビニリデン系樹脂がフッ化ビニリデンホモポリマーである場合は178℃程度)の高温領域で5重量%以上溶解させることができる溶媒のことである。貧溶媒に対し60℃未満の低温でもポリフッ化ビニリデン系樹脂を5重量%以上溶解させることが可能な溶媒を良溶媒、ポリフッ化ビニリデン系樹脂の融点または溶媒の沸点まで、ポリフッ化ビニリデン系樹脂を溶解も膨潤もさせない溶媒を非溶媒と定義する。
 ここでポリフッ化ビニリデン系樹脂の貧溶媒としてはシクロヘキサノン、イソホロン、γ-ブチロラクトン、メチルイソアミルケトン、プロピレンカーボネート等の中鎖長のアルキルケトン、脂肪酸エステル、およびアルキルカーボネート等およびその混合溶媒が挙げられる。
 また良溶媒としては、N-メチル-2-ピロリドン、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等およびそれらの混合溶媒が挙げられる。
 さらに非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o-ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびその混合溶媒などが挙げられる
 熱誘起相分離法においては、主に2種類の相分離機構がある。一つは高温時に均一に溶解したポリマー溶液が、降温時に溶液の溶解能力低下が原因でポリマー濃厚相と希薄相に分離し、その後構造が結晶化により固定される液-液相分離法である。もう一つは、高温時に均一に溶解したポリマー溶液が、降温時にポリマーの結晶化が起こり、ポリマー固体相と溶媒相に相分離する固-液相分離法である。前者の方法では主に三次元網目状構造が、後者の方法では主に球状組織で構成された球状構造が形成される。球状構造からなる支持体を製造する場合は、後者の相分離機構が利用される。そのためには、固-液相分離が誘起されるポリマー溶液の溶媒、樹脂濃度および温度、冷却浴の組成および温度の組み合わせが重要である。
 以上の製造工程に加えて、空隙を拡大し透過性能を向上させることおよび破断強度を強化するために、中空糸膜の延伸を行うことも有用であり好ましい。延伸は、通常のテンター法、ロール法、圧延法など、もしくはこれらの組み合わせによって行う。延伸時の温度範囲は好ましくは50℃以上140℃以下、より好ましくは55℃以上120℃以下、さらに好ましくは60℃以上100℃以下である。延伸倍率は好ましくは1.1倍以上4倍以下、より好ましくは1.1倍以上2倍以下である。50℃未満の低温雰囲気で延伸した場合、安定して均質に延伸することが困難である。140℃を超える温度で延伸した場合、ポリフッ化ビニリデン系樹脂の融点に近くなるため、構造組織が融解し、空隙が拡大せず透水性は向上しない。また、延伸は液体中で行う方が、温度制御が容易であり好ましいが、スチームなどの気体中で行っても構わない。ここで液体としては水が簡便で好ましいが、90℃程度以上で延伸する場合には、低分子量のポリエチレングリコールなどを用いることも好ましく採用できる。一方、このような延伸を行わない場合は、延伸を行う場合と比べて、透過性能および破断強度は低下するが、破断伸度および除去性能は向上する。したがって、延伸工程の有無および延伸工程の延伸倍率は分離膜の用途に応じて適宜設定することができる。
 このようにして形成された球状構造からなる中空糸膜の上に、三次元網目状構造の分離機能層を形成する。その方法は特に限定されないが、ポリフッ化ビニリデン系樹脂とその良溶媒からなるポリマー溶液を球状構造からなる中空糸膜の表面に塗布した後、主にポリフッ化ビニリデン系樹脂の非溶媒からなる凝固浴中で凝固せしめることで、分離機能層を被覆する方法が好ましい。ポリフッ化ビニリデン系樹脂溶液を塗布する方法としては、特に限定されないが、中空糸膜を該ポリマー溶液中に浸漬したり、該ポリマー溶液を中空糸膜にスプレーコーティングしたりする方法が好ましく用いられる。さらに、中空糸膜に塗布される量を制御する方法としては、該ポリマー溶液の塗布量を制御する以外に、該ポリマー溶液を塗布した後にノズル内を通過させることによりポリマー溶液の一部を掻き取ったり、ポリマー溶液の一部をエアナイフにより吹き飛ばしたりする方法も好ましく用いられる。前記凝固浴は主にポリフッ化ビニリデンの系樹脂の非溶媒からなり、0%以上30%以下の範囲で前記ポリフッ化ビニリデン系樹脂の良溶媒または貧溶媒を含んでいてもよい。また該凝固浴の温度は好ましくは0℃以上70℃以下、より好ましくは5℃以上50℃以下である。
 本発明に係る分離膜の別の製造方法として、分離機能層を形成するポリマー溶液と支持体層を形成するポリマー溶液を三重管式口金から同時に吐出して固化せしめる方法も好ましく採用される。すなわち、分離機能層が中空糸膜の外層、支持体層が内層に配置される複合中空糸膜を製造する場合、分離機能層を形成するポリマー溶液を外側の管から、支持体層を形成するポリマー溶液を中間の管から、中空部形成液体を内側の管から同時に吐出し、凝固浴中で固化せしめることにより、目的の複合中空糸膜を得ることができる。
 本発明の効果を最大限発現させるためには、分離機能層と支持体層のそれぞれの厚みも重要である。分離機能層は、は2μm以上200μm以下が好ましく、より好ましくは10μm以上200μm以下、より好ましくは15μm以上150μm以下、より好ましくは20μm以上150μm以下、さらに好ましくは25μm以上100μm以下である。分離機能層を2μm未満の厚さで形成しようとすると欠陥が生じやすく、除去性能が低下してしまう。また、該層の厚さが200μmを超えると、支持体層によって分離機能層に耐圧性を付与している効果が低くなり、分離機能層が変形する。分離機能層の孔径が拡大すると除去性能が低下し、逆に孔径が縮小すると純水透過性能が低下してしまう。
 支持体層の厚さは110μm以上400μm以下が好ましく、より好ましくは150μm以上300μm以下である。支持体層の厚さが110μm未満では物理的強度が低く、400μmを超えると純水透過性能が低下する。
 ここで、分離機能層と支持体層のそれぞれの厚みは、分離膜全体の外表面から内表面方向への断面を走査型電子顕微鏡を用いて300~1000倍で撮影し、任意の20箇所の分離機能層の厚みおよび支持体層の厚みを測定し、それぞれ数平均して求めることができる。
 以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。ここで、本発明に関連する分離膜のパラメータは以下の方法で測定した。
 (1)溶融粘度
 溶融粘度は、東洋精機社製キャピログラフ1C(ダイス径φ1mmダイス長10mm)を用いて、ASTM D3835に従い、温度230℃、剪断速度100秒-1で測定した。
 (2)溶液粘度
 溶液粘度は、米国ブルックフィールド社製デジタル粘度計DV-II+Proを用いて、温度50℃にて測定した。使用するローターや回転数は、測定対象の溶液粘度により適宜選択した。
 (3)分離機能層の厚さ0.2μmの薄層の最大孔径と薄層の数
 走査型電子顕微鏡を用いて、分離膜の外表面から内表面方向への断面において、分離機能層を、外表面から支持体層との境界まで連続的に6万倍で撮影した。外表面を起点とし内表面までをその厚み方向に厚さ0.2μmの薄層ごとに分け、各薄層にある最大孔径を測定した。また最大孔径0.03μm未満の薄層、最大孔径0.03μm以上0.1μm未満の薄層、最大孔径0.1μm以上0.2μm未満の薄層、最大孔径0.2μm以上0.6μm以下の薄層、最大孔径が0.6μmを超えた薄層の数をそれぞれ求めた。
 (4)分離機能層の三次元網目状構造の平均孔径
 走査型電子顕微鏡を用いて、任意に選んだ分離膜の断面20箇所を10,000倍で画像写真撮影した。それぞれの写真の外表層から2μmの深さで任意に選んだ20箇所において孔の長径と短径を測定し、全ての結果を数平均して平均孔径を求めた。
 (5)球状構造からなる支持体層の球状固形分の平均直径
 分離膜の外表面から内表面方向への断面の球状構造の層を、走査型電子顕微鏡を用いて3000倍で任意の20箇所の写真を撮影した。それぞれの写真について、それぞれ任意の20個の球状の固形分の直径を測定し、それら全てを数平均して平均直径を求めた。
 (6)分離機能層外表面の平均孔径
 走査型電子顕微鏡を用いて、任意に選んだ分離機能層の表面20箇所を60,000倍で画像写真撮影した。それぞれの写真について、任意に選んだそれぞれ20箇所で測定した孔の長径と短径を測定し、それら全てを数平均して平均孔径を求めた。
 (7)5μm以上のマクロボイドの有無
 分離膜の外表面から内表面方向への断面において、分離機能層を、走査型電子顕微鏡を用いて3000倍で撮影し、任意の30箇所について5μm以上のマクロボイドの有無を確認した。マクロボイドが存在しない時あるいは長径が5μm未満のマクロボイドしか存在しない時に実質的に5μm以上のマクロボイドを有さないとし、長径が5μm以上のマクロボイドが一つでも観察された時に実質的に5μm以上のマクロボイドを有すると判断した。
 (8)膜厚および分離機能層と支持体層の厚み
 分離膜の外表面から内表面方向への断面を、走査型電子顕微鏡を用いて300~1000倍で撮影し、任意の20箇所の膜厚と分離機能層の厚みおよび支持体層の厚みを測定し、それぞれ数平均した。
 (9)分離膜(中空糸膜)の平均外径/内径
 走査型電子顕微鏡を用いて、中空糸状の分離膜の断面20箇所を100倍で画像写真撮影した。それぞれの写真について、20箇所で外径および内径の長径と短径を測定し、それぞれ数平均して平均外径および平均内径を求めた。
 (10)分離膜(中空糸膜)の平均厚み
 走査型電子顕微鏡を用いて、中空糸状の分離膜の断面20箇所を100倍で画像写真撮影した。それぞれの写真について、それぞれ20箇所で最外層から最内層端部までの長さを測定した結果を数平均して平均厚みを求めた。
 (11)ウイルス除去性能
 大きさが約25nmのバクテリオファージMS-2(Bacteriophage MS-2 ATCC 15597-B1)を約1.0×10PFU/mlの濃度で含有する蒸留水の水溶液をウイルス原液として調製した。ここで蒸留水は純水製造装置オートスチル(ヤマト科学製)の蒸留水を121℃で20分間高圧蒸気滅菌したものを用いた。モジュールとして、分離膜が中空糸膜の場合には、中空糸膜2本程度からなる長さ約200mmのガラス製の小型モジュールを作製した。また、分離膜が平膜の場合には、直径43mmの円形に切り出し、円筒型のろ過ホルダーにセットした。モジュールに、温度約20℃、ろ過差圧約10kPa(外圧)の条件でウイルス原液を送液した。約10mlろ過後、ろ液を約5ml採取し、0~1000倍に蒸留水で希釈した。Overlay agar assay、Standard Method 9211-D(APHA、1998、Standard methods for the examination of water and wastewater, 18th ed.)の方法に基づいて、希釈したろ液1mlを検定用シャーレに接種し、プラックを計数することによってバクテリオファージMS-2の濃度を求めた。除去性能は対数で表した。例えば2logとは2log10のことであり、ろ過前のMS-2の濃度に対する、ろ過後のMS-2の濃度が100分の1であることを意味する。またろ液中にプラックがまったく計測されない場合、≧7logとした。
 (12)純水透過性能
 モジュールとして、分離膜が中空糸膜の場合には、中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製した。また、分離膜が平膜の場合には、直径43mmの円形に切り出し、円筒型のろ過ホルダーにセットした。モジュールに、温度25℃、ろ過差圧16kPa(外圧)の条件で逆浸透膜処理水を送液し、一定時間の透過水量(m)を測定して得た値を、単位時間(hr)、単位有効膜面積(m)、50kPa当たりに換算して、純水透過性能を算出した。
 (13)破断強度・伸度
 引張試験機((株)東洋ボールドウィン製TENSILON(登録商標)/RTM-100)を用いて、水で湿潤させた分離膜を試験長50mm、フルスケール5kgの荷重でクロスヘッドスピード50mm/分にて、破断強力および破断伸度を測定した。サンプルを変えて10回実施した測定結果を数平均して破断強力および破断伸度を求めた。また破断強度は、破断強力(N)を分離膜の単位断面積(mm)における破断強度(N/mm=Pa)として求めた。
 (14)ろ過抵抗上昇度
 外筒内に中空糸膜6本を収納して端部固定した長さ15mmのミニチュア膜モジュールを作製した(図1)。この膜モジュールにおいて、B端では中空糸膜が封止されていて、D端では中空糸膜が開口している。
 圧力計を設置した10Lのステンレス製加圧タンクADVANTEC PRESSURE VESSEL DV-10に原水を入れた。同様に圧力計を設置した40Lのステンレス製加圧タンクADVANTEC PRESSURE VESSEL DV-40に和光純薬製蒸留水を入れた。それぞれのタンクには水の流出口に2方コックを接続した。原水には、琵琶湖水(濁度1.0NTU以下,TOC(全有機炭素)1.2mg/L,カルシウム濃度15mg/L,ケイ素濃度0.5,マンガン濃度0.01mg/L以下,鉄濃度0.01mg/以下)を用いた。
 原水入り加圧タンク(以下、原水タンク)の2方コックとミニチュア膜モジュールのA点をテフロン(登録商標)チューブで3方コックを介して接続し、蒸留水入り加圧タンク(以下、蒸留水タンク)の2方コックとミニチュア膜モジュールのB点をテフロン(登録商標)チューブで接続した。ミニチュア膜モジュールのC点は樹脂キャップにより封止し、D点から透過水が出るようにした。
 まず、0.4MPaの圧縮空気をSMCレギュレーター(AF2000-02,AR2000-02G)で100KPaに調整して原水タンクに圧力をかけ、2方コックを開にしてミニチュア膜モジュール内に原水を送液した。このとき、ミニチュア膜モジュールとの間にある三方コックはタンクと膜モジュール間のみを開とし、また、蒸留水タンクとB点との間の2方コックは閉とした。
 透過水重量をパソコンに接続した電子天秤 AND HF-6000で5秒毎に測定し、連続記録プログラムAND RsCom ver.2.40を用いて記録した。本実験で得られるデータは5秒あたりの透過水重量であるから、ろ過抵抗を以下に示す式を用いて算出した。
 ろ過抵抗(1/m) =(ろ過圧力(kPa))×10 ×5×(膜面積(m))×10 /((透過水粘度(Pa・s)×(5秒あたりの透過水重量(g/s))×(透過水密度(g/ml)))
 総ろ過水量0.065m/mまでろ過工程を続けた後、原水タンクの2方コックを閉としてろ過工程を終了した。次いで、ミニチュア膜モジュールとの間にある3方コックを3方向とも開の状態にし、ミニチュア膜モジュールの透過水出口(D点)を樹脂キャップで封止した。
 0.4MPaの圧縮空気をSMCレギュレーター(AF2000-02,AR2000-02G)で150KPaに調整して蒸留水タンクに圧力をかけ、2方コックを開にしてミニチュアモジュール内に蒸留水を送液した。この操作によって逆洗工程が開始された。3方コックから流出する逆洗排水が10mlとなるまで逆洗工程を続けた後、蒸留水タンクの2方コックを閉として逆洗工程を終了した。
 以上の操作を1つの膜モジュールに対して10回連続して実施し、総ろ過水量を横軸に、算出したろ過抵抗を縦軸にプロットした。
 ここでプロットの開始は、各回のろ過開始30秒後からとした。また、ろ過抵抗の上昇に伴い透水量が減少するため、5秒あたりの透過水重量が減少する。ろ過抵抗は5秒あたりの透過水重量から前記式に従って算出するため、透過水重量が減少すると、そのばらつきが算出されるろ過抵抗に与える影響が大きくなる。従って、透過水重量の減少が著しい場合には、適宜作成したグラフの移動平均近似をとってグラフを修正した。
 ろ過実験の結果から作成した総ろ過水量-ろ過抵抗のグラフ、場合によっては前記グラフの移動平均近似をとったグラフにおいて、総ろ過水量とろ過抵抗の関係から、2~10回目のろ過工程開始時のろ過抵抗9点を結んだ直線の傾きをろ過抵抗上昇度とした。ただし、9点が直線上に乗らない場合には、線形近似で直線の傾きを求めてろ過抵抗上昇度とした。
 (実施例1)
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ-ブチロラクトン62重量%を160℃で溶解した。このポリマー溶液を二重管式口金の外側の管から吐出し、同時にγ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ-ブチロラクトン85重量%水溶液からなる温度10℃の浴中で固化させた。得られた膜を90℃の水中で1.5倍に延伸した。得られた膜は球状構造からなる中空糸膜であり、この膜を支持体として用いた。
 次いで、溶融粘度6400Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900)9.6重量%と、溶融粘度3200Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)760)2.4重量%をN-メチル-2-ピロリドン中で溶解して、分離機能層用の製膜原液を得た。なお、両者の混合物の溶融粘度は3400Pa・sであった。この製膜原液を上記中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜の膜構造および膜性能を表1に示す。
 (実施例2)
 溶融粘度6400Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900)12重量%をN-メチル-2-ピロリドン中で溶解して分離機能層用の製膜原液を得た。この製膜原液を実施例1で得られた中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜の膜構造および膜性能を表1に示す。
 (実施例3)
 溶融粘度6400Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900)9.6重量%と、無水マレイン酸変成ポリフッ化ビニリデンホモポリマー“アルケマ社製,Kynar(登録商標)ADX-111”2.4重量%をN-メチル-2-ピロリドン中で溶解して分離機能層用の製膜原液を得た。この製膜原液を実施例1で得られた中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜の膜構造および膜性能を表1に示す。
 (実施例4)
 溶融粘度6400Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900)9.6重量%、セルロースジアセテート(イーストマンケミカル社製、CA-398-3)1.2重量%、およびセルローストリアセテート(イーストマンケミカル社製、CA-436-80S)1.2重量%をN-メチル-2-ピロリドン中で溶解して分離機能層用の製膜原液を得た。この製膜原液を実施例1で得られた中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜の膜構造および膜性能を表1に示す。
 (実施例5)
 溶融粘度6400Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900)9.6重量%、ポリメチルメタクリレート樹脂(Aldrich社製、重量平均分子量:3.5×10)2.4重量%をN-メチル-2-ピロリドン中で溶解して分離機能層用の製膜原液を得た。この製膜原液を実施例1で得られた中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜の膜構造および膜性能を表1に示す。
 (実施例6)
 溶融粘度6400Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900)9.6重量%、ポリビニルピロリドン(BASF社製、K90)2.4重量%をN-メチル-2-ピロリドン中で溶解して分離機能層用の製膜原液を得た。この製膜原液を実施例1で得られた中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜の膜構造および膜性能を表1に示す。
 (比較例1)
 溶融粘度3200Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)760)12重量%をN-メチル-2-ピロリドン中で溶解して分離機能層用の製膜原液を得た。この製膜原液を実施例1で得られた中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜の膜構造および膜性能を表1に示す。
 (比較例2)
 溶融粘度6400Pa・sのポリフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900)12重量%をγ-ブチロラクトン中で溶解して製膜原液を得た。この製膜原液を実施例1で得られた中空糸膜表面に均一に塗布した後に、γ-ブチロラクトン85重量%水溶液からなる温度10℃の浴中で固化させた。得られた分離膜は球状構造の支持層の上に球状構造の層が形成された中空糸状分離膜であった。得られた分離膜の膜構造および膜性能を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例7)
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ-ブチロラクトン62重量%を160℃で溶解した。このポリマー溶液を二重管式口金の外側の管から吐出し、同時にγ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ-ブチロラクトン85重量%水溶液からなる温度10℃の浴中で固化させた。得られた膜を90℃の水中で1.5倍に延伸した。得られた膜は球状構造からなる中空糸膜であった。次いで、溶融粘度4700Pa・sのポリフッ化ビニリデンホモポリマー18重量%と、溶融粘度2600Pa・sのポリフッ化ビニリデンホモポリマー2重量%をジメチルスルホキシド中で溶解して製膜原液を得た。この製膜原液の50℃における溶液粘度は365Pa・sであった。この製膜原液を上記中空糸膜表面に均一に塗布した後に、23℃の水中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。
 得られた分離膜は外径1430μm、内径880μmであった。膜構造および膜性能を表2に示す。
 (実施例8)
 まず、実施例7と同様の方法で球状構造からなる中空糸膜を作製した。次いで、溶融粘度4700Pa・sのポリフッ化ビニリデンホモポリマー18重量%と、溶融粘度2600Pa・sのポリフッ化ビニリデンホモポリマー2重量%をジメチルスルホキシド中で溶解して製膜原液を得た。この製膜原液の50℃における溶液粘度は365Pa・sであった。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布した後に、23℃の60重量%ジメチルスルホキシド水溶液中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜は外径1480μm、内径870μmであった。膜構造および膜性能を表2に示す。
 (実施例9)
 まず、実施例7と同様の方法で球状構造からなる中空糸膜を作製した。次いで、溶融粘度4700Pa・sのポリフッ化ビニリデンホモポリマー10重量%と、溶融粘度800Pa・sのポリフッ化ビニリデンホモポリマー5重量%をジメチルスルホキシド中で溶解して製膜原液を得た。この製膜原液の50℃における溶液粘度は8Pa・sであった。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布した後に、23℃の60重量%ジメチルスルホキシド水溶液中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜は外径1410μm、内径880μmであった。膜構造および膜性能を表2に示す。
 (実施例10)
 まず、実施例7と同様の方法で球状構造からなる中空糸膜を作製した。次いで、溶融粘度4700Pa・sのポリフッ化ビニリデンホモポリマー5重量%と、溶融粘度2300Pa・sのポリフッ化ビニリデンホモポリマー10重量%をジメチルスルホキシド中で溶解して製膜原液を得た。この製膜原液の50℃における溶液粘度は5.6Pa・sであった。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布した後に、23℃の60重量%ジメチルスルホキシド水溶液中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜は外径1480μm、内径870μmであった。膜構造および膜性能を表2に示す。
 (比較例3)
 まず、実施例7と同様の方法で球状構造からなる中空糸膜を作製した。次いで、溶融粘度2600Pa・sのポリフッ化ビニリデンホモポリマー10重量%と、溶融粘度800Pa・sのポリフッ化ビニリデンホモポリマー5重量%をジメチルスルホキシド中で溶解して製膜原液を得た。の製膜原液の50℃における溶液粘度は2.4Pa・sであった。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布した後に、23℃の60重量%ジメチルスルホキシド水溶液中で凝固させて、球状構造の支持層の上に三次元網目状構造の分離機能層が形成された中空糸状分離膜を作製した。得られた分離膜は外径1420μm、内径880μmであった。膜構造および膜性能を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例7~10においては、高いウイルス除去性能、高い純水透過性能、および高い物理的強度を有する分離膜を達成している。一方、比較例3においては、分離機能層を形成するポリマーの溶融粘度が低いために、ウイルス除去性能が低い分離膜となっている。
 <実施例11>
 重量平均分子量42万のフッ化ビニリデンホモポリマー(クレハ化学工業社製,KFポリマーT#1300)38重量%とγ-ブチロラクトン(三菱化学社製:以下同じ)62重量%を160℃で溶解して支持膜用ポリマー溶液Bを得た。また溶融粘度の測定値が3300Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)9重量%、ポリメチルメタクリレート(Aldrich社製、重量平均分子量:3.5×10)2重量%およびジメチルスルホキシド(東レファインケミカル社製:以下同じ)89重量%を混合して温度140℃で溶解し、溶液粘度6Pa・sの分離機能層用のポリマー溶液A1を得た。この支持膜用ポリマー溶液Bを二重管式口金の外側スリットから、γ-ブチロラクトン85重量%水溶液を二重管式口金の中心パイプから同時に同心円状に吐出し、温度が10℃のγ-ブチロラクトン85重量%水溶液中で固化させた後、1.5倍の延伸工程、脱溶媒工程、乾燥工程を経て、中空糸状の支持膜を得た。この支持膜をコートノズル内に供給し、上記ポリマー溶液A1を支持膜にコーティングした後、凝固浴温度が40℃の水中でポリマー溶液A1を凝固させ、さらに脱溶媒工程を経て中空糸状の分離膜(以後、複合中空糸膜と呼ぶ。)を得た。得られた膜の構造および性能を表3に示す。
 <実施例12>
 溶融粘度の測定値が5400Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)8重量%、メタクリル酸メチル-アクリル酸アルキル共重合体(三菱レイヨン社製、メタブレン(登録商標)P-531A、重量平均分子量:4.0×10)2重量%、およびN-メチル-2-ピロリドン(BASF社製:以下同じ)90重量%を混合して温度140℃で溶解し、溶液粘度26Pa・sの分離機能層用のポリマー溶液A2を得た。ポリマー溶液A1の代わりにポリマー溶液A2を用いた以外は実施例11と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
 <実施例13>
 溶融粘度の測定値が4700Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)13重量%、ポリメチルメタクリレート(Aldrich社、重量平均分子量:9.96×10)4重量%、N-メチル-2-ピロリドンを83重量%の割合として温度140℃で溶解し、溶液粘度50Pa・sのポリマー溶液A3を得た。ポリマー溶液A1の代わりにポリマー溶液A3を用い、凝固浴を温度60℃の水にした以外は実施例11と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
 <実施例14>
 溶融粘度の測定値が4700Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)11重量%、メタクリル酸メチル-アクリル酸アルキル共重合体(三菱レイヨン社製、メタブレン(登録商標)P-551A、重量平均分子量:1.5×10)0.5重量%、およびジメチルスルホキシド88.5重量%を混合して温度140℃で溶解し、溶液粘度9Pa・sのポリマー溶液A4を得た。ポリマー溶液A1の代わりにポリマー溶液A4を用いた以外は実施例11と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
 <実施例15>
 溶融粘度の測定値が4300Pa・sのフッ化ビニリデンホモポリマー9重量%(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)、ポリメチルメタクリレート(Aldrich社、重量平均分子量:1.2×10)2重量%、およびジメチルスルホキシド89重量%を混合して温度140℃で溶解し、溶液粘度4Pa・sのポリマー溶液A5を得た。ポリマー溶液A1の代わりにポリマー溶液A5を用い、凝固浴を温度30℃の60wt%ジメチルスルホキシド水溶液にした以外は実施例11と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
 <実施例16>
 溶融粘度の測定値が3900Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)6重量%、ポリメチルメタクリレート(Aldrich社、重量平均分子量:1.2×10)0.1重量%、およびN-メチル-2-ピロリドン93.9重量%を混合して温度140℃で溶解し、溶液粘度0.8Pa・sのポリマー溶液A6を得た。ポリマー溶液A1の代わりにポリマー溶液A6を用い、凝固浴を温度60℃の水にした以外は実施例11と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
 <実施例17>
 実施例11と同様の支持膜用ポリマー溶液と分離機能層用ポリマー溶液を用いた。三重管式口金の内側スリットから支持膜用ポリマー溶液を、外層スリットから分離機能層用ポリマー溶液を、中心パイプから85重量%のγ-ブチロラクトン水溶液を同時に同心円状に押し出し、温度が10℃のジメチルスルホキシド30重量%水溶液中で固化させた後、脱溶媒工程を経て複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
 <比較例4>
 溶融粘度の測定値が2900Pa・sのフッ化ビニリデンホモポリマー9重量%(アルケマ社,KYNAR(登録商標)760,カタログ記載の溶融粘度2300~2900Pa・s)、ポリメチルメタクリレート(Aldrich社、重量平均分子量:3.5×10)2重量%、およびジメチルスルホキシド89重量%を混合して温度140℃で溶解し、溶液粘度0.2Pa・sのポリマー溶液A7を得た。ポリマー溶液A1の代わりにポリマー溶液A7を用いた以外は実施例11と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
 <比較例5>
 溶融粘度の測定値が2400Pa・sのフッ化ビニリデンホモポリマー20重量%(アルケマ社,KYNAR(登録商標)760,カタログ記載の溶融粘度2300~2900Pa・s)、メタクリル酸メチル-アクリル酸アルキル共重合体(三菱レイヨン社製、メタブレン(登録商標)P-531A、重量平均分子量:4.0×10)5重量%、およびジメチルスルホキシド75重量%を混合して温度140℃で溶解し、溶液粘度3Pa・sのポリマー溶液A8を得た。ポリマー溶液A1の代わりにポリマー溶液A8を用い、凝固浴を温度60℃の水にした以外は実施例11と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 <実施例18>
 重量平均分子量42万のフッ化ビニリデンホモポリマー(クレハ化学工業社製,KFポリマーT#1300)38重量%とγ-ブチロラクトン(三菱化学社製:以下同じ)62重量%を160℃で溶解して支持膜用ポリマー溶液Bを得た。また溶融粘度の測定値が5500Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)9重量%、ポリビニルピロリドン(BASF社製、K90HM)1重量%、およびN-メチル-2-ピロリドン90重量%を混合して温度120℃で溶解して分離機能層用のポリマー溶液A9を得た。支持膜用ポリマー溶液Bを二重管式口金の外側スリットから、γ-ブチロラクトン85重量%水溶液を二重管式口金の中心パイプから同時に同心円状に吐出し、温度が10℃のγ-ブチロラクトン85重量%水溶液中で固化させた後、脱溶媒工程、1.5倍の延伸工程、乾燥工程を経て、中空糸状の支持膜を得た。この支持膜をコートノズル内に供給し、上記ポリマー溶液A9を支持膜にコーティングした後、温度が40℃の水中で凝固させる工程、脱溶媒工程を経て中空糸状の分離膜(以後、複合中空糸膜と呼ぶ。)を得た。得られた膜の構造および性能を表4に示す。
 <実施例19>
 溶融粘度の測定値が4500Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)9重量%、ポリビニルピロリドン(BASF社製、K90)1重量%、およびジメチルスルホキシド(東レファインケミカル社製:以下同じ)90重量%を混合して温度120℃で溶解して分離機能層用のポリマー溶液A10を得た。ポリマー溶液A9の代わりにポリマー溶液A10を用い、凝固浴を温度20℃の水にした以外は実施例18と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
 <実施例20>
 溶融粘度の測定値が5200Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)9重量%、ポリビニルピロリドン(BASF社製、K30)1重量%、およびN-メチル-2-ピロリドン90重量%を混合して温度120℃で溶解してポリマー溶液A11を得た。ポリマー溶液A9の代わりにポリマー溶液A11を用い、凝固浴を温度60℃の水にした以外は実施例18と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
<実施例21>
 溶融粘度の測定値が4800Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)12重量%、ポリビニルピロリドン(BASF社製、K90HM)0.5重量%、およびジメチルスルホキシド87.5重量%を混合して温度120℃で溶解してポリマー溶液A12を得た。ポリマー溶液A9の代わりにポリマー溶液A12を用い、凝固浴を温度25℃の60wt%ジメチルスルホキシド水溶液にした以外は実施例18と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
<実施例22>
 溶融粘度の測定値が5200Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)12重量%、ポリビニルピロリドン(BASF社製、K90HM)0.5重量%、およびN-メチル-2-ピロリドン87.5重量%を混合して温度120℃で溶解してポリマー溶液A13を得た。ポリエチレン製の中空状支持膜(三菱レイヨン製、外径450μm、内径280μm、公称孔径0.1μm、50kPa、25℃における純水透過性能0.58m/m/hr、破断強度4.2MPa、破断伸度42%)をコートノズル内に供給し、ポリマー溶液A13を支持膜にコーティングした後、温度が40℃の水中で凝固させる工程、脱溶媒工程を経て複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
 <実施例23>
 溶融粘度の測定値が5500Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)10重量%、ポリビニルピロリドン(BASF社製、K30)0.5重量%、ポリメチルメタクリレート(Aldrich社、重量平均分子量:1.2×10)1重量%、およびN-メチル-2-ピロリドン88.5重量%を混合して温度120℃で溶解してポリマー溶液A14を得た。ポリマー溶液A9の代わりにポリマー溶液A14を用いた以外は実施例18と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
 <実施例24>
 溶融粘度の測定値が5000Pa・sのフッ化ビニリデンホモポリマー(アルケマ社製,Kynar(登録商標)HSV900,カタログ記載の溶融粘度3300~5500Pa・s)10重量%、ポリビニルピロリドン(BASF社製、K90HM)0.5重量%、ポリメチルメタクリレート(Aldrich社、重量平均分子量:1.2×10)1重量%、およびN-メチル-2-ピロリドン88.5重量%を混合して温度120℃で溶解してポリマー溶液A15を得た。ポリマー溶液A9の代わりにポリマー溶液A15を用いた以外は実施例18と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
 <実施例25>
 実施例24と同様のポリマー溶液A15、実施例22と同様のポリエチレン製支持膜を用いた以外は実施例18と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
 <実施例26>
 実施例18と同様の支持膜用ポリマー溶液Bと分離機能層用ポリマー溶液A9を用いた。三重管式口金の内側スリットから支持膜用ポリマー溶液Bを、外層スリットからポリマー溶液A9を、中心パイプから85重量%のγ-ブチロラクトン水溶液を同時に同心円状に吐出し、温度が10℃のN-メチル-2-ピロリドン30重量%水溶液中で固化させた後、脱溶媒工程を経て複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
 <実施例27>
 実施例24と同様の支持膜用ポリマー溶液Bと分離機能層用ポリマー溶液A15を用いた。三重管式口金の内側スリットから支持膜用ポリマー溶液Bを、外層スリットからポリマー溶液A15を、中心パイプから85重量%のγ-ブチロラクトン水溶液を同時に同心円状に吐出し、凝固温度が10℃のN-メチル-2-ピロリドン30重量%水溶液中で固化させた後、脱溶媒工程を経て複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
 <比較例6>
 溶融粘度の測定値が2900Pa・sのフッ化ビニリデンホモポリマー9重量%(アルケマ社,KYNAR(登録商標)760,カタログ記載の溶融粘度2300~2900Pa・s)9重量%、ポリビニルピロリドン(BASF社製、K90HM)1重量%、およびN-メチル-2-ピロリドン89重量%を混合して温度120℃で溶解してポリマー溶液A16を得た。ポリマー溶液A9の代わりにポリマー溶液A16を用いた以外は実施例18と同様にして複合中空糸膜を得た。得られた膜の構造および性能を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、化学的および物理的強度に優れ、高い純水透過性能と高いウイルス除去性能を両立するポリフッ化ビニリデン系樹脂製分離膜およびその製造方法が提供される。本発明の分離膜は、水処理分野、医薬品製造分野、食品工業分野、血液浄化用膜分野等に好適である。

Claims (15)

  1. 分離機能層を有する分離膜であって、該分離機能層が溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を含有し、かつ、該分離機能層が三次元網目状構造を有する分離膜。
  2. 分離機能層にさらに親水性ポリマーを含有する請求項1に記載の分離膜。
  3. 親水性ポリマーが、ポリビニルピロリドン系樹脂、アクリル系樹脂およびセルロースエステル系樹脂から選ばれる1種以上のポリマーである請求項2に記載の分離膜。
  4. 分離機能層中に含有する溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂と親水性ポリマーの重量比が60/40~99/1の範囲にある請求項2または3に記載の分離膜。
  5. 分離機能層が、その厚み方向に厚さ0.2μmの薄層ごとに分割した場合において、最大孔径0.03μm以上0.6μm以下の薄層の数が50以上400以下であり、かつ、最大孔径が0.03μm未満の薄層の数が0以上2以下である請求項1~4のいずれかに記載の分離膜。
  6. 最大孔径が0.03μm未満の薄層の数が0である請求項5に記載の分離膜。
  7. 分離機能層が、平均孔径が0.01μm以上1μm以下の三次元網目状構造を有する請求項1~6のいずれかに記載の分離膜。
  8. 前記三次元網目状構造が実質的に5μm以上のマクロボイドを含有しない請求項1~7のいずれかに記載の分離膜。
  9. 分離機能層が、支持体層上に積層された多層構造を有する請求項1~8のいずれかに記載の分離膜。
  10. 支持体層がポリフッ化ビニリデン系樹脂を含有し、かつ、球状構造を有する請求項9に記載の分離膜。
  11. 前記支持体層が平均直径0.1μm以上5μm以下の球状構造を有する請求項10に記載の分離膜。
  12. 支持体の少なくとも一方の表面に、ポリフッ化ビニリデン系樹脂を含有するポリマー溶液を塗布した後、凝固液に浸漬することで、ポリマー溶液を固化させて三次元網目状構造を有する分離機能膜を形成し、分離機能層と支持体層とが積層された多層構造を有する分離膜を製造する方法であって、前記ポリマー溶液が溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂を5重量%以上30重量%以下含有する請求項9~11のいずれかに記載の分離膜の製造方法。
  13. 前記ポリマー溶液が、溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂および親水性ポリマーを含有し、ポリフッ化ビニリデン系樹脂と親水性ポリマーとの重量比率が、60/40~99/1の範囲である請求項12に記載の分離膜の製造方法。
  14. 三重管式口金を用いて、外側の管から分離機能層を形成するポリマー溶液を、中間の管から支持体層を形成するポリマー溶液を、および、内側の管から中空部形成液体を同時に吐出して、吐出したポリマー溶液を凝固浴中で固化せしめることで、分離機能層が外層、支持体層が内層に配置された中空糸膜を製造する請求項9~11のいずれかに記載の分離膜の製造方法。
  15. 前記分離機能層を形成するポリマー溶液が、溶融粘度3300Pa・s以上のポリフッ化ビニリデン系樹脂および親水性ポリマーを含有し、ポリフッ化ビニリデン系樹脂と親水性ポリマーとの重量比率が、60/40~99/1の範囲である請求項14に記載の分離膜の製造方法。
PCT/JP2009/066331 2008-09-19 2009-09-18 分離膜およびその製造方法 WO2010032808A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2734378A CA2734378A1 (en) 2008-09-19 2009-09-18 Separation membrane and method for producing the same
EP09814652A EP2332639A1 (en) 2008-09-19 2009-09-18 Separation membrane, and method for producing same
CN200980136521.7A CN102159305B (zh) 2008-09-19 2009-09-18 分离膜及其制造方法
JP2009545418A JP5732719B2 (ja) 2008-09-19 2009-09-18 分離膜およびその製造方法
AU2009293694A AU2009293694A1 (en) 2008-09-19 2009-09-18 Separation membrane, and method for producing same
US13/119,071 US9174174B2 (en) 2008-09-19 2009-09-18 Separation membrane and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008240733 2008-09-19
JP2008-240733 2008-09-19
JP2009-085775 2009-03-31
JP2009085775 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010032808A1 true WO2010032808A1 (ja) 2010-03-25

Family

ID=42039629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066331 WO2010032808A1 (ja) 2008-09-19 2009-09-18 分離膜およびその製造方法

Country Status (9)

Country Link
US (1) US9174174B2 (ja)
EP (1) EP2332639A1 (ja)
JP (1) JP5732719B2 (ja)
KR (1) KR101603813B1 (ja)
CN (1) CN102159305B (ja)
AU (1) AU2009293694A1 (ja)
CA (1) CA2734378A1 (ja)
TW (1) TW201016307A (ja)
WO (1) WO2010032808A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082396A (ja) * 2010-09-13 2012-04-26 Mitsubishi Rayon Co Ltd 多孔質膜の製造方法
WO2014208592A1 (ja) 2013-06-26 2014-12-31 ダイキン工業株式会社 組成物、高分子多孔質膜及び親水化剤
WO2015137330A1 (ja) * 2014-03-11 2015-09-17 東レ株式会社 多孔質膜および浄水器
JP2016510688A (ja) * 2013-03-04 2016-04-11 アーケマ・インコーポレイテッド 長鎖分岐状フルオロポリマー膜
JP2016077923A (ja) * 2014-10-09 2016-05-16 日油株式会社 水処理用多孔質濾過膜の製造方法
JP2016077922A (ja) * 2014-10-09 2016-05-16 日油株式会社 水処理用ポリフッ化ビニリデン製多孔質濾過膜の製造方法
JP2019513080A (ja) * 2016-03-21 2019-05-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 多層膜を製造するための方法、紡糸口金およびシステム
WO2020138065A1 (ja) * 2018-12-26 2020-07-02 東レ株式会社 多孔質膜、複合膜及び多孔質膜の製造方法
WO2020262490A1 (ja) * 2019-06-27 2020-12-30 東レ株式会社 多孔質膜および複合多孔質膜

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174174B2 (en) * 2008-09-19 2015-11-03 Toray Industries, Inc. Separation membrane and method for producing the same
CN102085457B (zh) * 2009-12-07 2013-01-02 广州美能材料科技有限公司 一种制备复合多层多孔中空纤维膜的方法及其装置和产品
JP5772959B2 (ja) 2012-06-01 2015-09-02 三菱レイヨン株式会社 中空状多孔質膜
CN104684633B (zh) * 2012-10-02 2017-12-29 捷恩智株式会社 微多孔膜及其制造方法
CN111467974A (zh) * 2012-10-04 2020-07-31 阿科玛股份有限公司 多孔分离物品
KR101445958B1 (ko) * 2013-01-24 2014-10-01 주식회사 효성 4중구금 방사노즐을 적용한 중공사막의 제조방법
EP2845641B1 (en) * 2013-09-05 2018-05-09 Gambro Lundia AB Permselective asymmetric membranes with high molecular weight polyvinylpyrrolidone, the preparation and use thereof
JP6453592B2 (ja) * 2013-09-25 2019-01-16 アークレイ株式会社 血液検体の処理方法
JP6212436B2 (ja) * 2014-05-16 2017-10-11 積水化学工業株式会社 水処理装置及び水処理方法
WO2016006611A1 (ja) * 2014-07-07 2016-01-14 東レ株式会社 分離膜およびその製造方法
EP3603782A4 (en) 2017-03-27 2020-04-01 Mitsubishi Chemical Corporation POROUS MEMBRANE, MEMBRANE MODULE, WATER TREATMENT DEVICE AND METHOD FOR PRODUCING A POROUS MEMBRANE
WO2019173752A1 (en) 2018-03-08 2019-09-12 Repligen Corporation Tangential flow depth filtration systems and methods of filtration using same
CA3097195A1 (en) 2018-05-25 2019-11-28 Repligen Corporation Tangential flow depth filtration system and methods
JP7103715B2 (ja) * 2018-10-26 2022-07-20 帝人株式会社 ポリオレフィン微多孔膜、フィルター、クロマトグラフィー担体及びイムノクロマトグラフ用ストリップ
CN114206482B (zh) * 2019-07-31 2023-01-03 东丽株式会社 分离膜
EP4249108A4 (en) * 2020-11-19 2024-04-17 Asahi Chemical Ind POROUS MEMBRANE

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166141A (ja) 2000-09-21 2002-06-11 Mitsubishi Rayon Co Ltd 多孔質膜
WO2003026779A1 (fr) 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Film microporeux multicouches
WO2003106545A1 (ja) * 2002-06-14 2003-12-24 東レ株式会社 多孔質膜およびその製造方法
WO2004081109A1 (ja) 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited フッ化ビニリデン系樹脂多孔膜およびその製造方法
JP2007510801A (ja) * 2003-11-04 2007-04-26 ポーレックス コーポレイション 複合多孔質材料並びにそれらを作製する方法及びそれらを使用する方法
JP2007185562A (ja) * 2006-01-11 2007-07-26 Toyobo Co Ltd ポリフッ化ビニリデン系中空糸型微多孔膜およびその製造方法
WO2007119850A1 (ja) * 2006-04-19 2007-10-25 Asahi Kasei Chemicals Corporation 高耐久性pvdf多孔質膜及びその製造方法、並びに、これを用いた洗浄方法及び濾過方法
JP2007289886A (ja) 2006-04-26 2007-11-08 Toyobo Co Ltd 高分子多孔質中空糸膜
WO2008005745A2 (en) * 2006-07-06 2008-01-10 Arkema Inc. Ultra-high molecular weight poly(vinylidene fluoride)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882113A (en) * 1989-01-26 1989-11-21 Baxter International Inc. Heterogeneous elastomeric compositions containing a fluoroelastomer and PTFE and methods for manufacturing said compositions
DE3923128A1 (de) * 1989-07-13 1991-01-24 Akzo Gmbh Flach- oder kapillarmembran auf der basis eines homogenen gemisches aus polyvinylidenfluorid und eines zweiten, durch chemische umsetzung hydrophilierbaren polymeren
JPH03228671A (ja) 1990-02-02 1991-10-09 Asahi Chem Ind Co Ltd マイコプラズマ除去用多孔性再生セルロース膜およびマイコプラズマ除去方法
EP0641249A1 (en) * 1992-05-18 1995-03-08 Costar Corporation Supported microporous membranes
US5472607A (en) * 1993-12-20 1995-12-05 Zenon Environmental Inc. Hollow fiber semipermeable membrane of tubular braid
CA2128296A1 (en) 1993-12-22 1995-06-23 Peter John Degen Polyvinylidene fluoride membrane
GB2285010B (en) 1993-12-22 1997-11-19 Pall Corp Polyvinylidene fluoride membrane
US6780935B2 (en) * 2000-02-15 2004-08-24 Atofina Chemicals, Inc. Fluoropolymer resins containing ionic or ionizable groups and products containing the same
US7229665B2 (en) * 2001-05-22 2007-06-12 Millipore Corporation Process of forming multilayered structures
US6596167B2 (en) * 2001-03-26 2003-07-22 Koch Membrane Systems, Inc. Hydrophilic hollow fiber ultrafiltration membranes that include a hydrophobic polymer and a method of making these membranes
US7632905B2 (en) * 2004-04-09 2009-12-15 L'oreal S.A. Block copolymer, composition comprising it and cosmetic treatment process
EP1658889A1 (en) * 2004-11-19 2006-05-24 "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O." Longitudinal reinforced self-supporting capillary membranes and method for manufacturing thereof
ATE511915T1 (de) * 2004-12-03 2011-06-15 Siemens Industry Inc Membrannachbehandlung
JP5066810B2 (ja) * 2005-02-04 2012-11-07 東レ株式会社 高分子分離膜及びその製造方法
US8881915B2 (en) 2006-04-26 2014-11-11 Toyo Boseki Kabushiki Kaisha Polymeric porous hollow fiber membrane
EP2033705A4 (en) 2006-06-27 2011-06-29 Toray Industries POLYMER SEPARATION MEMBRANE AND METHOD FOR MANUFACTURING THE SAME
AU2006346599B8 (en) 2006-07-25 2011-06-09 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
WO2009091351A2 (en) * 2006-11-21 2009-07-23 Arkema Inc. Caustic resistant membrane
JP2008173573A (ja) 2007-01-19 2008-07-31 Toray Ind Inc 複合中空糸膜
US7842214B2 (en) * 2007-03-28 2010-11-30 3M Innovative Properties Company Process for forming microporous membranes
WO2010021474A2 (ko) * 2008-08-20 2010-02-25 주식회사 코오롱 다공성 막 및 그 제조방법
US9174174B2 (en) * 2008-09-19 2015-11-03 Toray Industries, Inc. Separation membrane and method for producing the same
JP5883301B2 (ja) * 2011-02-07 2016-03-15 日本バイリーン株式会社 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166141A (ja) 2000-09-21 2002-06-11 Mitsubishi Rayon Co Ltd 多孔質膜
WO2003026779A1 (fr) 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Film microporeux multicouches
WO2003106545A1 (ja) * 2002-06-14 2003-12-24 東レ株式会社 多孔質膜およびその製造方法
WO2004081109A1 (ja) 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited フッ化ビニリデン系樹脂多孔膜およびその製造方法
JP2007510801A (ja) * 2003-11-04 2007-04-26 ポーレックス コーポレイション 複合多孔質材料並びにそれらを作製する方法及びそれらを使用する方法
JP2007185562A (ja) * 2006-01-11 2007-07-26 Toyobo Co Ltd ポリフッ化ビニリデン系中空糸型微多孔膜およびその製造方法
WO2007119850A1 (ja) * 2006-04-19 2007-10-25 Asahi Kasei Chemicals Corporation 高耐久性pvdf多孔質膜及びその製造方法、並びに、これを用いた洗浄方法及び濾過方法
JP2007289886A (ja) 2006-04-26 2007-11-08 Toyobo Co Ltd 高分子多孔質中空糸膜
WO2008005745A2 (en) * 2006-07-06 2008-01-10 Arkema Inc. Ultra-high molecular weight poly(vinylidene fluoride)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Standard methods for the examination of water and wastewater", 1998, APHA

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082396A (ja) * 2010-09-13 2012-04-26 Mitsubishi Rayon Co Ltd 多孔質膜の製造方法
US11065587B2 (en) 2013-03-04 2021-07-20 Arkema Inc. Long chain branched fluoropolymer membranes
JP2016510688A (ja) * 2013-03-04 2016-04-11 アーケマ・インコーポレイテッド 長鎖分岐状フルオロポリマー膜
WO2014208592A1 (ja) 2013-06-26 2014-12-31 ダイキン工業株式会社 組成物、高分子多孔質膜及び親水化剤
WO2015137330A1 (ja) * 2014-03-11 2015-09-17 東レ株式会社 多孔質膜および浄水器
JP2016077923A (ja) * 2014-10-09 2016-05-16 日油株式会社 水処理用多孔質濾過膜の製造方法
JP2016077922A (ja) * 2014-10-09 2016-05-16 日油株式会社 水処理用ポリフッ化ビニリデン製多孔質濾過膜の製造方法
JP2019513080A (ja) * 2016-03-21 2019-05-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 多層膜を製造するための方法、紡糸口金およびシステム
JP7023858B2 (ja) 2016-03-21 2022-02-22 デュポン セイフティー アンド コンストラクション インコーポレイテッド 多層膜を製造するための方法、紡糸口金およびシステム
WO2020138065A1 (ja) * 2018-12-26 2020-07-02 東レ株式会社 多孔質膜、複合膜及び多孔質膜の製造方法
CN113195083A (zh) * 2018-12-26 2021-07-30 东丽株式会社 多孔膜、复合膜和多孔膜的制造方法
JP7435438B2 (ja) 2018-12-26 2024-02-21 東レ株式会社 多孔質膜、複合膜及び多孔質膜の製造方法
WO2020262490A1 (ja) * 2019-06-27 2020-12-30 東レ株式会社 多孔質膜および複合多孔質膜

Also Published As

Publication number Publication date
AU2009293694A1 (en) 2010-03-25
US9174174B2 (en) 2015-11-03
CN102159305A (zh) 2011-08-17
US20110226689A1 (en) 2011-09-22
KR20110063547A (ko) 2011-06-10
TW201016307A (en) 2010-05-01
JPWO2010032808A1 (ja) 2012-02-16
JP5732719B2 (ja) 2015-06-10
CA2734378A1 (en) 2010-03-25
CN102159305B (zh) 2015-08-19
EP2332639A1 (en) 2011-06-15
KR101603813B1 (ko) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5732719B2 (ja) 分離膜およびその製造方法
JP5076320B2 (ja) ポリフッ化ビニリデン系中空糸型微多孔膜の製造方法
JP2010094670A (ja) ポリフッ化ビニリデン系複合膜およびその製造方法
KR101292485B1 (ko) 불소 수지계 고분자 분리막 및 그의 제조 방법
WO2019066061A1 (ja) 多孔質中空糸膜及びその製造方法
JP5050499B2 (ja) 中空糸膜の製造方法および中空糸膜
WO2007125709A1 (ja) 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JP2011036848A (ja) ポリフッ化ビニリデン系樹脂製分離膜およびその製造方法
JP5292890B2 (ja) 複合中空糸膜
JP6226795B2 (ja) 中空糸膜の製造方法
TWI403355B (zh) A fluororesin-based polymer separation membrane and a method for producing the same
JP6419917B2 (ja) 中空糸膜の製造方法
JP2012187575A (ja) 複合膜及びその製造方法
WO2009119373A1 (ja) 中空糸膜およびその製造方法
WO2012063669A1 (ja) 分離膜の製造方法
JP3317975B2 (ja) ポリアクリロニトリル系中空糸状濾過膜
JP2688564B2 (ja) 酢酸セルロース中空糸分離膜
WO2022249839A1 (ja) 分離膜及びその製造方法
KR20230174230A (ko) 중공사막 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136521.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009545418

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009293694

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2734378

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009814652

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009293694

Country of ref document: AU

Date of ref document: 20090918

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117008775

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13119071

Country of ref document: US