WO2010037717A1 - Device, use thereof and process for removing a compound contained in a fluid - Google Patents

Device, use thereof and process for removing a compound contained in a fluid Download PDF

Info

Publication number
WO2010037717A1
WO2010037717A1 PCT/EP2009/062541 EP2009062541W WO2010037717A1 WO 2010037717 A1 WO2010037717 A1 WO 2010037717A1 EP 2009062541 W EP2009062541 W EP 2009062541W WO 2010037717 A1 WO2010037717 A1 WO 2010037717A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartment
fluid
membrane
compound
compartments
Prior art date
Application number
PCT/EP2009/062541
Other languages
French (fr)
Inventor
Luc Schrive
Jean-Christophe Ruiz
Bruno Fournel
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2010037717A1 publication Critical patent/WO2010037717A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the invention belongs to the field of depollution, disinfection, purification and / or decontamination of fluids.
  • the present invention provides a photocatalytic membrane reactor type device for purifying a particularly aqueous stream contaminated with an undesired compound such as a toxic compound.
  • a photocatalytic membrane reactor type device for purifying a particularly aqueous stream contaminated with an undesired compound such as a toxic compound.
  • Such a device can be easily adapted to the scale of the laboratory as on an industrial scale.
  • the present invention also relates to a method for eliminating an undesired compound contained in a fluid implementing such a device.
  • UV C 254 nm
  • UV can also have indirect effects in the presence of photocatalytic materials. Indeed, other emission lines can have lethal effects on living microorganisms.
  • a mercury lamp emitting at 365 nm (UV A) has the property of exciting titanium oxide (TiO 2 ) in crystalline anatase phase or any other photocatalytic compound, usually semiconductors such as SiO 2, ZrO 2, etc. leading to the formation of free radicals such as the hydroxyl radical (OH °).
  • the desired effect is usually an oxidation of pollutants. From a polluted effluent, the result will be a decrease in the chemical oxygen demand (COD).
  • COD chemical oxygen demand
  • reaction species are: free radicals that play the set of reaction initiators, polluting compounds and oxygen.
  • the products of the reaction in the case of a simplifying hypothesis where the pollutant is a hydrocarbon are mainly water (H 2 O) and carbon dioxide (CO2) • TiO 2 or any other photocatalytic material acts as a reaction catalyst, activated by the energy of UV photons [5], the whole producing free radicals.
  • the photocatalytic material it is important that it has adsorption properties of the compounds to be destroyed [6] in order to increase the probability of encounter between, on the one hand, the free radicals formed on the surface of the photocatalytic material. and whose life is very low and, secondly, pollutants to oxidize.
  • the targeted pollutants are usually organic compounds in dissolved form, in the form of colloids, aggregates of organic matter, or microorganisms. In the latter case, the oxidation phenomena are initiated on the surface of the microorganism. The wall of the microorganism is injured and can lead to lysis and death of the microorganism.
  • the most common UV emission device consists of a mercury vapor lamp in the form of a "neon" type tube sealingly inserted into a pipe.
  • the fluid film (liquid or gas) surrounding the lamp undergoes UV irradiation causing the death of microorganisms that are suspended there.
  • the disadvantage of conventional mercury lamps is their large size, the need for a heating period at startup, and especially their limited life (about a year) producing industrial waste contaminated with mercury.
  • LEDs light-emitting diodes
  • the advantage of this type of component is their low cost, low energy consumption (of the order of tens of milliwatts) and their small size allowing their implantation as close as possible, or even inside a vein liquid and this even for small piping cut. In addition, their lifespan is 5 to 10 times longer than that of mercury lamps.
  • LEDs can be inserted in all kinds of systems intended for the degradation of compounds contained in fluids, for example air [11], or water [12]. LEDs also have the characteristic of emitting a relatively focused radiation, that is to say that the light beam is limited to an angle of a few degrees, typically 10 to 50. To increase the probability of encounter between the beam and the reagents, it may be chosen to multiply the scattering of the LEDs around the liquid vein as described in the international application WO 2007/113537 [10].
  • the photocatalytic material may be in the form of a layer deposited on a support (for example a pipe), or on a porous support [13].
  • a support for example a pipe
  • a porous support for example a pipe
  • the disadvantage lies in the limited probability of encounter between species reaction, namely the free radicals formed on the surface of the photocatalytic material, the oxygen and the compounds that are to be destroyed.
  • a photocatalytic material in dispersed form.
  • a TiO 2 powder whose particle size is less than or equal to one micrometer is kept in suspension by sufficient agitation or turbulence, in the presence of a UV irradiation system immersed in or located at the outside the reactor in the case where it has transparent walls.
  • the membranes used may be of the hollow fiber type, or cylindrical (or any other membrane geometry), organic or inorganic materials, for example ceramic type (or any other porous material).
  • ceramic type or any other porous material.
  • the photocatalyst is immobilized on the membrane [15]. However, in such a device, there is no diffusion of oxygen in the photocatalytic reactor.
  • the present invention makes it possible, inter alia, to meet the needs indicated above and to solve the drawbacks of the devices that are useful in the photocatalytic oxidation of the fluids of the prior art.
  • the present invention is based on a simplified device and improved with respect to prior art fluid treatment devices.
  • This device can be defined as a membrane photocatalytic reactor irradiated with UV. Indeed, the steps of:
  • the device according to the present invention makes it possible to increase the probability of encounter between the compound (s) to be eliminated, the reagents such as in particular oxygen and the activated photocatalyst.
  • Active area / volume device By “active surface” is meant, in the context of the present invention, the surface of the photocatalyst activated by UV photons.
  • the compactness of the system reduces the volume of the device and therefore its size, to reduce the size of the associated hydraulic system (piping, pumps), and thus reduces construction costs. At the laboratory scale, a better manipulation of the system is obtained.
  • the present invention provides a device for removing at least one compound contained in a fluid, comprising
  • compartment Ci a material photocatalytic capable of being insolated by said UV radiation system
  • Compartment C 2 distinct from said at least one first compartment (compartment Ci), adapted to recover said fluid after removal of said compound, - means adapted to bring an oxygen-containing fluid into at least one second compartment (compartment C2) ,
  • a membrane separating said first and second compartments (compartments Ci and C2) and adapted to the passage of at least one fluid.
  • first compartment or “compartment Ci” are equivalent and can be used interchangeably.
  • second compartment or “compartment C 2".
  • the term "compound” means an undesired compound such as an impurity or a contaminant, likely to be present or present in a fluid.
  • said compound is a pathogenic compound.
  • the compound may be an organic or inorganic, molecular or particulate compound.
  • Said organic compound may be present in the fluid under dissolved form, in the form of colloids, in the form of aggregates of organic matter.
  • the compound may be of biological origin such as a toxin, a mold, a microorganism, a virus, a bacterium, a yeast, a protozoan or a fungus.
  • the compound may be of chemical origin and in particular chosen from NO2, CO, a phenol, an insecticide, a pesticide, a volatile organic compound such as benzene, toluene, ethylbenzene or xylenes, an aldehyde, a halogen compound or heavy metal.
  • the compound may be present in the fluid in very dilute or much more concentrated form.
  • the amount of said compound in the fluid to be treated is between 1 ⁇ g and 100 g / liter of fluid to be treated.
  • fluid means a gas or a liquid.
  • the present invention aims to eliminate undesired compounds
  • fluids in which the present invention aims to eliminate undesired compounds mention may be made of wastewater, in particular in purification plants, swimming pool water, aquarium water, cooling water of air conditioning systems, air from air-cooled towers, air circulating in hospitals, air circulating in companies in which the presence of pollutants or impurities is not acceptable vis-à-vis production such as pharmaceutical or agri-food companies.
  • the present invention relates to a device and a method applicable to any gaseous or liquid fluid in which at least one compound is to be removed.
  • the term "removal of a compound in a fluid” means both reducing the amount of the compound in said fluid and completely removing said compound in said fluid.
  • This elimination can be accomplished by transforming said compound into another preferred compound as less pathogenic and / or inactivating said compound and in particular compounds of biological origin.
  • a toxic compound its elimination consists of inactivating it and / or transforming it into a compound that is harmless to human and / or animal health.
  • the removal of the compound in the context of the present invention implements a photocatalytic degradation.
  • the membrane allowing the passage of at least one fluid present in the device of the invention is a porous membrane, mineral or prepared from organic compounds which, as previously explained, has different functions.
  • a membrane prepared from organic compounds may be cellulose acetate, ethylcellulose, polyether sulfone or polyacrylonitrile, while an inorganic inorganic membrane will advantageously be ceramic, metal or inert carbon such as, for example, Carbosep® membranes.
  • treated fluid is meant, in the context of the present invention, a fluid in which the compound to be removed is no longer present or in which the compound to be removed is present in an oxidized form and / or hydrolysed, ie a form rendered harmless.
  • the photocatalytic material can support and / or retain the photocatalytic material during the duration of the oxidation and hydrolysis reactions.
  • the retention of the photocatalytic material may be carried out for recycling said material.
  • said membrane is chosen from microfiltration membranes, ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes.
  • each second compartment is separated from the first compartment (compartment Ci) by a membrane.
  • each first compartment is separated from the second compartment (compartment C2) by a membrane.
  • the membranes may be of the same or different nature.
  • the membranes mainly used for separating and retaining the photocatalytic material are advantageously of the microfiltration or ultrafiltration type, defined by pore sizes smaller than the average particle size of the photocatalytic material, typically of the order of one micrometer up to about ten nanometers.
  • the consumption of this reagent by the oxidation reactions is advantageously hydrophilic or hydrophobic membranes, of the nanofiltration, ultrafiltration or microfiltration type.
  • the latter are advantageously of the ultrafiltration, nanofiltration or even reverse osmosis type, that is to say the membranes of which the pores are of the order of a few tens of nanometers up to the nanometer, or even dense membranes.
  • the membrane of the device according to the invention can be of any form provided that this form allows the separation of the first (s) and second (s) compartments (compartments Ci and C2).
  • the membrane of the device according to the invention is: either of substantially flat shape, in particular of substantially flat circular shape and in particular a circular membrane comprising a surface of the order of a few cm 2 , typically between 15 to 100 cm 2 ; is of cylindrical shape and in particular in cylindrical form of substantially circular outer cross section.
  • UV radiation system is meant a system capable of emitting radiation whose wavelength range is in the near ultraviolet range.
  • the UV radiation system implemented in the context of the device according to the invention comprises at least one LED.
  • said UV radiation system comprises at least two LEDs connected in series, in particular at least 5 LEDs, in particular at least 10 LEDs and, more particularly, at least 50 LEDs mounted in series, said UV radiation system may include up to several hundred LEDs in series.
  • said UV radiation system comprises at least two LEDs connected in parallel, in particular at least 5 LEDs, in particular at least 10 LEDs and, more particularly, at least 50 LEDs connected in parallel, said UV radiation system may include up to several hundred LEDs mounted in parallel.
  • said UV radiation system comprises LEDs mounted in series and LEDs connected in parallel.
  • the UV radiation system can be located anywhere on or in the device according to the present invention with the sole condition of ability to effectively irradiate the photocatalytic material.
  • the UV radiation system can be located on the outer wall of the device, on the inner wall of the device, on the membrane separating the first compartment (compartment Ci) from a second compartment (compartment C2), inside the first compartment (compartment Ci) especially in the form of garlands and / or inside the second compartment (compartment C2) especially in the form of garlands.
  • the device according to the present invention has means for the power supply of said UV radiation system such as electrical connections.
  • photocatalytic material any type of photocatalytic material can be used in the context of the present invention.
  • the photocatalytic material used in the context of the present invention consists of semiconductor particles.
  • the term "semiconductor” means a material having an electrical conductivity intermediate between the metals and the insulators.
  • the conductivity properties of a semiconductor are influenced mainly by the charge carriers (electrons or electronic vacancies) that the semiconductor exhibits. These properties are determined by two particular energy bands called the “valence band” (corresponding to the electrons involved in the covalent bonds) and the “conduction band” (corresponding to the electrons in an excited state and able to move in the semiconductor).
  • the gap represents the difference in energy between the valence band and the conduction band.
  • the semiconductor may be chosen from the group consisting of:
  • a metal oxide such as TiO 2, WO 3 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 , Ta 2 O 5 or a mixture of different metal oxides
  • a metal sulphide such as CdS
  • ZnS, WS 2 or a mixture of different metal sulfides other semiconductors such as GaAs, GaP, CdSe, SiC or a mixture thereof;
  • the semiconductor implemented in the context of the present invention is a metal oxide and in particular a metal oxide from the list previously given, or a mixture of metal oxides.
  • the particle size of the photocatalytic material is advantageously less than 10 ⁇ m, especially less than 5 ⁇ m, in particular between 2 ⁇ m and 2 nm, and more particularly between 1 ⁇ m and 10 nm.
  • the photocatalytic material is in the form of a deposit.
  • spot in the present invention is synonymous with a layer, a film, a coating.
  • the photocatalytic material is deposited in the form of a layer or film on the membrane which separates the first compartment (compartment Ci) from a second compartment (compartment C2).
  • the oxidation and / or hydrolysis reaction is preferably carried out at the inlet of each porous membrane pore where the probability of meeting between reagents (free radicals produced by the radiation UV at the surface of the pore, compounds to be eliminated near the entrance of the pore, dissolved oxygen) is the largest.
  • the membrane will have regenerating or self-releasing properties. This is particularly interesting when the fluid to be treated contains organic species and microorganisms. It is then formed on the surface of the membrane, a layer of biofilm difficult to clean. UV photocatalysis will then prevent the formation of this biofilm.
  • This effect already described in the patent application JP2002001332 [16] works in this document using membranes immersed in the entire reactor illuminated by mercury lamps. This phenomenon can be achieved by LEDs located closest to the membrane surface. This increases the possibility of destroying the deposition layer and improves the decolouring effects.
  • the photocatalytic material used in this first variant of the present invention is achievable by various techniques known to those skilled in the art such as the sol-gel technique, the synthesis under pressure of CO2 or the hydrothermal synthesis followed by sintering, the vapor phase deposition (MOCVD), the deposition of preformed nanometric or micrometric particles then deposited under hydrostatic pressure and then sintered.
  • the sintering step makes it possible to bond the particles and the layer thus formed to the support which supports said layer.
  • the film or the layer of semiconductor particles advantageously has a thickness of between 0.01 and 20 ⁇ m and in particular between 1 and 10 ⁇ m. This thickness is either substantially constant or variable on the deposition surface.
  • the photocatalytic material is in dispersed form.
  • the dispersion of the photocatalytic material makes it possible to increase the accessible surface area of the material for the reaction.
  • the photocatalytic material used in this second variant of the present invention is feasible by various techniques known to those skilled in the art such as by a sol-gel technique, by supercritical CO2 synthesis, by hydrothermal synthesis, by MOCVD or by any other technique that makes it possible to obtain grains comprising micropores or consisting of nanoparticles with photocatalytic functionality.
  • the particles are introduced into the fluid to be treated before, after and / or during the introduction of the latter into the device according to the invention.
  • the particles are present in the fluid to be treated in an amount of between 10 2 and 10 9 particles / ml, in particular between 10 3 and 10 6 particles / ml of fluid to be treated.
  • the photocatalytic material is both in the form of a deposit and in dispersed form. This variant makes it possible to cumulate the advantages related to these two forms of presentation.
  • the device of the present invention comprises a single second compartment (compartment C2)
  • the device comprises a first compartment (compartment Ci) and a second compartment (compartment C2), separated by a membrane as previously defined.
  • the device comprises at least two first compartments (Ci compartments).
  • said device comprises between 2 and 500 first compartments, especially between 5 and 100 first compartments.
  • Each first compartment comprises between 2 and 500 first compartments, especially between 5 and 100 first compartments.
  • the ratio "Volume of the first compartment (s) / volume of the second compartment” may be between 1/100 and 100/1, in particular between 1/50 and 50/1, in particular between 1 / 10 and 10/1 and, more particularly, between 1/2 and 2/1.
  • the first compartment (s) (compartment (s) Ci) can be included in the second compartment (compartment C2)
  • the second compartment (compartment C2 ) can be included in the first compartment (compartment Ci)
  • the first (s) and second compartments (compartments Ci and C2) can be arranged one on the other or side by side.
  • compartment C2 is adapted, on the one hand, to diffuse the oxygen supplied to the latter by an oxygen-containing fluid and, on the other hand, to recover the treated fluid.
  • the device of the present invention comprises at least two second compartments
  • said device comprises between 2 and 500 compartments C2, in particular between 5 and 100 compartments C2. Every second compartment (compartment C2) is separated from the first compartment (compartment Ci) by a membrane as previously defined.
  • At least one of the second compartments is adapted to recover the treated fluid and at least one of the second compartments (compartments C2) is adapted to diffuse the oxygen supplied into this compartment by the fluid containing oxygen.
  • the ratio "Volume of the first compartment / Volume of the second compartments" can be between 1/100 and 100/1, in particular between 1/40 and 40/1, in particular between 1/8 and 8/1 and, more particularly, between 1/2 and 2/1.
  • the second compartments can be between 1/100 and 100/1, in particular between 1/40 and 40/1, in particular between 1/8 and 8/1 and, more particularly, between 1/2 and 2/1.
  • components C2 may be included in the first compartment (compartment Ci) and / or be located on the periphery of the first compartment (compartment Ci) and in direct contact therewith.
  • the device according to the present invention also comprises means adapted to bring the fluid to be treated in said (or said) first compartment (s) (compartment (s) Ci), means adapted to recover this fluid at the output of said ( or said first compartment (s) (compartment (s) Ci), means adapted to recover the permeate (ie the treated fluid, recovered in at least a second compartment (compartment C2) after it has passed through the membrane separating the first compartment (compartment Ci) containing the fluid to be treated and this second compartment (compartment C2)) and means adapted to bring an oxygen-containing fluid into at least one second compartment (compartment C2)
  • oxygen-containing fluid means a gaseous fluid containing oxygen.
  • the oxygen is present in said fluid in an amount of between 5 and 100% (vol / vol), in particular between 10 and 90% (vol / vol) and, in particular, between 20 and 80% (vol / vol) of the fluid containing oxygen.
  • Said fluid is more particularly ambient air or pure or substantially pure oxygen.
  • any means for bringing a liquid or gaseous fluid into a compartment is usable in the context of the present invention.
  • these means include liquid supply pumps, gas supply pumps, liquid supply means by hydrostatic pressure.
  • These means are connected to the compartments Ci or C2 by a pipe made of flexible material or rigid material.
  • the present invention also relates to the use of a device as previously defined for removing at least one compound contained in a fluid.
  • said compound is a pathogenic compound and, in particular as previously described.
  • the present invention finally relates to a method for removing a compound contained in a fluid (AT) .
  • the method according to the present invention comprises the steps of: a) introducing said fluid (A) into a first compartment (compartment Ci) of a device as previously defined; b) introducing oxygen into said first compartment (compartment Ci) from at least one second compartment (compartment C2) separated from said first compartment (compartment Ci) by a membrane as previously defined; c) irradiating a photocatalytic material as previously defined and present in said first compartment (compartment Ci) with a UV radiation system as previously defined; d) recovering a fluid (B) no longer comprising said compound in at least one second compartment (compartment C2)
  • Step (a) of the method according to the present invention can implement means for supplying a fluid as previously defined.
  • the introduction of the fluid (A) into the first compartment (compartment Ci) can be done at very variable flow rates.
  • this flow can be of the order of 0.1 to
  • this flow rate may be of the order of 10 to 10 5 1 / h and in particular of the order of 100 to 10 4 1 / h.
  • the fluid (A) is recovered at the outlet of the first compartment (compartment Ci) by any means and at any flow adapted and selected according to the operating conditions used for the introduction of the fluid (A). Once the fluid (A) recovered, it can be subjected to at least one new treatment according to the method of the invention.
  • Step (b) of the process according to the present invention consists in introducing, into one (or more) first compartment (s) (compartment (s) Ci), an oxygen-containing fluid from a second compartment (compartment C2) separated from said (or said) first compartment (s) (compartment (s) Ci) by a membrane as defined above.
  • the step is to introduce, in the (or) first compartment (s) (compartment (s) Ci) where the oxidation and / or hydrolysis reaction takes place, one of the reagents involved in this reaction.
  • the second compartment (compartment C2) is a compartment rich in a fluid containing oxide and in particular a gaseous fluid such as air or oxygen
  • the first compartment (s) ) (compartment (s) Ci) is (are) filled with liquid and poor (s) in oxygen due to the consumption of this reagent by photocatalytic oxidation reactions.
  • the introduction of oxygen is in the most dispersed form possible, in the form of microbubbles obtained by convection, for example, under the effect of a pressure difference or in molecular form by a diffusion phenomenon, under the effect of the difference of the chemical potential.
  • the introduction of oxygen into the first compartment (s) (compartment (s) Ci) can be done at a flow rate at most equal to the rate of introduction of the fluid (A), in particular minimum equal to l / 10000 -th of the fluid flow (A), especially between l / 10 and l -th / 1000 -th of fluid flow (A).
  • Step (b) of the process according to the invention is carried out following a preliminary step of introducing, into the second compartment (compartment C2), an oxygen-containing fluid which can be done at a substantially equivalent flow rate.
  • the rate of introduction of oxygen into the first compartment (s) (compartment (s) Ci).
  • Step (c) of the process according to the invention consists in irradiating the photocatalytic material with UV radiation.
  • This irradiation has the effect of activating the photocatalytic material on the surface of which charges (electrons and vacancies) are created, said charges being at the base of the elimination reactions of the compound contained in the fluid to be treated.
  • the exposure of the photocatalytic material during step (c) of the process according to the invention may be continuous or periodic.
  • the specific energy of this insolation is included on average, when said UV radiation system comprises at least one LED, between 0.01 and 100 mW / cm 2 and in particular between 0.1 and 20 mW / cm 2 at a wavelength of between 254 and 380 nm.
  • step (d) is to recover the treated fluid also referred to as fluid (B) or permeate.
  • This step is performed by draining the treated fluid from (or) first compartment (s) (compartment (s) Ci) to at least a second compartment (compartment C2) through the membrane separating these compartments.
  • This step can be carried out continuously during the reaction or sequentially by alternating oxygen diffusion times and permeate drainage moments, as explained below.
  • the membrane retains the catalyst, but passes the oxidized compounds and / or hydrolyses in the case where they have a lower molecular weight than the initial compounds to eliminate and can pass through pores of the membrane.
  • a treated fluid also referred to herein as "a cleansed permeate" is then collected.
  • the passage of the liquid (B) treated ie the liquid after implementation of steps (a) to (c) of the process according to the invention
  • the passage of the liquid (B) treated ie the liquid after implementation of steps (a) to (c) of the process according to the invention
  • through the membrane from a first compartment (compartment Ci) to a second compartment (compartment C2), and its recovery can be done by simple gravity, using a compressed gas, stirring, suction.
  • the second compartment ie the liquid after implementation of steps (a) to (c) of the process according to the invention
  • step C2 of step (b) of the method is the same as that of step (d) of the method and steps (b) and (d) are performed sequentially.
  • the second compartment (compartment C2) of step (b) of the process is distinct from the compartment of step (d) of the method and steps (b) and d) may be performed continuously during the process.
  • the process of the present invention is remarkable because it makes it possible to associate two distinct steps (reaction and then separation of the photocatalyst) of the process.
  • the device according to the invention makes it possible to couple, in one and the same place, the membrane surface, the steps of the process for removing a compound contained in a fluid which are the oxidation reaction stages and / or hydrolysis, retention of photocatalytic material, diffusion of oxygen, and drainage of oxidized and / or hydrolyzed compounds.
  • the step of retaining the catalytic material is necessary when the latter is in the form of dispersed particles and can be carried out during step (d) of the process or following step (d) of process for recycling these particles.
  • FIG. 1A is a representation of a device with a first compartment (compartment Ci) and a second compartment (compartment C2) with the means and additional elements allowing the implementation of the method according to the invention.
  • FIG. 1B is a detailed representation of a part of the device and, more particularly, of the first compartment (compartment C1) with the substantially flat membrane with photocatalytic layer on its surface (fi), the circuit of the fluid path (A) and the UV LEDs positioned above the first compartment (compartment Ci).
  • FIG. 2 presents a schematic representation of a tubular membrane with an internal photocatalytic layer having a "garland" of UV LEDs positioned in the middle of the liquid vein.
  • the first compartment (compartment Ci) corresponds, in this case, to the interior space of the tubular membrane and the second compartment (compartment C2) not materialized to the space located at the periphery of the tubular membrane.
  • FIG. 3 shows a schematic representation of a device according to the present invention in the form of a housing serving as an industrial membrane photocatalytic reactor with mounting of external LEDs.
  • FIG. 4 is a schematic representation of a device according to the present invention in the form of a housing serving as a reactor industrial photocatalytic membrane with external LEDs (at the periphery of the housing) and internal LEDs (in strings inserted inside the membrane door).
  • the present invention provides an apparatus allowing the implementation of oxidation and / or hydrolysis reactions on a laboratory scale (treatment of a few milliliters to a few liters per hour), easily extensible to larger sizes, up to industrial type devices (several m 3 or tens of m 3 per hour).
  • a device according to the present invention is proposed adapted for use in the laboratory and based on the implementation of a housing (or membrane door) containing a substantially flat membrane whose surface is of the order of a few cm 2 (typically 15 to 100 cm 2 ) for example.
  • the casing used is advantageously a filter casing in frontal or tangential mode manufactured by the company Millipore or the company TAMI industries (France).
  • the membrane (1) used is an advantageously organic membrane, circular substantially flat because the filtering surface is easily accessible for the deposit.
  • This is, for example, a membrane "disram” manufactured by the company TAMI industries (France) with a diameter of about 90 mm, a thickness of between 1 and 5 mm, a porosity between 30 and 70% and with a pore size between 1 and 1000 nm.
  • a fixed layer of a photocatalyst such as TiO 2 is deposited on one of the faces (fi) of the membrane by any suitable technique (sol-gel, isostatic compression, CVD, hydrothermal synthesis, synthesis of supercritical CO2 from alkoxides).
  • the membrane can then be sintered at high temperature, typically 250 to 600 0 C or more.
  • the first and second compartments (compartments Ci and C2) of the device according to the present invention correspond respectively to the upper module (2) and to the lower module (3) of the casing, said modules being separated by the membrane (1) whose face (fi).
  • the device of FIG. 1 is advantageously used in tangential mode: the liquid to be treated circulates parallel to the surface of the membrane (1).
  • the fluid containing the compound to be removed is introduced into the first compartment (compartment Ci) via a pipe (5) by means of any pumping member and, in general, by any system for moving a fluid and follows a spiral created by an inner member of spiral shape (6). It should be noted that the volume of this spiral is, in fact, the volume of the first compartment (compartment Ci).
  • the fluid exits the device via a valve (7).
  • the recommended UV LED mounting (8) is a spiral arrangement on the spiral path of the fluid. These LEDs (8) are inserted in the upper flange of the module in holes allowing their attachment with a sealing system vis-à-vis the outside.
  • the seal must withstand a fluid circulation pressure of the order of 0.1 to 10 bar, preferably 1 to 5 bar.
  • the second compartment (compartment C2) is supplied with a fluid containing oxygen such as air or oxygen via a valve (9), by means of a fluid injection system containing the oxygen.
  • a fluid containing oxygen such as air or oxygen
  • This power supply is performed for a duration di.
  • the fluid injection pump is stopped, the valve (9) is closed and disconnected from the source of fluid containing oxygen.
  • the valve (9) is then connected to a device for recovering the cleaned permeate (i.e. the treated fluid having passed through the membrane) from the second compartment
  • cylindrical membranes can also be used with layers internal or external active photocatalytic material.
  • FIG. 2 is a schematic representation of such a cylindrical membrane (1).
  • This membrane (1) is advantageously mineral, tubular or ductal.
  • This is, for example, a single-channel membrane such as those manufactured by companies TAMI Industries, Orelis, Pall / SCT, etc. a length of between 250 and 1200 mm, a diameter of between 10 and 50 mm and a porosity between 30 and 70%.
  • a fixed layer of a photocatalyst (10) such as TiO 2 is deposited on the internal face (f 2 ) of the membrane by any suitable technique (sol-gel, isostatic compression, CVD, hydrothermal synthesis, synthesis in CO2 supercritical from alkoxides).
  • a photocatalyst 10 such as TiO 2 is deposited on the internal face (f 2 ) of the membrane by any suitable technique (sol-gel, isostatic compression, CVD, hydrothermal synthesis, synthesis in CO2 supercritical from alkoxides).
  • the membrane can then be sintered at high temperature, typically 250 to 600 0 C or more.
  • the device of FIG. 2 is advantageously used in tangential mode.
  • the liquid to be treated circulates parallel to the surface of the membrane (1): liquid vein flowing from the fluid inlet (A) to the fluid outlet (A).
  • the internal UV LEDs (8) are installed inside the liquid vein in parallel in the form of a "garland” of to irradiate the photocatalytic material (10).
  • the dimensions of the fluid stream are compatible with the focusing of the light beam emitted by the UV LEDs (8) to obtain efficient activation of the photocatalytic material.
  • the membrane (1) of Figure 2 allows, sequentially, to introduce into the liquid vein oxygen and recover the permeate.
  • the form of implementation in which the device according to the present invention comprises a second compartment (compartment C2) and several first compartments (compartments Ci) corresponds to a device of the membrane housing type comprising several devices as defined in FIG. , the interior space of the housing except for those devices corresponding to the second compartment
  • the UV LED system integrated into a membrane photocatalytic reactor can also be applied to systems with a large membrane surface typically greater than 1 m 2 (and up to several hundred m 2 ), which is then suitable for pilot or industrial scales.
  • Figures 3 and 4 show two examples of such devices prepared from TIS type devices manufactured by TAMI Industrie.
  • the devices of FIGS. 3 and 4 comprise, in their center, membranes (11) whose outer layer has photocatalytic properties and whose role is to diffuse oxygen.
  • the membranes (12) located at the periphery of the device are membranes allowing the drainage of the fluid (B)
  • the membranes (11) and (12) are arranged parallel to each other, parallel to the longitudinal axis of the device.
  • UV LEDs (8) are connected in series and in parallel and located at the periphery of the device
  • the device is made of a material transparent to UV radiation of the methacrylate type allowing the UV radiation emitted by the LEDs (8) to effectively activate the photocatalytic material. (10).
  • the material of the device may also be opaque, pierced with holes in which the LEDs are inserted in a sealed manner to withstand a pressure of 0.1 to 30 bar and in particular of 1 to 10 bar.
  • the second compartments (compartments C2) in the devices of FIGS. 3 and 4 correspond to the internal volume of the tubular membranes (11) and (12) while the first compartment (compartment Ci) corresponds to the internal volume of the device surrounding the tubular membranes (11). ) and (12).
  • LED strings (13) can also be arranged inside the membrane holder device in order to irradiate all the active surfaces (FIG. 4).
  • a part of the filtering membranes (12) is conserved to drain the polluted permeate (liquid (B)) and to retain the TiO 2 particles (or any other photocatalyst)
  • a part of the membranes (11) can to be used to diffuse oxygen
  • part of the membranes is replaced by a UV emission device (for example LEDs, but also UV lamps of geometry compatible with the size of the membranes they replace).
  • the photocatalyst may be dispersed in powder form and / or deposited on the surface of the membranes so that the UV insolation illuminates all the active surfaces.
  • the catalyst material in dispersed form can be introduced into the fluid (A) during its introduction into the first compartment (compartment Ci) or prior to this introduction.
  • the liquid circulation system (B) is coupled directly to the membrane casing without circulating through an external pumping loop.
  • Patent Application DE3117473 "Disinfection apparatus for swimming pools and water service” published November 25, 1982. 5. Hermann, J.-M., "Photocatalysis: Fundamentals and Openness to Process Engineering.” 2007, French Society of Process Engineering: Paris.
  • Patent Application US2006 / 163126 "UV led based water purification module for intermittantly operable flow-through hydration Systems" published July 27, 2006.
  • Patent Application US2003 / 203816 "Titania-coated honeycomb catalyst matrix for UV-photocatalytic oxidation of organic pollutants, and process for making” published October 30, 2003.

Abstract

The present invention relates to a device for removing at least one compound contained in a fluid, comprising a UV radiation system, at least one first compartment containing a photocatalytic material capable of being irradiated by said UV radiation system, means suitable for conveying said fluid into said at least one first compartment, at least one second compartment different from said at least one first compartment, suitable for recovering said fluid after removal of said compound, means for conveying a fluid containing oxygen into at least one second compartment and a membrane that separates said first and second compartments and is suitable for the passage of at least one fluid. The present invention also relates to a process for removing at least one compound contained in a fluid using such a device.

Description

DISPOSITIF, SON UTILISATION ET PROCEDE POUR L'ELIMINATION D'UN COMPOSE CONTENU DANS UN FLUIDE DEVICE, USE THEREOF AND METHOD FOR REMOVING A COMPOUND CONTAINED IN A FLUID
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
L' invention appartient au domaine de la dépollution, de la désinfection, de la purification et/ou de la décontamination des fluides.The invention belongs to the field of depollution, disinfection, purification and / or decontamination of fluids.
Ainsi, la présente invention propose un dispositif de type réacteur membranaire photocatalytique permettant de purifier un flux notamment aqueux contaminé par un composé non souhaité tel qu'un composé toxique. Un tel dispositif peut être facilement décliné à l'échelle du laboratoire comme à l'échelle industrielle.Thus, the present invention provides a photocatalytic membrane reactor type device for purifying a particularly aqueous stream contaminated with an undesired compound such as a toxic compound. Such a device can be easily adapted to the scale of the laboratory as on an industrial scale.
La présente invention concerne également un procédé d'élimination d'un composé non souhaité contenu dans un fluide mettant en œuvre un tel dispositif.The present invention also relates to a method for eliminating an undesired compound contained in a fluid implementing such a device.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE La destruction des composés polluants organiques est effectuée (i) par un traitement chimique tel qu'une oxydation chimique en présence d'oxydantsSTATE OF THE PRIOR ART The destruction of organic pollutant compounds is carried out (i) by a chemical treatment such as chemical oxidation in the presence of oxidants
(H2O2, NaOCl) ou par hydrolyse acide ou basique, (ii) par un traitement physique utilisant un rayonnement UV par lampe à mercure, (iii) par un traitement biologique telle que l'oxydation biologique réalisée dans les stations de traitement des effluents ou (iv) par une combinaison de plusieurs types choisis parmi les traitements chimique, physique et biologique. La désinfection des fluides comme l'air et l'eau peut être obtenue directement par un rayonnement UV [1, 2] . Ce système est déjà utilisé à l'échelle industrielle depuis de nombreuses années [3] . Aux alentours d'une longueur d'onde de(H2O2, NaOCl) or by acid or basic hydrolysis, (ii) by a physical treatment using UV radiation by mercury lamp, (iii) by a biological treatment such as biological oxidation carried out in effluent treatment plants or (iv) by a combination of several types selected from chemical, physical and biological treatments. Disinfection of fluids such as air and water can be achieved directly by UV radiation [1, 2]. This system has already been used on an industrial scale for many years [3]. Around a wavelength of
254 nm (UV C) [4], l'ADN des microorganismes et plus généralement de toute cellule vivante est dégradé, de façon irréparable, empêchant la duplication du patrimoine génétique et donc la division cellulaire. Il s'ensuit une mortalité de la population cellulaire ou des microorganismes.254 nm (UV C) [4], DNA microorganisms and more generally any living cell is degraded, irreparably, preventing the duplication of genetic heritage and thus cell division. This results in mortality of the cell population or microorganisms.
Les UV peuvent également avoir des effets indirects en présence de matériaux photocatalytiques . En effet, d'autres raies d'émission peuvent avoir des effets létaux sur des microorganismes vivants. Une lampe à mercure émettant à 365 nm (UV A) possède la propriété d'exciter l'oxyde de titane (TiO2) en phase cristalline anatase ou tout autre composé photocatalytique, habituellement des semi-conducteurs tels que Siθ2, Zrθ2, etc. conduisant à la formation de radicaux libres comme le radical hydroxyle (OH°) .UV can also have indirect effects in the presence of photocatalytic materials. Indeed, other emission lines can have lethal effects on living microorganisms. A mercury lamp emitting at 365 nm (UV A) has the property of exciting titanium oxide (TiO 2 ) in crystalline anatase phase or any other photocatalytic compound, usually semiconductors such as SiO 2, ZrO 2, etc. leading to the formation of free radicals such as the hydroxyl radical (OH °).
L'effet recherché est habituellement une oxydation des polluants. A partir d'un effluent pollué, le résultat sera une diminution de la demande chimique en oxygène (DCO) .The desired effect is usually an oxidation of pollutants. From a polluted effluent, the result will be a decrease in the chemical oxygen demand (COD).
En résumé, les espèces réactionnelles sont : les radicaux libres qui jouent le jeu d' initiateurs de la réaction, les composés polluants et l'oxygène. Les produits de la réaction, dans le cas d'une hypothèse simplificatrice où le polluant est un hydrocarbure sont majoritairement l'eau (H2O) et le dioxyde de carbone (CO2) • Le TiO2 ou tout autre matériau photocatalytique intervient comme catalyseur de la réaction, activé par l'énergie des photons UV [5], l'ensemble produisant les radicaux libres.In summary, the reaction species are: free radicals that play the set of reaction initiators, polluting compounds and oxygen. The products of the reaction, in the case of a simplifying hypothesis where the pollutant is a hydrocarbon are mainly water (H 2 O) and carbon dioxide (CO2) • TiO 2 or any other photocatalytic material acts as a reaction catalyst, activated by the energy of UV photons [5], the whole producing free radicals.
Concernant le matériau photocatalytique, il est important que celui-ci ait des propriétés d' adsorption des composés à détruire [6] afin d'augmenter les probabilités de rencontre entre, d'une part, les radicaux libres formés à la surface du matériau photocatalytique et dont la durée de vie est très faible et, d'autre part, les polluants à oxyder.Concerning the photocatalytic material, it is important that it has adsorption properties of the compounds to be destroyed [6] in order to increase the probability of encounter between, on the one hand, the free radicals formed on the surface of the photocatalytic material. and whose life is very low and, secondly, pollutants to oxidize.
La présence de radicaux libres notamment 0H° et l'importance de la présence d'oxygène dissous a été mis en évidence par [7] . Le peroxyde d'hydrogène peut également être utilisé [8] . On parle alors indistinctement de réactions d'oxydation ou d' hydrolyse .The presence of free radicals in particular 0H ° and the importance of the presence of dissolved oxygen has been demonstrated by [7]. Hydrogen peroxide can also be used [8]. We then speak indistinctly of oxidation reactions or hydrolysis.
Les polluants visés sont habituellement des composés organiques sous forme dissoute, sous forme de colloïdes, des agrégats de matières organiques, ou bien des microorganismes. Dans ce dernier cas, les phénomènes d'oxydation s'initient à la surface du microorganisme. La paroi du microorganisme est lésée et peut conduire à la lyse et à la mort du microorganisme.The targeted pollutants are usually organic compounds in dissolved form, in the form of colloids, aggregates of organic matter, or microorganisms. In the latter case, the oxidation phenomena are initiated on the surface of the microorganism. The wall of the microorganism is injured and can lead to lysis and death of the microorganism.
Certains travaux ont aussi mis en évidence la possibilité d'agglomérer des métaux lourds, ou des composés halogènes en solution, par des réactions d'oxydation ou de réduction [9] . Dans certains cas, la séparation de ces composés agrégés est alors facilitée. Cette technologie permet donc d'éliminer les composés pathogènes, chimiques (polluants tels que phénols, insecticides, pesticides, métaux lourds) ou d'origine biologiques (toxines, virus, bactéries, levures, moisissures, protozoaires etc.) - Au final on aboutit à une désinfection (chimique ou biologique) de 1' eau .Some studies have also highlighted the possibility of agglomerating heavy metals, or halogenated compounds in solution, by oxidation or reduction reactions [9]. In some cases, the separation of these aggregated compounds is then facilitated. This technology therefore eliminates pathogenic compounds, chemical (pollutants such as phenols, insecticides, pesticides, heavy metals) or biological origin (toxins, viruses, bacteria, yeasts, molds, protozoa, etc.). disinfection (chemical or biological) of water.
Actuellement, le dispositif d'émission du rayonnement UV le plus courant consiste en une lampe à vapeur de mercure sous forme d'un tube de type « néon » insérée de façon étanche dans une tuyauterie. Le film fluide (liquide ou gazeux) entourant la lampe subit une irradiation UV provoquant la mort des microorganismes qui s'y trouvent en suspension. L'inconvénient des lampes à mercure classiques est leur encombrement important, la nécessité d'une période de chauffe au démarrage, et surtout leur durée de vie limitée (à peu près un an) produisant des déchets industriels contaminés en mercure.Currently, the most common UV emission device consists of a mercury vapor lamp in the form of a "neon" type tube sealingly inserted into a pipe. The fluid film (liquid or gas) surrounding the lamp undergoes UV irradiation causing the death of microorganisms that are suspended there. The disadvantage of conventional mercury lamps is their large size, the need for a heating period at startup, and especially their limited life (about a year) producing industrial waste contaminated with mercury.
Il est aussi possible d'émettre un rayonnement UV par des diodes électroluminescentes (LED) possédant un spectre d'émission large (typiquement de 240 à 400 nm) . L'avantage de ce type de composant est leur faible coût, leur faible consommation d'énergie (de l'ordre de la dizaine de milliwatts) et leur petite taille permettant leur implantation au plus près, voire à l'intérieur d'une veine liquide et ce même pour des tuyauteries de petite taille. De plus, leur durée de vie est de 5 à 10 fois supérieure à celle des lampes à mercure.It is also possible to emit UV radiation by light-emitting diodes (LEDs) having a broad emission spectrum (typically 240 to 400 nm). The advantage of this type of component is their low cost, low energy consumption (of the order of tens of milliwatts) and their small size allowing their implantation as close as possible, or even inside a vein liquid and this even for small piping cut. In addition, their lifespan is 5 to 10 times longer than that of mercury lamps.
A l'heure actuelle, l'implantation de LED sur tout type de surface est développée par la société PW Circuits basée en Angleterre. Cette société a imaginé le concept de réacteur photocatalytique tubulaire de gros diamètre (Φ 80-100 mm) équipé de LED décrit dans la demande internationale WO 2007/113537 [10] . Les LED peuvent être insérés dans toute sorte de systèmes prévus pour la dégradation de composés contenus dans des fluides, par exemple l'air [11], ou l'eau [12] . Les LED ont aussi la caractéristique d'émettre un rayonnement relativement focalisé, c'est-à-dire que le faisceau lumineux est limité à un angle de quelques degrés, classiquement 10 à 50. Pour augmenter la probabilité de rencontre entre le faisceau et les réactifs, il peut être choisi de multiplier la dissémination des LED autour de la veine liquide comme décrit dans la demande internationale WO 2007/113537 [10] .At present, the implantation of LEDs on any type of surface is developed by PW Circuits based in England. This company has devised the concept of tubular photocatalytic reactor of large diameter (Φ 80-100 mm) equipped with LEDs described in the international application WO 2007/113537 [10]. LEDs can be inserted in all kinds of systems intended for the degradation of compounds contained in fluids, for example air [11], or water [12]. LEDs also have the characteristic of emitting a relatively focused radiation, that is to say that the light beam is limited to an angle of a few degrees, typically 10 to 50. To increase the probability of encounter between the beam and the reagents, it may be chosen to multiply the scattering of the LEDs around the liquid vein as described in the international application WO 2007/113537 [10].
Le matériau photocatalytique peut se présenter sous forme de dépôt d'une couche fixée sur un support (par exemple une tuyauterie) , ou sur un support poreux [13] . Le fait de déposer une couche photocatalytique sur la surface d'une conduite simplifie le pilotage du procédé car il n'y a pas besoin d'une étape de récupération du catalyseur en vue de son recyclage. Mais l'inconvénient réside dans la probabilité limitée de rencontre entre espèces réactionnelles, à savoir les radicaux libres formés en surface du matériau photocatalytique, l'oxygène et les composés que l'on veut détruire.The photocatalytic material may be in the form of a layer deposited on a support (for example a pipe), or on a porous support [13]. The fact of depositing a photocatalytic layer on the surface of a pipe simplifies the control of the process because there is no need for a catalyst recovery step for recycling. But the disadvantage lies in the limited probability of encounter between species reaction, namely the free radicals formed on the surface of the photocatalytic material, the oxygen and the compounds that are to be destroyed.
On peut alors privilégier la mise en œuvre d'un matériau photocatalytique sous forme dispersée. Par exemple, une poudre de Tiθ2 dont la taille des particules est inférieure ou égale au micromètre est maintenue en suspension par une agitation ou une turbulence suffisante, en présence d'un système d'irradiation UV immergé à l'intérieur ou situé à l'extérieur du réacteur dans le cas où celui-ci comporte des parois transparentes.We can then favor the implementation of a photocatalytic material in dispersed form. For example, a TiO 2 powder whose particle size is less than or equal to one micrometer is kept in suspension by sufficient agitation or turbulence, in the presence of a UV irradiation system immersed in or located at the outside the reactor in the case where it has transparent walls.
Classiquement, à la fin de la réaction, les particules sont récupérées. Il existe donc une juxtaposition d'une étape réactionnelle et d'une étape de séparation. Cette récupération peut se faire par une étape de décantation. Néanmoins, la faible granulométrie des particules limite cette possibilité. On préfère alors avantageusement une étape de séparation par filtration membranaire juxtaposée à l'étape de réaction ([14]) .Classically, at the end of the reaction, the particles are recovered. There is therefore a juxtaposition of a reaction step and a separation step. This recovery can be done by a decantation step. Nevertheless, the small grain size of the particles limits this possibility. A membrane filtration separation step juxtaposed with the reaction step ([14]) is then advantageously preferred.
Les membranes mises en œuvre peuvent être de type fibres creuses, ou cylindriques (ou tout autre géométrie membranaire) , en matériaux organiques ou inorganiques, par exemple de type céramique (ou tout autre matériau poreux) . Cependant, il est important de prendre en compte les propriétés abrasives des particules photocatalytiques sous forme d' oxydes métalliques ou tout autre matériau semi-conducteur, et on préférera mettre en œuvre des membranes céramiques. Dans certains cas, le photocatalyseur est immobilisé sur la membrane [15] . Toutefois, dans un tel dispositif, il n'y a pas de diffusion de l'oxygène dans le réacteur photocatalytique .The membranes used may be of the hollow fiber type, or cylindrical (or any other membrane geometry), organic or inorganic materials, for example ceramic type (or any other porous material). However, it is important to take into account the abrasive properties of the photocatalytic particles in the form of metal oxides or any other semiconductor material, and it will be preferred to use ceramic membranes. In some cases, the photocatalyst is immobilized on the membrane [15]. However, in such a device, there is no diffusion of oxygen in the photocatalytic reactor.
Même si différents types de dispositifs de décontamination des fluides sont actuellement disponibles, il existe encore un réel besoin de fournir un dispositif permettant d'améliorer la probabilité de rencontre entre polluants, réactifs tels que l'oxygène et photocatalyseur activé, tout en restant compact de façon à présenter un faible coût de production.Although different types of fluid decontamination devices are currently available, there is still a real need to provide a device to improve the probability of meeting pollutants, reagents such as oxygen and activated photocatalyst, while remaining compact. way to present a low cost of production.
EXPOSÉ DE L'INVENTION La présente invention permet de répondre, entre autres, aux besoins indiqués ci-dessus et de résoudre les inconvénients des dispositifs utiles dans l'oxydation photocatalytique des fluides de l'art antérieur . A cet effet, la présente invention est basée sur un dispositif simplifié et amélioré par rapport aux dispositifs de traitement des fluides de l'art antérieur. Ce dispositif peut être défini comme un réacteur photocatalytique membranaire irradié par des UV. En effet, les étapes de :DISCLOSURE OF THE INVENTION The present invention makes it possible, inter alia, to meet the needs indicated above and to solve the drawbacks of the devices that are useful in the photocatalytic oxidation of the fluids of the prior art. For this purpose, the present invention is based on a simplified device and improved with respect to prior art fluid treatment devices. This device can be defined as a membrane photocatalytic reactor irradiated with UV. Indeed, the steps of:
- rétention de la poudre photocatalytique,retention of the photocatalytic powder,
- réaction d'oxydation et/ou d'hydrolyse,- oxidation and / or hydrolysis reaction,
- diffusion de l'oxygène,- diffusion of oxygen,
- séparation des produits oxydés ont lieu en un même endroit, au niveau de la surface membranaire. C'est donc la membrane, élément spécifique du réacteur photocatalytique membranaire qui assure, en un même lieu, les différentes fonctionnalités décrites.- Separation of oxidized products takes place in one place, at the level of the membrane surface. It is therefore the membrane, specific element membrane photocatalytic reactor which provides, in one place, the various features described.
Le dispositif selon la présente invention permet d'augmenter la probabilité de rencontre entre le (ou les) composé (s) à éliminer, les réactifs tels que notamment l'oxygène et le photocatalyseur activé.The device according to the present invention makes it possible to increase the probability of encounter between the compound (s) to be eliminated, the reagents such as in particular oxygen and the activated photocatalyst.
Ceci revient à augmenter le rapportThis amounts to increasing the ratio
« surface active/volume dispositif ». Par « surface active », on entend, dans le cadre de la présente invention, la surface du photocatalyseur activé par les photons UV."Active area / volume device". By "active surface" is meant, in the context of the present invention, the surface of the photocatalyst activated by UV photons.
Au final, ceci revient à améliorer la compacité du dispositif, objectif en adéquation avec la petite taille de systèmes de rayonnement UV utilisables tels que les LED UV et la focalisation de leur faisceau lumineux .Ultimately, this amounts to improving the compactness of the device, an objective in line with the small size of usable UV radiation systems such as UV LEDs and the focusing of their light beam.
La compacité du système permet de réduire le volume du dispositif et donc son encombrement, de diminuer le dimensionnement du système hydraulique associé (tuyauterie, pompes) , et ainsi permet de réduire les coûts de construction. A l'échelle du laboratoire, une meilleure manipulation du système est obtenue .The compactness of the system reduces the volume of the device and therefore its size, to reduce the size of the associated hydraulic system (piping, pumps), and thus reduces construction costs. At the laboratory scale, a better manipulation of the system is obtained.
Ainsi, la présente invention propose un dispositif d'élimination d'au moins un composé contenu dans un fluide, comprenantThus, the present invention provides a device for removing at least one compound contained in a fluid, comprising
- un système de rayonnement UV, au moins un premier compartiment dit « compartiment Ci » contenant un matériau photocatalytique susceptible d'être insolé par ledit système de rayonnement UV,a system of UV radiation, at least a first compartment called "compartment Ci" containing a material photocatalytic capable of being insolated by said UV radiation system,
- des moyens adaptés à amener ledit fluide dans ledit au moins un premier compartiment (compartiment Ci) , au moins un second compartiment ditmeans adapted to bring said fluid into said at least one first compartment (compartment Ci), at least one second compartment said to
« compartiment C2 » distinct dudit au moins un premier compartiment (compartiment Ci) , adapté à récupérer ledit fluide après élimination dudit composé, - des moyens adaptés à amener un fluide contenant de l'oxygène dans au moins un second compartiment (compartiment C2) ,"Compartment C 2 " distinct from said at least one first compartment (compartment Ci), adapted to recover said fluid after removal of said compound, - means adapted to bring an oxygen-containing fluid into at least one second compartment (compartment C2) ,
- une membrane séparant lesdits premier et second compartiments (compartiments Ci et C2) et adaptée au passage d'au moins un fluide.a membrane separating said first and second compartments (compartments Ci and C2) and adapted to the passage of at least one fluid.
Dans le cadre de la présente invention, les expressions « premier compartiment » ou « compartiment Ci » sont équivalentes et peuvent être utilisées de façon interchangeable. Il en est de même pour les expressions « second compartiment » ou « compartiment C2 ».In the context of the present invention, the terms "first compartment" or "compartment Ci" are equivalent and can be used interchangeably. The same applies to the terms "second compartment" or "compartment C 2 ".
Dans le cadre de la présente invention, on entend par « composé » un composé non souhaité tel qu'une impureté ou un contaminant, susceptible d'être présent ou présent dans un fluide. Avantageusement, ledit composé est un composé pathogène.In the context of the present invention, the term "compound" means an undesired compound such as an impurity or a contaminant, likely to be present or present in a fluid. Advantageously, said compound is a pathogenic compound.
Le composé peut être un composé organique ou inorganique, moléculaire ou particulaire . Ledit composé organique peut être présent dans le fluide sous forme dissoute, sous forme de colloïdes, sous forme d'agrégats de matières organiques.The compound may be an organic or inorganic, molecular or particulate compound. Said organic compound may be present in the fluid under dissolved form, in the form of colloids, in the form of aggregates of organic matter.
Le composé peut être d' origine biologique tel qu'une toxine, une moisissure, un micro-organisme, un virus, une bactérie, une levure, un protozoaire ou un champignon.The compound may be of biological origin such as a toxin, a mold, a microorganism, a virus, a bacterium, a yeast, a protozoan or a fungus.
Le composé peut être d' origine chimique et notamment choisi parmi le NO2, le CO, un phénol, un insecticide, un pesticide, un composé organique volatil tel que le benzène, le toluène, l' éthylbenzène ou les xylènes, un aldéhyde, un composé halogène ou un métal lourd.The compound may be of chemical origin and in particular chosen from NO2, CO, a phenol, an insecticide, a pesticide, a volatile organic compound such as benzene, toluene, ethylbenzene or xylenes, an aldehyde, a halogen compound or heavy metal.
Le composé peut être présent dans le fluide sous forme très diluée ou beaucoup plus concentrée. Ainsi, la quantité dudit composé dans le fluide à traiter est comprise entre 1 μg à 100 g /litre de fluide à traiter.The compound may be present in the fluid in very dilute or much more concentrated form. Thus, the amount of said compound in the fluid to be treated is between 1 μg and 100 g / liter of fluid to be treated.
Dans le cadre de la présente invention, on entend par « fluide » un gaz ou un liquide.In the context of the present invention, the term "fluid" means a gas or a liquid.
A titre d'exemples de fluides dans lesquels la présente invention vise à éliminer les composés non souhaités, on peut citer l'eau usée notamment dans des stations d'épuration, l'eau de piscine, l'eau d'un aquarium, l'eau de refroidissement des systèmes de climatisation, l'air issu des tours aéroréfrigérées, l'air circulant au sein des hôpitaux, l'air circulant au sein d'entreprises dans lesquelles la présence de polluants ou d'impuretés n'est pas acceptable vis-à-vis de la production telles que les sociétés pharmaceutiques ou agro-alimentaires. De façon plus générale, la présente invention concerne un dispositif et un procédé s' appliquant à tout fluide gazeux ou liquide dans lequel au moins un composé doit être éliminé .By way of examples of fluids in which the present invention aims to eliminate undesired compounds, mention may be made of wastewater, in particular in purification plants, swimming pool water, aquarium water, cooling water of air conditioning systems, air from air-cooled towers, air circulating in hospitals, air circulating in companies in which the presence of pollutants or impurities is not acceptable vis-à-vis production such as pharmaceutical or agri-food companies. More In general, the present invention relates to a device and a method applicable to any gaseous or liquid fluid in which at least one compound is to be removed.
Dans le cadre de la présente invention, on entend par « élimination d'un composé dans un fluide » aussi bien le fait de diminuer la quantité du composé dans ledit fluide que l'élimination complète dudit composé dans ledit fluide.In the context of the present invention, the term "removal of a compound in a fluid" means both reducing the amount of the compound in said fluid and completely removing said compound in said fluid.
Cette élimination peut être accomplie en transformant ledit composé en un autre composé préféré car moins pathogène et/ou en inactivant ledit composé et notamment les composés d'origine biologique. Dans le cas d'un composé toxique, son élimination consiste en 1' inactiver et/ou en le transformer en un composé inoffensif en santé humaine et/ou animale. L'élimination du composé dans le cadre de la présente invention met en œuvre une dégradation photocatalytique .This elimination can be accomplished by transforming said compound into another preferred compound as less pathogenic and / or inactivating said compound and in particular compounds of biological origin. In the case of a toxic compound, its elimination consists of inactivating it and / or transforming it into a compound that is harmless to human and / or animal health. The removal of the compound in the context of the present invention implements a photocatalytic degradation.
La membrane permettant le passage d'au moins un fluide présente dans le dispositif de l'invention est une membrane poreuse, minérale ou préparée à partir de composés organiques qui, comme précédemment expliqué, a différentes fonctions.The membrane allowing the passage of at least one fluid present in the device of the invention is a porous membrane, mineral or prepared from organic compounds which, as previously explained, has different functions.
Une membrane préparée à partir de composés organiques peut être en acétate de cellulose, en éthylcellulose, en polyéther sulfone ou en polyacrylonitrile, alors qu'une membrane minérale, inorganique, sera avantageusement en céramique, métallique ou en carbone inerte telle que, par exemple, les membranes Carbosep®.A membrane prepared from organic compounds may be cellulose acetate, ethylcellulose, polyether sulfone or polyacrylonitrile, while an inorganic inorganic membrane will advantageously be ceramic, metal or inert carbon such as, for example, Carbosep® membranes.
Elle sépare, du (ou des) second(s) compartiment (s) (compartiment (s) C2) , le (ou les) premier (s) compartiment (s) (compartiment (s) Ci) dans lequel (lesquels) a lieu la réaction d'oxydation et/ou d'hydrolyse et donc la formation des radicaux libres.It separates, from the second compartment (s) (compartment (s) C2), the (or) first compartment (s) (compartment (s) Ci) in which (s) the oxidation and / or hydrolysis reaction and thus the formation of free radicals.
De plus, elle permet le passage de l'oxygène du second compartiment (compartiment C2) vers le premier compartiment (compartiment Ci) et la récupération du fluide traité dans le second compartiment (compartiment C2) • Par « fluide traité », on entend, dans le cadre de la présente invention, un fluide dans lequel le composé à éliminer n'est plus présent ou dans lequel le composé à éliminer est présent sous une forme oxydée et/ou hydrolysée, i.e. une forme rendue inoffensive.In addition, it allows the passage of the oxygen from the second compartment (compartment C2) to the first compartment (compartment C1) and the recovery of the treated fluid in the second compartment (compartment C2) • By "treated fluid" is meant, in the context of the present invention, a fluid in which the compound to be removed is no longer present or in which the compound to be removed is present in an oxidized form and / or hydrolysed, ie a form rendered harmless.
Enfin, elle peut supporter et/ou retenir le matériau photocatalytique pendant la durée des réactions d'oxydation et d'hydrolyse. La rétention du matériau photocatalytique peut être effectuée en vue du recyclage dudit matériau.Finally, it can support and / or retain the photocatalytic material during the duration of the oxidation and hydrolysis reactions. The retention of the photocatalytic material may be carried out for recycling said material.
Avantageusement, ladite membrane est choisie parmi les membranes de microfiltration, les membranes d' ultrafiltration, les membranes de nanofiltration et les membranes d'osmose inverse.Advantageously, said membrane is chosen from microfiltration membranes, ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes.
L'homme du métier saura choisir, parmi les membranes ci-dessus, la membrane la mieux adaptée en fonction de la nature et de la taille du composé à éliminer, la nature et de la taille particulaire du matériau catalytique, la nature et le débit du fluide à traiter, ...The person skilled in the art will be able to choose, from among the membranes above, the membrane that is best adapted according to the nature and the size of the compound to be eliminated, the nature and the particle size of the catalytic material, the nature and flow rate of the fluid to be treated, ...
Il convient de remarquer que dans le cas où le dispositif selon la présente invention comprend différents seconds compartiments (compartiments C2) , chaque second compartiment (compartiment C2) est séparé du premier compartiment (compartiment Ci) par une membrane. De même, pour un dispositif selon la présente invention comprenant différents premiers compartiments (compartiments Ci) , chaque premier compartiment (compartiment Ci) est séparé du second compartiment (compartiment C2) par une membrane. Dans de tels dispositifs, les membranes peuvent être de nature identique ou différente. Ainsi, les membranes principalement utilisées pour séparer et retenir le matériau photocatalytique sont avantageusement du type microfiltration ou ultrafiltration, définies par des tailles de pores inférieures à la taille moyenne particulaire du matériau photocatalytique, classiquement de l'ordre du micromètre jusqu'à la dizaine de nanomètres.It should be noted that in the case where the device according to the present invention comprises different second compartments (compartments C2), each second compartment (compartment C2) is separated from the first compartment (compartment Ci) by a membrane. Similarly, for a device according to the present invention comprising different first compartments (Ci compartments), each first compartment (compartment Ci) is separated from the second compartment (compartment C2) by a membrane. In such devices, the membranes may be of the same or different nature. Thus, the membranes mainly used for separating and retaining the photocatalytic material are advantageously of the microfiltration or ultrafiltration type, defined by pore sizes smaller than the average particle size of the photocatalytic material, typically of the order of one micrometer up to about ten nanometers.
De même, les membranes utiles pour diffuser l'oxygène d'un second compartiment (compartiment C2 riche en gaz tel que de l'air ou de l'oxygène) vers le premier compartiment (compartiment Ci) rempli de liquide et pauvre en oxygène du fait de la consommation de ce réactif par les réactions d'oxydation) sont avantageusement des membranes hydrophiles ou hydrophobes, du type nanofiltration, ultrafiltration ou microfiltration . Enfin, pour des membranes laissant passer le fluide traité (ou perméat) et retenant le matériau photocatalytique et les composés à éliminer, ces dernières sont avantageusement de type ultrafiltration, nanofiltration voire d'osmose inverse, c'est-à-dire des membranes dont les pores sont de l'ordre de quelques dizaines de nanomètres jusqu'au nanomètre, voire des membranes denses.Similarly, the membranes useful for diffusing the oxygen of a second compartment (compartment C2 rich in gas such as air or oxygen) to the first compartment (compartment Ci) filled with liquid and poor in oxygen. The consumption of this reagent by the oxidation reactions is advantageously hydrophilic or hydrophobic membranes, of the nanofiltration, ultrafiltration or microfiltration type. Finally, for membranes allowing the treated fluid (or permeate) to flow and retaining the photocatalytic material and the compounds to be removed, the latter are advantageously of the ultrafiltration, nanofiltration or even reverse osmosis type, that is to say the membranes of which the pores are of the order of a few tens of nanometers up to the nanometer, or even dense membranes.
La membrane du dispositif selon l'invention peut être de n'importe quelle forme à condition que cette forme permette la séparation des premier (s) et second (s) compartiments (compartiments Ci et C2) . Dans les formes particulières de mise en œuvre du dispositif selon l'invention qui seront présentées ci-après, la membrane du dispositif selon l'invention est : soit de forme sensiblement plane, notamment de forme circulaire sensiblement plane et en particulier une membrane circulaire comprenant une surface de l'ordre de quelques cm2, classiquement comprise entre 15 à 100 cm2 ; soit de forme cylindrique et notamment sous forme cylindrique de section transversale extérieure sensiblement circulaire.The membrane of the device according to the invention can be of any form provided that this form allows the separation of the first (s) and second (s) compartments (compartments Ci and C2). In the particular embodiments of the device according to the invention which will be presented hereinafter, the membrane of the device according to the invention is: either of substantially flat shape, in particular of substantially flat circular shape and in particular a circular membrane comprising a surface of the order of a few cm 2 , typically between 15 to 100 cm 2 ; is of cylindrical shape and in particular in cylindrical form of substantially circular outer cross section.
Tout système de rayonnement UV est utilisable dans le cadre du dispositif selon la présente invention. Par « système de rayonnement UV », on entend un système capable d'émettre un rayonnement dont la gamme de longueur d' onde est dans le proche ultraviolet. On peut citer une lampe à vapeur de mercure sous forme d'un tube de type « néon », une lampe à vapeur de sodium ou une diode électroluminescente (LED) .Any UV radiation system can be used in the context of the device according to the present invention. By "UV radiation system" is meant a system capable of emitting radiation whose wavelength range is in the near ultraviolet range. A mercury vapor lamp in the form of a "neon" type tube, a sodium vapor lamp or a light emitting diode (LED).
Avantageusement, le système de rayonnement UV mis en œuvre dans le cadre du dispositif selon l'invention comprend au moins une LED.Advantageously, the UV radiation system implemented in the context of the device according to the invention comprises at least one LED.
Dans une première variante du dispositif selon la présente invention, ledit système de rayonnement UV comprend au moins deux LED montées en série, notamment au moins 5 LED, en particulier au moins 10 LED et, plus particulièrement, au moins 50 LED montées en série, ledit système de rayonnement UV pouvant comprendre jusqu'à plusieurs centaines de LED montées en série.In a first variant of the device according to the present invention, said UV radiation system comprises at least two LEDs connected in series, in particular at least 5 LEDs, in particular at least 10 LEDs and, more particularly, at least 50 LEDs mounted in series, said UV radiation system may include up to several hundred LEDs in series.
Dans une seconde variante du dispositif selon la présente invention, ledit système de rayonnement UV comprend au moins deux LED montées en parallèle, notamment au moins 5 LED, en particulier au moins 10 LED et, plus particulièrement, au moins 50 LED montées en parallèle, ledit système de rayonnement UV pouvant comprendre jusqu'à plusieurs centaines de LED montées en parallèle.In a second variant of the device according to the present invention, said UV radiation system comprises at least two LEDs connected in parallel, in particular at least 5 LEDs, in particular at least 10 LEDs and, more particularly, at least 50 LEDs connected in parallel, said UV radiation system may include up to several hundred LEDs mounted in parallel.
Dans une troisième variante du dispositif selon la présente invention, ledit système de rayonnement UV comprend des LED montées en série et des LED montées en parallèle.In a third variant of the device according to the present invention, said UV radiation system comprises LEDs mounted in series and LEDs connected in parallel.
L'homme du métier saura déterminer sans effort inventif le nombre de LED à utiliser notamment en fonction de la taille du dispositif.The skilled person will determine without inventive effort the number of LEDs to use in particular depending on the size of the device.
De plus, le système de rayonnement UV peut se localiser n'importe où sur ou dans le dispositif selon la présente invention à la seule condition de pouvoir insoler, de façon efficace, le matériau photocatalytique . Ainsi, le système de rayonnement UV peut se trouver sur la paroi externe du dispositif, sur la paroi interne du dispositif, sur la membrane séparant le premier compartiment (compartiment Ci) d'un second compartiment (compartiment C2) , à l'intérieur du premier compartiment (compartiment Ci) notamment sous forme de guirlandes et/ou à l'intérieur du second compartiment (compartiment C2) notamment sous forme de guirlandes.In addition, the UV radiation system can be located anywhere on or in the device according to the present invention with the sole condition of ability to effectively irradiate the photocatalytic material. Thus, the UV radiation system can be located on the outer wall of the device, on the inner wall of the device, on the membrane separating the first compartment (compartment Ci) from a second compartment (compartment C2), inside the first compartment (compartment Ci) especially in the form of garlands and / or inside the second compartment (compartment C2) especially in the form of garlands.
Il est clair que le dispositif selon la présente invention présente des moyens permettant l'alimentation électrique dudit système de rayonnement UV tels que des connexions électriques.It is clear that the device according to the present invention has means for the power supply of said UV radiation system such as electrical connections.
Tout type de matériau photocatalytique est utilisable dans le cadre de la présente invention. Avantageusement, le matériau photocatalytique mis en œuvre dans le cadre de la présente invention est constitué de particules de semi-conducteurs.Any type of photocatalytic material can be used in the context of the present invention. Advantageously, the photocatalytic material used in the context of the present invention consists of semiconductor particles.
Dans le cadre de la présente invention, on entend par « semi-conducteur », un matériau présentant une conductivité électrique intermédiaire entre les métaux et les isolants. Les propriétés de conductivité d'un semi-conducteur sont influencées principalement par les porteurs de charge (électrons ou lacunes électroniques) que présente le semi-conducteur. Ces propriétés sont déterminées par deux bandes d'énergie particulières appelées la « bande de valence » (correspondant aux électrons impliqués dans les liaisons covalentes) et la « bande de conduction » (correspondant aux électrons dans un état excité et capables de se déplacer dans le semi-conducteur) . Le « gap » représente la différence d'énergie entre la bande de valence et la bande de conduction. Ainsi, le semi-conducteur peut être choisi dans le groupe constitué par :In the context of the present invention, the term "semiconductor" means a material having an electrical conductivity intermediate between the metals and the insulators. The conductivity properties of a semiconductor are influenced mainly by the charge carriers (electrons or electronic vacancies) that the semiconductor exhibits. These properties are determined by two particular energy bands called the "valence band" (corresponding to the electrons involved in the covalent bonds) and the "conduction band" (corresponding to the electrons in an excited state and able to move in the semiconductor). The gap represents the difference in energy between the valence band and the conduction band. Thus, the semiconductor may be chosen from the group consisting of:
- un oxyde métallique tel que du Tiθ2, du WO3, du ZnO, du SnO2, du SrTiO3, du Fe2O3, du Ta2O5 ou un mélange de différents oxydes métalliques ; - un sulfure métallique tel que du CdS, dua metal oxide such as TiO 2, WO 3 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 , Ta 2 O 5 or a mixture of different metal oxides; a metal sulphide such as CdS,
ZnS, du WS2 ou un mélange de différents sulfures métalliques ; d'autres semi-conducteurs tels que du GaAs, du GaP, du CdSe, du SiC ou un mélange de ceux- ci ;ZnS, WS 2 or a mixture of different metal sulfides; other semiconductors such as GaAs, GaP, CdSe, SiC or a mixture thereof;
- et leurs mélanges.- and their mixtures.
De manière plus particulièrement avantageuse, le semi-conducteur mis en œuvre dans le cadre de la présente invention est un oxyde métallique et notamment un oxyde métallique de la liste précédemment donnée, ou un mélange d'oxydes métalliques .More particularly advantageously, the semiconductor implemented in the context of the present invention is a metal oxide and in particular a metal oxide from the list previously given, or a mixture of metal oxides.
La taille des particules du matériau photocatalytique est avantageusement inférieure à 10 μm, notamment inférieure à 5 μm, en particulier, comprise entre 2 μm et 2 nm et, plus particulièrement, comprise entre 1 μm et 10 nm.The particle size of the photocatalytic material is advantageously less than 10 μm, especially less than 5 μm, in particular between 2 μm and 2 nm, and more particularly between 1 μm and 10 nm.
Dans une première variante de l'invention, le matériau photocatalytique se présente sous forme d'un dépôt. Le terme « dépôt » dans la présente invention est synonyme d'une couche, d'un film, d'un revêtement .In a first variant of the invention, the photocatalytic material is in the form of a deposit. The term "depot" in the present invention is synonymous with a layer, a film, a coating.
Dans cette variante, le matériau photocatalytique est déposé sous forme d'une couche ou film sur la membrane qui sépare le premier compartiment (compartiment Ci) d'un second compartiment (compartiment C2) • Dans cette variante, compte tenu de la très courte durée de vie des radicaux libres (quelques nanosecondes), la réaction d'oxydation et/ou d'hydrolyse s'effectue préférablement à l'entrée de chaque pore de la membrane poreuse où la probabilité de rencontre entre réactifs (radicaux libres produits par le rayonnement UV à la surface du pore, composés à éliminer proches de l'entrée du pore, oxygène dissous) est la plus grande.In this variant, the photocatalytic material is deposited in the form of a layer or film on the membrane which separates the first compartment (compartment Ci) from a second compartment (compartment C2). In this variant, given the very short duration free radicals (a few nanoseconds), the oxidation and / or hydrolysis reaction is preferably carried out at the inlet of each porous membrane pore where the probability of meeting between reagents (free radicals produced by the radiation UV at the surface of the pore, compounds to be eliminated near the entrance of the pore, dissolved oxygen) is the largest.
En plus de ce premier avantage (contact étroit entre espèces réactives, séparation des produits, rétention du catalyseur sous forme dispersée, diffusion de l'oxygène), la membrane aura des propriétés régénérantes ou autodécolmatantes . Ceci est particulièrement intéressant lorsque le fluide à traiter contient des espèces organiques et des microorganismes. Il se forme alors, à la surface de la membrane, une couche de biofilm difficilement nettoyable. La photocatalyse UV empêchera alors la formation de ce biofilm. Cet effet déjà décrit dans la demande de brevet JP2002001332 [16] fonctionne dans ce document à l'aide de membranes immergées dans la totalité d'un réacteur illuminé par des lampes à mercure . Ce phénomène peut être réalisé par des LED situées au plus près de la surface membranaire. On augmente ainsi la possibilité de détruire la couche de dépôt et on améliore les effets décolmatants. Le matériau photocatalytique mis en œuvre dans cette première variante de la présente invention est réalisable par différentes techniques connues de l'homme du métier telles que la technique sol-gel, la synthèse sous pression de CO2 ou la synthèse hydrothermale suivies par un frittage, le dépôt en phase vapeur (MOCVD) , le dépôt de particules nanométriques ou micrométriques préformées puis déposées sous pression hydrostatique puis frittées. Dans ces différentes techniques, l'étape de frittage permet de lier entre elles les particules et la couche ainsi formée au support qui supporte ladite couche.In addition to this first advantage (close contact between reactive species, separation of products, retention of the catalyst in dispersed form, diffusion of oxygen), the membrane will have regenerating or self-releasing properties. This is particularly interesting when the fluid to be treated contains organic species and microorganisms. It is then formed on the surface of the membrane, a layer of biofilm difficult to clean. UV photocatalysis will then prevent the formation of this biofilm. This effect already described in the patent application JP2002001332 [16] works in this document using membranes immersed in the entire reactor illuminated by mercury lamps. This phenomenon can be achieved by LEDs located closest to the membrane surface. This increases the possibility of destroying the deposition layer and improves the decolouring effects. The photocatalytic material used in this first variant of the present invention is achievable by various techniques known to those skilled in the art such as the sol-gel technique, the synthesis under pressure of CO2 or the hydrothermal synthesis followed by sintering, the vapor phase deposition (MOCVD), the deposition of preformed nanometric or micrometric particles then deposited under hydrostatic pressure and then sintered. In these different techniques, the sintering step makes it possible to bond the particles and the layer thus formed to the support which supports said layer.
Le film ou la couche de particules de semiconducteur présente avantageusement une épaisseur comprise entre 0,01 et 20 μm et notamment entre 1 et 10 μm. Cette épaisseur est soit sensiblement constante, soit variable sur la surface de dépôt.The film or the layer of semiconductor particles advantageously has a thickness of between 0.01 and 20 μm and in particular between 1 and 10 μm. This thickness is either substantially constant or variable on the deposition surface.
Dans une seconde variante de l'invention, le matériau photocatalytique se présente sous forme dispersée. La dispersion du matériau photocatalytique permet d'augmenter la surface spécifique accessible du matériau pour la réaction.In a second variant of the invention, the photocatalytic material is in dispersed form. The dispersion of the photocatalytic material makes it possible to increase the accessible surface area of the material for the reaction.
Le matériau photocatalytique mis en œuvre dans cette seconde variante de la présente invention est réalisable par différentes techniques connues de l'homme du métier telles que par une technique sol-gel, par synthèse en CO2 supercritique, par synthèse hydrothermale, par MOCVD ou par tout autre technique permettant l'obtention de grains comportant des micropores ou constitués de nanoparticules à fonctionnalité photocatalytique .The photocatalytic material used in this second variant of the present invention is feasible by various techniques known to those skilled in the art such as by a sol-gel technique, by supercritical CO2 synthesis, by hydrothermal synthesis, by MOCVD or by any other technique that makes it possible to obtain grains comprising micropores or consisting of nanoparticles with photocatalytic functionality.
Dans cette seconde variante, les particules sont introduites dans le fluide à traiter avant, après et/ou pendant l'introduction de ce dernier dans le dispositif selon l'invention. Les particules sont présentes dans le fluide à traiter dans une quantité comprise entre 102 et 109 particules/ml, notamment entre 103 et 106 particules/ml de fluide à traiter.In this second variant, the particles are introduced into the fluid to be treated before, after and / or during the introduction of the latter into the device according to the invention. The particles are present in the fluid to be treated in an amount of between 10 2 and 10 9 particles / ml, in particular between 10 3 and 10 6 particles / ml of fluid to be treated.
Dans une troisième variante de l'invention, le matériau photocatalytique se présente à la fois sous forme de dépôt et sous forme dispersée. Cette variante permet de cumuler les avantages liés à ces deux formes de présentation.In a third variant of the invention, the photocatalytic material is both in the form of a deposit and in dispersed form. This variant makes it possible to cumulate the advantages related to these two forms of presentation.
Selon un mode de réalisation particulier, le dispositif de la présente invention comprend un seul second compartiment (compartiment C2) •According to a particular embodiment, the device of the present invention comprises a single second compartment (compartment C2)
Dans une première variante de ce mode de réalisation particulier, le dispositif comprend un premier compartiment (compartiment Ci) et un second compartiment (compartiment C2) , séparés par une membrane telle que précédemment définie.In a first variant of this particular embodiment, the device comprises a first compartment (compartment Ci) and a second compartment (compartment C2), separated by a membrane as previously defined.
Dans une seconde variante de ce mode de réalisation particulier, le dispositif comprend au moins deux premiers compartiments (compartiments Ci) .In a second variant of this particular embodiment, the device comprises at least two first compartments (Ci compartments).
Avantageusement, ledit dispositif comprend entre 2 et 500 premiers compartiments, notamment entre 5 et 100 premiers compartiments. Chaque premier compartimentAdvantageously, said device comprises between 2 and 500 first compartments, especially between 5 and 100 first compartments. Each first compartment
(compartiment Ci) est séparé du second compartiment(compartment Ci) is separated from the second compartment
(compartiment C2) par une membrane telle que précédemment définie.(compartment C2) by a membrane as previously defined.
Le rapport « Volume du (ou des) premier (s) compartiment (s) / Volume du second compartiment » peut être compris entre 1/100 et 100/1, notamment entre 1/50 et 50/1, en particulier entre 1/10 et 10/1 et, plus particulièrement, entre 1/2 et 2/1. Au niveau de l'organisation spatiale, le (ou les) premier (s) compartiment (s) (compartiment (s) Ci) peu (ven) t être inclus dans le second compartiment (compartiment C2) , le second compartiment (compartiment C2) peut être inclus dans le premier compartiment (compartiment Ci) ou encore les premier (s) et second compartiments (compartiments Ci et C2) peuvent être disposés l'un sur l'autre ou côte à côte.The ratio "Volume of the first compartment (s) / volume of the second compartment" may be between 1/100 and 100/1, in particular between 1/50 and 50/1, in particular between 1 / 10 and 10/1 and, more particularly, between 1/2 and 2/1. At the spatial organization level, the first compartment (s) (compartment (s) Ci) can be included in the second compartment (compartment C2), the second compartment (compartment C2 ) can be included in the first compartment (compartment Ci) or the first (s) and second compartments (compartments Ci and C2) can be arranged one on the other or side by side.
Le second compartiment (compartiment C2) est adapté, d'une part, à diffuser l'oxygène apporté dans ce dernier par un fluide contenant de l'oxygène et, d'autre part, à récupérer le fluide traité. Ces deux fonctions sont exercées par le compartiment C2 de façon séquentielle .The second compartment (compartment C2) is adapted, on the one hand, to diffuse the oxygen supplied to the latter by an oxygen-containing fluid and, on the other hand, to recover the treated fluid. These two functions are exercised by compartment C2 sequentially.
Selon un autre mode de réalisation particulier, le dispositif de la présente invention comprend au moins deux seconds compartimentsAccording to another particular embodiment, the device of the present invention comprises at least two second compartments
(compartiments C2) • Avantageusement, ledit dispositif comprend entre 2 et 500 compartiments C2, notamment entre 5 et 100 compartiments C2. Chaque second compartiment (compartiment C2) est séparé du premier compartiment (compartiment Ci) par une membrane telle que précédemment définie.(compartments C2) Advantageously, said device comprises between 2 and 500 compartments C2, in particular between 5 and 100 compartments C2. Every second compartment (compartment C2) is separated from the first compartment (compartment Ci) by a membrane as previously defined.
Dans ce mode de réalisation, au moins un des seconds compartiments (compartiments C2) est adapté à récupérer le fluide traité et au moins un des seconds compartiments (compartiments C2) est adapté à diffuser l'oxygène apporté dans ce compartiment par le fluide contenant de l'oxygène. Le rapport « Volume du premier compartiment/ Volume des seconds compartiments » peut être compris entre 1/100 et 100/1, notamment entre 1/40 et 40/1, en particulier entre 1/8 et 8/1 et, plus particulièrement, entre 1/2 et 2/1. Au niveau de l'organisation spatiale, les seconds compartimentsIn this embodiment, at least one of the second compartments (compartments C2) is adapted to recover the treated fluid and at least one of the second compartments (compartments C2) is adapted to diffuse the oxygen supplied into this compartment by the fluid containing oxygen. The ratio "Volume of the first compartment / Volume of the second compartments" can be between 1/100 and 100/1, in particular between 1/40 and 40/1, in particular between 1/8 and 8/1 and, more particularly, between 1/2 and 2/1. At the level of spatial organization, the second compartments
(compartiments C2) peuvent être inclus dans le premier compartiment (compartiment Ci) et/ou se situer à la périphérie du premier compartiment (compartiment Ci) et en contact direct avec celui-ci.(compartments C2) may be included in the first compartment (compartment Ci) and / or be located on the periphery of the first compartment (compartment Ci) and in direct contact therewith.
Le dispositif selon la présente invention comprend également des moyens adaptés à amener le fluide à traiter dans ledit (ou lesdits) premier (s) compartiment (s) (compartiment (s) Ci), des moyens adaptés à récupérer ce fluide en sortie dudit (ou desdits) premier (s) compartiment (s) (compartiment (s) Ci), des moyens adaptés à récupérer le perméat (i.e. le fluide traité, récupéré dans au moins un second compartiment (compartiment C2) après qu'il a traversé la membrane séparant le premier compartiment (compartiment Ci) contenant le fluide à traiter et ce second compartiment (compartiment C2) ) et des moyens adaptés à amener un fluide contenant de l'oxygène dans au moins un second compartiment (compartiment C2) •The device according to the present invention also comprises means adapted to bring the fluid to be treated in said (or said) first compartment (s) (compartment (s) Ci), means adapted to recover this fluid at the output of said ( or said first compartment (s) (compartment (s) Ci), means adapted to recover the permeate (ie the treated fluid, recovered in at least a second compartment (compartment C2) after it has passed through the membrane separating the first compartment (compartment Ci) containing the fluid to be treated and this second compartment (compartment C2)) and means adapted to bring an oxygen-containing fluid into at least one second compartment (compartment C2)
Par « fluide contenant de l'oxygène », on entend dans le cadre de la présente invention un fluide avantageusement gazeux contenant de l'oxygène. L'oxygène est présent dans ledit fluide en une quantité comprise entre 5 et 100% (vol/vol), notamment entre 10 et 90% (vol/vol) et, en particulier, entre 20 et 80% (vol/vol) du fluide contenant de l'oxygène. Ledit fluide est plus particulièrement de l'air ambiant ou de l'oxygène pur ou sensiblement pur.In the context of the present invention, the term "oxygen-containing fluid" means a gaseous fluid containing oxygen. The oxygen is present in said fluid in an amount of between 5 and 100% (vol / vol), in particular between 10 and 90% (vol / vol) and, in particular, between 20 and 80% (vol / vol) of the fluid containing oxygen. Said fluid is more particularly ambient air or pure or substantially pure oxygen.
Tout moyen permettant d' amener un fluide liquide ou gazeux dans un compartiment est utilisable dans le cadre de la présente invention. Parmi ces moyens, on peut citer des pompes d'alimentation en liquide, des pompes d'alimentation en gaz, des moyens d'alimentation en liquide par pression hydrostatique. Ces moyens sont connectés aux compartiments Ci ou C2 par une tuyauterie en matière souple ou en matière rigide.Any means for bringing a liquid or gaseous fluid into a compartment is usable in the context of the present invention. Among these means include liquid supply pumps, gas supply pumps, liquid supply means by hydrostatic pressure. These means are connected to the compartments Ci or C2 by a pipe made of flexible material or rigid material.
La présente invention concerne également l'utilisation d'un dispositif tel que précédemment défini pour éliminer au moins un composé contenu dans un fluide. Avantageusement, ledit composé est un composé pathogène et, notamment tel que précédemment décrit .The present invention also relates to the use of a device as previously defined for removing at least one compound contained in a fluid. Advantageously, said compound is a pathogenic compound and, in particular as previously described.
La présente invention concerne enfin un procédé pour éliminer un composé contenu dans un fluide (A) . Le procédé selon la présente invention comprend les étapes consistant à : a) introduire ledit fluide (A) dans un premier compartiment (compartiment Ci) d'un dispositif tel que précédemment défini ; b) introduire de l'oxygène, dans ledit premier compartiment (compartiment Ci), à partir d'au moins un second compartiment (compartiment C2) séparé dudit premier compartiment (compartiment Ci) par une membrane telle que précédemment définie ; c) insoler un matériau photocatalytique tel que précédemment défini et présent dans ledit premier compartiment (compartiment Ci) avec un système de rayonnement UV tel que précédemment défini ; d) récupérer un fluide (B) ne comprenant plus ledit composé dans au moins un second compartiment (compartiment C2) •The present invention finally relates to a method for removing a compound contained in a fluid (AT) . The method according to the present invention comprises the steps of: a) introducing said fluid (A) into a first compartment (compartment Ci) of a device as previously defined; b) introducing oxygen into said first compartment (compartment Ci) from at least one second compartment (compartment C2) separated from said first compartment (compartment Ci) by a membrane as previously defined; c) irradiating a photocatalytic material as previously defined and present in said first compartment (compartment Ci) with a UV radiation system as previously defined; d) recovering a fluid (B) no longer comprising said compound in at least one second compartment (compartment C2)
L'étape (a) du procédé selon la présente invention peut mettre en œuvre des moyens d'alimentation d'un fluide tels que précédemment définis .Step (a) of the method according to the present invention can implement means for supplying a fluid as previously defined.
L' introduction du fluide (A) dans le premier compartiment (compartiment Ci) peut se faire à des débits très variables. A titre d'exemples, lorsque le dispositif se situe dans la gamme des appareils de laboratoire, ce débit peut être de l'ordre de 0,1 àThe introduction of the fluid (A) into the first compartment (compartment Ci) can be done at very variable flow rates. As examples, when the device is in the range of laboratory equipment, this flow can be of the order of 0.1 to
100 1/h et notamment de l'ordre de 1 à 10 1/h. Lorsque le dispositif se situe dans la gamme des appareils de type pilote ou de production industrielle, ce débit peut être de l'ordre de 10 à 105 1/h et notamment de l'ordre de 100 à 104 1/h.100 1 / h and in particular of the order of 1 to 10 1 / h. When the device is in the range of pilot-type or industrial production devices, this flow rate may be of the order of 10 to 10 5 1 / h and in particular of the order of 100 to 10 4 1 / h.
Le fluide (A) est récupéré en sortie du premier compartiment (compartiment Ci) par tout moyen et à tout débit adaptés et choisis en fonction des conditions opératoires utilisées pour l'introduction du fluide (A) . Une fois, le fluide (A) récupéré, il peut être soumis à au moins un nouveau traitement selon le procédé de l'invention.The fluid (A) is recovered at the outlet of the first compartment (compartment Ci) by any means and at any flow adapted and selected according to the operating conditions used for the introduction of the fluid (A). Once the fluid (A) recovered, it can be subjected to at least one new treatment according to the method of the invention.
L'étape (b) du procédé selon la présente invention consiste à introduire, dans un (ou plusieurs) premier (s) compartiment (s) (compartiment (s) Ci), un fluide contenant de l'oxygène à partir d'un second compartiment (compartiment C2) séparé dudit (ou desdits) premier (s) compartiment (s) (compartiment (s) Ci) par une membrane telle que précédemment définie.Step (b) of the process according to the present invention consists in introducing, into one (or more) first compartment (s) (compartment (s) Ci), an oxygen-containing fluid from a second compartment (compartment C2) separated from said (or said) first compartment (s) (compartment (s) Ci) by a membrane as defined above.
L'étape vise à introduire, dans le (ou les) premier (s) compartiment (s) (compartiment (s) Ci) où se déroule la réaction d'oxydation et/ou d'hydrolyse, un des réactifs impliqués dans cette réaction qu'est l'oxygène. Ainsi, le second compartiment (compartiment C2) est un compartiment riche en un fluide contenant de l'oxyde et notamment un fluide gazeux tel que l'air ou l'oxygène, alors que le (ou les) premier (s) compartiment (s) (compartiment (s) Ci) est (sont) rempli (s) de liquide et pauvre (s) en oxygène du fait de la consommation de ce réactif par les réactions d'oxydation photocatalytiques . L'introduction de l'oxygène se fait sous la forme la plus dispersée possible, sous forme de microbulles obtenues par convection, par exemple, sous l'effet d'une différence de pression ou sous forme moléculaire par un phénomène de diffusion, sous l'effet de la différence du potentiel chimique. L'introduction de l'oxygène dans le (ou les) premier (s) compartiment (s) (compartiment (s) Ci) peut se faire à un débit au plus égal au débit d' introduction du fluide (A) , notamment au minimum égal à l/10000lème du débit du fluide (A), en particulier compris entre l/10lème et l/1000lème du débit du fluide (A) .The step is to introduce, in the (or) first compartment (s) (compartment (s) Ci) where the oxidation and / or hydrolysis reaction takes place, one of the reagents involved in this reaction. what is oxygen? Thus, the second compartment (compartment C2) is a compartment rich in a fluid containing oxide and in particular a gaseous fluid such as air or oxygen, whereas the first compartment (s) ) (compartment (s) Ci) is (are) filled with liquid and poor (s) in oxygen due to the consumption of this reagent by photocatalytic oxidation reactions. The introduction of oxygen is in the most dispersed form possible, in the form of microbubbles obtained by convection, for example, under the effect of a pressure difference or in molecular form by a diffusion phenomenon, under the effect of the difference of the chemical potential. The introduction of oxygen into the first compartment (s) (compartment (s) Ci) can be done at a flow rate at most equal to the rate of introduction of the fluid (A), in particular minimum equal to l / 10000 -th of the fluid flow (A), especially between l / 10 and l -th / 1000 -th of fluid flow (A).
L'étape (b) du procédé selon l'invention se fait suite à une étape préalable d' introduction, dans le second compartiment (compartiment C2) , d'un fluide contenant de l'oxygène qui peut se faire à un débit sensiblement équivalent au débit d' introduction de l'oxygène dans le (ou les) premier (s) compartiment (s) (compartiment (s) Ci) .Step (b) of the process according to the invention is carried out following a preliminary step of introducing, into the second compartment (compartment C2), an oxygen-containing fluid which can be done at a substantially equivalent flow rate. the rate of introduction of oxygen into the first compartment (s) (compartment (s) Ci).
L'étape (c) du procédé selon l'invention consiste à irradier avec des rayonnements UV le matériau photocatalytique . Cette irradiation a pour effet d' activer le matériau photocatalytique à la surface duquel des charges (électrons et lacunes) sont créées, lesdites charges étant à la base des réactions d'élimination du composé contenu dans le fluide à traiter .Step (c) of the process according to the invention consists in irradiating the photocatalytic material with UV radiation. This irradiation has the effect of activating the photocatalytic material on the surface of which charges (electrons and vacancies) are created, said charges being at the base of the elimination reactions of the compound contained in the fluid to be treated.
L' insolation du matériau photocatalytique lors de l'étape (c) du procédé selon l'invention peut être continue ou périodique. L'énergie spécifique de cette insolation est comprise en moyenne, lorsque ledit système de rayonnement UV comprend au moins une LED, entre 0,01 et 100 mW/cm2 et notamment entre 0,1 et 20 mW/cm2 à une longueur d'onde comprise entre 254 et 380 nm.The exposure of the photocatalytic material during step (c) of the process according to the invention may be continuous or periodic. The specific energy of this insolation is included on average, when said UV radiation system comprises at least one LED, between 0.01 and 100 mW / cm 2 and in particular between 0.1 and 20 mW / cm 2 at a wavelength of between 254 and 380 nm.
La dernière étape du procédé selon la présente invention i.e. l'étape (d) consiste à récupérer le fluide traité également désigné fluide (B) ou perméat. Cette étape est réalisée par drainage du fluide traité du (ou des) premier (s) compartiment (s) (compartiment (s) Ci) vers au moins un second compartiment (compartiment C2) à travers la membrane séparant ces compartiments.The last step of the process according to the present invention i.e. step (d) is to recover the treated fluid also referred to as fluid (B) or permeate. This step is performed by draining the treated fluid from (or) first compartment (s) (compartment (s) Ci) to at least a second compartment (compartment C2) through the membrane separating these compartments.
Cette étape peut être réalisée en continu au cours de la réaction ou de façon séquentielle par une alternance de moments de diffusion de l'oxygène et de moments de drainage du perméat, comme expliqué ci- après. Dans ce cas, la membrane retient le catalyseur, mais laisse passer les composés oxydés et/ou hydrolyses dans le cas où ceux-ci ont une masse moléculaire plus faible que les composés initiaux à éliminer et peuvent passer à travers des pores de la membrane. On recueille alors un fluide traité également désigné dans la présente par « un perméat dépollué ». Le passage du liquide (B) traité (i.e. le liquide après mise en œuvre des étapes (a) à (c) du procédé selon l'invention), à travers la membrane, d'un premier compartiment (compartiment Ci) vers un second compartiment (compartiment C2) , et sa récupération peuvent se faire par simple gravité, en utilisant un gaz comprimé, par agitation, par aspiration. Dans une première forme de mise en œuvre de la présente invention, le second compartimentThis step can be carried out continuously during the reaction or sequentially by alternating oxygen diffusion times and permeate drainage moments, as explained below. In this case, the membrane retains the catalyst, but passes the oxidized compounds and / or hydrolyses in the case where they have a lower molecular weight than the initial compounds to eliminate and can pass through pores of the membrane. A treated fluid, also referred to herein as "a cleansed permeate", is then collected. The passage of the liquid (B) treated (ie the liquid after implementation of steps (a) to (c) of the process according to the invention), through the membrane, from a first compartment (compartment Ci) to a second compartment (compartment C2), and its recovery can be done by simple gravity, using a compressed gas, stirring, suction. In a first embodiment of the present invention, the second compartment
(compartiment C2) de l'étape (b) du procédé est le même que celui de l'étape (d) du procédé et les étapes (b) et (d) sont effectuées de façon séquentielle.(compartment C2) of step (b) of the method is the same as that of step (d) of the method and steps (b) and (d) are performed sequentially.
Dans une seconde forme de mise en œuvre de la présente invention, le second compartiment (compartiment C2) de l'étape (b) du procédé est distinct du compartiment de l'étape (d) du procédé et les étapes (b) et (d) peuvent être effectuées en continu durant le procédé.In a second embodiment of the present invention, the second compartment (compartment C2) of step (b) of the process is distinct from the compartment of step (d) of the method and steps (b) and d) may be performed continuously during the process.
Le procédé de la présente invention est remarquable car il permet d'associer deux étapes distinctes (réaction puis séparation du photocatalyseur) du procédé. Plus généralement, le dispositif selon l'invention permet de coupler, en un même lieu qu'est la surface membranaire, les étapes du procédé d'élimination d'un composé contenu dans un fluide qui sont les étapes de réaction d' oxydation et/ou d'hydrolyse, de rétention du matériau photocatalytiques, de diffusion de l'oxygène, et de drainage des composés oxydés et/ou hydrolyses. II convient de rappeler que l'étape de rétention du matériau catalytique est nécessaire lorsque ce dernier se présente sous la forme de particules dispersées et peut être réalisée lors de l'étape (d) du procédé ou suite à l'étape (d) du procédé en vue de recycler ces particules. BREVE DESCRIPTION DES DESSINSThe process of the present invention is remarkable because it makes it possible to associate two distinct steps (reaction and then separation of the photocatalyst) of the process. More generally, the device according to the invention makes it possible to couple, in one and the same place, the membrane surface, the steps of the process for removing a compound contained in a fluid which are the oxidation reaction stages and / or hydrolysis, retention of photocatalytic material, diffusion of oxygen, and drainage of oxidized and / or hydrolyzed compounds. It should be remembered that the step of retaining the catalytic material is necessary when the latter is in the form of dispersed particles and can be carried out during step (d) of the process or following step (d) of process for recycling these particles. BRIEF DESCRIPTION OF THE DRAWINGS
La figure 1 est une représentation schématisée d'un dispositif selon l'invention. La figure IA est une représentation d'un dispositif à un premier compartiment (compartiment Ci) et à un second compartiment (compartiment C2) avec les moyens et éléments additionnels permettant la mise en œuvre du procédé selon l'invention. La figure IB est une représentation détaillée d'une partie du dispositif et, plus particulièrement, du premier compartiment (compartiment Ci) avec la membrane sensiblement plane à couche photocatalytique sur sa surface (fi) , le circuit du cheminement du fluide (A) et les LED UV positionnées au dessus du premier compartiment (compartiment Ci) . La figure 2 présente une représentation schématisée d'une membrane tubulaire à couche photocatalytique interne présentant une « guirlande » de LED UV positionnées au milieu de la veine liquide. Le premier compartiment (compartiment Ci) correspond, dans ce cas, à l'espace intérieur de la membrane tubulaire et le second compartiment (compartiment C2) non matérialisé à l'espace se situant en périphérie de la membrane tubulaire.Figure 1 is a schematic representation of a device according to the invention. FIG. 1A is a representation of a device with a first compartment (compartment Ci) and a second compartment (compartment C2) with the means and additional elements allowing the implementation of the method according to the invention. FIG. 1B is a detailed representation of a part of the device and, more particularly, of the first compartment (compartment C1) with the substantially flat membrane with photocatalytic layer on its surface (fi), the circuit of the fluid path (A) and the UV LEDs positioned above the first compartment (compartment Ci). FIG. 2 presents a schematic representation of a tubular membrane with an internal photocatalytic layer having a "garland" of UV LEDs positioned in the middle of the liquid vein. The first compartment (compartment Ci) corresponds, in this case, to the interior space of the tubular membrane and the second compartment (compartment C2) not materialized to the space located at the periphery of the tubular membrane.
La figure 3 présente une représentation schématisée d'un dispositif selon la présente invention sous forme d'un carter servant de réacteur photocatalytique membranaire industriel avec montage de LED externes .FIG. 3 shows a schematic representation of a device according to the present invention in the form of a housing serving as an industrial membrane photocatalytic reactor with mounting of external LEDs.
La figure 4 présente une représentation schématisée d'un dispositif selon la présente invention sous forme d'un carter servant de réacteur photocatalytique membranaire industriel avec montage de LED externes (à la périphérie du carter) et internes (en guirlandes insérées à l'intérieur du porte membrane) .FIG. 4 is a schematic representation of a device according to the present invention in the form of a housing serving as a reactor industrial photocatalytic membrane with external LEDs (at the periphery of the housing) and internal LEDs (in strings inserted inside the membrane door).
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
La présente invention propose un appareillage permettant la mise en œuvre de réactions d'oxydation et/ou d'hydrolyse à l'échelle du laboratoire (traitement de quelques millilitres à quelques litres par heure) , facilement extensibles à des tailles supérieures, jusqu'à des appareils de type industriel (plusieurs m3 ou dizaines de m3 par heure) .The present invention provides an apparatus allowing the implementation of oxidation and / or hydrolysis reactions on a laboratory scale (treatment of a few milliliters to a few liters per hour), easily extensible to larger sizes, up to industrial type devices (several m 3 or tens of m 3 per hour).
1. Dispositif à un second compartiment1. Device to a second compartment
(compartiment C2) :(compartment C 2 ):
1.1. Dispositif de la figure 1 : On propose un dispositif selon la présente invention adapté à une utilisation en laboratoire et basé sur la mise en œuvre d'un carter (ou porte membrane) contenant une membrane sensiblement plane dont la surface est de l'ordre de quelques cm2 (classiquement de 15 à 100 cm2) par exemple.1.1. Device of Figure 1: A device according to the present invention is proposed adapted for use in the laboratory and based on the implementation of a housing (or membrane door) containing a substantially flat membrane whose surface is of the order of a few cm 2 (typically 15 to 100 cm 2 ) for example.
Le carter utilisé est avantageusement un carter de filtration en mode frontal ou tangentiel fabriqué par la société Millipore ou la société TAMI industries (France) .The casing used is advantageously a filter casing in frontal or tangential mode manufactured by the company Millipore or the company TAMI industries (France).
La membrane (1) utilisée est une membrane avantageusement organique, circulaire sensiblement plane car la surface filtrante est facilement accessible pour le dépôt. Il s'agit, par exemple, d'une membrane « disram » fabriquée par la société TAMI industries (France) d'un diamètre d'environ 90 mm, d'une épaisseur comprise entre 1 et 5 mm, d'une porosité comprise entre 30 et 70% et avec une taille de pores comprise entre 1 et 1000 nm.The membrane (1) used is an advantageously organic membrane, circular substantially flat because the filtering surface is easily accessible for the deposit. This is, for example, a membrane "disram" manufactured by the company TAMI industries (France) with a diameter of about 90 mm, a thickness of between 1 and 5 mm, a porosity between 30 and 70% and with a pore size between 1 and 1000 nm.
Une couche fixe d'un photocatalyseur tel que du Tiθ2 est déposée sur une des faces (fi) de la membrane par n'importe quelle technique adéquate (sol- gel, compression isostatique, CVD, synthèse hydrothermale, synthèse en CO2 supercritique à partir des alcoxydes) . La membrane peut ensuite être frittée à haute température, classiquement de 250 à 6000C voire plus .A fixed layer of a photocatalyst such as TiO 2 is deposited on one of the faces (fi) of the membrane by any suitable technique (sol-gel, isostatic compression, CVD, hydrothermal synthesis, synthesis of supercritical CO2 from alkoxides). The membrane can then be sintered at high temperature, typically 250 to 600 0 C or more.
Les premier et second compartiments (compartiments Ci et C2) du dispositif selon la présente invention correspondent respectivement au module supérieur (2) et au module inférieur (3) du carter, lesdits modules étant séparés par la membrane (1) dont la face (fi) se trouve du côté du compartiment Ci. Le dispositif de la figure 1 est avantageusement utilisé en mode tangentiel : le liquide à traiter circule parallèlement à la surface de la membrane (1) . Dans ce cas, le fluide contenant le composé à éliminer est introduit dans le premier compartiment (compartiment Ci) par une conduite (5) au moyen de tout organe de pompage et, de façon générale, par tout système de mise en mouvement d'un fluide et suit une spirale créée par un élément interne de forme spiralée (6) . Il convient de remarquer que le volume de cette spirale constitue, en fait, le volume du premier compartiment (compartiment Ci) . Le fluide sort du dispositif via une vanne (7) .The first and second compartments (compartments Ci and C2) of the device according to the present invention correspond respectively to the upper module (2) and to the lower module (3) of the casing, said modules being separated by the membrane (1) whose face (fi The device of FIG. 1 is advantageously used in tangential mode: the liquid to be treated circulates parallel to the surface of the membrane (1). In this case, the fluid containing the compound to be removed is introduced into the first compartment (compartment Ci) via a pipe (5) by means of any pumping member and, in general, by any system for moving a fluid and follows a spiral created by an inner member of spiral shape (6). It should be noted that the volume of this spiral is, in fact, the volume of the first compartment (compartment Ci). The fluid exits the device via a valve (7).
Dans ce cas, le montage des LED UV (8) recommandé est une disposition en spirale, sur le trajet en spirale du fluide. Ces LED (8) sont insérées dans la bride supérieure du module, dans des perçages permettant leur fixation avec un système d'étanchéité vis-à-vis de l'extérieur. L'étanchéité doit résister à une pression de circulation du fluide de l'ordre de 0,1 à 10 bar, préférablement 1 à 5 bar.In this case, the recommended UV LED mounting (8) is a spiral arrangement on the spiral path of the fluid. These LEDs (8) are inserted in the upper flange of the module in holes allowing their attachment with a sealing system vis-à-vis the outside. The seal must withstand a fluid circulation pressure of the order of 0.1 to 10 bar, preferably 1 to 5 bar.
Le second compartiment (compartiment C2) est alimenté en un fluide contenant de l'oxygène tel que de l'air ou de l'oxygène via une vanne (9), au moyen d'un système d'injection du fluide contenant de l'oxygène. Cette alimentation est effectuée pendant une durée di . La durée di écoulée, la pompe d'injection du fluide est arrêtée, la vanne (9) est fermée et déconnectée de la source de fluide contenant de l'oxygène. La vanne (9) est ensuite connectée à un dispositif pour récupérer le perméat dépollué (i.e. le fluide traité ayant traversé la membrane) depuis le second compartimentThe second compartment (compartment C2) is supplied with a fluid containing oxygen such as air or oxygen via a valve (9), by means of a fluid injection system containing the oxygen. This power supply is performed for a duration di. The elapsed time, the fluid injection pump is stopped, the valve (9) is closed and disconnected from the source of fluid containing oxygen. The valve (9) is then connected to a device for recovering the cleaned permeate (i.e. the treated fluid having passed through the membrane) from the second compartment
(compartiment C2) • Cette récupération est effectuée pendant une durée d2. Les étapes d'alimentation en fluide contenant de l'oxygène et de récupération du perméat sont répétées de façon séquentielle.(compartment C2) • This recovery is performed for a duration d2. The steps of supplying oxygen-containing fluid and recovering the permeate are repeated sequentially.
1.2. Dispositif de la figure 2 : Pour des raisons d'augmentation de la capacité de production, des membranes cylindriques peuvent également être utilisées avec des couches actives internes ou externes en matériau photocatalytique .1.2. Device of Figure 2: For reasons of increase in production capacity, cylindrical membranes can also be used with layers internal or external active photocatalytic material.
La figure 2 est une représentation schématique d'une telle membrane cylindrique (1) . Cette membrane (1) est avantageusement minérale, de forme tubulaire ou canalaire. Il s'agit, par exemple, d'une membrane mono-canal telle que celles fabriquées par les sociétés TAMI Industries, Orelis, Pall/SCT, etc. d'une longueur comprise entre 250 et 1200 mm, d'un diamètre compris entre 10 et 50 mm et d'une porosité comprise entre 30 et 70%.Figure 2 is a schematic representation of such a cylindrical membrane (1). This membrane (1) is advantageously mineral, tubular or ductal. This is, for example, a single-channel membrane such as those manufactured by companies TAMI Industries, Orelis, Pall / SCT, etc. a length of between 250 and 1200 mm, a diameter of between 10 and 50 mm and a porosity between 30 and 70%.
Une couche fixe d'un photocatalyseur (10) tel que du Tiθ2 est déposée sur la face interne (f2) de la membrane par n' importe quelle technique adéquate (sol-gel, compression isostatique, CVD, synthèse hydrothermale, synthèse en CO2 supercritique à partir des alcoxydes) . La membrane peut ensuite être frittée à haute température, classiquement de 250 à 6000C voire plus . Les premier et second compartimentsA fixed layer of a photocatalyst (10) such as TiO 2 is deposited on the internal face (f 2 ) of the membrane by any suitable technique (sol-gel, isostatic compression, CVD, hydrothermal synthesis, synthesis in CO2 supercritical from alkoxides). The membrane can then be sintered at high temperature, typically 250 to 600 0 C or more. The first and second compartments
(compartiments Ci et C2) du dispositif selon la présente invention correspondent respectivement à l'intérieur de la membrane tubulaire (2) et à l'extérieur de la membrane tubulaire (3) . Le dispositif de la figure 2 est avantageusement utilisé en mode tangentiel. Le liquide à traiter circule parallèlement à la surface de la membrane (1) : veine liquide circulant de l'entrée du fluide (A) vers la sortie du fluide (A) . Les LED UV (8) internes sont installées à l'intérieur de la veine liquide en parallèle sous forme d'une « guirlande » de façon à irradier le matériau photocatalytique (10) . Les dimensions de la veine fluide sont compatibles avec la focalisation du faisceau lumineux émis par les LED UV (8) pour obtenir une activation efficace du matériau photocatalytique.(C1 and C2 compartments) of the device according to the present invention respectively correspond to the inside of the tubular membrane (2) and outside the tubular membrane (3). The device of FIG. 2 is advantageously used in tangential mode. The liquid to be treated circulates parallel to the surface of the membrane (1): liquid vein flowing from the fluid inlet (A) to the fluid outlet (A). The internal UV LEDs (8) are installed inside the liquid vein in parallel in the form of a "garland" of to irradiate the photocatalytic material (10). The dimensions of the fluid stream are compatible with the focusing of the light beam emitted by the UV LEDs (8) to obtain efficient activation of the photocatalytic material.
Comme pour le dispositif de la figure 1, la membrane (1) de la figure 2 permet, de façon séquentielle, d' introduire dans la veine liquide de l'oxygène et de récupérer le perméat.As for the device of Figure 1, the membrane (1) of Figure 2 allows, sequentially, to introduce into the liquid vein oxygen and recover the permeate.
La forme de mise en œuvre dans laquelle le dispositif selon la présente invention comprend un second compartiment (compartiment C2) et plusieurs premiers compartiments (compartiments Ci) correspond à un dispositif du type carter porte-membrane comprenant plusieurs dispositifs tels que définis à la figure 2, l'espace intérieur du carter à l'exception de ces dispositifs correspondant au second compartimentThe form of implementation in which the device according to the present invention comprises a second compartment (compartment C2) and several first compartments (compartments Ci) corresponds to a device of the membrane housing type comprising several devices as defined in FIG. , the interior space of the housing except for those devices corresponding to the second compartment
(compartiment C2) •(compartment C2) •
2. Dispositif à plusieurs seconds compartiments (compartiments C2) :2. Device with several second compartments (compartments C2):
Le système de LED UV intégrées à un réacteur photocatalytique membranaire peut aussi s'appliquer à des systèmes de grande surface membranaire typiquement supérieure à 1 m2 (et jusqu'à plusieurs centaines de m2), convenant alors pour les échelles pilote ou industrielle.The UV LED system integrated into a membrane photocatalytic reactor can also be applied to systems with a large membrane surface typically greater than 1 m 2 (and up to several hundred m 2 ), which is then suitable for pilot or industrial scales.
L'association en série et en parallèle de membranes commerciales monocanal ou multicanaux, telles que celles fabriquées par les sociétés TAMI Industries, Orelis, Pall/SCT, etc. dont l'extérieur ou l'intérieur est recouvert d'un matériau photocatalytique, permet d'envisager une augmentation de la surface membranaire et de couvrir toutes les gammes de débit à traiter, classiquement de 1 m3. h"1 jusqu'à plusieurs centaines voire milliers de m3. h"1.The series and parallel combination of single-channel or multichannel commercial membranes, such as those manufactured by TAMI Industries, Orelis, Pall / SCT, etc. the outside or inside of which is covered with a photocatalytic material, makes it possible to envisage an increase in the membrane surface and to cover all the flow ranges to be treated, conventionally of 1 m 3 . h "1 up to several hundred or even thousands of m 3 h " 1 .
On propose d'utiliser ces modules membranaires au sein de carters modifiés pour recevoir les sources adéquates de rayonnement UV (préférablement des LED) en émission interne ou périphérique. Selon la taille du dispositif industriel, une combinaison de membranes et de disposition des LED est envisageable.It is proposed to use these membrane modules in housings modified to receive the appropriate sources of UV radiation (preferably LED) in internal or peripheral emission. Depending on the size of the industrial device, a combination of membranes and LED layout is possible.
Les figures 3 et 4 donnent deux exemples de tels dispositifs préparés à partir d'appareils de type TIS fabriqués par la Société TAMI Industrie.Figures 3 and 4 show two examples of such devices prepared from TIS type devices manufactured by TAMI Industrie.
Les dispositifs des figures 3 et 4 comprennent, en leur centre, des membranes (11) dont la couche externe possède des propriétés photocatalytiques et dont le rôle est de diffuser de l'oxygène. Les membranes (12) situées en périphérie du dispositif sont des membranes permettant le drainage du fluide (B)The devices of FIGS. 3 and 4 comprise, in their center, membranes (11) whose outer layer has photocatalytic properties and whose role is to diffuse oxygen. The membranes (12) located at the periphery of the device are membranes allowing the drainage of the fluid (B)
(perméat constitué de composés oxydés et/ou hydrolyses) . Les membranes (11) et (12) sont disposées les unes parallèles aux autres, parallèles à l'axe longitudinal du dispositif.(permeate consisting of oxidized and / or hydrolyzed compounds). The membranes (11) and (12) are arranged parallel to each other, parallel to the longitudinal axis of the device.
Des LED UV (8) sont montées en série et en parallèle et situées en périphérie du dispositifUV LEDs (8) are connected in series and in parallel and located at the periphery of the device
(figures 3 et 4) . Le dispositif est dans un matériau transparent au rayonnement UV du type méthacrylate permettant au rayonnement UV émis par les LED (8) d' activer efficacement le matériau photocatalytique (10) . Le matériau du dispositif peut aussi être opaque, percé de trous dans lesquels sont insérées les LED de façon étanche pour résister à une pression de 0,1 à 30 bars et notamment de 1 à 10 bars. Les seconds compartiments (compartiments C2) dans les dispositifs des figures 3 et 4 correspondent au volume interne des membranes tubulaires (11) et (12) alors que le premier compartiment (compartiment Ci) correspond au volume interne du dispositif entourant les membranes tubulaires (11) et (12) .(Figures 3 and 4). The device is made of a material transparent to UV radiation of the methacrylate type allowing the UV radiation emitted by the LEDs (8) to effectively activate the photocatalytic material. (10). The material of the device may also be opaque, pierced with holes in which the LEDs are inserted in a sealed manner to withstand a pressure of 0.1 to 30 bar and in particular of 1 to 10 bar. The second compartments (compartments C2) in the devices of FIGS. 3 and 4 correspond to the internal volume of the tubular membranes (11) and (12) while the first compartment (compartment Ci) corresponds to the internal volume of the device surrounding the tubular membranes (11). ) and (12).
Néanmoins, des guirlandes de LED (13) peuvent également être disposées à l'intérieur du dispositif porte membrane afin d' irradier la totalité des surfaces actives (figure 4) . Dans le dispositif de la figure 4, une partie des membranes filtrantes (12) est conservée pour drainer le perméat dépollué (liquide (B) ) et retenir les particules de Tiθ2 (ou tout autre photocatalyseur) , une partie des membranes (11) peut être utilisée pour diffuser l'oxygène, une partie des membranes est remplacée par un dispositif d'émission UV (par exemple des LED, mais aussi des lampes UV de géométrie compatible avec la taille des membranes qu'elles viennent remplacer) . Le photocatalyseur peut être dispersé sous forme de poudre et/ou déposé à la surface des membranes de telle sorte que l'insolation UV illumine l'ensemble des surfaces actives.Nevertheless, LED strings (13) can also be arranged inside the membrane holder device in order to irradiate all the active surfaces (FIG. 4). In the device of FIG. 4, a part of the filtering membranes (12) is conserved to drain the polluted permeate (liquid (B)) and to retain the TiO 2 particles (or any other photocatalyst), a part of the membranes (11) can to be used to diffuse oxygen, part of the membranes is replaced by a UV emission device (for example LEDs, but also UV lamps of geometry compatible with the size of the membranes they replace). The photocatalyst may be dispersed in powder form and / or deposited on the surface of the membranes so that the UV insolation illuminates all the active surfaces.
Le matériau catalyseur sous forme dispersée peut être introduit dans le fluide (A) lors de son introduction dans le premier compartiment (compartiment Ci) ou préalablement à cette introduction. Enfin, le système de circulation du liquide (B) est couplé directement au carter membranaire sans circuler par une boucle de pompage externe. The catalyst material in dispersed form can be introduced into the fluid (A) during its introduction into the first compartment (compartment Ci) or prior to this introduction. Finally, the liquid circulation system (B) is coupled directly to the membrane casing without circulating through an external pumping loop.
REFERENCESREFERENCES
1. Schneider, C, "Water disinfection by UV radiation" L'eau, l'industrie, les nuisances, 1991. 149: p. 64-66.1. Schneider, C, "Water disinfection by UV radiation" Water, industry, nuisances, 1991. 149: p. 64-66.
2. Margolin, A. B., "Control of microrganisms in source water and drinking water" Manual of environmental microbiology . " 1997: Washington, US. p. 195-202. 3. Demande de brevet EP 0317735 "Apparatus for disinfecting waste water" publiée le 31 mai 1989.2. Margolin, A. B., "Control of microrganisms in water and drinking water source" Manual of environmental microbiology. "1997: Washington, US, pp. 195-202." Patent Application EP 0317735 "Apparatus for disinfecting waste water" published May 31, 1989.
4. Demande de brevet DE3117473 "Disinfection apparatus for swimming pools and service water" publiée le 25 novembre 1982. 5. Hermann, J. -M., "La photocatalyse : Les principes fondamentaux et l'ouverture vers le génie des procédés." 2007, Société française de génie des Procédés: Paris.4. Patent Application DE3117473 "Disinfection apparatus for swimming pools and water service" published November 25, 1982. 5. Hermann, J.-M., "Photocatalysis: Fundamentals and Openness to Process Engineering." 2007, French Society of Process Engineering: Paris.
6. Brevet US5118422 "Photocatalytic treatment of water" publié le 2 juin 1992.6. US 5118422 "Photocatalytic treatment of water" published June 2, 1992.
7. Cho, M., et al., "Linear corrélation between inactivation of E. coli and OH radical concentration in Tiθ2 photocatalytic disinfection." Water research, 2004(38) : p. 1069-1077. 8. Demande internationale WO 03/0140307. Cho, M., et al., "Linear correlation between inactivation of E. coli and radical OH in TiO2 photocatalytic disinfection." Water research, 2004 (38): p. 1069-1077. International application WO 03/014030
"Sterilization method of water by UV/TiO2 photocatalytic reaction and reactor therefor" publiée le 20 février 2003."Sterilization method of UV water / TiO2 photocatalytic reaction and reactor therefor" published on February 20, 2003.
9. Demande internationale WO 2007/079749 "Method and System for photocatalytic removal of inorganic halogens by réduction" publiée le 19 juillet 2007.9. International Application WO 2007/079749 "Method and System for photocatalytic removal of inorganic halogens by reduction "published on July 19, 2007.
10. Demande internationale WO 2007/113537 "Fluid treatment apparatus comprising ultraviolet light emitting diode" publiée le 11 octobre 2007.10. International Application WO 2007/113537 "Fluid treatment apparatus comprising ultraviolet light emitting diode" published October 11, 2007.
11. Demande de brevet US2007/009404 "Illuminated devices using UV-LED' s" publiée le 11 janvier 2007.11. US2007 / 009404 "Illuminated devices using UV-LEDs", published on January 11, 2007.
12. Demande de brevet US2006/163126 "UV led based water purification module for intermittantly opérable flow-through hydration Systems" publiée le 27 juillet 2006.12. Patent Application US2006 / 163126 "UV led based water purification module for intermittantly operable flow-through hydration Systems" published July 27, 2006.
13. Demande de brevet US2003/203816 "Titania-coated honeycomb catalyst matrix for UV- photocatalytic oxidation of organic polluants, and process for making" publiée le 30 octobre 2003.13. Patent Application US2003 / 203816 "Titania-coated honeycomb catalyst matrix for UV-photocatalytic oxidation of organic pollutants, and process for making" published October 30, 2003.
14. Azrague, K., et al., "A new combination of a membrane and of a photocatalytic reactor for the depollution of turbid water." Applied catalysis B environmental, 2007. 70(3-4) : p. 197-204.14. Azrague, K., et al., "A new combination of a membrane and a photocatalytic reactor for depollution of turbid water." Applied catalysis B environmental, 2007. 70 (3-4): p. 197-204.
15. Bellobono, I. R., F. Morazzoni, and P. M. Tozzi, "Photocatalytic membrane modules for drinking water purification in domestic and community appliance" Int. J. of photoenergy, 2005. 07: p. 109-113. 16. Demande de brevet JP2002001332 "UV irradiation type membrane filtration apparatus" publiée le 8 janvier 2002. 15. Bellobono, I. R., F. Morazzoni, and P. M. Tozzi, "Photocatalytic membrane modules for drinking water purification in domestic and community appliances" Int. J. of Photoenergy, 2005. 07: p. 109-113. 16. Patent Application JP2002001332 "UV irradiation type membrane filtration apparatus" published on January 8, 2002.

Claims

REVENDICATIONS
1) Dispositif d'élimination d'au moins un composé contenu dans un fluide, comprenant : - un système de rayonnement UV, au moins un premier compartiment contenant un matériau photocatalytique susceptible d'être insolé par ledit système de rayonnement UV,1) Device for removing at least one compound contained in a fluid, comprising: - a UV radiation system, at least a first compartment containing a photocatalytic material capable of being insolated by said UV radiation system,
- des moyens adaptés à amener ledit fluide dans ledit au moins un premier compartiment, caractérisé en ce que ledit dispositif comprend :means adapted to bring said fluid into said at least one first compartment, characterized in that said device comprises:
- au moins un second compartiment distinct dudit au moins un premier compartiment, adapté à récupérer ledit fluide après élimination dudit composé, des moyens adaptés à amener un fluide contenant de l'oxygène dans au moins un second compartiment,at least one second compartment separate from said at least one first compartment, adapted to recover said fluid after removal of said compound, means adapted to bring an oxygen-containing fluid into at least a second compartment,
- une membrane séparant lesdits premier et second compartiments et adaptée au passage d'au moins un fluide.a membrane separating said first and second compartments and adapted to the passage of at least one fluid.
2) Dispositif selon la revendication 1, caractérisé en ce que ladite membrane est choisie parmi les membranes de microfiltration, les membranes d' ultrafiltration, les membranes de nanofiltration et les membranes d'osmose inverse. 3) Dispositif selon la revendication 1 ou 2, caractérisé en ce que ladite membrane est de forme sensiblement plane.2) Device according to claim 1, characterized in that said membrane is selected from microfiltration membranes, ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes. 3) Device according to claim 1 or 2, characterized in that said membrane is substantially flat shape.
4) Dispositif selon la revendication 1 ou4) Device according to claim 1 or
2, caractérisé en ce que ladite membrane est de forme cylindrique .2, characterized in that said membrane is cylindrical in shape.
5) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit système de rayonnement UV comprend au moins une diode électroluminescente (LED) .5) Device according to any one of the preceding claims, characterized in that said UV radiation system comprises at least one light emitting diode (LED).
6) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit système de rayonnement UV comprend au moins deux LED montées en série.6) Device according to any one of the preceding claims, characterized in that said UV radiation system comprises at least two LEDs connected in series.
7) Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit système de rayonnement UV comprend au moins deux LED montées en parallèle.7) Device according to any one of claims 1 to 5, characterized in that said UV radiation system comprises at least two LEDs connected in parallel.
8) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit matériau photocatalytique est constitué de particules de semi-conducteurs.8) Device according to any one of the preceding claims, characterized in that said photocatalytic material consists of semiconductor particles.
9) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit matériau photocatalytique se présente sous forme d'un dépôt .9) Device according to any one of the preceding claims, characterized in that said Photocatalytic material is in the form of a deposit.
10) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit matériau photocatalytique se présente sous forme dispersée .10) Device according to any one of the preceding claims, characterized in that said photocatalytic material is in dispersed form.
11) Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit dispositif comprend un seul second compartiment.11) Device according to any one of claims 1 to 10, characterized in that said device comprises a single second compartment.
12) Dispositif selon la revendication 11, caractérisé en ce que ledit dispositif comprend au moins deux premiers compartiments.12) Device according to claim 11, characterized in that said device comprises at least two first compartments.
13) Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit dispositif comprend au moins deux seconds compartiments.13) Device according to any one of claims 1 to 10, characterized in that said device comprises at least two second compartments.
14) Utilisation d'un dispositif selon l'une quelconque des revendications précédentes pour éliminer au moins un composé contenu dans un fluide.14) Use of a device according to any one of the preceding claims for removing at least one compound contained in a fluid.
15) Utilisation selon la revendication 14, caractérisée en ce que ledit composé est un composé pathogène . 16) Procédé pour éliminer un composé contenu dans un fluide (A) comprenant les étapes consistant à : a) introduire ledit fluide (A) dans un premier compartiment d'un dispositif tel que défini à l'une quelconque des revendications 1 à 13 ; b) introduire de l'oxygène, dans ledit premier compartiment, à partir d'au moins un second compartiment séparé dudit premier compartiment par une membrane telle que définie à l'une quelconque des revendications 2 à 4 ; c) insoler un matériau photocatalytique tel que défini à l'une quelconque des revendications 5 à 7 et présent dans ledit premier compartiment avec un système de rayonnement UV tel que défini à l'une quelconque des revendications 8 à 10 ; d) récupérer un fluide (B) ne comprenant plus ledit composé dans au moins un second compartiment .15) Use according to claim 14, characterized in that said compound is a pathogenic compound. 16) A method for removing a compound contained in a fluid (A) comprising the steps of: a) introducing said fluid (A) into a first compartment of a device as defined in any one of claims 1 to 13; b) introducing oxygen into said first compartment from at least a second compartment separated from said first compartment by a membrane as defined in any one of claims 2 to 4; c) irradiating a photocatalytic material as defined in any one of claims 5 to 7 and present in said first compartment with a UV radiation system as defined in any one of claims 8 to 10; d) recovering a fluid (B) no longer comprising said compound in at least one second compartment.
17) Procédé selon la revendication 16, caractérisé en ce que le second compartiment de ladite étape (b) est le même que celui de ladite étape (d) et lesdites étapes (b) et (d) sont effectuées de façon séquentielle. 17) Method according to claim 16, characterized in that the second compartment of said step (b) is the same as that of said step (d) and said steps (b) and (d) are performed sequentially.
PCT/EP2009/062541 2008-09-30 2009-09-28 Device, use thereof and process for removing a compound contained in a fluid WO2010037717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856564A FR2936509B1 (en) 2008-09-30 2008-09-30 DEVICE AND METHOD FOR REMOVING A CONTINUOUS COMPOUND IN A FLUID.
FR0856564 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010037717A1 true WO2010037717A1 (en) 2010-04-08

Family

ID=40473467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/062541 WO2010037717A1 (en) 2008-09-30 2009-09-28 Device, use thereof and process for removing a compound contained in a fluid

Country Status (2)

Country Link
FR (1) FR2936509B1 (en)
WO (1) WO2010037717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222895A1 (en) * 2013-11-11 2015-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for microfiltration of a fluid
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409954A1 (en) * 2010-07-20 2012-01-25 National Center for Scientific Research Demokritos Photocatalytic purification device
CN108203190A (en) * 2018-01-31 2018-06-26 常州澳弘电子有限公司 A kind of cycle photocatalysis sewage-treating reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819649A1 (en) * 1996-07-16 1998-01-21 Iskra Industry Co., Ltd. Photocatalytic method for treatment of contaminated water
US6524447B1 (en) * 1999-11-22 2003-02-25 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
WO2006079837A1 (en) * 2005-01-27 2006-08-03 Water Innovate Limited Method and apparatus for the photocatalytic treatment of fluids
WO2008076082A1 (en) * 2006-12-20 2008-06-26 Nanyang Technological University Microspheric tio2 photocatalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819649A1 (en) * 1996-07-16 1998-01-21 Iskra Industry Co., Ltd. Photocatalytic method for treatment of contaminated water
US6524447B1 (en) * 1999-11-22 2003-02-25 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
WO2006079837A1 (en) * 2005-01-27 2006-08-03 Water Innovate Limited Method and apparatus for the photocatalytic treatment of fluids
WO2008076082A1 (en) * 2006-12-20 2008-06-26 Nanyang Technological University Microspheric tio2 photocatalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222895A1 (en) * 2013-11-11 2015-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for microfiltration of a fluid
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities

Also Published As

Publication number Publication date
FR2936509A1 (en) 2010-04-02
FR2936509B1 (en) 2011-10-14

Similar Documents

Publication Publication Date Title
US6524447B1 (en) Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
EP2409954A1 (en) Photocatalytic purification device
US6761826B2 (en) Pulsed blackbody radiation flux enhancement
ES2551508T3 (en) Apparatus and method for ballast water treatment
FR2983471A1 (en) PROCESS FOR TREATING EFFLUENTS IN A BED OF MICROBALLS BY COLD PLASMA AND PHOTOCATALYSIS
US5862449A (en) Photocatalytic reactor
CA2444385A1 (en) Apparatus and method for phtocatalytic purification and disinfection of water and ultrapure water
FR2928366A1 (en) Installation for treating polluted water e.g. industrial waste water, comprises sealed filter reactor in which water circulates, where the reactor is equipped with removable membranes, ozone gas injection unit and inlet and outlet pumps
EP2760486A1 (en) Method and device for purification and deodorization of air
WO2010037717A1 (en) Device, use thereof and process for removing a compound contained in a fluid
JP2007252966A (en) Membrane module and water treatment system
US20020005385A1 (en) Water treatment systems and methods
WO2009006702A1 (en) Method and apparatus for effecting a chemical reaction iii
Vatanpour et al. A comprehensive investigation of effective parameters in continuous submerged photocatalytic membrane reactors by RSM
Khader et al. Current trends for wastewater treatment technologies with typical configurations of photocatalytic membrane reactor hybrid systems: A review
EP2432737B1 (en) Plant for treating polluted water, and method for the operation thereof
Ashley et al. Emerging investigator series: photocatalytic membrane reactors: fundamentals and advances in preparation and application in wastewater treatment
WO2002047799A1 (en) Device and method for purifying a gas effluent
CN210419587U (en) Photocatalysis-nanofiltration ceramic membrane advanced water purification treatment device
JP2000042382A (en) Separation membrane and filter
WO2006061518A1 (en) Inactivating biological agents dispersed in gaseous medium with a photoactivated semiconductor
KR102431605B1 (en) Non-degradable Waste Water Treatment Apparatus
FR3070874A1 (en) FLUIDIC DEVICE FOR SANITIZING A FLUID AND ASSOCIATED SANITATION METHOD
CN108249655B (en) Rotary type photocatalysis-adsorption-membrane separation synergistic reaction device
FR2760445A1 (en) Photocatalytic water treatment process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09783498

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09783498

Country of ref document: EP

Kind code of ref document: A1