WO2010038767A1 - 光硬化性組成物および硬化物 - Google Patents

光硬化性組成物および硬化物 Download PDF

Info

Publication number
WO2010038767A1
WO2010038767A1 PCT/JP2009/067010 JP2009067010W WO2010038767A1 WO 2010038767 A1 WO2010038767 A1 WO 2010038767A1 JP 2009067010 W JP2009067010 W JP 2009067010W WO 2010038767 A1 WO2010038767 A1 WO 2010038767A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
curable composition
carbon
sih
Prior art date
Application number
PCT/JP2009/067010
Other languages
English (en)
French (fr)
Inventor
井手 正仁
眞鍋 貴雄
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP09817799.1A priority Critical patent/EP2343326B1/en
Priority to JP2010531872A priority patent/JP5555170B2/ja
Priority to US13/121,994 priority patent/US8809414B2/en
Priority to CN200980139066.6A priority patent/CN102171268B/zh
Publication of WO2010038767A1 publication Critical patent/WO2010038767A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to a photocurable composition that gives a cured product excellent in optical transparency and insulation.
  • Patent Document 1 an epoxy silicon compound obtained by reacting an alkenyl compound having an epoxy group with a siloxane compound functions as a UV curable resin by blending a photocationic polymerization initiator.
  • Patent Document 3 these compounds have room for further improvement in terms of leakage current when applied to an insulating film of an electric element.
  • Patent Document 2 a technique relating to a curable composition by hydrosilylation of a compound obtained by partially converting a siloxane compound having a SiH group into an epoxy group and a polyene compound is already known, but it does not function as a photocurable resin. Of course, it could not be used for forming fine patterning by lithography (Patent Document 2).
  • an object of the present invention is to provide a curable composition and a cured product that have photocurability, are preferably lithographic, and give a cured product having excellent insulating properties.
  • the photopolymerizable functional group in the component (A) is at least one selected from the group consisting of an epoxy group, a crosslinkable silicon group, a (meth) acryloyl group, and an oxetanyl group. Composition.
  • Component (B) is represented by the following general formula (I)
  • R 3 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 represents reactivity with a SiH group.
  • curable composition according to any one of 1) to 5), wherein component (B) is a compound having a Si—CH ⁇ CH 2 group.
  • Component (A) is at least one selected from the group consisting of a photopolymerizable functional group and a SiH group, each structure represented by the following formulas (X1) to (X3), a phenolic hydroxyl group, and a carboxyl group
  • curable composition according to any one of 1) to 7), wherein the component (A) is a hydrosilylation reaction product of the following compounds ( ⁇ ) to ( ⁇ ): ( ⁇ ) Organic compound having one or more carbon-carbon double bonds having reactivity with SiH groups in one molecule ( ⁇ ) Organosiloxane compound ( ⁇ ) 1 having at least two SiH groups in one molecule A compound having a carbon-carbon double bond having reactivity with a photopolymerizable functional group and a SiH group in the molecule.
  • component (A) is a hydrosilylation reaction product of the following compounds ( ⁇ ) to ( ⁇ ): ( ⁇ ) Organic compound having one or more carbon-carbon double bonds having reactivity with SiH groups in one molecule ( ⁇ ) Organosiloxane compound ( ⁇ ) 1 having at least two SiH groups in one molecule A compound having a carbon-carbon double bond having reactivity with a photopolymerizable functional group and a SiH group in the molecule.
  • the compound ( ⁇ ) has a carbon-carbon double bond having reactivity with the SiH group, and the following general formula (I)
  • R 3 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 represents reactivity with a SiH group.
  • the curable composition according to 8 which is a compound represented by (including a carbon-carbon double bond having).
  • Compound ( ⁇ ) has at least one carbon-carbon double bond having reactivity with SiH group in one molecule, and each structure represented by the following formulas (X1) to (X3):
  • R 4 and R 5 represent an organic group having 1 to 10 carbon atoms and may be the same or different, n represents 1 to 10 and m represents a number of 0 to 10)
  • the present curable composition has photocurability, and can provide a cured product that gives a cured product having transparency and excellent insulating properties.
  • the modified polyorganosiloxane compound used in the curable composition of the present invention is not particularly limited as long as it has at least two photopolymerizable functional groups and at least one SiH group in one molecule. Absent.
  • the modified polyorganosiloxane compound here refers to a compound or polymer composed of a siloxane unit (Si—O—Si) and an organic group X composed of C, H, N, O and S as constituent elements.
  • the structure is not particularly limited.
  • the siloxane units in these compounds the hardened product obtained with a higher content of T unit (XSiO 3/2 ) or Q unit (SiO 4/2 ) in the constituent component has higher hardness and more heat resistance reliability.
  • M units (X 3 SiO 1/2 ) or D units (X 2 SiO 2/2 ) is higher, the cured product is more flexible and has lower stress.
  • the photopolymerizable functional group herein means a functional group that is polymerized and crosslinked by radicals or cationic species generated from a photopolymerization initiator when light energy is applied from the outside, and the reaction / crosslinking type is particularly limited. It is not something.
  • At least one of the photopolymerizable functional groups is preferably an epoxy group, a crosslinkable silicon group, a (meth) acryloyl group, an oxetanyl group, or a vinyloxy group.
  • an alicyclic epoxy group or a glycidyl group is preferable from the viewpoint of stability, and an alicyclic epoxy group is particularly preferable from the viewpoint of excellent cationic polymerization by light and heat.
  • crosslinkable silicon group examples include hydrolyzable silicon groups such as an alkoxysilyl group, an acetoxysilyl group, a phenoxysilyl group, a silanol group, and a chlorosilyl group. From the viewpoint, an alkoxysilyl group is particularly preferable.
  • alkoxysilyl group examples include those in which the functional group bonded to silicon is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, a sec-butoxy group, or a tert-butoxy group, From the standpoint that residual components after curing hardly remain, a methoxy group, an ethoxy group, and especially a methoxy group is preferable.
  • the modified polyorganosiloxane compound only needs to have at least two photopolymerizable functional groups, and each photopolymerizable functional group may be the same or may have two or more different functional groups.
  • the modified polyorganosiloxane compound contained in the curable composition of the present invention may have at least two photopolymerizable functional groups in one molecule, preferably three or more, more preferably five or more. It is. If it is three or more, there exists an advantage that the hardened
  • At least one selected from the group consisting of a phenolic hydroxyl group and a carboxyl group is referred to as an “acidic group”.
  • the structures represented by the above formulas (X1) to (X3), the phenolic hydroxyl group and the carboxyl group is referred to as an “acidic group”.
  • an aqueous alkali solution can be an industrially useful curable composition having lithographic properties.
  • Component B It is not particularly limited as long as it has at least one carbon-carbon double bond in one molecule used in the curable composition of the present invention. Regardless of a polysiloxane compound or an organic compound, Can be used without limitation.
  • polysiloxane having an alkenyl group can be preferably applied from the viewpoint of transparency and curability of the cured product.
  • a polysiloxane compound having a vinyl group (Si—CH ⁇ CH 2 group) bonded to a silicon group is preferable from the viewpoint of compound availability.
  • poly or oligosiloxanes end-capped with dimethylvinylsilyl groups poly or oligosiloxanes having vinyl groups in the side chains, tetramethyldivinyldisiloxane, hexamethyltrivinyltrisiloxane, SiH groups
  • cyclic siloxane examples include those in which the hydrogen atom of the SiH group is substituted with an alkenyl group such as a vinyl group or an allyl group.
  • Examples of the alkenyl group-containing organic compound do not include a siloxane unit (Si—O—Si) but are composed of atoms selected from the group consisting of C, H, N, O, S and halogen as constituent elements.
  • the compound is not particularly limited as long as it is an organic compound having one or more carbon-carbon double bonds having reactivity with SiH groups in one molecule. Further, the bonding position of the carbon-carbon double bond having reactivity with the SiH group is not particularly limited, and may be present anywhere in the molecule.
  • the organic compounds can be classified into organic polymer compounds and organic monomer compounds.
  • the organic polymer compounds include polyether-based, polyester-based, polyarylate-based, polycarbonate-based, saturated hydrocarbon-based, unsaturated hydrocarbon-based compounds. Hydrogen-based, polyacrylic acid ester-based, polyamide-based, phenol-formaldehyde-based (phenol resin-based), and polyimide-based compounds can be used.
  • organic monomer compounds examples include aromatic hydrocarbons such as phenols, bisphenols, benzene and naphthalene: aliphatic hydrocarbons such as linear and alicyclic: heterocyclic compounds and their A mixture etc. are mentioned.
  • organic monomer compounds include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl.
  • low molecular weight compounds that are difficult to express separately by dividing into a skeleton portion and an alkenyl group (carbon-carbon double bond reactive with SiH group) can also be used.
  • these low molecular weight compounds include aliphatic chain polyene compound systems such as butadiene, isoprene, octadiene and decadiene, fats such as cyclopentadiene, cyclohexadiene, cyclooctadiene, dicyclopentadiene, tricyclopentadiene and norbornadiene.
  • aromatic cyclic polyene compound systems and substituted aliphatic cyclic olefin compound systems such as vinylcyclopentene and vinylcyclohexene.
  • triallyl isocyanurate represented by the following general formula (I) and derivatives thereof are particularly preferable from the viewpoint of high transparency, heat resistance, and light resistance.
  • R 3 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 represents reactivity with a SiH group. And a compound represented by (including a carbon-carbon double bond).
  • R 3 in the general formula (I) is preferably a monovalent organic group having 1 to 20 carbon atoms from the viewpoint that the heat resistance of the resulting cured product can be further increased. 10 monovalent organic groups are more preferable, and monovalent organic groups having 1 to 4 carbon atoms are more preferable. Examples of these preferable R 3 include methyl group, ethyl group, propyl group, butyl group, phenyl group, benzyl group, phenethyl group, vinyl group and allyl group.
  • these compounds include triallyl isocyanurate, diallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl monobenzyl isocyanurate, diallyl monopropyl isocyanurate, and triallyl isocyanurate from the viewpoint of availability. It is done.
  • a photopolymerization initiator is an essential component. In the type, it is necessary to appropriately select and add depending on the type of the photopolymerization functional group. In the case of an epoxy group, an alkoxysilyl group, etc., a cationic polymerization initiator is used, and radical polymerizable groups such as allyloxy, methacryloxy groups, etc. In some cases, a photo radical initiator is used.
  • the cationic polymerization initiator is particularly limited as long as it is an active energy ray cationic polymerization initiator that generates a cationic species or Lewis acid by active energy rays, or a thermal cationic polymerization initiator that generates a cationic species or Lewis acid by heat. It can be used without being.
  • active energy ray cationic polymerization initiators include metal fluoroboron complex salts and boron trifluoride complex compounds as described in US Pat. No. 3,379,653; bis (perfluoroalkyls) as described in US Pat. No. 3,586,616. Sulfonyl) methane metal salts; aryldiazonium compounds as described in US Pat. No. 3,708,296; aromatic onium salts of group VIa elements as described in US Pat. No. 4,058,400; described in US Pat. Aromatic onium salts of Group Va elements such as: dicarbonyl chelates of Group IIIa to Va elements as described in US Pat. No.
  • Metal salts for example, phosphates, arsenates, antimonates, etc.
  • aromatic iodonium complex salts and aromatic sulfonium complex salts whose anions are B (C 6 F 5 ) 4 — are included.
  • Preferred cationic active energy ray cationic polymerization initiators include arylsulfonium complex salts, aromatic sulfonium or iodonium salts of halogen-containing complex ions, and aromatic onium salts of Group II, Group V and Group VI elements.
  • Some of these salts are FX-512 (3M), UVR-6990 and UVR-6974 (Union Carbide), UVE-1014 and UVE-1016 (General Electric), KI-85 (Degussa) ), SP-152 and SP-172 (Asahi Denka Co., Ltd.), Sun-Aid SI-60L, SI-80L and SI-100L (Sanshin Chemical Industry Co., Ltd.), WPI113 and WPI116 (Wako Pure Chemical Industries, Ltd.) As a product.
  • the amount of the cationic polymerization initiator used is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the modified polyorganosiloxane compound.
  • the amount of the cationic polymerization initiator is small, it takes a long time for curing or a cured product that is sufficiently cured cannot be obtained.
  • the amount of the initiator is large, the color of the initiator remains in the cured product, coloring or bulging due to rapid curing, or the heat and light resistance of the cured product is impaired.
  • Any active energy ray radical polymerization initiator that generates radical species by active energy rays can be used without any particular limitation.
  • Active energy ray radical polymerization initiators include acetophenone compounds, benzophenone compounds, acylphosphine oxide compounds, oxime ester compounds, benzoin compounds, biimidazole compounds, ⁇ -diketone compounds, titanocene compounds, polynuclear compounds Quinone compounds, xanthone compounds, thioxanthone compounds, triazine compounds, ketal compounds, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, thiuram compounds, fluoroamine compounds, etc. Can be used.
  • acetophenone compounds include 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl- 1-phenylpropan-1-one, 1- (4′-i-propylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2′-hydroxyethoxy) phenyl (2-hydroxy-2 -Propyl) ketone, 2,2-dimethoxyacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- (4′-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Dimethylamino-1- (4′-morpholinophenyl) butan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2, 2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl)
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like.
  • oxime ester compounds include 1,2-octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone 1- [9-ethyl-6- (2-methylbenzoyl) ) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like.
  • benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, methyl 2-benzoylbenzoate and the like.
  • benzophenone compounds include benzyldimethylketone, benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, and specific examples of ⁇ -diketone compounds. Examples thereof include diacetyl, dibenzoyl, methylbenzoyl formate and the like.
  • biimidazole compound examples include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2 , 2′-bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2′-bis (2,4 , 6-trichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2′-bis (2-bromophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-dibromoph
  • polynuclear quinone compound examples include anthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1,4-naphthoquinone and the like.
  • xanthone compound examples include xanthone, thioxanthone, 2-chlorothioxanthone, 2,5-diethyldioxanthone and the like.
  • triazine compounds include 1,3,5-tris (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2′-chlorophenyl) -s-triazine, 1, 3-bis (trichloromethyl) -5- (4′-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2′-methoxyphenyl) -s-triazine, 1,3-bis (Trichloromethyl) -5- (4′-methoxyphenyl) -s-triazine, 2- (2′-furylethylidene) -4,6-bis (trichloromethyl) -s-triazine, 2- (4′-methoxy) Styryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3 ′, 4′-dimethoxystyryl) -4,6-bis (trich
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-hydroxy-1- [4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 1,2-octanedione 1- [4- (phenylthio) -2- (O— Benzoyloxime)] and ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) are preferred.
  • the cured product is particularly excellent in transparency, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- ( 4′-i-propylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2′-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2,2-dimethoxyacetophenone preferable.
  • radical polymerization initiators may be used alone or in combination of two or more.
  • the amount of the radical polymerization initiator used is preferably 0.1 to 15 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the modified polyorganosiloxane compound.
  • the amount of the cationic polymerization initiator is small, there is a tendency that the curing is insufficient and a contrast cannot be obtained during alkali development. A large amount of initiator is not preferable because the cured film itself is colored.
  • the modified polyorganosiloxane compound used in the curable composition of the present invention can be obtained by various methods such as condensation reaction by hydrolysis, addition reaction, and ring-opening polymerization. There is no particular limitation on the method for introducing the compound into the compound structure, but it is preferable to use hydrosilylation that can be introduced by a Si—C bond, which is a regioselective and chemically stable bond. .
  • the following embodiments are preferable as the modified polyorganosiloxane compound used in the curable composition of the present invention.
  • the compound ( ⁇ ) is not limited as long as it is an organic compound having at least one carbon-carbon double bond having reactivity with a SiH group in one molecule, and particularly the same as the component (B). Compounds can be used.
  • R 3 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 3 may be different or the same, and at least one R 3 represents reactivity with a SiH group. And a compound represented by (including a carbon-carbon double bond).
  • triallyl isocyanurate diallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl monobenzyl isocyanurate, diallyl monopropyl isocyanurate can be mentioned.
  • the polysiloxane which has an alkenyl group can apply preferably from the transparency and sclerosis
  • a polysiloxane compound having a vinyl group (Si—CH ⁇ CH 2 group) bonded to a silicon group is preferable from the viewpoint of compound availability.
  • siloxane having a vinyl group at the terminal or side chain examples include siloxane having a vinyl group at the terminal or side chain, and cyclic siloxane having a vinyl group.
  • siloxane having a vinyl group at the terminal or side chain examples include compounds such as tetramethyldivinyldisiloxane and hexamethyltrivinyltrisiloxane.
  • cyclic siloxane examples include 1,3,5,7-vinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trivinyl-1,3,5, 7-tetramethylcyclotetrasiloxane, 1,5-divinyl-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-trimethylcyclosiloxane, 1,3 5,7,9-pentavinyl-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexavinyl-1,3,5,7,9,11-hexa Examples thereof include compounds such as methylcyclosiloxane.
  • At least one selected from the group consisting of a phenolic hydroxyl group and a carboxyl group is referred to as an “acidic group”.
  • the structures represented by the above formulas (X1) to (X3), the phenolic hydroxyl group and the carboxyl group is referred to as an “acidic group”.
  • an aqueous alkali solution can be an industrially useful curable composition having lithographic properties.
  • those having an isocyanuric acid structure are preferable from the viewpoint of particularly excellent heat resistance, and diallyl isocyanuric acid, monoallyl isocyanuric acid and the like are specifically mentioned from the viewpoint of availability.
  • triallyl isocyanurate diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanate having an isocyanuric ring structure.
  • Combination with nurate or the like is preferred.
  • the combined use with a polysiloxane compound having an alkenyl group is preferable.
  • a siloxane having a terminal or side chain blocked with a vinyl group is preferable, and a cyclic siloxane is particularly preferable.
  • cyclic siloxane examples include 1,3,5,7-vinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trivinyl-1,3,5, 7-tetramethylcyclotetrasiloxane, 1,5-divinyl-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-trimethylcyclosiloxane, 1,3 5,7,9-pentavinyl-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexavinyl-1,3,5,7,9,11-hexa Mention may be made of methylcyclosiloxane.
  • the compound ( ⁇ ) is not particularly limited as long as it is an organopolysiloxane compound having a SiH group.
  • an organopolysiloxane compound having a SiH group for example, a compound described in International Publication WO 96/15194 and having a SiH group can be used.
  • R 13 and R 14 represent an organic group having 1 to 6 carbon atoms and may be the same or different.
  • L is 0 to 50
  • n is 1 to 50
  • m is a number from 0 to 10.
  • a linear organopolysiloxane having at least two SiH groups in one molecule is preferred.
  • R 13 and R 14 are preferably methyl groups from the viewpoints of availability and heat resistance, and are preferably phenyl groups from the viewpoint of increasing the strength of the cured product.
  • R 15 and R 16 represent an organic group having 1 to 6 carbon atoms, and n represents a number of 0 to 50
  • each molecule has at least two SiH groups.
  • An organopolysiloxane having a T or Q structure in the molecule is preferred, and R 15 and R 16 are particularly preferably methyl groups from the viewpoints of availability and heat resistance.
  • R 4 and R 5 represent an organic group having 1 to 6 carbon atoms and may be the same or different, n represents 1 to 10, m represents 0 to 10, and n + m represents a number of 3 or more
  • the organosiloxane represented by these is preferable.
  • cyclic organopolysiloxane having at least 3 SiH groups in one molecule is preferable.
  • the substituents R 4 and R 5 in the compound represented by the general formula (III) are preferably selected from the group consisting of C, H and O, and are preferably hydrocarbon groups. More preferably, it is a methyl group.
  • the compound represented by the general formula (III) is preferably 1,3,5,7-tetramethylcyclotetrasiloxane from the viewpoint of availability and reactivity.
  • the compound ( ⁇ ) is not particularly limited as long as it is a compound having at least one photopolymerizable functional group and one or more carbon-carbon double bonds having reactivity with SiH groups in one molecule.
  • the photopolymerizable functional group here is the same as the photopolymerizable functional group which the above-mentioned modified polyorganosiloxane compound has, and a preferable aspect is also preferable.
  • At least one of the photopolymerizable functional groups is an epoxy group, a crosslinkable silicon group, a (meth) acryloyl group, an oxetanyl group, or a vinyloxy group. It is preferable to be selected.
  • the compound ( ⁇ ) having an epoxy group as a photopolymerizable functional group examples include vinylcyclohexene oxide, allyl glycidyl ether, diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, and the like. From the viewpoint of superiority, vinylcyclohexene oxide, which is a compound having an alicyclic epoxy group, is particularly preferable.
  • the compound ( ⁇ ) having an oxetanyl group as a photopolymerizable functional group include allyl oxetanyl ether and vinyl oxetanyl ether.
  • cured material improves.
  • Specific examples of the compound ( ⁇ ) having a crosslinkable silicon group as a photopolymerizable functional group include the following general formula (IV) from the viewpoint of availability and heat resistance.
  • R 6 and R 7 represent an organic group having 1 to 6 carbon atoms, n represents 1 to 3, m represents a number of 0 to 10
  • a compound having a crosslinkable silicon group a compound having a crosslinkable silicon group.
  • trimethoxyvinylsilane, triethoxyvinylsilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, methoxydimethylvinylsilane, and ethoxydimethylvinylsilane are particularly preferable.
  • allyl (meth) acrylate As the compound ( ⁇ ) having a (meth) acryloyl group as a photopolymerizable functional group, allyl (meth) acrylate, vinyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Acrylate, (meth) acrylic acid-modified allyl glycidyl ether (manufactured by Nagase ChemteX, trade name: Denacol acrylate DA111), vinyl group or allyl group and the following general formula (IX)
  • R 17 represents a hydrogen atom or a methyl group
  • a SiH group such as a vinyl group or an allyl group.
  • a compound in which a methacryloyl group coexists with an allyl or vinyl group in the same molecule is preferable, and allyl methacrylate, vinyl methacrylate, and the like are particularly preferable in terms of availability.
  • two or more compounds ( ⁇ ) can be used in combination regardless of the type of the photopolymerizable functional group.
  • (Hydrosilylation catalyst) As a catalyst for the hydrosilylation reaction of the compound ( ⁇ ), the compound ( ⁇ ), the compound ( ⁇ ), and the compound ( ⁇ 2) depending on the embodiment, for example, the following can be used.
  • catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. , Etc.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity.
  • these catalysts may be used independently and may be used together 2 or more types.
  • the addition amount of the catalyst is not particularly limited, but the lower limit of the preferred addition amount is sufficient for the SiH group of the compound ( ⁇ ) and the compound ( ⁇ ) to have sufficient curability and keep the cost of the curable composition relatively low.
  • the carbon-carbon double bond (hereinafter sometimes simply referred to as “alkenyl group”) having a reactivity with 1 mol, or 10 mol with respect to 1 mol of the alkenyl group of the compound ( ⁇ ) and the compound ( ⁇ ) -8 mol, more preferably 10 -6 mol
  • the upper limit of the preferable addition amount is 10 -1 mol, more preferably 10 -2 mol, relative to 1 mol of the alkenyl group of the compound.
  • a cocatalyst can be used in combination with the above catalyst.
  • examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne and 1-ethynyl-1-cyclohexanol, and sulfur compounds such as simple sulfur.
  • the addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount with respect to 1 mol of the hydrosilylation catalyst is 10 ⁇ 2 mol, more preferably 10 ⁇ 1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
  • the modified polyorganosiloxane compound that can be used in the curable composition of the present invention is obtained by reacting the compound ( ⁇ ), the compound ( ⁇ ), and the compound ( ⁇ ) in the presence of a hydrosilylation catalyst.
  • the compound obtained is mentioned.
  • reaction sequences and methods There are various reaction sequences and methods, but from the viewpoint that the synthesis process is simple, the compound ( ⁇ ), the compound ( ⁇ ), and the compound ( ⁇ ) are hydrosilylated in one pot and finally unreacted. A method of removing the reaction compound is preferred.
  • the proportion of each compound to be modified is not particularly limited, but when the total alkenyl group amount of the compounds ( ⁇ ) and ( ⁇ ) is A and the total SiH group amount of the compound ( ⁇ ) is B, 1 ⁇ B / A ⁇ 30 It is preferable that 1 ⁇ B / A ⁇ 10. In the case of 1> B / A, unreacted alkenyl groups remain in the composition, which causes coloring. In the case of 30 ⁇ B / A, a large amount of ( ⁇ ) component is used. It is not preferable from the viewpoint of increasing.
  • the reaction temperature can be variously set.
  • the lower limit of the preferable temperature range is 30 ° C, more preferably 50 ° C
  • the upper limit of the preferable temperature range is 200 ° C, more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical.
  • the reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required.
  • the reaction time and the pressure during the reaction can be set as required.
  • Oxygen can be used in the hydrosilylation reaction.
  • the hydrosilylation reaction can be promoted by adding oxygen to the gas phase portion of the reaction vessel. From the point of setting the amount of oxygen to be below the lower limit of explosion limit, the oxygen volume concentration in the gas phase must be controlled to 3% or less.
  • the oxygen volume concentration in the gas phase is preferably at least 0.1%, more preferably at least 1%.
  • a solvent may be used in the hydrosilylation reaction.
  • Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction, and hydrocarbon solvents, ether solvents, ketone solvents, and halogen solvents can be preferably used.
  • the solvent is used as a mixed solvent of two or more types, and the amount used can also be set as appropriate.
  • hydrocarbon solvent benzene, toluene, hexane, heptane and the like are used, and as the ether solvent, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diethyl ether and the like are used as the ketone solvent.
  • Acetone, methyl ethyl ketone and the like can be suitably used, and chloroform, methylene chloride, 1,2-dichloroethane and the like can be suitably used as the halogen-based solvent.
  • toluene, tetrahydrofuran, 1,3-dioxolane, and chloroform are preferable.
  • the solvent and / or the unreacted compound can be removed.
  • the reaction product obtained does not have volatile components. Therefore, when creating a cured product using the reaction product, problems of voids and cracks due to volatilization of volatile components are unlikely to occur.
  • the removal method include vacuum devolatilization. When devolatilizing under reduced pressure, it is preferable to treat at a low temperature. The upper limit of the preferable temperature in this case is 100 ° C, more preferably 80 ° C. When treated at high temperatures, it tends to be accompanied by alterations such as thickening.
  • the preparation method of a curable composition is not specifically limited, It can prepare with various methods. Various components may be mixed and prepared immediately before curing, or may be stored at a low temperature in a one-component state in which all components are mixed and prepared in advance.
  • the method of using the curable composition of the present invention is not particularly limited, and can be used by coating by spin coating or slit coating, potting by dispensing, or the like. Further, viscosity adjustment with a solvent and surface tension adjustment with a surfactant may be appropriately performed according to the state of the substrate.
  • the resin composition of the present invention is cured by causing a crosslinking reaction to proceed by light irradiation.
  • a light source for photocuring a light source that emits light having an absorption wavelength of a polymerization initiator or a sensitizer to be used may be used, and a light source usually having a wavelength in the range of 200 to 450 nm, such as a high-pressure mercury lamp, High pressure mercury lamp, metal halide lamp, high power metal halide lamp, xenon lamp, carbon arc lamp, light emitting diode, etc. can be used.
  • Exposure is not particularly limited, a preferable range of exposure amount 1 ⁇ 5000mJ / cm 2, more preferably 1 ⁇ 1000mJ / cm 2. If the exposure is small, it will not cure. If the exposure amount is large, the color may change due to rapid curing.
  • a preferred curing time range is 30 to 120 seconds, more preferably 1 to 60 seconds. When the curing time is long, the characteristics of rapid curing of photocuring are not utilized.
  • the heating temperature after film formation is not particularly limited, it is preferably 250 ° C. or less, and preferably 200 ° C. or more of the resin material from the viewpoint that the influence on the surrounding low heat-resistant member is small.
  • a resin substrate or the like it is preferably 150 ° C. or lower in view of dimensional stability and the like, and more preferably cured by heating at 100 ° C.
  • the curable composition of the present invention can be finely patterned by alkali development.
  • the patterning formation is not particularly limited, and a desired pattern can be formed by dissolving / removing the unexposed portion by a commonly used developing method such as an immersion method or a spray method.
  • the developer at this time can be used without particular limitation as long as it is generally used.
  • Specific examples thereof include an aqueous organic alkali solution such as an aqueous tetramethylammonium hydroxide solution and an aqueous choline solution, and an aqueous potassium hydroxide solution.
  • Inorganic alkali aqueous solutions such as sodium hydroxide aqueous solution, potassium carbonate aqueous solution, sodium carbonate aqueous solution and lithium carbonate aqueous solution, and those obtained by adding alcohol or surfactant to these aqueous solutions for adjusting the dissolution rate, etc. .
  • the concentration of the aqueous solution is preferably 25% by weight or less, more preferably 10% by weight or less, and further preferably 5% by weight or less from the viewpoint that the contrast between the exposed part and the unexposed part is easily obtained. .
  • the cured product obtained from the composition of the present invention can be applied to electronic components that require high insulation.
  • the thin film of the present invention and any of the above semiconductor layers can be applied as an insulating film without any particular limitation.
  • the present invention can be applied to a gate insulating film such as a TFT insulating film and a passivation film, which are thin and require high insulating properties.
  • the insulating film When an electric device such as a thin film transistor is formed, if there is a leakage current or the like in the insulating layer, it leads to signal response delay, malfunction, and device failure, so that the insulating film is required to have high insulating properties. However, it cannot be applied to an insulating film formed from a resin composition that can be formed by solution coating, because the amount of leakage current when a voltage is applied to the thin film is too large. In the thin film having a thickness of 0.5 ⁇ m or less, it is essential that the leakage amount between electrodes when a 30 V voltage is applied is 20 nA / cm 2 or less.
  • the film thickness of the insulating film As for the film thickness of the insulating film, the thicker the film, the higher the insulation reliability and the smaller the amount of leakage current between the electrodes. However, when applied to insulating films such as LSI elements and TFTs, For miniaturization and thinning of the element, it is preferable to have a high insulation property with a thinner film thickness, and the thickness of the insulating film is also preferably 1.0 ⁇ m or less, more preferably 0.7 ⁇ m or less. In particular, it is preferable that the inter-electrode leakage current amount is as described above at a film thickness of 0.5 ⁇ m or less. If possible, the film thickness is preferably 0.3 ⁇ m or less.
  • the insulating property is maintained with a thinner film thickness, preferably 0.7 ⁇ m or less, and more preferably 0.2 ⁇ m or less in the above-described thin film. It is preferable that the amount of leakage current between electrodes is as shown.
  • this insulating film is excellent in environmental resistance, and it is 20% to 100% at a low temperature condition of ⁇ 60 ° C. to 0 ° C., a high temperature condition of 20 ° C. to 100 ° C., and further 20 ° C. to 90 ° C. Even when stored for a long time under the high temperature and high humidity condition of RH, it is desirable that the insulating property is maintained.
  • the applied voltage is not problematic if the leakage current at a voltage applied as a normal TFT drive voltage is small, but it is preferably 0 in consideration of long-term reliability and instantaneous overvoltage immediately after application. It is preferable that the level of low leakage current is at any voltage value between -50V, more preferably 0-100V, and even more preferably between 0-200V regardless of AC voltage or DC voltage. It is preferable that the insulating property is maintained.
  • sensitizer In the curable composition of the present invention, when cured with light energy, sensitivity of light is improved and sensitivity to light having a high wavelength such as g-line (436 nm), h-line (405 nm), i-line (365 nm), etc. A sensitizer can be added as appropriate in order to impart the above. These sensitizers can be used in combination with the above cationic polymerization initiator and / or radical polymerization initiator to adjust the curability.
  • sensitizers include anthracene compounds and thioxanthone compounds.
  • anthracene compounds include anthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-dimethylanthracene, 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene, 9,10-di Ethoxyanthracene, 1,4-dimethoxyanthracene, 9-methylanthracene, 2-ethylanthracene, 2-tert-butylanthracene, 2,6-di-tert-butylanthracene, 9,10-diphenyl-2,6-di- tert-butylanthracene and the like, and particularly from the viewpoint of easy availability, anthracene, 9,10-dimethylanthracene, 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diethoxyanthracene, etc. preferable.
  • thioxanthone series examples include thioxanthone, 2-chlorothioxanthone, 2,5-diethyldioxanthone and the like.
  • Anthracene compounds are preferable from the viewpoint of excellent transparency of the cured product, and in particular, 9,10-dibutoxyanthracene, 9 from the viewpoint of good compatibility with the curable composition and excellent transparency of the cured product. , 10-dipropoxyanthracene, 9,10-diethoxyanthracene and the like are preferable.
  • sensitizers may be used alone or in combination of two or more.
  • a reactive diluent can be appropriately added to the curable composition of the present invention in order to adjust workability, reactivity, adhesiveness, and strength of the cured product.
  • the compound to be added can be selected according to the curing reaction mode and used without any particular limitation, and a compound having a polymerization group such as an epoxy compound, an oxetane compound, an alkoxysilane compound, or a (meth) acrylate compound is used.
  • epoxy compounds and oxetane compounds include novolak phenol type epoxy resins, biphenyl type epoxy resins, dicyclopentadiene type epoxy resins, cyclohexyl epoxy group-containing polyorganosiloxanes (cyclic, chain-like), glycidyl group-containing polyorganosiloxanes ( Cyclic, chain), bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate , Vinylcyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxy Chlohexyl) adipate, 1,2-
  • alkoxysilane compound examples include tetramethoxy (ethoxy) silane and its condensate, methyltrimethoxy (ethoxy) silane and its condensate, dimethyldimethoxy (ethoxy) silane and its condensate.
  • (meth) acrylate compounds include allyl (meth) acrylate, vinyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and (meth) acrylic acid.
  • Modified allyl glycidyl ether (manufactured by Nagase ChemteX, trade name: Denacol acrylate DA111), urethane (meth) acrylates, epoxy (meth) acrylates, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, Ditrimethylolpropane (meth) tetraacrylate, dipentaerythritol hexa (meth) acrylate, butanediol di (meth) acrylate, nonanediol di (meth) acrylate, polypropylene glyco Le system (meth) acrylate, bisphenol A di (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate, and (meth) acrylate group-containing polyorganosiloxane.
  • the addition amount of the reactive diluent can be variously set, but the preferred addition amount is 1 to 50 parts by weight, more preferably 3 to 25 parts by weight with respect to 100 parts by weight of the modified polyorganosiloxane compound. If the addition amount is small, the addition effect does not appear, and if the addition amount is large, the physical properties of the cured product may be adversely affected.
  • adhesion improver An adhesion improver can also be added to the curable composition of the present invention.
  • adhesives for example, various coupling agents, epoxy compounds, oxetane compounds, phenol resins, coumarone-indene resins, rosin ester resins, terpene-phenol resins, ⁇ -methylstyrene -Vinyltoluene copolymer, polyethylmethylstyrene, aromatic polyisocyanate and the like.
  • Examples of coupling agents include silane coupling agents.
  • the silane coupling agent is not particularly limited as long as it is a compound having at least one functional group reactive with an organic group and one hydrolyzable silicon group in the molecule.
  • the group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handling. From the viewpoints of adhesiveness and adhesiveness, an epoxy group, a methacryl group, and an acrylic group are particularly preferable.
  • As the hydrolyzable silicon group an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
  • Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane Alkoxysilanes having can be exemplified.
  • the amount of the silane coupling agent to be added can be variously set, but is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 10 parts by weight, still more preferably 100 parts by weight of the modified polyorganosiloxane compound. 0.5 to 5 parts by weight.
  • the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the curability and the physical properties of the cured product may be adversely affected.
  • these coupling agents may be used alone or in combination of two or more.
  • carboxylic acids and / or acid anhydrides are not particularly limited, but 2-ethylhexanoic acid, cyclohexanecarboxylic acid, cyclohexanedicarboxylic acid, methylcyclohexanedicarboxylic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, methylhymic acid, Norbornene dicarboxylic acid, hydrogenated methyl nadic acid, maleic acid, acetylenedicarboxylic acid, lactic acid, malic acid, citric acid, tartaric acid, benzoic acid, hydroxybenzoic acid, cinnamic acid, phthalic acid, trimellitic acid, pyromellitic acid, naphthalenecarboxylic acid Examples include acids, n
  • carboxylic acids and / or acid anhydrides include, for example, tetrahydrophthalic acid, methyltetrahydrophthalic acid, and the like in that the properties of the resulting cured product are not easily impaired.
  • carboxylic acids and / or acid anhydrides include, for example, tetrahydrophthalic acid, methyltetrahydrophthalic acid, and the like in that the properties of the resulting cured product are not easily impaired.
  • acids and their single or complex acid anhydrides include acids and their single or complex acid anhydrides.
  • the amount of carboxylic acids and / or acid anhydrides to be used can be variously set, but the preferred range of addition amount with respect to 100 parts by weight of the coupling agent and / or epoxy compound is 0.1 to 50 parts by weight, More preferably, it is 1 to 10 parts by weight. If the addition amount is small, the effect of improving the adhesiveness does not appear, and if the addition amount is large, the physical properties of the cured product may be adversely affected.
  • carboxylic acids and / or acid anhydrides may be used alone or in combination of two or more.
  • a phosphorus compound may be used to improve the hue after curing by light or heat.
  • the phosphorus compound is preferably an antioxidant or an anti-coloring agent containing phosphorus.
  • antioxidant containing phosphorus examples include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol diphosphite, tris (2,4- Di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecylphosphite), cyclic neopentanetetraylbis (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetra Irbis (2,6-di-tert-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl-4- ⁇ 2- (octadec)
  • phosphorus-containing colorants include 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl ) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc. Mention may be made of phenanthrene oxides.
  • the amount of the phosphorus compound used is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the modified polyorganosiloxane compound. If the amount of the phosphorus compound used is small, the effect of improving the hue decreases. When the amount used is increased, the curability and the physical properties of the cured product may be adversely affected.
  • thermoplastic resin Various thermoplastic resins may be added to the curable composition for the purpose of modifying the properties.
  • specific examples of thermoplastic resins include acrylic resins, polycarbonate resins, resins obtained by polymerizing norbornene derivatives alone or together with vinyl monomers, cycloolefin resins, olefin-maleimide resins, polyester resins, polyethersulfone resins, Examples thereof include polyarylate resin, polyvinyl acetal resin, polyethylene resin, polypropylene resin, polystyrene resin, polyamide resin, silicone resin, fluorine resin, and rubber-like resin.
  • acrylic resins include methyl methacrylate homopolymers or polymethyl methacrylate resins such as random, block or graft polymers of methyl methacrylate and other monomers (for example, Optretz manufactured by Hitachi Chemical Co., Ltd.), butyl acrylate alone
  • acrylic resins include polybutyl acrylate resins such as polymers or random, block or graft polymers of butyl acrylate and other monomers.
  • polycarbonate resin examples include polycarbonate resins such as polycarbonate resin containing bisphenol A, 3,3,5-trimethylcyclohexylidene bisphenol and the like as a monomer structure (for example, APEC manufactured by Teijin Limited).
  • cycloolefin resin examples include hydrogenated resins obtained by ring-opening metathesis polymerization of norbornene derivatives (for example, APEL manufactured by Mitsui Chemicals, ZEONOR, ZEONEX manufactured by Nippon Zeon Co., Ltd., ARTON manufactured by JSR Co., etc.), and the like.
  • olefin-maleimide resin examples include ethylene / maleimide copolymers (for example, TI-PAS manufactured by Tosoh Corporation).
  • Polyester resins include bisphenols such as bisphenol A and bis (4- (2-hydroxyethoxy) phenyl) fluorene, diols such as diethylene glycol, phthalic acids such as terephthalic acid and isophthalic acid, and aliphatic dicarboxylic acids.
  • polyester resins such as polyester obtained by polycondensation of acids (for example, O-PET manufactured by Kanebo Co., Ltd.).
  • the rubber-like resin include natural rubber and rubber-like resin such as EPDM.
  • the thermoplastic resin may have a carbon-carbon double bond and / or SiH group having reactivity with the SiH group in the molecule. From the viewpoint that the resulting cured product is likely to be tougher, it is preferable that the molecule has a carbon-carbon double bond and / or SiH group having reactivity with SiH groups.
  • the thermoplastic resin may have a crosslinkable group.
  • the crosslinkable group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group.
  • the molecular weight of the thermoplastic resin is not particularly limited, but the number average molecular weight is preferably 10000 or less, and preferably 5000 or less in that the compatibility with the modified organosiloxane compound is likely to be good. More preferred. On the contrary, the number average molecular weight is preferably 10,000 or more, and more preferably 100,000 or more in that the obtained cured product tends to be tough.
  • the molecular weight distribution is not particularly limited, but the molecular weight distribution is preferably 3 or less, more preferably 2 or less, in that the viscosity of the mixture tends to be low and the moldability tends to be good. More preferably, it is as follows.
  • the blending amount of the thermoplastic resin is not particularly limited, but a preferable range of use amount is 5 to 50% by weight, more preferably 10 to 30% by weight of the entire curable composition. If the amount added is small, the resulting cured product tends to be brittle. If the amount added is large, the heat resistance (elastic modulus at high temperature) tends to be low.
  • thermoplastic resin a single resin may be used, or a plurality of resins may be used in combination.
  • the thermoplastic resin may be dissolved and mixed in the modified polyorganosiloxane compound, may be pulverized and mixed in a particle state, or may be dispersed by dissolving in a solvent and mixing. From the viewpoint that the resulting cured product tends to be more transparent, it is preferable to dissolve in the modified polyorganosiloxane compound and mix in a uniform state. Also in this case, the thermoplastic resin may be directly dissolved in the modified polyorganosiloxane compound, or it may be uniformly mixed using a solvent or the like. When a solvent is used, the solvent may be removed to obtain a uniform dispersion state and / or a mixed state.
  • the average particle diameter can be variously set, but the preferable lower limit of the average particle diameter is 10 nm, and the preferable upper limit of the average particle diameter is 0.5 ⁇ m.
  • the particle system which may be monodispersed or have a plurality of peak particle sizes, but from the viewpoint that the viscosity of the curable composition is low and the moldability tends to be good,
  • the diameter variation coefficient is preferably 10% or less.
  • silica-based fillers such as quartz, fume silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine powder amorphous silica, silicon nitride, silver powder, etc.
  • Inorganic fillers such as alumina, aluminum hydroxide, titanium oxide, glass fiber, carbon fiber, mica, carbon black, graphite, diatomaceous earth, clay, clay, talc, calcium carbonate, magnesium carbonate, barium sulfate, inorganic balloon
  • a filler for a conventional sealing material such as an epoxy type
  • a filler that is generally used or / and proposed can be used.
  • Anti-aging agent An aging inhibitor may be added to the curable composition of the present invention.
  • the anti-aging agent include citric acid, phosphoric acid, sulfur-based anti-aging agent and the like in addition to the anti-aging agents generally used such as hindered phenol type.
  • hindered phenol-based anti-aging agent various types such as Irganox 1010 available from Ciba Specialty Chemicals are used.
  • Sulfur-based antioxidants include mercaptans, mercaptan salts, sulfide carboxylic acid esters, sulfides including hindered phenol sulfides, polysulfides, dithiocarboxylates, thioureas, thiophosphates, sulfonium Examples thereof include compounds, thioaldehydes, thioketones, mercaptals, mercaptols, monothioacids, polythioacids, thioamides, and sulfoxides.
  • anti-aging agents may be used alone or in combination of two or more.
  • radical inhibitor A radical inhibitor may be added to the curable composition of the present invention.
  • a radical inhibitor a phenol radical inhibitor, an amine radical inhibitor, or the like can be used.
  • Phenol-based radical inhibitors include 2,6-di-t-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), tetrakis (methylene- 3 (3,5-di-t-butyl-4-hydroxyphenyl) propionate) methane and the like.
  • Amine radical inhibitors include amine radicals such as phenyl- ⁇ -naphthylamine, ⁇ -naphthylamine, N, N′-secondary butyl-p-phenylenediamine, phenothiazine, N, N′-diphenyl-p-phenylenediamine, etc. Inhibitors can be listed.
  • radical inhibitors may be used alone or in combination of two or more.
  • UV absorber An ultraviolet absorber may be added to the curable composition of the present invention.
  • examples of the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidine) sebacate and the like. Can be mentioned. These ultraviolet absorbers may be used alone or in combination of two or more.
  • solvent When the modified polyorganosiloxane compound used in the curable composition of the present invention has a high viscosity, it can be used by dissolving in a solvent.
  • the solvent that can be used is not particularly limited, and for example, hydrocarbon solvents, ether solvents, ketone solvents, glycol solvents, and halogen solvents can be suitably used.
  • hydrocarbon solvent examples include benzene, toluene, hexane, heptane and the like.
  • ether solvents include tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diethyl ether, and the like.
  • ketone solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • glycol solvents include propylene glycol-1-monomethyl ether-2-acetate (PGMEA), ethylene glycol diethyl ether, and the like.
  • halogen solvent include chloroform, methylene chloride, 1,2-dichloroethane and the like.
  • toluene tetrahydrofuran
  • 1,3-dioxolane 1,3-dioxolane
  • propylene glycol-1-monomethyl ether-2-acetate 1,3-dioxolane
  • chloroform propylene glycol-1-monomethyl ether-2-acetate, and chloroform
  • the amount of the solvent to be used can be appropriately set, but the lower limit of the preferable amount used for 1 g of the curable composition to be used is 0.1 mL, and the upper limit of the preferable amount to be used is 10 mL. If the amount used is small, it is difficult to obtain the effect of using a solvent such as a low viscosity, and if the amount used is large, the solvent tends to remain in the material, causing problems such as thermal cracks, and also from a cost standpoint. It is disadvantageous and the industrial utility value decreases.
  • solvents may be used alone or as a mixed solvent of two or more.
  • the curable composition of the present invention includes other ions such as a colorant, a release agent, a flame retardant, a flame retardant aid, a surfactant, an antifoaming agent, an emulsifier, a leveling agent, a repellent, and antimony-bismuth.
  • ions such as a colorant, a release agent, a flame retardant, a flame retardant aid, a surfactant, an antifoaming agent, an emulsifier, a leveling agent, a repellent, and antimony-bismuth.
  • the purpose and effect of the present invention include an imparting agent, an antistatic agent, a radiation shielding agent, a nucleating agent, a phosphorus peroxide decomposing agent, a lubricant, a pigment, a metal deactivator, a thermal conductivity imparting agent, and a physical property modifier. It can add in the range which does not impair.
  • the curable composition or cured product of the present invention can be used for various applications. It can be applied to various uses where conventional acrylic resin and epoxy resin adhesives are used.
  • the curable composition of the present invention is a material that can be suitably used as an alkali-developable transparent resist, and is particularly a material that is suitable as an FPD material. More specifically, a passivation film for TFT, a gate insulating film for TFT, an interlayer insulating film for TFT, a transparent flattening film for TFT, a binder resin for color filter, a transparent flattening material for color filter, a binder resin for black matrix, Examples thereof include a photospacer material for liquid crystal cells and a transparent sealing material for OLED elements.
  • the cured product obtained by curing the curable composition of the present invention functions as a photocurable material having superior insulation as compared with the composition of the comparative example.
  • a semiconductor parameter measuring device (Agilent 4156C) is used to apply a voltage of 0 to 50 V in steps of 0.5 V between the electrodes sandwiching the insulating film (SUS-Al). The leakage current amount per electrode unit area was measured and evaluated.
  • a thin film prepared using the resin composition of the present invention has excellent insulating properties and can be applied as a thin film insulating material that can be formed by solution coating.
  • Example 1 A 500 mL four-necked flask was charged with 100 g of toluene and 57.49 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. A mixed solution of 10.0 g of diallyl isocyanuric acid, 70.0 g of 1,4-dioxane and 0.01186 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes.
  • reaction product 1 0.5 g of the obtained “reaction product 1”, 0.19 g of triallyl isocyanurate, 0.7 mg of xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum), PI 2074 (manufactured by Rhodia, photocationic polymerization initiator) 0 A 20% PGMEA solution with 0.01 g added was prepared.
  • Example 2 A 500 mL four-necked flask was charged with 100 g of toluene and 57.49 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. A mixed solution of 3.8 g of triallyl isocyanurate, 5.0 g of diallyl isocyanuric acid, 70.0 g of 1,4-dioxane, and 0.0186 g of a platinum vinylsiloxane complex in xylene (containing 3 wt% as platinum) was added dropwise over 30 minutes. did.
  • reaction product 2 0.5 g of the obtained “reaction product 2”, 0.19 g of triallyl isocyanurate, 0.7 mg of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum), PI 2074 (manufactured by Rhodia, photocationic polymerization initiator) 0 A 20% PGMEA solution with 0.01 g added was prepared.
  • Example 3 A 500 mL four-necked flask was charged with 100 g of toluene and 57.49 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. A mixed solution of 10.0 g of vinyl norbornene, 70.0 g of toluene and 0.0186 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes.
  • reaction product 3 0.5 g of the obtained “reaction product 3”, 0.14 g of vinylnorbornene, 0.7 mg of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum), P A 20% MIBK solution was prepared by adding 0.01 g of I2074 (manufactured by Rhodia, photocationic polymerization initiator).
  • Example 4 A 500 mL four-necked flask was charged with 100 g of toluene and 57.49 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. A mixed liquid of 5.6 g of triallyl isocyanurate, 10.0 g of toluene and 62 mg of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise. After completion of the dropwise addition, it was confirmed by 1 H-NMR that the peak due to the allyl group had disappeared, and the reaction solution was cooled and devolatilized to obtain a colorless transparent liquid “Reaction product D”.
  • reaction product 4 0.5 g of the obtained “reaction product 4”, 0.20 g of triallyl isocyanurate, 0.7 mg of xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum), PI 2074 (manufactured by Rhodia, photocationic polymerization initiator) 0 A 20% MIBK solution of 0.01 g added was prepared.
  • Example 5 A 500 mL four-necked flask was charged with 100 g of toluene and 57.49 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. 7.5 g of 1,3,5,7-vinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 70.0 g of toluene and 0.0186 g of xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) The mixture was added dropwise. After completion of the dropwise addition, it was confirmed by 1 H-NMR that the peak due to the allyl group had disappeared, and the reaction solution was cooled and devolatilized to obtain a colorless and transparent liquid “Reactant E”.
  • Example 6 A 500 mL four-necked flask was charged with 100 g of toluene and 57.49 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. A mixed solution of 10.0 g of diallyl isocyanuric acid, 70.0 g of 1,4-dioxane and 0.01186 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes.
  • reaction product 6 0.5 g of the obtained “reaction product 6”, 0.19 g of triallyl isocyanurate, 0.7 mg of xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum), PI 2074 (manufactured by Rhodia, photocationic polymerization initiator) 0 A 20% PGMEA solution with 0.01 g added was prepared.
  • a 20% PGMEA solution was prepared by adding 0.5 g of the obtained “Comparative Reaction Product 1” and 0.01 g of PI2074 (manufactured by Rhodia, photocationic polymerization initiator).

Abstract

 本発明の目的は、光硬化性を有し、かつ絶縁性に優れた硬化物を与える硬化性組成物及び硬化物を提供すること。必須成分として、(A)光重合性官能基およびSiH基を有する変性ポリオルガノシロキサン化合物、(B)炭素-炭素二重結合を有する化合物、および、(C)光重合開始剤を含有する光硬化性組成物により達成が可能である。本発明の硬化性組成物を用いて作製した薄膜は優れた絶縁性を有する。本発明の硬化性組成物は溶液塗布により成膜できるので、溶液成膜可能な薄膜絶縁材料として適用できる。

Description

光硬化性組成物および硬化物
 本発明は、光学的透明性、絶縁性に優れた硬化物を与える光硬化性組成物に関するものである。
 シロキサン化合物にエポキシ基を有するアルケニル化合物を反応させて得られるエポキシシリコン化合物については、光カチオン重合開始剤を配合することでUV硬化性樹脂として機能することが古くより知られている(特許文献1)。ただしこれら化合物に関し、電気素子の絶縁膜などに適用した場合、リーク電流の面でさらなる改良の余地があった(特許文献3)。
 また、SiH基を有するシロキサン化合物を部分的にエポキシ基に変換した化合物とポリエン化合物とのヒドロシリル化による硬化性組成物に関する技術が既に知られているが、光硬化性樹脂としては機能せず、当然リソグラフィーによる微細パターニングの形成に用いることはできなかった(特許文献2)。
US5037861号公報 特開平6-263989号公報 特開2006-291044号広報
 上記事情から本発明の目的は、光硬化性を有し好ましくはリソグラフィー可能であり、かつ絶縁性に優れた硬化物を与える硬化性組成物及び硬化物を提供することである。
 上記事情に鑑み、本発明者らが鋭意検討した結果、分子内に光重合性官能基およびSiH基を同一分子内に有する変性ポリオルガノシロキサン化合物と炭素-炭素二重結合を有する化合物と光重合開始剤を必須成分とする硬化性組成物を、光硬化させた後に、加熱によって後硬化とすることにより上記課題が解決できることを見出し、本発明を完成するに至った。本願発明は以下の構成を有するものである。
 1).
(A)光重合性官能基およびSiH基を有する変性ポリオルガノシロキサン化合物、
(B)炭素-炭素二重結合を有する化合物、および、
(C)光重合開始剤、を含有する光硬化性組成物。
 2).
成分(A)中の光重合性官能基が、エポキシ基、架橋性ケイ素基、(メタ)アクリロイル基、および、オキセタニル基からなる群から選択される少なくとも一種である、1)に記載の硬化性組成物。
 3).
成分(A)中の光重合性官能基の少なくとも1個が脂環式エポキシ基、又はグリシジル基である、1)に記載の硬化性組成物。
 4).
成分(A)中の光重合性官能基の少なくとも1個がアルコキシシリル基である、1)または2)に記載の硬化性組成物。
 5).
成分(B)が、下記一般式(I)
Figure JPOXMLDOC01-appb-C000007
(式中R3は炭素数1~50の一価の有機基を表し、それぞれのR3は異なっていても同一であってもよく、少なくとも1個のR3はSiH基との反応性を有する炭素-炭素二重結合を含む)で表される化合物である、1)~4)のいずれか一項に記載の硬化性組成物。
 6).
成分(B)が、Si-CH=CH基を有する化合物である1)~5)のいずれか一項に記載の硬化性組成物。
 7).
成分(A)が、光重合性官能基およびSiH基かつ、下記式(X1)~(X3)で表される各構造と、フェノール性水酸基と、カルボキシル基とからなる群から選ばれる少なくとも一種を有する変性ポリオルガノシロキサン化合物である1)~6)のいずれか一項に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000008
 8).
成分(A)が、下記化合物(α)~(γ)のヒドロシリル化反応生成物であることを特徴とする、1)~7)のいずれか一項に記載の硬化性組成物:
(α)1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有する有機化合物
(β)1分子中に少なくとも2個のSiH基を有するオルガノシロキサン化合物
(γ)1分子中に、光重合性官能基と、SiH基との反応性を有する炭素-炭素二重結合を有する化合物。
 9).
化合物(α)が、SiH基との反応性を有する炭素-炭素二重結合を有し、かつ、下記一般式(I)
Figure JPOXMLDOC01-appb-C000009
(式中R3は炭素数1~50の一価の有機基を表し、それぞれのR3は異なっていても同一であってもよく、少なくとも1個のR3はSiH基との反応性を有する炭素-炭素二重結合を含む)で表される化合物である、8)に記載の硬化性組成物。
 10).
化合物(α)が、Si-CH=CH基を有する化合物である8)または9)に記載の硬化性組成物。
 11).
化合物(α)が、1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有し、かつ、下記式(X1)~(X3)で表される各構造と、フェノール性水酸基と、カルボキシル基とからなる群から選ばれる少なくとも一種を同一分子内に有する有機化合物である、8)~10)のいずれか一項に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000010
 12).
化合物(β)が、下記一般式(III)
Figure JPOXMLDOC01-appb-C000011
(式中R4、R5は炭素数1~10の有機基を表し同一であっても異なっても良く、nは1~10、mは0~10の数を表す)で表されるSiH基を有する環状ポリオルガノシロキサン化合物である、8)~11)のいずれか一項に記載の硬化性組成物。
 13).
化合物(γ)が、下記一般式(IV)
Figure JPOXMLDOC01-appb-C000012
(式中R6、R7は炭素数1~6の有機基を表し、nは1~3、mは0~10の数を表す)で表される化合物である、8)~12)のいずれか一項に記載の硬化性組成物。
 14).
1)~13)のいずれか一項に記載の硬化性組成物を硬化してなる、硬化物。
 本発明によれば、本硬化性組成物は光硬化性を有し、透明性かつ絶縁性に優れた硬化物を与える硬化物を与え得る。
 (成分A)
 本発明の硬化性組成物に使用される変性ポリオルガノシロキサン化合物は、一分子中に光重合性官能基を少なくとも2個かつSiH基を少なくとも1個以上有するものであれば特に限定されるものではない。
 ここでの変性ポリオルガノシロキサン化合物とは、シロキサン単位(Si-O-Si)および、構成元素としてC、H、N、O、Sからなる有機基Xとから構成される化合物、重合体を示し、構造上特に限定されるものではない。これら化合物中のシロキサン単位のうち、構成成分中T単位(XSiO3/2)、またはQ単位(SiO4/2)の含有率が高いものほど得られる硬化物は硬度が高くより耐熱信頼性に優れ、M単位(X3SiO1/2)、またはD単位(X2SiO2/2)の含有率が高いものほど硬化物はより柔軟で低応力なものが得られる。
 またここでいう光重合性官能基とは、光エネルギーが外部より加わった際に光重合開始剤より発生するラジカルもしくはカチオン種によって重合、架橋する官能基を示し、特に反応・架橋形式は限定されるものではない。
 中でも、特に反応性・化合物の安定性の観点より、光重合性官能基の少なくとも1個は、エポキシ基、架橋性ケイ素基、(メタ)アクリロイル基、オキセタニル基、ビニロキシ基が好ましい。
 エポキシ基の中でも安定性の観点より、脂環式エポキシ基やグリシジル基が好ましく、特に光および熱によるカチオン重合性に優れる点では、脂環式エポキシ基が好ましい。
 また、架橋性ケイ素基としては、アルコキシシリル基、アセトキシシリル基、フェノキシシリル基、シラノール基、クロロシリル基等の加水分解性を有するケイ素基が挙げることができ、特に入手性、化合物の安定性の点から、特にアルコキシシリル基が好ましい。
 アルコキシシリル基としては、ケイ素に結合する官能基が、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基のものが挙げられ、硬化後の残留成分が残りにくいという観点から、特にメトキシ基、エトキシ基、中でもメトキシ基が好ましい。変性ポリオルガノシロキサン化合物は、光重合性官能基を少なくとも2個有すればよく、各光重合性官能基は同一であってもよく、2種以上の異なる官能基を有しても良い。
 本発明の硬化性組成物に含有される変性ポリオルガノシロキサン化合物は、上記光重合性官能基を一分子中に少なくとも2個有すればよいが、好ましくは3個以上、より好ましくは5個以上である。3個以上であれば、架橋密度の高い硬化物が得られ耐熱性に優れるという利点がある。
 また、本発明の成分(A)において、下記式(X1)~(X3)で表される各構造と、
Figure JPOXMLDOC01-appb-C000013
フェノール性水酸基と、カルボキシル基とからなる群から選ばれる少なくとも1種(以下、「上記式(X1)~(X3)で表される各構造、フェノール性水酸基およびカルボキシル基」を「酸性基」と称することがある。)を同一分子内に有することが好ましく、この構造を有することによりアルカリ水溶液への溶解が可能となり、工業的に有用なリソグラフィー性を有する硬化性組成物となり得る。
 また得られる硬化物が高温時における着色が少ないと言う観点より、これら有機構造の中において、カルボキシル基および下記式で示される構造、
Figure JPOXMLDOC01-appb-C000014
が好ましく、さらに高温時の熱分解性の低い硬化物が得られる観点より特に下記式で示される各構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000015
 (成分B)
 本発明の硬化性組成物に使用される一分子中に少なくとも炭素-炭素二重結合を少なくとも1個以上有するものであれば特に限定されるものではなく、ポリシロキサン化合物、有機化合物にかかわらず特に限定なく使用することができる。
 特に硬化物の透明性および硬化性の観点より、アルケニル基を有するポリシロキサンが好ましく適用できる。またその中でも化合物入手性の観点より、ケイ素基に結合したビニル基(Si-CH=CH基)を有するポリシロキサン化合物であることが好ましい。
 具体例としては、ジメチルビニルシリル基で末端が封鎖されたポリもしくはオリゴシロキサン、側鎖にビニル基を有するポリもしくはオリゴシロキサン、テトラメチルジビニルジシロキサン、ヘキサメチルトリビニルトリシロキサン、SiH基を含有する環状シロキサンの例示でSiH基の水素原子をビニル基、アリル基等のアルケニル基に置換したものなどが例示される。
 具体的には1,3,5,7-ビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1-プロピル-3,5,7-トリビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-ジビニル-3,7-ジヘキシル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3,5-トリビニル-トリメチルシクロシロキサン、1,3,5,7,9-ペンタビニル-1,3,5,7,9-ペンタメチルシクロシロキサン、1,3,5,7,9,11-ヘキサビニル-1,3,5,7,9,11-ヘキサメチルシクロシロキサン等の化合物が挙げられる。
 アルケニル基含有有機化合物の例としては、シロキサン単位(Si-O-Si)を含むものではなく、構成元素としてC、H、N、O、Sおよびハロゲンからなる群から選ばれる原子より構成される化合物であって、1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有する有機化合物であれば特に限定されない。またSiH基と反応性を有する炭素-炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。
 上記有機化合物は、有機重合体系の化合物と有機単量体系化合物に分類でき、有機重合体系化合物としては例えば、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール-ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物を用いることができる。
 また有機単量体系化合物としては例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系:直鎖系、脂環系等の脂肪族炭化水素系:複素環系の化合物およびこれらの混合物等が挙げられる。
 有機単量体系化合物の具体的な例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、1,1,2,2-テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、1,2,4-トリビニルシクロヘキサン、1,4-ブタンジオールジアリルエーテル、ノナンジオールジアリルエーテル、1,4-シクロへキサンジメタノールジアリルエーテル、トリエチレングリコールジアリルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ビスフェノールSのジアリルエーテル、ジビニルベンゼン、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,3-ビス(アリルオキシ)アダマンタン、1,3-ビス(ビニルオキシ)アダマンタン、1,3,5-トリス(アリルオキシ)アダマンタン、1,3,5-トリス(ビニルオキシ)アダマンタン、ジシクロペンタジエン、ビニルシクロへキセン、1,5-ヘキサジエン、1,9-デカジエン、ジアリルエーテル、ビスフェノールAジアリルエーテル、2,5-ジアリルフェノールアリルエーテル、およびそれらのオリゴマー、1,2-ポリブタジエン(1、2比率10~100%のもの、好ましくは1、2比率50~100%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド、その他、従来公知のエポキシ樹脂のグリシジル基の全部をアリル基に置き換えたもの等が挙げられる。
 また有機化合物としては、骨格部分とアルケニル基(SiH基と反応性を有する炭素-炭素二重結合)とに分けて表現しがたい、低分子量化合物も用いることができる。これらの低分子量化合物の具体例としては、ブタジエン、イソプレン、オクタジエン、デカジエン等の脂肪族鎖状ポリエン化合物系、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエン等の脂肪族環状ポリエン化合物系、ビニルシクロペンテン、ビニルシクロヘキセン等の置換脂肪族環状オレフィン化合物系等が挙げられる。
 特に、透明性および耐熱性、耐光性が高いという観点から下記一般式(I)で表されるトリアリルイソシアヌレート及びその誘導体が特に好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中R3は炭素数1~50の一価の有機基を表し、それぞれのR3は異なっていても同一であってもよく、少なくとも1個のR3はSiH基との反応性を有する炭素-炭素二重結合を含む)で表される化合物が好ましい。
 上記一般式(I)のR3としては、得られる硬化物の耐熱性がより高くなりうるという観点からは、炭素数1~20の一価の有機基であることが好ましく、炭素数1~10の一価の有機基であることがより好ましく、炭素数1~4の一価の有機基であることがさらに好ましい。これらの好ましいR3の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基等が挙げられる。
 これら化合物の具体例としては、トリアリルイソシアヌレート、ジアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノベンジルイソシアヌレート、ジアリルモノプロピルイソシアヌレートが挙げられ、特に入手性の観点よりトリアリルイソシアヌレートが挙げられる。
 (成分C)
 本発明の硬化性組成物において、光重合開始剤を必須成分とする。種類においては、光重合官能基の種類によって適宜選択して添加する必要があり、エポキシ基、アルコキシシリル基等の場合にはカチオン重合開始剤を用い、アリロキシ、メタクリロキシ基などのラジカル重合性基の場合には光ラジカル開始剤を用いる。
 (カチオン重合開始剤)
 カチオン重合開始剤としては、活性エネルギー線によりカチオン種又はルイス酸を発生する、活性エネルギー線カチオン重合開始剤、又は熱によりカチオン種又はルイス酸を発生する熱カチオン重合開始剤であれば、特に限定されず使用できる。
 活性エネルギー線カチオン重合開始剤としては、米国特許第3379653号に記載されたような金属フルオロ硼素錯塩及び三弗化硼素錯化合物;米国特許第3586616号に記載されたようなビス(ペルフルオルアルキルスルホニル)メタン金属塩;米国特許第3708296号に記載されたようなアリールジアゾニウム化合物;米国特許第4058400号に記載されたようなVIa族元素の芳香族オニウム塩;米国特許第4069055号に記載されたようなVa族元素の芳香族オニウム塩;米国特許第4068091号に記載されたようなIIIa~Va族元素のジカルボニルキレート;米国特許第4139655号に記載されたようなチオピリリウム塩;米国特許第4161478号に記載されたようなMF6-陰イオン(ここでMは燐、アンチモン及び砒素から選択される)の形のVIa元素;米国特許第4231951号に記載されたようなアリールスルホニウム錯塩;米国特許第4256828号に記載されたような芳香族ヨードニウム錯塩及び芳香族スルホニウム錯塩;W.R.Wattらによって「ジャーナル・オブ・ポリマー・サイエンス、ポリマー・ケミストリー版」、第22巻、1789頁(1984年)に記載されたようなビス[4-(ジフェニルスルホニオ)フェニル]スルフィド-ビスヘキサフルオロ金属塩(例えば燐酸塩、砒酸塩、アンチモン酸塩等);陰イオンがB(C654 -である芳香族ヨードニウム錯塩及び芳香族スルホニウム錯塩の一種以上が包含される。
 好ましい陽イオン系活性エネルギー線カチオン重合開始剤には、アリールスルホニウム錯塩、ハロゲン含有錯イオンの芳香族スルホニウム又はヨードニウム塩並びにII族、V族及びVI族元素の芳香族オニウム塩が包含される。これらの塩のいくつかは、FX-512(3M社)、UVR-6990及びUVR-6974(ユニオン・カーバイド社)、UVE-1014及びUVE-1016(ジェネラル・エレクトリック社)、KI-85(デグッサ社)、SP-152及びSP-172(旭電化社)並びにサンエイドSI-60L、SI-80L及びSI-100L(三新化学工業社)、WPI113及びWPI116(和光純薬工業社)、RHODORSIL PI2074(ローディア社)として商品として入手できる。
 カチオン重合開始剤の使用量は、変性ポリオルガノシロキサン化合物100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部の量である。カチオン重合開始剤量が少ないと、硬化に長時間を要したり、十分に硬化した硬化物が得られない。開始剤量が多いと、開始剤の色が硬化物に残ったり、急硬化のために着色や隆起したり、硬化物の耐熱耐光性を損なうために好ましくない。
 (ラジカル重合開始剤)
 活性エネルギー線によりラジカル種を発生する、活性エネルギー線ラジカル重合開始剤であれば特に限定されず使用できる。
 活性エネルギー線ラジカル重合開始剤としては、アセトフェノン系化合物、ベンゾフェノン系化合物、アシルフォスフィンオキサイド系化合物、オキシムエステル系化合物、ベンゾイン系化合物、ビイミダゾール系化合物、α-ジケトン系化合物、チタノセン系化合物、多核キノン系化合物、キサントン系化合物、チオキサントン系化合物、トリアジン系化合物、ケタール系化合物、アゾ系化合物、過酸化物、2,3-ジアルキルジオン系化合物、ジスルフィド系化合物、チウラム化合物類、フルオロアミン系化合物等が用いることができる。
 アセトフェノン系化合物の具体例としては、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4'-i-プロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2'-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、2,2-ジメトキシアセトフェノン、2,2-ジエトキシアセトフェノン、2-メチル-1-(4'-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4'-モルフォリノフェニル)ブタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシー1-〔4-[4-(2-ヒドロキシー2-メチループロピオニル)-ベンジル]フェニル〕-2-メチループロパンー1-オン等が挙げられる。
 アシルフォスフィンオキサイド系化合物の具体例としては、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。
 オキシムエステル系化合物の具体例としては、1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等が挙げられる。
ベンゾイン系化合物の具体例としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2-ベンゾイル安息香酸メチル等が挙げられる。
 ベンゾフェノン系化合物の具体例としては、ベンジルジメチルケトン、ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられ、α-ジケトン系化合物の具体例としては、ジアセチル、ジベンゾイル、メチルベンゾイルホルメート等が挙げられる。
 ビイミダゾール系化合物の具体例としては、2,2'-ビス(2-クロロフェニル)-4,4',5,5'-テトラキス(4-エトキシカルボニルフェニル)-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジクロロフェニル)-4,4',5,5'-テトラキス(4-エトキシカルボニルフェニル)-1,2'-ビイミダゾール、2,2'-ビス(2,4,6-トリクロロフェニル)-4,4',5,5'-テトラキス(4-エトキシカルボニルフェニル)-1,2'-ビイミダゾール、2,2'-ビス(2-ブロモフェニル)-4,4',5,5'-テトラキス(4-エトキシカルボニルフェニル)-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジブロモフェニル)-4,4',5,5'-テトラキス(4-エトキシカルボニルフェニル)-1,2'-ビイミダゾール、2,2'-ビス(2,4,6-トリブロモフェニル)-4,4',5,5'-テトラキス(4-エトキシカルボニルフェニル)-1,2'-ビイミダゾール、2,2'-ビス(2-クロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4,6-トリクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2-ブロモフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジブロモフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4,6-トリブロモフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール等が挙げられる。
 多核キノン系化合物の具体例としては、アントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1,4-ナフトキノン等が挙げられる。
 キサントン系化合物の具体例としては、キサントン、チオキサントン、2-クロロチオキサントン、2,5-ジエチルジオキサントン等が挙げられる。
 トリアジン系化合物の具体例としては、1,3,5-トリス(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2'-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4'-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2'-メトキシフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4'-メトキシフェニル)-s-トリアジン、2-(2'-フリルエチリデン)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4'-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3',4'-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4'-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2'-ブロモ-4'-メチルフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2'-チオフェニルエチリデン)-4,6-ビス(トリクロロメチル)-s-トリアジン等が挙げられる。
 特に薄膜硬化性に優れるという観点より、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-ヒドロキシ-1-〔4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]フェニル〕-2-メチループロパン-1-オン、1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)が好ましい。
 特に硬化物が透明性に優れるという観点より、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4'-i-プロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2'-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、2,2-ジメトキシアセトフェノンが好ましい。
 また、これらのラジカル重合開始剤は単独で使用してもよく、2種以上併用してもよい。ラジカル重合開始剤の使用量は、変性ポリオルガノシロキサン化合物100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.1~10重量部の量である。カチオン重合開始剤量が少ないと、硬化が不十分でアルカリ現像時にコントラストが得られない傾向がある。開始剤量が多いと、硬化膜自体が着色するために好ましくない。
 本発明の硬化性組成物に使用される変性ポリオルガノシロキサン化合物は、加水分解による縮合反応や付加反応および開環重合など様々な手法によって得られるものであるが、これら特定の有機構造をポリシロキサン化合物構造中に導入する手法としては特に限定される方法は無いが、位置選択的に導入が可能でかつ化学的に安定な結合であるSi-C結合にて導入できるヒドロシリル化を用いるのが好ましい。
 本発明の硬化性組成物に使用される変性ポリオルガノシロキサン化合物として好適なものとして、次の態様が挙げられる。
 下記化合物(α)~(γ)のヒドロシリル化反応生成物:
(α)1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有する有機化合物。
(β)1分子中に少なくとも2個のSiH基を有するオルガノシロキサン化合物。
(γ)1分子中に、光重合性官能基を少なくとも1個と、SiH基との反応性を有する炭素-炭素二重結合を1個以上とを有する化合物。
 以下、上記変性ポリオルガノシロキサン化合物の好ましい態様につき、説明する。
 (化合物(α))
 化合物(α)について説明する。
 化合物(α)は、1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有する有機化合物であれば限定されるものではなく、特に上記成分(B)と同様の化合物を使用することができる。
 その中でも、特に得られる硬化物の絶縁性に優れるという観点より、
下記一般式(I)
Figure JPOXMLDOC01-appb-C000017
(式中R3は炭素数1~50の一価の有機基を表し、それぞれのR3は異なっていても同一であってもよく、少なくとも1個のR3はSiH基との反応性を有する炭素-炭素二重結合を含む)で表される化合物であることが好ましい。
 さらに入手性の観点より、トリアリルイソシアヌレート、ジアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノベンジルイソシアヌレート、ジアリルモノプロピルイソシアヌレートが挙げられる。
 また得られる硬化物の透明性および硬化性の観点より、アルケニル基を有するポリシロキサンが好ましく適用できる。またその中でも化合物入手性の観点より、ケイ素基に結合したビニル基(Si-CH=CH基)を有するポリシロキサン化合物であることが好ましい。
 具体例としては、末端あるいは側鎖にビニル基を有するシロキサン、ビニル基を有する環状シロキサンがあげられる。末端あるいは側鎖にビニル基を有するシロキサンの具体例としては、テトラメチルジビニルジシロキサン、ヘキサメチルトリビニルトリシロキサン等の化合物があげられる。
 環状シロキサンの具体例としては、1,3,5,7-ビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1-プロピル-3,5,7-トリビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-ジビニル-3,7-ジヘキシル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3,5-トリビニル-トリメチルシクロシロキサン、1,3,5,7,9-ペンタビニル-1,3,5,7,9-ペンタメチルシクロシロキサン、1,3,5,7,9,11-ヘキサビニル-1,3,5,7,9,11-ヘキサメチルシクロシロキサン等の化合物が挙げられる。
 また成分(α)おいて、下記式(X1)~(X3)で表される各構造と、
Figure JPOXMLDOC01-appb-C000018
 フェノール性水酸基と、カルボキシル基とからなる群から選ばれる少なくとも1種(以下、「上記式(X1)~(X3)で表される各構造、フェノール性水酸基およびカルボキシル基」を「酸性基」と称することがある。)を同一分子内に有することが好ましく、この構造を有することによりアルカリ水溶液への溶解が可能となり、工業的に有用なリソグラフィー性を有する硬化性組成物となり得る。
 これら化合物の中で特に耐熱性に優れる観点より、イソシアヌル酸構造を有するものが好ましく、入手性の観点より、ジアリルイソシアヌル酸、モノアリルイソシアヌル酸などが具体的に挙げられる。
 また酸性基を有さないアルケニル化合物との併用も可能であり、特に耐熱性の観点より、イソシアヌル環構造を有するアルケニル化合物である、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等との併用が好ましい。
 また得られる硬化物が透明性に優れる観点より、アルケニル基を有するポリシロキサン化合物との併用が好ましい。特に入手性の観点より、末端あるいは側鎖がビニル基で封鎖されたシロキサンが好ましく、中でも環状シロキサンが好ましい。
 環状シロキサンとしては具体的に、1,3,5,7-ビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1-プロピル-3,5,7-トリビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-ジビニル-3,7-ジヘキシル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3,5-トリビニル-トリメチルシクロシロキサン、1,3,5,7,9-ペンタビニル-1,3,5,7,9-ペンタメチルシクロシロキサン、1,3,5,7,9,11-ヘキサビニル-1,3,5,7,9,11-ヘキサメチルシクロシロキサンをあげることができる。
 (化合物(β))
 化合物(β)について説明する。
 化合物(β)についてはSiH基を有するオルガノポリシロキサン化合物であれば特に限定されず、例えば国際公開WO96/15194に記載される化合物で、SiH基を有するもの等が使用できる。
 これらのうち、硬化物に柔軟性が付与されるという観点より、
Figure JPOXMLDOC01-appb-C000019
(式中、R13、R14は炭素数1~6の有機基を表し同一であっても異なっても良く、lは、0~50、nは1~50、mは0~10の数を表す。)で表される、1分子中に少なくとも2個のSiH基を有する鎖状オルガノポリシロキサンが好ましい。またR13、R14は入手性、耐熱性の観点より特にメチル基であるものが好ましく、硬化物の強度が高くなるという観点より、特にフェニル基であるものが好ましい。
 これらのうち、硬化物の耐熱性が高いという観点より、
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式中、R15、R16は炭素数1~6の有機基を表し、nは0~50の数を表す。)で表される、1分子中に少なくとも2個のSiH基を有し、分子中にTまたはQ構造を有するオルガノポリシロキサンが好ましく、R15、R16は入手性、耐熱性の観点より特にメチル基であるものが好ましい。
 これらのうち、入手性および化合物(α)、(α2)、(γ)との反応性が良いという観点からは、さらに、下記一般式(III)
Figure JPOXMLDOC01-appb-C000022
(式中R4、R5は炭素数1~6の有機基を表し同一であっても異なっても良く、nは1~10、mは0~10、n+mは3以上の数を表す)で表されるオルガノシロキサンが好ましい。中でも1分子中に少なくとも3個のSiH基を有する環状オルガノポリシロキサンが好ましい。
 一般式(III)で表される化合物中の置換基R4、R5は、C、H、Oからなる群から選択して構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
 一般式(III)で表される化合物としては、入手容易性及び反応性の観点からは、1,3,5,7-テトラメチルシクロテトラシロキサンであることが好ましい。
 上記した各種化合物(β)は単独もしくは2種以上のものを混合して用いることが可能である。
 (化合物(γ))
 化合物(γ)について説明する。
 化合物(γ)は、1分子中に光重合性官能基を少なくとも1個と、SiH基との反応性を有する炭素-炭素二重結合を1個以上とを有する化合物であれば特に限定されない。なお、ここでいう光重合性官能基は、前述の変性ポリオルガノシロキサン化合物が有する光重合性官能基と同一であって、好ましい態様も同様の態様が好ましい。
 特に光重合性官能基として、反応性と化合物の安定性の観点より、光重合性官能基の少なくとも1個は、エポキシ基、架橋性ケイ素基、(メタ)アクリロイル基、オキセタニル基、ビニロキシ基から選ばれることが好ましい。
 光重合性官能基としてエポキシ基を有する化合物(γ)の具体例としては、ビニルシクロヘキセンオキシド、アリルグリシジルエーテル、ジアリルモノグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等が挙げられ、光重合反応性に優れている観点より、脂環式エポキシ基を有する化合物であるビニルシクロヘキセンオキシドが特に好ましい。
 光重合性官能基としてオキセタニル基を有する化合物(γ)の具体例としては、アリルオキセタニルエーテル、ビニルオキセタニルエーテルなどが挙げられる。オキセタニル基を有する化合物を用いる場合、硬化物の靭性が向上するという観点より好ましい。
 光重合性官能基として架橋性ケイ素基を有する化合物(γ)の具体例としては、入手性容易性及び耐熱性の観点からは、下記一般式(IV)
Figure JPOXMLDOC01-appb-C000023
(式中R6、R7は炭素数1~6の有機基を表し、nは1~3、mは0~10の数を表す)で表される架橋性ケイ素基を有する化合物であることが好ましく、反応後の副生成物が除去されやすい等という観点より、特にトリメトキシビニルシラン、トリエトキシビニルシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、メトキシジメチルビニルシラン、エトキシジメチルビニルシランが好ましい。
 光重合性官能基として(メタ)アクリロイル基を有する化合物(γ)としては、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、(メタ)アクリル酸変性アリルグリシジルエーテル(ナガセケムテックス製、商品名:デナコールアクリレートDA111)、およびビニル基またはアリル基と下記一般式(IX)
Figure JPOXMLDOC01-appb-C000024
(式中のR17は水素原子あるいはメチル基を表す。)で示される有機基とを同一分子内中に1個以上ずつ有する化合物、例えば、上述の一般式(I)において、式中のR3の少なくとも1個が上記一般式(IX)で示される基であり、かつ、R3の少なくとも1個がビニル基またはアリル基などのSiH基との反応性を有する炭素-炭素二重結合を有する基である化合物が挙げられる。さらにヒドロシリル化の選択性が高いという観点より、メタクリロイル基が同一分子内にアリルまたはビニル基と共存する化合物であることが好ましく、特に入手性の面よりメタクリル酸アリル、メタクリル酸ビニルなどが好ましい。
 またヒドロシリル化反応の際、光重合性官能基の種類を問わず、2種以上の化合物(γ)を併用することもできる。
 (ヒドロシリル化触媒)
 化合物(α)、化合物(β)および化合物(γ)、態様によってはさらに化合物(α2)をヒドロシリル化反応させる場合の触媒としては、例えば次のようなものを用いることができる。白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金-ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金-ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金-ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金-炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金-オレフィン複合体も本発明において有用である。
 また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。
 これらの中では、触媒活性の点から塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
 触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性組成物のコストを比較的低く抑えるため好ましい添加量の下限は、化合物(α)および化合物(γ)のSiH基との反応性を有する炭素-炭素二重結合(以下、単に「アルケニル基」と称することがある。)1モル、または、化合物(α)および化合物(γ)のアルケニル基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は上記化合物のアルケニル基1モルに対して10-1モル、より好ましくは10-2モルである。
 また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1、2-ジエステル系化合物、2-ヒドロキシ-2-メチル-1-ブチン、1-エチニル-1-シクロヘキサノール等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は102モル、より好ましくは10モルである。
 (化合物(α)、化合物(β)および化合物(γ)の反応)
 本発明の硬化性組成物に使用できる変性ポリオルガノシロキサン化合物としては、上述したとおり、化合物(α)、化合物(β)および化合物(γ)の反応をヒドロシリル化触媒の存在下で反応させることにより得られる化合物が挙げられる。
 反応の順序、方法としては種々挙げられるが、合成工程が簡便であると言う観点からは、化合物(α)、化合物(β)および化合物(γ)を1ポットでヒドロシリル化反応させ、最後に未反応の化合物を除去する方法が好ましい。
 低分子量体を含有しにくいと言う観点から、過剰の化合物(α)と化合物(β)とを、もしくは、過剰の化合物(β)と化合物(α)とをヒドロシリル化反応させた後、一旦、未反応の化合物(α)もしくは化合物(β)を除き、得られた反応物と化合物(γ)をヒドロシリル化反応させる方法がより好ましい。
 各化合物の変性させる割合は特に限定されないが、化合物(α)および(γ)の総アルケニル基量をA、化合物(β)の総SiH基量をBとした場合、1≦B/A≦30であることが好ましく、更に1≦B/A≦10であることが好ましい。1>B/Aの場合は、組成物中に未反応アルケニル基が残るため着色の原因となり、また30<B/Aの場合には、大量の(β)成分を使用するため、製造コストが高くなる観点より好ましくない。
 また、化合物(α)および化合物(γ)の変性割合については、化合物(α)のアルケニル基をA1、化合物(γ)のアルケニル基をA2とした場合、A1+A2=1として、0.01≦A1≦0.99、0.01≦A2<0.99の範囲で適宜選択して変性させることができる。
 反応温度としては種々設定できるが、この場合好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。
 反応時間、反応時の圧力も必要に応じ種々設定できる。
 ヒドロシリル化反応の際に酸素を使用できる。反応容器の気相部に酸素を添加することで、ヒドロシリル化反応を促進できる。酸素の添加量を爆発限界下限以下とする点から、気相部の酸素体積濃度は3%以下に管理する必要がある。酸素添加によるヒドロシリル化反応の促進効果が見られるという点からは、気相部の酸素体積濃度は0.1%以上が好ましく、1%以上がより好ましい。
 ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、炭化水素系溶媒、エーテル系溶媒、ケトン系溶媒、ハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用い、また、その使用量も適宜設定できる。
 具体的には、炭化水素系溶媒として、ベンゼン、トルエン、ヘキサン、ヘプタン等が、エーテル系溶媒としては、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等が、ケトン系溶媒としては、アセトン、メチルエチルケトン等が、ハロゲン系溶媒としては、クロロホルム、塩化メチレン、1,2-ジクロロエタン等が好適に用いることができる。中でも、トルエン、テトラヒドロフラン、1,3-ジオキソラン、クロロホルムが好ましい。
 化合物(α)、化合物(β)および化合物(γ)をヒドロシリル化反応させた後に、溶媒及び/又は未反応の化合物を除去することもできる。これらの揮発分を除去することにより、得られる反応物が揮発分を有さないため、該反応物を用いて硬化物を作成する場合に、揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては、例えば、減圧脱揮が挙げられる。減圧脱揮する場合、低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは80℃である。高温で処理すると増粘等の変質を伴いやすい。
 本発明の硬化性組成物に使用できる変性オルガノポリシロキサン化合物の上記製造方法では、目的によって種々の添加剤を使用できる。
 (硬化性組成物の調整方法および硬化方法)
 硬化性組成物の調製方法は特に限定されず、種々の方法で調製可能である。各種成分を硬化直前に混合調製しても良く、全成分を予め混合調製した一液の状態で低温貯蔵しておいても良い。
 本発明の硬化性組成物の使用方法は、特に限定されるものではなくスピンコートやスリットコートによるコーティング、ディスペンスによるポッティング等を用いて使用することができる。また基材の状態に合わせ適宜、溶剤による粘度調整、界面活性剤による表面張力調整を行っても良い。
 また本発明の樹脂組成物は、光照射により架橋反応を進行させて硬化物とする。光硬化させるための光源としては、使用する重合開始剤や増感剤の吸収波長を発光する光源を使用すればよく、通常200~450nmの範囲の波長を含む光源、例えば、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、カーボンアークランプ、発光ダイオードなどを使用できる。
 露光量は特に制限されないが、好ましい露光量の範囲は1~5000mJ/cm2、より好ましくは1~1000mJ/cm2である。露光量が少ないと硬化しない。露光量が多いと急硬化のために変色することがある。好ましい硬化時間の範囲は30~120秒、より好ましくは1~60秒である。硬化時間が長いと、光硬化の速硬化の特徴が生かされない。
 成膜後の加熱温度は特に特に限定されるものではないが、周辺の耐熱性の低い部材への影響が小さいという観点より250℃以下であることが好ましく、樹脂材料の200℃以上が好ましい。樹脂基板などを用いる場合には、寸法安定性等を考慮すると150℃以下であることが好ましく、さらに好ましくは100℃下の加熱により硬化させることが好ましい。
 (フォトリソグラフィーについて)
 また本発明の硬化性組成物について、アルカリ現像により微細パターニングすることも可能である。そのパターニング形成について特に限定される方法はなく、一般的に行われる浸漬法やスプレー法等の現像方法により未露光部を溶解・除去し所望のパターン形成させることができる。
 またこの時の現像液については、一般に使用するものであれば特に限定なく使用することができ、具体例としては、テトラメチルアンモニウムハイドロオキサイド水溶液やコリン水溶液等の有機アルカリ水溶液や、水酸化カリウム水溶液、水酸化ナトリウム水溶液、炭酸カリウム水溶液、炭酸ナトリウム水溶液、炭酸リチウム水溶液などの無機アルカリ水溶液やこれら水溶液に溶解速度等の調整のためにアルコールや界面活性剤などを添加したもの等を挙げることができる。
 また水溶液濃度に関しては、露光部と未露光部のコントラストがつきやすい点から、25重量%以下であることが好ましく、より好ましくは10重量%以下、更に好ましくは5重量%以下であることが好ましい。
 (絶縁性について)
 本発明の組成物で得られる硬化物は、高い絶縁性が要求される電子部品に適用できる。
 本発明の薄膜も上記いずれの半導体層についても絶縁膜として特に限定なく適用することができる。例えば、薄膜で高い絶縁性が求められるTFT用絶縁膜などのゲート絶縁膜、パッシベーション膜などに適用することができる。
 薄膜トランジスタ等の電気デバイスを形成させた際、絶縁層にリーク電流等があると信号の応答遅延、誤作動、デバイス不良につながるためその絶縁膜には高い絶縁性を有することが求められる。ただし溶液塗布により形成できるような樹脂組成物から形成される絶縁膜については、その薄膜に電圧を印加した場合のリーク電流量が大きすぎるため適用することできず、その絶縁性は電極間に形成された0.5μm以下の薄膜において30V電圧印加時における電極間リーク量が20nA/cm2以下であることが必須となる。
 さらに電子部品への信頼性を考慮すると15A/cm2以下であることが好ましく、さらには10nA/cm2以下が好ましく、より好ましくは7nA/cm2以下である。特には5nA/cm2以下が好ましい。
 また絶縁膜の膜厚について、厚膜であればあるほど絶縁信頼性が高くなり、電極間のリーク電流量も小さくなる傾向にあるが、LSI素子、TFT等の絶縁膜へ適用する際に、素子の微細化、薄膜化のためにはさらに薄い膜厚で高絶縁性を有することが好ましく、その絶縁膜の膜厚についても1.0μm以下であることが好ましく、さらに好ましくは0.7μm以下、特には0.5μm以下の膜厚において上記で示すような電極間リーク電流量であることが好ましい。でき得るなら、0.3μm以下の膜厚であることが好ましい。
 さらにトランジスタ形成において多層構造体とするためにはより薄い膜厚でかつ絶縁性が保持されることが好ましく、0.7μm以下であることが好ましく、さらに好ましくは0.2μm以下の薄膜において上記で示すような電極間リーク電流量であることが好ましい。
 さらにこの絶縁膜は耐環境性にも優れていることが望ましく、-60℃~0℃の低温条件下、20℃~100℃の高温条件下、さらには20℃~90℃で20~100%RHの高温高湿条件下に長時間保管した場合においてもその絶縁性が保持されていることが望ましい。
 また印加電圧としては、通常のTFTの駆動電圧として印加するレベルの電圧でのリーク電流が小さければ問題はないが、長期信頼性および印加時直後の瞬間的な過電圧などを加味すると、好ましくは0~50V間でのどの電圧値において上記レベルの低リーク電流量であることが好ましく、より好ましくは0~100Vであり、さらに好ましくは0~200V間においてAC電圧、DC電圧問わず上記に示すレベルでの絶縁性が保持されていることが好ましい。
 (添加剤について)
 (増感剤)
 本発明の硬化性組成物には、光エネルギーで硬化させる場合には、光の感度向上のおよびg線(436nm)、h線(405nm)、i線(365nm)等の高波長の光に感度を持たせるために、適宜、増感剤を添加する事ができる。これら増感剤は、上記カチオン重合開始剤及び/またはラジカル重合開始剤等と併用して使用し、硬化性の調整を行うことができる。
 増感剤としてとして用いることができる具体的化合物としては、アントラセン系化合物、チオキサントン系化合物などが挙げることができる。
 アントラセン系化合物の具体例としては、アントラセン、2-エチル-9,10-ジメトキシアントラセン、9,10-ジメチルアントラセン、9,10-ジブトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジエトキシアントラセン、1,4-ジメトキシアントラセン、9-メチルアントラセン、2-エチルアントラセン、2-tert-ブチルアントラセン、2,6-ジ-tert-ブチルアントラセン、9,10-ジフェニル-2,6-ジ-tert-ブチルアントラセン等が挙げられ、特に入手しやすい観点より、アントラセン、9,10-ジメチルアントラセン、9,10-ジブトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジエトキシアントラセン等が好ましい。
 チオキサントン系の具体例としては、チオキサントン、2-クロロチオキサントン、2,5-ジエチルジオキサントン等が挙げられる。
 硬化物の透明性に優れる観点からはアントラセン系化合物が好ましく、中でも硬化性組成物との相溶性が良く、硬化物の透明性に優れる観点から具体的には9,10-ジブトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジエトキシアントラセン等が好ましい。
 またこれらの増感剤は単独で使用してもよく、2種以上併用してもよい。
 (反応性希釈剤)
 本発明の硬化性組成物には、作業性、反応性、接着性、硬化物強度の調整のために適宜、反応性希釈剤を添加する事ができる。添加する化合物には、硬化反応形式によって選択して特に限定無く使用することが可能であり、エポキシ化合物、オキセタン化合物、アルコキシシラン化合物、(メタ)アクリレート化合物など重合基を有する化合物を使用する。
 エポキシ化合物およびオキセタン化合物の具体例としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、シクロヘキシルエポキシ基含有ポリオルガノシロキサン(環状、鎖状)、グリシジル基含有ポリオルガノシロキサン(環状、鎖状)、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、1,4-ビス{(3-エチル-3-オキセタニル)メトキシ}メチル}ベンゼン、ビス{1-エチル(3-オキセタニル)}メチルエーテル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルへキシロキシメチル)オキセタン等を挙げることができる。
 アルコキシシラン化合物の具体例としては、テトラメトキシ(エトキシ)シランおよびその縮合物、メチルトリメトキシ(エトキシ)シランおよびその縮合物、ジメチルジメトキシ(エトキシ)シランおよびその縮合物等が挙げることができる。
 (メタ)アクリレート化合物の具体的な例としては、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、(メタ)アクリル酸変性アリルグリシジルエーテル(ナガセケムテックス製、商品名:デナコールアクリレートDA111)、ウレタン(メタ)アクリレート類、エポキシ(メタ)アクリレート類、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパン(メタ)テトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ポリプロピレングリコール系(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、(メタ)アクリレート基含有ポリオルガノシロキサン等が挙げられる。
 反応性希釈剤の添加量としては種々設定できるが、変性ポリオルガノシロキサン化合物100重量部に対して、好ましい添加量は1~50重量部、より好ましくは3~25重量部である。添加量が少ないと添加効果が表れず、添加量が多いと硬化物の物性に悪影響を及ぼす場合がある。
 (接着性改良剤)
 本発明の硬化性組成物には、接着性改良剤を添加することもできる。接着性改良剤としては一般に用いられている接着剤の他、例えば種々のカップリング剤、エポキシ化合物、オキセタン化合物、フェノール樹脂、クマロン-インデン樹脂、ロジンエステル樹脂、テルペン-フェノール樹脂、α-メチルスチレン-ビニルトルエン共重合体、ポリエチルメチルスチレン、芳香族ポリイソシアネート等を挙げることができる。
 カップリング剤としては例えばシランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
 好ましいシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
 シランカップリング剤の添加量としては種々設定できるが、変性ポリオルガノシロキサン化合物100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.3~10重量部、さらに好ましくは0.5~5重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化性や硬化物の物性に悪影響を及ぼす場合がある。
 また、これらのカップリング剤、シランカップリング剤、エポキシ化合物等は単独で使用してもよく、2種以上併用してもよい。
 本発明においてはカップリング剤やエポキシ化合物の効果を高めるために、カルボン酸類及び/または酸無水物類を用いて接着性の向上及び/又は安定化が可能である。このようなカルボン酸類、酸無水物類としては特に限定されないが、2-エチルヘキサン酸、シクロヘキサンカルボン酸、シクロヘキサンジカルボン酸、メチルシクロヘキサンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、メチルハイミック酸、ノルボルネンジカルボン酸、水素化メチルナジック酸、マレイン酸、アセチレンジカルボン酸、乳酸、リンゴ酸、クエン酸、酒石酸、安息香酸、ヒドロキシ安息香酸、桂皮酸、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンカルボン酸、ナフタレンジカルボン酸、およびそれらの単独あるいは複合酸無水物が挙げられる。
 これらのカルボン酸類および/または酸無水物類のうち、得られる硬化物の物性を損ない難いという点においては、好ましいカルボン酸類および/または酸無水物類としては、例えば、テトラヒドロフタル酸、メチルテトラヒドロフタル酸およびそれらの単独あるいは複合酸無水物等が挙げられる。
 カルボン酸類および/または酸無水物類を用いる場合の使用量は種々設定できるが、カップリング剤および/またはエポキシ化合物100重量部に対しての好ましい添加量の範囲は0.1~50重量部、より好ましくは1~10重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物の物性に悪影響を及ぼす場合がある。
 また、これらのカルボン酸類および/または酸無水物類は単独でも2種以上併用してもよい。
 (リン化合物)
 本発明の硬化性組成物を光又は熱により硬化させ、特に透明性を要求される用途で使用する場合は、光又は熱による硬化後の色相を改善するために、リン化合物を使用するのが好ましく、リン化合物としては、リンを含有する酸化防止剤または、着色防止剤が好ましい。
 リンを含有する酸化防止剤の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類をあげることができる。
 リンを含有する着色防止剤の具体例としては、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類をあげることができる。
 リン化合物の使用量は、変性ポリオルガノシロキサン化合物100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部である。リン化合物の使用量が少ないと、色相の改善効果が少なくなる。使用量が多くなると、硬化性や硬化物の物性に悪影響を及ぼす場合がある。
 (熱可塑性樹脂)
 硬化性組成物には特性を改質する等の目的で、種々の熱可塑性樹脂を添加することも可能である。熱可塑性樹脂としては具体的には、アクリル系樹脂、ポリカーボネート系樹脂、ノルボルネン誘導体を単独あるいはビニルモノマーと共に重合した樹脂、シクロオレフィン系樹脂、オレフィン-マレイミド系樹脂、ポリエステル系樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、シリコーン樹脂、フッ素樹脂、ゴム状樹脂をあげることができる。
 アクリル系樹脂としては、メチルメタクリレートの単独重合体あるいはメチルメタクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリメチルメタクリレート系樹脂(例えば日立化成社製オプトレッツ等)、ブチルアクリレートの単独重合体あるいはブチルアクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリブチルアクリレート系樹脂等をあげることができる。
 ポリカーボネート系樹脂としては、ビスフェノールA、3,3,5-トリメチルシクロヘキシリデンビスフェノール等をモノマー構造として含有するポリカーボネート樹脂等のポリカーボネート系樹脂(例えば帝人社製APEC等)をあげることができる。
 シクロオレフィン樹脂としては、ノルボルネン誘導体を開環メタセシス重合させた樹脂の水素添加物(例えば、三井化学社製APEL、日本ゼオン社製ZEONOR、ZEONEX、JSR社製ARTON等)をあげることができる。
 オレフィン-マレイミド系樹脂としては、エチレンとマレイミドの共重合体(例えば東ソー社製TI-PAS等)をあげることができる。
 ポリエステル系樹脂としては、ビスフェノールA、ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン等のビスフェノール類やジエチレングリコール等のジオール類とテレフタル酸、イソフタル酸、等のフタル酸類や脂肪族ジカルボン酸類等の酸類を重縮合させたポリエステル等のポリエステル系樹脂(例えば鐘紡社製O-PET等)をあげることができる。
ゴム状樹脂としては、天然ゴム、EPDMといったゴム状樹脂をあげることができる。
 熱可塑性樹脂としては、分子中にSiH基と反応性を有する炭素-炭素二重結合及び/またはSiH基を有していてもよい。得られる硬化物がより強靭となりやすいという点においては、分子中にSiH基と反応性を有する炭素-炭素二重結合及び/またはSiH基を有していることが好ましい。
 熱可塑性樹脂としては架橋性基を有していてもよい。この場合の架橋性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。得られる硬化物の耐熱性が高くなりやすいという点においては、用いる熱可塑性樹脂中に架橋性基を平均して1分子中に1個以上有していることが好ましい。
 熱可塑製樹脂の分子量としては、特に限定はないが、変性オルガノシロキサン化合物との相溶性が良好となりやすいという点においては、数平均分子量が10000以下であることが好ましく、5000以下であることがより好ましい。逆に、得られる硬化物が強靭となりやすいという点においては、数平均分子量が10000以上であることが好ましく、100000以上であることがより好ましい。分子量分布についても特に限定はないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
 熱可塑性樹脂の配合量としては特に限定はないが、好ましい使用量の範囲は硬化性組成物全体の5~50重量%、より好ましくは10~30重量%である。添加量が少ないと得られる硬化物が脆くなり易い。添加量が多いと耐熱性(高温での弾性率)が低くなり易い。
 熱可塑性樹脂としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。
 熱可塑性樹脂は変性ポリオルガノシロキサン化合物に溶解して混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に溶かして混合する等して分散状態としてもよい。得られる硬化物がより透明になりやすいという点においては、変性ポリオルガノシロキサン化合物に溶かして均一な状態として混合することが好ましい。この場合も、熱可塑性樹脂を変性ポリオルガノシロキサン化合物に直接溶解させてもよいし、溶媒等を用いて均一に混合してもかまわない。溶媒を用いた場合、溶媒を除いて均一な分散状態或いは/お及び混合状態としてもよい。
 熱可塑性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は0.5μmである。粒子系の分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性組成物の粘度が低く成形性が良好となり易いという観点からは、粒子径の変動係数が10%以下であることが好ましい。
 (充填材)
 硬化性組成物には必要に応じて充填材を添加してもよい。
 充填材としては各種のものが用いられるが、例えば、石英、ヒュームシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系充填材、窒化ケイ素、銀粉、アルミナ、水酸化アルミニウム、酸化チタン、ガラス繊維、炭素繊維、マイカ、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、無機バルーン等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用或いは/及び提案されている充填材等を挙げることができる。
 (老化防止剤)
 本発明の硬化性組成物には老化防止剤を添加してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。
 ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。
 硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。
 また、これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。
 (ラジカル禁止剤)
 本発明の硬化性組成物にはラジカル禁止剤を添加してもよい。ラジカル禁止剤としては、フェノール系ラジカル禁止剤や、アミン系ラジカル禁止剤等を用いることができる。
 フェノール系ラジカル禁止剤としては、2,6-ジ-t-ブチル-3-メチルフェノール(BHT)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、テトラキス(メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン等をあげることができる。アミン系ラジカル禁止剤としては、フェニル-β-ナフチルアミン、α-ナフチルアミン、N,N’-第二ブチル-p-フェニレンジアミン、フェノチアジン、N,N’-ジフェニル-p-フェニレンジアミン等のアミン系ラジカル禁止剤等をあげることができる。
 また、これらのラジカル禁止剤は単独でも2種以上併用してもよい。
 (紫外線吸収剤)
 本発明の硬化性組成物には紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば2(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート等が挙げられる。これらの紫外線吸収剤は単独でも2種以上併用してもよい。
 (溶剤)
 本発明の硬化性組成物に使用される、変性ポリオルガノシロキサン化合物が高粘度である場合、溶剤に溶解して用いることも可能である。使用できる溶剤は特に限定されるものではなく、例えば、炭化水素系溶媒、エーテル系溶媒、ケトン系溶媒、グリコール系溶剤、ハロゲン系溶媒を好適に用いることができる。
 炭化水素系溶媒としては、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等をあげることができる。エーテル系溶媒としては、具体的に例示すれば、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等をあげることができる。
 ケトン系溶媒としては、具体的に例示すれば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等をあげることができる。グリコール系溶剤としては、具体的に例示すれば、プロピレングリコール-1-モノメチルエーテル-2-アセテート(PGMEA)、エチレングリコールジエチルエーテル等をあげることができる。ハロゲン系溶媒としては、具体的に例示すれば、クロロホルム、塩化メチレン、1,2-ジクロロエタン等をあげることができる。
 溶媒としては、トルエン、テトラヒドロフラン、1,3-ジオキソラン、プロピレングリコール-1-モノメチルエーテル-2-アセテート、クロロホルムが好ましい。
 使用する溶媒量は適宜設定できるが、用いる硬化性組成物1gに対しての好ましい使用量の下限は0.1mLであり、好ましい使用量の上限は10mLである。使用量が少ないと、低粘度化等の溶媒を用いることの効果が得られにくく、また、使用量が多いと、材料に溶剤が残留して熱クラック等の問題となり易く、またコスト的にも不利になり工業的利用価値が低下する。
 これらの、溶媒は単独で使用してもよく、2種類以上の混合溶媒として用いることもできる。
 (その他添加剤)
 本発明の硬化性組成物には、その他、着色剤、離型剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、アンチモン-ビスマス等のイオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を本発明の目的および効果を損なわない範囲で添加することができる。
 (用途)
 本発明の硬化性組成物或いは硬化物は、種々の用途に用いることができる。従来のアクリル樹脂およびエポキシ樹脂接着剤が使用される各種用途に応用することが可能である。
 例えば、透明材料、光学材料、光学レンズ、光学フィルム、光学シート、光学部品用接着剤、光導波路結合用光学接着剤、光導波路周辺部材固定用接着剤、DVD貼り合せ用接着剤、粘着剤、ダイシングテープ、電子材料、絶縁材料(プリント基板、電線被覆等を含む)、高電圧絶縁材料、層間絶縁膜、TFT用パッシベーション膜、TFT用ゲート絶縁膜、TFT用層間絶縁膜、TFT用透明平坦化膜、絶縁用パッキング、絶縁被覆材、接着剤、高耐熱性接着剤、高放熱性接着剤、光学接着剤、LED素子の接着剤、各種基板の接着剤、ヒートシンクの接着剤、塗料、UV粉体塗料、インク、着色インク、UVインクジェット用インク、コーティング材料(ハードコート、シート、フィルム、剥離紙用コート、光ディスク用コート、光ファイバ用コート等を含む)、成形材料(シート、フィルム、FRP等を含む)、シーリング材料、ポッティング材料、封止材料、発光ダイオード用封止材料、光半導体封止材料、液晶シール剤、表示デバイス用シール剤、電気材料用封止材料、各種太陽電池の封止材料、高耐熱シール材、レジスト材料、液状レジスト材料、着色レジスト、ドライフィルムレジスト材料、ソルダーレジスト材料、カラーフィルター用バインダー樹脂、カラーフィルター用透明平坦化材料、ブラックマトリクス用バインダー樹脂、液晶セル用フォトスペーサー材料、OLED素子用透明封止材料、光造形、太陽電池用材料、燃料電池用材料、表示材料、記録材料、防振材料、防水材料、防湿材料、熱収縮ゴムチューブ、オーリング、複写機用感光ドラム、電池用固体電解質、ガス分離膜に応用できる。また、コンクリート保護材、ライニング、土壌注入剤、蓄冷熱材、滅菌処理装置用シール材、コンタクトレンズ、酸素透過膜の他、他樹脂等への添加剤等が挙げられる。
 中でも、本発明の硬化性組成物はアルカリ現像性透明レジストとして好適に使用できる材料であり、特にFPD用材料として好適な材料である。より具体的には、TFT用パッシベーション膜、TFT用ゲート絶縁膜、TFT用層間絶縁膜、TFT用透明平坦化膜、カラーフィルター用バインダー樹脂、カラーフィルター用透明平坦化材料、ブラックマトリクス用バインダー樹脂、液晶セル用フォトスペーサー材料、OLED素子用透明封止材料などが挙げられる。
 以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。
 (実施例1~6、比較例1、2)
 実施例1~6および比較例1,2で得た硬化性組成物に対し、下記方法を用いて評価を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000025
 本発明の硬化性組成物を硬化することによって得られる硬化物は、比較例の組成物と比較して優れた絶縁性を有する光硬化性材料として機能する。
 (絶縁性評価)
 上記実施例、比較例で得られた樹脂組成物を用いて下記のような絶縁性評価サンプルを作成した。表面を#400研磨したSUS板に樹脂組成物をスピンコーティング(回転数2000rpm、30秒)したものを、コンベア型露光装置(高圧水銀ランプ、フュージョン製LH6)を用いて、積算光量200mJ/cm2露光した。その後、150℃加熱したホットプレート上にて1時間加熱して薄膜を形成した。さらにその薄膜上にスパッタでAl電極(6mmφ)を形成した。
 また絶縁性については、半導体パラメータ測定装置(Agilent製4156C)を用いて、絶縁膜を挟んだ電極間(SUS-Al)に0~50Vの電圧を0.5Vずつステップで印加し、30V印加時の電極単位面積当たりのリーク電流量を測定し評価を行った。
 (膜厚測定)
 SUS板上に形成した薄膜についてUV-visスペクトルを測定して算出した。本発明の樹脂組成物を用いて作成した薄膜は優れた絶縁性を有し、溶液塗布により成膜できる薄膜絶縁材料として適用できる。
 (アルカリ現像性)
 実施例1~6および比較例1、2で得られた硬化性組成物をガラス板に厚み約50μmとなるようコートし、溶剤を風乾したものをアルカリ性現像液(TMAH(テトラメチルアンモニウムヒドロオキシド)2.38%水溶液)に60秒浸漬後水洗し、現像液浸漬部分の樹脂の残存していないものを○、残存しているものを×としてアルカリ現像性の評価とした。
 (実施例1)
 500mL四つ口フラスコにトルエン100g、1,3,5,7-テトラメチルシクロテトラシロキサン57.49gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。ジアリルイソシアヌル酸10.0g、1,4-ジオキサン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0186gの混合液を30分かけて滴下した。滴下終了から6時間後に1H-NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去し、無色透明の液体「反応物A」を得た。
 100mL四つ口フラスコにトルエン20g、「反応物A」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド3.0gおよびトルエン3.0gの混合液を加え、添加3時間後に1H-NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し「反応物1」を得た。また1H-NMR測定により、「反応物1」にはSiH基および光重合官能基であるエポキシ基を有することを確認した。
 得られた「反応物1」0.5g、トリアリルイソシアヌレート0.19g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.7mg、PI2074(ローディア製、光カチオン重合開始剤)0.01g添加したものの20%PGMEA溶液を調整した。
 (実施例2)
 500mL四つ口フラスコにトルエン100g、1,3,5,7-テトラメチルシクロテトラシロキサン57.49gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。トリアリルイソシアヌレート3.8g、ジアリルイソシアヌル酸5.0g、1,4-ジオキサン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0186gの混合液を30分かけて滴下した。滴下終了から6時間後に1H-NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去し、無色透明の液体「反応物B」を得た。
 100mL四つ口フラスコにトルエン20g、「反応物B」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド3.0gおよびトルエン3.0gの混合液を加え、添加3時間後に1H-NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し「反応物2」を得た。また1H-NMR測定により、「反応物2」にはSiH基および光重合官能基であるエポキシ基を有することを確認した。
 得られた「反応物2」0.5g、トリアリルイソシアヌレート0.19g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.7mg、PI2074(ローディア製、光カチオン重合開始剤)0.01g添加したものの20%PGMEA溶液を調整した。
 (実施例3)
 500mL四つ口フラスコにトルエン100g、1,3,5,7-テトラメチルシクロテトラシロキサン57.49gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。ビニルノルボルネン10.0g、トルエン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0186gの混合液を30分かけて滴下した。滴下終了から6時間後に1H-NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去し、無色透明の液体「反応物C」を得た。
 100mL四つ口フラスコにトルエン20g、「反応物C」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド3.0gおよびトルエン3.0gの混合液を加え、添加3時間後に1H-NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し「反応物3」を得た。また1H-NMR測定により、「反応物3」にはSiH基および光重合官能基であるエポキシ基を有することを確認した。
 得られた「反応物3」0.5g、ビニルノルボルネン0.14g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.7mg、P
I2074(ローディア製、光カチオン重合開始剤)0.01g添加したものの20%MIBK溶液を調整した。
 (実施例4)
 500mL四つ口フラスコにトルエン100g、1,3,5,7-テトラメチルシクロテトラシロキサン57.49gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。トリアリルイソシアヌレート5.6g、トルエン10.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)62mgの混合液を滴下した。滴下終了後、1H-NMRでアリル基起因のピークが消失したことを確認し、反応液を冷却し脱揮することにより無色透明の液体「反応物D」を得た。
 100mL四つ口フラスコにトルエン20g、「反応物D」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド3.6gおよびトルエン3.6gの混合液を加え、添加3時間後に1H-NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し「反応物4」を得た。また1H-NMR測定により、「反応物4」にはSiH基および光重合官能基であるエポキシ基を有することを確認した。
 得られた「反応物4」0.5g、トリアリルイソシアヌレート0.20g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.7mg、PI2074(ローディア製、光カチオン重合開始剤)0.01g添加したものの20%MIBK溶液を調整した。
 (実施例5)
 500mL四つ口フラスコにトルエン100g、1,3,5,7-テトラメチルシクロテトラシロキサン57.49gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。1,3,5,7-ビニル-1,3,5,7-テトラメチルシクロテトラシロキサン7.5g、トルエン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0186gの混合液を滴下した。滴下終了後、1H-NMRでアリル基起因のピークが消失したことを確認し、反応液を冷却し脱揮することにより無色透
明の液体「反応物E」を得た。
 100mL四つ口フラスコにトルエン20g、「反応物E」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド3.0gおよびトルエン3.0gの混合液を加え、添加3時間後に1H-NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し「反応物5」を得た。また1H-NMR測定により、「反応物5」にはSiH基および光重合官能基であるエポキシ基を有することを確認した。
 得られた「反応物5」0.5g、MQV7(クラリアントジャパン製、Si-CH=CH基を有するシロキサン化合物)0.65g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.7mg、PI2074(ローディア製、光カチオン重合開始剤)0.01g添加したものの20%MIBK溶液を調整した。
 (実施例6)
 500mL四つ口フラスコにトルエン100g、1,3,5,7-テトラメチルシクロテトラシロキサン57.49gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。ジアリルイソシアヌル酸10.0g、1,4-ジオキサン70.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0186gの混合液を30分かけて滴下した。滴下終了から6時間後に1H-NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去し、無色透明の液体「反応物A」を得た。
 100mL四つ口フラスコにトルエン20g、「反応物A」10gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルトリメトキシシラン4.5gおよびトルエン4.5gの混合液を加え、添加3時間後に1H-NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し「反応物6」を得た。また1H-NMR測定により、「反応物6」にはSiH基および光重合官能基であるアルコキシシリル基を有することを確認した。
 得られた「反応物6」0.5g、トリアリルイソシアヌレート0.19g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.7mg、PI2074(ローディア製、光カチオン重合開始剤)0.01g添加したものの20%PGMEA溶液を調整した。
 (比較例1)
 100mL四つ口フラスコにトルエン15g、1,3,5,7-テトラメチルシクロテトラシロキサン7.5gを入れ、気相部を窒素置換した後内温105℃で加熱し、ここにビニルシクロヘキセンオキシド5.0gを加え2時間攪拌した。添加から2時間後に1H-NMRでビニル基の反応率が95%以上であることを確認した。反応液を冷却し「比較反応物1」を得た。
 得られた「比較反応物1」0.5g、PI2074(ローディア製、光カチオン重合開始剤)0.01g添加したものの20%PGMEA溶液を調整した。
 (比較例2)
 ジトリメチロールプロパンテトラアクリレート(新中村化学工業製、DA-TMP)0.5gにIrgacure184(チバスペシャリティケミカルズ製、光ラジカル開始剤)を0.015g添加したものの20%PGMEA溶液を調整した。

Claims (14)

  1. (A)光重合性官能基およびSiH基を有する変性ポリオルガノシロキサン化合物、
    (B)炭素-炭素二重結合を有する化合物、および、
    (C)光重合開始剤、を含有する光硬化性組成物。
  2.  成分(A)中の光重合性官能基が、エポキシ基、架橋性ケイ素基、(メタ)アクリロイル基、および、オキセタニル基からなる群から選択される少なくとも一種である、請求項1に記載の硬化性組成物。
  3.  成分(A)中の光重合性官能基の少なくとも1個が脂環式エポキシ基、又はグリシジル基である、請求項1に記載の硬化性組成物。
  4.  成分(A)中の光重合性官能基の少なくとも1個がアルコキシシリル基である、請求項1または2に記載の硬化性組成物。
  5.  成分(B)が、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中R3は炭素数1~50の一価の有機基を表し、それぞれのR3は異なっていても同一であってもよく、少なくとも1個のR3はSiH基との反応性を有する炭素-炭素二重結合を含む)で表される化合物である、請求項1~4のいずれか一項に記載の硬化性組成物。
  6.  成分(B)が、Si-CH=CH基を有する化合物である請求項1~5のいずれか一項に記載の硬化性組成物。
  7.  成分(A)が、光重合性官能基およびSiH基かつ、下記式(X1)~(X3)で表される各構造と、フェノール性水酸基と、カルボキシル基とからなる群から選ばれる少なくとも一種を有する変性ポリオルガノシロキサン化合物である請求項1~6のいずれか一項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
  8.  成分(A)が、下記化合物(α)~(γ)のヒドロシリル化反応生成物であることを特徴とする、請求項1~7のいずれか一項に記載の硬化性組成物。
    (α)1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有する有機化合物
    (β)1分子中に少なくとも2個のSiH基を有するオルガノシロキサン化合物
    (γ)1分子中に、光重合性官能基と、SiH基との反応性を有する炭素-炭素二重結合を有する化合物
  9.  化合物(α)が、SiH基との反応性を有する炭素-炭素二重結合を有し、かつ、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000003
    (式中R3は炭素数1~50の一価の有機基を表し、それぞれのR3は異なっていても同一であってもよく、少なくとも1個のR3はSiH基との反応性を有する炭素-炭素二重結合を含む)で表される化合物である、請求項8に記載の硬化性組成物。
  10.  化合物(α)が、Si-CH=CH基を有する化合物である請求項8または9に記載の硬化性組成物。
  11.  化合物(α)が、1分子中にSiH基との反応性を有する炭素-炭素二重結合を1個以上有し、かつ、下記式(X1)~(X3)で表される各構造と、フェノール性水酸基と、カルボキシル基とからなる群から選ばれる少なくとも一種を同一分子内に有する有機化合物である、請求項8~10のいずれか一項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000004
  12.  化合物(β)が、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000005
    (式中R4、R5は炭素数1~10の有機基を表し同一であっても異なっても良く、nは1~10、mは0~10の数を表す)で表されるSiH基を有する環状ポリオルガノシロキサン化合物である、請求項8~11のいずれか一項に記載の硬化性組成物。
  13.  化合物(γ)が、下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000006
    (式中R6、R7は炭素数1~6の有機基を表し、nは1~3、mは0~10の数を表す)で表される化合物である、請求項8~12のいずれか一項に記載の硬化性組成物。
  14.  請求項1~13のいずれか一項に記載の硬化性組成物を硬化してなる、硬化物。
PCT/JP2009/067010 2008-10-02 2009-09-30 光硬化性組成物および硬化物 WO2010038767A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09817799.1A EP2343326B1 (en) 2008-10-02 2009-09-30 Photocurable composition and cured product
JP2010531872A JP5555170B2 (ja) 2008-10-02 2009-09-30 光硬化性組成物および硬化物
US13/121,994 US8809414B2 (en) 2008-10-02 2009-09-30 Photocurable composition and cured product
CN200980139066.6A CN102171268B (zh) 2008-10-02 2009-09-30 光固化性组合物以及固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008257771 2008-10-02
JP2008-257771 2008-10-02

Publications (1)

Publication Number Publication Date
WO2010038767A1 true WO2010038767A1 (ja) 2010-04-08

Family

ID=42073527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067010 WO2010038767A1 (ja) 2008-10-02 2009-09-30 光硬化性組成物および硬化物

Country Status (6)

Country Link
US (1) US8809414B2 (ja)
EP (1) EP2343326B1 (ja)
JP (1) JP5555170B2 (ja)
KR (1) KR101609611B1 (ja)
CN (2) CN102171268B (ja)
WO (1) WO2010038767A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235862A (ja) * 2009-03-31 2010-10-21 Kaneka Corp 硬化性組成物
JP2010285517A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2010285519A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2012089610A (ja) * 2010-10-18 2012-05-10 Kaneka Corp 薄膜トランジスタ
JP2012111864A (ja) * 2010-11-25 2012-06-14 Kaneka Corp 硬化性組成物
US20120171494A1 (en) * 2010-12-30 2012-07-05 Wayne Thomas Ferrar Intermediate transfer member, imaging apparatus, and method
JP2013064087A (ja) * 2011-09-20 2013-04-11 Nippon Steel & Sumikin Chemical Co Ltd エポキシシリコーン樹脂及びそれを用いた硬化性樹脂組成物
KR101355995B1 (ko) * 2012-02-28 2014-01-29 한국과학기술원 내열성 광학 실록산 수지 조성물
JP2014510955A (ja) * 2011-03-29 2014-05-01 ダウ コーニング コーポレーション デバイス製造で用いる光パターン化可能かつ現像性のシルセスキオキサン樹脂
JP2014084351A (ja) * 2012-10-22 2014-05-12 Kaneka Corp ポリオルガノシロキサン変性体、該変性体を含有する組成物、該組成物を硬化させてなる硬化物
JP2015028179A (ja) * 2014-09-25 2015-02-12 株式会社カネカ 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2015038211A (ja) * 2014-09-25 2015-02-26 株式会社カネカ 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2016069605A (ja) * 2014-10-01 2016-05-09 旭化成ケミカルズ株式会社 光硬化性樹脂組成物及びその用途
JP2016080772A (ja) * 2014-10-10 2016-05-16 株式会社カネカ ポジ型感光性組成物
KR101705613B1 (ko) 2015-08-07 2017-02-22 주식회사 신아티앤씨 코팅용 실록산 수지 조성물 및 이를 이용하여 제조된 코팅용 경화물
JPWO2016063978A1 (ja) * 2014-10-24 2017-08-10 セメダイン株式会社 光硬化性組成物
JP2018066818A (ja) * 2016-10-18 2018-04-26 株式会社カネカ ネガ型感光性樹脂組成物、硬化物および積層体
WO2018155131A1 (ja) * 2017-02-27 2018-08-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075233A1 (ja) * 2007-12-10 2009-06-18 Kaneka Corporation アルカリ現像性を有する硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
CN104204022B (zh) * 2012-03-28 2016-08-31 株式会社大赛璐 固化性环氧树脂组合物
KR101536270B1 (ko) * 2012-05-23 2015-07-13 주식회사 엘지화학 자기 치유 능력이 있는 uv 경화형 코팅 조성물, 코팅 필름 및 코팅 필름의 제조 방법
KR102148246B1 (ko) * 2012-07-04 2020-08-26 가부시키가이샤 가네카 포지티브형 감광성 조성물, 박막 트랜지스터 및 화합물
WO2015008709A1 (ja) * 2013-07-18 2015-01-22 セメダイン株式会社 光硬化性組成物
CN107428891B (zh) * 2015-03-24 2021-04-20 施敏打硬株式会社 固化性组合物
CN104876467B (zh) * 2015-04-17 2017-07-11 浙江老虎山建材有限公司 一种高性能混凝土外加剂及其制备工艺
KR102314734B1 (ko) * 2015-06-12 2021-10-20 삼성디스플레이 주식회사 점착제 조성물 및 표시장치
JP6706453B2 (ja) * 2015-11-02 2020-06-10 株式会社カネカ ネガ型感光性樹脂組成物、硬化物および積層体
JP2017146554A (ja) * 2016-02-19 2017-08-24 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ 低温硬化可能なネガ型感光性組成物
US10800952B2 (en) * 2016-03-09 2020-10-13 Threebond Co., Ltd. Curable resin composition, fuel cell, and sealing method
KR102476069B1 (ko) * 2016-09-29 2022-12-12 가부시키가이샤 가네카 감광성 조성물, 그리고 착색 패턴 및 그의 제조 방법
CN107357136A (zh) * 2017-08-23 2017-11-17 广西众昌树脂有限公司 感光液体树脂
WO2019226842A1 (en) * 2018-05-24 2019-11-28 Momentive Performance Materials Inc. Oil-bleed self-bonding liquid silicone rubber composition
CN112262034B (zh) * 2018-06-08 2022-08-16 埃肯有机硅(上海)有限公司 可固化有机硅组合物
US11827781B2 (en) 2019-08-29 2023-11-28 Zhejiang First Advanced Material R&D Institute Co., Ltd. Photosensitive resin composition and use thereof
CN113429911B (zh) * 2021-08-26 2021-11-19 杭州福斯特应用材料股份有限公司 架桥剂、组合物、母料、封装胶膜及电子元器件
CN113929915B (zh) * 2021-10-26 2022-10-28 中国石油大学(华东) 一种改性硅氧烷类超临界二氧化碳增稠剂的制备方法及应用
CN115895378B (zh) * 2022-11-18 2023-07-07 惠州市鑫亚凯立科技有限公司 一种氟素离型涂料及其制备方法

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159662A (en) 1962-07-02 1964-12-01 Gen Electric Addition reaction
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3379653A (en) 1963-10-18 1968-04-23 Ciba Ltd Cold-curable mixtures of cycloaliphatic polyepoxides and curing agents
US3516946A (en) 1967-09-29 1970-06-23 Gen Electric Platinum catalyst composition for hydrosilation reactions
US3586616A (en) 1969-03-14 1971-06-22 Minnesota Mining & Mfg Bis(perfluoroalkylsulfonyl)methane metal salts in cationic polymerization
US3708296A (en) 1968-08-20 1973-01-02 American Can Co Photopolymerization of epoxy monomers
US4058400A (en) 1974-05-02 1977-11-15 General Electric Company Cationically polymerizable compositions containing group VIa onium salts
US4068091A (en) 1975-07-30 1978-01-10 Sony Corporation Binaural sound pickup
US4069055A (en) 1974-05-02 1978-01-17 General Electric Company Photocurable epoxy compositions containing group Va onium salts
US4139655A (en) 1978-05-09 1979-02-13 W. R. Grace & Co. Photocurable epoxy compositions containing thiopyrylium salts
US4161478A (en) 1974-05-02 1979-07-17 General Electric Company Photoinitiators
US4231951A (en) 1978-02-08 1980-11-04 Minnesota Mining And Manufacturing Company Complex salt photoinitiator
US4256828A (en) 1975-09-02 1981-03-17 Minnesota Mining And Manufacturing Company Photocopolymerizable compositions based on epoxy and hydroxyl-containing organic materials
US5037861A (en) 1989-08-09 1991-08-06 General Electric Company Novel highly reactive silicon-containing epoxides
JPH06263989A (ja) 1992-12-03 1994-09-20 Hercules Inc 硬化可能な組成物
WO1996015194A1 (fr) 1994-11-15 1996-05-23 Kanegafuchi Chemical Industry Co., Ltd. Composition de resine expansible, mousse produite a partir de cette derniere et son procede de production
JP2004002783A (ja) * 2002-04-04 2004-01-08 Kanegafuchi Chem Ind Co Ltd 光学材料用組成物、光学材料、その製造方法、およびそれを用いた液晶表示装置及びled
JP2004196958A (ja) * 2002-12-18 2004-07-15 Asahi Kasei Corp 架橋基含有籠状シルセスキオキサン化合物
JP2006291044A (ja) 2005-04-11 2006-10-26 Kaneka Corp 硬化性組成物
WO2007074813A1 (ja) * 2005-12-26 2007-07-05 Kaneka Corporation 硬化性組成物
WO2008010545A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Polysiloxane composition, molded body obtained from the same, and optodevice member
WO2008133138A1 (ja) * 2007-04-17 2008-11-06 Kaneka Corporation 多面体構造ポリシロキサン変性体および該変性体を用いた組成物
JP2008274004A (ja) * 2007-04-25 2008-11-13 Kaneka Corp 硬化性樹脂組成物およびその硬化物
JP2008291137A (ja) * 2007-05-25 2008-12-04 Kaneka Corp 硬化性組成物
JP2009062490A (ja) * 2007-09-07 2009-03-26 Kaneka Corp 硬化性組成物
WO2009075233A1 (ja) * 2007-12-10 2009-06-18 Kaneka Corporation アルカリ現像性を有する硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH529769A (fr) 1971-04-16 1972-10-31 Rephamac Ag Procédé de préparation d'acides désoxyribonucléiques à poids moléculaire élevé
JPS5756492B2 (ja) 1973-05-02 1982-11-30
US4640967A (en) * 1982-05-06 1987-02-03 General Electric Company Ultraviolet radiation-curable silicone release compositions with epoxy and/or acrylic functionality
US4576999A (en) * 1982-05-06 1986-03-18 General Electric Company Ultraviolet radiation-curable silicone release compositions with epoxy and/or acrylic functionality
JPS59155483A (ja) 1983-02-25 1984-09-04 Toshiba Silicone Co Ltd 表面硬化性シリコ−ンシ−リング材組成物
JPS61118746A (ja) 1984-11-14 1986-06-06 Konishiroku Photo Ind Co Ltd 反射写真材料
JPS6220733A (ja) 1985-07-19 1987-01-29 Meidensha Electric Mfg Co Ltd 直流給電装置
US5198520A (en) 1985-12-27 1993-03-30 Kabushiki Kaisha Toshiba Polysilanes, polysiloxanes and silicone resist materials containing these compounds
JPS62207333A (ja) 1986-03-08 1987-09-11 Nippon Petrochem Co Ltd シリコ−ン共重合体
WO1990010037A1 (en) 1989-02-28 1990-09-07 Kanegafuchi Chemical Industry Co., Ltd. Organic polymer, preparation thereof, and curable composition comprising same
US5204408A (en) 1989-03-28 1993-04-20 Shin-Etsu Chemical Co., Ltd. Modified silicone vulcanization activator
JPH0623256B2 (ja) 1989-03-28 1994-03-30 信越化学工業株式会社 ゴム組成物用シリコーン変性加硫助剤及びその製造方法
US4943601A (en) 1989-04-03 1990-07-24 General Electric Company Coating with improved adhesion
US5409995A (en) 1989-05-29 1995-04-25 Kanegafuchi Chemical Industry Co., Ltd. Curing agent, preparation thereof and curable composition comprising the same
JPH07119396B2 (ja) 1990-02-27 1995-12-20 信越化学工業株式会社 接着性オルガノポリシロキサン組成物及びその硬化物
US4987158A (en) 1990-03-23 1991-01-22 General Electric Company UV-curable pre-crosslinked epoxy functional silicones
US5268396A (en) * 1990-11-02 1993-12-07 Lai Juey H Organosilicon soft denture liners
JP3268801B2 (ja) 1991-11-22 2002-03-25 ジーイー東芝シリコーン株式会社 シリコーンゴム組成物およびシリコーンゴム加工布
US5240971A (en) * 1991-12-05 1993-08-31 General Electric Company UV-curable epoxysilicone-polyether block copolymers
JP3354973B2 (ja) 1992-10-06 2002-12-09 鐘淵化学工業株式会社 硬化性組成物
US5391678A (en) 1992-12-03 1995-02-21 Hercules Incorporated Curable and cured organosilicon compositions
JP3203843B2 (ja) 1992-12-24 2001-08-27 住友化学工業株式会社 カラーフィルター用レジスト組成物
JPH08157720A (ja) 1994-12-08 1996-06-18 Kanegafuchi Chem Ind Co Ltd 有機系硬化剤の製造方法
JP2875758B2 (ja) 1994-12-28 1999-03-31 東芝シリコーン株式会社 粘着シート
FR2731007B1 (fr) * 1995-02-24 1997-05-16 Rhone Poulenc Chimie Composition de polyorganosiloxanes reticulables
JPH0912892A (ja) 1995-07-04 1997-01-14 Toray Dow Corning Silicone Co Ltd 現場成形ガスケット用シリコーンゴム組成物
JPH09291214A (ja) 1996-04-25 1997-11-11 Nippon Paint Co Ltd 硬化性樹脂組成物及びその硬化物
JP3571144B2 (ja) 1996-05-29 2004-09-29 鐘淵化学工業株式会社 硬化性組成物
JPH103270A (ja) 1996-06-17 1998-01-06 Kanegafuchi Chem Ind Co Ltd タッチ入力装置を一体化した画像表示装置並びにこれに使用するゴム組成物及び硬化性組成物
DE19648283A1 (de) 1996-11-21 1998-05-28 Thera Ges Fuer Patente Polymerisierbare Massen auf der Basis von Epoxiden
DE19837855A1 (de) 1998-08-20 2000-02-24 Wacker Chemie Gmbh Härtbare Organopolysiloxanmassen
JP2000124475A (ja) 1998-10-14 2000-04-28 Kanegafuchi Chem Ind Co Ltd 光半導体封止材用硬化性組成物及び光半導体製品の製造方法
US6429583B1 (en) 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
JP2000183407A (ja) 1998-12-16 2000-06-30 Rohm Co Ltd 光半導体装置
JP2000344895A (ja) 1999-06-01 2000-12-12 Toagosei Co Ltd 硬化性樹脂の製造方法
JP2001011210A (ja) 1999-06-29 2001-01-16 Toray Ind Inc 白色ポリエステルフィルム
JP3291278B2 (ja) 1999-10-19 2002-06-10 サンユレック株式会社 光電子部品の製造方法
JP3704286B2 (ja) 1999-11-17 2005-10-12 信越化学工業株式会社 酸化チタン充填付加反応硬化型シリコーンゴム組成物及びその硬化物
TW526241B (en) 2000-04-21 2003-04-01 Kaneka Corp Curable composition, composition for optical material, optical material, liquid crystal display device, transparent conductive film, and method for producing the same
JP4993806B2 (ja) 2000-04-21 2012-08-08 株式会社カネカ 光学材料用組成物、光学用材料、その製造方法およびそれを用いた液晶表示装置
JP4782279B2 (ja) 2000-12-26 2011-09-28 株式会社カネカ 封止剤、半導体等の封止方法、半導体装置の製造方法、および半導体装置
KR100806553B1 (ko) 2000-12-27 2008-02-27 카네카 코포레이션 경화제, 경화성 조성물, 광학 소재용 조성물, 광학 소재, 이의 제조 방법 및 이를 사용하여 만들어진 액정표시장치 및 led
JP2002217459A (ja) 2001-01-16 2002-08-02 Stanley Electric Co Ltd 発光ダイオード及び該発光ダイオードを光源として用いた液晶表示器のバックライト装置
US7005460B2 (en) 2001-01-25 2006-02-28 Kettenbach Gmbh & Co. Kg Two-step curable mixer-suitable materials
JP2002235005A (ja) 2001-02-09 2002-08-23 Kanegafuchi Chem Ind Co Ltd 光学用材料用組成物、光学用材料およびその製造方法
JP4275889B2 (ja) 2001-02-09 2009-06-10 株式会社カネカ 発光ダイオード及びその製造方法
JP4066229B2 (ja) 2001-02-14 2008-03-26 株式会社カネカ 硬化剤、硬化性組成物、光学材料用組成物、光学材料、その製造方法、並びに、それを用いた液晶表示装置及びled
JP4037125B2 (ja) 2001-02-23 2008-01-23 株式会社カネカ 発光ダイオード及びその製造方法
JP3910080B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP2002317408A (ja) 2001-04-19 2002-10-31 Ngk Insulators Ltd 透光性防音板および防音壁
US6592999B1 (en) 2001-07-31 2003-07-15 Ppg Industries Ohio, Inc. Multi-layer composites formed from compositions having improved adhesion, coating compositions, and methods related thereto
JP2003113310A (ja) 2001-10-05 2003-04-18 Kanegafuchi Chem Ind Co Ltd 光学材料用組成物、電子材料用組成物、光学材料、電子材料、発光ダイオード及びその製造方法
JP2003128921A (ja) 2001-10-17 2003-05-08 Kanegafuchi Chem Ind Co Ltd 熱硬化性樹脂組成物及び熱硬化性樹脂フィルム、それを用いてなる金属箔積層体
JP4610839B2 (ja) 2002-03-08 2011-01-12 株式会社カネカ 封止剤、半導体等の封止方法、半導体装置の製造方法、および半導体装置
JP4216512B2 (ja) 2002-03-08 2009-01-28 株式会社カネカ 硬化性組成物、電子材料用組成物、半導体装置、および半導体装置の製造方法
JP4073223B2 (ja) 2002-03-19 2008-04-09 株式会社カネカ 封止剤、半導体等の封止方法、半導体装置の製造方法、および半導体装置
JP2006241462A (ja) 2002-04-04 2006-09-14 Kaneka Corp 光学材料用組成物、光学材料、その製造方法、およびそれを用いた液晶表示装置
JP4611617B2 (ja) 2002-04-26 2011-01-12 株式会社カネカ 発光ダイオード
JP4685690B2 (ja) 2002-04-26 2011-05-18 株式会社カネカ 硬化性組成物、硬化物およびその製造方法
CN100338141C (zh) 2002-04-26 2007-09-19 株式会社钟化 硬化性组合物、硬化物及其制造方法以及由此硬化物密封的发光二极管
JP4256756B2 (ja) 2002-09-30 2009-04-22 新日鐵化学株式会社 官能基を有するかご型シルセスキオキサン樹脂の製造方法
US7041748B2 (en) 2003-01-08 2006-05-09 International Business Machines Corporation Patternable low dielectric constant materials and their use in ULSI interconnection
TW200502372A (en) 2003-02-25 2005-01-16 Kaneka Corp Curing composition and method for preparing same, light-shielding paste, light-shielding resin and method for producing same, package for light-emitting diode, and semiconductor device
JP4734832B2 (ja) 2003-05-14 2011-07-27 ナガセケムテックス株式会社 光素子用封止材
JP4366116B2 (ja) 2003-05-20 2009-11-18 キヤノン株式会社 電界効果型有機トランジスタ
JP2005023256A (ja) 2003-07-04 2005-01-27 Toagosei Co Ltd カチオン硬化性組成物
JP3954582B2 (ja) * 2004-02-03 2007-08-08 横浜ゴム株式会社 硬化性樹脂組成物
JP2005266673A (ja) 2004-03-22 2005-09-29 Kyocera Chemical Corp カラーフィルター、液晶表示装置、ポジ型感光性樹脂組成物及びスペーサーの製造方法
JP2006008740A (ja) 2004-06-22 2006-01-12 Nitto Denko Corp 紫外線硬化型樹脂組成物
JP2006269402A (ja) 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd 絶縁材料形成用組成物および絶縁膜
TWI372844B (en) 2005-07-04 2012-09-21 Miura Kogyo Kk Boiler
JP2007043055A (ja) 2005-07-08 2007-02-15 Sekisui Chem Co Ltd 薄膜トランジスタ及びゲート絶縁膜
CN101322074B (zh) 2005-12-06 2013-01-23 日产化学工业株式会社 用于形成光交联固化的抗蚀剂下层膜的含有硅的抗蚀剂下层膜形成用组合物
JP5250930B2 (ja) 2005-12-07 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
JP5087807B2 (ja) 2006-02-22 2012-12-05 東京応化工業株式会社 有機半導体素子の製造方法及びそれに用いる絶縁膜形成用組成物
JP2007293160A (ja) 2006-04-27 2007-11-08 Asahi Kasei Corp 感光性かご状シルセスキオキサン化合物

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159662A (en) 1962-07-02 1964-12-01 Gen Electric Addition reaction
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3379653A (en) 1963-10-18 1968-04-23 Ciba Ltd Cold-curable mixtures of cycloaliphatic polyepoxides and curing agents
US3516946A (en) 1967-09-29 1970-06-23 Gen Electric Platinum catalyst composition for hydrosilation reactions
US3708296A (en) 1968-08-20 1973-01-02 American Can Co Photopolymerization of epoxy monomers
US3586616A (en) 1969-03-14 1971-06-22 Minnesota Mining & Mfg Bis(perfluoroalkylsulfonyl)methane metal salts in cationic polymerization
US4058400A (en) 1974-05-02 1977-11-15 General Electric Company Cationically polymerizable compositions containing group VIa onium salts
US4069055A (en) 1974-05-02 1978-01-17 General Electric Company Photocurable epoxy compositions containing group Va onium salts
US4161478A (en) 1974-05-02 1979-07-17 General Electric Company Photoinitiators
US4068091A (en) 1975-07-30 1978-01-10 Sony Corporation Binaural sound pickup
US4256828A (en) 1975-09-02 1981-03-17 Minnesota Mining And Manufacturing Company Photocopolymerizable compositions based on epoxy and hydroxyl-containing organic materials
US4231951A (en) 1978-02-08 1980-11-04 Minnesota Mining And Manufacturing Company Complex salt photoinitiator
US4139655A (en) 1978-05-09 1979-02-13 W. R. Grace & Co. Photocurable epoxy compositions containing thiopyrylium salts
US5037861A (en) 1989-08-09 1991-08-06 General Electric Company Novel highly reactive silicon-containing epoxides
JPH06263989A (ja) 1992-12-03 1994-09-20 Hercules Inc 硬化可能な組成物
WO1996015194A1 (fr) 1994-11-15 1996-05-23 Kanegafuchi Chemical Industry Co., Ltd. Composition de resine expansible, mousse produite a partir de cette derniere et son procede de production
JP2004002783A (ja) * 2002-04-04 2004-01-08 Kanegafuchi Chem Ind Co Ltd 光学材料用組成物、光学材料、その製造方法、およびそれを用いた液晶表示装置及びled
JP2004196958A (ja) * 2002-12-18 2004-07-15 Asahi Kasei Corp 架橋基含有籠状シルセスキオキサン化合物
JP2006291044A (ja) 2005-04-11 2006-10-26 Kaneka Corp 硬化性組成物
WO2007074813A1 (ja) * 2005-12-26 2007-07-05 Kaneka Corporation 硬化性組成物
WO2008010545A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Polysiloxane composition, molded body obtained from the same, and optodevice member
WO2008133138A1 (ja) * 2007-04-17 2008-11-06 Kaneka Corporation 多面体構造ポリシロキサン変性体および該変性体を用いた組成物
JP2008274004A (ja) * 2007-04-25 2008-11-13 Kaneka Corp 硬化性樹脂組成物およびその硬化物
JP2008291137A (ja) * 2007-05-25 2008-12-04 Kaneka Corp 硬化性組成物
JP2009062490A (ja) * 2007-09-07 2009-03-26 Kaneka Corp 硬化性組成物
WO2009075233A1 (ja) * 2007-12-10 2009-06-18 Kaneka Corporation アルカリ現像性を有する硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.R. WATT ET AL., JOURNAL OF POLYMER SCIENCE - POLYMER CHEMISTRY EDITION, vol. 22, 1984, pages 1789

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235862A (ja) * 2009-03-31 2010-10-21 Kaneka Corp 硬化性組成物
JP2010285517A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2010285519A (ja) * 2009-06-10 2010-12-24 Kaneka Corp 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2012089610A (ja) * 2010-10-18 2012-05-10 Kaneka Corp 薄膜トランジスタ
JP2012111864A (ja) * 2010-11-25 2012-06-14 Kaneka Corp 硬化性組成物
US9442431B2 (en) * 2010-12-30 2016-09-13 Eastman Kodak Company Intermediate transfer member, imaging apparatus, and method
US20120171494A1 (en) * 2010-12-30 2012-07-05 Wayne Thomas Ferrar Intermediate transfer member, imaging apparatus, and method
JP2014510955A (ja) * 2011-03-29 2014-05-01 ダウ コーニング コーポレーション デバイス製造で用いる光パターン化可能かつ現像性のシルセスキオキサン樹脂
JP2013064087A (ja) * 2011-09-20 2013-04-11 Nippon Steel & Sumikin Chemical Co Ltd エポキシシリコーン樹脂及びそれを用いた硬化性樹脂組成物
KR101355995B1 (ko) * 2012-02-28 2014-01-29 한국과학기술원 내열성 광학 실록산 수지 조성물
JP2014084351A (ja) * 2012-10-22 2014-05-12 Kaneka Corp ポリオルガノシロキサン変性体、該変性体を含有する組成物、該組成物を硬化させてなる硬化物
JP2015028179A (ja) * 2014-09-25 2015-02-12 株式会社カネカ 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2015038211A (ja) * 2014-09-25 2015-02-26 株式会社カネカ 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP2016069605A (ja) * 2014-10-01 2016-05-09 旭化成ケミカルズ株式会社 光硬化性樹脂組成物及びその用途
JP2016080772A (ja) * 2014-10-10 2016-05-16 株式会社カネカ ポジ型感光性組成物
JPWO2016063978A1 (ja) * 2014-10-24 2017-08-10 セメダイン株式会社 光硬化性組成物
KR101705613B1 (ko) 2015-08-07 2017-02-22 주식회사 신아티앤씨 코팅용 실록산 수지 조성물 및 이를 이용하여 제조된 코팅용 경화물
JP2018066818A (ja) * 2016-10-18 2018-04-26 株式会社カネカ ネガ型感光性樹脂組成物、硬化物および積層体
WO2018155131A1 (ja) * 2017-02-27 2018-08-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
US10927278B2 (en) 2017-02-27 2021-02-23 Dupont Toray Specialty Materials Kabushiki Kaisha Curable organopolysiloxane composition and semiconductor device

Also Published As

Publication number Publication date
EP2343326A1 (en) 2011-07-13
EP2343326B1 (en) 2018-08-15
JPWO2010038767A1 (ja) 2012-03-01
KR101609611B1 (ko) 2016-04-06
CN104497272B (zh) 2017-06-23
CN104497272A (zh) 2015-04-08
US20110237702A1 (en) 2011-09-29
CN102171268A (zh) 2011-08-31
US8809414B2 (en) 2014-08-19
KR20110074516A (ko) 2011-06-30
CN102171268B (zh) 2016-05-18
JP5555170B2 (ja) 2014-07-23
EP2343326A4 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5555170B2 (ja) 光硬化性組成物および硬化物
JP5284880B2 (ja) 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP5491197B2 (ja) アルカリ現像性を有する硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP5628489B2 (ja) 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
US8263725B2 (en) Curable composition
JP2011221192A (ja) 硬化性組成物および硬化物
JP5260944B2 (ja) 硬化性組成物
JP6706453B2 (ja) ネガ型感光性樹脂組成物、硬化物および積層体
JP5685037B2 (ja) 有機半導体素子の製造方法および該製造方法によって得られる有機半導体素子
JP2010285517A (ja) 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP5341596B2 (ja) 硬化性組成物
JP6945289B2 (ja) アルカリ現像性を有する光硬化性組成物、およびパターン硬化膜の製造方法
JP5749446B2 (ja) 光硬化性組成物
JP2012107113A (ja) 硬化性組成物およびそれを用いた薄膜トランジスタ
JP6706454B2 (ja) ネガ型硬化性組成物、硬化物および積層体
JP6021867B2 (ja) 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP6021866B2 (ja) 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP6886268B2 (ja) ネガ型感光性樹脂組成物、硬化物および積層体
JP5890631B2 (ja) 有機tft用ゲート絶縁膜および該絶縁膜を有する有機tft素子
JP2013173809A (ja) 硬化性組成物
JP2013191379A (ja) 撥−親液パターン層の形成方法
JP2011219583A (ja) 光硬化性組成物および硬化物
JP2017090514A (ja) ネガ型感光性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139066.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531872

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117007441

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009817799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13121994

Country of ref document: US