WO2010041714A1 - Surgery system for endoscopic submucosal dissection (esd) and surgery method - Google Patents

Surgery system for endoscopic submucosal dissection (esd) and surgery method Download PDF

Info

Publication number
WO2010041714A1
WO2010041714A1 PCT/JP2009/067562 JP2009067562W WO2010041714A1 WO 2010041714 A1 WO2010041714 A1 WO 2010041714A1 JP 2009067562 W JP2009067562 W JP 2009067562W WO 2010041714 A1 WO2010041714 A1 WO 2010041714A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic flux
esd
endoscope
foot
Prior art date
Application number
PCT/JP2009/067562
Other languages
French (fr)
Japanese (ja)
Inventor
猛 大平
Original Assignee
学校法人自治医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人自治医科大学 filed Critical 学校法人自治医科大学
Priority to JP2010532957A priority Critical patent/JP5403433B2/en
Publication of WO2010041714A1 publication Critical patent/WO2010041714A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/128Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips
    • A61B17/1285Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00269Type of minimally invasive operation endoscopic mucosal resection EMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic

Definitions

  • the present invention relates to an endoscopic submucosal dissection (ESD) surgical system and a surgical method for resecting a lesion in a living organism's biological duct, and in particular, excising a lesion such as early gastrointestinal cancer.
  • the present invention relates to an ESD surgical system and a surgical method for raising a lesion part to be excised in an arbitrary direction to secure a field of view by an endoscope and easily peeling a lower layer of the lesion part.
  • the lesion of early gastrointestinal cancer has been excised using an endoscope that inserts an insertion sheath into the digestive tract such as the gastrointestinal tract.
  • an endoscope that inserts an insertion sheath into the digestive tract such as the gastrointestinal tract.
  • high-frequency knives such as IT knives, flex knives and hook knives are used to remove large lesions. ESD that exfoliates the diseased mucosa is widespread.
  • a magnetic anchor guide for lifting a lesion using a magnetic anchor 164 provided with a clip 162 is used.
  • a device has been proposed. (For example, refer to Patent Document 1).
  • the in-vivo direction equipment or the portion of the living tube is referred to as the “tip” or “front portion”
  • the part of the equipment or the biological tube is called “rear end” or “rear part”.
  • the magnetic anchor guide device of the first example includes a clip 162 attached to a lesioned part 161, a magnetic anchor 164 attached to the clip 162 via a connecting part 163, and a driving force to the magnetic anchor 164 from outside the body.
  • This magnetic anchor guiding device lifts the lesioned part 161 by the following operation. First, similarly to the conventional method, the lesion 161 is raised by injecting physiological saline 167 into the lower part of the lesion 161 using the endoscope 166. Next, the clip 162 is attached to the lesion 161 with the grasping forceps 168.
  • the endoscope 166 is pulled out, the magnetic anchor 164 is attached to the grasping forceps 168, the endoscope 166 is inserted again, and the magnetic derivative 165 outside the body is operated to fix the magnetic anchor 164 at a predetermined position of the affected part.
  • the endoscope 166 is pulled out, the connecting portion 163 is attached to the grasping forceps 168, the endoscope 166 is inserted again, one end of the connecting portion 163 is attached to the clip 162 in the affected area, and the other end of the connecting portion 163 is magnetically connected. Attach to anchor 164.
  • the lesioned part 161 can be lifted by operating the magnetic derivative 165 from the outside and pulling the clip 162, and in this state, the lesioned part can be safely excised with an IT knife or the like.
  • a guide sheath 173 having one endoscope channel 171 and two treatment instrument guide insertion instrument channels 172 is used, and two treatment instruments are used.
  • An electric knife 177 passed through an endoscope 176 inserted from one endoscope channel 171 is lifted up by a two forceps 174 and 175 inserted from the guide insertion tool channel 172, respectively.
  • An endoscopic treatment apparatus for excising the lesion is proposed. (For example, refer to Patent Document 2).
  • a pair of freely openable / closable claw portions 112 having distal ends facing each other and coupled at a base portion and a pair of claw portions 112 inserted therein are inserted.
  • a presser ring 116 that closes the claw part 112 provided so as to be relatively movable along the pair of claw parts 112, and a base part of the pair of claw parts 112 are detachably engaged with each other.
  • a gripping tool 111 comprising a connecting plate (not shown); and an ultrathin thread 115 connected to the base of the pair of claws 112 and extending through the presser ring 116.
  • a flexible sheath 129 whose portion is bent by a predetermined angle is attached to the endoscope 132, and passes through all of the plurality of ultrafine threads 115 extending from the distal end of the flexible sheath 129 to the outside from the forceps insertion port.
  • the flexible sheath 129 which is taken out from the slider side opening of the tube joint at the end and bent at the distal end, is inserted again from the forceps insertion opening of the endoscope 132, and the flexible sheath 129 is bent at the distal end.
  • the distal end of the endoscope protrudes from the forceps hole 137 of the endoscope 132.
  • a clip 210 that grips a body tissue lesion 251 by an operation outside the body and a normal body tissue marking unit that faces the lesion 251 by another clip 216.
  • Two lifting clips 201 each having an engaging portion 230 for holding 252 and an elastic member 221 connected to each other and a connecting portion 220 for connecting the clip 210 and the engaging portion 230 at a predetermined length are used.
  • the two lesioned portions 251a and 251b are gripped, and the lesioned portion 251 is pulled in the opposite direction by the tension of the elastic member 221, and the lesioned portions 251a and 251b are held in a state of being separated from the digestive tract wall 250.
  • a cylinder that is formed in a cylindrical shape and is provided with a slit (not shown) that extends along the central axis in the upper surface, and is attached to the distal end of the endoscope En.
  • a portion 303 and a capture portion 305 that extends along the slit and is disposed in the tube portion 303 and holds the tissue (lesioned portion) in the digestive tract with respect to the endoscope En.
  • Proposal of an endoscopic treatment device including a sheath 312 having a moving part 321 and a moving part 321 that moves the capturing part 305 and moves the holding position of the tissue (lesioned part) in the digestive tract with respect to the tubular part 303 Has been (For example, see Patent Document 5).
  • the moving part 321 is connected to a hood (first position) 306 on the proximal end side of the cylindrical part 303 and allows the sheath 312 of the capturing part 305 to be inserted into the cylindrical part 303 so as to be movable forward and backward, while moving in the radial direction.
  • Patent Document 1 cannot be operated by the ESD surgeon when operating the magnetic derivative 165 from the outside, so that another person follows the instruction of the ESD surgeon. There is a problem that it is necessary to operate, and the operation is complicated and time-consuming.
  • the conventional endoscope treatment apparatus described in Patent Document 2 has a configuration in which a lesioned part is lifted by two forceps 174 and 175 inserted from two treatment tool guide insertion tool channels 172, respectively. Therefore, the operation of the two forceps 174 and 175 and the ESD surgical operation with the electric knife 177 cannot be performed simultaneously by the same person, and the operation according to the instruction of the ESD surgeon by another person is complicated and time-consuming. Since the outer diameter of the guiding sheath 173 increases as the number of treatment instrument guide insertion tool channels increases, there are problems such as increased patient pain.
  • the conventional endoscopic treatment apparatus described in Patent Document 3 can simultaneously perform an operation of pulling a plurality of ultrafine threads 115 to lift a lesioned part and an ESD surgical operation using an IT knife 157 by the same person. There is a problem that the operation is complicated and time-consuming.
  • the conventional medical treatment apparatus described in Patent Document 4 uses two lifting clips 201 by an operation from outside the body, and uses two lesions 251a and 251b and a lesion 251 in the lesion 251 in the digestive tract 250. Therefore, there is a problem in that it is difficult to perform the ESD surgical operation by the same person at the same time because the operation for grasping the two portions in the vicinity of the marking portion 252 of the tissue in the normal gastrointestinal tract 250 facing is difficult.
  • the conventional endoscopic treatment device described in Patent Document 5 simultaneously performs an operation for holding a lesion in the digestive tract by the capture unit 305 and an ESD surgical operation using an electric scalpel by an operation from outside the body by the same person.
  • the operation is complicated and troublesome, and the outer diameter of the endoscope distal end portion is increased by the amount of the tube portion 303 and the capture portion 305 mounted thereon, resulting in increased patient pain. is there.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to reduce the operation time and surgical invasion, and is excellent in operability, safety and reliability of surgery.
  • a surgical system and a surgical method are provided.
  • a surgical system for endoscopic submucosal dissection (ESD) has a small diameter connected to an anchoring member that is anchored to a lesion site on the inner surface of a living tube.
  • Magnetic flux radiating means including the generated magnetism element, and magnetic flux control means provided outside the living body and controlling the distribution of magnetic flux radiated from the magnetic flux radiating means from the outside, the magnetic flux control means,
  • the magnetic flux distribution from the magnetic flux radiating means is controlled from the outside so that an electromagnetic repulsive force is applied to the magnetic anchor, and the lesion site engaged with the engaging member is pulled away from the muscle layer of the biological duct. It is characterized by That.
  • a second aspect of the invention is the ESD surgical system according to the first aspect, wherein one or a plurality of angle sensors or / and position sensors provided in the endoscope or / and the magnetic flux radiating means are provided.
  • the magnetic flux radiation means positioning control unit for controlling the bending drive portion provided in the endoscope so as to stop and hold at any desired bending angle position of the magnetic flux radiation means mounted on the endoscope tip. Is further provided.
  • a third aspect of the present invention is the ESD surgical system according to the first or second aspect, wherein the magnetic flux radiating means is made of a thin film of an elastomer or a resin material and is attached to and detached from the outer diameter of the distal end portion of the endoscope.
  • An inner cylinder that is externally fitted and a plurality of elongated rods or strips that are substantially equally arranged in the circumferential direction on the outer circumference of the inner cylinder and are provided along the axial direction.
  • the magnetism generating element is sealed with a thin film of elastomer or resin material.
  • a fourth aspect of the present invention is the ESD surgical system according to the first or second aspect, wherein the magnetic flux radiating means is formed of a flexible elongated rod-like or strip-like magnetic generating element made of an elastomer or a resin.
  • the one or more magnetic anchors are hermetically packaged with a thin film of a system material, and are formed in a single loop shape that can be pulled out from the distal end in a loop state in the treatment instrument guide channel of the endoscope. Is characterized in that it can be arranged in a loop shape so as to surround the lesion site to which it is attached.
  • a fifth aspect of the present invention is the ESD surgical system according to any one of the first to fourth aspects, wherein the magnetism generating element is wound around an elongated rod-like or linear magnetic core member. It is characterized by comprising a conductive coil.
  • the invention according to claim 6 is the surgical operation system for ESD according to any one of claims 1 to 4, wherein the magnetism generating element is a wavy line in which an ultrathin conducting wire is a short period on an elongated strip-like semiconductor substrate. Alternatively, it is characterized by being printed and wired in a sine curve.
  • the invention according to claim 7 is the ESD surgical operation system according to any one of claims 1 to 4, wherein the magnetism generating element is an elongated rod-like or linear or strip-like magnetic core member. , And a magnetic field shield cylinder comprising a hollow magnetic field shield member externally fitted to the magnetic core member so as to be slidable in the longitudinal direction.
  • the invention according to claim 8 is the ESD surgical system according to claim 1, wherein the outer shape of the magnetic member of the magnetic anchor gradually expands from the proximal end portion connected to the engaging member toward the distal end portion. It is characterized by being formed.
  • a ninth aspect of the present invention is the ESD surgical system according to the first aspect, wherein the magnetic member of the magnetic anchor has a small-diameter hollow cylindrical shape or a tapered conical cylindrical shape connected to the engaging member. It is characterized by comprising a magnetic body outer cylinder and a solid or encapsulated magnetic fluid-like magnetic body rotating member housed rotatably around the central axis in the magnetic body outer cylinder.
  • the invention of claim 10 is the ESD surgical system according to claim 1 or 8, wherein the magnetic member of the magnetic anchor is made of at least two different materials in the longitudinal direction. .
  • the invention according to claim 11 is the ESD surgical operation system according to claim 1, wherein the magnetic flux control means includes a foot operation section that can be operated by an ESD surgeon with his / her foot during the operation. It is said.
  • the invention according to claim 12 is the ESD surgical system according to claim 11, wherein the foot operating portion is provided between a bottomed box body whose upper portion is open and a substantially central portion of the box body.
  • the box covered on the upper portion of the box body can be tilted in any direction through the universal support means and can be returned to the original posture by the elastic force of a plurality of compression spring members provided in the periphery thereof.
  • a plurality of cover-like foot pedals which are arranged substantially symmetrically corresponding to the respective magnetism generating elements of the magnetic flux radiating means around the inner bottom surface of the box body, and the electric resistance changes in conjunction with the tilting operation of the foot pedal.
  • Variable electric resistance means is provided.
  • a thirteenth aspect of the invention is the ESD surgical system according to the eleventh aspect, wherein the foot operating portion is forwardly between a bottomed box body having an open top and a rear end portion of the box body.
  • a box cover-like foot pedal which is pivotally supported and can be returned to its original posture by the resilient force of a compression spring member provided between the front end portions, and is covered on the upper portion of the box body; and the box body And a variable electrical resistance means that changes electrical resistance in conjunction with the tilting operation of the foot pedal.
  • the invention of claim 14 is the ESD surgical system according to claim 12 or claim 13, wherein the magnetic flux control means is a voltage signal from each variable electrical resistance means of the foot operation unit connected to a power source. And a magnetic flux control unit for controlling a magnetic flux distribution of the magnetic flux radiating means by controlling a current value to each magnetism generating element of the magnetic flux radiating means.
  • a fifteenth aspect of the present invention is the ESD surgical system according to any one of the twelfth to fourteenth aspects, wherein each of the variable electric resistance means has an appropriate length to be attached to the inside of the bottom surface of the box body.
  • An electric resistor, a sliding brush that slides in the longitudinal direction on the electric resistor, a sliding link whose base end is pivotally supported by the sliding brush, and a base end that is the box body A support link pivotally supported by an end bracket provided on the inner side of the bottom surface of the sliding link, and a distal end portion pivotally supported by the distal end portion of the sliding link, and a base end portion of the sliding link,
  • a return spring member suspended between the base end portion of the support link or the bottom surface of the box body and bending and holding both links in a square shape, and both the links linked to the tilting operation of the foot pedal. Is the top of the foot pedal.
  • a sixteenth aspect of the invention is the ESD surgical system according to the twelfth aspect, wherein the universal support means is fixed to a substantially central portion of a ceiling inner surface of the foot pedal or a bottom surface of the box body.
  • a third frame that is pivotably supported about the Y axis in the left-right direction, and the attachment portion of the third frame is substantially the bottom surface of the box body or the ceiling inner surface of the foot pedal. It consists of a gimbal mechanism fixed to the center.
  • the invention according to claim 17 is the ESD surgical operation system according to any one of claims 11 to 16, wherein the foot operation portion has an inclined surface having an upward slope toward the front. It is characterized by having.
  • the invention according to claim 18 is the ESD surgical system according to claim 7, wherein the magnetic flux control means is inserted into the endoscope and connected to the rear end of the magnetic field shield tube.
  • the magnetic flux distribution of the magnetism generating element is controlled by sliding the magnetic field shield cylinder back and forth with respect to the magnetic core member via the member.
  • one or a plurality of magnetic anchors in which a small-diameter magnetic member is connected to an anchoring member for anchoring a biological tissue is attached to a lesion site on the inner surface of the biological tube.
  • a magnetic flux radiating means including one or a plurality of sealed magnetism generating elements that are engaged with each other and apply an electromagnetic repulsive force to the magnetic anchor is attached to the distal end portion of the endoscope, and the distal end of the endoscope
  • the magnetic flux radiating means is appropriately disposed toward the magnetic anchor by inserting a portion near the lesion site in the biological tube, and the magnetic flux control means for controlling the distribution of the magnetic flux radiated from the magnetic flux radiating means from the outside of the living body.
  • the endoscope controls the magnetic flux distribution from the magnetic flux radiating means, applies an electromagnetic repulsive force to the magnetic anchor, and pulls the lesion site to which the magnetic anchor is anchored in the direction of separating from the muscle layer of the biological tube. Guiding the treatment tool at the tip It is characterized by performing a submucosal dissection of the lesion site using the cutting instrument from Yan'neru.
  • the invention according to claim 20 is the ESD surgical method according to claim 19, wherein one or more angle sensors or / and position sensors provided in the endoscope or / and the magnetic flux radiation means are used. It further comprises a magnetic flux radiation means positioning control unit for controlling the bending drive section provided in the endoscope so as to stop and hold at any desired bending angle position of the magnetic flux radiation means attached to the endoscope distal end portion. It is characterized by that.
  • the invention according to claim 21 is the surgical method for ESD according to claim 19 or claim 20, wherein the magnetic flux radiating means is made of a thin film of a laster or a resin material, and is attached to and detached from the outer diameter of the endoscope distal end portion.
  • a magnetic flux radiation cylinder comprising an inner cylinder that is externally fitted, and a plurality of elongated bar-shaped or strip-shaped magnetic generating elements that are substantially equally arranged in the circumferential direction on the outer circumference of the inner cylinder and are provided along the axial direction.
  • the magnetism generating element is sealed with a thin film of an elastomer or a resin material.
  • the invention according to claim 22 is the ESD surgical method according to claim 19 or 20, wherein the magnetic flux radiating means is formed of a flexible elongated rod-like or strip-like magnetic generating element made of an elastomer or a resin.
  • a thin film of a system material is hermetically packaged, and is formed into a single loop shape that can be pulled out from the distal end in a loop state in the treatment instrument guide channel of the endoscope, and the one or more magnetic anchors are It is characterized in that it can be arranged in a loop shape so as to surround the lesioned site.
  • the invention according to claim 23 is the ESD surgical method according to any one of claims 19 to 22, wherein the magnetism generating element is wound around an elongated rod-like or linear magnetic core member. It is characterized by comprising a conductive coil.
  • a twenty-fourth aspect of the invention is the ESD surgical method according to any one of the nineteenth to twenty-second aspects, wherein an ultrathin wire is formed into a short-period wavy line or a sine curve shape on a strip-like semiconductor substrate. It is characterized by printed wiring.
  • the invention according to claim 25 is the ESD surgical method according to any one of claims 19 to 22, wherein the magnetism generating element is an elongated rod-like, linear or strip-like magnetic core member. And a magnetic field shield cylinder made of a hollow magnetic field shield member externally fitted to the magnetic core member so as to be slidable in the longitudinal direction.
  • the invention of claim 26 is the ESD surgical method according to claim 19, wherein the magnetic member of the magnetic anchor gradually expands its outer shape from the proximal end portion to the distal end portion connected to the engaging member. It is characterized by having formed.
  • the invention according to claim 27 is the ESD surgical method according to claim 19, wherein the magnetic flux control means includes a foot operation unit that can be operated by an ESD surgeon with his / her foot during the operation. It is a feature.
  • the invention according to claim 28 is the ESD surgical method according to claim 27, wherein the foot operation part is provided between a bottomed box body having an open top and a substantially central part of the box body.
  • a box-covered foot covering the upper part of the box body so that it can be tilted in any direction through the universal support means and can be returned to its original posture by the elastic force of a plurality of compression spring members provided in its periphery.
  • a plurality of variable electrical resistors that are arranged substantially symmetrically corresponding to each magnetic generating element of the magnetic flux radiating means on the inner periphery of the bottom surface of the box body and change the electrical resistance in conjunction with the tilting operation of the foot pedal. Means.
  • the invention according to claim 29 is the ESD surgical method according to claim 27, wherein the foot operating portion tilts forward between a bottomed box body having an open top and a rear end portion of the box body.
  • a box cover-like foot pedal that covers the top of the box body so as to be pivotally supported and capable of returning to the original posture by the elastic force of the compression spring member provided between the front end portions, and in the bottom surface of the box body
  • variable electric resistance means for changing the electric resistance in conjunction with the tilting operation of the foot pedal.
  • the invention of claim 30 is the ESD surgical method according to claim 28 or claim 29, wherein the magnetic flux control means outputs a voltage signal from each variable electric resistance means of the foot operation unit connected to a power source. And a magnetic flux control unit for controlling the distribution of the magnetic flux of the magnetic flux radiating means by controlling the current value to each magnetism generating element of the magnetic flux radiating means.
  • the invention according to claim 31 is the surgical method for ESD according to any one of claims 27 to 30, wherein the foot operation portion has an inclined surface having an upward slope toward the front. It is characterized by that.
  • the invention according to claim 32 is the ESD surgical method according to claim 23, wherein the magnetic flux control means is inserted into the endoscope and connected to the rear end portion of the magnetic field shield tube.
  • the magnetic flux distribution of the magnetism generating element is controlled by sliding the magnetic field shield cylinder back and forth in the longitudinal direction with respect to the magnetic core member.
  • the ESD surgeon can instantaneously reach the distal end of the endoscope by the magnetic flux control means in response to the situation in order to ensure a sufficient field of view by the endoscope during the operation. Since the magnetic flux distribution of the installed magnetic flux radiating means is appropriately controlled to give an electromagnetic repulsive force to the magnetic anchor, the lesion site attached to the magnetic anchor can be pulled away from the muscle layer of the biological tube, Since an accurate field of view with an endoscope is sufficiently secured, it is possible to quickly and easily perform an ESD surgical operation using an incision tool such as an electric scalpel, thereby ensuring operability, safety and reliability of the operation. In addition, there is an effect of reducing the operation time and operation invasion.
  • the magnetic flux radiating means positioning control unit for controlling the bending drive portion of the endoscope is used. From the angle sensor or / and the position sensor provided in the endoscope or / and the magnetic flux radiation means, the magnetic flux radiation means mounted on the distal end portion of the endoscope is stopped and held at any desired curved angular position. An accurate field of view with an endoscope is sufficiently ensured, and an ESD surgical operation with an incision tool such as an electric knife is facilitated, and the operability, safety and reliability of the operation are further improved.
  • the magnetic flux emitting tube is provided at the distal end of the endoscope.
  • a plurality of elongated rod-like or strip-like magnetism generating elements are provided in a sealed state on the outer periphery of a substantially cylindrical inner cylinder that is detachably fitted to the outer diameter of the section, and the inner cylinder and the magnetism generating element sealing member are either
  • the magnetic flux radiation tube having such a configuration can be configured at a relatively low cost, it can be appropriately and selectively applied to a single-use type or a multiple-use type in ESD surgery.
  • the magnetic flux radiating means has a flexible elongated rod shape.
  • a belt-like magnetism generating element is sealed with a thin film of an elastomer or a resin material to form a single loop, and is placed in the endoscope treatment instrument guide channel so that it can be pulled out from the distal end in a looped state. Therefore, it is possible to eliminate the further increase in pain almost the same as the normal endoscope insertion into the living body of the patient.
  • the loop-like magnetism generating element having such a configuration can be used a plurality of times in ESD surgery, or can be configured at a relatively low cost, so that it can be disposable once depending on the situation.
  • the configuration of the magnetic flux control means for controlling the distribution of the magnetic flux radiated from one loop-like magnetism generating element from the outside There are effects such as simplification and cost reduction.
  • the magnetic generating element Since it is composed of a conductive coil wound around an elongated rod-shaped or linear magnetic core member, it is easy to manufacture at low cost using a general-purpose member, and has the effect of having a degree of freedom in design.
  • the magnetic generating element can be configured compactly and inserted into the patient's living officer because the ultra-thin conductors are printed and wired in the form of short-period wavy lines or sine curves on a strip-like semiconductor substrate. This has the effect of further suppressing the increase in pain.
  • the magnetic generating element Is composed of a magnetic shield tube that is slidably fitted to an elongated rod-like or linear or strip-like magnetic core member, so that the electric flux of the magnetic flux radiating means is unnecessary, greatly simplifying the magnetic flux control means, This has the effect of reducing costs.
  • the magnetic member of the magnetic anchor has a proximal end portion connected to the engaging member.
  • the outer surface of the magnetic flux radiating means is opposed to the entire surface of the gradually expanding outer surface from the base end of the magnetic member toward the distal end of the magnetic anchor. Since the same S or N pole is formed, the repulsive force due to the magnetic flux from the opposing surface of the magnetic flux radiating means reaches the gradually expanding outer peripheral surface of the tip of the magnetic member of the magnetic anchor. It is possible to prevent the tip of the magnetic member of the formed magnetic anchor from being reversed in the direction of the facing surface of the magnetic flux radiating means, and there is an effect of improving the reliability and safety of ESD surgery.
  • the magnetic members of the magnetic anchor are both small-diameter hollow cylindrical or tapered cone cylinders made of magnetic material.
  • this magnetic outer cylinder once a rotating force is applied to the magnetic rotating member with a finger or the like, a gyro moment acts by rotating the rotating member around the central axis. It is possible to prevent the tip portion where a different polarity from the end portion is formed from being reversed in the direction of the facing surface of the magnetic flux radiating means, and there is an effect of improving the reliability and safety of ESD surgery.
  • the opposing surface of the magnetic flux radiating means is formed on the entire outer peripheral surface of the tapered cone-cylinder magnetic body cylinder gradually expanding from the base end portion toward the distal end portion. Since the same S or N pole is formed, the electromagnetic repulsive force due to the magnetic flux from the opposing surface of the magnetic flux radiating means extends to the gradually expanding outer peripheral surface of the tip of the tapered cone cylindrical magnetic outer cylinder. The effect of preventing the tip portion of the tapered cone-shaped magnetic outer cylinder in which the opposite pole (N or S pole) is formed in the opposite surface direction of the magnetic flux radiating means from being reversed is also superimposed.
  • the magnetic member of the magnetic anchor is composed of at least two different materials in the longitudinal direction, and the magnetic flux emission Since the same S or N pole as the facing surface of the means can be formed on the tip surface of the magnetic member of the magnetic anchor, the repulsive force due to the magnetic flux from the facing surface of the magnetic flux radiating means reaches the tip surface of the magnetic member of the magnetic anchor. Therefore, it is possible to prevent the tip of the magnetic member of the magnetic anchor from being reversed in the direction of the opposing surface of the magnetic flux radiating means, and there is an effect of ensuring the reliability and safety of the ESD surgery.
  • the ESD surgeon sufficiently secures the field of view by the endoscope during the operation. Therefore, in response to the situation, the foot operation unit is instantaneously operated with the foot to appropriately control the magnetic flux distribution of the magnetic flux radiating means, and an electromagnetic repulsive force is applied to the magnetic anchor, and the lesion site attached to the magnetic anchor is removed from the body Because it can be pulled away from the muscle layer, the field of view by the endoscope is sufficiently secured, so it is easy to concentrate the hand and quickly perform ESD surgical operation with an electric knife quickly and efficiently. It becomes possible. As a result, the operability, safety and reliability of the operation are improved, and the operation time is shortened.
  • the ESD surgeon sufficiently secures the field of view by the endoscope during the operation. Therefore, in response to the situation, the foot pedal of the foot operation unit is instantaneously depressed with the foot in the desired direction of the front, rear, left and right, and tilted to change the electrical resistance from the magnetic flux radiation means through a plurality of variable electrical resistance means.
  • the magnetic flux radiation means By finely controlling the magnetic flux distribution, it becomes easier to pull the lesion site attached to the magnetic anchor in any direction from the muscle layer of the biological tube by applying an electromagnetic repulsive force to the magnetic anchor in any direction. Therefore, since an accurate field of view by the endoscope is sufficiently ensured, there is an effect of further improving the operability, safety and reliability of the operation for efficiently performing the ESD surgery alone.
  • one variable electrical resistance is interlocked with the tilting motion of the foot pedal in the front-rear direction.
  • Magnetic flux intensity from one loop-like magnetism generating element as a magnetic flux radiating means by instantly operating the foot operation part with the foot in response to the situation in order to ensure a sufficient field of view by the endoscope during surgery Since it becomes easier to pull the lesion site attached to one or more magnetic anchors simultaneously in the direction of pulling away from the muscle layer of the biological tube, by appropriately controlling With a better endoscope Field is ensured, the operation of efficiently performing surgery ESD surgery alone, there are safety and effect of the reliability is further improved.
  • the foot operation unit simply tilts the foot pedal in one longitudinal direction and at least one variable electric resistance means is sufficient, the configuration of the surgical system for ESD is simplified, and the economy and operation are improved. There is also an effect of improving the property.
  • the magnetic flux control unit receives a voltage signal from each variable electrical resistance means of the foot operation unit connected to the power source, controls the current value to each magnetic generating element of the magnetic flux radiating means, and controls the magnetic flux intensity of each magnetic generating element. By controlling, there is an effect that the magnetic flux distribution from the magnetic flux radiating means is accurately controlled.
  • variable electric resistance means provided in the foot operation portion is provided by tilting the foot pedal.
  • the sliding link and the tip of the support link are pressed against the ceiling surface of the foot pedal in conjunction with the operation, and the sliding brush slides on the electrical resistor by swinging both links, so that the electrical resistance can be varied. Therefore, there is an effect that the mechanism is simple and reliability is ensured by a stable operation with variable electric resistance.
  • the universal support means of the foot pedal is fixed to the ceiling inner surface of the foot pedal or the bottom surface of the box body.
  • a second frame that is swingable about the X axis in the front-rear direction is pivotally supported on the frame body, and a third frame is pivotally supported on the second frame so as to be swingable about the Y axis in the left-right direction. Since the body is composed of a gimbal mechanism that is fixed to the bottom surface of the box body or the ceiling inner surface of the foot pedal, there is an effect that a stable and stable tilting operation in a compact and highly reliable direction of the foot pedal can be ensured.
  • the foot operation part Since the upper surface is an inclined surface having an upward slope toward the front, it is easy to perform a delicate depressing operation with the foot of the foot pedal, and there is an effect that favorable tilting operability is ensured.
  • the eighteenth and thirty-second aspects of the invention in addition to having the same effects as the seventh and twenty-fifth aspects of the invention, it is inserted into the endoscope and connected to the rear end portion of the magnetic shield cylinder.
  • the magnetic flux control means By controlling the magnetic flux intensity of the magnetism generating element by sliding the magnetic field shield cylinder back and forth in the longitudinal direction with respect to the magnetic core member via the linear member formed, the magnetic flux control means is greatly simplified and the cost is reduced. There is an effect that can be downed.
  • FIG. 1 is a conceptual diagram of an ESD surgical system according to an embodiment of the present invention. It is a perspective view which shows the concept of the endoscope with which the magnetic flux radiation
  • (A) is a front view of an endoscope distal end portion to which a magnetic flux radiation tube of a modified embodiment is mounted
  • (b) is a front view of an endoscope distal end portion to which a magnetic flux radiation tube of another modified embodiment is mounted.
  • FIG. 1 is a front view of the endoscope front-end
  • (A) is a conceptual diagram of the magnetic anchor by another embodiment of this invention
  • (b) is a conceptual diagram of the magnetic anchor by another embodiment. It is a perspective view which shows the concept of the foot operation part by one Embodiment of this invention.
  • (A) is a longitudinal sectional view in the X-axis direction of FIG.
  • (b) is a longitudinal sectional view in the Y-axis direction
  • (c) is an enlarged longitudinal sectional view of a universal support means mounting portion of a foot operation portion according to another embodiment.
  • It is a partial longitudinal cross-sectional conceptual diagram which shows the concept of the submucosal layer exfoliation of the lesion site
  • It is a longitudinal cross-sectional view of the X-axis direction which shows the concept of the foot operation part corresponding to embodiment of FIG.
  • It is a perspective view which shows the concept of the magnetism generation element of another modified embodiment of this invention.
  • FIG. 11 is a perspective view of an endoscope in which a magnetic flux radiation means (flux radiation cylinder) showing a mounting concept of a magnetic flux radiation means positioning angle sensor (rotation angle sensor) according to still another modified embodiment of the present invention is attached to a distal end portion.
  • A) is a conceptual diagram of the magnetic anchor by another embodiment of this invention
  • (b) is a conceptual diagram of the magnetic anchor by another embodiment.
  • (A) is a conceptual diagram of the magnetic anchor by another embodiment of this invention
  • (b) is a conceptual diagram of the magnetic anchor by another embodiment.
  • It is a conceptual diagram of the treatment tool for ESD of the former (patent document 1).
  • It is a conceptual diagram of the treatment tool for ESD of the past (patent document 2).
  • It is a conceptual diagram of the treatment tool for ESD of the past (patent document 3).
  • It is a conceptual diagram of the treatment tool for ESD of the past (patent document 4).
  • FIG. 1 is a conceptual diagram showing a main configuration concept of an ESD surgical system according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the ESD surgical system of FIG. 3 is a perspective view showing the concept of the endoscope
  • FIG. 3 is an enlarged view of the distal end portion of the endoscope to which the magnetic flux emitting tube of FIG. 2 is attached
  • FIGS. 4A, 4B, and 4C are different from each other.
  • FIG. 5 is a partially longitudinal view showing the concept of submucosal dissection of a lesion site in a living body by the ESD surgical system of FIG. 1.
  • FIG. It is a surface conceptual diagram.
  • Each of the drawings attached here is a conceptual diagram showing the main structural concept expressed in the knot scale, and in particular, FIG. 5 is expressed by enlarging the radial direction compared to the axial direction in order to make the internal structure easy to understand. ing.
  • an ESD surgical system has a small diameter connected to a locking member 21 that is locked to a lesion T2a on the inner surface of a living tube T such as a digester.
  • a magnetic anchor 20 composed of a magnetic member (also referred to as “magnetic member”) 22 and a thin, substantially cylindrical shape that is circumferentially attached to the outer periphery of the inner cylinder 12 that is attached to the distal end portion 41 of the endoscope 40.
  • the magnetic coil 15 as a plurality of magnetism generating elements that are substantially equally arranged along the axial direction is provided in a hermetically sealed state, and the magnetic flux radiation cylinder 10 that is a magnetic flux radiation means that imparts an electromagnetic repulsive force to the magnetic anchor 20, and the outside of the living body And a magnetic flux control means 70 for controlling the distribution of the magnetic flux M emitted from the front end surface of each magnetic coil 15 in the magnetic flux radiating cylinder 10 from the outside.
  • the magnetic flux radiating cylinder 10 of this embodiment is made of a thin film of an elastomer or a resin material, and an inner cylinder 12 that is detachably fitted to the outer diameter of the endoscope tip 41 and an outer A hollow double cylinder in which the space between the cylinder 11 and the front and rear end walls 13 and 14 is hermetically sealed, and the inside of the double cylinder hollow, that is, between the inner cylinder 12 and the outer cylinder 11, is approximately in the circumferential direction.
  • a plurality of small-diameter magnetic coils 15 (at least three in the figure, four in the upper, lower, left, and right directions) composed of the conductive coils 15a wound around the thin rod-shaped magnetic core member 15b, which are equally arranged and arranged along the axial direction. It consists of.
  • the magnetic coil 15 of this embodiment is formed to have a small diameter of about several millimeters from a conductive coil 15a obtained by winding a thin wire or a rod-like magnetic core member 15b with a thin conductive wire such as hair.
  • a total of eight lead wires 15c of each magnetic coil 15 are collected and accommodated in a heat shrinkable tube having a diameter of about 1 mm, and contracted by heating to form an electromagnetic coil lead wire cord Lc having a diameter of about 0.6 mm. Is done.
  • the electromagnetic coil lead wire cord Lc is taken out from the rear end portion of the magnetic flux radiating tube 10, is provided along the insertion portion 42 of the endoscope 40, and is taken out from the operation portion 43 to the outside. .
  • the hollow double-cylinder magnetic flux radiation cylinder 10 made of a thin film of elastomer or resin material is actually provided with a flexible outer cylinder 11 outside the magnetic coil 15 and the endoscope distal end 41. It is configured in a deformed shape so as to be in close contact with the outer shape of the inner cylinder 12 to be fitted.
  • the outer cylinder 11 can be formed into a shape that is contracted and deformed in a fully adhered state along the outer shapes of the magnetic coil 15 part and the inner cylinder 12. .
  • an endoscope tip is formed by a thin film 11' of an elastomer or a resin material instead of the outer tube 11 in the above embodiment. Adhering to the outer surface of the inner cylinder 12 in a state in which a plurality of magnetic coils 15 that are substantially equally distributed in the circumferential direction and provided side by side in the axial direction are individually covered on the outer surface of the inner cylinder 12 that is externally fitted to the portion 41. Thus, each magnetic coil 15 can be sealed.
  • an elastomer or a resin-based material thin film 11 '' is used instead of the outer tube 11 in the above embodiment.
  • a plurality of single hermetically sealed magnetic coils 15 that are hermetically sealed are provided on the outer surface of the inner cylinder 12 that is externally fitted to the endoscope distal end portion 41, and is substantially equally distributed in the circumferential direction and adhered along the axial direction. It can also be configured.
  • any of the above-described heat-shrinkable tube materials, elastomers, or resin-based materials used for the magnetic flux radiation tube 10 are medically compatible materials.
  • the magnetic flux radiation tubes 10, 10 ′, 10 ′′ made of such an elastomer or a resin material are formed with a small diameter and a soft touch, pain in insertion into the living body T such as a patient's digestive tract is caused. The increase can be suppressed.
  • the magnetic flux radiation tube having such a configuration can be configured at a relatively low cost, it can be selectively applied to a single-use type or a multi-use type in ESD surgery.
  • the magnetic anchor 20 includes an engaging member 21 attached to a lesioned part T ⁇ b> 2 a on the inner surface of the biological tube T, a small-diameter magnetic member 22, and a connecting member 23 that connects both the members 21 and 22. It consists of.
  • the engaging member 21 is a claw having a variable interval at the tip of various engaging tools conventionally used for grasping and lifting the lesioned part T2a in the biological tube T, for example, a main body part (not shown) bent in a U shape.
  • the ratchet portion 21b has a function of preventing the deformation when the paired main body portions are elastically deformed in the direction of reducing the interval and holding the adjusted narrow interval.
  • the clip 21a in the initial state is in an open state due to its elasticity.
  • the connecting member 23 is connected, for example, by hooking hook portions (not shown) provided at both ends thereof to base end portions 22b of the magnetic member 22 and holes (not shown) provided in the clip 21a.
  • the connecting member 23 can be a rigid body, an elastic material such as a spring or rubber, or a flexible material. Any of the connecting members 23 can be configured such that a length is adjustable by providing a feeding mechanism in a hook portion (not shown).
  • the magnetic anchor 20 may be configured to directly connect the clip 21a and the magnetic member 22 without using the connecting member 23, or the clip 21a and the magnetic member 22 may be formed as a single body.
  • the magnetic member 22 of this embodiment is a tapered cone whose outer shape gradually increases from a base end portion 22 b connected to the engaging member 21 toward a tip end portion 22 a which is a free end. It is formed in a body shape.
  • the same S or N pole as the distal end surface of the magnetic flux radiating cylinder 10 facing the entire surface of the cone outer surface gradually expanding from the proximal end portion 22b toward the distal end portion 22a of the magnetic member 22 is formed. Since the repulsive force due to the magnetic flux from the front end surface of the magnetic flux radiating cylinder 10 reaches the outer peripheral surface of the tip portion 22a of the magnetic member 22 of the magnetic anchor 20 that gradually increases, a different polarity (N or S pole) is formed. It is possible to prevent the front end portion of the magnetic member 22 from being pulled in the direction of the front end surface of the magnetic flux radiating tube 10 and being inverted.
  • angle sensors 17 and 18 are attached to, for example, two positions perpendicular to the axis of the outer peripheral surface of the tip of the magnetic flux emitting tube 10. Via the control signals 17a, 18a, the distal end portion 41 of the endoscope 40 is stopped and held at any desired bending angle position of the magnetic flux emitting tube 10 attached to the distal end portion 41 of the endoscope 40. It further includes a magnetic flux radiation means positioning control unit 51 having an endoscope bending control unit 51a for controlling a bending driving unit (not shown) that changes the bending posture of the adjacent bending part 42b.
  • the endoscope 40 used here controls the rotation of a motor built in as a bending drive unit of a bending drive unit (not shown), pulls and loosens the bending operation wire by the driving force of the motor, and electrically drives the bending unit.
  • a known electric bending endoscope that performs a bending operation can be applied.
  • the electric bending endoscope 40 is well known and will not be described in detail.
  • the operation unit 43 includes a joystick for operating the bending unit 42b and power for driving the bending drive mechanism by the driving force of the motor.
  • the tilt operation amount from the neutral state by the joystick is input as the bending operation input amount (bending operation instruction amount) to the endoscope bending control unit 51a via the control signals 17a and 18a from the angle sensors 17 and 18.
  • the bending control unit 51a electrically drives a bending drive unit provided in the operation unit 43, and pulls and relaxes the bending operation wire by a bending angle corresponding to the bending operation input amount, thereby electrically driving the bending unit 42b. Curve.
  • angle sensors 17 and 18 for example, a known very small and light 1-axis to 3-axis angle sensor using a mechanical, fluid, optical gyroscope, vibration gyroscope, or the like can be selectively applied. Note that the three-dimensional angles of the roll, pitch, and yaw of the bending portion 42b can be detected by using the advantages of the gyro and the accelerometer.
  • This magnetic flux radiation means positioning control unit 51 is controlled so as to stop and hold the magnetic flux radiation cylinder 10 attached to the endoscope distal end portion 41 at any desired curved angle position in cooperation with the endoscope curvature control unit 51a. By doing so, it is easy to sufficiently secure the field of view by the endoscope 40, it is easy to perform an ESD surgical operation with an incision tool such as an electric knife, and the operability, safety and reliability of the operation can be further improved. .
  • 6 (a) and 6 (b) are conceptual diagrams of magnetic anchors 20 'and 20 "according to different embodiments of the present invention.
  • the magnetic member 22 ′ of the magnetic anchor 20 ′ includes a small-diameter hollow magnetic outer cylinder 22 ′ a connected to the engaging member 21 and a magnetic outer cylinder 22. It is composed of a magnetic rotating member 22'c that is rotatably arranged around a central axis 22'd in 'a.
  • the magnetic body rotating member 22'c has a plurality of substantially disk bodies, short rod bodies, small plate members, or one or a plurality of split-type spiral members inserted through the central shaft 22'd and fixed to the outside. It is formed in a cylindrical body slightly thinner than the inner diameter of the cylinder 22'a.
  • the magnetic member 22 ′ configured as described above is configured to rotate around the central axis once a rotational force is applied to the magnetic rotating member 22 ′ c with a finger or the like within a small-diameter hollow magnetic outer tube 22 ′ made of a magnetic material. Since the gyro moment is applied when the magnetic rotating member 22′c is constantly rotated, the tip 22′aa where the magnetic pole 22′aa is formed with a different polarity from the base end 22′b of the magnetic member 22 ′ is a magnetic flux. It is possible to prevent the radiation tube 10 from being pulled and reversed in the direction of the distal end surface.
  • the magnetic member 22 ′′ of the magnetic anchor 20 ′′ is made of a magnetic material and is connected to the engaging member 21.
  • b is a small-diameter hollow tapered cone-shaped cylindrical outer cylinder 22 ′′ a that gradually expands toward the tip 2 ′′ aa, and rotates around the central axis 22 ′′ d within the outer cylinder 22 ′′ a. It is comprised from the magnetic body rotation member 22''c freely accommodated.
  • the magnetic rotating member 22 ′′ c has a plurality of substantially disk bodies, short bar bodies, small plate members, or one or a plurality of divided spiral members inserted through the central shaft 22 ′′ d and fixed. Is formed in the shape of a tapered cone slightly thinner than the inner diameter of the outer cylinder 22 ′′ a.
  • the magnetic member 22 ′′ configured as described above is centered once a rotational force is applied to the magnetic rotating member 22 ′′ c with a finger or the like in a hollow magnetic outer tube 22 ′′ a made of a magnetic material. Since the gyro moment is applied by constantly rotating the magnetic rotating member 22 ′′ c around the axis, the distal end portion where a different polarity from the proximal end portion 22 ′′ b of the magnetic member 22 ′′ is formed. It can be prevented that 2 ′′ aa is attracted in the direction of the front end surface of the magnetic flux radiating tube 10 and reversed.
  • the magnetic flux control means 70 includes a plurality of variable electrical resistance means 36 therein, and an foot operation unit 30 that can be operated by an ESD surgeon with his / her foot during surgery.
  • the current value to each magnetic coil 15 in the magnetic flux radiating cylinder 10 is controlled to distribute the magnetic flux of each magnetic coil 15.
  • a magnetic flux control unit 60 for controlling.
  • FIG. 7 is a perspective view showing a concept of a foot operation unit according to an embodiment of the present invention
  • FIGS. 8A and 8B are longitudinal sectional views in the X and Y axis directions of FIG. 7, respectively.
  • the foot operation unit 30 of this embodiment includes a bottomed box body 32 having an open top, a box cover-like foot pedal 33 covering the top of the box body 32, and the box body 32 and the foot pedal 33.
  • a universal support means 34 that is provided in a substantially central portion and supports the foot pedal 33 so as to be tiltable in an arbitrary direction, and is provided in a peripheral portion between the box body 32 and the foot pedal 33.
  • one or a single base 31 having an inclined surface whose upper surface is an upward slope toward the front of the X axis is formed and attached. Thereby, it becomes easy to perform a delicate stepping operation by the foot of the foot pedal 33 whose upper surface is inclined in an uphill direction toward the front, and good tilting operability is ensured.
  • Each variable electric resistance means 36 is connected to the power source E via the power cord Le and the power switch SW, and is connected to the magnetic flux control unit 60 via the variable electric resistance means lead wire cord Lr.
  • FIG. 7 shows a conceptual diagram of the magnetic flux control unit 60 provided outside the foot operation unit 30, but actually, a control board plate (not shown) to which the lead wires of the variable electric resistance means 36 are connected.
  • the control board is preferably housed and incorporated in the bottom surface of the box body 32 in the foot operation unit 30, for example.
  • the universal support means 34 of this embodiment includes a first frame 34a fixed to a substantially central portion of the ceiling inner surface of the foot pedal 33, and the first frame 34a around the X axis in the front-rear direction of the foot pedal 33.
  • a frame body 34c, and a mounting portion 34d of the third frame body 34c is constituted by a gimbal mechanism fixed to a substantially central portion in the bottom surface of the box body 32.
  • FIG. 8 (c) is an enlarged longitudinal sectional view of the universal support means mounting portion of the foot operating portion according to another embodiment.
  • the universal support means 34 is set in the opposite direction to the above-described embodiment, that is, the first frame 34a is placed in the bottom surface of the box body 32, and the third The attachment part 34d of the frame 34c may be attached to the ceiling inner surface of the foot pedal 33.
  • the attachment portion 34d of the frame 34c includes a hollow attachment portion 34d1, a sliding attachment portion 34d2 that is in sliding contact with the hollow attachment portion 34d1, and a hollow attachment portion 34d1.
  • a form is shown which comprises an elastic member 34d3 (elastic mechanism) such as a spring member disposed between the sliding attachment portion 34d2.
  • the elastic member 34d3 in the form shown in FIG. 8C is omitted, and the elastic force of the compression spring member 35 shown in FIGS. 8A and 8B is used together.
  • the compression spring member 35 may have a function of the elastic member 34d3. Therefore, in this modification, the foot pedal 33 maintains a gap (sliding stroke) between the hollow mounting portion 34d1 and the sliding mounting portion 34d2 of the universal support means 34 by the elastic force of the compression spring member 35. Supported by
  • variable electric resistance means 36 is mounted within the bottom surface of the box body 32 and has an appropriate length U channel type guide frame open. 36a, an electrical resistor Ra disposed along the longitudinal direction in the bottom surface of the guide frame 36a, a sliding brush Rb sliding in the longitudinal direction on the electrical resistor Ra, and a base end portion of the sliding brush Rb
  • the sliding link 36b is pivotally supported by the first frame 36a and the end bracket 36d is pivotally supported by the end bracket 36d provided at one end of the guide frame 36a.
  • the distal end of the sliding link 36b is pivotally supported.
  • a support link 36c pivotally supported at the distal end portion, and a tension spring member suspended between the base end portions of the slide link 36b and the support link 36c to bend and hold both the links 36b and 36c in a square shape.
  • both links 36b and 36c are formed by the elastic force of the compression spring member. It is also possible to adopt a deformation form that is bent and held in a shape.
  • the sliding link 36b of the variable electrical resistance means 36 and the tip of the support link 36c are pressed by the link pressing portion 33a on the ceiling inner surface of the foot pedal 33 and swing, thereby sliding.
  • the brush Rb slides in the longitudinal direction on the electric resistor Ra, and the electric resistance is varied.
  • an ESD surgeon immediately depresses the foot pedal 33 with his / her foot in a desired direction in response to the situation in order to ensure a sufficient field of view by the endoscope 40 during the operation.
  • an electromagnetic repulsive force in a desired direction is given to the magnetic anchor 20.
  • the gastrointestinal tract T is composed of an outer muscle layer T1 and an inner mucosal layer T2.
  • the digestive tract T for ESD of the present invention in a state where a lesion T2a occurs in the mucosal layer T2 such as early gastrointestinal cancer.
  • the surgical method has the following main steps.
  • the lesioned part T2a in the digestive tract T is identified by various diagnoses using an endoscope or the like (lesioned part identifying stage).
  • the lesioned part T2a in the gastrointestinal tract T is confirmed by inserting the endoscope 40 with the magnetic flux emitting tube 10 attached to the distal end 41 through a natural opening such as the mouth or anus (lesioned part confirmation stage). In each subsequent stage, the endoscope 40 continues to carefully observe / confirm the inside of the digestive tract T via various monitors and operation indicator LEDs (not shown in detail) (not shown). Surgery is performed carefully.
  • the radiation tube 10 is held in a stopped state at any desired bending angle position.
  • an illumination window 46 for illuminating the lesioned portion T2a and its surroundings.
  • an observation window 47 in which an objective lens is arranged to observe the lesioned part T2a and its periphery, and first and second treatment instrument guide channels 44 and 45 are provided.
  • physiological saline is injected with an injection needle (not shown) from the periphery of the lesion T2a to the lower layer of the mucosal layer T2, and the lesion T2a is lifted from the muscle layer T1 (injecting physiological saline).
  • the engaging member 21, the connecting member 23, and the small-diameter magnetic member 22 of the magnetic anchor 10 are connected to the clip attachment tool (not shown) via the second treatment instrument guide channel 45 of the endoscope 40, for example.
  • the magnetic anchor 10 is anchored to the cut end T2b of the lesioned part T2a via the anchoring member 21 (magnetic anchor lesioned part engaging stage).
  • the foot pedal 33 part of the foot operating part 30 is moved forward and backward in the X-axis direction or left and right in the Y-axis direction by stepping on the foot. Either part is pushed down (see FIGS. 5 and 7), and the electromagnetic repulsive force to the magnetic member 22 of the magnetic anchor 20 is adjusted so that the magnetic anchor 20 engaged with the cut end T2b of the lesioned part T2a is raised (see FIG. Magnetic anchor launch adjustment stage).
  • the upper and lower sides of the magnetic flux emitting cylinder 10 are arranged on the front and rear in the X-axis direction and on the left and right in the Y-axis direction in the bottom surface of the box body 32 of the foot operation unit 30.
  • the magnetic flux emitting tube 10 Since the four magnetic coils 15 arranged on the left and right are arranged substantially symmetrically and electrically coupled via lead wires, for example, when the rear part of the foot pedal 33 in the X-axis direction is pushed down, the magnetic flux emitting tube 10 The magnetic flux M from the tip of the magnetic coil 15 disposed in the lower part of the magnetic flux 15 is strong, and the magnetic flux M from the tip of the magnetic coil 15 disposed in the upper part of the magnetic flux radiation tube 10 is weakened. 10 The magnetic anchor 20 that has received a repulsive force to the magnetic member 22 due to the magnetic flux distribution from the tip end portion has a tendency to rise upward.
  • the magnetic flux M from the tip of the magnetic coil 15 at the upper portion in the magnetic flux radiating cylinder 10 is strengthened, and the magnetic anchor 20 is pushed forward and tilted forward.
  • the left side in the Y-axis direction as viewed from the rear of the foot pedal 33 is pushed down, the magnetic flux M from the tip of the left magnetic coil 15 as seen from the back of the magnetic flux emitting tube 10 is strengthened, and the magnetic anchor 20 is moved to the tip of the endoscope. Tilt to the right as seen from 41.
  • the magnetic flux M from the tip of the right side magnetic coil 15 as viewed from the rear side in the magnetic flux radiating cylinder 10 is strengthened, and the magnetic anchor 20 is viewed from the inside. It tilts to the left when viewed from the mirror tip 41.
  • an incision tool such as a high-frequency knife (not shown) is introduced into the digestive tract T from the first treatment instrument guide channel 44, for example.
  • the lesioned part T2a of the mucosal layer T2 is separated from the cut end T2b with respect to the muscle layer T1 (lesioned submucosal layer peeling stage).
  • the electrical resistance changes by instantly depressing and tilting the foot pedal 33 in the desired direction with the foot in response to the situation.
  • the magnetic flux M distribution on the tip surface of the magnetic flux radiating cylinder 10 is controlled through the variable electric resistance means 36, and an electromagnetic repulsive force is applied to the magnetic anchor 20 in a desired direction so that the lesioned portion T2a attached to the magnetic anchor 20 is The adjustment is continued so as to be separated from the muscle layer T1 in a desired direction.
  • treatment such as suturing and disinfection of the mucosal layer T2 from which the lesion T2a has been excised is performed (post-resection treatment stage).
  • FIG. 9 is a partial longitudinal sectional conceptual view showing the concept of submucosal dissection of a lesion site in a living body tube by an ESD surgical system according to another embodiment of the present invention
  • FIG. 10 is a foot corresponding to the embodiment of FIG. It is a longitudinal cross-sectional view of the X-axis direction which shows the concept of an operation part.
  • the ESD surgical system according to another embodiment is mounted over the endoscope distal end portion 41 and applies magnetic repulsive force to the magnetic anchor 20 and magnetic flux M distribution from the magnetic flux radiating means 10a from the outside. Except for the point that the form of the foot operation part 30 'of the magnetic flux control means to be controlled is different, the rest is the same as in the above embodiment. Therefore, in FIGS. 9 and 10, the members having the same functions in FIGS. 1 to 8 of the embodiment are given the same reference numerals or symbols even if the shapes are partially different. Hereinafter, a different part from the said embodiment of the surgical system for ESD of another embodiment is demonstrated.
  • the magnetic flux radiating means 10a of this embodiment is formed in a flexible loop shape in which a small-diameter conductive coil 16a wound around a thin linear magnetic body (not shown) is hermetically packaged by an elastomer or resin-based material thin film 11a.
  • the endoscope 40 is constituted by a loop-shaped magnetic coil 16 which is a single loop-shaped magnetism generating element disposed in a treatment instrument guide channel 44 so as to be able to be pulled out from the distal end in a loop state.
  • the loop-shaped magnetic coil 16 of this embodiment has a conductive coil 16a in which a thin conductive wire, such as hair, is wound around a thin linear magnetic core member (not shown), which is made of an elastomer or a resin material, such as a heat-shrinkable tube.
  • the thin film 11a is hermetically packaged to have a small diameter of about several mm.
  • the two lead wires (not shown) of the loop-shaped magnetic coil 16 are collected and accommodated in, for example, a heat shrinkable tube having a diameter of about 0.5 mm and heated to be about 0.3 mm in diameter. Not) is formed.
  • the electromagnetic coil lead wire cord is inserted into, for example, a treatment instrument guide channel 44 of an endoscope 40 as shown in FIGS. 1 and 2 and is taken out from the operation unit 43 (see FIG. 2).
  • angle sensors 17 and 18 similar to those of the first embodiment are attached to, for example, two axially perpendicular directions on the outer peripheral surface of the distal end portion 41 of the endoscope 40.
  • a magnetic flux radiating means positioning control unit 51 for controlling a bending drive section (not shown) that changes the bending posture of the bending section 42b of the endoscope 40 so as to be stopped and held.
  • the loop-shaped magnetic coil 16 drawn out in a loop state from, for example, the distal end of the treatment instrument guide channel 44 of the endoscope distal end portion 41 inserted to the vicinity of the lesioned portion T2a on the inner surface of the living tube T such as a digester.
  • the magnetic core member has an elastic member or shape memory function having appropriate elasticity. It is desirable to apply a member.
  • the number of magnetic anchors 20 is appropriately selected as one or a plurality, and the size of the loop diameter of the loop-shaped magnetic coil 16 is appropriately set.
  • the endoscope 40 is inserted into the vicinity of the lesioned part T2a in the digestive tract T through the second treatment instrument guide channel 45 of the endoscope 40 using a clip attachment tool or an incision tool (not shown). This is performed appropriately while observing / confirming with 40.
  • the treatment order of the anchoring of the magnetic anchor 10 to the lesioned part T2a and the loop arrangement of the loop-shaped magnetic coil 16 around the lesioned part T2a depends on the state of the lesioned part T2a and the number of magnetic anchors 20 required. Depending on the situation, it can be carried out appropriately.
  • the foot operation unit 30 ′ of this embodiment includes a bottomed box body 32 ′ having an open top, a box cover-like foot pedal 33 ′ covering the top of the box body 32 ′, and a box body 32 ′.
  • a pivot shaft mechanism 34' for pivotally supporting the foot pedal 33 'so as to be tiltable forward of the X axis, and the front end portions of the box body 32' and the foot pedal 33 '.
  • a compression spring member 35 provided in the space and resiliently supports the foot pedal 33 ′ so as to be able to return to the original posture, and is disposed in the bottom surface of the front half of the box body 32 ′, and interlocks with the tilting operation of the foot pedal 33 ′.
  • Variable electrical resistance means 36 that varies in electrical resistance.
  • the foot operation unit 30 ′ includes one variable electrical resistance means 36 corresponding to one loop-shaped magnetic coil 16 of the magnetic flux radiating means 10a, and the foot pedal 33 ′ is two-dimensional in the X-axis direction. Since the tilting operation is performed, it is sufficient that at least one compression spring member 35 for returning the original posture of the foot pedal 33 ′ is disposed between the front end portion of the foot pedal 33 ′ and the box body 32 ′. Therefore, the configuration of the foot operation unit 30 ′ of this embodiment is greatly simplified compared to the foot operation unit 30 shown in FIG. 7 of the above embodiment in which a plurality of variable electrical resistance means 38 and compression spring members 35 are disposed.
  • the foot operation unit 30 ′ includes one variable electrical resistance means 36 corresponding to one loop-shaped magnetic coil 16 of the magnetic flux radiating means 10a, and the foot pedal 33 ′ is two-dimensional in the X-axis direction. Since the tilting operation is performed, it is sufficient that at least one compression spring member 35 for returning the original posture of the foot pedal 33 ′ is disposed
  • the link pressing portion 33′a of the foot pedal 33 ′ portion of the variable electric resistance means 36 disposed in the foot operation portion 30 ′ is pushed down by the stepping operation of the foot, and the links 36b and 36c are pressed.
  • the direction in which the tip is pushed down is the direction in which the resistance of the electric resistor Ra decreases and the current value to the loop magnetic coil 16 of the magnetic flux radiating means 10a increases, and the current value to the loop magnetic coil 16 increases.
  • the magnetic flux M radiated from the loop magnetic coil 16 of the magnetic flux radiating means 10a increases, the electromagnetic repulsive force of the magnetic anchor 20 to the magnetic member 22 increases, and the lesioned part T2a attached to the magnetic anchor 20
  • the traction force in the direction of pulling away from the muscle layer T1 of the biological tube T becomes stronger.
  • the direction to return to is the direction in which the resistance of the electric resistor Ra increases and the current value to the loop-shaped magnetic coil 16 decreases, and as the current value to the loop-shaped magnetic coil 16 decreases, magnetic flux radiation occurs.
  • the magnetic flux M radiated from the loop-shaped magnetic coil 16 of the means 10a decreases, the electromagnetic repulsive force of the magnetic anchor 20 to the magnetic member 22 is weakened, and the lesioned part T2a attached to the magnetic anchor 20 is replaced with the muscle layer of the biological tube T.
  • the traction force in the direction away from T1 is weakened.
  • an ESD surgeon immediately depresses the foot pedal 33 'with a desired strength with his / her foot immediately in response to a situation in order to ensure a sufficient field of view by an endoscope during the operation.
  • the magnetic flux M radiated in a loop form from the loop-shaped magnetic coil 16 of the magnetic flux radiation means 10a is controlled through a single variable electrical resistance means 36 whose electrical resistance changes by tilting forward with Since the electromagnetic repulsive force is simultaneously applied to the magnetic anchor 20 and the lesioned part T2a engaged with the plurality of magnetic anchors 20 can be easily separated from the muscle layer T1 to a desired position, the field of view by the endoscope is improved. Sufficiently secured, it is easier to carry out ESD surgical operation with an electric knife quickly and efficiently with one hand concentrated. Thereby, the operability, safety and reliability of the operation can be improved and the operation time can be shortened.
  • the endoscope 40 to which the magnetic flux radiating means 10 and 10a are attached over the distal end portion 41 is located near the lesioned part T2a in the digestive tract T from the natural opening such as the mouth or anus.
  • the magnetic flux radiating means 10 and 10a are arranged opposite to the magnetic anchor 20 attached to the lesioned part T2a, and the position and posture of the magnetic anchor 20 by the stepping operation of the foot of the foot operating parts 30 and 30 ′ are adjusted.
  • the endoscope 40 can easily confirm the tip position of the incision tool, and the lesion T2a can be smoothly separated.
  • This makes it possible for one person to easily and quickly perform an ESD surgical operation with an incision tool by concentrating the hand and does not obstruct the field of view with an endoscope as in the prior art. May damage the normal part and cause complications such as perforation, damage the blood vessels and cause major bleeding, and even bleeding may cause serious complications due to the inability to stop the bleeding site Therefore, it is possible to provide an ESD surgical system and a surgical method using the same, which reduce the operation time and the surgical invasion and are excellent in the operability and reliability of the operation.
  • each member and mechanism of the magnetic anchor, the magnetic flux radiating means, and the magnetic flux control means, or the angle sensor and / or position sensor for positioning the magnetic flux radiating means may be appropriately various. Modifications and changes can be made, and combinations thereof can be used as appropriate. Below, these various deformation
  • FIG. 11 is a perspective view showing the concept of a magnetism generating element 15A according to still another modified embodiment of the present invention.
  • the magnetism generating element 15A of this modified embodiment includes a magnetic core member 15Ab having an elongated rod shape or a linear shape (or may be a strip plate shape), and a hollow that is externally fitted to the magnetic core member 15Ab so as to be slidable in the longitudinal direction.
  • the magnetic field shielding cylinder 15Aa made of a magnetic field shielding member.
  • the magnetic flux control means of this modified embodiment draws a linear member 15Ac inserted through an endoscope (not shown) and connected to the rear end of the magnetic field shield cylinder 15Aa to, for example, an operation portion of the endoscope (not shown).
  • the magnetic flux intensity of the magnetism generating element 15A can be controlled by sliding the magnetic field shield cylinder 15Aa back and forth in the longitudinal direction with respect to the magnetic core member 15Ab by pulling or pushing the shaped member 15Ac. Therefore, the electric wiring of the magnetic flux radiating means is unnecessary, and the magnetic flux control means can be greatly simplified and the cost can be reduced.
  • FIG. 12 is a plan view showing a concept of a magnetism generating element 15B according to still another modified embodiment of the present invention.
  • the magnetism generating element 15B of this modified embodiment is obtained by wiring a fine wire 15Ba in a wavy line shape or a sine curve shape with a very short period, for example, on a semiconductor substrate 15Bb made of an elongated strip plate such as Si.
  • the symbol 15Bc is a pair of lead wires connected to the conductive wire 15Ba.
  • Such a magnetism generating element 15B is applied to the magnetic flux radiation cylinder 10 (FIG. 3 etc.) of the first embodiment or one loop-shaped magnetic flux radiation means 10a (FIG. 9) of the second embodiment and is compact magnetic flux radiation.
  • a means can be comprised and the increase in the pain in insertion in a patient's biomedical officer can be suppressed further.
  • FIG. 13 is an enlarged view of the distal end portion of the endoscope to which the magnetic flux radiation means (flux radiation cylinder) 10b showing the mounting concept of the magnetic flux radiation means positioning angle sensors 48 and 49 according to another modified embodiment of the present invention is mounted. is there.
  • angle sensors 48 and 49 using, for example, a known uniaxial to triaxial strain gauge are provided on the outer surface of the curved portion 42b adjacent to the distal end portion 41 of the endoscope 40, for example, at two positions perpendicular to the axis. Attached to the distal end portion 41 of the endoscope 40 by the magnetic flux radiation means positioning control unit 51 via signals 48a and 49a from angle sensors 48 and 49 for detecting the bending angle of the bending portion 42b.
  • the bending drive unit (not shown) can be controlled to stop and hold at any desired bending angle position of the magnetic flux radiating tube 10 (see FIGS. 1 and 2 and FIG. 14 described later).
  • FIG. 14 shows a magnetic flux radiation means (flux radiation cylinder) 10 showing the concept of mounting magnetic flux radiation means positioning angle sensors (rotation angle sensors) 54 and 55 according to still another modified embodiment of the present invention.
  • 2 is a perspective view of an endoscope 40.
  • FIG. 14 for example, members having the same functions as in FIG. 2, for example, are given the same reference numerals or symbols even if the shapes are partially different.
  • the bending drive part of the endoscope 40 is accommodated inside a disk-shaped operation part main body 43a that is large enough to be grasped and held by a user with one hand, for example, the left hand.
  • the base end portions of the pair of bending operation wires are wound and fixed, and the sprocket that pulls and relaxes the pair of bending operation wires, the motor that rotates the sprocket, and the sprocket and the motor are arranged between the motor and the motor.
  • a plurality of switches for controlling the operation of various functional units of the endoscope 40 along the outer peripheral surface of the operation unit main body 43a for example, an air / water supply button, a suction button, a joystick device, a clutch switch 53, and a scope switch, all not shown
  • An engagement switch or the like is provided.
  • a joystick device is disposed in the vicinity of the universal cord connecting portion at the upper end of the operation portion main body 43a.
  • the clutch switch 53 is a switch that releases (disconnects) transmission of the driving force of the bending drive unit.
  • the motor, the angle sensor 54, and the clutch operation detection switch (not shown) are connected to the endoscope bending control unit 51a in the magnetic flux radiation means positioning control unit 51 through lines such as a control signal 54a.
  • the bending drive unit is connected to an angle sensor 55 such as a potentiometer for detecting the rotation position as a rotation position detection means of the sprocket, and this angle sensor 55 is connected to the inside via a line of a control signal 55a.
  • a rotational position signal indicating the rotational position of the detected sprocket is connected to the endoscope bending control unit 51a.
  • the magnetic flux radiating means positioning control unit 51 then controls the motor based on the control signals 54a and 55a from the angle sensors 54 and 55 as the rotational position detecting means according to the bending operation signal from the joystick device 52 as the bending operation input means.
  • the bending portion 42b is electrically operated to bend and cooperate with an endoscope bending control unit 51a to stop at any desired bending angle position of the magnetic flux radiating means 10 attached to the endoscope distal end portion 41. And control to hold.
  • an engagement switch (not shown) is disposed in the vicinity of the joystick device 52.
  • the engage switch is a push-type switch, and is set to perform a lock operation by one push and an unlock operation by another push.
  • the movement of the joystick of the joystick device 52 is fixed, and the bending portion 42b is fixed (locked) at a desired bending angle.
  • the joystick is tilted to input a bending operation, and normally, when the hand is released, the joystick is prevented from returning to the neutral state by the frictional force of the brake member. Can be fixed.
  • the angle sensor or / and position sensor for positioning the magnetic flux radiation means uses a mechanical type, a fluid type, an optical gyro, a vibration gyro, an accelerometer, a strain meter, a potentiometer, an encoder, etc.
  • Various known angle and / or position sensors are applied and provided at appropriate positions of the endoscope 40 or / and the magnetic flux radiating means 10, and attached to the endoscope distal end portion 41 via the magnetic flux radiating means positioning control unit.
  • the magnetic flux radiating means 10, 10a, 10b can be stopped and held at any desired bending angle position.
  • FIG. 15A is a conceptual diagram of a magnetic anchor 20A according to another embodiment of the present invention
  • FIG. 15B is a conceptual diagram of a magnetic anchor 20B according to still another embodiment.
  • members having the same functions as the magnetic anchors 20, 20 ′, 20 ′′, etc. in FIGS. is there.
  • the magnetic anchors 20A and 20B are each composed of at least two magnetic members 22A1, 22A2 and 22B1, 22B2 made of different materials in the longitudinal direction. This is different from the magnetic anchor of the above embodiment, and is formed in a substantially cylindrical shape and a substantially tapered cone shape, respectively.
  • the magnetic members 22A and 22B are composed of at least two different kinds of magnetic members 22A1, 22A2, and 22B1, 22B2 in the longitudinal direction, and have the same S or N pole as the opposite magnetic flux radiating means. Since the magnetic members 22A1 and 22B1 of the magnetic members 20A and 20B can be formed on the tip surfaces of the magnetic members, the repulsive force due to the magnetic flux from the opposing surface of the magnetic flux radiating means reaches the tip surfaces of the magnetic members 22A1 and 22B1 of the magnetic anchors 20A and 20B, respectively. Therefore, it is possible to prevent the magnetic member tip portions 22Aa and 22Ba of the magnetic anchors 20A and 20B from being inverted in the direction of the facing surface of the magnetic flux radiating means, and the reliability and safety of the ESD surgery are ensured.
  • FIG. 16A is a conceptual diagram of a magnetic anchor 20C according to still another embodiment of the present invention
  • FIG. 16B is a conceptual diagram of a magnetic anchor 20D according to still another embodiment.
  • the magnetic anchors 20C and 20D in the embodiment of FIGS. 16 (a) and 16 (b) are magnetic rotating members with respect to the magnetic anchors 20 ′ and 20 ′′ according to the embodiment of FIGS. 6 (a) and 6 (b), respectively. Both 22Cc and 22Dc are the same except for the point that the magnetic fluid is sealed. Therefore, in FIG. 16, the members having the same functions as those of the magnetic anchors 20 ′ and 20 ′′ in FIG.
  • the magnetic members 22C and 22D of the magnetic anchors 20C and 20D respectively include a substantially cylindrical magnetic outer cylinder 22Ca connected to the engaging member 21, a substantially tapered and substantially conical hollow outer cylinder 22Da, and a magnetic outer cylinder.
  • the magnetic body rotating members 22Cc and 22Dc are encapsulated in a magnetic fluid (also referred to as “magnetic fluid”) so as to be rotatable around central axes 22Cd and 22Dd.
  • This magnetic fluid is a magnetic colloid solution composed of ferromagnetic fine particles such as magnetite and manganese zinc ferrite, a surfactant covering the surface, and a base liquid (water or oil).
  • the ferromagnetic fine particles in the magnetic fluid maintain a stable dispersed state without agglomeration or settling in the base liquid due to the affinity between the surfactant and the base liquid and the repulsive force between the surfactants.
  • the ferromagnetic fine particles have a diameter of about 10 nm, for example, and are as small as about 1/10 of the influenza virus.
  • the magnetic members 22C and 22D configured as described above rotate the magnetic body around the central axis once the magnetic rotating members 22Cc and 22Dc are applied with a finger or the like in the magnetic outer cylinders 22Ca and 22Da made of a magnetic material.
  • the members 22Cc and 22Dc are always rotated so that a gyro moment is applied, and the magnetic member 22C and 22D are moved from the distal end portions 22Caa and 22Daa toward the base end portions 22Cb and 22Db by the magnetic flux from the magnetic flux radiating means.
  • Generation of a magnetic field gradient of the magnetic fluid in 22Cc and 22Dc also has a superposition effect, and the distal end portion 22Caa in which a different polarity with respect to the proximal end portion 22Cb of the magnetic member 22C is formed is attracted toward the distal end surface direction of the magnetic flux emitting tube 10. Inversion can be prevented.
  • the magnetic anchor 20D of still another embodiment is opposed to the entire outer peripheral surface of the tapered conical cylindrical magnetic outer cylinder 22Da that gradually expands from the base end 22Db to the front end 22Daa of the magnetic member 22D. Since the same S or N pole as the front end surface of the magnetic flux radiating means is formed, the electromagnetic repulsion force due to the magnetic flux from the front end surface of the magnetic flux radiating means extends to the outer peripheral surface of the end portion of the magnetic member 22D that gradually increases. Therefore, the effect of preventing the tip portion 22Daa of the magnetic member 22D having a different polarity (N or S pole) from being attracted in the tip surface direction of the magnetic flux radiating means from being reversed is also superimposed.
  • N or S pole polarity
  • ESD surgical system the accurate field of view by the endoscope is sufficiently ensured. Therefore, the ESD surgical operation with an incision tool such as an electric scalpel can be easily and quickly performed. It is possible to realize a surgical system and surgical method for endoscopic submucosal dissection (ESD) that reduces surgical invasion, and is excellent in operability and reliability of surgery, and economical efficiency. Can contribute to breakthrough progress in the field.
  • ESD endoscopic submucosal dissection
  • Magnetic flux radiation means (flux radiation cylinder) 10a Magnetic flux radiation means (looped magnetic coil) 11, 22'a Outer cylinder 11 ', 11'', 11a (Elastomer or resin-based material) thin film 12 Inner cylinder 13 Front end wall 14 Rear end wall 15 Magnetization element (magnetic coil) 15a, 16a Conductor coil 15b Magnetic core member 15c, 15Bc Lead wire 16 Magnetism generating element (looped magnetic coil) 17, 18 Angle sensor (eg gyro type) 17a, 18a, 48a, 49a, 54a, 55a Control signal 20, 20 ', 20'', 20A, 20B Magnetic anchor 21 Engaging member 21a Clip 22, 22', 22 '', 22A, 22A1, 22A2, 22B, 22B1, 22B2, 22C, 22D Magnetic member 22a, 22'aa, 22''aa, 22Aa, 22Ba, 22Caa, 22Daa Tip 22b, 22'b, 22''b, 22Ab

Abstract

Provided is a surgery system and a surgery method for ESD excellent in operability, safety and reliability of surgery with reduction of time spent in surgery and surgical invasion.  The surgery system for ESD includes magnetic anchors (20, 20’, 20’’, 22A, 22B) composed of an engaging member (21) engaged with a lesion region (T2a) of the inner surface of a human body tract (T) and small-diameter magnetic members (22, 22’, 22’’, 22A, 22B) connected with one another, a magnetic flux radiating means (10, 10a, 10b) mounted in the end (41) of the endoscope to be inserted into the vicinity of the legion region of the human body tract and having hermetically-sealed magnetism producing elements (15, 15A, 15B, 16) to give electromagnetic repelling forces to the magnetic anchors, and a magnetic flux control means (70) provided to the outside of the human body for controlling from the outside the distribution of the magnetic flux radiated from the magnetic flux radiating means.  The magnetic flux control means (70) controls, from the outside, the distribution of the magnetic flux radiated from the magnetic flux radiating means so as to give electromagnetic repelling forces to the magnetic anchors, and the lesion region engaged with the engaging member is pulled in the direction of removal from the muscle layer (T1) of the human body tract.

Description

内視鏡的粘膜下層剥離術(ESD)用外科手術システム及び外科手術方法Surgical system and surgical method for endoscopic submucosal dissection (ESD)
 本発明は、生物の生体管内の病変部を切除する内視鏡的粘膜下層剥離術(Endoscopic Submucosal Dissection:ESD)用外科手術システム及び外科手術方法に関し、特に早期消化官癌等の病変部を切除する際に切除する病変部を任意の方向に引き上げ内視鏡による視界を確保して病変部の下層を剥離し易くするESD用外科手術システム及び外科手術方法に関する。 The present invention relates to an endoscopic submucosal dissection (ESD) surgical system and a surgical method for resecting a lesion in a living organism's biological duct, and in particular, excising a lesion such as early gastrointestinal cancer. The present invention relates to an ESD surgical system and a surgical method for raising a lesion part to be excised in an arbitrary direction to secure a field of view by an endoscope and easily peeling a lower layer of the lesion part.
 従来から胃腸などの消化管の中に挿入シースを挿入する内視鏡を用いて早期消化官癌の病変部を切除することが行われている。この早期消化官癌切除術では、内視鏡的粘膜切除術(Endoscopic mucosal resection:EMR)に加えて、大きな病変部を切除するためにITナイフ、フレックスナイフ、フックナイフなどの高周波ナイフを用いて病変粘膜を剥離するESDが普及している。 Conventionally, the lesion of early gastrointestinal cancer has been excised using an endoscope that inserts an insertion sheath into the digestive tract such as the gastrointestinal tract. In this early gastrointestinal cancer resection, in addition to endoscopic mucosal resection (EMR), high-frequency knives such as IT knives, flex knives and hook knives are used to remove large lesions. ESD that exfoliates the diseased mucosa is widespread.
 このESDにおいては、内視鏡手術により胃に穴を開けてしまう胃壁穿孔率が数%と高率であるため、安全に病変部を切除することが課題となっている。このため、早期消化官癌等の病変部を切除する場合、粘膜下層と筋層との間に生理食塩水を注入して病変部を隆起させ、スネアや高周波ナイフを用いて粘膜下層の切開、剥離を行ってきた。 In this ESD, since the gastric wall perforation rate of puncturing the stomach by endoscopic surgery is as high as several percent, it is an issue to safely remove the lesion. For this reason, when excising a lesion such as early gastrointestinal cancer, injecting physiological saline between the submucosal layer and the muscular layer to raise the lesion, incision of the submucosa using a snare or a high-frequency knife, Peeling has been done.
 しかしながら、上述のような生理食塩水を局所注入して病変部を隆起させる場合、病変部の切開、剥離には十分な病変部の隆起が必要であるが、注入された生理食塩水は時間の経過とともに粘膜下層に拡散して人工的に形成した粘膜隆起は徐々に平坦になって行き、筋層を穿孔する危険性が高くなるという問題点があった。そこで、病変部を切除する際に、局所注入した生理食塩水が拡散して粘膜隆起が平坦になった場合、再度生理食塩水を局所注入することや、保水能力の高いヒアルロン酸を局所注入して病変部を隆起させることが行われているが、他の手段を併用して隣接する筋層乃至は正常組織との間の間隔を広げる種々の方法が試みられている。 However, when the lesion is raised by locally injecting physiological saline as described above, it is necessary to raise the lesion sufficiently for incision and peeling of the lesion. Over time, the mucous membrane protuberance formed artificially by diffusing into the submucosa layer gradually became flat, and there was a problem that the risk of perforating the muscle layer increased. Therefore, when excising the lesion, if the saline injected locally diffuses and the mucosal ridge becomes flat, the saline can be injected again locally, or hyaluronic acid with high water retention capability can be injected locally. However, various methods have been tried to increase the distance between adjacent muscle layers or normal tissues by using other means together.
 そのような従来の方法の第1例として、図17に示すように、病変部を剥離し易い状態とするために、クリップ162を備えた磁気アンカー164を利用して病変部を持ち上げる磁気アンカー誘導装置が提案されている。(例えば特許文献1参照)。 As a first example of such a conventional method, as shown in FIG. 17, in order to make a lesion easily peelable, a magnetic anchor guide for lifting a lesion using a magnetic anchor 164 provided with a clip 162 is used. A device has been proposed. (For example, refer to Patent Document 1).
 以下の説明において、生体の自然開口部又は別途開口された内視鏡用生体腔部に対して、生体内方向の機材又は生体管の部分を「先端」又は「前部」、生体外方向の機材又は生体管の部分を「後端」又は「後部」と呼ぶ。 In the following description, with respect to the natural opening portion of the living body or the living body portion for the endoscope which is opened separately, the in-vivo direction equipment or the portion of the living tube is referred to as the “tip” or “front portion”, The part of the equipment or the biological tube is called “rear end” or “rear part”.
 第1例の磁気アンカー誘導装置は、病変部161に取付けられたクリップ162と、このクリップ162に対して連結部163を介して取付けられた磁気アンカー164と、体外から磁気アンカー164に駆動力を与える磁気誘導体165とを備えている。この磁気アンカー誘導装置は次のような操作により病変部161を持ち上げる。まず、従来の方法と同様にして、内視鏡166を用いて病変部161の下部に生理食塩水167を注入することにより病変部161を隆起させる。次いで、把持鉗子168によってクリップ162を病変部161に取付ける。次いで、内視鏡166を引き抜き、把持鉗子168に磁気アンカー164を取付け、再度内視鏡166を挿入し、体外の磁気誘導体165を操作することにより磁気アンカー164を患部の所定位置に固定する。 The magnetic anchor guide device of the first example includes a clip 162 attached to a lesioned part 161, a magnetic anchor 164 attached to the clip 162 via a connecting part 163, and a driving force to the magnetic anchor 164 from outside the body. A magnetic derivative 165 to be provided. This magnetic anchor guiding device lifts the lesioned part 161 by the following operation. First, similarly to the conventional method, the lesion 161 is raised by injecting physiological saline 167 into the lower part of the lesion 161 using the endoscope 166. Next, the clip 162 is attached to the lesion 161 with the grasping forceps 168. Next, the endoscope 166 is pulled out, the magnetic anchor 164 is attached to the grasping forceps 168, the endoscope 166 is inserted again, and the magnetic derivative 165 outside the body is operated to fix the magnetic anchor 164 at a predetermined position of the affected part.
 その後、内視鏡166を引き抜き、把持鉗子168に連結部163を取付け、再度内視鏡166を挿入し、患部内で連結部163の一端をクリップ162に取付けるとともに連結部163の他端を磁気アンカー164に取付ける。この状態で外部から磁気誘導体165を操作してクリップ162を引っ張ることにより病変部161を持ち上げることができ、この状態でITナイフ等により病変部を安全に切除することができるという方法である。 Thereafter, the endoscope 166 is pulled out, the connecting portion 163 is attached to the grasping forceps 168, the endoscope 166 is inserted again, one end of the connecting portion 163 is attached to the clip 162 in the affected area, and the other end of the connecting portion 163 is magnetically connected. Attach to anchor 164. In this state, the lesioned part 161 can be lifted by operating the magnetic derivative 165 from the outside and pulling the clip 162, and in this state, the lesioned part can be safely excised with an IT knife or the like.
 また、従来の第2例として、図18に示すように、1本の内視鏡用チャンネル171と2本の処置具誘導挿入具チャンネル172を有する誘導シース173を使用し、2本の処置具誘導挿入具チャンネル172からそれぞれ挿入された2本の鉗子174、175により図示しない病変部を持ち上げ、1本の内視鏡用チャンネル171から挿入された内視鏡176内を通された電気メス177により前記病変部を切除する内視鏡治療装置が提案されている。(例えば特許文献2参照)。 As a second conventional example, as shown in FIG. 18, a guide sheath 173 having one endoscope channel 171 and two treatment instrument guide insertion instrument channels 172 is used, and two treatment instruments are used. An electric knife 177 passed through an endoscope 176 inserted from one endoscope channel 171 is lifted up by a two forceps 174 and 175 inserted from the guide insertion tool channel 172, respectively. An endoscopic treatment apparatus for excising the lesion is proposed. (For example, refer to Patent Document 2).
 また、従来の第3例として、図19に示すように、先端部が互いに対向しており、基部で結合された開閉自在な一対の爪部112と、内部に一対の爪部112が挿入され、一対の爪部112に沿って相対的に移動可能に設けられた爪部112を閉じる押えリング116と、押えリング116内に挿入され、一対の爪部112の基部が取り外し可能に係合された図示しない連結板と、からなる把持具111と、一対の爪部112の基部に接続され、押えリング116内を通って伸びている極細の糸115とを備える内視鏡処置具において、先端部が所定角度だけ曲げられた可撓性シース129が内視鏡132に取付けられ、可撓性シース129の先端から鉗子挿入口より外部に伸びた状態の複数本の極細の糸115の全てを通して図示しない後端部のチューブ継手のスライダ側の開口から取り出し、この先端部が曲げられた可撓性シース129を再度内視鏡132の鉗子挿入口から挿入して先端部が曲げられた可撓性シース129の先端部が内視鏡132の鉗子孔137から突き出るようにする。次いで、前記チューブ継手を回転させることにより、先端部が曲がっている可撓性シース129の先端部が消化官内の粘膜層153の病変部151から離れる方向、すなわち可撓性シース129の先端部が病変部151を隆起させようとする方向に位置するようにする。この状態で体外の外部からそれぞれの極細の糸115を引っ張ると、病変部151はテント状に上方に隆起される。そこで、内視鏡132の別の鉗子挿入口138からITナイフ157を挿入し、病変部151の切開、剥離を行う方法が提案されている。(例えば特許文献3参照)。 Further, as a conventional third example, as shown in FIG. 19, a pair of freely openable / closable claw portions 112 having distal ends facing each other and coupled at a base portion and a pair of claw portions 112 inserted therein are inserted. A presser ring 116 that closes the claw part 112 provided so as to be relatively movable along the pair of claw parts 112, and a base part of the pair of claw parts 112 are detachably engaged with each other. In the endoscopic treatment instrument comprising: a gripping tool 111 comprising a connecting plate (not shown); and an ultrathin thread 115 connected to the base of the pair of claws 112 and extending through the presser ring 116. A flexible sheath 129 whose portion is bent by a predetermined angle is attached to the endoscope 132, and passes through all of the plurality of ultrafine threads 115 extending from the distal end of the flexible sheath 129 to the outside from the forceps insertion port. Not shown The flexible sheath 129, which is taken out from the slider side opening of the tube joint at the end and bent at the distal end, is inserted again from the forceps insertion opening of the endoscope 132, and the flexible sheath 129 is bent at the distal end. The distal end of the endoscope protrudes from the forceps hole 137 of the endoscope 132. Next, by rotating the tube joint, the distal end portion of the flexible sheath 129 having a bent distal end portion is separated from the lesioned portion 151 of the mucosal layer 153 in the digestive organ, that is, the distal end portion of the flexible sheath 129. Is located in the direction in which the lesioned part 151 is to be raised. In this state, when each ultrafine thread 115 is pulled from outside the body, the lesioned portion 151 is raised upward in a tent shape. Therefore, a method has been proposed in which an IT knife 157 is inserted from another forceps insertion port 138 of the endoscope 132 to incise and remove the lesioned portion 151. (For example, refer to Patent Document 3).
 また、従来の第4例として、図20に示すように、体外における操作により体内組織病変部251を把持するクリップ210と、別のクリップ216により病変部251と対向する正常な体内組織のマーキング部252を把持する係合部230と、弾力性部材221が連結され、クリップ210と係合部230を所定長で連結する連結部220とを備えたつり上げ用クリップ201を2本用い、病変部251の2箇所の病変部251a、251bを把持して弾性部材221の緊張力により病変部251が対向方向へ引っ張られ、病変部251a、251bが消化管壁250から剥離した状態に保持される。この状態で、図示しない内視鏡内の鉗子チャンネルに電子メス260が挿入され、病変部251の粘膜下層253の剥離を行う医療用処置具が提案されている(例えば特許文献4参照)。この場合、クリップ210、連結部220及び係合部230は、図示しない内視鏡のクリップ鉗子に挿入可能な形状である。 Further, as a conventional fourth example, as shown in FIG. 20, a clip 210 that grips a body tissue lesion 251 by an operation outside the body and a normal body tissue marking unit that faces the lesion 251 by another clip 216. Two lifting clips 201 each having an engaging portion 230 for holding 252 and an elastic member 221 connected to each other and a connecting portion 220 for connecting the clip 210 and the engaging portion 230 at a predetermined length are used. The two lesioned portions 251a and 251b are gripped, and the lesioned portion 251 is pulled in the opposite direction by the tension of the elastic member 221, and the lesioned portions 251a and 251b are held in a state of being separated from the digestive tract wall 250. In this state, a medical treatment instrument has been proposed in which an electronic knife 260 is inserted into a forceps channel in an endoscope (not shown) and the submucosal layer 253 of the lesioned portion 251 is peeled off (see, for example, Patent Document 4). In this case, the clip 210, the connecting portion 220, and the engaging portion 230 have a shape that can be inserted into clip forceps of an endoscope (not shown).
 さらに、従来の第5例として、図21に示すように、筒状に形成され、上面に中心軸線方向に沿って延びる図示しないスリットが設けられて、内視鏡Enの先端に装着される筒部303と、スリットに沿うように延びて筒部303に配され、内視鏡Enに対して消化管内組織(病変部)を保持する捕捉部305と、を備え、捕捉部305は、先端カバー308に枢支された一対の鉗子片308A、308Bと、図示しない操作ワイヤを介して一対の鉗子片308A、308Bを開閉操作する図示しない操作部と、操作ワイヤを進退自在に挿通させる可撓性を有するシース312と、捕捉部305を移動して、消化管内組織(病変部)の保持位置を筒部303に対して接離させる移動部321と、を備えている内視鏡治療装置が提案されている(例えば特許文献5参照)。 Furthermore, as a fifth conventional example, as shown in FIG. 21, a cylinder that is formed in a cylindrical shape and is provided with a slit (not shown) that extends along the central axis in the upper surface, and is attached to the distal end of the endoscope En. A portion 303 and a capture portion 305 that extends along the slit and is disposed in the tube portion 303 and holds the tissue (lesioned portion) in the digestive tract with respect to the endoscope En. A pair of forceps pieces 308A and 308B pivotally supported by 308, an operation portion (not shown) for opening and closing the pair of forceps pieces 308A and 308B via an operation wire (not shown), and flexibility for allowing the operation wire to be inserted in a freely retractable manner Proposal of an endoscopic treatment device including a sheath 312 having a moving part 321 and a moving part 321 that moves the capturing part 305 and moves the holding position of the tissue (lesioned part) in the digestive tract with respect to the tubular part 303 Has been (For example, see Patent Document 5).
 移動部321は、筒部303の基端側のフード(第一位置)306に接続されて捕捉部305のシース312を筒部303に対して進退自在に挿通させる一方、径方向への移動を規制する支持部322と、捕捉部305に沿って延設され、一端がフード306よりも先端側の筒部303のキャップ(第二位置)307に第一回転軸323によって枢支され、かつ、他端が捕捉部305の先端カバー308に配された第二回転軸325によって枢支されたリンク部材(連結部)326とを備えている。
特開2004-105247号公報 特開2000-325303号公報 特開2007-143869号公報 特開2008-62004号公報 特開2008-173369号公報
The moving part 321 is connected to a hood (first position) 306 on the proximal end side of the cylindrical part 303 and allows the sheath 312 of the capturing part 305 to be inserted into the cylindrical part 303 so as to be movable forward and backward, while moving in the radial direction. A supporting portion 322 for regulating, and extending along the capturing portion 305, one end of which is pivotally supported by a first rotating shaft 323 on a cap (second position) 307 of the cylindrical portion 303 on the tip side of the hood 306, and The other end is provided with a link member (connecting portion) 326 pivotally supported by a second rotating shaft 325 disposed on the tip cover 308 of the capturing portion 305.
JP 2004-105247 A JP 2000-325303 A JP 2007-143869 A Japanese Patent Laid-Open No. 2008-62004 JP 2008-173369 A
 しかしながら、従来の特許文献1に記載の磁気アンカー誘導装置は、外部からの磁気誘導体165の操作にはESD外科手術者が操作することができないために、別の人がESD外科手術者の指示に従って操作する必要があり、操作が煩雑で手間がかかるという問題点がある。 However, the conventional magnetic anchor guiding device described in Patent Document 1 cannot be operated by the ESD surgeon when operating the magnetic derivative 165 from the outside, so that another person follows the instruction of the ESD surgeon. There is a problem that it is necessary to operate, and the operation is complicated and time-consuming.
 また、従来の特許文献2に記載の内視鏡治療装置は、2本の処置具誘導挿入具チャンネル172からそれぞれ挿入された2本の鉗子174、175により病変部を持ち上げるようにしている構成であることから、2本の鉗子174、175の操作と電気メス177によるESD外科手術操作を同時に同一人で行うことができず別人によるESD外科手術者の指示に従う操作が煩雑で手間がかかるとともに、処置具誘導挿入具チャンネルの数が増えた分だけ誘導シース173の外径が大きくなるため患者の苦痛が大きくなる等々の問題点がある。 Further, the conventional endoscope treatment apparatus described in Patent Document 2 has a configuration in which a lesioned part is lifted by two forceps 174 and 175 inserted from two treatment tool guide insertion tool channels 172, respectively. Therefore, the operation of the two forceps 174 and 175 and the ESD surgical operation with the electric knife 177 cannot be performed simultaneously by the same person, and the operation according to the instruction of the ESD surgeon by another person is complicated and time-consuming. Since the outer diameter of the guiding sheath 173 increases as the number of treatment instrument guide insertion tool channels increases, there are problems such as increased patient pain.
 また、従来の特許文献3に記載の内視鏡治療装置は、外部から複数の極細の糸115を引っ張って病変部を持ち上げる操作とITナイフ157によるESD外科手術操作を同時に同一人で行うことができず操作が煩雑で手間がかかるという問題点がある。 In addition, the conventional endoscopic treatment apparatus described in Patent Document 3 can simultaneously perform an operation of pulling a plurality of ultrafine threads 115 to lift a lesioned part and an ESD surgical operation using an IT knife 157 by the same person. There is a problem that the operation is complicated and time-consuming.
 また、従来の特許文献4に記載の医療用治療装置は、体外からの操作によりつり上げ用クリップ201を2本用いて消化管250内病変部251の2箇所の病変部251a、251bと病変部251と対向する正常な消化管250内組織のマーキング部252近傍2箇所を把持する操作が煩雑であって、ESD外科手術操作を同時に同一人で行うことが難しく手間が掛かるという問題点がある。 In addition, the conventional medical treatment apparatus described in Patent Document 4 uses two lifting clips 201 by an operation from outside the body, and uses two lesions 251a and 251b and a lesion 251 in the lesion 251 in the digestive tract 250. Therefore, there is a problem in that it is difficult to perform the ESD surgical operation by the same person at the same time because the operation for grasping the two portions in the vicinity of the marking portion 252 of the tissue in the normal gastrointestinal tract 250 facing is difficult.
 また、従来の特許文献5に記載の内視鏡治療装置は、体外からの操作により捕捉部305で消化管内の病変部を保持する操作と電気メスによるESD外科手術操作を同時に同一人で行うことができず操作が煩雑で手間がかかるとともに、筒部303及びその上に捕捉部305を装着した分だけ内視鏡先端部の外径が大きくなるため患者の苦痛が大きくなる等々の問題点がある。 In addition, the conventional endoscopic treatment device described in Patent Document 5 simultaneously performs an operation for holding a lesion in the digestive tract by the capture unit 305 and an ESD surgical operation using an electric scalpel by an operation from outside the body by the same person. In addition, the operation is complicated and troublesome, and the outer diameter of the endoscope distal end portion is increased by the amount of the tube portion 303 and the capture portion 305 mounted thereon, resulting in increased patient pain. is there.
 さらに、上記諸問題に加え、従来の特許文献1~5において提案されている消化管内病変部を把持して持ち上げる種々の手段は、ESD外科手術者が内視鏡による視界を十分に確保するため手術中に状況に応じて瞬時に病変部を任意の方向に引き上げる操作が必要であるが、いずれもこの病変部を任意の方向に引き上げる操作を瞬時にESD外科手術者自ら行うことがほとんど不可能な構成となっている問題点がある。 In addition to the above problems, various means for grasping and lifting the lesion in the digestive tract proposed in the conventional patent documents 1 to 5 ensure that the ESD surgeon sufficiently secures the field of view through the endoscope. During surgery, it is necessary to instantaneously raise the lesion in any direction depending on the situation, but in any case, it is almost impossible for the ESD surgeon himself to instantly pull up the lesion in any direction. There is a problem that has become a simple structure.
 このため、上記特許文献等において提案されている従来のESD用外科手術装置では、ESD外科手術者が手術中に状況に応じて内視鏡による視界を十分に確保することができないことから生体官内筋層を穿孔する危険性が高く、十分な熟練を要するとともに、ESD外科手術に時間が掛かるなど患者にとって手術侵襲が過大になるという本質的な問題点が依然として残されている。 For this reason, in the conventional ESD surgical apparatus proposed in the above-mentioned patent documents and the like, the ESD surgeon cannot sufficiently secure the field of view by the endoscope according to the situation during the operation. There remains a substantial problem that the surgical invasion is excessive for the patient, such as high risk of perforating the inner muscle layer, requiring sufficient skill, and time-consuming ESD surgery.
 そこで、本発明は、上記従来技術の問題点に鑑みてなされたものであり、本発明の目的は、手術時間及び手術侵襲を低減し、手術の操作性、安全性及び信頼性に優れるESD用外科手術システム及び外科手術方法を提供することにある。 Therefore, the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to reduce the operation time and surgical invasion, and is excellent in operability, safety and reliability of surgery. A surgical system and a surgical method are provided.
 上記目的を達成するため、請求項1の発明の内視鏡的粘膜下層剥離術(ESD)用外科手術システムは、生体管内面の病変部位に係着される係着部材と連結された小径の磁気部材からなる1個又は複数の磁気アンカーと、前記生体管内の病変部位近傍に挿入される内視鏡先端部に装着され、前記磁気アンカーに電磁反発力を付与する1体又は複数体の密封された磁気発生要素を備えた磁束放射手段と、生体の外部に設けられ、前記磁束放射手段から放射される磁束の配分を外部から制御する磁束制御手段と、を備え、前記磁束制御手段は、前記磁気アンカーに電磁反発力を与えて、前記係着部材に係着された病変部位を生体管の筋層から引離す方向に牽引するように、前記磁束放射手段からの磁束分布を外部から制御することを特徴としている。 In order to achieve the above object, a surgical system for endoscopic submucosal dissection (ESD) according to the first aspect of the present invention has a small diameter connected to an anchoring member that is anchored to a lesion site on the inner surface of a living tube. One or a plurality of magnetic anchors made of a magnetic member, and one or a plurality of sealed bodies that are attached to the distal end portion of an endoscope that is inserted in the vicinity of a lesion site in the living body tube and imparts an electromagnetic repulsive force to the magnetic anchor Magnetic flux radiating means including the generated magnetism element, and magnetic flux control means provided outside the living body and controlling the distribution of magnetic flux radiated from the magnetic flux radiating means from the outside, the magnetic flux control means, The magnetic flux distribution from the magnetic flux radiating means is controlled from the outside so that an electromagnetic repulsive force is applied to the magnetic anchor, and the lesion site engaged with the engaging member is pulled away from the muscle layer of the biological duct. It is characterized by That.
 請求項2の発明は、請求項1記載のESD用外科手術システムであって、前記内視鏡又は/及び磁束放射手段に設けられた一つ又は複数の角度センサ又は/及び位置センサを介して、前記内視鏡先端部に装着された磁束放射手段の任意の所望する湾曲角度位置に停止して保持するように前記内視鏡に設けられた湾曲駆動部を制御する磁束放射手段位置決め制御ユニットをさらに備えることを特徴としている。 A second aspect of the invention is the ESD surgical system according to the first aspect, wherein one or a plurality of angle sensors or / and position sensors provided in the endoscope or / and the magnetic flux radiating means are provided. The magnetic flux radiation means positioning control unit for controlling the bending drive portion provided in the endoscope so as to stop and hold at any desired bending angle position of the magnetic flux radiation means mounted on the endoscope tip. Is further provided.
 請求項3の発明は、請求項1又は請求項2記載のESD用外科手術システムであって、前記磁束放射手段は、エラストマー又は樹脂系材料の薄膜からなり、内視鏡先端部外径に着脱可能に外嵌される内筒と、該内筒の外周に円周方向に略等配され軸方向に沿って併設される複数の細長棒状又は帯板状に形成された磁気発生要素とからなる磁束放射筒であって、前記磁気発生要素は、エラストマー又は樹脂系材料の薄膜により密封されることを特徴としている。 A third aspect of the present invention is the ESD surgical system according to the first or second aspect, wherein the magnetic flux radiating means is made of a thin film of an elastomer or a resin material and is attached to and detached from the outer diameter of the distal end portion of the endoscope. An inner cylinder that is externally fitted and a plurality of elongated rods or strips that are substantially equally arranged in the circumferential direction on the outer circumference of the inner cylinder and are provided along the axial direction. In the magnetic flux radiation cylinder, the magnetism generating element is sealed with a thin film of elastomer or resin material.
 請求項4の発明は、請求項1又は請求項2記載のESD用外科手術システムであって、前記磁束放射手段は、フレキシブルな細長棒状又は帯板状に形成された磁気発生要素がエラストマー又は樹脂系材料の薄膜により密封包装され、前記内視鏡の処置具誘導チャンネル内に先端部からループ状態で引出し可能に収設される1体のループ状に形成され、前記1個又は複数の磁気アンカーが係着された病変部位を包囲するようにループ状に配置可能に構成されることを特徴としている。 A fourth aspect of the present invention is the ESD surgical system according to the first or second aspect, wherein the magnetic flux radiating means is formed of a flexible elongated rod-like or strip-like magnetic generating element made of an elastomer or a resin. The one or more magnetic anchors are hermetically packaged with a thin film of a system material, and are formed in a single loop shape that can be pulled out from the distal end in a loop state in the treatment instrument guide channel of the endoscope. Is characterized in that it can be arranged in a loop shape so as to surround the lesion site to which it is attached.
 請求項5の発明は、請求項1乃至請求項4のいずれか1記載のESD用外科手術システムであって、前記磁気発生要素は、細長棒状又は線状の磁性体芯部材に巻回された導線コイルからなることを特徴としている。 A fifth aspect of the present invention is the ESD surgical system according to any one of the first to fourth aspects, wherein the magnetism generating element is wound around an elongated rod-like or linear magnetic core member. It is characterized by comprising a conductive coil.
 請求項6の発明は、請求項1乃至請求項4のいずれか1記載のESD用外科手術システムであって、前記磁気発生要素は、細長帯板状の半導体基板に極細導線が短周期の波線又はサイン曲線状にプリント配線されてなることを特徴としている。 The invention according to claim 6 is the surgical operation system for ESD according to any one of claims 1 to 4, wherein the magnetism generating element is a wavy line in which an ultrathin conducting wire is a short period on an elongated strip-like semiconductor substrate. Alternatively, it is characterized by being printed and wired in a sine curve.
 請求項7の発明は、請求項1乃至請求項4のいずれか1記載のESD用外科手術システムであって、前記磁気発生要素は、細長棒状又は線状あるいは帯板状の磁気体芯部材と、該磁気体芯部材に長手方向にスライド自在に外嵌された中空の磁場シールド部材からなる磁場シールド筒と、から構成されることを特徴としている。 The invention according to claim 7 is the ESD surgical operation system according to any one of claims 1 to 4, wherein the magnetism generating element is an elongated rod-like or linear or strip-like magnetic core member. , And a magnetic field shield cylinder comprising a hollow magnetic field shield member externally fitted to the magnetic core member so as to be slidable in the longitudinal direction.
 請求項8の発明は、請求項1記載のESD用外科手術システムであって、前記磁気アンカーの磁気部材は、前記係着部材に連結される基端部から先端部に向けて外形が漸次拡大するように形成されることを特徴としている。 The invention according to claim 8 is the ESD surgical system according to claim 1, wherein the outer shape of the magnetic member of the magnetic anchor gradually expands from the proximal end portion connected to the engaging member toward the distal end portion. It is characterized by being formed.
 請求項9の発明は、請求項1記載のESD用外科手術システムであって、前記磁気アンカーの磁気部材は、前記係着部材に連結される小径中空状の円筒形又は先太り円錐筒形の磁気体外筒と、該磁気体外筒内に中心軸周りに回転自在に収設された固体状又は封入された磁気流体状の磁気体回転部材とから構成されることを特徴としている。 A ninth aspect of the present invention is the ESD surgical system according to the first aspect, wherein the magnetic member of the magnetic anchor has a small-diameter hollow cylindrical shape or a tapered conical cylindrical shape connected to the engaging member. It is characterized by comprising a magnetic body outer cylinder and a solid or encapsulated magnetic fluid-like magnetic body rotating member housed rotatably around the central axis in the magnetic body outer cylinder.
 請求項10の発明は、請求項1又は請求項8記載のESD用外科手術システムであって、前記磁気アンカーの磁気部材は、長手方向に少なくとも2つの異種材料から構成されることを特徴としている。 The invention of claim 10 is the ESD surgical system according to claim 1 or 8, wherein the magnetic member of the magnetic anchor is made of at least two different materials in the longitudinal direction. .
 請求項11の発明は、請求項1記載のESD用外科手術システムであって、前記磁束制御手段は、ESD外科手術者が手術中に自らの足で操作可能なフット操作部を備えることを特徴としている。 The invention according to claim 11 is the ESD surgical operation system according to claim 1, wherein the magnetic flux control means includes a foot operation section that can be operated by an ESD surgeon with his / her foot during the operation. It is said.
 請求項12の発明は、請求項11記載のESD用外科手術システムであって、前記フット操作部は、上部が開放された有底ボックス体と、該ボックス体との略中央部間内に設けられたユニバーサル支承手段を介して任意の方角に傾動可能であるとともにその周辺内に設けられた複数の圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設されたボックスカバー状のフットペダルと、前記ボックス体の底面内周辺に前記磁束放射手段の各磁気発生要素に対応して略対称に配置され、前記フットペダルの傾動動作に連動して電気抵抗が変化する複数の可変電気抵抗手段と、を有することを特徴としている。 The invention according to claim 12 is the ESD surgical system according to claim 11, wherein the foot operating portion is provided between a bottomed box body whose upper portion is open and a substantially central portion of the box body. The box covered on the upper portion of the box body can be tilted in any direction through the universal support means and can be returned to the original posture by the elastic force of a plurality of compression spring members provided in the periphery thereof. A plurality of cover-like foot pedals, which are arranged substantially symmetrically corresponding to the respective magnetism generating elements of the magnetic flux radiating means around the inner bottom surface of the box body, and the electric resistance changes in conjunction with the tilting operation of the foot pedal. Variable electric resistance means.
 請求項13の発明は、請求項11記載のESD用外科手術システムであって、前記フット操作部は、上部が開放された有底ボックス体と、該ボックス体との後端部間で前方に傾動可能に枢支されるとともに前端部間内に設けられた圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設されたボックスカバー状のフットペダルと、前記ボックス体の底面内に配置され、前記フットペダルの傾動動作に連動して電気抵抗が変化する可変電気抵抗手段と、を有することを特徴としている。 A thirteenth aspect of the invention is the ESD surgical system according to the eleventh aspect, wherein the foot operating portion is forwardly between a bottomed box body having an open top and a rear end portion of the box body. A box cover-like foot pedal which is pivotally supported and can be returned to its original posture by the resilient force of a compression spring member provided between the front end portions, and is covered on the upper portion of the box body; and the box body And a variable electrical resistance means that changes electrical resistance in conjunction with the tilting operation of the foot pedal.
 請求項14の発明は、請求項12又は請求項13記載のESD用外科手術システムであって、前記磁束制御手段は、電源に連結された前記フット操作部の各可変電気抵抗手段からの電圧信号を受けて前記磁束放射手段の各磁気発生要素への電流値を制御して磁束放射手段の磁束配分を制御する磁束制御ユニットをさらに備えることを特徴としている。 The invention of claim 14 is the ESD surgical system according to claim 12 or claim 13, wherein the magnetic flux control means is a voltage signal from each variable electrical resistance means of the foot operation unit connected to a power source. And a magnetic flux control unit for controlling a magnetic flux distribution of the magnetic flux radiating means by controlling a current value to each magnetism generating element of the magnetic flux radiating means.
 請求項15の発明は、請求項12乃至請求項14のいずれか1項記載のESD用外科手術システムであって、前記各可変電気抵抗手段は、前記ボックス体の底面内側に取付けられる適宜長さの電気抵抗器と、該電気抵抗器上を長手方向に滑動する摺動ブラシと、基端部が前記摺動ブラシに揺動可能に枢支された滑動リンクと、基端部が前記ボックス体の底面内側に設けられた端部ブラケットに揺動自在に枢支されるとともに、先端部が前記滑動リンクの先端部に回転自在に枢支された支持リンクと、前記滑動リンクの基端部と支持リンクの基端部又は前記ボックス体の底面内との間に懸架されて両リンクをく字状に屈曲保持するリターンばね部材と、を備え、前記フットペダルの傾動動作に連動し前記両リンクの先端部がフットペダルの天井内面に押圧されて揺動することにより、摺動ブラシが電気抵抗器上を長手方向に滑動して電気抵抗が可変されることを特徴としている。 A fifteenth aspect of the present invention is the ESD surgical system according to any one of the twelfth to fourteenth aspects, wherein each of the variable electric resistance means has an appropriate length to be attached to the inside of the bottom surface of the box body. An electric resistor, a sliding brush that slides in the longitudinal direction on the electric resistor, a sliding link whose base end is pivotally supported by the sliding brush, and a base end that is the box body A support link pivotally supported by an end bracket provided on the inner side of the bottom surface of the sliding link, and a distal end portion pivotally supported by the distal end portion of the sliding link, and a base end portion of the sliding link, A return spring member suspended between the base end portion of the support link or the bottom surface of the box body and bending and holding both links in a square shape, and both the links linked to the tilting operation of the foot pedal. Is the top of the foot pedal. By swinging by being pressed by the inner surface, the sliding brush is characterized by electrical resistance and sliding on electrical resistor in the longitudinal direction is variable.
 請求項16の発明は、請求項12記載のESD用外科手術システムであって、前記ユニバーサル支承手段は、前記フットペダルの天井内面又は前記ボックス体の底面内の略中央部に固定される第1の枠体と、第1の枠体にフットペダルの前後方向のX軸回りに揺動自在に枢支される第2の枠体と、第2の枠体にX軸に直交するフットペダルの左右方向のY軸回りに揺動自在に枢支される第3の枠体と、を備え、この第3の枠体の取付け部が前記ボックス体の底面内又は前記フットペダルの天井内面の略中央部に固定されるジンバル機構からなることを特徴としている。 A sixteenth aspect of the invention is the ESD surgical system according to the twelfth aspect, wherein the universal support means is fixed to a substantially central portion of a ceiling inner surface of the foot pedal or a bottom surface of the box body. A frame, a second frame pivotally supported by the first frame so as to be swingable about the X axis in the front-rear direction of the foot pedal, and a foot pedal orthogonal to the X axis on the second frame A third frame that is pivotably supported about the Y axis in the left-right direction, and the attachment portion of the third frame is substantially the bottom surface of the box body or the ceiling inner surface of the foot pedal. It consists of a gimbal mechanism fixed to the center.
 請求項17の発明は、請求項11乃至請求項16のいずれか1項記載のESD用外科手術システムであって、前記フット操作部は、上面が前方に向かって上り坂状の傾斜面となっていることを特徴としている。 The invention according to claim 17 is the ESD surgical operation system according to any one of claims 11 to 16, wherein the foot operation portion has an inclined surface having an upward slope toward the front. It is characterized by having.
 請求項18の発明は、請求項7記載のESD用外科手術システムであって、前記磁束制御手段は、前記内視鏡内に挿通されて前記磁場シールド筒の後端部に連結された線状部材を介し前記磁場シールド筒を前記磁気体芯部材に対して長手方向前後にスライドさせることにより、前記磁気発生要素の磁束配分を制御することを特徴としている。 The invention according to claim 18 is the ESD surgical system according to claim 7, wherein the magnetic flux control means is inserted into the endoscope and connected to the rear end of the magnetic field shield tube. The magnetic flux distribution of the magnetism generating element is controlled by sliding the magnetic field shield cylinder back and forth with respect to the magnetic core member via the member.
 請求項19の発明のESD用外科手術方法は、生体組織を係着する係着部材に小径の磁性部材を連結した1体又は複数体の磁気アンカーを生体管内面の病変部位に係着部材を介して係着し、前記磁気アンカーに電磁反発力を付与する1体又は複数体の密封した磁気発生要素を備えた磁束放射手段を内視鏡の先端部に装着し、その内視鏡の先端部を前記生体管内の病変部位近傍まで挿入して磁束放射手段を前記磁気アンカーに向けて適宜配置し、前記磁束放射手段から放射される磁束の配分を生体の外部から制御する磁束制御手段により前記磁束放射手段からの磁束分布を制御し、前記磁気アンカーに電磁反発力を与えて、前記磁気アンカーが係着した病変部位を生体管の筋層から引離す方向に牽引しながら、前記内視鏡先端部の処置具誘導チャンネルから切開具を用いて前記病変部位の粘膜下層剥離術を行うことを特徴としている。 According to the ESD surgical method of the nineteenth aspect of the present invention, one or a plurality of magnetic anchors in which a small-diameter magnetic member is connected to an anchoring member for anchoring a biological tissue is attached to a lesion site on the inner surface of the biological tube. A magnetic flux radiating means including one or a plurality of sealed magnetism generating elements that are engaged with each other and apply an electromagnetic repulsive force to the magnetic anchor is attached to the distal end portion of the endoscope, and the distal end of the endoscope The magnetic flux radiating means is appropriately disposed toward the magnetic anchor by inserting a portion near the lesion site in the biological tube, and the magnetic flux control means for controlling the distribution of the magnetic flux radiated from the magnetic flux radiating means from the outside of the living body. The endoscope controls the magnetic flux distribution from the magnetic flux radiating means, applies an electromagnetic repulsive force to the magnetic anchor, and pulls the lesion site to which the magnetic anchor is anchored in the direction of separating from the muscle layer of the biological tube. Guiding the treatment tool at the tip It is characterized by performing a submucosal dissection of the lesion site using the cutting instrument from Yan'neru.
 請求項20の発明は、請求項19記載のESD用外科手術方法であって、前記内視鏡又は/及び磁束放射手段に設けた一つ又は複数の角度センサ又は/及び位置センサを介して、前記内視鏡先端部に装着した磁束放射手段の任意の所望する湾曲角度位置に停止して保持するように前記内視鏡に設けた湾曲駆動部を制御する磁束放射手段位置決め制御ユニットをさらに備えることを特徴としている。 The invention according to claim 20 is the ESD surgical method according to claim 19, wherein one or more angle sensors or / and position sensors provided in the endoscope or / and the magnetic flux radiation means are used. It further comprises a magnetic flux radiation means positioning control unit for controlling the bending drive section provided in the endoscope so as to stop and hold at any desired bending angle position of the magnetic flux radiation means attached to the endoscope distal end portion. It is characterized by that.
 請求項21の発明は、請求項19又は請求項20記載のESD用外科手術方法であって、前記磁束放射手段は、ラストマー又は樹脂系材料の薄膜からなり、内視鏡先端部外径に着脱可能に外嵌した内筒と、該内筒の外周に円周方向に略等配し軸方向に沿って併設した複数の細長棒状又は帯板状に形成した磁気発生要素とからなる磁束放射筒であって、前記磁気発生要素を、エラストマー又は樹脂系材料の薄膜により密封したことを特徴としている。 The invention according to claim 21 is the surgical method for ESD according to claim 19 or claim 20, wherein the magnetic flux radiating means is made of a thin film of a laster or a resin material, and is attached to and detached from the outer diameter of the endoscope distal end portion. A magnetic flux radiation cylinder comprising an inner cylinder that is externally fitted, and a plurality of elongated bar-shaped or strip-shaped magnetic generating elements that are substantially equally arranged in the circumferential direction on the outer circumference of the inner cylinder and are provided along the axial direction. The magnetism generating element is sealed with a thin film of an elastomer or a resin material.
 請求項22の発明は、請求項19又は請求項20記載のESD用外科手術方法であって、前記磁束放射手段は、フレキシブルな細長棒状又は帯板状に形成された磁気発生要素をエラストマー又は樹脂系材料の薄膜により密封包装し、前記内視鏡の処置具誘導チャンネル内に先端部からループ状態で引出し可能に収設した1体のループ状に形成し、前記1個又は複数の磁気アンカーを係着した病変部位を包囲するようにループ状に配置可能に構成したことを特徴としている。 The invention according to claim 22 is the ESD surgical method according to claim 19 or 20, wherein the magnetic flux radiating means is formed of a flexible elongated rod-like or strip-like magnetic generating element made of an elastomer or a resin. A thin film of a system material is hermetically packaged, and is formed into a single loop shape that can be pulled out from the distal end in a loop state in the treatment instrument guide channel of the endoscope, and the one or more magnetic anchors are It is characterized in that it can be arranged in a loop shape so as to surround the lesioned site.
 請求項23の発明は、請求項19乃至請求項22のいずれか1項記載のESD用外科手術方法であって、前記磁気発生要素は、細長棒状又は線状の磁性体芯部材に巻回した導線コイルからなることを特徴としている。 The invention according to claim 23 is the ESD surgical method according to any one of claims 19 to 22, wherein the magnetism generating element is wound around an elongated rod-like or linear magnetic core member. It is characterized by comprising a conductive coil.
 請求項24の発明は、請求項19乃至請求項22のいずれか1項記載のESD用外科手術方法であって、細長帯板状の半導体基板に極細導線を短周期の波線又はサイン曲線状にプリント配線してなることを特徴としている。 A twenty-fourth aspect of the invention is the ESD surgical method according to any one of the nineteenth to twenty-second aspects, wherein an ultrathin wire is formed into a short-period wavy line or a sine curve shape on a strip-like semiconductor substrate. It is characterized by printed wiring.
 請求項25の発明は、請求項19乃至請求項22のいずれか1項記載のESD用外科手術方法であって、前記磁気発生要素は、細長棒状又は線状あるいは帯板状の磁気体芯部材と、該磁気体芯部材に長手方向にスライド自在に外嵌した中空の磁場シールド部材からなる磁場シールド筒と、から構成したことを特徴としている。 The invention according to claim 25 is the ESD surgical method according to any one of claims 19 to 22, wherein the magnetism generating element is an elongated rod-like, linear or strip-like magnetic core member. And a magnetic field shield cylinder made of a hollow magnetic field shield member externally fitted to the magnetic core member so as to be slidable in the longitudinal direction.
 請求項26の発明は、請求項19記載のESD用外科手術方法であって、前記磁気アンカーの磁気部材は、前記係着部材に連結する基端部から先端部に向けて外形を漸次拡大して形成したことを特徴としている。 The invention of claim 26 is the ESD surgical method according to claim 19, wherein the magnetic member of the magnetic anchor gradually expands its outer shape from the proximal end portion to the distal end portion connected to the engaging member. It is characterized by having formed.
 請求項27の発明は、請求項19記載のESD用外科手術方法であって、前記磁束制御手段は、ESD外科手術者が手術中に自らの足で操作可能なフット操作部を備えたことを特徴としている。 The invention according to claim 27 is the ESD surgical method according to claim 19, wherein the magnetic flux control means includes a foot operation unit that can be operated by an ESD surgeon with his / her foot during the operation. It is a feature.
 請求項28の発明は、請求項27記載のESD用外科手術方法であって、前記フット操作部は、上部を開放した有底ボックス体と、該ボックス体との略中央部間内に設けたユニバーサル支承手段を介して任意の方角に傾動可能とするとともにその周辺内に設けた複数の圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設したボックスカバー状のフットペダルと、前記ボックス体の底面内周辺に前記磁束放射手段の各磁気発生要素に対応して略対称に配置し、前記フットペダルの傾動動作に連動して電気抵抗を変化させる複数の可変電気抵抗手段と、を具備したことを特徴としている。 The invention according to claim 28 is the ESD surgical method according to claim 27, wherein the foot operation part is provided between a bottomed box body having an open top and a substantially central part of the box body. A box-covered foot covering the upper part of the box body so that it can be tilted in any direction through the universal support means and can be returned to its original posture by the elastic force of a plurality of compression spring members provided in its periphery. A plurality of variable electrical resistors that are arranged substantially symmetrically corresponding to each magnetic generating element of the magnetic flux radiating means on the inner periphery of the bottom surface of the box body and change the electrical resistance in conjunction with the tilting operation of the foot pedal. Means.
 請求項29の発明は、請求項27記載のESD用外科手術方法であって、前記フット操作部は、上部を開放した有底ボックス体と、該ボックス体との後端部間で前方に傾動可能に枢支するとともに前端部間内に設けた圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設したボックスカバー状のフットペダルと、前記ボックス体の底面内に配置し、前記フットペダルの傾動動作に連動して電気抵抗を変化させる可変電気抵抗手段と、を具備したことを特徴としている。 The invention according to claim 29 is the ESD surgical method according to claim 27, wherein the foot operating portion tilts forward between a bottomed box body having an open top and a rear end portion of the box body. A box cover-like foot pedal that covers the top of the box body so as to be pivotally supported and capable of returning to the original posture by the elastic force of the compression spring member provided between the front end portions, and in the bottom surface of the box body And variable electric resistance means for changing the electric resistance in conjunction with the tilting operation of the foot pedal.
 請求項30の発明は、請求項28又は請求項29記載のESD用外科手術方法であって、前記磁束制御手段は、電源に連結した前記フット操作部の各可変電気抵抗手段からの電圧信号を受けて前記磁束放射手段の各磁気発生要素への電流値を制御して磁束放射手段の磁束配分を制御する磁束制御ユニット、をさらに備えたことを特徴としている。 The invention of claim 30 is the ESD surgical method according to claim 28 or claim 29, wherein the magnetic flux control means outputs a voltage signal from each variable electric resistance means of the foot operation unit connected to a power source. And a magnetic flux control unit for controlling the distribution of the magnetic flux of the magnetic flux radiating means by controlling the current value to each magnetism generating element of the magnetic flux radiating means.
 請求項31の発明は、請求項27乃至請求項30のいずれか1項記載のESD用外科手術方法であって、前記フット操作部は、上面を前方に向かって上り坂状の傾斜面としたことを特徴としている。 The invention according to claim 31 is the surgical method for ESD according to any one of claims 27 to 30, wherein the foot operation portion has an inclined surface having an upward slope toward the front. It is characterized by that.
 請求項32の発明は、請求項23記載のESD用外科手術方法であって、前記磁束制御手段は、前記内視鏡内に挿通して前記磁場シールド筒の後端部に連結した線状部材を介し前記磁場シールド筒を前記磁気体芯部材に対して長手方向前後にスライドすることにより、前記磁気発生要素の磁束配分を制御することを特徴としている。 The invention according to claim 32 is the ESD surgical method according to claim 23, wherein the magnetic flux control means is inserted into the endoscope and connected to the rear end portion of the magnetic field shield tube. The magnetic flux distribution of the magnetism generating element is controlled by sliding the magnetic field shield cylinder back and forth in the longitudinal direction with respect to the magnetic core member.
 請求項1及び請求項19の発明によれば、ESD外科手術者が手術中に内視鏡による視界を十分に確保するため状況に即応して瞬時に磁束制御手段により内視鏡先端部に亘り装着された磁束放射手段の磁束分布を適宜制御し磁気アンカーに電磁反発力を与えて、磁気アンカーに係着された病変部位を生体管の筋層から引離す方向に牽引することができるので、内視鏡による的確な視界が十分に確保されることから、容易に素早く電気メスなどの切開具によるESD外科手術操作を行うことが可能となり、手術の操作性、安全性及び信頼性を確保するとともに手術時間及び手術侵襲を低減する効果がある。 According to the inventions of Claims 1 and 19, the ESD surgeon can instantaneously reach the distal end of the endoscope by the magnetic flux control means in response to the situation in order to ensure a sufficient field of view by the endoscope during the operation. Since the magnetic flux distribution of the installed magnetic flux radiating means is appropriately controlled to give an electromagnetic repulsive force to the magnetic anchor, the lesion site attached to the magnetic anchor can be pulled away from the muscle layer of the biological tube, Since an accurate field of view with an endoscope is sufficiently secured, it is possible to quickly and easily perform an ESD surgical operation using an incision tool such as an electric scalpel, thereby ensuring operability, safety and reliability of the operation. In addition, there is an effect of reducing the operation time and operation invasion.
 請求項2及び請求項20の発明によれば、請求項1及び請求項19の発明と同様な効果を有するのに加えて、内視鏡の湾曲駆動部を制御する磁束放射手段位置決め制御ユニットにより内視鏡又は/及び磁束放射手段に設けられた角度センサ又は/及び位置センサを介して、内視鏡先端部に装着した磁束放射手段を任意の所望する湾曲角度位置に停止し保持することから、内視鏡による的確な視界が十分に確保され、電気メスなどの切開具によるESD外科手術操作がやり易くなり、手術の操作性、安全性及び信頼性を一層向上させる効果がある。 According to the inventions of claims 2 and 20, in addition to having the same effects as those of the inventions of claims 1 and 19, the magnetic flux radiating means positioning control unit for controlling the bending drive portion of the endoscope is used. From the angle sensor or / and the position sensor provided in the endoscope or / and the magnetic flux radiation means, the magnetic flux radiation means mounted on the distal end portion of the endoscope is stopped and held at any desired curved angular position. An accurate field of view with an endoscope is sufficiently ensured, and an ESD surgical operation with an incision tool such as an electric knife is facilitated, and the operability, safety and reliability of the operation are further improved.
 請求項3及び請求項21の発明によれば、請求項1又は請求項2、及び請求項9又は請求項20の発明と同様な効果を有するのに加えて、磁束放射筒は内視鏡先端部外径に着脱可能に外嵌される略円筒状の内筒の外周に複数の細長棒状又は帯板状の磁気発生要素が密閉状態で併設され、前記内筒及び磁気発生要素密閉部材がいずれもエラストマー又は樹脂系材料の薄膜からなる薄厚さの小径且つソフトタッチに形成されることから、患者の生体官内への挿入における苦痛の増大を抑えることができる。また、このような構成の磁束放射筒は、比較的安価に構成できることからESD外科手術における1回の使い捨て型又は複数回使用型に適宜選択的に適用することができる。 According to the invention of claim 3 and claim 21, in addition to having the same effect as that of the invention of claim 1 or claim 2, and claim 9 or claim 20, the magnetic flux emitting tube is provided at the distal end of the endoscope. A plurality of elongated rod-like or strip-like magnetism generating elements are provided in a sealed state on the outer periphery of a substantially cylindrical inner cylinder that is detachably fitted to the outer diameter of the section, and the inner cylinder and the magnetism generating element sealing member are either In addition, since it is formed with a small diameter and soft touch made of a thin film of an elastomer or a resin-based material, it is possible to suppress an increase in pain during insertion into a living body of a patient. In addition, since the magnetic flux radiation tube having such a configuration can be configured at a relatively low cost, it can be appropriately and selectively applied to a single-use type or a multiple-use type in ESD surgery.
 請求項4及び請求項22の発明によれば、請求項1又は請求項2、及び請求項19又は請求項20の発明と同様な効果を有するのに加えて、磁束放射手段はフレキシブルな細長棒状又は帯板状の磁気発生要素がエラストマー又は樹脂系材料の薄膜により密封されて1体のループ状に形成され、内視鏡の処置具誘導チャンネル内に先端部からループ状態で引出し可能に収設されることから、患者の生体官内への通常の内視鏡挿入とほとんど変わらずそれ以上の苦痛の増大を無くすことができる。また、このような構成のループ状磁気発生要素は、ESD外科手術における複数回使用が可能であり、あるいは比較的安価に構成できることから1回の使い捨てとすることも状況に応じて可能である。 According to the invention of claim 4 and claim 22, in addition to having the same effect as the invention of claim 1 or claim 2 and claim 19 or claim 20, the magnetic flux radiating means has a flexible elongated rod shape. Alternatively, a belt-like magnetism generating element is sealed with a thin film of an elastomer or a resin material to form a single loop, and is placed in the endoscope treatment instrument guide channel so that it can be pulled out from the distal end in a looped state. Therefore, it is possible to eliminate the further increase in pain almost the same as the normal endoscope insertion into the living body of the patient. In addition, the loop-like magnetism generating element having such a configuration can be used a plurality of times in ESD surgery, or can be configured at a relatively low cost, so that it can be disposable once depending on the situation.
 さらに、磁束放射手段の1体のループ状磁気発生要素により病変部位をループ状に包囲して配置することにより、病変部位に係着された複数の磁気アンカーに一括同時に電磁反発力を与えて効率よく病変部位を所望の位置まで生体管の筋層から引離すことが可能となることから、1体のループ状磁気発生要素から放射される磁束の配分を外部から制御する磁束制御手段の構成が簡易化され、コストも低減される等の効果もある。 Further, by arranging the lesion site in a loop shape by one loop-like magnetism generating element of the magnetic flux radiation means, an electromagnetic repulsive force is simultaneously applied to a plurality of magnetic anchors attached to the lesion site, thereby improving efficiency. Since the lesion site can be often pulled away from the muscle layer of the biological duct to a desired position, the configuration of the magnetic flux control means for controlling the distribution of the magnetic flux radiated from one loop-like magnetism generating element from the outside. There are effects such as simplification and cost reduction.
 請求項5及び請求項23の発明によれば、請求項1乃至請求項4、及び請求項19乃至請求項22のいずれか1項の発明と同様な効果を有するのに加えて、磁気発生要素は、細長棒状又は線状の磁性体芯部材に巻回された導線コイルからなることから、汎用的な部材を用いて安価に製作が容易で、設計の自由度を有する効果がある。 According to the invention of claim 5 and claim 23, in addition to having the same effect as the invention of any one of claims 1 to 4, and 19 to 22, the magnetic generating element Since it is composed of a conductive coil wound around an elongated rod-shaped or linear magnetic core member, it is easy to manufacture at low cost using a general-purpose member, and has the effect of having a degree of freedom in design.
 請求項6及び請求項24の発明によれば、請求項1乃至請求項4、及び請求項19乃至請求項22のいずれか1項の発明と同様な効果を有するのに加えて、磁気発生要素は、細長帯板状の半導体基板に極細導線が短周期の波線又はサイン曲線状にプリント配線されてなることから、磁束放射手段をコンパクトに構成することができ、患者の生体官内への挿入における苦痛の増大を一層抑えることができる効果がある。 According to the invention of claim 6 and claim 24, in addition to having the same effect as the invention of any one of claims 1 to 4, and 19 to 22, the magnetic generating element The magnetic flux radiation means can be configured compactly and inserted into the patient's living officer because the ultra-thin conductors are printed and wired in the form of short-period wavy lines or sine curves on a strip-like semiconductor substrate. This has the effect of further suppressing the increase in pain.
 請求項7及び請求項25の発明によれば、請求項1乃至請求項4、及び請求項19乃至請求項22のいずれか1項の発明と同様な効果を有するのに加えて、磁気発生要素は、細長棒状又は線状あるいは帯板状の磁気体芯部材にスライド自在に外嵌された磁場シールド筒からなることから、磁束放射手段の電気配線が不要で磁束制御手段を大幅に簡易化し、コストダウンできる効果がある。 According to the invention of Claim 7 and Claim 25, in addition to having the same effect as the invention of any one of Claims 1 to 4, and 19 to 22, the magnetic generating element Is composed of a magnetic shield tube that is slidably fitted to an elongated rod-like or linear or strip-like magnetic core member, so that the electric flux of the magnetic flux radiating means is unnecessary, greatly simplifying the magnetic flux control means, This has the effect of reducing costs.
 請求項8及び請求項26の発明によれば、請求項1及び請求項19の発明と同様な効果を有するのに加えて、磁気アンカーの磁気部材は、係着部材に連結される基端部から先端部に向けて外形が漸次拡大するように形成されることから、磁気アンカーの磁気部材の基端部から先端部に向けての漸次拡大外形面の全面に対向する磁束放射手段の対向面と同一のS又はN極が形成されるので磁束放射手段の対向面からの磁束による反発力が磁気アンカーの磁気部材の先端部の漸次拡大する外周面にまで及ぶことから、これに対する異極が形成される磁気アンカーの磁気部材先端部が磁束放射手段の対向面方向に反転するのを防止することができ、ESD外科手術の信頼性及び安全性を向上させる効果がある。 According to the eighth and twenty-sixth aspects of the invention, in addition to having the same effects as the first and nineteenth aspects of the invention, the magnetic member of the magnetic anchor has a proximal end portion connected to the engaging member. The outer surface of the magnetic flux radiating means is opposed to the entire surface of the gradually expanding outer surface from the base end of the magnetic member toward the distal end of the magnetic anchor. Since the same S or N pole is formed, the repulsive force due to the magnetic flux from the opposing surface of the magnetic flux radiating means reaches the gradually expanding outer peripheral surface of the tip of the magnetic member of the magnetic anchor. It is possible to prevent the tip of the magnetic member of the formed magnetic anchor from being reversed in the direction of the facing surface of the magnetic flux radiating means, and there is an effect of improving the reliability and safety of ESD surgery.
 請求項9の発明によれば、請求項1の発明と同様な効果を有するのに加えて、磁気アンカーの磁気部材は、いずれも磁気材料からなる小径中空状の円筒形又は先太り円錐筒形の磁気体外筒内で磁気体回転部材を指などで一旦回転力を与えると中心軸周りに回転部材が常時回転することによりジャイロモーメントが作用する構成であることから、磁気アンカーの磁気部材の基端部に対する異極が形成される先端部が磁束放射手段の対向面方向に反転するのを防止することができ、ESD外科手術の信頼性及び安全性を向上させる効果がある。 According to the invention of claim 9, in addition to having the same effect as that of the invention of claim 1, the magnetic members of the magnetic anchor are both small-diameter hollow cylindrical or tapered cone cylinders made of magnetic material. In this magnetic outer cylinder, once a rotating force is applied to the magnetic rotating member with a finger or the like, a gyro moment acts by rotating the rotating member around the central axis. It is possible to prevent the tip portion where a different polarity from the end portion is formed from being reversed in the direction of the facing surface of the magnetic flux radiating means, and there is an effect of improving the reliability and safety of ESD surgery.
 これに加えて、先太り円錐筒形磁気体外筒の形態においては、基端部から先端部に向けての漸次拡大する先太り円錐筒形磁気体外筒の外周面全面に磁束放射手段の対向面と同一のS又はN極が形成されるので磁束放射手段の対向面からの磁束による電磁反発力が先太り円錐筒形磁気体外筒の先端部の漸次拡大する外周面にまで及ぶことから、これに対する異極(N又はS極)が形成される先太り円錐筒形磁気体外筒の先端部が磁束放射手段の対向面方向に引寄せられて反転するのを防止する効果も重畳される。 In addition to this, in the form of the tapered cone-cylinder magnetic body outer cylinder, the opposing surface of the magnetic flux radiating means is formed on the entire outer peripheral surface of the tapered cone-cylinder magnetic body cylinder gradually expanding from the base end portion toward the distal end portion. Since the same S or N pole is formed, the electromagnetic repulsive force due to the magnetic flux from the opposing surface of the magnetic flux radiating means extends to the gradually expanding outer peripheral surface of the tip of the tapered cone cylindrical magnetic outer cylinder. The effect of preventing the tip portion of the tapered cone-shaped magnetic outer cylinder in which the opposite pole (N or S pole) is formed in the opposite surface direction of the magnetic flux radiating means from being reversed is also superimposed.
 請求項10の発明によれば、請求項1又は請求項8の発明と同様な効果を有するのに加えて、磁気アンカーの磁気部材は、長手方向に少なくとも2つの異種材料から構成され、磁束放射手段の対向面と同一のS又はN極を磁気アンカーの磁気部材の先端面に形成することができるので磁束放射手段の対向面からの磁束による反発力が磁気アンカーの磁気部材の先端面に及ぶことから、磁気アンカーの磁気部材先端部が磁束放射手段の対向面方向に反転するのを防止することができ、ESD外科手術の信頼性及び安全性が確保される効果がある。 According to the invention of claim 10, in addition to having the same effect as that of the invention of claim 1 or claim 8, the magnetic member of the magnetic anchor is composed of at least two different materials in the longitudinal direction, and the magnetic flux emission Since the same S or N pole as the facing surface of the means can be formed on the tip surface of the magnetic member of the magnetic anchor, the repulsive force due to the magnetic flux from the facing surface of the magnetic flux radiating means reaches the tip surface of the magnetic member of the magnetic anchor. Therefore, it is possible to prevent the tip of the magnetic member of the magnetic anchor from being reversed in the direction of the opposing surface of the magnetic flux radiating means, and there is an effect of ensuring the reliability and safety of the ESD surgery.
 請求項11及び請求項27の発明によれば、請求項1及び請求項19の発明と同様な効果を有するのに加えて、ESD外科手術者が手術中に内視鏡による視界を十分に確保するため状況に即応して瞬時にフット操作部を足で操作して磁束放射手段の磁束分布を適宜制御し、磁気アンカーに電磁反発力を与えて磁気アンカーに係着された病変部位を生体管の筋層から引離す方向に牽引することができるため、内視鏡による視界が十分に確保されることから手先を集中して素早く電気メスによるESD外科手術操作を一人で効率よく行うことが容易に可能となる。これにより、手術の操作性、安全性及び信頼性を向上させるとともに手術時間を短縮する効果がある。 According to the invention of claim 11 and claim 27, in addition to having the same effect as that of the invention of claim 1 and claim 19, the ESD surgeon sufficiently secures the field of view by the endoscope during the operation. Therefore, in response to the situation, the foot operation unit is instantaneously operated with the foot to appropriately control the magnetic flux distribution of the magnetic flux radiating means, and an electromagnetic repulsive force is applied to the magnetic anchor, and the lesion site attached to the magnetic anchor is removed from the body Because it can be pulled away from the muscle layer, the field of view by the endoscope is sufficiently secured, so it is easy to concentrate the hand and quickly perform ESD surgical operation with an electric knife quickly and efficiently. It becomes possible. As a result, the operability, safety and reliability of the operation are improved, and the operation time is shortened.
 請求項12及び請求項28の発明によれば、請求項11及び請求項27の発明と同様な効果を有するのに加えて、ESD外科手術者が手術中に内視鏡による視界を十分に確保するため状況に即応して瞬時にフット操作部のフットペダルを足で前後左右の所望の方向に踏み込んで傾動させることにより電気抵抗が変化する複数の可変電気抵抗手段を介して磁束放射手段からの磁束分布を微妙に制御することにより磁気アンカーに任意の方向に電磁反発力を与えて磁気アンカーに係着された病変部位を生体管の筋層から任意の方向に牽引することが一層容易になるため、内視鏡による的確な視界が十分に確保されることからESD外科手術を一人で効率的に行う手術の操作性、安全性及び信頼性を一層向上させる効果がある。 According to the invention of claim 12 and claim 28, in addition to having the same effect as that of the invention of claim 11 and claim 27, the ESD surgeon sufficiently secures the field of view by the endoscope during the operation. Therefore, in response to the situation, the foot pedal of the foot operation unit is instantaneously depressed with the foot in the desired direction of the front, rear, left and right, and tilted to change the electrical resistance from the magnetic flux radiation means through a plurality of variable electrical resistance means. By finely controlling the magnetic flux distribution, it becomes easier to pull the lesion site attached to the magnetic anchor in any direction from the muscle layer of the biological tube by applying an electromagnetic repulsive force to the magnetic anchor in any direction. Therefore, since an accurate field of view by the endoscope is sufficiently ensured, there is an effect of further improving the operability, safety and reliability of the operation for efficiently performing the ESD surgery alone.
 請求項13及び請求項29の発明によれば、請求項11及び請求項27の発明と同様な効果を有するのに加えて、フットペダルの前後方向の傾動動作に連動して一つの可変電気抵抗手段の電気抵抗が変化させることから、1体のループ状磁気発生要素を有する請求項4及び請求項22に記載の磁束放射手段の磁束強さを制御するのに好適であって、ESD外科手術者が手術中に内視鏡による視界を十分に確保するため状況に即応して瞬時にフット操作部を足で操作して磁束放射手段である1体のループ状磁気発生要素からの磁束強さを適宜制御し、磁気アンカーに電磁反発力を与えて1個又は複数の磁気アンカーに係着された病変部位を生体管の筋層から引離す方向に同時に牽引することが一層容易になるため、さらに良好な内視鏡による視界が確保され、ESD外科手術を一人で効率的に行う手術の操作性、安全性及び信頼性を一層向上させる効果がある。また、フット操作部が、フットペダルを前後一方向に傾動させるだけで、可変電気抵抗手段も少なくとも1個あれば十分なことから、ESD用外科手術システムの構成が簡単化され、経済性及び操作性が向上する効果もある。 According to the invention of claim 13 and claim 29, in addition to having the same effect as that of the invention of claim 11 and claim 27, one variable electrical resistance is interlocked with the tilting motion of the foot pedal in the front-rear direction. 23. Suitable for controlling the magnetic flux intensity of the magnetic flux emitting means according to claim 4 and claim 22 having one loop-like magnetism generating element since the electrical resistance of the means is changed, and ESD surgery. Magnetic flux intensity from one loop-like magnetism generating element as a magnetic flux radiating means by instantly operating the foot operation part with the foot in response to the situation in order to ensure a sufficient field of view by the endoscope during surgery Since it becomes easier to pull the lesion site attached to one or more magnetic anchors simultaneously in the direction of pulling away from the muscle layer of the biological tube, by appropriately controlling With a better endoscope Field is ensured, the operation of efficiently performing surgery ESD surgery alone, there are safety and effect of the reliability is further improved. In addition, since the foot operation unit simply tilts the foot pedal in one longitudinal direction and at least one variable electric resistance means is sufficient, the configuration of the surgical system for ESD is simplified, and the economy and operation are improved. There is also an effect of improving the property.
 請求項14及び請求項30の発明によれば、請求項12又は請求項13、あるいは請求項28又は請求項29記載の発明と同様な効果を有するのに加えて、磁束制御手段に設けられた磁束制御ユニットは、電源に連結されたフット操作部の各可変電気抵抗手段からの電圧信号を受けて磁束放射手段の各磁気発生要素への電流値を制御し各磁気発生要素の磁束強さを制御することにより磁束放射手段からの磁束分布が適確に制御される効果がある。 According to the invention of claim 14 and claim 30, in addition to having the same effect as that of the invention of claim 12 or claim 13, or claim 28 or claim 29, it is provided in the magnetic flux control means. The magnetic flux control unit receives a voltage signal from each variable electrical resistance means of the foot operation unit connected to the power source, controls the current value to each magnetic generating element of the magnetic flux radiating means, and controls the magnetic flux intensity of each magnetic generating element. By controlling, there is an effect that the magnetic flux distribution from the magnetic flux radiating means is accurately controlled.
 請求項15の発明によれば、請求項12乃至請求項14のいずれか1項の発明と同様な効果を有するのに加えて、フット操作部内に設けられる可変電気抵抗手段は、フットペダルの傾動動作に連動して滑動リンク及び支持リンクの先端部がフットペダルの天井面に押圧され、両リンクが揺動することにより摺動ブラシが電気抵抗器上を滑動して電気抵抗が可変される構成であることから、機構が簡単で電気抵抗可変の安定動作による信頼性が確保される効果がある。 According to the invention of claim 15, in addition to having the same effects as those of the invention of any one of claims 12 to 14, the variable electric resistance means provided in the foot operation portion is provided by tilting the foot pedal. The sliding link and the tip of the support link are pressed against the ceiling surface of the foot pedal in conjunction with the operation, and the sliding brush slides on the electrical resistor by swinging both links, so that the electrical resistance can be varied. Therefore, there is an effect that the mechanism is simple and reliability is ensured by a stable operation with variable electric resistance.
 請求項16の発明によれば、請求項12の発明と同様な効果を有するのに加えて、フットペダルのユニバーサル支承手段は、フットペダルの天井内面又はボックス体の底面内に固定される第1の枠体に前後方向のX軸回りに揺動自在な第2の枠体が枢支され、第2の枠体に左右方向のY軸回りに揺動自在に枢支される第3の枠体がボックス体の底面上又はフットペダルの天井内面に固定されるジンバル機構からなることから、コンパクトでフットペダルの任意方向への信頼性の高い安定的な傾動動作を確保できる効果がある。 According to the invention of claim 16, in addition to having the same effect as that of the invention of claim 12, the universal support means of the foot pedal is fixed to the ceiling inner surface of the foot pedal or the bottom surface of the box body. A second frame that is swingable about the X axis in the front-rear direction is pivotally supported on the frame body, and a third frame is pivotally supported on the second frame so as to be swingable about the Y axis in the left-right direction. Since the body is composed of a gimbal mechanism that is fixed to the bottom surface of the box body or the ceiling inner surface of the foot pedal, there is an effect that a stable and stable tilting operation in a compact and highly reliable direction of the foot pedal can be ensured.
 請求項17及び請求項31の発明によれば、請求項11乃至請求項16、及び請求項27乃至請求項30のいずれか1項の発明と同様な効果を有するのに加えて、フット操作部は、上面が前方に向かって上り坂状の傾斜面となっていることから、フットペダルの足による微妙な踏み込み操作がやり易くなり、良好な傾動操作性が確保される効果がある。 According to the invention of claim 17 and claim 31, in addition to having the same effect as the invention of any one of claims 11 to 16, and 27 to 30, the foot operation part Since the upper surface is an inclined surface having an upward slope toward the front, it is easy to perform a delicate depressing operation with the foot of the foot pedal, and there is an effect that favorable tilting operability is ensured.
 請求項18及び請求項32の発明によれば、請求項7及び請求項25の発明と同様な効果を有するのに加えて、内視鏡内に挿通されて磁場シールド筒の後端部に連結された線状部材を介し磁場シールド筒を磁気体芯部材に対して長手方向前後にスライドさせることにより、磁気発生要素の磁束強さを制御することから、磁束制御手段を大幅に簡易化し、コストダウンできる効果がある。 According to the eighteenth and thirty-second aspects of the invention, in addition to having the same effects as the seventh and twenty-fifth aspects of the invention, it is inserted into the endoscope and connected to the rear end portion of the magnetic shield cylinder. By controlling the magnetic flux intensity of the magnetism generating element by sliding the magnetic field shield cylinder back and forth in the longitudinal direction with respect to the magnetic core member via the linear member formed, the magnetic flux control means is greatly simplified and the cost is reduced. There is an effect that can be downed.
本発明の一実施形態によるESD用外科手術システムの概念図である。1 is a conceptual diagram of an ESD surgical system according to an embodiment of the present invention. 図1のESD用外科手術システムにおける磁束放射手段(磁束放射筒)が先端部に装着された内視鏡の概念を示す透視図である。It is a perspective view which shows the concept of the endoscope with which the magnetic flux radiation | emission means (flux radiation pipe | tube) in the surgical system for ESD of FIG. 1 was mounted | worn by the front-end | tip part. 図2の磁束放射筒が装着された内視鏡先端部の拡大図である。It is an enlarged view of the endoscope front-end | tip part with which the magnetic flux radiation tube of FIG. 2 was mounted | worn. (a)は変形実施形態の磁束放射筒が装着された内視鏡先端部の正面図、(b)はまた別の変形実施形態の磁束放射筒が装着された内視鏡先端部の正面図、(c)はさらに別の変形実施形態の磁束放射筒が装着された内視鏡先端部の正面図である。(A) is a front view of an endoscope distal end portion to which a magnetic flux radiation tube of a modified embodiment is mounted, and (b) is a front view of an endoscope distal end portion to which a magnetic flux radiation tube of another modified embodiment is mounted. (C) is a front view of the endoscope front-end | tip part with which the magnetic flux radiation tube of another modified embodiment was mounted | worn. 図1のESD用外科手術システムによる生体管内における病変部位の粘膜下層剥離術の概念を示す一部縦断面概念図である。It is a partial longitudinal cross-sectional conceptual diagram which shows the concept of the submucosal layer exfoliation of the lesion site | part in the biological vessel by the surgical system for ESD of FIG. (a)は本発明の別の実施形態による磁気アンカーの概念図、(b)はさらに別の実施形態による磁気アンカーの概念図である。(A) is a conceptual diagram of the magnetic anchor by another embodiment of this invention, (b) is a conceptual diagram of the magnetic anchor by another embodiment. 本発明の一実施形態によるフット操作部の概念を示す透視図である。It is a perspective view which shows the concept of the foot operation part by one Embodiment of this invention. (a)は図7のX軸方向の縦断面図、(b)はY軸方向の縦断面図、(c)は別の実施形態によるフット操作部のユニバーサル支承手段取付け部の拡大縦断面図である。(A) is a longitudinal sectional view in the X-axis direction of FIG. 7, (b) is a longitudinal sectional view in the Y-axis direction, and (c) is an enlarged longitudinal sectional view of a universal support means mounting portion of a foot operation portion according to another embodiment. It is. 本発明の別の実施形態のESD用外科手術システムによる生体管内における病変部位の粘膜下層剥離術の概念を示す一部縦断面概念図である。It is a partial longitudinal cross-sectional conceptual diagram which shows the concept of the submucosal layer exfoliation of the lesion site | part in the biological vessel by the surgical system for ESD of another embodiment of this invention. 図9の実施形態に対応するフット操作部の概念を示すX軸方向の縦断面図である。It is a longitudinal cross-sectional view of the X-axis direction which shows the concept of the foot operation part corresponding to embodiment of FIG. 本発明のまた別の変形実施形態の磁気発生要素の概念を示す透視図である。It is a perspective view which shows the concept of the magnetism generation element of another modified embodiment of this invention. 本発明のさらに別の変形実施形態の磁気発生要素の概念を示す平面図である。It is a top view which shows the concept of the magnetic generation element of another modified embodiment of this invention. 本発明の別の変形実施形態の磁束放射手段位置決め用角度センサの取付け概念を示す磁束放射手段(磁束放射筒)が装着された内視鏡先端部の拡大図である。It is an enlarged view of the endoscope front-end | tip part with which the magnetic flux radiation means (flux radiation cylinder) which shows the attachment concept of the angle sensor for magnetic flux radiation means positioning of another deformation | transformation embodiment of this invention was mounted | worn. 本発明のまた別の変形実施形態の磁束放射手段位置決め用角度センサ(回転角センサ)の取付け概念を示す磁束放射手段(磁束放射筒)が先端部に装着された内視鏡の透視図である。FIG. 11 is a perspective view of an endoscope in which a magnetic flux radiation means (flux radiation cylinder) showing a mounting concept of a magnetic flux radiation means positioning angle sensor (rotation angle sensor) according to still another modified embodiment of the present invention is attached to a distal end portion. . (a)は本発明のまた別の実施形態による磁気アンカーの概念図、(b)はさらに別の実施形態による磁気アンカーの概念図である。(A) is a conceptual diagram of the magnetic anchor by another embodiment of this invention, (b) is a conceptual diagram of the magnetic anchor by another embodiment. (a)は本発明のまた別の実施形態による磁気アンカーの概念図、(b)はさらに別の実施形態による磁気アンカーの概念図である。(A) is a conceptual diagram of the magnetic anchor by another embodiment of this invention, (b) is a conceptual diagram of the magnetic anchor by another embodiment. 従来(特許文献1)のESD用処置具の概念図である。It is a conceptual diagram of the treatment tool for ESD of the former (patent document 1). 従来(特許文献2)のESD用処置具の概念図である。It is a conceptual diagram of the treatment tool for ESD of the past (patent document 2). 従来(特許文献3)のESD用処置具の概念図である。It is a conceptual diagram of the treatment tool for ESD of the past (patent document 3). 従来(特許文献4)のESD用処置具の概念図である。It is a conceptual diagram of the treatment tool for ESD of the past (patent document 4). 従来(特許文献5)のESD用処置具の概念図である。It is a conceptual diagram of the treatment tool for ESD of the past (patent document 5).
 以下、本発明の内視鏡的粘膜下層剥離術(ESD)用外科手術システム及び外科手術方法を実施するための最良の形態の具体例を、添付図面を参照しながら詳細に説明する。 Hereinafter, specific examples of the best mode for carrying out the endoscopic submucosal dissection (ESD) surgical system and surgical method of the present invention will be described in detail with reference to the accompanying drawings.
 図1は本発明の一実施形態によるESD用外科手術システムの主要構成概念を示す概念図、図2は図1のESD用外科手術システムにおける磁束放射手段(磁束放射筒)が先端部に装着された内視鏡の概念を示す透視図、図3は図2の磁束放射筒が装着された内視鏡先端部の拡大図、図4の(a)、(b)、(c)はそれぞれ別の変形実施形態の磁束放射筒が装着された内視鏡先端部の正面図、図5は図1のESD用外科手術システムによる生体管内における病変部位の粘膜下層剥離術の概念を示す一部縦断面概念図である。なお、ここに添付した図面はいずれもノットスケールで表現された主要構成概念を示す概念図であり、特に図5は内部構造を分かり易くするため軸方向に比べて径方向を拡大して表現している。 FIG. 1 is a conceptual diagram showing a main configuration concept of an ESD surgical system according to an embodiment of the present invention, and FIG. 2 is a perspective view of the ESD surgical system of FIG. 3 is a perspective view showing the concept of the endoscope, FIG. 3 is an enlarged view of the distal end portion of the endoscope to which the magnetic flux emitting tube of FIG. 2 is attached, and FIGS. 4A, 4B, and 4C are different from each other. FIG. 5 is a partially longitudinal view showing the concept of submucosal dissection of a lesion site in a living body by the ESD surgical system of FIG. 1. FIG. It is a surface conceptual diagram. Each of the drawings attached here is a conceptual diagram showing the main structural concept expressed in the knot scale, and in particular, FIG. 5 is expressed by enlarging the radial direction compared to the axial direction in order to make the internal structure easy to understand. ing.
 本発明の一実施形態によるESD用外科手術システムは、図1乃至5に示すように、消化官などの生体管T内面の病変部T2aに係着される係着部材21と連結された小径の磁気部材(「磁性部材」ともいう)22からなる磁気アンカー20と、薄肉厚の略円筒状に形成されて内視鏡40の先端部41に装着される内筒12の外周に円周方向に略等配されて軸方向に沿い複数の磁気発生要素である磁気コイル15が密閉状態で併設され、磁気アンカー20に電磁反発力を付与する磁束放射手段である磁束放射筒10と、生体の外部に設けられ、磁束放射筒10内の各磁気コイル15先端面から放射される磁束Mの配分を外部から制御する磁束制御手段70と、を備えている。 As shown in FIGS. 1 to 5, an ESD surgical system according to an embodiment of the present invention has a small diameter connected to a locking member 21 that is locked to a lesion T2a on the inner surface of a living tube T such as a digester. A magnetic anchor 20 composed of a magnetic member (also referred to as “magnetic member”) 22 and a thin, substantially cylindrical shape that is circumferentially attached to the outer periphery of the inner cylinder 12 that is attached to the distal end portion 41 of the endoscope 40. The magnetic coil 15 as a plurality of magnetism generating elements that are substantially equally arranged along the axial direction is provided in a hermetically sealed state, and the magnetic flux radiation cylinder 10 that is a magnetic flux radiation means that imparts an electromagnetic repulsive force to the magnetic anchor 20, and the outside of the living body And a magnetic flux control means 70 for controlling the distribution of the magnetic flux M emitted from the front end surface of each magnetic coil 15 in the magnetic flux radiating cylinder 10 from the outside.
 この実施形態の磁束放射筒10は、図3に示すように、いずれもエラストマー又は樹脂系材料の薄膜からなり、内視鏡先端部41外径に着脱可能に外嵌される内筒12、外筒11及び前後端壁13、14から内外筒12、11の間が密閉構成される中空2重円筒と、その2重円筒中空内すなわち内筒12と外筒11の間に円周方向に略等配され軸方向に沿って収設され、細い棒状の磁性体芯部材15bに巻回された導線コイル15aからなる少なくとも3個以上(図示では上下左右に4個)の複数の小径磁気コイル15とから構成される。 As shown in FIG. 3, the magnetic flux radiating cylinder 10 of this embodiment is made of a thin film of an elastomer or a resin material, and an inner cylinder 12 that is detachably fitted to the outer diameter of the endoscope tip 41 and an outer A hollow double cylinder in which the space between the cylinder 11 and the front and rear end walls 13 and 14 is hermetically sealed, and the inside of the double cylinder hollow, that is, between the inner cylinder 12 and the outer cylinder 11, is approximately in the circumferential direction. A plurality of small-diameter magnetic coils 15 (at least three in the figure, four in the upper, lower, left, and right directions) composed of the conductive coils 15a wound around the thin rod-shaped magnetic core member 15b, which are equally arranged and arranged along the axial direction. It consists of.
 この実施形態の磁気コイル15は、細い線又は棒状の磁性体芯部材15bに毛髪程度の細い導線を巻回した導線コイル15aから数mm程度の小径に形成される。各磁気コイル15の2本のリード線15cは、計8本が纏められて略1mm径の熱収縮チューブ内に収容され加熱により収縮されて略0.6mm径の電磁コイルリード線コードLcが形成される。電磁コイルリード線コードLcは、図1、2に示すように、磁束放射筒10の後端部から取り出され、内視鏡40の挿入部42に沿って併設され操作部43から外部に取り出される。 The magnetic coil 15 of this embodiment is formed to have a small diameter of about several millimeters from a conductive coil 15a obtained by winding a thin wire or a rod-like magnetic core member 15b with a thin conductive wire such as hair. A total of eight lead wires 15c of each magnetic coil 15 are collected and accommodated in a heat shrinkable tube having a diameter of about 1 mm, and contracted by heating to form an electromagnetic coil lead wire cord Lc having a diameter of about 0.6 mm. Is done. As shown in FIGS. 1 and 2, the electromagnetic coil lead wire cord Lc is taken out from the rear end portion of the magnetic flux radiating tube 10, is provided along the insertion portion 42 of the endoscope 40, and is taken out from the operation portion 43 to the outside. .
 エラストマー又は樹脂系材料の薄膜からなる中空2重円筒の磁束放射筒10は、図4(a)に示すように、実際は柔軟な外筒11が磁気コイル15部と内視鏡先端部41に外嵌される内筒12の外形に沿って略密着するように変形した形状に構成される。特に、少なくとも外筒11を熱収縮性樹脂系材料とした場合は、外筒11が磁気コイル15部と内筒12の外形に沿って完全密着状態に収縮され変形した形状に形成することもできる。 As shown in FIG. 4A, the hollow double-cylinder magnetic flux radiation cylinder 10 made of a thin film of elastomer or resin material is actually provided with a flexible outer cylinder 11 outside the magnetic coil 15 and the endoscope distal end 41. It is configured in a deformed shape so as to be in close contact with the outer shape of the inner cylinder 12 to be fitted. In particular, when at least the outer cylinder 11 is made of a heat-shrinkable resin material, the outer cylinder 11 can be formed into a shape that is contracted and deformed in a fully adhered state along the outer shapes of the magnetic coil 15 part and the inner cylinder 12. .
 また、別の変形実施形態の磁束放射筒10’として、図4(b)に示すように、前記実施形態における外筒11に換えてエラストマー又は樹脂系材料の薄膜11’により、内視鏡先端部41に外嵌される内筒12の外面に円周方向に略等配され軸方向に沿って併設された複数の磁気コイル15を個別毎に覆い被せた状態で内筒12の外面に接着して各磁気コイル15を密封した構成とすることもできる。 In addition, as shown in FIG. 4 (b), as a magnetic flux radiation tube 10 'of another modified embodiment, an endoscope tip is formed by a thin film 11' of an elastomer or a resin material instead of the outer tube 11 in the above embodiment. Adhering to the outer surface of the inner cylinder 12 in a state in which a plurality of magnetic coils 15 that are substantially equally distributed in the circumferential direction and provided side by side in the axial direction are individually covered on the outer surface of the inner cylinder 12 that is externally fitted to the portion 41. Thus, each magnetic coil 15 can be sealed.
 さらに、別の変形実施形態の磁束放射筒10’’として、図4(c)に示すように、前記実施形態における外筒11に換えてエラストマー又は樹脂系材料の薄膜11’’により個別毎に密封包装された単独密閉型の複数本の磁気コイル15が内視鏡先端部41に外嵌される内筒12の外面に円周方向に略等配され軸方向に沿って接着され併設された構成とすることもできる。 Further, as shown in FIG. 4 (c), as a magnetic flux radiation tube 10 '' of another modified embodiment, an elastomer or a resin-based material thin film 11 '' is used instead of the outer tube 11 in the above embodiment. A plurality of single hermetically sealed magnetic coils 15 that are hermetically sealed are provided on the outer surface of the inner cylinder 12 that is externally fitted to the endoscope distal end portion 41, and is substantially equally distributed in the circumferential direction and adhered along the axial direction. It can also be configured.
 磁束放射筒10に用いられる上記の熱収縮チューブ材、エラストマーあるいは樹脂系材料は、いずれも医療適合性材料であることはいうまでもない。 Needless to say, any of the above-described heat-shrinkable tube materials, elastomers, or resin-based materials used for the magnetic flux radiation tube 10 are medically compatible materials.
 このようなエラストマー又は樹脂系材料からなる磁束放射筒10、10’、10’’は、小径且つソフトタッチに形成されることから、患者の消化管などの生体官T内への挿入における苦痛の増大を抑えることができる。また、このような構成の磁束放射筒は、比較的安価に構成できることからESD外科手術における1回の使い捨て型又は複数回使用型に適宜選択的に適用できる。 Since the magnetic flux radiation tubes 10, 10 ′, 10 ″ made of such an elastomer or a resin material are formed with a small diameter and a soft touch, pain in insertion into the living body T such as a patient's digestive tract is caused. The increase can be suppressed. In addition, since the magnetic flux radiation tube having such a configuration can be configured at a relatively low cost, it can be selectively applied to a single-use type or a multi-use type in ESD surgery.
 磁気アンカー20は、図5に示すように、生体管T内面の病変部T2aに係着される係着部材21と、小径の磁気部材22と、この両部材21、22を連結する連結部材23とからなる。係着部材21は、従来から生体管T内の病変部T2aを掴んで持ち上げるために用いられる各種の係着具、例えば、U状に折り曲げた本体部(図示しない)の先端に間隔可変の爪状先端部を設け、間隔を隔てた対をなす本体部に互いの間隔を調節後の位置に固定するラチェット部(間隔調整部)21bが設けられているクリップ21aなどを適用することができる。ラチェット部21bは、対をなす本体部が間隔を縮める方向に弾性変形するときにはその変形を妨げず、かつ調整後の狭間隔に保持する機能を有する。初期状態のクリップ21aは、その弾性により先端部は開いた状態となっている。 As shown in FIG. 5, the magnetic anchor 20 includes an engaging member 21 attached to a lesioned part T <b> 2 a on the inner surface of the biological tube T, a small-diameter magnetic member 22, and a connecting member 23 that connects both the members 21 and 22. It consists of. The engaging member 21 is a claw having a variable interval at the tip of various engaging tools conventionally used for grasping and lifting the lesioned part T2a in the biological tube T, for example, a main body part (not shown) bent in a U shape. A clip 21a or the like in which a ratchet portion (space adjustment portion) 21b is provided, which is provided with a shaped tip portion and is fixed to a position after adjusting the space between the paired body portions, can be applied. The ratchet portion 21b has a function of preventing the deformation when the paired main body portions are elastically deformed in the direction of reducing the interval and holding the adjusted narrow interval. The clip 21a in the initial state is in an open state due to its elasticity.
 連結部材23は、例えば、その両端に設けられた図示しないフック部のそれぞれを磁気部材22の基端部22b及びクリップ21aに設けられた図示しない孔部に掛けることにより連結される。連結部材23は、剛体、バネやゴム系などの弾性材料、柔軟材料のいずれでも使用することができ、いずれも図示しないフック部に繰り出し機構を設けて長さを調整可能に構成できる。 The connecting member 23 is connected, for example, by hooking hook portions (not shown) provided at both ends thereof to base end portions 22b of the magnetic member 22 and holes (not shown) provided in the clip 21a. The connecting member 23 can be a rigid body, an elastic material such as a spring or rubber, or a flexible material. Any of the connecting members 23 can be configured such that a length is adjustable by providing a feeding mechanism in a hook portion (not shown).
 なお、磁気アンカー20は、連結部材23を用いずに、クリップ21aと磁気部材22を直接連結する構成にしてもよく、クリップ21aと磁気部材22を1体で形成することもできる。 The magnetic anchor 20 may be configured to directly connect the clip 21a and the magnetic member 22 without using the connecting member 23, or the clip 21a and the magnetic member 22 may be formed as a single body.
 この実施形態の磁気部材22は、図5に示すように、係着部材21に連結される基端部22bからフリー端である先端部22aに向けて外形が漸次拡大する先太り形の略円錐体状に形成される。 As shown in FIG. 5, the magnetic member 22 of this embodiment is a tapered cone whose outer shape gradually increases from a base end portion 22 b connected to the engaging member 21 toward a tip end portion 22 a which is a free end. It is formed in a body shape.
 これにより、磁気部材22の基端部22bから先端部22aに向けての漸次拡大する円錐体外形面の全面に対向する磁束放射筒10の先端面と同一のS又はN極が形成されるので磁束放射筒10の先端面からの磁束による反発力が磁気アンカー20の磁気部材22の漸次拡大する先端部22aの外周面にまで及ぶことから、これに対する異極(N又はS極)が形成される磁気部材22の先端部が磁束放射筒10の先端面方向に引寄せられて反転するのを防止することができる。 As a result, the same S or N pole as the distal end surface of the magnetic flux radiating cylinder 10 facing the entire surface of the cone outer surface gradually expanding from the proximal end portion 22b toward the distal end portion 22a of the magnetic member 22 is formed. Since the repulsive force due to the magnetic flux from the front end surface of the magnetic flux radiating cylinder 10 reaches the outer peripheral surface of the tip portion 22a of the magnetic member 22 of the magnetic anchor 20 that gradually increases, a different polarity (N or S pole) is formed. It is possible to prevent the front end portion of the magnetic member 22 from being pulled in the direction of the front end surface of the magnetic flux radiating tube 10 and being inverted.
 また、図1乃至3及び図5に示すように、磁束放射筒10の先端部外周面の例えば軸直角方向2ヶ所に角度センサ17、18が取付けられており、この角度センサ17、18からの制御信号17a、18aを介して、内視鏡40の先端部41に装着された磁束放射筒10の任意の所望する湾曲角度位置に停止して保持するように内視鏡40の先端部41に隣接する湾曲部42bの湾曲姿勢を変える湾曲駆動部(図示しない)を制御する内視鏡湾曲制御ユニット51aを有する磁束放射手段位置決め制御ユニット51をさらに備える。ここで用いられる内視鏡40は、いずれも図示しない湾曲駆動部の湾曲駆動手段として内蔵したモータを回動制御してこのモータの駆動力により湾曲操作ワイヤを牽引弛緩して湾曲部を電動で湾曲動作させる公知の電動湾曲式内視鏡を適用することができる。この電動湾曲式内視鏡40は公知であるため詳細な説明は省略するが、操作部43には、湾曲部42bを操作するジョイスティックや、モータの駆動力によって湾曲駆動機構を駆動する際の動力の伝達を断続操作するクラッチ機構の操作部や、湾曲部42bを任意の湾曲位置(湾曲角)で固定するためのエンゲージ機構の操作部などが設けられている(後述の図14及びその説明参照)。そこで、ジョイスティックによる中立状態からの傾動操作量が湾曲操作入力量(湾曲操作指示量)として、角度センサ17、18からの制御信号17a、18aを介し内視鏡湾曲制御ユニット51aに入力され、この湾曲制御ユニット51aは操作部43内に設けた湾曲駆動部を電気的に駆動して、その湾曲操作入力量に相当する湾曲角だけ、湾曲操作ワイヤを牽引及び弛緩させて湾曲部42bを電動で湾曲させる。 As shown in FIGS. 1 to 3 and FIG. 5, angle sensors 17 and 18 are attached to, for example, two positions perpendicular to the axis of the outer peripheral surface of the tip of the magnetic flux emitting tube 10. Via the control signals 17a, 18a, the distal end portion 41 of the endoscope 40 is stopped and held at any desired bending angle position of the magnetic flux emitting tube 10 attached to the distal end portion 41 of the endoscope 40. It further includes a magnetic flux radiation means positioning control unit 51 having an endoscope bending control unit 51a for controlling a bending driving unit (not shown) that changes the bending posture of the adjacent bending part 42b. The endoscope 40 used here controls the rotation of a motor built in as a bending drive unit of a bending drive unit (not shown), pulls and loosens the bending operation wire by the driving force of the motor, and electrically drives the bending unit. A known electric bending endoscope that performs a bending operation can be applied. The electric bending endoscope 40 is well known and will not be described in detail. However, the operation unit 43 includes a joystick for operating the bending unit 42b and power for driving the bending drive mechanism by the driving force of the motor. There are provided an operation part of a clutch mechanism for intermittently operating transmission, an operation part of an engagement mechanism for fixing the bending part 42b at an arbitrary bending position (bending angle) (see FIG. 14 and its description later). ). Therefore, the tilt operation amount from the neutral state by the joystick is input as the bending operation input amount (bending operation instruction amount) to the endoscope bending control unit 51a via the control signals 17a and 18a from the angle sensors 17 and 18. The bending control unit 51a electrically drives a bending drive unit provided in the operation unit 43, and pulls and relaxes the bending operation wire by a bending angle corresponding to the bending operation input amount, thereby electrically driving the bending unit 42b. Curve.
 角度センサ17、18は、例えば機械式、流体式、光学式ジャイロあるいは振動ジャイロなどを利用した公知の非常に小型軽量の1軸乃至3軸角度センサ等を選択的に適用することができる。なお、ジャイロと加速度計のそれぞれの利点を利用して湾曲部42bのロール、ピッチ、ヨーの3次元の角度を検出することもできる。 As the angle sensors 17 and 18, for example, a known very small and light 1-axis to 3-axis angle sensor using a mechanical, fluid, optical gyroscope, vibration gyroscope, or the like can be selectively applied. Note that the three-dimensional angles of the roll, pitch, and yaw of the bending portion 42b can be detected by using the advantages of the gyro and the accelerometer.
 この磁束放射手段位置決め制御ユニット51は、内視鏡湾曲制御ユニット51aと連携して内視鏡先端部41に装着した磁束放射筒10を任意の所望する湾曲角度位置に停止し保持するように制御することにより、内視鏡40による視界が十分に確保し易くなり、電気メスなどの切開具によるESD外科手術操作がやり易く、手術の操作性、安全性及び信頼性を一層向上させることができる。 This magnetic flux radiation means positioning control unit 51 is controlled so as to stop and hold the magnetic flux radiation cylinder 10 attached to the endoscope distal end portion 41 at any desired curved angle position in cooperation with the endoscope curvature control unit 51a. By doing so, it is easy to sufficiently secure the field of view by the endoscope 40, it is easy to perform an ESD surgical operation with an incision tool such as an electric knife, and the operability, safety and reliability of the operation can be further improved. .
 図6の(a)、(b)は本発明のそれぞれ別の実施形態による磁気アンカー20’、20’’の概念図である。 6 (a) and 6 (b) are conceptual diagrams of magnetic anchors 20 'and 20 "according to different embodiments of the present invention.
 別の実施形態の磁気アンカー20’の磁気部材22’は、図6(a)に示すように、係着部材21に連結される小径中空状の磁気体外筒22’aと、磁気体外筒22’a内に中心軸22’d周りに回転自在に収設された磁気体回転部材22’cとから構成される。 As shown in FIG. 6A, the magnetic member 22 ′ of the magnetic anchor 20 ′ according to another embodiment includes a small-diameter hollow magnetic outer cylinder 22 ′ a connected to the engaging member 21 and a magnetic outer cylinder 22. It is composed of a magnetic rotating member 22'c that is rotatably arranged around a central axis 22'd in 'a.
 磁気体回転部材22’cは、複数の略円盤体、短棒体あるいは小板部材、もしくは1体又は複数分割型の螺旋状部材などが中心軸22’dに挿通され固定されて外形が外筒22’aの内径より僅かに細い円柱体状に形成される。 The magnetic body rotating member 22'c has a plurality of substantially disk bodies, short rod bodies, small plate members, or one or a plurality of split-type spiral members inserted through the central shaft 22'd and fixed to the outside. It is formed in a cylindrical body slightly thinner than the inner diameter of the cylinder 22'a.
 このように構成された磁気部材22’は、いずれも磁気材料からなる小径中空状の磁気体外筒22’a内で磁気体回転部材22’cを指などで一旦回転力を与えると中心軸周りに磁気体回転部材22’cが常時回転することによりジャイロモーメントが作用する構成であることから、磁気部材22’の基端部22’bに対する異極が形成される先端部22’aaが磁束放射筒10の先端面方向に引寄せられて反転するのを防止することができる。 The magnetic member 22 ′ configured as described above is configured to rotate around the central axis once a rotational force is applied to the magnetic rotating member 22 ′ c with a finger or the like within a small-diameter hollow magnetic outer tube 22 ′ made of a magnetic material. Since the gyro moment is applied when the magnetic rotating member 22′c is constantly rotated, the tip 22′aa where the magnetic pole 22′aa is formed with a different polarity from the base end 22′b of the magnetic member 22 ′ is a magnetic flux. It is possible to prevent the radiation tube 10 from being pulled and reversed in the direction of the distal end surface.
 さらに別の実施形態の磁気アンカー20’’の磁気部材22’’は、図6(b)に示すように、いずれも磁気材料からなり、係着部材21に連結される基端部22’’bから先端部2’’aaに向けて漸次拡大する小径中空状の先太り円錐筒形磁気体外筒22’’aと、磁気体外筒22’’a内に中心軸22’’d周りに回転自在に収設された磁気体回転部材22’’cとから構成される。 Further, as shown in FIG. 6B, the magnetic member 22 ″ of the magnetic anchor 20 ″ according to another embodiment is made of a magnetic material and is connected to the engaging member 21. b is a small-diameter hollow tapered cone-shaped cylindrical outer cylinder 22 ″ a that gradually expands toward the tip 2 ″ aa, and rotates around the central axis 22 ″ d within the outer cylinder 22 ″ a. It is comprised from the magnetic body rotation member 22''c freely accommodated.
 磁気体回転部材22’’cは、複数の略円盤体、短棒体あるいは小板部材、もしくは1体又は複数分割型の螺旋状部材などが中心軸22’’dに挿通され固定されて外形が外筒22’’aの内径より僅かに細い先太り円錐体状に形成される。 The magnetic rotating member 22 ″ c has a plurality of substantially disk bodies, short bar bodies, small plate members, or one or a plurality of divided spiral members inserted through the central shaft 22 ″ d and fixed. Is formed in the shape of a tapered cone slightly thinner than the inner diameter of the outer cylinder 22 ″ a.
 このように構成された磁気部材22’’は、いずれも磁気材料からなる中空状の磁気体外筒22’’a内で磁気体回転部材22’’cを指などで一旦回転力を与えると中心軸周りに磁気体回転部材22’’cが常時回転することによりジャイロモーメントが作用する構成であることから、磁気部材22’’の基端部22’’bに対する異極が形成される先端部2’’aaが磁束放射筒10の先端面方向に引寄せられて反転するのを防止することができる。これに加えて、磁気部材22’’の基端部22’’bから先端部2’’aaに向けての漸次拡大する先太り円錐筒形磁気体外筒22’’aの外周面全面に対向する磁束放射筒10の先端面と同一のS又はN極が形成されるので磁束放射筒10の先端面からの磁束による電磁反発力が磁気部材22’’の漸次拡大する先端部2’’aaの外周面にまで及ぶことから、これに対する異極(N又はS極)が形成される磁気部材22’’の先端部2’’aaが磁束放射筒10の先端面方向に引寄せられて反転するのを防止する効果も重畳される。 The magnetic member 22 ″ configured as described above is centered once a rotational force is applied to the magnetic rotating member 22 ″ c with a finger or the like in a hollow magnetic outer tube 22 ″ a made of a magnetic material. Since the gyro moment is applied by constantly rotating the magnetic rotating member 22 ″ c around the axis, the distal end portion where a different polarity from the proximal end portion 22 ″ b of the magnetic member 22 ″ is formed. It can be prevented that 2 ″ aa is attracted in the direction of the front end surface of the magnetic flux radiating tube 10 and reversed. In addition to this, it faces the entire outer peripheral surface of the tapered conical cylindrical outer cylinder 22''a that gradually expands from the proximal end 22''b to the distal end 2''aa of the magnetic member 22 ''. Since the same S or N pole as the front end surface of the magnetic flux radiation tube 10 is formed, the electromagnetic repulsion force due to the magnetic flux from the front surface of the magnetic flux radiation tube 10 gradually expands the front end portion 2''aa of the magnetic member 22 ''. The tip end 2 ″ aa of the magnetic member 22 ″ having a different polarity (N or S pole) with respect to the outer peripheral surface is drawn toward the tip end surface of the magnetic flux radiating cylinder 10 and reversed. The effect of preventing this is also superimposed.
 一実施形態の磁束制御手段70は、図1に示すように、内部に複数の可変電気抵抗手段36を具備し、ESD外科手術者が手術中に自らの足で操作可能なフット操作部30と、電源Eに連結されたフット操作部30の各可変電気抵抗手段36からの電圧信号を受けて磁束放射筒10内の各磁気コイル15への電流値を制御して各磁気コイル15の磁束配分を制御する磁束制御ユニット60とを備えている。 As shown in FIG. 1, the magnetic flux control means 70 according to an embodiment includes a plurality of variable electrical resistance means 36 therein, and an foot operation unit 30 that can be operated by an ESD surgeon with his / her foot during surgery. In response to the voltage signal from each variable electrical resistance means 36 of the foot operating unit 30 connected to the power source E, the current value to each magnetic coil 15 in the magnetic flux radiating cylinder 10 is controlled to distribute the magnetic flux of each magnetic coil 15. And a magnetic flux control unit 60 for controlling.
 図7は本発明の一実施形態によるフット操作部の概念を示す透視図、図8の(a)、(b)はそれぞれ図7のX、Y軸方向の縦断面図である。
 この実施形態のフット操作部30は、上部が開放された有底ボックス体32と、ボックス体32の上部に覆設されたボックスカバー状のフットペダル33と、ボックス体32とフットペダル33との略中央部間内に設けられ、フットペダル33を任意の方角に傾動可能に支持するユニバーサル支承手段34と、ボックス体32とフットペダル33との周辺部間内に設けられ、フットペダル33を原姿勢復帰可能に弾発支持する複数(図示では4隅に各1個で4個)の圧縮ばね部材35と、ボックス体32の底面内周辺に磁束放射筒10内の各磁気コイル15に対応して略対称に配置され、フットペダル33の傾動動作に連動して電気抵抗が変化する複数(図示では4隅に各1個で4個)の可変電気抵抗手段36と、から概略構成される。
7 is a perspective view showing a concept of a foot operation unit according to an embodiment of the present invention, and FIGS. 8A and 8B are longitudinal sectional views in the X and Y axis directions of FIG. 7, respectively.
The foot operation unit 30 of this embodiment includes a bottomed box body 32 having an open top, a box cover-like foot pedal 33 covering the top of the box body 32, and the box body 32 and the foot pedal 33. A universal support means 34 that is provided in a substantially central portion and supports the foot pedal 33 so as to be tiltable in an arbitrary direction, and is provided in a peripheral portion between the box body 32 and the foot pedal 33. Corresponding to a plurality of compression spring members 35 (four in each of the four corners in the figure) that are elastically supported so as to be able to return to the posture, and each magnetic coil 15 in the magnetic flux emitting tube 10 around the bottom surface of the box body 32. And a plurality of variable electric resistance means 36 (in the figure, four at each of the four corners) whose electric resistance changes in conjunction with the tilting operation of the foot pedal 33.
 ボックス体32の下部には、上面がX軸前方に向かって上り坂状の傾斜面を有するベース31が1体又は個別に形成され取付けられている。これにより、上面が前方に向かって上り坂状に傾斜したフットペダル33の足による微妙な踏み込み操作がやり易くなり、良好な傾動操作性が確保される。 At the lower part of the box body 32, one or a single base 31 having an inclined surface whose upper surface is an upward slope toward the front of the X axis is formed and attached. Thereby, it becomes easy to perform a delicate stepping operation by the foot of the foot pedal 33 whose upper surface is inclined in an uphill direction toward the front, and good tilting operability is ensured.
 各可変電気抵抗手段36は、電源コードLe及び電源スイッチSWを介して電源Eに連結されるとともに、可変電気抵抗手段リード線コードLrを介して磁束制御ユニット60に連結される。また、磁束制御ユニット60は、図7にはフット操作部30の外部に設けられる概念図が示されているが、実際は各可変電気抵抗手段36のリード線が連結された制御ボード板(図示しない)として構成し、その制御ボード板をフット操作部30内の例えばボックス体32の底面内に収設し組み入れることが望ましい。 Each variable electric resistance means 36 is connected to the power source E via the power cord Le and the power switch SW, and is connected to the magnetic flux control unit 60 via the variable electric resistance means lead wire cord Lr. Further, FIG. 7 shows a conceptual diagram of the magnetic flux control unit 60 provided outside the foot operation unit 30, but actually, a control board plate (not shown) to which the lead wires of the variable electric resistance means 36 are connected. And the control board is preferably housed and incorporated in the bottom surface of the box body 32 in the foot operation unit 30, for example.
 この実施形態のユニバーサル支承手段34は、フットペダル33の天井内面の略中央部に固定される第1の枠体34aと、第1の枠体34aにフットペダル33の前後方向のX軸回りに揺動自在に枢支される第2の枠体34bと、第2の枠体34bにX軸に直交するフットペダル33の左右方向のY軸回りに揺動自在に枢支される第3の枠体34cと、を備え、この第3の枠体34cの取付け部34dがボックス体32の底面内の略中央部に固定されるジンバル機構から構成される。 The universal support means 34 of this embodiment includes a first frame 34a fixed to a substantially central portion of the ceiling inner surface of the foot pedal 33, and the first frame 34a around the X axis in the front-rear direction of the foot pedal 33. A second frame 34b that is pivotably supported, and a third frame 34b that is pivotally supported about the Y axis in the left-right direction of the foot pedal 33 orthogonal to the X axis. A frame body 34c, and a mounting portion 34d of the third frame body 34c is constituted by a gimbal mechanism fixed to a substantially central portion in the bottom surface of the box body 32.
 図8(c)は別の実施形態によるフット操作部のユニバーサル支承手段取付け部の拡大縦断面図である。 FIG. 8 (c) is an enlarged longitudinal sectional view of the universal support means mounting portion of the foot operating portion according to another embodiment.
 別の実施形態として、図8(c)に示すように、ユニバーサル支承手段34を前記実施形態とは逆方向にして、すなわち第1の枠体34aをボックス体32の底面内に、第3の枠体34cの取付け部34dをフットペダル33の天井内面に取付ける構成とすることもできる。 As another embodiment, as shown in FIG. 8 (c), the universal support means 34 is set in the opposite direction to the above-described embodiment, that is, the first frame 34a is placed in the bottom surface of the box body 32, and the third The attachment part 34d of the frame 34c may be attached to the ceiling inner surface of the foot pedal 33.
 また、別の実施形態として、第1の枠体34a又は第3の枠体34cの取付け部34dとフットペダル33の天井内面又はボックス体32の底面内との間に伸縮可能なばね部材などからなる弾性機構を組み入れ、フットペダル33を水平状態乃至傾動状態の任意の姿勢状態において全体を下方に押し下げ可能な構成とすることもできる。その一例として、図8(c)には、枠体34cの取付け部34dが、中空状取付け部34d1と、中空状取付け部34d1内に摺接する摺動取付け部34d2と、中空状取付け部34d1と摺動取付け部34d2との間に収設されたばね部材などの弾性部材34d3(弾性機構)とからなる形態が示されている。 Further, as another embodiment, from a spring member that can expand and contract between the mounting portion 34d of the first frame 34a or the third frame 34c and the ceiling inner surface of the foot pedal 33 or the bottom surface of the box body 32, etc. The foot pedal 33 can be configured to be able to be pushed down downward in an arbitrary posture state in a horizontal state or a tilted state. As an example, in FIG. 8C, the attachment portion 34d of the frame 34c includes a hollow attachment portion 34d1, a sliding attachment portion 34d2 that is in sliding contact with the hollow attachment portion 34d1, and a hollow attachment portion 34d1. A form is shown which comprises an elastic member 34d3 (elastic mechanism) such as a spring member disposed between the sliding attachment portion 34d2.
 このように、フットペダル33が前記弾性機構を組み入れたユニバーサル支承手段により支持される形態では、フットペダル33を水平状態乃至傾動状態の任意の姿勢状態において全体を下方に押し下げることにより、全ての可変電気抵抗手段36の抵抗を全体的に減少させて磁束放射筒10先端からの磁束M分布を相対的に増大させる調整が可能となる。これにより、磁気アンカー20に係着された病変部T2aを生体管Tの筋層T1から引離す微妙な調整幅がさらに拡大する。 As described above, in the form in which the foot pedal 33 is supported by the universal support means incorporating the elastic mechanism, all the variable amounts can be obtained by pressing the foot pedal 33 downward in an arbitrary posture state in a horizontal state or a tilting state. Adjustment to relatively increase the magnetic flux M distribution from the tip of the magnetic flux radiation tube 10 by reducing the resistance of the electric resistance means 36 as a whole is possible. As a result, the fine adjustment range for separating the lesioned part T2a attached to the magnetic anchor 20 from the muscle layer T1 of the biological tube T is further expanded.
 さらに、別の変形形態として、図示しないが、前記図8(c)に示す形態における弾性部材34d3を省いて、図8(a)、(b)に示す圧縮ばね部材35の弾発力を併用する、すなわち、圧縮ばね部材35が弾性部材34d3の機能を兼備する形態とすることもできる。したがって、この変形形態では、フットペダル33が圧縮ばね部材35の弾発力によりユニバーサル支承手段34の中空状取付け部34d1と摺動取付け部34d2との間に隙間(摺動ストローク)を保持した状態で支持される。 Further, as another modification, although not shown, the elastic member 34d3 in the form shown in FIG. 8C is omitted, and the elastic force of the compression spring member 35 shown in FIGS. 8A and 8B is used together. In other words, the compression spring member 35 may have a function of the elastic member 34d3. Therefore, in this modification, the foot pedal 33 maintains a gap (sliding stroke) between the hollow mounting portion 34d1 and the sliding mounting portion 34d2 of the universal support means 34 by the elastic force of the compression spring member 35. Supported by
 一実施形態の可変電気抵抗手段36は、図8(a)、(b)に示すように、ボックス体32の底面内に取付けられ、上部が開放された適宜長さのUチャンネル型のガイドフレーム36aと、ガイドフレーム36aの底面内に長手方向に沿って収設された電気抵抗器Raと、電気抵抗器Ra上を長手方向に滑動する摺動ブラシRbと、基端部が摺動ブラシRbに揺動可能に枢支された滑動リンク36bと、基端部がガイドフレーム36aの一端側に設けられた端部ブラケット36dに揺動自在に枢支されるとともに、先端部が滑動リンク36bの先端部に回転自在に枢支された支持リンク36cと、滑動リンク36bと支持リンク36cとの基端部間に懸架されて両リンク36b、36cをく字状に屈曲保持する引張ばね部材からなるリターンばね部材36eと、から構成される。 As shown in FIGS. 8 (a) and 8 (b), the variable electric resistance means 36 according to one embodiment is mounted within the bottom surface of the box body 32 and has an appropriate length U channel type guide frame open. 36a, an electrical resistor Ra disposed along the longitudinal direction in the bottom surface of the guide frame 36a, a sliding brush Rb sliding in the longitudinal direction on the electrical resistor Ra, and a base end portion of the sliding brush Rb The sliding link 36b is pivotally supported by the first frame 36a and the end bracket 36d is pivotally supported by the end bracket 36d provided at one end of the guide frame 36a. The distal end of the sliding link 36b is pivotally supported. A support link 36c pivotally supported at the distal end portion, and a tension spring member suspended between the base end portions of the slide link 36b and the support link 36c to bend and hold both the links 36b and 36c in a square shape. Litter A spring member 36e, composed.
 なお、リターンばね部材36eは、図8(a)、(b)に示す形態における滑動リンク36bと支持リンク36cとの基端部間に懸架される引張ばね部材に換えて、図示しないが、ガイドフレーム36aの端部ブラケット36d側の反対側端部と滑動リンク36bの基端部との間に圧縮ばね部材を懸架することにより、圧縮ばね部材の弾発力で両リンク36b、36cをく字状に屈曲保持する変形形態とすることもできる。 Although the return spring member 36e is not shown in place of the tension spring member suspended between the base end portions of the sliding link 36b and the support link 36c in the form shown in FIGS. By suspending the compression spring member between the opposite end portion of the frame 36a on the end bracket 36d side and the base end portion of the sliding link 36b, both links 36b and 36c are formed by the elastic force of the compression spring member. It is also possible to adopt a deformation form that is bent and held in a shape.
 フットペダル33の傾動動作に連動し、可変電気抵抗手段36の滑動リンク36b及び支持リンク36cの先端部がフットペダル33の天井内面のリンク押圧部33aに押圧されて揺動することにより、摺動ブラシRbが電気抵抗器Ra上を長手方向に滑動して電気抵抗が可変される。 In conjunction with the tilting motion of the foot pedal 33, the sliding link 36b of the variable electrical resistance means 36 and the tip of the support link 36c are pressed by the link pressing portion 33a on the ceiling inner surface of the foot pedal 33 and swing, thereby sliding. The brush Rb slides in the longitudinal direction on the electric resistor Ra, and the electric resistance is varied.
 この場合、足の踏込操作によりフット操作部30内に配置された可変電気抵抗手段36の上部のフットペダル33部のリンク押圧部33aが押し下げられて両リンク36b、36cの先端部が押し下げられる方向が、電気抵抗器Raの抵抗が減少して磁束放射筒10内の磁気コイル15への電流値が増大する方向であって、磁気コイル15への電流値が増大するのに伴い磁気コイル15から放射される磁束が増大し、磁気アンカー20の磁気部材22への電磁反発力が強まり磁気アンカー20に係着された病変部T2aを生体管Tの筋層T1から引離す牽引力が強くなる。 In this case, the direction in which the link pressing portion 33a of the foot pedal 33 portion of the variable electric resistance means 36 disposed in the foot operation portion 30 is pushed down by the stepping operation of the foot and the tip portions of both links 36b and 36c are pushed down. However, the resistance value of the electric resistor Ra decreases and the current value to the magnetic coil 15 in the magnetic flux radiating cylinder 10 increases, and the current value to the magnetic coil 15 increases from the magnetic coil 15. The radiated magnetic flux is increased, the electromagnetic repulsion force of the magnetic anchor 20 to the magnetic member 22 is increased, and the traction force that separates the lesioned part T2a attached to the magnetic anchor 20 from the muscle layer T1 of the biological tube T is increased.
 これとは反対に、足の踏込操作を緩めるか又は足を離すことにより、フットペダル33のリンク押圧部33aが上昇して両リンク36b、36cの先端部が引き上げられるいわゆる初期状態へ復帰する方向が、電気抵抗器Raの抵抗が増大して磁束放射筒10内の磁気コイル15への電流値が減少する方向であって、磁気コイル15への電流値が減少するのに伴い磁気コイル15から放射される磁束Mが減少し、磁気アンカー20の磁気部材22への電磁反発力が弱まり、磁気アンカー20に係着された病変部T2aを生体管Tの筋層T1から引離す牽引力が弱くなる。 On the contrary, when the foot stepping operation is loosened or the foot is released, the link pressing portion 33a of the foot pedal 33 rises and the leading end portions of both links 36b and 36c are pulled back to the so-called initial state. However, the resistance of the electric resistor Ra increases and the current value to the magnetic coil 15 in the magnetic flux radiating cylinder 10 decreases, and the current value to the magnetic coil 15 decreases as the current value to the magnetic coil 15 decreases. The radiated magnetic flux M is reduced, the electromagnetic repulsive force of the magnetic anchor 20 to the magnetic member 22 is weakened, and the traction force that separates the lesioned part T2a attached to the magnetic anchor 20 from the muscle layer T1 of the biological tube T is weakened. .
 このようなフット操作部30の構成により、ESD外科手術者が手術中に内視鏡40による視界を十分に確保するため状況に即応して瞬時にフットペダル33を足で所望の方向に踏み込んで傾動させることで電気抵抗が変化する複数の可変電気抵抗手段36を介して磁束放射筒10先端面から放射される磁束M分布を制御し、磁気アンカー20に所望の方向への電磁反発力を与えて磁気アンカー20に係着された病変部T2aを生体管Tの筋層T1から所望の方向に引離すことが容易になるため、内視鏡40による視界が十分に確保されることから手先を集中して素早く電気メスによるESD外科手術操作を一人で効率よく行うことが容易にできる。これにより、手術の操作性、安全性及び信頼性を向上させるとともに手術時間を短縮することができる。 With such a configuration of the foot operation unit 30, an ESD surgeon immediately depresses the foot pedal 33 with his / her foot in a desired direction in response to the situation in order to ensure a sufficient field of view by the endoscope 40 during the operation. By controlling the magnetic flux M distribution radiated from the front end surface of the magnetic flux radiation tube 10 through the plurality of variable electrical resistance means 36 whose electrical resistance changes by tilting, an electromagnetic repulsive force in a desired direction is given to the magnetic anchor 20. Thus, it becomes easy to separate the lesioned part T2a attached to the magnetic anchor 20 from the muscle layer T1 of the living body tube T in a desired direction, so that the field of view by the endoscope 40 is sufficiently secured. It is easy to concentrate and quickly perform an ESD surgical operation with an electric knife efficiently by one person. Thereby, the operability, safety and reliability of the operation can be improved and the operation time can be shortened.
 次に、以上記した本発明の生体管T内面の病変部T2aに係着される磁気アンカー20、内視鏡40の先端部41に装着される磁束放射筒10及び磁束放射筒10先端面から放射される磁束Mの配分を外部から制御する磁束制御手段70を有するESD用外科手術システムを用い、生体管T例えば消化管内面の病変部T2aの粘膜層T2の下層を剥離するESD用外科手術方法について、図1乃至8を参照し説明する。 Next, from the magnetic anchor 20 attached to the lesioned part T2a of the inner surface of the living body tube T of the present invention described above, the magnetic flux emitting tube 10 attached to the distal end portion 41 of the endoscope 40, and the distal end surface of the magnetic flux emitting tube 10 Using an ESD surgical system having a magnetic flux control means 70 for controlling the distribution of the radiated magnetic flux M from the outside, an ESD surgical operation for peeling the lower layer of the mucosa layer T2 of the lesion T2a on the inner surface of the digestive tract. The method will be described with reference to FIGS.
 消化管Tは、図5に示すように、外面の筋層T1、内面の粘膜層T2からなり、例えば初期消化官癌などの粘膜層T2に病変部T2aが発生した状態における本発明のESD用外科手術方法は、次の主な段階を有する。 As shown in FIG. 5, the gastrointestinal tract T is composed of an outer muscle layer T1 and an inner mucosal layer T2. For example, the digestive tract T for ESD of the present invention in a state where a lesion T2a occurs in the mucosal layer T2 such as early gastrointestinal cancer. The surgical method has the following main steps.
 先ず、内視鏡等も用いる各種診断により消化管T内の病変部T2aを特定する(病変部特定段階)。 First, the lesioned part T2a in the digestive tract T is identified by various diagnoses using an endoscope or the like (lesioned part identifying stage).
 口又は肛門などの自然開口部から先端部41に磁束放射筒10が装着された内視鏡40を挿入して消化管T内の病変部T2aを確認する(病変部確認段階)。これ以降の各段階においても、引き続きこの内視鏡40により、さらに図示しない各種のモニター及び運転表示灯LED(詳細な説明は省略する)を介して注意深く消化管Tの内部を観察/確認しながら慎重に外科手術が行われる。 The lesioned part T2a in the gastrointestinal tract T is confirmed by inserting the endoscope 40 with the magnetic flux emitting tube 10 attached to the distal end 41 through a natural opening such as the mouth or anus (lesioned part confirmation stage). In each subsequent stage, the endoscope 40 continues to carefully observe / confirm the inside of the digestive tract T via various monitors and operation indicator LEDs (not shown in detail) (not shown). Surgery is performed carefully.
 この際、磁束放射筒10の先端部外周面に取付けられた角度センサ17、18からの制御信号17a、18aを介して、磁束放射手段位置決め制御ユニット51により内視鏡先端部41に装着した磁束放射筒10を任意の所望する湾曲角度位置に停止した状態で保持する。 At this time, the magnetic flux attached to the endoscope distal end portion 41 by the magnetic flux radiation means positioning control unit 51 via the control signals 17a and 18a from the angle sensors 17 and 18 attached to the outer peripheral surface of the distal end portion of the magnetic flux emitting tube 10. The radiation tube 10 is held in a stopped state at any desired bending angle position.
 なお、内視鏡40の先端部41前面には、例えば病変部T2aの切除時にエア及び浄水を送るための送気送水ノズル(図示省略)、病変部T2a及びその周辺を照らすための照明窓46、病変部T2a及びその周辺を観察するために対物レンズを配置した観察窓47、ならびに第1、第2の処置具誘導チャンネル44、45等が設けられている。 Note that, on the front surface of the distal end portion 41 of the endoscope 40, for example, an air / water supply nozzle (not shown) for sending air and purified water at the time of excision of the lesioned portion T2a, an illumination window 46 for illuminating the lesioned portion T2a and its surroundings. In addition, an observation window 47 in which an objective lens is arranged to observe the lesioned part T2a and its periphery, and first and second treatment instrument guide channels 44 and 45 are provided.
 次いで、病変部T2aの周辺から粘膜層T2の下層に挿入したいずれも図示しない注射針で生理食塩水を注入して、病変部T2aを筋層T1から浮き上がらせておく(生理食塩水を注入段階)。 Next, physiological saline is injected with an injection needle (not shown) from the periphery of the lesion T2a to the lower layer of the mucosal layer T2, and the lesion T2a is lifted from the muscle layer T1 (injecting physiological saline). ).
 前記生理食塩水を注入後直ちに、磁気アンカー10の係着部材21、連結部材23、及び小径磁気部材22を例えば内視鏡40の第2の処置具誘導チャンネル45を介して図示しないクリップ取付け具により消化管T内の病変部T2aまで導入し、図5に示すように磁気アンカー10を病変部T2aの切端部T2bに係着部材21を介して係着する(磁気アンカー病変部係着段階)。 Immediately after injecting the physiological saline, the engaging member 21, the connecting member 23, and the small-diameter magnetic member 22 of the magnetic anchor 10 are connected to the clip attachment tool (not shown) via the second treatment instrument guide channel 45 of the endoscope 40, for example. To the lesioned part T2a in the gastrointestinal tract T, and as shown in FIG. 5, the magnetic anchor 10 is anchored to the cut end T2b of the lesioned part T2a via the anchoring member 21 (magnetic anchor lesioned part engaging stage). .
 先端に把持部を有する可撓性チューブ状の公知の把持クリップ取付け具によりクリップ21a及びラチェット部21bからなる係着部材21の消化管T内の病変部T2aへの導入及び係着は、従来の方法により行うことができるので、詳細な説明は省略する。 Introduction and engagement of the engaging member 21 composed of the clip 21a and the ratchet portion 21b to the lesioned part T2a in the digestive tract T with a known flexible clip-shaped attachment fixture having a gripping portion at the tip is a conventional method. Since it can be performed by a method, detailed description is omitted.
 次に、内視鏡40により消化管T内の病変部T2a近辺を観察/確認しながら、フット操作部30のフットペダル33部を足の踏込操作によりX軸方向の前後あるいはY軸方向の左右いずれかの部分を押し下げ(図5、7参照)、病変部T2aの切端部T2bに係着された磁気アンカー20を立ち上げるように磁気アンカー20の磁気部材22への電磁反発力を調整する(磁気アンカー立ち上げ調整段階)。 Next, while observing / confirming the vicinity of the lesioned part T2a in the digestive tract T with the endoscope 40, the foot pedal 33 part of the foot operating part 30 is moved forward and backward in the X-axis direction or left and right in the Y-axis direction by stepping on the foot. Either part is pushed down (see FIGS. 5 and 7), and the electromagnetic repulsive force to the magnetic member 22 of the magnetic anchor 20 is adjusted so that the magnetic anchor 20 engaged with the cut end T2b of the lesioned part T2a is raised (see FIG. Magnetic anchor launch adjustment stage).
 この際に、図4、5及び7等に示すように、フット操作部30のボックス体32の底面内のX軸方向の前後及びY軸方向の左右の周辺に、磁束放射筒10内の上下左右に配置された4本の磁気コイル15に対応して略対称に配置されそれぞれリード線を介して電気結合されているので、例えばフットペダル33のX軸方向の後部を押し下げると磁束放射筒10内の下方部に配置された磁気コイル15先端からの磁束Mが強く、磁束放射筒10内の上方部に配置された磁気コイル15先端からの磁束Mが弱くなる磁束分布となり、この磁束放射筒10先端部からの磁束分布により磁気部材22への反発力を受けた磁気アンカー20は上方に向けて立ち上がる傾向が強まる。また、フットペダル33のX軸方向の前部を押し下げると、磁束放射筒10内の上方部の磁気コイル15先端からの磁束Mが強まり、磁気アンカー20が前方に押されて前側に傾く。フットペダル33の後方から見てY軸方向の左側を押し下げると、磁束放射筒10の後方から見て左方部の磁気コイル15先端からの磁束Mが強まり、磁気アンカー20が内視鏡先端部41から見て右側に傾く。さらに、フットペダル33の後方から見てY軸方向の右側を押し下げると、磁束放射筒10内の後方から見て右方部の磁気コイル15先端からの磁束Mが強まり、磁気アンカー20が内視鏡先端部41から見て左側に傾く。 At this time, as shown in FIGS. 4, 5, 7, and the like, the upper and lower sides of the magnetic flux emitting cylinder 10 are arranged on the front and rear in the X-axis direction and on the left and right in the Y-axis direction in the bottom surface of the box body 32 of the foot operation unit 30. Since the four magnetic coils 15 arranged on the left and right are arranged substantially symmetrically and electrically coupled via lead wires, for example, when the rear part of the foot pedal 33 in the X-axis direction is pushed down, the magnetic flux emitting tube 10 The magnetic flux M from the tip of the magnetic coil 15 disposed in the lower part of the magnetic flux 15 is strong, and the magnetic flux M from the tip of the magnetic coil 15 disposed in the upper part of the magnetic flux radiation tube 10 is weakened. 10 The magnetic anchor 20 that has received a repulsive force to the magnetic member 22 due to the magnetic flux distribution from the tip end portion has a tendency to rise upward. Further, when the front portion of the foot pedal 33 in the X-axis direction is pushed down, the magnetic flux M from the tip of the magnetic coil 15 at the upper portion in the magnetic flux radiating cylinder 10 is strengthened, and the magnetic anchor 20 is pushed forward and tilted forward. When the left side in the Y-axis direction as viewed from the rear of the foot pedal 33 is pushed down, the magnetic flux M from the tip of the left magnetic coil 15 as seen from the back of the magnetic flux emitting tube 10 is strengthened, and the magnetic anchor 20 is moved to the tip of the endoscope. Tilt to the right as seen from 41. Further, when the right side in the Y-axis direction as viewed from the rear side of the foot pedal 33 is pushed down, the magnetic flux M from the tip of the right side magnetic coil 15 as viewed from the rear side in the magnetic flux radiating cylinder 10 is strengthened, and the magnetic anchor 20 is viewed from the inside. It tilts to the left when viewed from the mirror tip 41.
 続いて、内視鏡40により消化管T内の病変部T2a近辺を観察/確認しながら、図示しない高周波メスなどの切開具を例えば第1の処置具誘導チャンネル44から消化管T内に導入し、粘膜層T2の病変部T2aを筋層T1に対して切端部T2bから切離して行く(病変部粘膜下層剥離段階)。 Subsequently, while observing / confirming the vicinity of the lesion T2a in the digestive tract T with the endoscope 40, an incision tool such as a high-frequency knife (not shown) is introduced into the digestive tract T from the first treatment instrument guide channel 44, for example. The lesioned part T2a of the mucosal layer T2 is separated from the cut end T2b with respect to the muscle layer T1 (lesioned submucosal layer peeling stage).
 この病変部粘膜下層剥離段階において、内視鏡40による視界を十分に確保するため状況に即応して瞬時にフットペダル33を足で所望の方向に踏み込んで傾動させることで電気抵抗が変化する複数の可変電気抵抗手段36を介して磁束放射筒10先端面の磁束M分布を制御し、磁気アンカー20に所望の方向への電磁反発力を与えて磁気アンカー20に係着された病変部T2aを筋層T1から所望の方向に引離すように調整を続行する。 In this lesioned submucosal layer exfoliation stage, in order to ensure a sufficient field of view by the endoscope 40, the electrical resistance changes by instantly depressing and tilting the foot pedal 33 in the desired direction with the foot in response to the situation. The magnetic flux M distribution on the tip surface of the magnetic flux radiating cylinder 10 is controlled through the variable electric resistance means 36, and an electromagnetic repulsive force is applied to the magnetic anchor 20 in a desired direction so that the lesioned portion T2a attached to the magnetic anchor 20 is The adjustment is continued so as to be separated from the muscle layer T1 in a desired direction.
 このようなフット操作部30の足の踏込み操作による磁気アンカー20の位置及び姿勢を徐々にずらしながら病変部T2aを筋層T1から所望の方向に引離すよう適宜調整することにより切除された病変部T2aを筋層T1からさらに引離すことが容易にできるため、内視鏡40により切開具の先端位置の目視による確認が容易となり病変部T2aの切除作業をスムーズに行うことができる。これにより、手先を集中して切開具によるESD外科手術操作を一人で容易に素早く行うことができる。 The lesioned part excised by appropriately adjusting the lesioned part T2a to be separated from the muscle layer T1 in a desired direction while gradually shifting the position and posture of the magnetic anchor 20 by the stepping operation of the foot of the foot operating part 30. Since T2a can be easily further separated from the muscle layer T1, visual confirmation of the distal end position of the incision tool is facilitated by the endoscope 40, and the excision work of the lesioned part T2a can be performed smoothly. As a result, it is possible to easily and quickly perform an ESD surgical operation by a cutting tool with one hand concentrated.
 引き続き、磁気アンカー20が係着されたままの病変部T2aを例えば内視鏡40の第2の処置具誘導チャンネル45を介して図示しない把持鉗子で把持した状態で、フット操作部30への電源スイッチSWを切り磁束放射筒10への電流の供給を止めて(図1参照)、そのまま内視鏡40を消化管Tから抜き去ることにより回収する(病変部及び内視鏡取出し段階)。この際、内視鏡40の湾曲部42bの湾曲姿勢を自由に変えられるように湾曲駆動部(図示しない)のロックを解除する。 Subsequently, in a state where the lesioned part T2a with the magnetic anchor 20 still attached is gripped by gripping forceps (not shown) via the second treatment instrument guide channel 45 of the endoscope 40, for example, The switch SW is turned off, the supply of current to the magnetic flux radiating cylinder 10 is stopped (see FIG. 1), and the endoscope 40 is recovered by removing it from the digestive tract T as it is (lesioned part and endoscope extraction stage). At this time, the bending drive unit (not shown) is unlocked so that the bending posture of the bending portion 42b of the endoscope 40 can be freely changed.
 その後、病変部T2aを切除した粘膜層T2部の縫合、消毒などの処置を行う(切除後処置段階)。 Thereafter, treatment such as suturing and disinfection of the mucosal layer T2 from which the lesion T2a has been excised is performed (post-resection treatment stage).
 図9は本発明の別の実施形態のESD用外科手術システムによる生体管内における病変部位の粘膜下層剥離術の概念を示す一部縦断面概念図、図10は図9の実施形態に対応するフット操作部の概念を示すX軸方向の縦断面図である。 FIG. 9 is a partial longitudinal sectional conceptual view showing the concept of submucosal dissection of a lesion site in a living body tube by an ESD surgical system according to another embodiment of the present invention, and FIG. 10 is a foot corresponding to the embodiment of FIG. It is a longitudinal cross-sectional view of the X-axis direction which shows the concept of an operation part.
 別の実施形態のESD用外科手術システムは、内視鏡先端部41に亘り装着され、磁気アンカー20に電磁反発力を付与する磁束放射手段10a及び磁束放射手段10aからの磁束M分布を外部から制御する磁束制御手段のフット操作部30’の形態が異なる点を除き、その他は前記実施形態と同様である。したがって、図9、10において前記実施形態の図1乃至8における同じ機能を有する部材等には一部形状等が異なっていても同一の符号あるいは記号を付してある。以下、別の実施形態のESD用外科手術システムの前記実施形態と異なる部分に関して説明する。 The ESD surgical system according to another embodiment is mounted over the endoscope distal end portion 41 and applies magnetic repulsive force to the magnetic anchor 20 and magnetic flux M distribution from the magnetic flux radiating means 10a from the outside. Except for the point that the form of the foot operation part 30 'of the magnetic flux control means to be controlled is different, the rest is the same as in the above embodiment. Therefore, in FIGS. 9 and 10, the members having the same functions in FIGS. 1 to 8 of the embodiment are given the same reference numerals or symbols even if the shapes are partially different. Hereinafter, a different part from the said embodiment of the surgical system for ESD of another embodiment is demonstrated.
 この実施形態の磁束放射手段10aは、細い線状の磁性体(図示しない)に巻回された小径の導線コイル16aがエラストマー又は樹脂系材料の薄膜11aにより密封包装されてフレキシブルなループ状に形成され、内視鏡40の例えば処置具誘導チャンネル44内に先端からループ状態で引出し可能に収設される1体のループ状磁気発生要素であるループ状磁気コイル16から構成される。 The magnetic flux radiating means 10a of this embodiment is formed in a flexible loop shape in which a small-diameter conductive coil 16a wound around a thin linear magnetic body (not shown) is hermetically packaged by an elastomer or resin-based material thin film 11a. For example, the endoscope 40 is constituted by a loop-shaped magnetic coil 16 which is a single loop-shaped magnetism generating element disposed in a treatment instrument guide channel 44 so as to be able to be pulled out from the distal end in a loop state.
 この実施形態のループ状磁気コイル16は、細い線状の磁性体芯部材(図示しない)に毛髪程度の細い導線を巻回した導線コイル16aがエラストマー又は樹脂系材料からなる例えば熱収縮チューブなどの薄膜11aにより密封包装されて数mm程度の小径に形成される。ループ状磁気コイル16の2本のリード線(図示しない)は、纏められて例えば略0.5mm径の熱収縮チューブ内に収容され加熱されて略0.3mm径の電磁コイルリード線コード(図示しない)が形成される。この電磁コイルリード線コードは、図1、2に示すような内視鏡40の例えば処置具誘導チャンネル44内に挿通されて操作部43(図2参照)から外部に取り出される。 The loop-shaped magnetic coil 16 of this embodiment has a conductive coil 16a in which a thin conductive wire, such as hair, is wound around a thin linear magnetic core member (not shown), which is made of an elastomer or a resin material, such as a heat-shrinkable tube. The thin film 11a is hermetically packaged to have a small diameter of about several mm. The two lead wires (not shown) of the loop-shaped magnetic coil 16 are collected and accommodated in, for example, a heat shrinkable tube having a diameter of about 0.5 mm and heated to be about 0.3 mm in diameter. Not) is formed. The electromagnetic coil lead wire cord is inserted into, for example, a treatment instrument guide channel 44 of an endoscope 40 as shown in FIGS. 1 and 2 and is taken out from the operation unit 43 (see FIG. 2).
 また、この実施形態においても図9に示すように、内視鏡40の先端部41外周面の例えば軸直角方向2ヶ所に前記実施例1と同様な角度センサ17、18が取付けられており、この角度センサ17、18からの制御信号17a、18aを介して、内視鏡40の先端部41外前方に展開されたループ状磁気コイル16からなる磁束放射手段10aの任意の所望する湾曲角度位置に停止して保持するように内視鏡40の湾曲部42bの湾曲姿勢を変える湾曲駆動部(図示しない)を制御する磁束放射手段位置決め制御ユニット51をさらに備える。 Also in this embodiment, as shown in FIG. 9, angle sensors 17 and 18 similar to those of the first embodiment are attached to, for example, two axially perpendicular directions on the outer peripheral surface of the distal end portion 41 of the endoscope 40. An arbitrary desired bending angle position of the magnetic flux radiating means 10a formed of the loop-shaped magnetic coil 16 deployed outside the distal end portion 41 of the endoscope 40 via the control signals 17a and 18a from the angle sensors 17 and 18. And a magnetic flux radiating means positioning control unit 51 for controlling a bending drive section (not shown) that changes the bending posture of the bending section 42b of the endoscope 40 so as to be stopped and held.
 消化官などの生体管T内面の病変部T2a近傍まで挿入された内視鏡先端部41の例えば処置具誘導チャンネル44先端からループ状態で引出されたループ状磁気コイル16は、図9に示すように、複数の磁気アンカー20が係着された病変部T2aを包囲するようにループ状に自動的に配置され易くするため、前記磁性体芯部材に適宜な弾力性を有する弾性部材あるいは形状記憶機能部材を適用することが望ましい。病変部T2aの状態に応じて、磁気アンカー20の数量が1個又は複数個に適宜選定されるとともに、ループ状磁気コイル16のループ径の大きさが適宜設定される。 As shown in FIG. 9, the loop-shaped magnetic coil 16 drawn out in a loop state from, for example, the distal end of the treatment instrument guide channel 44 of the endoscope distal end portion 41 inserted to the vicinity of the lesioned portion T2a on the inner surface of the living tube T such as a digester. In addition, in order to facilitate the automatic arrangement in a loop shape so as to surround the lesioned part T2a to which a plurality of magnetic anchors 20 are attached, the magnetic core member has an elastic member or shape memory function having appropriate elasticity. It is desirable to apply a member. Depending on the state of the lesioned part T2a, the number of magnetic anchors 20 is appropriately selected as one or a plurality, and the size of the loop diameter of the loop-shaped magnetic coil 16 is appropriately set.
 この場合、磁気アンカー10の病変部T2a切端部T2bへの係着、ループ状磁気コイル16の病変部T2a周囲へのループ状配置/調整、及びその後の病変部T2aの筋層T1からの切離等の処置は、消化管T内の病変部T2a近傍まで導入された内視鏡40の例えば第2の処置具誘導チャンネル45を介してそれぞれ図示しないクリップ取付け具や切開具を用いて内視鏡40により観察/確認しながら適宜行われる。なお、磁気アンカー10の病変部T2aへの係着とループ状磁気コイル16の病変部T2a周囲へのループ状配置の処置順序は、病変部T2aの状態や必要な磁気アンカー20の数量などの状況に応じて適宜前後して行うことができる。 In this case, the anchoring of the magnetic anchor 10 to the lesion T2a cut end T2b, the loop arrangement / adjustment of the loop magnetic coil 16 around the lesion T2a, and the subsequent separation of the lesion T2a from the muscle layer T1. For example, the endoscope 40 is inserted into the vicinity of the lesioned part T2a in the digestive tract T through the second treatment instrument guide channel 45 of the endoscope 40 using a clip attachment tool or an incision tool (not shown). This is performed appropriately while observing / confirming with 40. It should be noted that the treatment order of the anchoring of the magnetic anchor 10 to the lesioned part T2a and the loop arrangement of the loop-shaped magnetic coil 16 around the lesioned part T2a depends on the state of the lesioned part T2a and the number of magnetic anchors 20 required. Depending on the situation, it can be carried out appropriately.
 この実施形態のフット操作部30’は、上部が開放された有底ボックス体32’と、ボックス体32’の上部に覆設されたボックスカバー状のフットペダル33’と、ボックス体32’とフットペダル33’との後端部間に設けられ、フットペダル33’をX軸前方に傾動可能に枢支する枢支軸機構34’と、ボックス体32’とフットペダル33’との前端部間内に設けられ、フットペダル33’を原姿勢復帰可能に弾発支持する圧縮ばね部材35と、ボックス体32’の前半部底面内に配置され、フットペダル33’の傾動動作に連動して電気抵抗が変化する可変電気抵抗手段36と、から概略構成される。 The foot operation unit 30 ′ of this embodiment includes a bottomed box body 32 ′ having an open top, a box cover-like foot pedal 33 ′ covering the top of the box body 32 ′, and a box body 32 ′. Provided between the rear end portions of the foot pedal 33 'and a pivot shaft mechanism 34' for pivotally supporting the foot pedal 33 'so as to be tiltable forward of the X axis, and the front end portions of the box body 32' and the foot pedal 33 '. A compression spring member 35 provided in the space and resiliently supports the foot pedal 33 ′ so as to be able to return to the original posture, and is disposed in the bottom surface of the front half of the box body 32 ′, and interlocks with the tilting operation of the foot pedal 33 ′. Variable electrical resistance means 36 that varies in electrical resistance.
 このフット操作部30’は、磁束放射手段10aの1体のループ状磁気コイル16に対応して1個の可変電気抵抗手段36が収設され、フットペダル33’はX軸方向に2次元の傾動動作を行うことから、フットペダル33’の原姿勢復帰用の圧縮ばね部材35はボックス体32’との前端部間内に少なくとも1個配設すれば十分である。したがって、この実施形態のフット操作部30’は、複数の可変電気抵抗手段38及び圧縮ばね部材35を配設した前記実施形態の図7に示すフット操作部30に比べ大幅に構成が簡易化される。 The foot operation unit 30 ′ includes one variable electrical resistance means 36 corresponding to one loop-shaped magnetic coil 16 of the magnetic flux radiating means 10a, and the foot pedal 33 ′ is two-dimensional in the X-axis direction. Since the tilting operation is performed, it is sufficient that at least one compression spring member 35 for returning the original posture of the foot pedal 33 ′ is disposed between the front end portion of the foot pedal 33 ′ and the box body 32 ′. Therefore, the configuration of the foot operation unit 30 ′ of this embodiment is greatly simplified compared to the foot operation unit 30 shown in FIG. 7 of the above embodiment in which a plurality of variable electrical resistance means 38 and compression spring members 35 are disposed. The
 この場合においても、足の踏込操作によりフット操作部30’内に配置された可変電気抵抗手段36の上部のフットペダル33’部のリンク押圧部33’aが押し下げられて両リンク36b、36cの先端部が押し下げられる方向が、電気抵抗器Raの抵抗が減少して磁束放射手段10aのループ状磁気コイル16への電流値が増大する方向であって、ループ状磁気コイル16への電流値が増大するのに伴い磁束放射手段10aのループ状磁気コイル16から放射される磁束Mが増大し、磁気アンカー20の磁気部材22への電磁反発力が強まり磁気アンカー20に係着された病変部T2aを生体管Tの筋層T1から引離す方向の牽引力が強くなる。 Even in this case, the link pressing portion 33′a of the foot pedal 33 ′ portion of the variable electric resistance means 36 disposed in the foot operation portion 30 ′ is pushed down by the stepping operation of the foot, and the links 36b and 36c are pressed. The direction in which the tip is pushed down is the direction in which the resistance of the electric resistor Ra decreases and the current value to the loop magnetic coil 16 of the magnetic flux radiating means 10a increases, and the current value to the loop magnetic coil 16 increases. As it increases, the magnetic flux M radiated from the loop magnetic coil 16 of the magnetic flux radiating means 10a increases, the electromagnetic repulsive force of the magnetic anchor 20 to the magnetic member 22 increases, and the lesioned part T2a attached to the magnetic anchor 20 The traction force in the direction of pulling away from the muscle layer T1 of the biological tube T becomes stronger.
 これとは反対に、足の踏込操作を緩めるか又は足を離すことにより、フットペダル33’のリンク押圧部33’aが上昇して両リンク36b、36cの先端部が引き上げられ、いわゆる初期状態へ復帰する方向が、電気抵抗器Raの抵抗が増大してループ状磁気コイル16への電流値が減少する方向であって、ループ状磁気コイル16への電流値が減少するのに伴い磁束放射手段10aのループ状磁気コイル16から放射される磁束Mが減少し、磁気アンカー20の磁気部材22への電磁反発力が弱まり磁気アンカー20に係着された病変部T2aを生体管Tの筋層T1から引離す方向の牽引力が弱くなる。 On the other hand, by loosening the foot stepping operation or releasing the foot, the link pressing portion 33'a of the foot pedal 33 'rises and the tips of both links 36b, 36c are pulled up, so-called initial state. The direction to return to is the direction in which the resistance of the electric resistor Ra increases and the current value to the loop-shaped magnetic coil 16 decreases, and as the current value to the loop-shaped magnetic coil 16 decreases, magnetic flux radiation occurs. The magnetic flux M radiated from the loop-shaped magnetic coil 16 of the means 10a decreases, the electromagnetic repulsive force of the magnetic anchor 20 to the magnetic member 22 is weakened, and the lesioned part T2a attached to the magnetic anchor 20 is replaced with the muscle layer of the biological tube T. The traction force in the direction away from T1 is weakened.
 このように構成されたこの実施形態により、ESD外科手術者が手術中に内視鏡による視界を十分に確保するため状況に即応して瞬時にフットペダル33’を足で所望の強さで踏み込んで前方に傾動させることで電気抵抗が変化する1体の可変電気抵抗手段36を介して磁束放射手段10aのループ状磁気コイル16からループ状に放射される磁束M強さを制御し、複数の磁気アンカー20に一括同時に電磁反発力を与えて複数の磁気アンカー20に係着された病変部T2aを効率よく所望の位置まで筋層T1から引離すことが容易になるため内視鏡による視界が十分に確保され、手先を集中して素早く電気メスによるESD外科手術操作を一人で効率的に行うことが一層容易にできる。これにより、手術の操作性、安全性及び信頼性を向上させるとともに手術時間を短縮することができる。 According to this embodiment configured as described above, an ESD surgeon immediately depresses the foot pedal 33 'with a desired strength with his / her foot immediately in response to a situation in order to ensure a sufficient field of view by an endoscope during the operation. The magnetic flux M radiated in a loop form from the loop-shaped magnetic coil 16 of the magnetic flux radiation means 10a is controlled through a single variable electrical resistance means 36 whose electrical resistance changes by tilting forward with Since the electromagnetic repulsive force is simultaneously applied to the magnetic anchor 20 and the lesioned part T2a engaged with the plurality of magnetic anchors 20 can be easily separated from the muscle layer T1 to a desired position, the field of view by the endoscope is improved. Sufficiently secured, it is easier to carry out ESD surgical operation with an electric knife quickly and efficiently with one hand concentrated. Thereby, the operability, safety and reliability of the operation can be improved and the operation time can be shortened.
 以上述べたように、本発明によれば、先端部41に亘り磁束放射手段10、10aが装着された内視鏡40が口又は肛門などの自然開口部から消化管T内の病変部T2a近傍に挿入され、磁束放射手段10、10aが病変部T2aに系着された磁気アンカー20に対向して配置され、フット操作部30、30’の足の踏込み操作による磁気アンカー20の位置及び姿勢を徐々にずらしながら病変部T2aを所望の位置まで生体管Tの筋層T1から引離すよう適宜調整することにより切除された病変部T2aをさらに筋層T1から引離すことが容易に可能であることから、内視鏡40により切開具の先端位置の確認が容易となり病変部T2aの切離作業をスムーズに行うことができる。これにより、手先を集中して切開具によるESD外科手術操作を一人で容易に素早く行うことが可能となり、従来のような内視鏡による視界を妨げることがなくなることから、盲目的に切除することにより正常部分を損傷して穿孔などの合併症が発生することや、血管を損傷して大出血を引き起こし、また出血時も出血部位の確認ができず止血できないことによる重篤な合併症を引き起こすこともなく、手術時間及び手術侵襲を低減し、手術の操作性及び信頼性に優れるESD用外科手術システム及びこれを用いた外科手術方法を提供することが可能となる。 As described above, according to the present invention, the endoscope 40 to which the magnetic flux radiating means 10 and 10a are attached over the distal end portion 41 is located near the lesioned part T2a in the digestive tract T from the natural opening such as the mouth or anus. The magnetic flux radiating means 10 and 10a are arranged opposite to the magnetic anchor 20 attached to the lesioned part T2a, and the position and posture of the magnetic anchor 20 by the stepping operation of the foot of the foot operating parts 30 and 30 ′ are adjusted. By appropriately adjusting the lesioned part T2a to be separated from the muscle layer T1 of the biological tube T to a desired position while gradually shifting, the excised lesioned part T2a can be easily further separated from the muscle layer T1. Therefore, the endoscope 40 can easily confirm the tip position of the incision tool, and the lesion T2a can be smoothly separated. This makes it possible for one person to easily and quickly perform an ESD surgical operation with an incision tool by concentrating the hand and does not obstruct the field of view with an endoscope as in the prior art. May damage the normal part and cause complications such as perforation, damage the blood vessels and cause major bleeding, and even bleeding may cause serious complications due to the inability to stop the bleeding site Therefore, it is possible to provide an ESD surgical system and a surgical method using the same, which reduce the operation time and the surgical invasion and are excellent in the operability and reliability of the operation.
 なお、前記実施形態の他に、磁気アンカー、磁束放射手段及び磁束制御手段の各部材や機構の形状及び構成、あるいは磁束放射手段位置決めのための角度センサ又は/及び位置センサ等は、適宜種々の変形や変更が可能で、それらを適宜組合せて用いることもできる。以下に、これらの各種変形実施形態を例示する。 In addition to the above-described embodiment, the shape and configuration of each member and mechanism of the magnetic anchor, the magnetic flux radiating means, and the magnetic flux control means, or the angle sensor and / or position sensor for positioning the magnetic flux radiating means may be appropriately various. Modifications and changes can be made, and combinations thereof can be used as appropriate. Below, these various deformation | transformation embodiment is illustrated.
 図11は、本発明のまた別の変形実施形態の磁気発生要素15Aの概念を示す透視図である。 FIG. 11 is a perspective view showing the concept of a magnetism generating element 15A according to still another modified embodiment of the present invention.
 この変形実施形態の磁気発生要素15Aは、細長棒状又は線状(あるいは帯板状としてもよい)の磁気体芯部材15Abと、磁気体芯部材15Abに長手方向にスライド自在に外嵌された中空の磁場シールド部材からなる磁場シールド筒15Aaと、から構成される。 The magnetism generating element 15A of this modified embodiment includes a magnetic core member 15Ab having an elongated rod shape or a linear shape (or may be a strip plate shape), and a hollow that is externally fitted to the magnetic core member 15Ab so as to be slidable in the longitudinal direction. The magnetic field shielding cylinder 15Aa made of a magnetic field shielding member.
 この変形実施形態の磁束制御手段は、図示しない内視鏡内に挿通されて磁場シールド筒15Aaの後端部に連結された線状部材15Acを例えば図示しない内視鏡の操作部まで引き出して線状部材15Acを牽引又は押出すことにより、磁場シールド筒15Aaを磁気体芯部材15Abに対して長手方向前後にスライドさせることで、磁気発生要素15Aの磁束強さを制御することができる。したがって、磁束放射手段の電気配線が不要で磁束制御手段を大幅に簡易化し、コストダウンできる。 The magnetic flux control means of this modified embodiment draws a linear member 15Ac inserted through an endoscope (not shown) and connected to the rear end of the magnetic field shield cylinder 15Aa to, for example, an operation portion of the endoscope (not shown). The magnetic flux intensity of the magnetism generating element 15A can be controlled by sliding the magnetic field shield cylinder 15Aa back and forth in the longitudinal direction with respect to the magnetic core member 15Ab by pulling or pushing the shaped member 15Ac. Therefore, the electric wiring of the magnetic flux radiating means is unnecessary, and the magnetic flux control means can be greatly simplified and the cost can be reduced.
 図12は、本発明のさらに別の変形実施形態の磁気発生要素15Bの概念を示す平面図である。 FIG. 12 is a plan view showing a concept of a magnetism generating element 15B according to still another modified embodiment of the present invention.
 この変形実施形態の磁気発生要素15Bは、細長帯板状の例えばSiなどの半導体基板15Bbに極細導線15Baが例えば極短周期の波線状又はサイン曲線状にプリント配線されてなる。符合15Bcは、導線15Baに繋がる一対のリード線である。 The magnetism generating element 15B of this modified embodiment is obtained by wiring a fine wire 15Ba in a wavy line shape or a sine curve shape with a very short period, for example, on a semiconductor substrate 15Bb made of an elongated strip plate such as Si. The symbol 15Bc is a pair of lead wires connected to the conductive wire 15Ba.
 このような磁気発生要素15Bは、前記実施例1の磁束放射筒10(図3等)あるいは実施例2の1体のループ状の磁束放射手段10a(図9)に適用してコンパクトな磁束放射手段を構成することができ、患者の生体官内への挿入における苦痛の増大を一層抑えることができる。 Such a magnetism generating element 15B is applied to the magnetic flux radiation cylinder 10 (FIG. 3 etc.) of the first embodiment or one loop-shaped magnetic flux radiation means 10a (FIG. 9) of the second embodiment and is compact magnetic flux radiation. A means can be comprised and the increase in the pain in insertion in a patient's biomedical officer can be suppressed further.
 図13は、本発明の別の変形実施形態の磁束放射手段位置決め用角度センサ48、49の取付け概念を示す磁束放射手段(磁束放射筒)10bが装着された内視鏡先端部の拡大図である。図13において、前記実施形態の例えば図3における同じ機能を有する部材等には一部形状等が異なっていても同一の符号あるいは記号を付してある。 FIG. 13 is an enlarged view of the distal end portion of the endoscope to which the magnetic flux radiation means (flux radiation cylinder) 10b showing the mounting concept of the magnetic flux radiation means positioning angle sensors 48 and 49 according to another modified embodiment of the present invention is mounted. is there. In FIG. 13, members having the same function in the above-described embodiment, for example, in FIG.
 この変形実施形態においては、内視鏡40の先端部41に隣接する湾曲部42bの外面に例えば公知の1軸乃至3軸歪み計等を利用した角度センサ48、49が例えば軸直角方向2ヶ所にそれぞれ取付けられており、湾曲部42bの湾曲角度を検出する角度センサ48、49からの信号48a、49aを介して磁束放射手段位置決め制御ユニット51により内視鏡40の先端部41に装着された磁束放射筒10の任意の所望する湾曲角度位置に停止し保持するように湾曲駆動部(図示しない)を制御することができる(図1、2及び後述の図14参照)。 In this modified embodiment, angle sensors 48 and 49 using, for example, a known uniaxial to triaxial strain gauge are provided on the outer surface of the curved portion 42b adjacent to the distal end portion 41 of the endoscope 40, for example, at two positions perpendicular to the axis. Attached to the distal end portion 41 of the endoscope 40 by the magnetic flux radiation means positioning control unit 51 via signals 48a and 49a from angle sensors 48 and 49 for detecting the bending angle of the bending portion 42b. The bending drive unit (not shown) can be controlled to stop and hold at any desired bending angle position of the magnetic flux radiating tube 10 (see FIGS. 1 and 2 and FIG. 14 described later).
 図14は、本発明のまた別の変形実施形態の磁束放射手段位置決め用角度センサ(回転角センサ)54、55の取付け概念を示す磁束放射手段(磁束放射筒)10が先端部に装着された内視鏡40の透視図である。図14において、前記実施形態の例えば図2における同じ機能を有する部材等には一部形状等が異なっていても同一の符号あるいは記号を付してある。 FIG. 14 shows a magnetic flux radiation means (flux radiation cylinder) 10 showing the concept of mounting magnetic flux radiation means positioning angle sensors (rotation angle sensors) 54 and 55 according to still another modified embodiment of the present invention. 2 is a perspective view of an endoscope 40. FIG. In FIG. 14, for example, members having the same functions as in FIG. 2, for example, are given the same reference numerals or symbols even if the shapes are partially different.
 この変形実施形態において、内視鏡40の湾曲駆動部は使用者が片手例えば左手で握って把持できる程度の大きさの円盤形状の操作部本体43aの内部に収容され、公知のため図示しないが、一対の湾曲操作ワイヤの基端部を巻き付けて固定し、一対の湾曲操作ワイヤを牽引及び弛緩するスプロケットと、このスプロケットを回動させるモータと、スプロケットとモータとの間に配置され、モータの駆動力を切断する電磁クラッチと、モータの回転位置検出手段としてその回転位置を検出する例えばロータリエンコーダなどの角度センサ54と、電磁クラッチの動作検出を行うクラッチ動作検出スイッチと、を有する。操作部本体43aの外周面に沿って内視鏡40の各種機能部の動作を制御する複数のスイッチ、例えばいずれも図示しない送気・送水ボタン、吸引ボタン、ジョイスティック装置、クラッチスイッチ53、スコープスイッチ、エンゲージスイッチなどが配設されている。ここで、操作部本体43aの上端部には、ユニバーサルコードの連結部の近傍部位にジョイスティック装置が配設されている。クラッチスイッチ53は、湾曲駆動部の駆動力の伝達を解除(切断)するスイッチである。 In this modified embodiment, the bending drive part of the endoscope 40 is accommodated inside a disk-shaped operation part main body 43a that is large enough to be grasped and held by a user with one hand, for example, the left hand. The base end portions of the pair of bending operation wires are wound and fixed, and the sprocket that pulls and relaxes the pair of bending operation wires, the motor that rotates the sprocket, and the sprocket and the motor are arranged between the motor and the motor. An electromagnetic clutch for cutting the driving force, an angle sensor 54 such as a rotary encoder for detecting the rotational position as a rotational position detecting means for the motor, and a clutch operation detection switch for detecting the operation of the electromagnetic clutch. A plurality of switches for controlling the operation of various functional units of the endoscope 40 along the outer peripheral surface of the operation unit main body 43a, for example, an air / water supply button, a suction button, a joystick device, a clutch switch 53, and a scope switch, all not shown An engagement switch or the like is provided. Here, a joystick device is disposed in the vicinity of the universal cord connecting portion at the upper end of the operation portion main body 43a. The clutch switch 53 is a switch that releases (disconnects) transmission of the driving force of the bending drive unit.
 いずれも図示しない前記モータ、角度センサ54、クラッチ動作検出スイッチはそれぞれ制御信号54a等のラインを介して磁束放射手段位置決め制御ユニット51内の内視鏡湾曲制御ユニット51aに接続される。また、前記湾曲駆動部は、スプロケットの回転位置検出手段として回転位置を検出するための例えばポテンショメータなどの角度センサ55が接続されており、この角度センサ55は、制御信号55aのラインを介して内視鏡湾曲制御ユニット51aに接続され、検出したスプロケットの回転位置を示す回転位置信号を出力する。 The motor, the angle sensor 54, and the clutch operation detection switch (not shown) are connected to the endoscope bending control unit 51a in the magnetic flux radiation means positioning control unit 51 through lines such as a control signal 54a. In addition, the bending drive unit is connected to an angle sensor 55 such as a potentiometer for detecting the rotation position as a rotation position detection means of the sprocket, and this angle sensor 55 is connected to the inside via a line of a control signal 55a. A rotational position signal indicating the rotational position of the detected sprocket is connected to the endoscope bending control unit 51a.
 そして、磁束放射手段位置決め制御ユニット51は、湾曲操作入力手段としてのジョイスティック装置52からの湾曲操作信号に従って、回転位置検出手段としての角度センサ54及び55からの制御信号54a、55aに基づき、前記モータを回転駆動させ、湾曲部42bを電動で湾曲動作させる内視鏡湾曲制御ユニット51aと連携して、内視鏡先端部41に装着された磁束放射手段10の任意の所望する湾曲角度位置に停止して保持するように制御する。 The magnetic flux radiating means positioning control unit 51 then controls the motor based on the control signals 54a and 55a from the angle sensors 54 and 55 as the rotational position detecting means according to the bending operation signal from the joystick device 52 as the bending operation input means. , And the bending portion 42b is electrically operated to bend and cooperate with an endoscope bending control unit 51a to stop at any desired bending angle position of the magnetic flux radiating means 10 attached to the endoscope distal end portion 41. And control to hold.
 さらに、ジョイスティック装置52の近傍位置には図示しないエンゲージスイッチが配設されている。エンゲージスイッチは、プッシュ式のスイッチで、1回のプッシュでロック、もう1回のプッシュでロック解除の動作を行うように設定されている。このエンゲージスイッチの操作により、ジョイスティック装置52のジョイスティックの動きが固定され、湾曲部42bが所望とする湾曲角で固定(ロック)されるようになっている。このとき、ジョイスティックが湾曲操作入力のために傾動され、通常は手を離すと中立状態に復帰するのをブレーキ部材による摩擦力で抑制することにより、その傾動角の状態に湾曲部42bの湾曲角を固定できる。 Furthermore, an engagement switch (not shown) is disposed in the vicinity of the joystick device 52. The engage switch is a push-type switch, and is set to perform a lock operation by one push and an unlock operation by another push. By operating the engagement switch, the movement of the joystick of the joystick device 52 is fixed, and the bending portion 42b is fixed (locked) at a desired bending angle. At this time, the joystick is tilted to input a bending operation, and normally, when the hand is released, the joystick is prevented from returning to the neutral state by the frictional force of the brake member. Can be fixed.
 以上例示し説明したように、磁束放射手段位置決めのための角度センサ又は/及び位置センサ等は、機械式、流体式、光学式ジャイロ、振動ジャイロ、加速度計、歪み計、ポテンショメータあるいはエンコーダ等々を利用した公知の各種角度又は/及び位置センサを適用して内視鏡40又は/及び磁束放射手段10の適宜位置に設け、磁束放射手段位置決め制御ユニットを介して内視鏡先端部41に装着された磁束放射手段10、10a、10bの任意の所望する湾曲角度位置に停止して保持することができる。 As illustrated and explained above, the angle sensor or / and position sensor for positioning the magnetic flux radiation means uses a mechanical type, a fluid type, an optical gyro, a vibration gyro, an accelerometer, a strain meter, a potentiometer, an encoder, etc. Various known angle and / or position sensors are applied and provided at appropriate positions of the endoscope 40 or / and the magnetic flux radiating means 10, and attached to the endoscope distal end portion 41 via the magnetic flux radiating means positioning control unit. The magnetic flux radiating means 10, 10a, 10b can be stopped and held at any desired bending angle position.
 図15の (a)は本発明のまた別の実施形態による磁気アンカー20Aの概念図、(b)はさらに別の実施形態による磁気アンカー20Bの概念図である。図15において、前記実施例の例えば図5及び6における磁気アンカー20、20’、20’’等と同じ機能を有する部材等には一部形状等が異なっていても同一の符号を付してある。 15A is a conceptual diagram of a magnetic anchor 20A according to another embodiment of the present invention, and FIG. 15B is a conceptual diagram of a magnetic anchor 20B according to still another embodiment. In FIG. 15, for example, members having the same functions as the magnetic anchors 20, 20 ′, 20 ″, etc. in FIGS. is there.
 図15 (a)及び(b)の実施形態の磁気アンカー20A及び20Bは、磁気部材22A、22Bがいずれも長手方向に少なくとも2つの異種材料の磁気部材22A1、22A2、及び22B1、22B2から構成される点が前記実施例の磁気アンカーと異なっており、それぞれ略円柱状、略先太り円錐体状に形成される。 15A and 15B, the magnetic anchors 20A and 20B are each composed of at least two magnetic members 22A1, 22A2 and 22B1, 22B2 made of different materials in the longitudinal direction. This is different from the magnetic anchor of the above embodiment, and is formed in a substantially cylindrical shape and a substantially tapered cone shape, respectively.
 磁気アンカー20A及び20Bは、磁気部材22A、22Bが長手方向に少なくとも2つの異種の磁気部材22A1、22A2、及び22B1、22B2から構成され、対向する磁束放射手段と同一のS又はN極を磁気アンカー20A、20Bの磁気部材22A1、22B1の先端面にそれぞれ形成することができるので磁束放射手段の対向面からの磁束による反発力が磁気アンカー20A、20Bの磁気部材22A1、22B1の先端面にそれぞれ及ぶことから、磁気アンカー20A、20Bの磁気部材先端部22Aa、22Baが磁束放射手段の対向面方向に反転するのを防止することができ、ESD外科手術の信頼性及び安全性が確保される。 In the magnetic anchors 20A and 20B, the magnetic members 22A and 22B are composed of at least two different kinds of magnetic members 22A1, 22A2, and 22B1, 22B2 in the longitudinal direction, and have the same S or N pole as the opposite magnetic flux radiating means. Since the magnetic members 22A1 and 22B1 of the magnetic members 20A and 20B can be formed on the tip surfaces of the magnetic members, the repulsive force due to the magnetic flux from the opposing surface of the magnetic flux radiating means reaches the tip surfaces of the magnetic members 22A1 and 22B1 of the magnetic anchors 20A and 20B, respectively. Therefore, it is possible to prevent the magnetic member tip portions 22Aa and 22Ba of the magnetic anchors 20A and 20B from being inverted in the direction of the facing surface of the magnetic flux radiating means, and the reliability and safety of the ESD surgery are ensured.
 図16の(a)は本発明のまた別の実施形態による磁気アンカー20Cの概念図、(b)はさらに別の実施形態による磁気アンカー20Dの概念図である。 16A is a conceptual diagram of a magnetic anchor 20C according to still another embodiment of the present invention, and FIG. 16B is a conceptual diagram of a magnetic anchor 20D according to still another embodiment.
 図16(a)、(b)の実施形態の磁気アンカー20C、20Dは、それぞれ前記図6(a)、(b)の実施形態による磁気アンカー20’、20’’に対して磁気体回転部材22Cc、22Dcがいずれも磁気流体が封入されてなる点が異なるだけで、その他の構成は全く同様である。したがって、図16において、前記図6における磁気アンカー20’、20’’と同じ機能を有する部材等には一部形状等が異なっていても同一の符号を付してある。 The magnetic anchors 20C and 20D in the embodiment of FIGS. 16 (a) and 16 (b) are magnetic rotating members with respect to the magnetic anchors 20 ′ and 20 ″ according to the embodiment of FIGS. 6 (a) and 6 (b), respectively. Both 22Cc and 22Dc are the same except for the point that the magnetic fluid is sealed. Therefore, in FIG. 16, the members having the same functions as those of the magnetic anchors 20 ′ and 20 ″ in FIG.
 磁気アンカー20C、20Dの磁気部材22C、22Dは、それぞれ係着部材21に連結される略円筒状の磁気体外筒22Ca、略先太り略円錐体中空状の磁気体外筒22Daと、それぞれ磁気体外筒22Ca、22Da内に中心軸22Cd、22Dd周りに回転自在に、内部に磁気流体(「磁性流体」ともいう)が封入された磁気体回転部材22Cc、22Dcとから構成される。 The magnetic members 22C and 22D of the magnetic anchors 20C and 20D respectively include a substantially cylindrical magnetic outer cylinder 22Ca connected to the engaging member 21, a substantially tapered and substantially conical hollow outer cylinder 22Da, and a magnetic outer cylinder. The magnetic body rotating members 22Cc and 22Dc are encapsulated in a magnetic fluid (also referred to as “magnetic fluid”) so as to be rotatable around central axes 22Cd and 22Dd.
 この磁気流体は、例えばマグネタイトやマンガン亜鉛フェライトなどの強磁性微粒子と、その表面を覆う界面活性剤と、ベース液(水や油)とから構成される磁性コロイド溶液であり、1960年代にNASAでPapellにより宇宙服の可動部のシール材や無重力環境での物体の位置決めに使用するなどの目的で研究・開発され、それとほぼ同時期に東北大学、下飯坂らによっても磁石に吸引されるコロイド溶液の報告が行われている公知のものを適用することができる。 This magnetic fluid is a magnetic colloid solution composed of ferromagnetic fine particles such as magnetite and manganese zinc ferrite, a surfactant covering the surface, and a base liquid (water or oil). Researched and developed by Papel for use in sealing materials for moving parts of spacesuits and for positioning objects in weightless environments, etc., and at the same time, Tohoku University, Shimoizaka et al. A publicly known report can be applied.
 磁気流体中の強磁性微粒子は、界面活性剤とベース液の親和力と界面活性剤同士の反発力によりベース液中で凝集したり沈降したりすることなく安定した分散状態を保っている。強磁性微粒子は、例えば直径10nm程度であり、インフルエンザウイルスの約1/10と非常に小さい。永久磁石などの磁場を発生する磁気部材を至近距離に置くのと同様に前記磁束放射手段を接近させると、その磁力線の流れに沿って磁性流体から角が生えたような突起が形成される。これをスパイク現象といい、流線型に突起が形成される形状は非常に美観を呈し、この現象を利用し芸術作品が作られることでも知られている。 The ferromagnetic fine particles in the magnetic fluid maintain a stable dispersed state without agglomeration or settling in the base liquid due to the affinity between the surfactant and the base liquid and the repulsive force between the surfactants. The ferromagnetic fine particles have a diameter of about 10 nm, for example, and are as small as about 1/10 of the influenza virus. When the magnetic flux radiating means is brought close to the magnetic member that generates a magnetic field such as a permanent magnet at a close distance, a projection having an angle from the magnetic fluid is formed along the flow of the magnetic force lines. This is called a spike phenomenon, and the shape of the streamlined projection is very aesthetic, and it is also known that art works can be created using this phenomenon.
 このように構成された磁気部材22C、22Dは、それぞれ磁気材料からなる磁気体外筒22Ca、22Da内で磁気体回転部材22Cc、22Dcを指などで一旦回転力を与えると中心軸周りに磁気体回転部材22Cc、22Dcが常時回転することによりジャイロモーメントが作用するとともに、磁気部材22C、22Dの先端部22Caa、22Daaから基端部22Cb、22Dbに向けて前記磁束放射手段からの磁束により磁気体回転部材22Cc、22Dc内の磁気流体の磁場勾配が発生することも重畳効果となり、磁気部材22Cの基端部22Cbに対する異極が形成される先端部22Caaが磁束放射筒10の先端面方向に引寄せられて反転するのを防止することができる。 The magnetic members 22C and 22D configured as described above rotate the magnetic body around the central axis once the magnetic rotating members 22Cc and 22Dc are applied with a finger or the like in the magnetic outer cylinders 22Ca and 22Da made of a magnetic material. The members 22Cc and 22Dc are always rotated so that a gyro moment is applied, and the magnetic member 22C and 22D are moved from the distal end portions 22Caa and 22Daa toward the base end portions 22Cb and 22Db by the magnetic flux from the magnetic flux radiating means. Generation of a magnetic field gradient of the magnetic fluid in 22Cc and 22Dc also has a superposition effect, and the distal end portion 22Caa in which a different polarity with respect to the proximal end portion 22Cb of the magnetic member 22C is formed is attracted toward the distal end surface direction of the magnetic flux emitting tube 10. Inversion can be prevented.
 これに加えて、さらに別の実施形態の磁気アンカー20Dは、磁気部材22Dの基端部22Dbから先端部22Daaに向けての漸次拡大する先太り円錐筒形磁気体外筒22Daの外周面全面に対向する前記磁束放射手段の先端面と同一のS又はN極が形成されるので磁束放射手段の先端面からの磁束による電磁反発力が磁気部材22Dの漸次拡大する先端部の外周面にまで及ぶことから、これに対する異極(N又はS極)が形成される磁気部材22Dの先端部22Daaが磁束放射手段の先端面方向に引寄せられて反転するのを防止する効果も重畳される。 In addition to this, the magnetic anchor 20D of still another embodiment is opposed to the entire outer peripheral surface of the tapered conical cylindrical magnetic outer cylinder 22Da that gradually expands from the base end 22Db to the front end 22Daa of the magnetic member 22D. Since the same S or N pole as the front end surface of the magnetic flux radiating means is formed, the electromagnetic repulsion force due to the magnetic flux from the front end surface of the magnetic flux radiating means extends to the outer peripheral surface of the end portion of the magnetic member 22D that gradually increases. Therefore, the effect of preventing the tip portion 22Daa of the magnetic member 22D having a different polarity (N or S pole) from being attracted in the tip surface direction of the magnetic flux radiating means from being reversed is also superimposed.
 なお、以上の説明はあくまで一例であり、本発明を解釈する際、上記実施形態の記載事項と特許請求の範囲の記載事項の対応関係になんら限定も拘束もされない。 Note that the above description is merely an example, and when interpreting the present invention, there is no limitation or restriction on the correspondence between the items described in the embodiment and the items described in the claims.
 本発明の生体管T内面の病変部に係着される磁気アンカー、内視鏡の先端部に装着される磁束放手段及び磁束放手段から放射される磁束配分を外部から制御する磁束制御手段を有するESD用外科手術システムを用いることにより、内視鏡による的確な視界が十分に確保されることから、容易に素早く電気メスなどの切開具によるESD外科手術操作を行うことができるため手術時間及び手術侵襲を低減し、手術の操作性及び信頼性、ならびに経済性に優れる内視鏡的粘膜下層剥離術(ESD)用外科手術システム及び外科手術方法を実現することが可能となり、生体官外科手術分野の画期的な進歩に貢献することができる。 The magnetic anchor attached to the lesioned part on the inner surface of the biological tube T of the present invention, the magnetic flux releasing means attached to the distal end portion of the endoscope, and the magnetic flux controlling means for controlling the distribution of the magnetic flux emitted from the magnetic flux releasing means from the outside. By using the ESD surgical system, the accurate field of view by the endoscope is sufficiently ensured. Therefore, the ESD surgical operation with an incision tool such as an electric scalpel can be easily and quickly performed. It is possible to realize a surgical system and surgical method for endoscopic submucosal dissection (ESD) that reduces surgical invasion, and is excellent in operability and reliability of surgery, and economical efficiency. Can contribute to breakthrough progress in the field.
 10、10b 磁束放射手段(磁束放射筒)
 10a  磁束放射手段(ループ状磁気コイル)
 11、22’a 外筒
 11’、11’’、11a (エラストマー又は樹脂系材料の)薄膜
 12   内筒
 13   前端壁
 14   後端壁
 15   磁気発生要素(磁気コイル)
 15a、16a 導線コイル
 15b  磁性体芯部材
 15c、15Bc リード線
 16   磁気発生要素(ループ状磁気コイル)
 17、18 角度センサ(例えばジャイロ式)
 17a、18a、48a、49a、54a、55a 制御信号
 20、20’、20’’、20A、20B 磁気アンカー
 21   係着部材
 21a  クリップ
 22、22’、22’’、22A、22A1、22A2、22B、22B1、22B2,22C、22D 磁気部材
 22a、22’aa、22’’aa 、22Aa、22Ba、22Caa、22Daa 先端部
 22b、22’b、22’’b、22Ab、22Bb、22Cb、22Db 基端部
  22’a 、22’’a 磁気体外筒
 22’c、22’’c 磁気体回転部材
 22’d、22’’d 中心軸
 22Cc、22Dc 磁気体回転部材(磁気流体封入)
 22Cd、22Dd 中心軸
 23   連結部材
 30、30’ フット操作部
 31   ベース
 32、32’ ボックス体
 33、33’ フットペダル
 33a、33’a リンク押圧部
 34   ユニバーサル支承手段
 34’  枢支手段
 34a  第1の枠体
 34’a フットペダル側ブラケット
 34b  第2の枠体
 34c  第3の枠体
 34’c ボックス体側ブラケット
 34d  取付け部
 34d1 中空状取付け部
 34d2 摺動取付け部
 34d3 弾性部材(弾性機構)
 34’e 枢支軸
 35、36e 圧縮ばね部材
 36   可変電気抵抗手段
 36a  ガイドフレーム
 36b  滑動リンク
 36c  支持リンク
 36d  端部ブラケット
 40   内視鏡
 41   先端部
 42   挿入部
 42b  湾曲部
 43   操作部
 43a  操作部本体
 44   第1の処置具誘導チャンネル
 45   第2の処置具誘導チャンネル
 46   照明窓
 47   観察窓
 48、49 角度センサ(例えば歪み計式)
 50   内視鏡操作ユニット
 51   磁束放射手段位置決め制御ユニット
 51a  内視鏡湾曲制御ユニット
 52   ジョイスティック装置
 53   クラッチスイッチ
 54   角度センサ(例えばロータリエンコーダ式)
 55   角度センサ(例えばポテンショメータ式)
 60   磁束制御ユニット
 70   磁束制御手段
 Lc   電磁コイルリード線コード
 Le   電源コード
 Lr   可変電気抵抗手段リード線コード
 M    磁束
 Ra   電気抵抗器
 Rb   摺動ブラシ
 SW   電源スイッチ
 T    生体管(消化管)
 T1   筋層
 T2   粘膜層
 T2a  病変部
10, 10b Magnetic flux radiation means (flux radiation cylinder)
10a Magnetic flux radiation means (looped magnetic coil)
11, 22'a Outer cylinder 11 ', 11'', 11a (Elastomer or resin-based material) thin film 12 Inner cylinder 13 Front end wall 14 Rear end wall 15 Magnetization element (magnetic coil)
15a, 16a Conductor coil 15b Magnetic core member 15c, 15Bc Lead wire 16 Magnetism generating element (looped magnetic coil)
17, 18 Angle sensor (eg gyro type)
17a, 18a, 48a, 49a, 54a, 55a Control signal 20, 20 ', 20'', 20A, 20B Magnetic anchor 21 Engaging member 21a Clip 22, 22', 22 '', 22A, 22A1, 22A2, 22B, 22B1, 22B2, 22C, 22D Magnetic member 22a, 22'aa, 22''aa, 22Aa, 22Ba, 22Caa, 22Daa Tip 22b, 22'b, 22''b, 22Ab, 22Bb, 22Cb, 22Db Base end 22'a, 22''a Magnetic outer cylinder 22'c, 22''c Magnetic rotating member 22'd, 22''d Central axis 22Cc, 22Dc Magnetic rotating member (magnetic fluid sealed)
22Cd, 22Dd Central axis 23 Connecting member 30, 30 'Foot operation part 31 Base 32, 32' Box body 33, 33 'Foot pedal 33a, 33'a Link pressing part 34 Universal support means 34' Pivot means 34a First support means Frame body 34'a Foot pedal side bracket 34b Second frame body 34c Third frame body 34'c Box body side bracket 34d Mounting portion 34d1 Hollow mounting portion 34d2 Sliding mounting portion 34d3 Elastic member (elastic mechanism)
34'e Pivot shaft 35, 36e Compression spring member 36 Variable electric resistance means 36a Guide frame 36b Sliding link 36c Support link 36d End bracket 40 Endoscope 41 Front end portion 42 Insertion portion 42b Bending portion 43 Operation portion 43a Operation portion main body 44 First treatment instrument guiding channel 45 Second treatment instrument guiding channel 46 Illumination window 47 Observation window 48, 49 Angle sensor (for example, strain gauge type)
DESCRIPTION OF SYMBOLS 50 Endoscope operation unit 51 Magnetic flux radiation means positioning control unit 51a Endoscope bending control unit 52 Joystick device 53 Clutch switch 54 Angle sensor (for example, rotary encoder type)
55 Angle sensor (eg potentiometer type)
60 Magnetic flux control unit 70 Magnetic flux control means Lc Electromagnetic coil lead wire cord Le Power cord Lr Variable electric resistance means lead wire cord M Magnetic flux Ra Electrical resistor Rb Sliding brush SW Power switch T Biological tube (digestive tract)
T1 muscle layer T2 mucosal layer T2a lesion

Claims (32)

  1.  生体管内面の病変部位に係着される係着部材と連結された小径の磁気部材からなる1個又は複数の磁気アンカーと、
     前記生体管内の病変部位近傍に挿入される内視鏡先端部に装着され、前記磁気アンカーに電磁反発力を付与する1体又は複数体の密封された磁気発生要素を備えた磁束放射手段と、
     生体の外部に設けられ、前記磁束放射手段から放射される磁束の配分を外部から制御する磁束制御手段と、を備え、
     前記磁束制御手段は、前記磁気アンカーに電磁反発力を与えて、前記係着部材に係着された病変部位を生体管の筋層から引離す方向に牽引するように、前記磁束放射手段からの磁束分布を外部から制御することを特徴とする内視鏡的粘膜下層剥離術(以下、ESDという)用外科手術システム。
    One or a plurality of magnetic anchors made of a small-diameter magnetic member connected to an anchoring member anchored to a lesion site on the inner surface of a living body tube;
    Magnetic flux radiating means equipped with one or a plurality of sealed magnetism generating elements that are attached to the distal end of an endoscope that is inserted in the vicinity of a lesion site in the living body tube and that imparts an electromagnetic repulsive force to the magnetic anchor;
    Magnetic flux control means provided outside the living body and controlling the distribution of the magnetic flux emitted from the magnetic flux radiation means from the outside,
    The magnetic flux control means applies an electromagnetic repulsive force to the magnetic anchor, and pulls a lesion site attached to the engaging member in a direction to separate it from a muscle layer of a biological tube. A surgical operation system for endoscopic submucosal dissection (hereinafter referred to as ESD), characterized by controlling magnetic flux distribution from the outside.
  2.  前記内視鏡又は/及び磁束放射手段に設けられた一つ又は複数の角度センサ又は/及び位置センサを介して、前記内視鏡先端部に装着された磁束放射手段の任意の所望する湾曲角度位置に停止して保持するように前記内視鏡に設けられた湾曲駆動部を制御する磁束放射手段位置決め制御ユニットをさらに備えることを特徴とする請求項1記載のESD用外科手術システム。 Any desired bending angle of the magnetic flux radiating means mounted on the endoscope tip through one or more angle sensors or / and position sensors provided on the endoscope or / and the magnetic flux radiating means. The ESD surgical system according to claim 1, further comprising a magnetic flux radiation means positioning control unit that controls a bending drive unit provided in the endoscope so as to stop and hold the position.
  3.  前記磁束放射手段は、
     エラストマー又は樹脂系材料の薄膜からなり、内視鏡先端部外径に着脱可能に外嵌される内筒と、
     該内筒の外周に円周方向に略等配され軸方向に沿って併設される複数の細長棒状又は帯板状に形成された磁気発生要素とからなる磁束放射筒であって、
     前記磁気発生要素は、エラストマー又は樹脂系材料の薄膜により密封されることを特徴とする請求項1又は請求項2記載のESD用外科手術システム。
    The magnetic flux radiating means is
    An inner cylinder made of a thin film of an elastomer or a resin-based material and detachably fitted to the outer diameter of the distal end portion of the endoscope;
    A magnetic flux radiation cylinder comprising a plurality of elongated rod-like or strip-like magnetism generating elements arranged approximately equally in the circumferential direction on the outer circumference of the inner cylinder and provided along the axial direction,
    3. The ESD surgical system according to claim 1, wherein the magnetism generating element is sealed with a thin film of an elastomer or a resin material.
  4.  前記磁束放射手段は、
     フレキシブルな細長棒状又は帯板状に形成された磁気発生要素がエラストマー又は樹脂系材料の薄膜により密封包装され、前記内視鏡の処置具誘導チャンネル内に先端部からループ状態で引出し可能に収設される1体のループ状に形成され、
     前記1個又は複数の磁気アンカーが係着された病変部位を包囲するようにループ状に配置可能に構成されることを特徴とする請求項1又は請求項2記載のESD用外科手術システム。
    The magnetic flux radiating means is
    A magnetism generating element formed in the shape of a flexible elongated rod or strip is hermetically packaged with a thin film of elastomer or resin material, and is placed in the treatment instrument guide channel of the endoscope so that it can be pulled out from the distal end in a looped state. Is formed into a single loop,
    The ESD surgical system according to claim 1 or 2, wherein the ESD surgical system is configured to be arranged in a loop so as to surround a lesion site to which the one or more magnetic anchors are attached.
  5.  前記磁気発生要素は、
     細長棒状又は線状の磁性体芯部材に巻回された導線コイルからなることを特徴とする請求項1乃至請求項4のいずれか1項記載のESD用外科手術システム。
    The magnetism generating element is
    The ESD surgical system according to any one of claims 1 to 4, comprising a conductive coil wound around an elongated rod-shaped or linear magnetic core member.
  6.  前記磁気発生要素は、
     細長帯板状の半導体基板に極細導線が短周期の波線又はサイン曲線状にプリント配線されてなることを特徴とする請求項1乃至請求項4のいずれか1項記載のESD用外科手術システム。
    The magnetism generating element is
    The ESD surgical operation system according to any one of claims 1 to 4, wherein an ultrathin conductive wire is printed and wired in a short-period wavy line or sine curve shape on an elongated strip-like semiconductor substrate.
  7.  前記磁気発生要素は、
     細長棒状又は線状あるいは帯板状の磁気体芯部材と、
    該磁気体芯部材に長手方向にスライド自在に外嵌された中空の磁場シールド部材からなる磁場シールド筒と、から構成されることを特徴とする請求項1乃至請求項4のいずれか1項記載のESD用外科手術システム。
    The magnetism generating element is
    An elongated rod-like or linear or strip-like magnetic core member;
    5. The magnetic field shield tube comprising a hollow magnetic field shield member externally fitted to the magnetic core member so as to be slidable in the longitudinal direction. 5. ESD surgical system.
  8.  前記磁気アンカーの磁気部材は、
     前記係着部材に連結される基端部から先端部に向けて外形が漸次拡大するように形成されることを特徴とする請求項1記載のED用外科手術システム。
    The magnetic member of the magnetic anchor is
    2. The ED surgical operation system according to claim 1, wherein the outer shape is formed so as to gradually expand from a proximal end portion connected to the engaging member to a distal end portion.
  9.  前記磁気アンカーの磁気部材は、
     前記係着部材に連結される小径中空状の円筒形又は先太り円錐筒形の磁気体外筒と、
     該磁気体外筒内に中心軸周りに回転自在に収設された固体状又は封入された磁気流体状の磁気体回転部材とから構成されることを特徴とする請求項1記載のESD用外科手術システム。
    The magnetic member of the magnetic anchor is
    A small-diameter hollow cylindrical or tapered cone-shaped magnetic outer cylinder connected to the engaging member;
    2. A surgical operation for ESD according to claim 1, comprising a solid or encapsulated magnetic fluid-like magnetic rotating member which is rotatably arranged around the central axis in the magnetic outer cylinder. system.
  10.  前記磁気アンカーの磁気部材は、長手方向に少なくとも2つの異種材料から構成されることを特徴とする請求項1又は請求項8のいずれか1項記載のESD用外科手術システム。 9. The ESD surgical system according to claim 1, wherein the magnetic member of the magnetic anchor is made of at least two different materials in the longitudinal direction.
  11.  前記磁束制御手段は、ESD外科手術者が手術中に足で操作可能なフット操作部を備えることを特徴とする請求項1記載のESD用外科手術システム。 2. The ESD surgical operation system according to claim 1, wherein the magnetic flux control means includes a foot operation unit that can be operated by an ESD surgeon with a foot during an operation.
  12.  前記フット操作部は、
     上部が開放された有底ボックス体と、
     該ボックス体との略中央部間内に設けられたユニバーサル支承手段を介して任意の方角に傾動可能であるとともにその周辺内に設けられた複数の圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設されたボックスカバー状のフットペダルと、
     前記ボックス体の底面内周辺に前記磁束放射手段の各磁気発生要素に対応して略対称に配置され、前記フットペダルの傾動動作に連動して電気抵抗が変化する複数の可変電気抵抗手段と、を有することを特徴とする請求項11記載のESD用外科手術システム。
    The foot operation unit is
    A bottomed box with an open top;
    It can be tilted in any direction via a universal support means provided in a substantially central portion with the box body, and can be returned to its original posture by the elastic force of a plurality of compression spring members provided in the periphery thereof. A box cover-like foot pedal laid on top of the box body;
    A plurality of variable electrical resistance means that are arranged substantially symmetrically corresponding to each magnetism generating element of the magnetic flux radiating means around the inside of the bottom surface of the box body, and the electrical resistance changes in conjunction with the tilting operation of the foot pedal; The ESD surgical system according to claim 11, further comprising:
  13.  前記フット操作部は、
     上部が開放された有底ボックス体と、
     該ボックス体との後端部間で前方に傾動可能に枢支されるとともに前端部間内に設けられた圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設されたボックスカバー状のフットペダルと、
     前記ボックス体の底面内に配置され、前記フットペダルの傾動動作に連動して電気抵抗が変化する可変電気抵抗手段と、を有することを特徴とする請求項11記載のESD用外科手術システム。
    The foot operation unit is
    A bottomed box with an open top;
    The box body is pivotally supported so as to be able to tilt forward between the rear end portions thereof, and is covered on the upper portion of the box body so that the original posture can be returned by the elastic force of the compression spring member provided between the front end portions. A box-covered foot pedal,
    The ESD surgical system according to claim 11, further comprising variable electrical resistance means that is disposed in a bottom surface of the box body and changes electrical resistance in conjunction with a tilting operation of the foot pedal.
  14.  前記磁束制御手段は、電源に連結された前記フット操作部の各可変電気抵抗手段からの電圧信号を受けて前記磁束放射手段の各磁気発生要素への電流値を制御して磁束放射手段の磁束配分を制御する磁束制御ユニットをさらに備えることを特徴とする請求項12又は請求項13記載のESD用外科手術システム。 The magnetic flux control means receives a voltage signal from each variable electrical resistance means of the foot operation unit connected to a power source, and controls a current value to each magnetism generating element of the magnetic flux radiation means to control the magnetic flux of the magnetic flux radiation means. The ESD surgical system according to claim 12 or 13, further comprising a magnetic flux control unit for controlling distribution.
  15.  前記各可変電気抵抗手段は、
     前記ボックス体の底面内側に取付けられる適宜長さの電気抵抗器と、
     該電気抵抗器上を長手方向に滑動する摺動ブラシと、
     基端部が前記摺動ブラシに揺動可能に枢支された滑動リンクと、
     基端部が前記ボックス体の底面内側に設けられた端部ブラケットに揺動自在に枢支されるとともに、先端部が前記滑動リンクの先端部に回転自在に枢支された支持リンクと、
     前記滑動リンクの基端部と支持リンクの基端部又は前記ボックス体の底面内との間に懸架されて両リンクをく字状に屈曲保持するリターンばね部材と、を備え、
     前記フットペダルの傾動動作に連動し前記両リンクの先端部がフットペダルの天井内面に押圧されて揺動することにより、摺動ブラシが電気抵抗器上を長手方向に滑動して電気抵抗が可変されることを特徴とする請求項12乃至請求項14のいずれか1項記載のESD用外科手術システム。
    Each of the variable electrical resistance means includes
    An electrical resistor of an appropriate length attached to the inside of the bottom surface of the box body;
    A sliding brush that slides longitudinally over the electrical resistor;
    A sliding link having a base end pivotally supported by the sliding brush;
    A base link is pivotally supported by an end bracket provided on the inner side of the bottom surface of the box body, and a distal end of the support link is pivotally supported by the distal end of the sliding link;
    A return spring member suspended between the base end portion of the sliding link and the base end portion of the support link or the bottom surface of the box body to bend and hold both links in a square shape,
    In conjunction with the tilting movement of the foot pedal, the tip ends of both links are pressed against the ceiling inner surface of the foot pedal and swing, so that the sliding brush slides in the longitudinal direction on the electric resistor and the electric resistance is variable. The ESD surgical operation system according to any one of claims 12 to 14, wherein the ESD surgical system is performed.
  16.  前記ユニバーサル支承手段は、
     前記フットペダルの天井内面又は前記ボックス体の底面内の略中央部に固定される第1の枠体と、
     第1の枠体にフットペダルの前後方向のX軸回りに揺動自在に枢支される第2の枠体と、
     第2の枠体にX軸に直交するフットペダルの左右方向のY軸回りに揺動自在に枢支される第3の枠体と、を備え、
     この第3の枠体の取付け部が前記ボックス体の底面内又は前記フットペダルの天井内面の略中央部に固定されるジンバル機構からなることを特徴とする請求項12記載のESD用外科手術システム。
    The universal support means is:
    A first frame that is fixed to a substantially central portion of the inner surface of the ceiling or the bottom surface of the box body;
    A second frame pivotally supported by the first frame so as to be swingable about the X axis in the front-rear direction of the foot pedal;
    A third frame pivotally supported about the Y axis in the left-right direction of the foot pedal orthogonal to the X axis on the second frame,
    13. The ESD surgical system according to claim 12, wherein the attachment portion of the third frame body is composed of a gimbal mechanism fixed to the bottom surface of the box body or the substantially central portion of the ceiling inner surface of the foot pedal. .
  17.  前記フット操作部は、上面が前方に向かって上り坂状の傾斜面となっていることを特徴とする請求項11乃至請求項16のいずれか1項記載のESD用外科手術システム。 The ESD surgical operation system according to any one of claims 11 to 16, wherein an upper surface of the foot operation unit is an inclined surface having an upward slope toward the front.
  18.  前記磁束制御手段は、
     前記内視鏡内に挿通されて前記磁場シールド筒の後端部に連結された線状部材を介し前記磁場シールド筒を前記磁気体芯部材に対して長手方向前後にスライドさせることにより、前記磁気発生要素の磁束配分を制御することを特徴とする請求項7記載のESD用外科手術システム。
    The magnetic flux control means includes
    By sliding the magnetic field shield cylinder back and forth in the longitudinal direction with respect to the magnetic core member through a linear member inserted into the endoscope and connected to a rear end portion of the magnetic field shield cylinder, the magnetic field The ESD surgical system according to claim 7, wherein the magnetic flux distribution of the generating element is controlled.
  19.  生体組織を係着する係着部材に小径の磁性部材を連結した1体又は複数体の磁気アンカーを生体管内面の病変部位に係着部材を介して係着し、
     前記磁気アンカーに電磁反発力を付与する1体又は複数体の密封した磁気発生要素を備えた磁束放射手段を内視鏡の先端部に装着し、その内視鏡の先端部を前記生体管内の病変部位近傍まで挿入して磁束放射手段を前記磁気アンカーに向けて適宜配置し、
     前記磁束放射手段から放射される磁束の配分を生体の外部から制御する磁束制御手段により前記磁束放射手段からの磁束分布を制御し、前記磁気アンカーに電磁反発力を与えて、前記磁気アンカーが係着した病変部位を生体管の筋層から引離す方向に牽引しながら、前記内視鏡先端部の処置具誘導チャンネルから切開具を用いて前記病変部位の粘膜下層剥離術を行うことを特徴とするESD用外科手術方法。
    One or more magnetic anchors, each of which has a small-diameter magnetic member connected to an engaging member for engaging a biological tissue, are attached to a lesion site on the inner surface of the living body tube via the engaging member,
    A magnetic flux radiating means including one or a plurality of sealed magnetism generating elements for applying an electromagnetic repulsive force to the magnetic anchor is attached to the distal end portion of the endoscope, and the distal end portion of the endoscope is attached to the living body tube. Insert the magnetic flux radiation means to the magnetic anchor and insert it to the vicinity of the lesion as appropriate,
    The magnetic flux distribution from the magnetic flux radiating means is controlled by the magnetic flux control means for controlling the distribution of the magnetic flux radiated from the magnetic flux radiating means from the outside of the living body, and an electromagnetic repulsive force is applied to the magnetic anchor to engage the magnetic anchor. Performing submucosal detachment of the lesion site using an incision tool from the treatment instrument guide channel at the distal end of the endoscope, while pulling the worn lesion site away from the muscle layer of the biological duct Surgical method for ESD.
  20.  前記内視鏡又は/及び磁束放射手段に設けた一つ又は複数の角度センサ又は/及び位置センサを介して、前記内視鏡先端部に装着した磁束放射手段の任意の所望する湾曲角度位置に停止して保持するように前記内視鏡に設けた湾曲駆動部を制御する磁束放射手段位置決め制御ユニットをさらに備えることを特徴とする請求項19記載のESD用外科手術方法。 Through one or a plurality of angle sensors or / and position sensors provided on the endoscope or / and the magnetic flux radiation means, the magnetic flux radiation means mounted on the endoscope distal end portion can be in any desired curved angular position. 20. The ESD surgical method according to claim 19, further comprising a magnetic flux radiation means positioning control unit for controlling a bending drive unit provided in the endoscope so as to be stopped and held.
  21.  前記磁束放射手段は、
     エラストマー又は樹脂系材料の薄膜からなり、内視鏡先端部外径に着脱可能に外嵌した内筒と、
     該内筒の外周に円周方向に略等配し軸方向に沿って併設した複数の細長棒状又は帯板状に形成した磁気発生要素とからなる磁束放射筒であって、
     前記磁気発生要素を、エラストマー又は樹脂系材料の薄膜により密封したことを特徴とする請求項19又は請求項20記載のESD用外科手術方法。
    The magnetic flux radiating means is
    An inner cylinder made of a thin film of an elastomer or a resin material and detachably fitted to the outer diameter of the distal end portion of the endoscope;
    A magnetic flux radiation cylinder comprising a plurality of elongated rod-like or strip-like magnetism generating elements arranged substantially equally in the circumferential direction on the outer circumference of the inner cylinder and provided along the axial direction,
    21. The ESD surgical method according to claim 19 or 20, wherein the magnetism generating element is sealed with a thin film of an elastomer or a resin material.
  22.  前記磁束放射手段は、
     フレキシブルな細長棒状又は帯板状に形成された磁気発生要素をエラストマー又は樹脂系材料の薄膜により密封包装し、前記内視鏡の処置具誘導チャンネル内に先端部からループ状態で引出し可能に収設した1体のループ状に形成し、
     前記1個又は複数の磁気アンカーを係着した病変部位を包囲するようにループ状に配置可能に構成したことを特徴とする請求項19又は請求項20記載のESD用外科手術方法。
    The magnetic flux radiating means is
    A magnetism generating element formed in the shape of a flexible elongated rod or strip is hermetically wrapped with a thin film of elastomer or resin material, and placed in the treatment instrument guide channel of the endoscope so that it can be pulled out from the distal end in a looped state. Formed into a single loop,
    21. The ESD surgical method according to claim 19 or 20, wherein the ESD surgical method is configured to be arranged in a loop so as to surround a lesion site to which the one or more magnetic anchors are attached.
  23.  前記磁気発生要素は、
     細長棒状又は線状の磁性体芯部材に巻回した導線コイルからなることを特徴とする請求項19乃至請求項22のいずれか1項記載のESD用外科手術方法。
    The magnetism generating element is
    The surgical method for ESD according to any one of claims 19 to 22, comprising a conductive coil wound around an elongated rod-shaped or linear magnetic core member.
  24.  前記磁気発生要素は、
     細長帯板状の半導体基板に極細導線を短周期の波線又はサイン曲線状にプリント配線してなることを特徴とする請求項19乃至請求項22のいずれか1項記載のESD用外科手術方法。
    The magnetism generating element is
    23. The ESD surgical method according to any one of claims 19 to 22, wherein an ultrathin conductor is printed and printed in a short-period wavy line or sine curve shape on an elongated strip-like semiconductor substrate.
  25.  前記磁気発生要素は、
     細長棒状又は線状あるいは帯板状の磁気体芯部材と、
    該磁気体芯部材に長手方向にスライド自在に外嵌した中空の磁場シールド部材からなる磁場シールド筒と、から構成したことを特徴とする請求項19乃至請求項22のいずれか1項記載のESD用外科手術方法。
    The magnetism generating element is
    An elongated rod-like or linear or strip-like magnetic core member;
    23. The ESD according to any one of claims 19 to 22, comprising a magnetic field shielding cylinder comprising a hollow magnetic field shielding member externally fitted to the magnetic core member so as to be slidable in the longitudinal direction. Surgical methods.
  26.  前記磁気アンカーの磁気部材は、
     前記係着部材に連結する基端部から先端部に向けて外形を漸次拡大して形成したことを特徴とする請求項19記載のESD用外科手術方法。
    The magnetic member of the magnetic anchor is
    20. The ESD surgical method according to claim 19, wherein the outer shape is gradually enlarged from the proximal end portion connected to the engaging member toward the distal end portion.
  27.  前記磁束制御手段は、ESD外科手術者が手術中に自らの足で操作可能なフット操作部を備えたことを特徴とする請求項19記載のESD用外科手術方法。 20. The ESD surgical method according to claim 19, wherein the magnetic flux control means includes a foot operation unit which can be operated by an ESD surgeon with his / her foot during the operation.
  28.  前記フット操作部は、
     上部を開放した有底ボックス体と、
     該ボックス体との略中央部間内に設けたユニバーサル支承手段を介して任意の方角に傾動可能とするとともにその周辺内に設けた複数の圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設したボックスカバー状のフットペダルと、
     前記ボックス体の底面内周辺に前記磁束放射筒内の各磁気発生要素に対応して略対称に配置し、前記フットペダルの傾動動作に連動して電気抵抗を変化させる複数の可変電気抵抗手段と、を具備したことを特徴とする請求項27記載のESD用外科手術方法。
    The foot operation unit is
    A bottomed box with an open top;
    It can be tilted in an arbitrary direction via a universal support means provided in a substantially central portion between the box body and the original posture can be restored by the elastic force of a plurality of compression spring members provided in the periphery thereof. A box cover-like foot pedal covering the top of the box body;
    A plurality of variable electric resistance means arranged substantially symmetrically corresponding to each magnetism generating element in the magnetic flux radiating tube around the bottom surface of the box body and changing the electric resistance in conjunction with the tilting operation of the foot pedal; 28. The ESD surgical method according to claim 27, further comprising:
  29.  前記フット操作部は、
     上部を開放した有底ボックス体と、
     該ボックス体との後端部間で前方に傾動可能に枢支するとともに前端部間内に設けた圧縮ばね部材の弾発力により原姿勢復帰可能に前記ボックス体の上部に覆設したボックスカバー状のフットペダルと、
     前記ボックス体の底面内に配置し、前記フットペダルの傾動動作に連動して電気抵抗を変化させる可変電気抵抗手段と、を具備したことを特徴とする請求項27記載のESD用外科手術方法。
    The foot operation unit is
    A bottomed box with an open top;
    A box cover that is pivotally supported between the rear end portion of the box body so as to be able to tilt forward and is recovered to the original posture by the elastic force of a compression spring member provided between the front end portions. Shaped foot pedal,
    28. The ESD surgical method according to claim 27, further comprising: variable electric resistance means that is disposed within a bottom surface of the box body and changes electric resistance in conjunction with a tilting operation of the foot pedal.
  30.  前記磁束制御手段は、
     電源に連結した前記フット操作部の各可変電気抵抗手段からの電圧信号を受けて前記磁束放射手段の各磁気発生要素への電流値を制御して磁束放射手段の磁束配分を制御する磁束制御ユニット、をさらに備えたことを特徴とする請求項28又は請求項29記載のESD用外科手術方法。
    The magnetic flux control means includes
    A magnetic flux control unit for controlling the distribution of magnetic flux of the magnetic flux radiating means by receiving a voltage signal from each variable electric resistance means of the foot operation unit connected to a power source and controlling the current value to each magnetism generating element of the magnetic flux radiating means. 30. The ESD surgical method according to claim 28 or 29, further comprising:
  31.  前記フット操作部は、上面を前方に向かって上り坂状の傾斜面としたことを特徴とする請求項27乃至請求項30のいずれか1項記載のESD用外科手術方法。 31. The ESD surgical method according to any one of claims 27 to 30, wherein the foot operation unit has an upper surface that is inclined upwardly toward the front.
  32.  前記磁束制御手段は、
     前記内視鏡内に挿通して前記磁場シールド筒の後端部に連結した線状部材を介し前記磁場シールド筒を前記磁気体芯部材に対して長手方向前後にスライドすることにより、前記磁気発生要素の磁束配分を制御することを特徴とする請求項23記載のESD用外科手術方法。
    The magnetic flux control means includes
    The magnetic field is generated by sliding the magnetic field shield cylinder back and forth with respect to the magnetic core member through a linear member that is inserted into the endoscope and connected to a rear end portion of the magnetic field shield cylinder. 24. The ESD surgical method according to claim 23, wherein the magnetic flux distribution of the elements is controlled.
PCT/JP2009/067562 2008-10-10 2009-10-08 Surgery system for endoscopic submucosal dissection (esd) and surgery method WO2010041714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010532957A JP5403433B2 (en) 2008-10-10 2009-10-08 Surgical system for endoscopic submucosal dissection (ESD)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008264043 2008-10-10
JP2008-264043 2008-10-10

Publications (1)

Publication Number Publication Date
WO2010041714A1 true WO2010041714A1 (en) 2010-04-15

Family

ID=42100662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067562 WO2010041714A1 (en) 2008-10-10 2009-10-08 Surgery system for endoscopic submucosal dissection (esd) and surgery method

Country Status (2)

Country Link
JP (1) JP5403433B2 (en)
WO (1) WO2010041714A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510872A (en) * 2008-12-05 2012-05-17 クック メディカル テクノロジーズ エルエルシー Hood method and apparatus for material resection
JP2014083112A (en) * 2012-10-19 2014-05-12 Katsumi Yamamoto Endoscope hood
WO2014147556A1 (en) 2013-03-18 2014-09-25 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna A miniature robotic device applicable to a flexible endoscope for the surgical dissection of gastro-intestinal tract surface neoplasms
EP2961334A4 (en) * 2013-02-27 2017-01-11 Rohaninejad, Mohammadreza Methods and systems for magnetically suspending tissue structures
JP2019000351A (en) * 2017-06-15 2019-01-10 オリンパス株式会社 Endoscope control device, endoscope system and program
CN109288549A (en) * 2018-11-27 2019-02-01 上海安翰医疗技术有限公司 Minimally Invasive Surgery auxiliary device and its control method
EP3294147A4 (en) * 2015-05-14 2019-05-15 Ankon Medical Technologies (Shanghai) Co., Ltd Auxiliary apparatus for minimally invasive surgery and method to use the same
CN111820995A (en) * 2017-11-10 2020-10-27 西安交通大学医学院第一附属医院 Device for assisting mucosa peeling operation under endoscope
CN112218588A (en) * 2018-05-30 2021-01-12 奥林巴斯株式会社 Mucosal lifting tool and mucosal lifting method
US11033278B2 (en) 2017-11-08 2021-06-15 Mayo Foundation For Medical Education And Research Systems and methods for endoscopic submucosal dissection using magnetically attachable clips
US11350946B2 (en) 2017-11-08 2022-06-07 Mayo Foundation For Medical Education And Research Systems and methods for endoscopic submucosal dissection using magnetically attachable clips

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004105247A (en) * 2002-09-13 2004-04-08 Pentax Corp Magnetic anchor remotely guiding system
JP2005329240A (en) * 2004-05-20 2005-12-02 Pankaj Jay Pasricha Therapeutical treatment apparatus
US20070135802A1 (en) * 2005-12-14 2007-06-14 Olympus Medical Systems Corp. Method of lifting diseased part, tissue lifting system, and indwelling tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952005B2 (en) * 1990-05-17 1999-09-20 オリンパス光学工業株式会社 Endoscope device
US5529568A (en) * 1994-03-18 1996-06-25 Surgery Futures Research, Inc. Magnetic operating table
AU1796499A (en) * 1997-11-12 1999-05-31 Stereotaxis, Inc. Articulated magnetic guidance systems and devices and methods for using same formagnetically-assisted surgery
JP3632073B2 (en) * 2001-02-07 2005-03-23 国立がんセンター総長 Medical magnetic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004105247A (en) * 2002-09-13 2004-04-08 Pentax Corp Magnetic anchor remotely guiding system
JP2005329240A (en) * 2004-05-20 2005-12-02 Pankaj Jay Pasricha Therapeutical treatment apparatus
US20070135802A1 (en) * 2005-12-14 2007-06-14 Olympus Medical Systems Corp. Method of lifting diseased part, tissue lifting system, and indwelling tool

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510872A (en) * 2008-12-05 2012-05-17 クック メディカル テクノロジーズ エルエルシー Hood method and apparatus for material resection
JP2014083112A (en) * 2012-10-19 2014-05-12 Katsumi Yamamoto Endoscope hood
EP2961334A4 (en) * 2013-02-27 2017-01-11 Rohaninejad, Mohammadreza Methods and systems for magnetically suspending tissue structures
US9855068B2 (en) 2013-02-27 2018-01-02 Mohammadreza Rohaninejad Methods and systems for magnetically suspending tissue structures
US10492812B2 (en) 2013-02-27 2019-12-03 Mohammadreza Rohaninejad Methods and systems for magnetically suspending tissue structures
WO2014147556A1 (en) 2013-03-18 2014-09-25 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna A miniature robotic device applicable to a flexible endoscope for the surgical dissection of gastro-intestinal tract surface neoplasms
EP3294147A4 (en) * 2015-05-14 2019-05-15 Ankon Medical Technologies (Shanghai) Co., Ltd Auxiliary apparatus for minimally invasive surgery and method to use the same
JP2019000351A (en) * 2017-06-15 2019-01-10 オリンパス株式会社 Endoscope control device, endoscope system and program
US11033278B2 (en) 2017-11-08 2021-06-15 Mayo Foundation For Medical Education And Research Systems and methods for endoscopic submucosal dissection using magnetically attachable clips
US11350946B2 (en) 2017-11-08 2022-06-07 Mayo Foundation For Medical Education And Research Systems and methods for endoscopic submucosal dissection using magnetically attachable clips
CN111820995A (en) * 2017-11-10 2020-10-27 西安交通大学医学院第一附属医院 Device for assisting mucosa peeling operation under endoscope
CN112218588A (en) * 2018-05-30 2021-01-12 奥林巴斯株式会社 Mucosal lifting tool and mucosal lifting method
CN109288549A (en) * 2018-11-27 2019-02-01 上海安翰医疗技术有限公司 Minimally Invasive Surgery auxiliary device and its control method
WO2020107636A1 (en) * 2018-11-27 2020-06-04 上海安翰医疗技术有限公司 Minimally invasive surgery auxiliary apparatus and control method thereof

Also Published As

Publication number Publication date
JP5403433B2 (en) 2014-01-29
JPWO2010041714A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5403433B2 (en) Surgical system for endoscopic submucosal dissection (ESD)
KR102121104B1 (en) Auxiliary device and control method used for minimally invasive microsurgery
JP5095265B2 (en) Medical device having catheter and catheter attachment device
JP5340722B2 (en) Endoscopic treatment tool
US6755843B2 (en) Endoscopic suturing device
JP4898709B2 (en) Trans-natural or percutaneous medical system
JP7138214B2 (en) Treatment tool, endoscope device and endoscope system
JP2000037389A (en) Blood vessel separating tractor cannula and method
JPWO2008001882A1 (en) Medical holder and method of using medical holder
JP2004105247A (en) Magnetic anchor remotely guiding system
JP2009172053A (en) Medical device
WO2014034837A1 (en) Medical system and operation method
WO2021120462A1 (en) Auxiliary device for minimally invasive surgery
JP2003220022A (en) Endoscope
JP4445736B2 (en) Insertion aid for treatment of full-thickness colorectal resection and its medical instrument system
CN110693574A (en) Surgical traction instrument and system
JP2005530585A (en) Method and device for thermal suture cutting
JP2003210399A (en) Endoscope
JP6980895B2 (en) Endoscopic treatment tools and endoscopic systems
JPWO2009016834A1 (en) Oral digestive organ surgery device
JP2008259554A (en) Tissue raising system and indwelling implement
JP4360838B2 (en) Endoscope anchor remote guidance system
JP2010012178A (en) Magnetic anchor guide device for endoscope
KR101620831B1 (en) Surgical instrument
KR102517075B1 (en) Medical devices for endoscopy with magnetic clips and method for marking and detecting treatment target site using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532957

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819248

Country of ref document: EP

Kind code of ref document: A1