WO2010045240A2 - Special purpose fluid dispenser - Google Patents

Special purpose fluid dispenser Download PDF

Info

Publication number
WO2010045240A2
WO2010045240A2 PCT/US2009/060516 US2009060516W WO2010045240A2 WO 2010045240 A2 WO2010045240 A2 WO 2010045240A2 US 2009060516 W US2009060516 W US 2009060516W WO 2010045240 A2 WO2010045240 A2 WO 2010045240A2
Authority
WO
WIPO (PCT)
Prior art keywords
collapsible
control means
medicament
fluid
dose
Prior art date
Application number
PCT/US2009/060516
Other languages
French (fr)
Other versions
WO2010045240A3 (en
Inventor
Marshall S. Kriesel
Joshua W. Kriesel
Thomas N. Thompson
Original Assignee
Bioquiddity, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioquiddity, Inc. filed Critical Bioquiddity, Inc.
Publication of WO2010045240A2 publication Critical patent/WO2010045240A2/en
Publication of WO2010045240A3 publication Critical patent/WO2010045240A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1454Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons spring-actuated, e.g. by a clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16877Adjusting flow; Devices for setting a flow rate
    • A61M5/16881Regulating valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1405Patient controlled analgesia [PCA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M2005/14272Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body for emergency, field or home use, e.g. self-contained kits to be carried by the doctor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological
    • A61M2202/048Anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/04Tools for specific apparatus
    • A61M2209/045Tools for specific apparatus for filling, e.g. for filling reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/141Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor with capillaries for restricting fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/148Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags

Definitions

  • the present invention relates generally to fluid dispensing devices. More particularly, the invention concerns a novel dispenser for dispensing propofol, as well as analogous sedation agents, to patients with increased safety and efficiency while reducing the probability of hospital acquired infections.
  • Propofol is a highly protein bound in vivo and is metabolised by conjugation in the liver. Its rate of clearance exceeds hepatic blood flow, suggesting an extrahepatic site of elimination as well. Its mechanism of action is uncertain, but it is postulated that its primary effect may be potentiation of the GABA - a receptor, possibly by slowing the closing channel time. Recent research has also suggested the endocannabinoid system may contribute significantly to Propofol's anesthetic action and to its unique properties.
  • propofol is commonly delivered through an electronic pump that is preset with the patient's weight (in kg) and a dosage increment measured in micrograms/kg/min.
  • One prior art electronic pump that is presently in use is a pump sold by Baxter International, Inc, of Deerfield, Illinois under the name and style "InfusO.R.”. This pump contains four separate dials. The first dial is to set the patient weight; the second dial is to set the dosage; the third dial is to set a bolus volume to initiate sedation; and the fourth dial is used to purge the syringe if there is any remaining propofol after the procedure.
  • the Baxter pump has a magnetic plate that contains all the increments of the dials and the plates can be changed for different medications. By having removable plates, there is an increased possibility of medication error if the magnetic plate is not checked for increments for the correct medication or the correct concentration.
  • the Baxter pump is typically used in the surgicenter setting where the anesthesiologist gives the patient an initial bolus of propofol for inducing sedation and the preset dosage is given in addition to gas anesthesia to keep the patient asleep during the operation.
  • Another pump that is presently in use is a pump sold by the Cardinal Health Company of Dublin, Ohio under the name and style "ALARIS PL".
  • ALARIS PL syringe pump or ALARIS IVAC pump is used in conjunction with a
  • the Diprifusor is a target controlled infusion (TCI) system that was developed to enhance the control of IV anesthesia.
  • TCI target controlled infusion
  • a microprocessor manages the infusion rate and controls the syringe.
  • the anesthesiologist enters the body weight of the patient, the age of the patient, and the dosage in microgram/ml.
  • the Alaris pumps rely on the anesthesiologist entering the correct data minimizing the possibility of medication error but the dosage form is not the commonly used increment, (microgram/ml instead of microgram/kg/min) which relies on the anesthesiologist to convert the dosage and potentially increases the risk of medication error through miscalculation.
  • the Diprifusor and TCI pumps are typically used in Europe where the pump is used to control sedation and anesthesia, but are thus far not dominant in the American surgical market.
  • the propofol dispenser of the present invention allows the anesthesiologist to create a basic "recipe" for propofol based sedation that could prevent patient complications.
  • the dispenser of the present invention is particularly well-suited for use in the administration of propofol by non-anesthesiologists in low risk procedures, such as colonoscopies.
  • Precedex is dexmedetomidine hydrochloride (Precedex), and related compounds.
  • Precedex is indicated for sedation of initially intubated and mechanically ventilated patients during treatment in an intensive care setting.
  • Precedex is typically administered by continuous infusion using a syringe of the drug fluid (drawn up in a non-aseptic environment by the anesthesiologist) and dispensed by an electronic pump.
  • Precedex is being used with patients in the intensive care unit (ICU), during neurosurgery and for children during MRI.
  • ICU intensive care unit
  • Precedex is delivered via intravenous infusion over a selected amount of time through a controlled infusion with the use of an electronic or battery operated pump or with a "smart pump".
  • a pre-f ⁇ lled and non-electric pump that is therapy specific could allow more widespread use of novel sedation agents (such as Precedex), because of the ability to administer the therapy in a safer and more efficient manner without the need for multiple steps and sophisticated software routines.
  • the novel dispenser of the present invention provides numerous advantages over prior art devices including the following: Creation of a standard operating procedure for the administration of propofol by anesthesiologists and non-anesthesiologists alike.
  • the dispenser of the present invention is specially designed for relatively short procedures (i.e. 20-30 minutes), such as colonoscopies and endoscopies.
  • the dispenser of the invention which is non-electric and disposable following use, can provide an extremely cost effective means of increasing efficiency in the endoscopy center.
  • the dispenser uniquely provides an alternative to expensive electronic pumps that are often complicated and time consuming to operate.
  • low cost disposable devices for use in outpatient clinics are consistent with a broader theme in healthcare that is aimed at lowering costs while improving quality of care and patient outcomes.
  • the dispenser of the present invention provides a natural fit for a standardized sedation process for colonoscopies and endoscopies, without compromising the quality and safety of the procedure.
  • the dispenser comprises a mid- volume propofol delivery systems technology (65 ml) that is specially designed for use in the surgicenter for procedures that require sedation times of 1-2 hours.
  • a novel dispenser can serve as a safe and effective means for patients that are to be fitted with orthopedic and cardiac implants.
  • this novel mid-volume dispenser can function well with minimum discomfort for general surgeries such as hernia repairs and the like.
  • the dispenser of the present invention comprises a natural fit for a standardized sedation process that could potentially increase patient throughput within the market without compromising the quality and safety of the procedure.
  • patients prefer propofol as an anesthetic agent because there is no "hangover" effect, which stems from its ease of titration and rapid elimination half-life.
  • traditional anesthesia with gas has a very slow elimination half-life and patients require long recovery times that are typically complicated by nausea and vomiting.
  • propofol has inherent antiemetic properties, which chemically combats feelings of nausea.
  • the dispenser comprises a large volume propofol dispenser (250 ml) that is specially designed for use in military applications, including total IV anesthesia (TIVA) by the Forward Surgical Team at the battlefield, as well as for sedation of the patient during transport from one echelon of care to the next.
  • TIVA total IV anesthesia
  • This form of the invention can provide a safe and effective means to sedate a patient during an operation and throughout transport without relying on bulky medical equipment or expensive equipment that is transported with the patient and never returned to the original care facility.
  • the devices of the present invention are also particularly useful in ambulatory situations.
  • IV drug and fluid delivery technologies for controlling pain, preventing infection, and providing a means for IV access for rapid infusions during patient transport are needed to treat almost all serious injuries. It is imperative that battlefield medics begin administering life saving medications as soon as possible after a casualty occurs. The continuous maintenance of these treatments is vital until higher echelon medical facilities can be reached.
  • a compact, portable and ready to use infusion device that could be easily brought into the battlefield would allow medics to begin drug and resuscitation agent infusions immediately. Additionally, it would free them to attend to other seriously wounded patients who may require more hands-on care in the trauma environment following triage. In most serious trauma situations on the battlefield, IV drug delivery is required to treat fluid resuscitation, as well as both pain and infection. Drug infusion devices currently available can impede administration of IV infusions in remote care settings.
  • one form of the dispensing device of the present invention for dispensing the beneficial agent, such as propofol, to a patient comprises a housing, a carriage assembly disposed within the housing, a reservoir defining assembly carried by the carriage, a stored energy means operably associated with the carriage for moving the carriage between a first position and a second position to expel from the reservoir the fluid medicament contained therein, and flow control means to control the flow of fluid from the reservoir, the flow control means uniquely comprising dose control means for controlling the dose of medicament to be delivered to the patient and rate control means for controlling the rate of medicament flow to the patient.
  • This novel design would therefore allow the physician to set a medicament flow rate based on the patient's body weight in kg and the patient appropriate dose in micrograms per kg per hour.
  • Another object of the invention is to provide a fluid dispenser of simple construction that can be used in the field with a minimum amount of training.
  • Another object of the invention is to allow infusion therapy to be initiated quickly and easily on the battlefield so that the attending medic or medical professional can more efficiently deal with triage situations in austere environments.
  • Another object of the invention is to provide a dispenser of the class described which includes a fluid flow control assembly that precisely controls the flow of the medicament solution to the patient.
  • Another object of the invention is to provide a dispenser that includes precise variable flow rate selection.
  • Another object of the invention is to provide a fluid dispenser of simple construction, which embodies a collapsible drug container that can be selectively filled with the beneficial agent at the point of care.
  • Another object of the invention is to provide a fluid dispenser of the class described which is compact, lightweight, is easy and safe for providers to use, is fully disposable, transportable, and is extremely reliable in operation.
  • Another object of the invention is to provide a fluid dispenser of the class described that is presented in a sterile and aseptic manner where drug filling is conducted at the point of care; so as to minimize the probability of hospital acquired infections and medication errors.
  • Another object of the invention is to provide a medicament dispenser that improves the process efficiency of the healthcare setting by streamlining the tasks associated with the preparation, administration and monitoring of drug delivery of regimen.
  • Another object of the invention is to provide a low cost single-use alternative to expensive electronic pumps that have to be continually cleaned, calibrated and maintained at tremendous costs to healthcare providers.
  • Another object of the invention is to provide a dispenser that can administer anesthesia and sedation agents to patients without problematic side effects, such as nausea and vomiting, typically encountered with traditional gas anesthesia.
  • Another object of the invention is to provide a more efficient medicament delivery system for procedure rooms, such as the endoscopy center, so that a greater number of patients can be treated per day at higher standard of care with increased profits for the healthcare provider.
  • Another object of the invention is to provide a fluid dispenser as described in the preceding paragraphs that is easy and inexpensive to manufacture in large quantities.
  • FIGURE 1 is a generally perspective front top view of one form of the fluid dispensing device of the present invention for dispensing medicaments to a patient.
  • FIGURE 2 is a generally perspective rear bottom view of the fluid dispensing device shown in Figure 1.
  • FIGURE 3 is a top plan view of the fluid dispensing device shown in Figure 1.
  • FIGURE 4 is a side view of the fluid dispensing device shown in Figure 3.
  • FIGURES 5 and 5A when considered together, comprise an enlarged cross-sectional view of the fluid dispensing device shown in Figure 4 of the drawings.
  • FIGURE 6 is an enlarged, top plan view, partly in cross-section, of the central portion of the fluid dispensing device shown in Figure 1.
  • FIGURE 7 is a cross-sectional view taken along lines 7-7 of Figure 6.
  • FIGURE 7 A is a top plan view of the fluid pickup plates of the bolus delivery subassembly of the apparatus.
  • FIGURE 7B is a cross-sectional view taken along lines 7B-7B of
  • FIGURE 8 is a cross-sectional view taken along lines 8-8 of Figure 7.
  • FIGURE 9 is a cross-sectional view taken along lines 9-9 of Figure 7.
  • FIGURE 10 is a cross-sectional view taken along lines 10-10 of Figure 7.
  • FIGURE 11 is a cross-sectional view taken along lines 11-11 of Figure 7.
  • FIGURE 12 is a top plan view of the patient weight selector knob and the patient dose selector knob components of the fluid dispensing device.
  • FIGURE 13 is a cross-sectional view taken along lines 13-13 of
  • FIGURE 14 is a cross-sectional view taken along lines 14-14 of Figure 12.
  • FIGURE 15 is an enlarged front view of the main body portion of the dispensing apparatus shown in Figure 1.
  • FIGURE 16 is an enlarged cross-sectional view taken along lines 16-16 of Figure 15.
  • FIGURE 17 is an enlarged cross-sectional view taken along lines 17-17 of Figure 15.
  • FIGURE 18 is an enlarged cross-sectional view of the rearward portion of the fluid dispensing device shown in Figure 1, further illustrating construction of the field filled reservoir portion of the device.
  • FIGURE 19 is a cross-sectional view taken along lines 19-19 of Figure 18.
  • FIGURE 19A is a generally perspective, diagrammatic view illustrating the path of fluid flow through the device during the reservoir filling step.
  • FIGURE 20 is an enlarged top plan view of the patient weight selector subassembly of the fluid dispensing device.
  • FIGURE 21 is a cross-sectional view taken along lines 21-21 of Figure 20.
  • FIGURE 22 is an enlarged, generally perspective exploded view of the patient weight selector subassembly of the fluid dispensing device.
  • FIGURE 23 is a bottom plan view of the upper rate control plate of the patient weight selector subassembly illustrated in Figure 22 and showing in phantom lines the main fluid pickup housing of the device.
  • FIGURE 24 is a cross-sectional view taken along lines 24-24 of Figure 23 showing the main fluid pickup housing device in greater detail.
  • FIGURE 25 is a fragmentary view taken along lines 25-25 of Figure 24 showing only one half of the main fluid pickup housing and illustrating the construction of the anti-rotational grooves thereof.
  • FIGURE 26 is a cross-sectional view taken along lines 26-26 of Figure 23.
  • FIGURE 27 is a generally diagrammatic view illustrating the main fluid pickup housing of the device shown in the upper portion of Figure 24 as it would appear in flat configuration.
  • FIGURE 28 is a top plan view of the fluid connector boss of the fluid delivery device illustrated in Figure 22.
  • FIGURE 29 is a side elevation view of the fluid connector boss shown in Figure 28 illustrating the configuration of the fluid micro pickup of the connector boss.
  • FIGURE 30 is a cross sectional view taken along lines 30-30 of Figure 28.
  • FIGURE 31 is a top plan view of the upper rate control plate of the patient weight selector subassembly illustrated in Figure 22.
  • FIGURE 32 is a cross-sectional view taken along lines 32-32 of Figure 31.
  • FIGURE 33 is a cross-sectional view taken along lines 33-33 of Figure 31.
  • FIGURE 34 is a view taken along lines 34-34 of Figure 31.
  • FIGURE 35 is a cross-sectional view taken along lines 35-35 of Figure 31.
  • FIGURE 36 is a top plan view of the rate control plate of the fluid delivery device illustrated in Figure 22.
  • FIGURE 37 is a cross-sectional view taken along lines 37-37 of Figure 36.
  • FIGURE 38 is a view taken along lines 38-38 of Figure 36.
  • FIGURE 39 is a cross-sectional view taken along lines 39-39 of Figure 36.
  • FIGURE 40 is a top plan view of the bottom rate control plate of the fluid delivery device illustrated in Figure 22.
  • FIGURE 41 is a side elevation view of the rate control assembly retaining cover of the fluid delivery device.
  • FIGURE 42 is a cross-sectional view taken along lines 42-42 of Figure 41.
  • FIGURE 43 is a cross-sectional view taken along lines 43-43 of Figure 41.
  • FIGURE 44 is a view taken along lines 44-44 of Figure 41.
  • FIGURE 45 is a view taken along lines 45-45 of Figure 41.
  • FIGURE 46 is a top plan view of the patient weight selector knob of the patient weight selector subassembly of the fluid delivery device.
  • FIGURE 47 is a cross-sectional view taken along lines 47-47 of Figure 46.
  • FIGURE 47A is a generally diagrammatic view illustrating the portion of the patient weight selector knob shown in the lower portion of Figure 47 as it would appear in flat configuration.
  • FIGURE 48 is a cross-sectional view taken along lines 48-48 of Figure 47.
  • FIGURE 49 is a view taken along lines 49-49 of Figure 47.
  • FIGURE 49A is a view taken along lines 49A-49A of Figure 49.
  • FIGURE 50 is a top plan view of the patient dose selector knob of the patient dose selector subassembly of the fluid delivery device.
  • FIGURE 51 is a view partly in cross-section taken along lines 51-51 of Figure 50.
  • FIGURE 52 is a view taken along lines 52-52 of Figure 51.
  • FIGURE 53 is a generally diagrammatic view illustrating the portion of the patient dose selector knob shown in the lower portion of Figure 51 as it would appear in flat configuration.
  • FIGURE 54 is an end view of the fluid delivery device shown in Figure 1.
  • FIGURE 55 is a cross-sectional view taken along lines 55-55 of Figure 54 illustrating the construction of the bolus operating mechanism of the fluid delivery device.
  • FIGURE 56 is a fragmentary cross-sectional view illustrating the construction of the bolus interlock mechanism of the fluid delivery device.
  • FIGURE 57 is a generally perspective, exploded view of the bolus operating mechanism.
  • FIGURE 58 is a top plan view of the bolus reservoir of the apparatus.
  • FIGURE 59 is a cross-sectional view taken along lines 59-59 of Figure 58.
  • FIGURE 60 is a view taken along lines 60-60 of Figure 59.
  • FIGURE 61 is a top plan view of the bolus selector subassembly of the apparatus.
  • FIGURE 62 is a cross-sectional view taken along lines 62-62 of Figure 61 illustrating the construction of the main bolus and secondary plunger assembly portion of the bolus operating mechanism.
  • FIGURE 63 is a view taken along lines 63-63 of Figure 62.
  • FIGURE 64 is a top view of the main reservoir operating shaft.
  • FIGURE 65 is a cross-sectional view taken along lines 65-65 of Figure 64.
  • FIGURE 66 is a cross-sectional view taken along lines 66-66 of Figure 64.
  • FIGURE 67 is a cross-sectional view taken along lines 67-67 of Figure 64.
  • FIGURE 68 is a cross-sectional view taken along lines 68-68 of Figure 62.
  • FIGURE 69 is a cross-sectional view taken along lines 69-69 of
  • FIGURE 70 is a cross-sectional view similar to Figure 68, but showing the operating spring of the bolus plunger assembly in a compressed condition.
  • FIGURE 71 is a cross-sectional view taken along lines 71-71 of Figure 68.
  • FIGURE 72 is a cross-sectional view taken along lines 72-72 of Figure 68.
  • FIGURE 73 is a top view of the secondary reservoir operating shaft of the bolus plunger assembly.
  • FIGURE 74 is a cross-sectional view taken along lines 74-74 of
  • FIGURE 75 is a view taken along lines 75-75 of Figure 74.
  • FIGURE 76 is a view taken along lines 76-76 of Figure 74.
  • FIGURES 77, 78 and 79 are generally perspective views of the bolus operating mechanism of the invention illustrating the sequential steps to be followed in operating the mechanism to accomplish the delivery to the patient of bolus doses.
  • the dispensing apparatus here comprises a device housing 102 having a forward portion 104, a rear portion 106 and a central portion 107.
  • Device housing 102 can be constructed from metal, plastic or any suitable material.
  • carriage assembly 108 Disposed within the rear portion 106 of device housing 102 is a "carriage" assembly 108 that is movable between a first rearward position shown in Figure 5 and a second advanced position.
  • carriage assembly 108 comprises a carriage 110 having a carriage flange 112 to which the novel stored energy means of the present invention is operably interconnected.
  • Carriage assembly 108 is releasably locked in its first position by a novel locking means the character of which will be described in the paragraphs which follow.
  • reservoir defining assembly 114 Carried by carriage assembly 108 is a reservoir defining assembly 114 that defines a fluid medicament reservoir 115.
  • reservoir defining assembly 114 includes a front portion 114a, a rear portion 114b and an accordion-like, collapsible side wall 114c that interconnects the front and rear portion of the assembly.
  • the accordion like side wall 114c comprises a multiplicity of adjacent generally "V" shaped interconnected folds.
  • Rear portion 114b of the assembly includes a protuberance 116 that includes a rear wall 116a.
  • cup-shaped protuberance 116 is closely receivable within a cavity 120 formed in carriage 110.
  • Reservoir assembly 115 also includes a forward neck portion 122.
  • Reservoir 115 has an outlet 124 (see Figure 5) that is formed in a fluid transfer block 128 that forms a part of the rear portion 106 of housing 102.
  • fluid transfer block 128 includes a reduced diameter portion 128a to which the front portion 114a of the reservoir defining assembly is sealably interconnected.
  • Fluid transfer block 128 also includes a fluid fill passageway 130 and a vent passageway 132 ( Figure 6). Fluid fill passageway 130 is in communication with a sterile coupling assembly 134 that as best seen in Figure 6 of the drawings is mounted within a cavity 136 formed in fluid transfer block 128.
  • Fluid fill passageway 130 as well as sterile coupling assembly 134 form a part of the fill means of the invention for filling fluid reservoir 115 with the fluid to be dispensed to the patient.
  • sterile coupling assembly 134 comprises a body portion 138 that houses a pierceable slit septum 140 and a conventional, umbrella check valve 142.
  • Umbrella check valve 142 which is housed within a cavity 144 that is in communication with fill passageway 130, functions to permit fluid flow in a direction toward fluid reservoir 115, but blocks fluid flow in the opposite direction.
  • fluid reservoir 115 can be conveniently filled with propofol or other sedation agents in a conventional manner through the use of a conventional syringe "S", such is that shown in Figure 19A of the drawings having either a sharp, or blunt end needle that is capable of piercing septum 140.
  • This stored energy means which is operably associated with carriage assembly 108, is here provided in the form of a coil spring 148 that is movable from the first compressed position shown in Figure 5 to a second extended position, which causes the carriage assembly to move toward its second advanced position and in so doing to cause the collapse of the accordion side wall of the reservoir defining assembly.
  • the fluid "F" contained within the fluid reservoir 115 will be controllably expelled from the reservoir through the fluid outlet 122.
  • any gases contained within the fluid reservoir will be vented to atmosphere, via passageway 132, through a vent port 146 that is carried by fluid transfer block 128 ( Figure 6).
  • novel fluid flow control means are provided.
  • the fluid flow control means which is carried by the central portion 107 of housing 102, here comprises dose control means for controlling the dose of medicament to be delivered to the patient and rate control means for controlling the rate of medicament flow from collapsible reservoir 115 toward the dose control means.
  • this novel means here comprises a flow rate control assembly 156 ( Figures 7 and 9) for controlling the rate of fluid flow toward the dose control means.
  • Flow rate control assembly 156 includes a first, or lower rate control plate 158 and a second, or upper, rate control plate 160 ( Figures 7, 9, 36 and 40).
  • bottom side of rate control plate 160 is uniquely provided with a plurality of fluidic micro-channels identified in the drawings as 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194 and 196.
  • Each of the fluidic micro-channels is also provided with an outlet 162a, 164a, 166a, 168a, 170a, 172a, 174a, 176a, 178a, 180a, 182a, 184a, 186a, 188a, 190a, 192a, 194a and 196a, respectively.
  • upper side of rate control plate 160 is also uniquely provided with a plurality of fluidic micro-channels of different lengths that are identified in the drawings as 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234 and 236.
  • Each of the fluidic micro-channels is also provided with an outlet 202a, 204a, 206a, 208a, 210a, 212a, 214a, 216a, 218a, 220a, 222a, 224a, 226a, 228a, 230a, 232a, 234a and 236a, respectively.
  • Upper control plate 160 is also provided with inlet ports 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282 and 284 that communicate with the outlet ports 162a through 196a of lower side of control plate 160.
  • fluid pickup housing 294 includes a base 294a and tower portion 294b that is provided with a multiplicity of circumferentially spaced apart generally vertically extending fluid passageways 296 of varying lengths.
  • fluid flowing from the fluid reservoir will fill fluidic micro channels 162 through 196 as well as fluidic micro channels 202 through 236 via an inlet port 297 carried by rate control distribution plate 292 (see Figures 19A, 21 and 22). Fluid flowing through the outlet ports of these fluidic micro-channels will flow into spaced apart fluid ports 290 formed in rate control distribution plate 292. From fluid ports 290, the fluid will flow into and fill the circumferentially spaced apart, generally vertically extending fluid passageways 296 of fluid pickup housing 294 ( Figures 23, 24, 25 and 26).
  • fluid passageways 296 are arranged in six spaced part groups of passageways 298, 300, 302, 304, 306 and 308 respectively.
  • Each group of passageways is made up of six spaced apart passageways of a different length, each passageway having an outlet located at a different height with respect to base 294a of the fluid pick-up housing ( Figure 24).
  • the fluid will flow into a group of six vertically and circumferentially spaced apart inlets 310 ( Figures 49 and 49A) formed in the skirt portion 312a of a patient weight selector knob 312 (see also Figure 22, which is a depiction of the outer surface of the skirt portion when viewed in a planar configuration).
  • the skirt portion 312a of patient weight selector knob 312 is also provided with six circumferentially spaced apart outlet groups 314, each group having six vertically spaced apart outlet ports 316.
  • the fluid will flow into a plurality of vertically spaced apart, circumferentially extending fluid passageways 320 formed in a fluid pickup housing 322 ( Figures 7, 28, 29 and 30) that is housed interiorly of the downwardly depending skirt 312a of the patient weight selector knob 312 (see Figures 7, 20, 21 and 22), retaining tabs 325 that are disposed to interiorly of skirt 312a ( Figure 47) properly and retain fluid pickup housing 322 within skirt 312a.
  • a fluid pickup housing 322 Figures 7, 28, 29 and 30
  • fluid flowing from the fluid reservoir will fill fluidic micro channels 162 through 196 ( Figure 40) as well as fluidic micro channels 202 through 236 ( Figure 36), will fill the fluid passageways 296 of fluid pickup housing 294 ( Figure 24) and will fill the circumferentially extending fluid passageways 320 formed in a fluid pickup housing 322 ( Figure 22). From fluid passageways 320 the fluid will flow into the vertically spaced apart outlet passageways 316 formed in patient weight selector knob 312 ( Figure 7).
  • fluid passageways 330 communicate with the dose control means of the invention which, as previously mentioned, functions to control the dose of medicament to be delivered to the patient.
  • the rate of fluid flow toward the dose control means depends upon the configuration of the rate control passageways formed in the rate control plate 160 that are in communication with inlets 310 via vertically extending fluid passageways 296.
  • the patient weight selector knob 312 is rotated into a position wherein inlets 310a, 310b, 31 Oc, 31 Od, 31 Oe and 31 Of (Figure 47A) align with the passageways 296a, 296b, 296c, 296d, 296e and 296f of group 298 ( Figure 27).
  • rate control indexing means are provided to position the locking knob 312 in a selected rotational position.
  • this rate control indexing means comprises a locking plunger 333 that is received within a bore 104a formed in the forward portion 104 of housing 102.
  • Locking plunger 333 is continuously biased outwardly, by a coiled spring 335 into locking engagement, with a selected one of a plurality of circumferentially spaced apart cutouts 312c formed in the flange portion
  • body portion 334a of the dose control assembly 334 rotatably mounted within body portion 334a of the dose control assembly 334 is the patient dose selector knob 338, formed within a body portion 338a of the dose selector knob vertically spaced-apart radially outwardly extending fluid passageways 340, 342, 344,
  • the radially outwardly extending fluid passageways can be selectively brought in to communication with the passageways 332 that are, in turn, in communication with the circumferentially extending passageway 320 formed in the fluid pickup assembly 322 of the rate control means of the invention.
  • radially outwardly extending fluid passageway 340 is shown in communication with the uppermost passageway 332 of the dose control means.
  • each of the radially outwardly extending fluid passageways is in communication with an axially extending passageway 352 that is, in turn, in communication with the bolus operating mechanism of the invention, the character of which will presently be described.
  • dose control indexing means are provided to lock the patient dose selector knob 338 in any selected position.
  • this dose control indexing means comprises a locking plunger 353 that is received within a bore 104b formed in the forward portion 104 of housing 102.
  • Locking plunger 353 is continuously biased outwardly by a coiled spring 355 into locking engagement with a selected one of a plurality of circumferentially spaced apart cutouts 338c formed in the flange portion 338b of the patient dose selector knob assembly 338.
  • this novel means which is housed within forward portion 104 of housing 102, includes a double bolus reservoir 360 that is disposed within a cavity 359 formed in forward portion 104 of housing 102.
  • the double bolus reservoir 360 is defined by interconnected, collapsible bellows structures 360a and 360b that are in communication with passageway 352 of the dose control means via a longitudinally extending passageway 362, a vertical stab passageway 364, a conventional umbrella check valve 366, a vertical stub passageway 368 and a longitudinal passageway 370 (see Figures 5 and 53A).
  • Umbrella check valve 366 which is carried with an internal housing 372, functions to permit fluid flow toward reservoir 360, but blocks fluid flow in the opposite direction.
  • Reservoir 360 is in fluid communication with the administration set 153 ( Figure 2) via passageway 374, a second conventional umbrella check valve 376, a vertical passageway 378 and longitudinally extending passageway 380. With this construction, low flow from the dose control means any selected dose, to bolus reservoir 360 and then on to the patient via the administration set 153.
  • this novel mechanism comprises a first, or main operating shaft 386 for controllably collapsing the bellows structure 360a and a second operating shaft 387 ( Figures 61, 62, 73, and 74) for controllably collapsing the bellows structure 360b (see Figure 59).
  • bellows structure 360a can have a first volume of between approximately 3 ml and approximately 6.0 ml while bellows structure 360b can have a second, lesser volume of approximately 0.5 ml and approximately 2.0 ml.
  • Main operating shaft 386 controllably collapses bellows structure 360a by pushing inwardly on the shaft against the urging of a coiled operating spring 388 that circumscribes bellows structure 360a.
  • main operating shaft 386 is movable within the reduced diameter portion 390a of the bolus selector housing 390 that is carried within the forward portion 104 of housing 102.
  • the main operating shaft can be moved inwardly against the urging of coiled operating spring 388 from an extended to an inward position. Inward movement of the main operating shaft causes inward movement of a pusher member 394 which, in turn, causes the collapse of the bellows portion 360a.
  • pusher member 394 is provided with a yieldably deformable locking tab 394a (see also Figure 62) that is adapted to engage a plurality of generally saw-toothed shaped protuberances 396 that are formed on the inner wall of cavity 359.
  • Locking tab 394a is so constructed and arranged as to ride over protuberances 396 as the main operating shaft is pushed inwardly of cavity 359.
  • the saw-toothed protuberances 396 are configured so that the locking tab will engage the vertical faces 396a of the protuberances in a manner to prevent movement of the pusher member in a direction toward its starting position ( Figure 55).
  • second operating shaft 387 can be moved inwardly within a bore 386a provided in main operating shaft 386 against the urging of a second coil spring 400.
  • Second operating shaft 387 operates against bellows portion 360b in a manner to collapse the bellows portion as the second operating shaft is urged inwardly against the urging of spring 400.
  • medicinal fluid contained there within will be urged outwardly of the reservoir via outlet passageway 378.
  • spring 400 will urge the operating shaft into its original starting position so that subsequent smaller bolus doses of medicament can be delivered to the patient.
  • a locking member 404 that is carried by housing 102 in the manner shown in Figure 56 of the drawings must be pushed inwardly in order to permit rotation of the reduced diameter portion 390a of the bolus selector housing
  • second operating shaft 387 is provided with a rotational stop 387a that engages a stop wall 410 provided on the main operating shaft 390 (see Figures 64 through 67).
  • a coiled spring 412 carried a spring shelf 414 ( Figures 66, 67 and 69) will resist the rotation and will be compressed in the manner in Figure 70.
  • the secondary operating shaft 387 can be pushed inwardly in the manner illustrated in Figure 61. This inward movement of the second operating shaft will collapse bellows portion 360b causing the fluid contained there within (in this instance 2.5ml) to be delivered to the patient via outlet passageway 374.
  • spring 412 when the rotational forces exerted on cap 399 cease, spring 412 will urge the cap to return to its starting position and at the same time, spring 400 will urge shaft 387 into its starting position, thereby permitting a repeated application of a smaller bolus dose of medicament to the patient as may be required.

Abstract

A compact, nonelectric fluid dispenser for use in controllably dispensing beneficial agents such as propofol and dexmedetomidine hydrochloride to patients. The dispenser includes a fluid flow control assembly that precisely controls the flow of the medicament solution to the patient and embodies a collapsible drug container that can be filled in the field with the beneficial agents to be delivered to the patient. The unit-dose fluid dispenser of the invention is presented in a sterile and aseptic manner, where the drug has been pre-filled in the system, so that the practitioner cannot mistakenly give the wrong drug to the patient. The dispenser uniquely provides a more efficient medicament delivery system for procedure rooms, such as the endoscopy center, so that a greater number of patients can be treated per day at a higher standard of care with increased profits for the healthcare provider.

Description

SPECIAL PURPOSE FLUID DISPENSER
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to fluid dispensing devices. More particularly, the invention concerns a novel dispenser for dispensing propofol, as well as analogous sedation agents, to patients with increased safety and efficiency while reducing the probability of hospital acquired infections.
2. Background Art
A number of different types of medicament dispensers for dispensing various types of medicaments to patients have been suggested in the past. The traditional prior art infusion methods make use of a flexible infusion bag suspended above the patient. Such gravametric methods are cumbersome, imprecise, require many time consuming steps by clinicians, are susceptible to medication errors and require bed confinement of the patient. Periodic monitoring of the apparatus by the nurse or doctor is required to detect malfunctions of the infusion apparatus. Accordingly, the prior art devices are not well suited for use in those instances where the patient must be transported from one part of the healthcare facility to another.
Many of the state-of-the-art medicament delivery devices involve the use of electronic pumps to dispense the medicament from the dispenser reservoir. In the past, these types of devices have been the devices of choice for dispensing propofol (and other injectable sedation agents) and this equipment requires significant effort to prepare and administer the drug.
Propofol is a highly protein bound in vivo and is metabolised by conjugation in the liver. Its rate of clearance exceeds hepatic blood flow, suggesting an extrahepatic site of elimination as well. Its mechanism of action is uncertain, but it is postulated that its primary effect may be potentiation of the GABA - a receptor, possibly by slowing the closing channel time. Recent research has also suggested the endocannabinoid system may contribute significantly to Propofol's anesthetic action and to its unique properties.
In recent years propofol has been widely used as an anesthetic agent for the induction of general anesthesia in adult patients and pediatric patients older than
3 years of age, for use in the maintenance of general anesthesia in adult patients and pediatric patients older than 2 months of age, for use in sedation for intubated, mechanically ventilated adults, and in procedures such as colonoscopy.
At the present time, propofol is commonly delivered through an electronic pump that is preset with the patient's weight (in kg) and a dosage increment measured in micrograms/kg/min. One prior art electronic pump that is presently in use is a pump sold by Baxter International, Inc, of Deerfield, Illinois under the name and style "InfusO.R.". This pump contains four separate dials. The first dial is to set the patient weight; the second dial is to set the dosage; the third dial is to set a bolus volume to initiate sedation; and the fourth dial is used to purge the syringe if there is any remaining propofol after the procedure. The Baxter pump has a magnetic plate that contains all the increments of the dials and the plates can be changed for different medications. By having removable plates, there is an increased possibility of medication error if the magnetic plate is not checked for increments for the correct medication or the correct concentration. The Baxter pump is typically used in the surgicenter setting where the anesthesiologist gives the patient an initial bolus of propofol for inducing sedation and the preset dosage is given in addition to gas anesthesia to keep the patient asleep during the operation.
Another pump that is presently in use is a pump sold by the Cardinal Health Company of Dublin, Ohio under the name and style "ALARIS PL". The
ALARIS PL syringe pump or ALARIS IVAC pump is used in conjunction with a
Diprifusor syringe that is pre-filled with propofol. The Diprifusor is a target controlled infusion (TCI) system that was developed to enhance the control of IV anesthesia. With a TCI pump, a microprocessor manages the infusion rate and controls the syringe. The anesthesiologist enters the body weight of the patient, the age of the patient, and the dosage in microgram/ml. The Alaris pumps rely on the anesthesiologist entering the correct data minimizing the possibility of medication error but the dosage form is not the commonly used increment, (microgram/ml instead of microgram/kg/min) which relies on the anesthesiologist to convert the dosage and potentially increases the risk of medication error through miscalculation. The Diprifusor and TCI pumps are typically used in Europe where the pump is used to control sedation and anesthesia, but are thus far not dominant in the American surgical market.
As will be discussed in greater detail hereinafter, the propofol dispenser of the present invention allows the anesthesiologist to create a basic "recipe" for propofol based sedation that could prevent patient complications. The dispenser of the present invention is particularly well-suited for use in the administration of propofol by non-anesthesiologists in low risk procedures, such as colonoscopies.
Another pharmaceutical agent appropriate for use in this novel dispenser technology is dexmedetomidine hydrochloride (Precedex), and related compounds. Precedex is indicated for sedation of initially intubated and mechanically ventilated patients during treatment in an intensive care setting. Precedex is typically administered by continuous infusion using a syringe of the drug fluid (drawn up in a non-aseptic environment by the anesthesiologist) and dispensed by an electronic pump. Precedex is being used with patients in the intensive care unit (ICU), during neurosurgery and for children during MRI.
Precedex is delivered via intravenous infusion over a selected amount of time through a controlled infusion with the use of an electronic or battery operated pump or with a "smart pump". A pre-fϊlled and non-electric pump that is therapy specific could allow more widespread use of novel sedation agents (such as Precedex), because of the ability to administer the therapy in a safer and more efficient manner without the need for multiple steps and sophisticated software routines.
The novel dispenser of the present invention provides numerous advantages over prior art devices including the following: Creation of a standard operating procedure for the administration of propofol by anesthesiologists and non-anesthesiologists alike.
Elimination of the need for filling syringes, thereby reducing the potential for medication errors due to filling (i.e. using the wrong concentration of propofol) or use of a drug that is similar in appearance to propofol.
Elimination of the need for an electronic pump, thereby reducing the potential for medication error due to incorrect settings.
Reducing costs to healthcare providers and practitioners by eliminating expensive electronic capital equipment that requires continuous maintenance, calibration and cleaning.
Elimination of the requirement for electricity in austere or chaotic environments (e.g. during military engagements, natural disasters).
Presentation of the sedation agent at the point of care in an aseptic manner (via the field fill design where the dispenser is filled at time of use by engagement of the drug and device through a polarized sterile coupling), should also minimize the probability of hospital acquired infection.
As previously mentioned, a significant market for the small volume dispenser of the present invention is the endoscopy center market. In this regard, one form of the dispenser of the present invention is specially designed for relatively short procedures (i.e. 20-30 minutes), such as colonoscopies and endoscopies. More particularly, the dispenser of the invention, which is non-electric and disposable following use, can provide an extremely cost effective means of increasing efficiency in the endoscopy center. The dispenser uniquely provides an alternative to expensive electronic pumps that are often complicated and time consuming to operate. In addition, low cost disposable devices for use in outpatient clinics are consistent with a broader theme in healthcare that is aimed at lowering costs while improving quality of care and patient outcomes. Because physicians in the endoscopy center are searching for a cost effective means to increase patient throughput within the center, the dispenser of the present invention provides a natural fit for a standardized sedation process for colonoscopies and endoscopies, without compromising the quality and safety of the procedure. In another form of the present invention, the dispenser comprises a mid- volume propofol delivery systems technology (65 ml) that is specially designed for use in the surgicenter for procedures that require sedation times of 1-2 hours. In this application a novel dispenser can serve as a safe and effective means for patients that are to be fitted with orthopedic and cardiac implants. Similarly, this novel mid-volume dispenser can function well with minimum discomfort for general surgeries such as hernia repairs and the like. Because physicians in the surgicenter market are often quite time conscious, the dispenser of the present invention comprises a natural fit for a standardized sedation process that could potentially increase patient throughput within the market without compromising the quality and safety of the procedure. Additionally, patients prefer propofol as an anesthetic agent because there is no "hangover" effect, which stems from its ease of titration and rapid elimination half-life. By way of comparison, traditional anesthesia with gas has a very slow elimination half-life and patients require long recovery times that are typically complicated by nausea and vomiting. Conversely, propofol has inherent antiemetic properties, which chemically combats feelings of nausea.
In yet another form of the present invention, the dispenser comprises a large volume propofol dispenser (250 ml) that is specially designed for use in military applications, including total IV anesthesia (TIVA) by the Forward Surgical Team at the battlefield, as well as for sedation of the patient during transport from one echelon of care to the next. This form of the invention can provide a safe and effective means to sedate a patient during an operation and throughout transport without relying on bulky medical equipment or expensive equipment that is transported with the patient and never returned to the original care facility.
As will be fully appreciated from the discussion that follows, the devices of the present invention are also particularly useful in ambulatory situations.
The ability to quickly and efficaciously treat wounded soldiers, especially in unpredictable or remote care settings, can significantly improve chances for patient survival and recovery. Accurate intravenous (IV) drug and fluid delivery technologies for controlling pain, preventing infection, and providing a means for IV access for rapid infusions during patient transport are needed to treat almost all serious injuries. It is imperative that battlefield medics begin administering life saving medications as soon as possible after a casualty occurs. The continuous maintenance of these treatments is vital until higher echelon medical facilities can be reached. A compact, portable and ready to use infusion device that could be easily brought into the battlefield would allow medics to begin drug and resuscitation agent infusions immediately. Additionally, it would free them to attend to other seriously wounded patients who may require more hands-on care in the trauma environment following triage. In most serious trauma situations on the battlefield, IV drug delivery is required to treat fluid resuscitation, as well as both pain and infection. Drug infusion devices currently available can impede administration of IV infusions in remote care settings.
Expensive electronic infusion pumps are not a practical field solution because of their weight and cumbersome size. Moreover, today's procedures for starting IV infusions on the battlefield are often dangerous because the attending medic must complete several time consuming steps. The labor intensive nature of current gravity solution bag modalities can prevent medics from attending to other patients also suffering from life threatening injuries. In some cases, patients themselves have been forced to hold flexible infusion bags elevated, in order to receive the medication by gravity drip.
SUMMARY OF THE INVENTION
By way of brief summary, one form of the dispensing device of the present invention for dispensing the beneficial agent, such as propofol, to a patient comprises a housing, a carriage assembly disposed within the housing, a reservoir defining assembly carried by the carriage, a stored energy means operably associated with the carriage for moving the carriage between a first position and a second position to expel from the reservoir the fluid medicament contained therein, and flow control means to control the flow of fluid from the reservoir, the flow control means uniquely comprising dose control means for controlling the dose of medicament to be delivered to the patient and rate control means for controlling the rate of medicament flow to the patient. This novel design would therefore allow the physician to set a medicament flow rate based on the patient's body weight in kg and the patient appropriate dose in micrograms per kg per hour.
With the forgoing in mind, it is an object of the present invention to provide a compact, nonelectric fluid dispenser for use in controllably dispensing propofol to patients.
Another object of the invention is to provide a fluid dispenser of simple construction that can be used in the field with a minimum amount of training.
Another object of the invention is to allow infusion therapy to be initiated quickly and easily on the battlefield so that the attending medic or medical professional can more efficiently deal with triage situations in austere environments.
Another object of the invention is to provide a dispenser of the class described which includes a fluid flow control assembly that precisely controls the flow of the medicament solution to the patient.
Another object of the invention is to provide a dispenser that includes precise variable flow rate selection.
Another object of the invention is to provide a fluid dispenser of simple construction, which embodies a collapsible drug container that can be selectively filled with the beneficial agent at the point of care.
Another object of the invention is to provide a fluid dispenser of the class described which is compact, lightweight, is easy and safe for providers to use, is fully disposable, transportable, and is extremely reliable in operation.
Another object of the invention is to provide a fluid dispenser of the class described that is presented in a sterile and aseptic manner where drug filling is conducted at the point of care; so as to minimize the probability of hospital acquired infections and medication errors. Another object of the invention is to provide a medicament dispenser that improves the process efficiency of the healthcare setting by streamlining the tasks associated with the preparation, administration and monitoring of drug delivery of regimen.
Another object of the invention is to provide a low cost single-use alternative to expensive electronic pumps that have to be continually cleaned, calibrated and maintained at tremendous costs to healthcare providers.
Another object of the invention is to provide a dispenser that can administer anesthesia and sedation agents to patients without problematic side effects, such as nausea and vomiting, typically encountered with traditional gas anesthesia.
Another object of the invention is to provide a more efficient medicament delivery system for procedure rooms, such as the endoscopy center, so that a greater number of patients can be treated per day at higher standard of care with increased profits for the healthcare provider.
Another object of the invention is to provide a fluid dispenser as described in the preceding paragraphs that is easy and inexpensive to manufacture in large quantities.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a generally perspective front top view of one form of the fluid dispensing device of the present invention for dispensing medicaments to a patient.
FIGURE 2 is a generally perspective rear bottom view of the fluid dispensing device shown in Figure 1.
FIGURE 3 is a top plan view of the fluid dispensing device shown in Figure 1. FIGURE 4 is a side view of the fluid dispensing device shown in Figure 3.
FIGURES 5 and 5A, when considered together, comprise an enlarged cross-sectional view of the fluid dispensing device shown in Figure 4 of the drawings.
FIGURE 6 is an enlarged, top plan view, partly in cross-section, of the central portion of the fluid dispensing device shown in Figure 1.
FIGURE 7 is a cross-sectional view taken along lines 7-7 of Figure 6.
FIGURE 7 A is a top plan view of the fluid pickup plates of the bolus delivery subassembly of the apparatus.
FIGURE 7B is a cross-sectional view taken along lines 7B-7B of
Figure 7A.
FIGURE 8 is a cross-sectional view taken along lines 8-8 of Figure 7.
FIGURE 9 is a cross-sectional view taken along lines 9-9 of Figure 7.
FIGURE 10 is a cross-sectional view taken along lines 10-10 of Figure 7.
FIGURE 11 is a cross-sectional view taken along lines 11-11 of Figure 7.
FIGURE 12 is a top plan view of the patient weight selector knob and the patient dose selector knob components of the fluid dispensing device.
FIGURE 13 is a cross-sectional view taken along lines 13-13 of
Figure 12. FIGURE 14 is a cross-sectional view taken along lines 14-14 of Figure 12.
FIGURE 15 is an enlarged front view of the main body portion of the dispensing apparatus shown in Figure 1.
FIGURE 16 is an enlarged cross-sectional view taken along lines 16-16 of Figure 15.
FIGURE 17 is an enlarged cross-sectional view taken along lines 17-17 of Figure 15.
FIGURE 18 is an enlarged cross-sectional view of the rearward portion of the fluid dispensing device shown in Figure 1, further illustrating construction of the field filled reservoir portion of the device.
FIGURE 19 is a cross-sectional view taken along lines 19-19 of Figure 18.
FIGURE 19A is a generally perspective, diagrammatic view illustrating the path of fluid flow through the device during the reservoir filling step.
FIGURE 20 is an enlarged top plan view of the patient weight selector subassembly of the fluid dispensing device.
FIGURE 21 is a cross-sectional view taken along lines 21-21 of Figure 20.
FIGURE 22 is an enlarged, generally perspective exploded view of the patient weight selector subassembly of the fluid dispensing device. FIGURE 23 is a bottom plan view of the upper rate control plate of the patient weight selector subassembly illustrated in Figure 22 and showing in phantom lines the main fluid pickup housing of the device.
FIGURE 24 is a cross-sectional view taken along lines 24-24 of Figure 23 showing the main fluid pickup housing device in greater detail.
FIGURE 25 is a fragmentary view taken along lines 25-25 of Figure 24 showing only one half of the main fluid pickup housing and illustrating the construction of the anti-rotational grooves thereof.
FIGURE 26 is a cross-sectional view taken along lines 26-26 of Figure 23.
FIGURE 27 is a generally diagrammatic view illustrating the main fluid pickup housing of the device shown in the upper portion of Figure 24 as it would appear in flat configuration.
FIGURE 28 is a top plan view of the fluid connector boss of the fluid delivery device illustrated in Figure 22.
FIGURE 29 is a side elevation view of the fluid connector boss shown in Figure 28 illustrating the configuration of the fluid micro pickup of the connector boss.
FIGURE 30 is a cross sectional view taken along lines 30-30 of Figure 28.
FIGURE 31 is a top plan view of the upper rate control plate of the patient weight selector subassembly illustrated in Figure 22.
FIGURE 32 is a cross-sectional view taken along lines 32-32 of Figure 31. FIGURE 33 is a cross-sectional view taken along lines 33-33 of Figure 31.
FIGURE 34 is a view taken along lines 34-34 of Figure 31.
FIGURE 35 is a cross-sectional view taken along lines 35-35 of Figure 31.
FIGURE 36 is a top plan view of the rate control plate of the fluid delivery device illustrated in Figure 22.
FIGURE 37 is a cross-sectional view taken along lines 37-37 of Figure 36.
FIGURE 38 is a view taken along lines 38-38 of Figure 36.
FIGURE 39 is a cross-sectional view taken along lines 39-39 of Figure 36.
FIGURE 40 is a top plan view of the bottom rate control plate of the fluid delivery device illustrated in Figure 22.
FIGURE 41 is a side elevation view of the rate control assembly retaining cover of the fluid delivery device.
FIGURE 42 is a cross-sectional view taken along lines 42-42 of Figure 41.
FIGURE 43 is a cross-sectional view taken along lines 43-43 of Figure 41.
FIGURE 44 is a view taken along lines 44-44 of Figure 41. FIGURE 45 is a view taken along lines 45-45 of Figure 41.
FIGURE 46 is a top plan view of the patient weight selector knob of the patient weight selector subassembly of the fluid delivery device.
FIGURE 47 is a cross-sectional view taken along lines 47-47 of Figure 46.
FIGURE 47A is a generally diagrammatic view illustrating the portion of the patient weight selector knob shown in the lower portion of Figure 47 as it would appear in flat configuration.
FIGURE 48 is a cross-sectional view taken along lines 48-48 of Figure 47.
FIGURE 49 is a view taken along lines 49-49 of Figure 47.
FIGURE 49A is a view taken along lines 49A-49A of Figure 49.
FIGURE 50 is a top plan view of the patient dose selector knob of the patient dose selector subassembly of the fluid delivery device.
FIGURE 51 is a view partly in cross-section taken along lines 51-51 of Figure 50.
FIGURE 52 is a view taken along lines 52-52 of Figure 51.
FIGURE 53 is a generally diagrammatic view illustrating the portion of the patient dose selector knob shown in the lower portion of Figure 51 as it would appear in flat configuration.
FIGURE 54 is an end view of the fluid delivery device shown in Figure 1. FIGURE 55 is a cross-sectional view taken along lines 55-55 of Figure 54 illustrating the construction of the bolus operating mechanism of the fluid delivery device.
FIGURE 56 is a fragmentary cross-sectional view illustrating the construction of the bolus interlock mechanism of the fluid delivery device.
FIGURE 57 is a generally perspective, exploded view of the bolus operating mechanism.
FIGURE 58 is a top plan view of the bolus reservoir of the apparatus.
FIGURE 59 is a cross-sectional view taken along lines 59-59 of Figure 58.
FIGURE 60 is a view taken along lines 60-60 of Figure 59.
FIGURE 61 is a top plan view of the bolus selector subassembly of the apparatus.
FIGURE 62 is a cross-sectional view taken along lines 62-62 of Figure 61 illustrating the construction of the main bolus and secondary plunger assembly portion of the bolus operating mechanism.
FIGURE 63 is a view taken along lines 63-63 of Figure 62.
FIGURE 64 is a top view of the main reservoir operating shaft.
FIGURE 65 is a cross-sectional view taken along lines 65-65 of Figure 64.
FIGURE 66 is a cross-sectional view taken along lines 66-66 of Figure 64. FIGURE 67 is a cross-sectional view taken along lines 67-67 of Figure 64.
FIGURE 68 is a cross-sectional view taken along lines 68-68 of Figure 62.
FIGURE 69 is a cross-sectional view taken along lines 69-69 of
Figure 68.
FIGURE 70 is a cross-sectional view similar to Figure 68, but showing the operating spring of the bolus plunger assembly in a compressed condition.
FIGURE 71 is a cross-sectional view taken along lines 71-71 of Figure 68.
FIGURE 72 is a cross-sectional view taken along lines 72-72 of Figure 68.
FIGURE 73 is a top view of the secondary reservoir operating shaft of the bolus plunger assembly.
FIGURE 74 is a cross-sectional view taken along lines 74-74 of
Figure 73.
FIGURE 75 is a view taken along lines 75-75 of Figure 74.
FIGURE 76 is a view taken along lines 76-76 of Figure 74.
FIGURES 77, 78 and 79 are generally perspective views of the bolus operating mechanism of the invention illustrating the sequential steps to be followed in operating the mechanism to accomplish the delivery to the patient of bolus doses. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
Referring to the drawings and particularly to Figures 1 through 5, one form of the fluid dispensing apparatus of the present invention for dispensing medicaments such as propofol to a patient is there shown and generally designated by the numeral 100. The dispensing apparatus here comprises a device housing 102 having a forward portion 104, a rear portion 106 and a central portion 107. Device housing 102 can be constructed from metal, plastic or any suitable material.
Disposed within the rear portion 106 of device housing 102 is a "carriage" assembly 108 that is movable between a first rearward position shown in Figure 5 and a second advanced position. As best seen by referring to Figures 5, 18 and 19, carriage assembly 108 comprises a carriage 110 having a carriage flange 112 to which the novel stored energy means of the present invention is operably interconnected. Carriage assembly 108 is releasably locked in its first position by a novel locking means the character of which will be described in the paragraphs which follow.
Carried by carriage assembly 108 is a reservoir defining assembly 114 that defines a fluid medicament reservoir 115. As illustrated in Figure 5, reservoir defining assembly 114 includes a front portion 114a, a rear portion 114b and an accordion-like, collapsible side wall 114c that interconnects the front and rear portion of the assembly. As illustrated in the drawings, the accordion like side wall 114c comprises a multiplicity of adjacent generally "V" shaped interconnected folds. Rear portion 114b of the assembly includes a protuberance 116 that includes a rear wall 116a. As best seen in Figure 5, cup-shaped protuberance 116 is closely receivable within a cavity 120 formed in carriage 110. Reservoir assembly 115 also includes a forward neck portion 122.
Reservoir 115 has an outlet 124 (see Figure 5) that is formed in a fluid transfer block 128 that forms a part of the rear portion 106 of housing 102. As illustrated in Figure 5 of the drawings, fluid transfer block 128 includes a reduced diameter portion 128a to which the front portion 114a of the reservoir defining assembly is sealably interconnected. Fluid transfer block 128 also includes a fluid fill passageway 130 and a vent passageway 132 (Figure 6). Fluid fill passageway 130 is in communication with a sterile coupling assembly 134 that as best seen in Figure 6 of the drawings is mounted within a cavity 136 formed in fluid transfer block 128. Fluid fill passageway 130 as well as sterile coupling assembly 134 form a part of the fill means of the invention for filling fluid reservoir 115 with the fluid to be dispensed to the patient. In the present form of the invention sterile coupling assembly 134 comprises a body portion 138 that houses a pierceable slit septum 140 and a conventional, umbrella check valve 142. Umbrella check valve 142, which is housed within a cavity 144 that is in communication with fill passageway 130, functions to permit fluid flow in a direction toward fluid reservoir 115, but blocks fluid flow in the opposite direction. With this construction, fluid reservoir 115 can be conveniently filled with propofol or other sedation agents in a conventional manner through the use of a conventional syringe "S", such is that shown in Figure 19A of the drawings having either a sharp, or blunt end needle that is capable of piercing septum 140.
To move carriage assembly 108 from its first at rest position to its second advanced position and to thereby controllably expel the fluid from the fluid reservoir 115, stored energy means are provided. This stored energy means, which is operably associated with carriage assembly 108, is here provided in the form of a coil spring 148 that is movable from the first compressed position shown in Figure 5 to a second extended position, which causes the carriage assembly to move toward its second advanced position and in so doing to cause the collapse of the accordion side wall of the reservoir defining assembly. As the accordion side wall of the reservoir defining assembly collapses, the fluid "F" contained within the fluid reservoir 115 will be controllably expelled from the reservoir through the fluid outlet 122. As the fluid is expelled from a fluid reservoir, any gases contained within the fluid reservoir will be vented to atmosphere, via passageway 132, through a vent port 146 that is carried by fluid transfer block 128 (Figure 6).
To control the flow of fluid from reservoir 115 toward the administration set 153 of the invention (Figure 2) and then on to the patient, novel fluid flow control means are provided. The fluid flow control means, which is carried by the central portion 107 of housing 102, here comprises dose control means for controlling the dose of medicament to be delivered to the patient and rate control means for controlling the rate of medicament flow from collapsible reservoir 115 toward the dose control means.
Considering first the rate control means component of the fluid flow control means, as best seen in Figures 5, 1, 9 and 20 through 49, this novel means here comprises a flow rate control assembly 156 (Figures 7 and 9) for controlling the rate of fluid flow toward the dose control means. Flow rate control assembly 156 includes a first, or lower rate control plate 158 and a second, or upper, rate control plate 160 (Figures 7, 9, 36 and 40). As best seen in Figure 40, bottom side of rate control plate 160 is uniquely provided with a plurality of fluidic micro-channels identified in the drawings as 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194 and 196. Each of the fluidic micro-channels is also provided with an outlet 162a, 164a, 166a, 168a, 170a, 172a, 174a, 176a, 178a, 180a, 182a, 184a, 186a, 188a, 190a, 192a, 194a and 196a, respectively.
As best seen in Figure 36, upper side of rate control plate 160 is also uniquely provided with a plurality of fluidic micro-channels of different lengths that are identified in the drawings as 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234 and 236. Each of the fluidic micro-channels is also provided with an outlet 202a, 204a, 206a, 208a, 210a, 212a, 214a, 216a, 218a, 220a, 222a, 224a, 226a, 228a, 230a, 232a, 234a and 236a, respectively. Upper control plate 160 is also provided with inlet ports 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282 and 284 that communicate with the outlet ports 162a through 196a of lower side of control plate 160.
As best seen in Figure 22, the inlet ports of the upper control plate as well as the outlet ports thereof communicate with a multiplicity of spaced apart fluid ports 290 formed in rate control distribution plate 292. From fluid ports 290, the fluid flows toward the novel fluid pickup housing 294 of the invention. As illustrated in Figures 23 and 24, fluid pickup housing 294 includes a base 294a and tower portion 294b that is provided with a multiplicity of circumferentially spaced apart generally vertically extending fluid passageways 296 of varying lengths.
With the construction described in the preceding paragraphs, fluid flowing from the fluid reservoir will fill fluidic micro channels 162 through 196 as well as fluidic micro channels 202 through 236 via an inlet port 297 carried by rate control distribution plate 292 (see Figures 19A, 21 and 22). Fluid flowing through the outlet ports of these fluidic micro-channels will flow into spaced apart fluid ports 290 formed in rate control distribution plate 292. From fluid ports 290, the fluid will flow into and fill the circumferentially spaced apart, generally vertically extending fluid passageways 296 of fluid pickup housing 294 (Figures 23, 24, 25 and 26). Referring to Figure 27, which is a depiction of the outer surface of fluid pickup housing 294 when viewed in a planar configuration, it is to be noted that fluid passageways 296 are arranged in six spaced part groups of passageways 298, 300, 302, 304, 306 and 308 respectively. Each group of passageways is made up of six spaced apart passageways of a different length, each passageway having an outlet located at a different height with respect to base 294a of the fluid pick-up housing (Figure 24). From a selected one of the six groups of fluid passageways 296, the fluid will flow into a group of six vertically and circumferentially spaced apart inlets 310 (Figures 49 and 49A) formed in the skirt portion 312a of a patient weight selector knob 312 (see also Figure 22, which is a depiction of the outer surface of the skirt portion when viewed in a planar configuration). For a purpose presently to be described, the skirt portion 312a of patient weight selector knob 312 is also provided with six circumferentially spaced apart outlet groups 314, each group having six vertically spaced apart outlet ports 316.
From inlets 310, the fluid will flow into a plurality of vertically spaced apart, circumferentially extending fluid passageways 320 formed in a fluid pickup housing 322 (Figures 7, 28, 29 and 30) that is housed interiorly of the downwardly depending skirt 312a of the patient weight selector knob 312 (see Figures 7, 20, 21 and 22), retaining tabs 325 that are disposed to interiorly of skirt 312a (Figure 47) properly and retain fluid pickup housing 322 within skirt 312a.
With the construction described in the preceding paragraphs, fluid flowing from the fluid reservoir will fill fluidic micro channels 162 through 196 (Figure 40) as well as fluidic micro channels 202 through 236 (Figure 36), will fill the fluid passageways 296 of fluid pickup housing 294 (Figure 24) and will fill the circumferentially extending fluid passageways 320 formed in a fluid pickup housing 322 (Figure 22). From fluid passageways 320 the fluid will flow into the vertically spaced apart outlet passageways 316 formed in patient weight selector knob 312 (Figure 7).
When the patient weight selector knob 312 is rotated into the position shown in Figure 7, fluid will flow from outlet ports 316 into the six vertically spaced apart, transversely extending fluid passageways 330 formed in fluid pickup housing 294. As will presently be described, fluid passageways 330 communicate with the dose control means of the invention which, as previously mentioned, functions to control the dose of medicament to be delivered to the patient.
With the patient weight selector knob 312 in position (Figure 47) wherein inlets 310 (Figure 49A) align with one of the groups 298 through 308 (Figure 27) of fluid passageways 296, fluid will flow from the fluid reservoir through inlet 297 (Figure 22) into the fluidic micro-channels of different lengths formed in upper and lower surfaces of lower rate control plate 160 (Figures 36 and 40), into vertically extending fluid passageways 296 of fluid pickup housing 294 (Figure 24), into inlets 310 (Figure 22), into passageways 320 formed in the fluid pickup assembly 322, into passageways 316 of the patient weight selector knob 312, into passageways 330 of the fluid pickup assembly 294 and finally into passageways 332 of body portion 334a of the dose control assembly 334 (see also Figure 53A). It is apparent that the rate of fluid flow toward the dose control means depends upon the configuration of the rate control passageways formed in the rate control plate 160 that are in communication with inlets 310 via vertically extending fluid passageways 296. By way of example, assume that the patient weight selector knob 312 is rotated into a position wherein inlets 310a, 310b, 31 Oc, 31 Od, 31 Oe and 31 Of (Figure 47A) align with the passageways 296a, 296b, 296c, 296d, 296e and 296f of group 298 (Figure 27). Assume further, that the six passageways 296a, 296b, 296c, 296d, 296e and 296f are in communication with fluid passageways 162, 164, 166, 168, 170 and 172 respectively of rate control plane 160 (Figure 40). In this situation, fluid will flow from fluid passageway 162 into passageway 296a, then into passageway 310a and finally into the lower most circumferentially extending passageway 320a formed in the fluid pickup assembly 322 (Figure 7). Similarly, in this situation, fluid will flow from fluid passageway 164 into passageway 296b, then into passageway 310b and finally into circumferentially extending passageway 320b formed in the fluid pickup assembly 322 (Figure 7). The fluid will flow in a similar manner from passageways 166, 168, 170 and 172 into the remaining circumferentially extending passageway 320 formed in the fluid pickup assembly 322
As illustrated in Figures 12 and 13 of the drawings, rate control indexing means are provided to position the locking knob 312 in a selected rotational position. In the present form of the invention, this rate control indexing means comprises a locking plunger 333 that is received within a bore 104a formed in the forward portion 104 of housing 102. Locking plunger 333 is continuously biased outwardly, by a coiled spring 335 into locking engagement, with a selected one of a plurality of circumferentially spaced apart cutouts 312c formed in the flange portion
312b of the locking knob assembly 312. With this construction, in order to rotate the locking knob from the selected rotational position, the locking plunger 333 must be manually pushed inwardly against the urging of spring 335.
Turning now particularly to Figures 7 and 50 through 53, rotatably mounted within body portion 334a of the dose control assembly 334 is the patient dose selector knob 338, formed within a body portion 338a of the dose selector knob vertically spaced-apart radially outwardly extending fluid passageways 340, 342, 344,
346, 348 and 350. By rotating the dose selector knob within body portion 334a, the radially outwardly extending fluid passageways can be selectively brought in to communication with the passageways 332 that are, in turn, in communication with the circumferentially extending passageway 320 formed in the fluid pickup assembly 322 of the rate control means of the invention. By way of example, in Figure 7 of the drawings radially outwardly extending fluid passageway 340 is shown in communication with the uppermost passageway 332 of the dose control means. As illustrated in Figure 51 , each of the radially outwardly extending fluid passageways is in communication with an axially extending passageway 352 that is, in turn, in communication with the bolus operating mechanism of the invention, the character of which will presently be described.
By way of example, further rotation of the dose selector knob within body portion 334a can bring radially outwardly extending fluid passageway 350 into communication with circumferentially extending passageway 320a of fluid pickup assembly 322 via the lower-most passageway 332. In this situation, it can be seen that fluid passageway 350 is in communication with fluid passageway 162 of lower surface of rate control plate 160 via the lower most passageway 332, the lower most passageway 330, the lower most passageway 316, circumferentially extending passageway 320a and passageway 296a. Similarly, in this example, by controlled rotation of the dose selector knob, each of the fluid passageways formed in the dose selector knob can be brought into communication with a selected one of the passageways 164 through 172 formed in the rate control plate 160. In this way the rate of fluid flow toward the patient of the medicinal fluid contained within the device reservoir can be closely controlled.
As illustrated in Figure 12 and 14 of the drawings, dose control indexing means are provided to lock the patient dose selector knob 338 in any selected position. In the present form of the invention this dose control indexing means comprises a locking plunger 353 that is received within a bore 104b formed in the forward portion 104 of housing 102. Locking plunger 353 is continuously biased outwardly by a coiled spring 355 into locking engagement with a selected one of a plurality of circumferentially spaced apart cutouts 338c formed in the flange portion 338b of the patient dose selector knob assembly 338. With this construction, in order to rotate the patient dose selector knob 338 from a selected position the locking plunger 353 must be manually pushed inwardly against the urging of spring 355.
Considering further the bolus delivery means of the invention, this novel means, which is housed within forward portion 104 of housing 102, includes a double bolus reservoir 360 that is disposed within a cavity 359 formed in forward portion 104 of housing 102. The double bolus reservoir 360 is defined by interconnected, collapsible bellows structures 360a and 360b that are in communication with passageway 352 of the dose control means via a longitudinally extending passageway 362, a vertical stab passageway 364, a conventional umbrella check valve 366, a vertical stub passageway 368 and a longitudinal passageway 370 (see Figures 5 and 53A). Umbrella check valve 366, which is carried with an internal housing 372, functions to permit fluid flow toward reservoir 360, but blocks fluid flow in the opposite direction. Reservoir 360 is in fluid communication with the administration set 153 (Figure 2) via passageway 374, a second conventional umbrella check valve 376, a vertical passageway 378 and longitudinally extending passageway 380. With this construction, low flow from the dose control means any selected dose, to bolus reservoir 360 and then on to the patient via the administration set 153.
Referring particularly to Figures 5 A, 53 A and 57 - 61, the important bolus operating mechanism of the invention is there shown and generally designated by the numeral 384. This mechanism permits selected bolus doses of medicaments to be delivered to the patient from reservoir 360 as may be required. As best seen in Figures 55 and 57 of the drawings, this novel mechanism here comprises a first, or main operating shaft 386 for controllably collapsing the bellows structure 360a and a second operating shaft 387 (Figures 61, 62, 73, and 74) for controllably collapsing the bellows structure 360b (see Figure 59). By way of non limiting example, bellows structure 360a can have a first volume of between approximately 3 ml and approximately 6.0 ml while bellows structure 360b can have a second, lesser volume of approximately 0.5 ml and approximately 2.0 ml. Main operating shaft 386 controllably collapses bellows structure 360a by pushing inwardly on the shaft against the urging of a coiled operating spring 388 that circumscribes bellows structure 360a. In the manner illustrated in Figure 55, main operating shaft 386 is movable within the reduced diameter portion 390a of the bolus selector housing 390 that is carried within the forward portion 104 of housing 102. Following rotation of the bolus selector in a manner presently to be described, the main operating shaft can be moved inwardly against the urging of coiled operating spring 388 from an extended to an inward position. Inward movement of the main operating shaft causes inward movement of a pusher member 394 which, in turn, causes the collapse of the bellows portion 360a. It is to be noted that pusher member 394 is provided with a yieldably deformable locking tab 394a (see also Figure 62) that is adapted to engage a plurality of generally saw-toothed shaped protuberances 396 that are formed on the inner wall of cavity 359. Locking tab 394a is so constructed and arranged as to ride over protuberances 396 as the main operating shaft is pushed inwardly of cavity 359. However, the saw-toothed protuberances 396 are configured so that the locking tab will engage the vertical faces 396a of the protuberances in a manner to prevent movement of the pusher member in a direction toward its starting position (Figure 55). With this construction, once the reservoir bellows portion 360a is collapsed, it will remain in a collapsed configuration.
Following rotation of the operating knob 399 of the bolus operating mechanism 384 in a manner presently to be described, second operating shaft 387 can be moved inwardly within a bore 386a provided in main operating shaft 386 against the urging of a second coil spring 400. Second operating shaft 387 operates against bellows portion 360b in a manner to collapse the bellows portion as the second operating shaft is urged inwardly against the urging of spring 400. As the bellows portion 360b collapses, medicinal fluid contained there within will be urged outwardly of the reservoir via outlet passageway 378. However, upon the release of inward pressure exerted against second operating shaft 387, spring 400 will urge the operating shaft into its original starting position so that subsequent smaller bolus doses of medicament can be delivered to the patient.
Turning now to Figures 59, 60 and 61, in delivering bolus doses of medicament to the patient, a locking member 404 that is carried by housing 102 in the manner shown in Figure 56 of the drawings must be pushed inwardly in order to permit rotation of the reduced diameter portion 390a of the bolus selector housing
390. As indicated in Figure 56, inward movement of the locking member causes the locking shoulder 404a to move out of locking engagement with a cavity 390c formed in the enlarged diameter portion 390b of the bolus selector housing 390 so as to permit rotation of the bolus selector housing 390. With the locking member pushed inwardly, the bolus selector housing 390 can be rotated from the "off" position shown in Figure
59 of drawings to the "5.0 ml" position. This done, the main operating shaft can be pushed inwardly causing plunger 394 to collapse bellows 360a, resulting in the delivery of a bolus dose of a predetermined volume of medicament to the patient (in this case 5.0 ml). As previously mentioned, once the main operating shaft is pushed inwardly, it will be locked in position by locking tab 394a.
When it is desired to deliver a smaller bolus dose of medicament to the patient, as, for example 2.5 ml, it is necessary to first rotate cap 399 from the "off position shown in Figure 77 to the "2.5 ml" position shown in Figure 78. As best seen in Figure 73 second operating shaft 387 is provided with a rotational stop 387a that engages a stop wall 410 provided on the main operating shaft 390 (see Figures 64 through 67). As the second operating shaft is rotated, a coiled spring 412 carried a spring shelf 414 (Figures 66, 67 and 69) will resist the rotation and will be compressed in the manner in Figure 70.
This done, the secondary operating shaft 387 can be pushed inwardly in the manner illustrated in Figure 61. This inward movement of the second operating shaft will collapse bellows portion 360b causing the fluid contained there within (in this instance 2.5ml) to be delivered to the patient via outlet passageway 374.
With the construction described in the preceding paragraph, when the rotational forces exerted on cap 399 cease, spring 412 will urge the cap to return to its starting position and at the same time, spring 400 will urge shaft 387 into its starting position, thereby permitting a repeated application of a smaller bolus dose of medicament to the patient as may be required.
Having now described the invention in detail in accordance with the requirements of the patent statutes, those skilled in this art will have no difficulty in making changes and modifications in the individual parts or their relative assembly in order to meet specific requirements or conditions. Such changes and modifications may be made without departing from the scope and spirit of the invention, as set forth in the following claims.

Claims

WHAT IS CLAIMED IS:
1. A dispensing device for dispensing a medicament to a patient comprising: (a) a device housing; (b) a reservoir defining assembly carried by said housing, said reservoir defining assembly including a collapsible reservoir having an inlet port and an outlet port; (c) stored energy means carried by said housing and operably associated with said reservoir defining assembly for collapsing said collapsible reservoir to expel fluid medicament therefrom; and (d) fluid flow control means carried by said device housing for controlling the flow of medicament from said reservoir toward said administration line, said flow control means comprising dose control means for controlling the dose of medicament delivered to the patient and rate control means for controlling the rate of medicament flow from said collapsible reservoir toward said dose control means.
2. The dispensing device as defined in Claim 1 in which said stored energy means comprises a spring operably associated with said reservoir defining assembly.
3. The dispensing device as defined in Claim 1 in which said collapsible reservoir comprises a bellows structure.
4. The dispensing device as defined in Claim 1 further including fill means carried by said device housing for filling said collapsible reservoir with medicament reservoir comprises a bellows structure.
5. The dispensing device as defined in Claim 1 in which said dose control means includes dose selector means for selecting the medicament dose delivered to said administration line.
6. The dispensing device as defined in Claim 1 , further including a bolus delivery assembly carried by said device housing for delivering bolus doses of medicament to the patient.
7. The dispensing device as defined in Claim 1 in which said rate control means includes body weight selector means for selecting the body weight of the patient and the rate of flow of medicament from said reservoir to said administration line.
8. The dispensing device as defined in Claim 7 in which said rate control means further includes a rate control plate having a plurality of fluid flow channels interconnected with said outlet of said collapsible reservoir.
9. A dispensing device for dispensing medicaments to a patient comprising: (a) a device housing; (b) a carriage assembly disposed within said device housing for movement between a first position and a second position; (c) a collapsible container carried by said carriage assembly, said collapsible container including an accordion-like collapsible side wall; (d) fill means carried by said device housing for filling said collapsible container with medicament; (e) a stored energy means operably associated with said carriage assembly for moving said carriage assembly between said first and second positions, said stored energy means comprising a coil spring having a first end in engagement with said device housing and a second end in engagement with said carriage; (f) an administration set, including an administration line interconnected with said collapsible container; and (g) fluid flow control means carried by said supporting structure for controlling the flow of medicament from said collapsible container toward said administration line, said flow control means comprising dose control means for controlling the dose of medicament delivered to the patient and rate control means for controlling the rate of medicament flow from said collapsible reservoir toward said dose control means.
10. The dispensing device as defined in Claim 9 in which said dose control means includes dose selector means for selecting the medicament dose delivered to said administration line, said dose selector means comprising a selector housing carried by said device housing and a selector member rotatably carried by said selector housing.
11. The dispensing device as defined in Claim 9, further including locking means carried by said device housing for locking said carriage assembly in said first position.
12. The dispensing device as defined in Claim 9 in which said rate control means includes selector means for selecting the rate of fluid flow between said collapsible container and said administration set.
13. The dispensing device as defined in Claim 9 in which said rate control means comprises a rate control plate having a plurality of fluid flow channels interconnected with said collapsible container; and operating means carried by said supporting structure for controlling fluid flow between said collapsible container and said rate control means.
14. The dispensing device as defined in Claim 9 in which said fill means comprises a sterile coupling assembly that includes a body portion and a pierceable septum carried by said body portion.
15. The dispensing device as defined in Claim 9, further including a bolus delivery assembly carried by said device housing and in communication with said administration set for delivering bolus doses of medicament to said administration set.
16. The dispensing device as defined in Claim 15 which said bolus delivery assembly comprises a collapsible bolus container having a first portion of a first volume and second portion of a second lesser volume.
17. A dispensing device for dispensing medicaments to a patient comprising: (a) a device housing; (b) a carriage assembly disposed within said device housing for movement between a first position and a second position; (c) a collapsible container carried by said carriage assembly, said collapsible container having an accordion-like collapsible side wall; (d) fill means carried by said device housing for filling said collapsible container with medicament, said fill means comprising a piercable slit septum; (e) a stored energy means operably associated with said carriage assembly for moving said carriage assembly between said first and second positions, said stored energy means comprising a coil spring having a first end in engagement with said device housing and a second end in engagement with said carriage; (f) an administration set, including an administration line interconnected with said collapsible container; (g) fluid flow control means carried by said device housing for controlling the flow of medicament from said collapsible container toward said administration line, said flow control means comprising dose control means for controlling the dose of medicament delivered to the patient and rate control means for controlling the rate of medicament flow from said collapsible reservoir toward said dose control means, said rate control means comprising selector means for selecting the rate of fluid flow between said collapsible container and said administration set and a rate control plate having a plurality of fluid flow channels interconnected with said collapsible container; and (h) a bolus delivery assembly carried by said device housing and in communication with said administration set for delivering bolus doses of medicament to said administration set said bolus delivery assembly comprising a collapsible bolus container having a first portion of a first volume and second portion of a second lesser volume.
18. The dispensing device as defined in Claim 17 further including operating means carried by said device housing for controlling fluid flow between said collapsible container and said rate control means, said operating means comprising a piercing member for piercing said top wall of said collapsible container.
19. The dispensing device as defined in Claim 17 which said bolus delivery assembly includes a first mechanism for collapsing said first portion of said collapsible bolus container and a second mechanism for collapsing said second portion of said collapsible bolus container.
20. The dispensing device as defined in Claim 17 in which said first portion of said collapsible bolus container has a volume of between about 3 ml and about 6 ml in which said second portion of said collapsible bolus container has a volume of between about 0.5 ml and about 3 ml.
PCT/US2009/060516 2008-10-15 2009-10-13 Special purpose fluid dispenser WO2010045240A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/288,095 US7896843B2 (en) 2008-10-15 2008-10-15 Special purpose fluid dispenser
US12/288,095 2008-10-15

Publications (2)

Publication Number Publication Date
WO2010045240A2 true WO2010045240A2 (en) 2010-04-22
WO2010045240A3 WO2010045240A3 (en) 2010-08-12

Family

ID=42099529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/060516 WO2010045240A2 (en) 2008-10-15 2009-10-13 Special purpose fluid dispenser

Country Status (2)

Country Link
US (2) US7896843B2 (en)
WO (1) WO2010045240A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014100206A1 (en) * 2014-01-09 2015-07-09 Dominik Niedenzu Sensor adapter, sensor system and measuring arrangement of an infusion system
AU2017206211B2 (en) * 2011-10-14 2019-02-28 Hospira Inc. Methods of treating pediatric patients using dexmedetomidine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142398B1 (en) * 2010-10-12 2012-03-27 Bioquiddity, Inc. Fluid dispenser
US8133204B1 (en) * 2010-10-12 2012-03-13 Bioquiddity, Inc. Medicament dispenser
US10041347B2 (en) 2014-03-14 2018-08-07 Halliburton Energy Services, Inc. Fluidic pulser for downhole telemetry
US9987416B2 (en) 2015-01-09 2018-06-05 BioQuiddity Inc. Sterile assembled liquid medicament dosage control and delivery device
USD770034S1 (en) 2015-01-09 2016-10-25 BioQ Pharma, Inc. Liquid medicament dosage control and delivery device
US9775946B2 (en) 2016-02-11 2017-10-03 Bioq Pharma Inc. Unified drug mixer and dispenser
US10994116B2 (en) 2018-06-30 2021-05-04 Bioq Pharma Incorporated Drug cartridge-based infusion pump
JP1675305S (en) * 2019-06-13 2020-12-21
US11338082B2 (en) 2019-09-04 2022-05-24 BloQ Pharma, Inc. Variable rate dispenser with aseptic spike connector assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126642A (en) * 1998-10-02 2000-10-03 Science Incorporated Patient controlled fluid delivery device
US20050263615A1 (en) * 2004-05-26 2005-12-01 Kriesel Marshall S Fluid delivery apparatus with adjustable flow rate control
US20060122562A1 (en) * 2004-11-19 2006-06-08 Mckinley Medical L.L.L.P. Controlled-volume infusion device
US20070219501A1 (en) * 2006-03-15 2007-09-20 Kriesel Marshall S Fluid dispensing apparatus
US20070219502A1 (en) * 2006-03-15 2007-09-20 Kriesel Marshall S Fluid dispensing device
US20080027376A1 (en) * 2006-07-31 2008-01-31 Kriesel Marshall S Fluid dispensing device with additive

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1574825A (en) * 1968-05-06 1969-07-18
US3794068A (en) * 1973-04-24 1974-02-26 R Milroy Negator-spring, rolling-tape, flow-control, quiet throttling valve
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4258711A (en) * 1979-02-05 1981-03-31 Metal Bellows Corporation Infusion apparatus and method
US4265241A (en) * 1979-02-28 1981-05-05 Andros Incorporated Implantable infusion device
US4525165A (en) * 1979-04-27 1985-06-25 The Johns Hopkins University Fluid handling system for medication infusion system
US4943279A (en) * 1988-09-30 1990-07-24 C. R. Bard, Inc. Medical pump with infusion controlled by a detachable coded label
US5067943A (en) * 1989-09-26 1991-11-26 Infusaid, Inc. Pressure regulator for implantable pump
US5049141A (en) * 1990-04-25 1991-09-17 Infusaid, Inc. Programmable valve pump
US5395340A (en) * 1993-03-15 1995-03-07 Lee; Tzium-Shou Infusion pump and a method for infusing patients using same
CA2129284C (en) * 1993-11-24 1999-03-09 Kenneth J. Niehoff Controlling plunger drives for fluid injection in animals
US5607418A (en) * 1995-08-22 1997-03-04 Illinois Institute Of Technology Implantable drug delivery apparatus
US6416495B1 (en) * 2000-10-10 2002-07-09 Science Incorporated Implantable fluid delivery device for basal and bolus delivery of medicinal fluids
US7220245B2 (en) * 2004-05-26 2007-05-22 Kriesel Marshall S Infusion apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126642A (en) * 1998-10-02 2000-10-03 Science Incorporated Patient controlled fluid delivery device
US20050263615A1 (en) * 2004-05-26 2005-12-01 Kriesel Marshall S Fluid delivery apparatus with adjustable flow rate control
US20060122562A1 (en) * 2004-11-19 2006-06-08 Mckinley Medical L.L.L.P. Controlled-volume infusion device
US20070219501A1 (en) * 2006-03-15 2007-09-20 Kriesel Marshall S Fluid dispensing apparatus
US20070219502A1 (en) * 2006-03-15 2007-09-20 Kriesel Marshall S Fluid dispensing device
US20080027376A1 (en) * 2006-07-31 2008-01-31 Kriesel Marshall S Fluid dispensing device with additive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017206211B2 (en) * 2011-10-14 2019-02-28 Hospira Inc. Methods of treating pediatric patients using dexmedetomidine
DE102014100206A1 (en) * 2014-01-09 2015-07-09 Dominik Niedenzu Sensor adapter, sensor system and measuring arrangement of an infusion system

Also Published As

Publication number Publication date
US20100094203A1 (en) 2010-04-15
US8317753B2 (en) 2012-11-27
US7896843B2 (en) 2011-03-01
WO2010045240A3 (en) 2010-08-12
US20110077594A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US8100890B2 (en) Special purpose fluid dispenser with pre-filled reservoir
US7896843B2 (en) Special purpose fluid dispenser
US8226609B2 (en) Fluid dispenser with additive sub-system
US8211059B2 (en) Fluid dispenser with additive sub-system
EP0231371B1 (en) Patient-controlled delivery of beneficial agents
US8292848B2 (en) Fluid dispensing device with additive
JP5705849B2 (en) Drug administration system comprising drug container holder and pump assembly
US20130237947A1 (en) Multi-ported drug delivery device having multi-reservoir cartridge system
WO2016196098A1 (en) Procedure-based programming for infusion pumps
US20080319385A1 (en) Fluid dispenser with additive sub-system
US20220379009A1 (en) Drug administration system configured to determine a drug dosing scheme
US20210369951A1 (en) Syringe infusion devices and systems for delivery of active agents
US20220241153A1 (en) Medication mixing and loading apparatus
US20240066209A1 (en) Dynamic Infusion Pump
US20210085857A1 (en) Systems and methods for precision matched immunoglobulin infusion
WO2024019938A1 (en) Integrated cartridge assembly for administration of drugs
WO2024054565A2 (en) Systems and methods for administration of drugs
Nahata New Delivery Methods for Intravenous Drugs
Ibrahim et al. Design and implementation of a microcontroller based infusion pump system for automatic drug delivery
CLINKSCALES 28 Anesthesia in the Military Settin g
DAS AN ATTEMPT TO DESIGN LOW COST EFFECTIVE INFUSION DEVICE FOR DELIVERING OF DRUGS DEPENDING ON THE HEART RATE
ITRM20090364A1 (en) DISPOSABLE SURGICAL DEVICE FOR INFUSION OF MEDICINAL PRODUCTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821127

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821127

Country of ref document: EP

Kind code of ref document: A2