WO2010055957A1 - Composite damping metal sheet and method for producing same - Google Patents

Composite damping metal sheet and method for producing same Download PDF

Info

Publication number
WO2010055957A1
WO2010055957A1 PCT/JP2009/069597 JP2009069597W WO2010055957A1 WO 2010055957 A1 WO2010055957 A1 WO 2010055957A1 JP 2009069597 W JP2009069597 W JP 2009069597W WO 2010055957 A1 WO2010055957 A1 WO 2010055957A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
metal
damping
powder
plate
Prior art date
Application number
PCT/JP2009/069597
Other languages
French (fr)
Japanese (ja)
Inventor
金武直幸
小橋眞
谷澤元治
木下恭一
山名啓太
原田正則
磯野邦隆
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2010055957A1 publication Critical patent/WO2010055957A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • B22F7/006Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0225Cellular, e.g. microcellular foam

Definitions

  • the present invention relates to a composite vibration-damping metal plate comprising a metal plate and a metal foam.
  • Patent Document 1 discloses a vibration damping material obtained by laminating a film-like foam-containing pressure-sensitive adhesive in which air bubbles are contained in acrylic rubber and sandwiched between two steel plates.
  • Patent Document 2 and Patent Document 3 disclose a damping metal plate having a porous layer formed by sintering metal powder between two metal plates. Since this damping metal plate has a large specific surface area due to the presence of a plurality of pores, it has high energy absorption capability and exhibits damping properties.
  • Patent Document 2 By combining a metal material and rubber as in Patent Document 1, mechanical strength is improved as compared with the case of using only rubber, but use at high temperature is difficult. Therefore, in Patent Document 2 and Patent Document 3, a vibration-damping metal plate is configured using a porous layer made of metal instead of rubber. Such a vibration-damping metal plate can also be used at high temperatures. However, since the porous layer is made of a sintered body obtained by sintering metal powder, the mechanical strength is reduced when the porosity is increased in order to improve the vibration damping property. Further, the porosity of the sintered body is limited, and a sintered body having a high porosity has a problem in terms of strength and manufacturing.
  • an object of the present invention is to provide a composite vibration-damping metal plate that exhibits high vibration damping properties and excellent mechanical strength, and a method for manufacturing the same.
  • the composite vibration-damping metal plate of the present invention is a composite vibration-damping metal plate having a metal plate and a metal foam layer laminated on the metal plate, wherein the metal foam layer is partially on the surface of the metal plate. It is characterized by being joined.
  • the “metal foam layer” is formed by melting a mixed powder of a metal powder and a foaming assistant powder that decomposes by heating to generate gas and foaming the foaming assistant powder on the surface of the metal plate.
  • the method for producing a composite vibration-damping metal plate of the present invention is a method for producing a composite vibration-damping metal plate having a metal plate and a metal foam layer laminated on the metal plate, A preparation step of preparing a mixed powder of a metal powder and a foaming assistant powder that decomposes by heating to generate gas; A laminating step of obtaining a laminate composed of at least three layers in which a mixed powder layer composed of the mixed powder is disposed between the metal plate and the restraint plate; A heating and foaming step of melting the metal powder by heating the laminate and foaming the foaming auxiliary powder; It is characterized by including.
  • the composite vibration-damping metal plate of the present invention includes a metal foam layer. Since the metal foam layer is laminated on the metal plate, sufficient strength can be maintained even if the bubble rate is high. Since the metal foam layer is partially bonded to the surface of the metal plate, a gap is formed at the interface between the metal plate and the metal foam layer, and the metal plate and the metal foam layer are also formed at the interface. vibration energy is absorbed by frictional energy by vibrations between. As a result, vibration control is further enhanced.
  • the composite vibration-damping metal plate of the present invention is easily manufactured by heating a mixed powder of a metal powder and a foaming aid powder that decomposes by heating to generate gas and laminated on the surface of the metal plate. Is possible. By heating the mixed powder between the metal plate and the constraining plate, a composite vibration-damping metal plate in which the metal foam layer is appropriately bonded to the surface of the metal plate is obtained.
  • FIG. 1 is an explanatory view of the method for manufacturing a composite vibration-damping metal plate of the present invention, and is a cross-sectional view in the thickness direction of the composite vibration-damping metal plate.
  • FIG. 2 is a cross-sectional view schematically showing an example of the composite vibration-damping metal plate of the present invention, and is a cross-sectional view in the thickness direction.
  • FIG. 3 is a drawing-substituting photograph showing a cross section of the composite vibration-damping metal plate of Example 1.
  • FIG. 4 is a graph showing the damping performance of the composite damping metal plate of Example 1, and also shows the damping performance of the foamed aluminum.
  • FIG. 1 is an explanatory view of the method for manufacturing a composite vibration-damping metal plate of the present invention, and is a cross-sectional view in the thickness direction of the composite vibration-damping metal plate.
  • FIG. 2 is a cross-sectional view schematically showing an example of the composite vibration-damping metal plate of the present invention, and
  • FIG. 5 shows a cross-sectional view of a metal foam made of pure aluminum, a 6061 alloy, and an aluminum alloy containing 7% by mass of silicon.
  • FIG. 6 is a graph showing the bubble ratio (area%) of each metal foam shown in FIG.
  • FIG. 7 shows an average cell diameter and a cross-sectional view of a metal foam made of an aluminum alloy containing 7% by mass of pure aluminum and silicon.
  • FIG. 8 is a graph showing the cell ratio (area%) of a metal foam made of an aluminum alloy containing 7% by mass of silicon.
  • FIG. 9 is a graph showing the relationship between the temperature and liquid phase ratio of aluminum alloys having different compositions and pure aluminum.
  • the composite damping metal plate of the present invention (hereinafter abbreviated as “damping metal plate”) has a metal plate and a metal foam layer laminated on the metal plate. Below, each of a metal plate and a metal foam layer is demonstrated.
  • the metal plate should just consist of a metal material which is excellent in mechanical strength than a metal foam. Therefore, what is necessary is just to select suitably according to the use of a damping metal plate. For example, from the viewpoint of weight reduction, an aluminum plate, an aluminum alloy plate, a magnesium plate, a magnesium alloy plate, or the like can be used.
  • a metal plate made of various steel materials copper, copper alloy, manganese, manganese alloy, titanium, titanium alloy, or the like may be used. Further, when it is desired to further improve the damping performance, it is preferable to use a metal plate made of damping alloy such as magnesium or magnesium alloy, iron-based alloy, copper alloy or manganese alloy.
  • damping alloys mainly composed of iron such as flake graphite cast iron, spheroidal graphite cast iron, Fe-Al-Mn alloy, Fe-Cr alloy, Al-Zn superplastic alloy
  • damping alloys such as Co—Ni alloys, Mg—Zr alloys, Cu—Mn—Al alloys, Cu—Zn—Al alloys, Ni—Ti alloys, and the like.
  • the damping alloy has a loss coefficient ⁇ of 0.01 or more.
  • the thickness of the metal plate is not particularly limited, and may be appropriately selected according to the use of the vibration-damping metal plate of the present invention.
  • the metal foam layer is partially bonded to the surface of the metal plate. That is, the vibration-damping metal plate of the present invention is integrated in a state where the metal plate and the metal foam layer are laminated.
  • the metal plate and the metal foam layer may have a three-layer structure such as a metal plate / metal foam layer / metal plate in addition to a two-layer structure having one layer each. Further, a structure of four or more layers may be alternately laminated. At this time, each of the metal foam layers may be sandwiched between metal plates.
  • the metal forming each metal plate and metal foam layer may be the same or different. Further, from the viewpoint of strength, it is preferable that at least one of the outermost layers (located on both end surfaces in the thickness direction) be a metal plate.
  • the state in which the metal foam layer is partially bonded to the surface of the metal plate is not a state in which the metal plate and the metal foam layer are in close contact with each other on the entire surface of the laminated interface. A substantial gap is present between the plate and the metal foam layer so that the substantial bonding area is reduced.
  • the metal foam layer may have a cell ratio of 50 area% or more and 70 area% or less.
  • the “bubble ratio” is the ratio of the total area of the bubble portion calculated by automatic image recognition to the 100% area of the entire cross section calculated by automatic image recognition in the cross section of the metal foam. I will do it. If the bubble ratio is 55 area% or more, further 60 area% or more, it is preferable because the vibration damping property is improved as well as the lightening effect. However, since the strength decreases as the bubble rate increases, the bubble rate is preferably 70 area% or less, more preferably 65 area% or less. In the sintered body, it is difficult to increase the porosity (that is, the bubble ratio) in terms of the strength of the sintered body and the manufacturing process.
  • the average cell diameter of the metal foam layer is preferably 3 mm or less, and more preferably 2 mm or less.
  • the “average bubble diameter” is an arithmetic average value of measured values obtained by observing a cross section of a metal foam and measuring the maximum diameter of about 200 to 300 bubbles.
  • the lower limit of the average cell diameter is not particularly limited, but is preferably 1.2 mm or more, further 1.5 mm or more. This is because a metal foam having an average cell diameter of less than 1.2 mm is difficult to produce and a great improvement effect of vibration damping cannot be expected.
  • the thickness of a metal foam layer there is no limitation in particular in the thickness of a metal foam layer, What is necessary is just to select suitably according to the use of the damping metal plate of this invention. If stipulated, it is preferably 0.3 mm or more and 1.5 mm or less, more preferably 0.5 mm or more and 1 mm or less. If the thickness of the metal foam layer is less than 0.3 mm, the thickness of the metal foam layer is too thin relative to the size of the bubbles, causing problems in terms of strength and manufacturing, and a great improvement in vibration damping can be expected. Absent. However, if the average cell diameter is small, the strength is maintained and the manufacturing difficulty is reduced even if the thickness of the metal foam layer is reduced.
  • the metal foam layer is not limited to the type of metal, and may be composed of a general metal foam such as aluminum, steel, copper, nickel, titanium or the like. Among these, foamed aluminum is desirable because it is lightweight and can impart strength by containing silicon.
  • the metal foam layer made of an aluminum alloy containing silicon has a high bubble ratio and has fine and uniformly dispersed bubbles, which is effective in terms of energy absorption and vibration damping.
  • the aluminum foam optimal for the metal foam layer of the damping metal plate of this invention is demonstrated.
  • Foamed aluminum is a porous body made of aluminum or an aluminum alloy.
  • Foamed aluminum made of an aluminum alloy containing silicon (Si) is preferable because it is lightweight and has higher strength than foamed aluminum made of pure aluminum.
  • the Si content is preferably not less than the solid solubility limit and less than the Si amount at the eutectic point.
  • the “solid solubility limit” and “eutectic point” representing the Si content are defined in the equilibrium diagram of the Al—Si binary alloy, and are “above the solid solubility limit and less than the Si amount at the eutectic point”. "Is specifically expressed by a numerical value, it is 1.66 mass% or more and less than 11.7 mass%. When the Si amount is equal to or greater than the Si amount at the eutectic point, hard primary crystal Si is crystallized, the metal foam itself becomes hard, and vibration damping properties are lowered, which is not preferable.
  • the metal foam having a Si content of 3% by mass or more, 5% by mass or more, further 6% by mass or more, 10% by mass or less, and further 9% by mass or less when the aluminum alloy is 100% by mass is a fine cell. Is more preferable because it is easy to produce a metal foam having a high cell rate (described later).
  • the aluminum alloy may contain one or more alloy elements generally contained in aluminum alloys such as Cu, Fe, Mg, Mn, Cr, and Ti. However, the content of these elements is less than the content of silicon.
  • the composite vibration-damping metal plate of the present invention Since the composite vibration-damping metal plate of the present invention is excellent in vibration damping and mechanical strength, it has a bumper beam that requires shock absorption, a side frame that requires shock absorption and rigidity, a hood, vibration damping and soundproofing. It can be used as automotive structural materials such as required floor panels and dashboards.
  • the present invention can be applied to a rod that supports a plurality of healds in a frame of a loom. Since the rod collides with the heald during operation of the loom, it causes vibration and noise.
  • the composite vibration-damping metal plate of the present invention is excellent in mechanical strength and can be formed with a small thickness.
  • the composite vibration-damping metal plate is suitable for a rod of a cocoon frame and reduces vibration and noise generated during operation of the loom. Can do.
  • the composite vibration-damping metal plate of the present invention is produced by melting a mixed powder of a metal powder and a foaming aid powder that decomposes by heating to generate a gas on the surface of the metal plate and foaming the foaming aid powder. it can. It is also possible to produce a metal foam having a predetermined size and shape in a plate shape and weld it to the metal plate or bond it with an adhesive to join it.
  • a metal plate and a metal foam layer made of a sintered body are contained by heating and containing a metal powder and a foaming aid powder that are easily melted only in the portion to be foamed.
  • a composite vibration-damping metal plate consisting of below the desirable manufacturing method which can manufacture the damping metal plate of this invention is demonstrated. [Production method of composite vibration-damping metal plate] In the method for manufacturing a damping metal plate of the present invention, a composite damping metal plate in which the metal foam layer is partially bonded to the surface of the metal plate is obtained.
  • the manufacturing method of the damping metal plate of this invention manufactures a damping metal plate mainly through a preparation process, a lamination process, and a heating foaming process. Below, each process is demonstrated.
  • the preparation step is a step of preparing a mixed powder of a metal powder and a foaming aid powder that decomposes by heating to generate gas. What is necessary is just to mix the metal powder and foaming auxiliary agent powder which were weighed so that it might become a predetermined mass ratio with the mixer generally used for mixing of powder. At this time, a lubricant, a binder or the like may be added as necessary.
  • the content of the foaming auxiliary powder is 0.3% by mass to 1.5% by mass, and further 0.4% by mass to 1%. It is good to be less than mass%. If the content of the foaming auxiliary powder is less than 0.3% by mass, a metal foam layer having a high cell rate cannot be obtained, which is not desirable. As the content of the foaming aid powder increases, a metal foam having a higher cell ratio is more easily formed. However, when the content is 1.5% by mass or less, formation of coarse bubbles is suppressed. What is necessary is just to select a metal powder suitably according to the composition of the metal foam layer to produce.
  • a metal foam layer made of an alloy two or more kinds of metal powders may be mixed and used in accordance with the composition of the alloy, or an alloy powder having the composition of the alloy may be used.
  • Use of alloy powder is desirable because a metal foam layer having a uniform composition can be obtained.
  • an alloy powder made of an aluminum alloy containing silicon may be used. What is necessary is just to select the composition of an aluminum alloy according to the alloy composition of the metal foam to manufacture.
  • the content ratio of silicon (Si) is not less than the solid solubility limit and less than the Si amount at the eutectic point.
  • the foamability will be described in the description of the heating foaming process.
  • the metal powder a powder obtained by pulverizing an ingot or pulverizing a molten metal can be used.
  • atomized powder is commercially available and can be easily obtained.
  • the average particle size of the metal powder is not limited, but a size generally used for the production of a metal foam of 150 ⁇ m or less is desirable.
  • the foaming auxiliary powder is decomposed by heating to generate gas.
  • a powder generally used for the production of metal foams may be used. For example, titanium hydride (TiH 2 ), magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), and the like can be given.
  • a lamination process is a process of obtaining the laminated body which consists of an at least 3 layer which has arrange
  • FIG. 1 is an explanatory view of a method for manufacturing a damping metal plate according to the present invention, and is a cross-sectional view in the thickness direction (that is, the lamination direction) of the damping metal plate.
  • a mixed powder layer 2 ′ made of mixed powder is laminated on the surface of the metal plate 1a.
  • a constraining plate 1b is laminated on the mixed powder layer 2 ′.
  • the constraining plate 1b may be laminated in contact with the mixed powder layer 2 ′, or a slight gap may be provided.
  • the gap is provided, the distance between the opposing surfaces of the metal plate 1a and the restraining plate 1b is fixed so as to be the thickness of the metal foam layer of the vibration-damping metal plate to be produced.
  • the laminate may be compressed in the thickness direction.
  • a molding step may be performed in which the mixed powder obtained in the above preparation step is molded to obtain a plate-shaped molded body, and the plate-shaped molded body may be disposed between the metal plate and the constraining plate in the lamination step. .
  • the constraining plate 1b is preferably a graphite plate. Since the graphite plate has poor bondability with the metal foam layer, it only plays a role of restraining the growth of the metal foam in the thickness direction. In this case, a damping metal plate having a two-layer structure of a metal plate and a metal foam layer can be manufactured. Further, by sandwiching the graphite plate in the middle, it is possible to produce two or more vibration-damping metal plates at a time.
  • the restraint plate 1b may be another metal plate that constitutes the vibration-damping metal plate. That is, the lamination process may be a process of alternately laminating the mixed powder layer and two or more metal plates.
  • the constraining plate 1b is a metal plate
  • the metal foam layer 2a is between the metal plates 1a and 1b
  • the metal foam layer 2b is between the metal plates 1b and 1c
  • the metal plates 1c and 1d are between A damping metal plate is obtained in which the metal foam layer 2c is sandwiched between the two.
  • the metal plates 1a to 1d and the metal foam layers 2a to 2c may have the same composition or different compositions.
  • the larger the number of layers the more compressed by its own weight in the thickness direction, so the porosity of the mixed powder layer and the plate-shaped laminate decreases, or the adhesion at the interface between the metal plate and the metal foam layer is required There are problems such as improvement.
  • the total number of metal plates and metal foam layers is preferably 2 to 10 layers, and more preferably 3 to 5 layers.
  • the heating and foaming process is a process of melting the metal powder by heating the laminate and foaming the foaming auxiliary powder.
  • a composite vibration-damping metal plate in which the metal foam layer is partially bonded to the surface of the metal plate is obtained by heating the laminate having the above-described configuration and melting and foaming the mixed powder layer or the plate-like laminate. .
  • the heating may be performed using a heating furnace that is usually used for manufacturing metal foams. Heating may be performed in a vacuum or in an inert gas atmosphere.
  • the metal powder is an alloy powder
  • the laminated body is heated to the solidus temperature T S or higher so that the alloy powder is in a semi-molten state, and at the same time, the foaming aid powder is decomposed and bubbles are generated. Will expand. At this time, it is desirable that the heating temperature in the heating and foaming process does not exceed the liquidus temperature TL of the alloy.
  • the heating temperature of the laminate exceeds TL , the foamability becomes excessively high, and it becomes difficult to form fine bubbles. Further, in the heating foaming process, in order to obtain a fine and such bubbles uniformly dispersed can be obtained good foaming properties, the difference between the above T S and T L are somewhat necessary. When the difference between T S and T L is small, proportion of the liquid phase is increased in the alloy of the semi-molten state as soon as more than T S, or become bubbles between the bubbles adjacent excessively grow is likely to adhesions This is because it is considered. That is, the heating temperature in the heating and foaming process can be defined by the liquid phase rate.
  • the heating and foaming step is performed at a liquid phase ratio of 70% by mass or more and 90% by mass or less, and further 75% by mass or more and 85% by mass or less, the growth and adhesion of bubbles are suppressed due to the presence of an appropriate solid phase, and the liquid phase ratio is fine. It is easy to obtain bubbles that are uniformly dispersed. In other words, regardless of the Si content, it is desirable to perform the heating and foaming step at a temperature that falls within the range of the liquid phase ratio.
  • the metal foam layer is made of an aluminum alloy containing silicon, fine and uniformly dispersed bubbles are formed with the following composition.
  • FIG. 9 is a graph showing the relationship between the temperature and the liquid phase ratio of Al—Si alloys having different Si contents.
  • the number described before Si is the Si content [% by mass] when the Al—Si alloy is 100% by mass.
  • temperatures of pure aluminum (including about 1% by mass of impurities) and 6061 Al—Mg—Si based alloy defined by JIS, Mg: 0.75% by mass, Si: 0.68% by mass
  • the relationship between the liquid phase ratio and the liquid phase ratio is also shown. From FIG. 9, in order to obtain fine and uniformly dispersed bubbles, the content of silicon is 5% by mass or more, further 6% by mass or more when the aluminum alloy is 100% by mass in consideration of the liquid phase ratio. It turns out that it is good to use the aluminum alloy powder which is 10 mass% or less, further 9 mass% or less.
  • the metal foam layer having a silicon content within this range has fine and uniformly dispersed bubbles. From FIG. 9, when the silicon content exceeds 10% by mass, it is difficult to make the liquid phase ratio 70 to 90%, which is not desirable. Further, for example, when an aluminum alloy containing 7% by mass of Si shown as “7Si” in FIG. 9 (abbreviated as “Al-7% Si alloy”) is used as the alloy powder, the solid solution of the Al-7% Si alloy is used.
  • the rate of temperature increase when the laminate is heated is not particular limitation, but it is preferable to increase the temperature to the predetermined temperature at 10 to 20 ° C./min.
  • the metal in a semi-molten state containing bubbles is cooled and solidified, thereby damping the metal foam layer.
  • a metal plate is obtained.
  • the holding time is preferably 0 to 30 minutes, more preferably 0 to 20 minutes.
  • FIG. 1 A cross-sectional photograph of the composite vibration-damping metal plate of this example obtained by the above procedure is shown in FIG.
  • the obtained composite vibration-damping metal plate was provided with two vibration-damping alloy plates and a foamed aluminum layer made of an aluminum alloy containing silicon sandwiched between them, each having a thickness of 1 mm. .
  • the foamed aluminum layer included in the composite vibration-damping metal plate of Example 1 had a cell ratio of 60 area% and an average pore diameter of 1.82 mm.
  • the bubble ratio is the ratio (area%) of the total area of the bubble portion calculated by automatic image recognition to the area of 100% of the entire cross section calculated by automatic image recognition in the cross section of the metal foam layer shown in FIG. Asked.
  • the average bubble diameter measured the maximum diameter of the diameter of all the bubbles observed in the cross section of the thickness direction of a metal foam, and calculated
  • the obtained composite damping metal plate (thickness 3 mm) was cut out to 10 mm ⁇ 160 mm to prepare a test piece, and the loss factor was measured by the central vibration method.
  • the center excitation method is a method in which the center part of a test piece fixed with a triangular jig is subjected to random excitation (amplitude: 1.0 ⁇ 10 ⁇ 7 to 1.0 ⁇ 10 ⁇ 5 , frequency: 20000 Hz or less). Then, the loss coefficient ⁇ is calculated from the frequency response function obtained by the excitation by the half width method.
  • DS-2000 manufactured by Ono Sokki was used for the measurement of the frequency response function. The results are shown in FIG.
  • the damping property of foamed aluminum (thickness 1 mm) produced in the same manner as in Example 1 was measured in the same manner except that a graphite plate was used instead of the damping metal plate.
  • the results are shown in FIG.
  • the loss coefficient ⁇ of the damping alloy plate made of the Fe—Al—Mn—Cr alloy is located between the example and the comparative example in FIG.
  • the sample of Example 1 had a loss coefficient ⁇ of about 0.04 to 0.08, and showed a high damping capacity comparable to that of the resin material.
  • the damping capacity is greatly improved compared to the case of only the damping metal plate, because the damping metal plate and the foamed aluminum layer are partially joined, and the interface between the two This is also because the vibration energy is absorbed.
  • it consists of an aluminum alloy whose Si content rate is 6.5 mass% or more and 7.5 mass% or less, a bubble rate is 57 area% or more and 63 area% or less, and an average bubble diameter is 1.6 mm or more and 1.9 mm or less. If it is a metal foam, it is an error range, and it is thought that the damping capacity equivalent to the composite damping metal plate of Example 1 is shown.
  • the manufacturing method of the metal foam which consists of aluminum or an aluminum alloy is shown as a reference example.
  • the produced metal foam is cut out as it is or into a predetermined size and joined to various metal plates to obtain a composite vibration-damping metal plate.
  • [Production of metal foam] (Preparation step) Al-7% Si alloy powder, 6061 alloy powder and pure Al powder were prepared as metal powders. The average particle diameter of these metal powders was about 70 ⁇ m for Al-7% Si alloy powder and about 30 ⁇ m for pure Al powder. Further, as a foaming aid powder were used TiH 2 powder. TiH 2 powder was 45 ⁇ m or less by sieve.
  • Al-7% Si alloy powder, 6061 alloy powder or pure Al powder, and TiH 2 powder were mixed by a ball mill to obtain a mixed powder.
  • the mixing ratio was 100% by mass of the mixed powder and 0.5% by mass of the TiH 2 powder.
  • the mixed powder was formed into a rod shape having a diameter of 12 mm and a length of 10 mm by uniaxial pressing and then rolled in order in the longitudinal direction to a thickness of 1 mm to obtain a plate-like precursor.
  • heating and foaming step A plate-like precursor cut into 20 mm x 180 mm is heated in a vacuum atmosphere in an infrared large image furnace (hereinafter abbreviated as "heating furnace") to make the metal powder in a semi-molten state and to foam TiH 2 powder. It was.
  • the plate-like precursor was preheated at 500 ° C. for 20 minutes, then heated to a predetermined temperature at 15 ° C./minute, taken out from the heating furnace when the predetermined temperature was reached, and air-cooled at 4 ° C./second.
  • FIG. 5 shows cross-sectional photographs in the thickness direction of the metal foams produced using the mixed powders, for each temperature taken out. Whichever metal powder was used, a metal foam having bubbles was obtained by melting the metal powder and foaming the TiH 2 powder. When pure Al powder was used, the bubbles formed at 690 ° C. or lower grew in a crack shape so as to peel in the thickness direction in the plate-like precursor.
  • the lower graphite plate is provided with an insertion hole that opens to the end surface and extends to the central portion.
  • a thermocouple was inserted into the insertion hole, and the temperature of the central portion on which the plate-like precursor was placed was measured. Note that the graphite plate is merely a restraint plate, and after cooling through the heating and foaming step, the plate-like metal foam and the graphite plate are easily separated.
  • the plate-like precursor is preheated at 500 ° C. for 20 minutes, then heated up to a predetermined temperature at 15 ° C./minute, and the time (holding time) from reaching the predetermined temperature to taking out is 0, 5, 15, 30, 60 minutes. A plurality of plate-like metal foams were produced. The heating temperature (holding temperature) during the holding time was constant.
  • the cooling rate after removal was set to 4 ° C./second (air cooling).
  • a cross-sectional photograph in the thickness direction of the metal foam with a holding temperature of 600 ° C. is shown in FIG. 7 for each holding time.
  • a plate-shaped metal foam was produced in the same manner for a plate-shaped precursor (thickness 1 mm) made of pure Al powder and TiH 2 powder.
  • the holding temperature was 660 ° C.
  • Measurement of average bubble diameter and bubble ratio The average cell diameter and cell rate (only Al-7% Si alloy) of the metal foam produced by the above procedure were measured. The results are shown in FIG. 7 and FIG. When the plate-like metal foam made of an Al-7% Si alloy is taken out when it reaches 640 ° C.
  • the upper side is caused by foaming of TiH 2 powder. In contact with the graphite plate.
  • the holding temperature was 580 ° C. or higher, the effect of increasing the bubble ratio was observed by taking the holding time. However, no significant changes were observed in the bubble rate and bubble diameter even when held for 30 minutes or longer.
  • a plate-like metal foam having a cell ratio exceeding 50 area% and an average cell diameter of less than 2 mm was obtained.
  • the plate-like metal foam made of pure Al grew like a crack so as to peel in the thickness direction in the plate-like precursor without holding time.
  • bubbles having small diameters were generated, and a metal foam layer having bubbles uniformly dispersed as a whole was formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a composite damping metal sheet comprising a metal sheet which is composed of an Fe-Al-Mn-Cr alloy or the like, and a metal foam layer which is composed of foamed aluminum or the like and arranged on the metal sheet.  The metal foam layer is partially joined to the surface of the metal sheet.  The composite damping metal sheet can be produced by melting a powder mixture of a metal powder and a foaming assistant powder, which generates a gas when decomposed by heating, and foaming the foaming assistant powder, on the surface of a metal sheet.

Description

複合制振金属板およびその製造方法Composite damping metal plate and manufacturing method thereof
 本発明は、金属板と金属発泡体とからなる複合型の制振金属板に関するものである。 The present invention relates to a composite vibration-damping metal plate comprising a metal plate and a metal foam.
 近年、自動車などの車輌、工場、工事現場などからの振動および騒音が生活環境に及ぼす影響は大きくなっている。また、振動および騒音は、部品の寿命、現場で作動する機械の操作精度などに影響を与えるため、機能維持の面でも問題となる。振動および騒音の対策のひとつとして、振動エネルギーを減衰させる性質をもつ材料の開発が行われている。たとえば、いわゆる制振材料として用いられるゴムおよびプラスチックなどの材料の減衰能は非常に高い。しかし、これらの材料は、耐熱性、耐薬品性および機械的強度の面では、金属材料に劣る。そのため、金属組織を改良するなどして制振性を向上させた制振合金が有用である。また、下記特許文献1~3に記載されているような、異種材料を組み合わせてなる複合型の制振材料も開発されている。
特開平5−124141号公報 特開平1−258945号公報 特開平4−278343号公報
In recent years, the influence of vibration and noise from vehicles such as automobiles, factories and construction sites on the living environment has been increasing. In addition, vibration and noise affect the life of parts, the operational accuracy of machines operating on the site, and the like, and are problematic in terms of maintaining functions. As one of countermeasures against vibration and noise, materials having a property of attenuating vibration energy are being developed. For example, materials such as rubber and plastic used as so-called vibration damping materials have a very high damping capacity. However, these materials are inferior to metal materials in terms of heat resistance, chemical resistance and mechanical strength. Therefore, a damping alloy having improved damping properties by improving the metal structure is useful. In addition, composite vibration damping materials made by combining different materials as described in Patent Documents 1 to 3 below have been developed.
Japanese Patent Laid-Open No. 5-124141 JP-A-1-258945 JP-A-4-278343
 特許文献1には、アクリル系ゴムに気泡を含有させたフィルム状含泡粘着剤を、2枚の鋼板の間に挟み込んだ状態で積層してなる制振材が開示されている。また、特許文献2および特許文献3には、2枚の金属板の間に、金属粉末が焼結されてなる多孔質層をもつ制振金属板が開示されている。この制振金属板は、複数の気孔の存在により比表面積が大きいため、エネルギー吸収能が高く、制振性を示す。 Patent Document 1 discloses a vibration damping material obtained by laminating a film-like foam-containing pressure-sensitive adhesive in which air bubbles are contained in acrylic rubber and sandwiched between two steel plates. Patent Document 2 and Patent Document 3 disclose a damping metal plate having a porous layer formed by sintering metal powder between two metal plates. Since this damping metal plate has a large specific surface area due to the presence of a plurality of pores, it has high energy absorption capability and exhibits damping properties.
 特許文献1のように金属材料とゴムとを組み合わせることで、ゴムのみで用いる場合に比べて機械的強度は向上するが、高温下での使用は困難である。そこで、特許文献2および特許文献3では、ゴムのかわりに金属からなる多孔質層を用いて、制振金属板を構成している。このような制振金属板であれば、高温下での使用も可能である。しかし、多孔質層は金属粉末を焼結して得られる焼結体からなるため、制振性を向上させるために気孔率を高めようとすると、機械的強度が低下する。また、焼結体の気孔率には限界があり、気孔率の高い焼結体は、強度の面でも製造の面でも問題がある。
 本発明は、上記問題点に鑑み、高い制振性を示すとともに機械的強度にも優れる複合制振金属板およびその製造方法を提供することを目的とする。
 本発明の複合制振金属板は、金属板と該金属板に積層する金属発泡体層とを有する複合制振金属板であって、前記金属発泡体層は、前記金属板の表面に部分的に接合していることを特徴とする。
 なお、「金属発泡体層」は、金属粉末と加熱により分解して気体を発生する発泡助剤粉末との混合粉末を、金属板の表面で溶融させるとともに発泡助剤粉末を発泡させてなる。したがって、金属の融点未満の温度で金属粉末を加熱して得られる焼結体からなる多孔質層とは異なる。
 また、本発明の複合制振金属板の製造方法は、金属板と該金属板に積層する金属発泡体層とを有する複合制振金属板の製造方法であって、
 金属粉末と加熱により分解して気体を発生する発泡助剤粉末との混合粉末を調製する調製工程と、
 前記金属板と拘束板との間に前記混合粉末からなる混合粉末層を配置した少なくとも3層からなる積層体を得る積層工程と、
 前記積層体を加熱することで前記金属粉末を溶融させるとともに前記発泡助剤粉末を発泡させる加熱発泡工程と、
 を含むことを特徴とする。
 本発明の複合制振金属板は、金属発泡体層を備える。金属発泡体層は、金属板に積層されているため、気泡率が高くても十分な強度が保たれる。そして、金属発泡体層は、金属板の表面に部分的に接合しているため、金属板と金属発泡体層との界面に空隙が形成され、界面においても金属板と金属発泡体層との間の振動よる摩擦エネルギーにより振動エネルギーが吸収される。その結果、制振性がさらに高まる。
 上記本発明の複合制振金属板は、金属粉末と加熱により分解して気体を発生する発泡助剤粉末との混合粉末を金属板の表面に積層させた状態で加熱することで、容易に製造可能である。金属板と拘束板との間で混合粉末を加熱することで、金属発泡体層が金属板の表面に適度に接合された複合制振金属板が得られる。
By combining a metal material and rubber as in Patent Document 1, mechanical strength is improved as compared with the case of using only rubber, but use at high temperature is difficult. Therefore, in Patent Document 2 and Patent Document 3, a vibration-damping metal plate is configured using a porous layer made of metal instead of rubber. Such a vibration-damping metal plate can also be used at high temperatures. However, since the porous layer is made of a sintered body obtained by sintering metal powder, the mechanical strength is reduced when the porosity is increased in order to improve the vibration damping property. Further, the porosity of the sintered body is limited, and a sintered body having a high porosity has a problem in terms of strength and manufacturing.
In view of the above problems, an object of the present invention is to provide a composite vibration-damping metal plate that exhibits high vibration damping properties and excellent mechanical strength, and a method for manufacturing the same.
The composite vibration-damping metal plate of the present invention is a composite vibration-damping metal plate having a metal plate and a metal foam layer laminated on the metal plate, wherein the metal foam layer is partially on the surface of the metal plate. It is characterized by being joined.
The “metal foam layer” is formed by melting a mixed powder of a metal powder and a foaming assistant powder that decomposes by heating to generate gas and foaming the foaming assistant powder on the surface of the metal plate. Therefore, it is different from a porous layer made of a sintered body obtained by heating metal powder at a temperature lower than the melting point of the metal.
Further, the method for producing a composite vibration-damping metal plate of the present invention is a method for producing a composite vibration-damping metal plate having a metal plate and a metal foam layer laminated on the metal plate,
A preparation step of preparing a mixed powder of a metal powder and a foaming assistant powder that decomposes by heating to generate gas;
A laminating step of obtaining a laminate composed of at least three layers in which a mixed powder layer composed of the mixed powder is disposed between the metal plate and the restraint plate;
A heating and foaming step of melting the metal powder by heating the laminate and foaming the foaming auxiliary powder;
It is characterized by including.
The composite vibration-damping metal plate of the present invention includes a metal foam layer. Since the metal foam layer is laminated on the metal plate, sufficient strength can be maintained even if the bubble rate is high. Since the metal foam layer is partially bonded to the surface of the metal plate, a gap is formed at the interface between the metal plate and the metal foam layer, and the metal plate and the metal foam layer are also formed at the interface. vibration energy is absorbed by frictional energy by vibrations between. As a result, vibration control is further enhanced.
The composite vibration-damping metal plate of the present invention is easily manufactured by heating a mixed powder of a metal powder and a foaming aid powder that decomposes by heating to generate gas and laminated on the surface of the metal plate. Is possible. By heating the mixed powder between the metal plate and the constraining plate, a composite vibration-damping metal plate in which the metal foam layer is appropriately bonded to the surface of the metal plate is obtained.
 図1は、本発明の複合制振金属板の製造方法の説明図であって、複合制振金属板の厚さ方向の断面図である。
 図2は、本発明の複合制振金属板の一例を模式的に示す断面図であって、厚さ方向の断面図である。
 図3は、実施例1の複合制振金属板の断面を示す図面代用写真である。
 図4は、実施例1の複合制振金属板の制振性を示すグラフであって、発泡アルミニウムの制振性も合わせて示す。
 図5は、純アルミニウム、6061合金および珪素を7質量%含むアルミニウム合金からなる金属発泡体の断面図を示す。
 図6は、図5に示す各金属発泡体の気泡率(面積%)を示すグラフである。
 図7は、純アルミニウムおよび珪素を7質量%含むアルミニウム合金からなる金属発泡体の平均気泡径および断面図を示す。
 図8は、珪素を7質量%含むアルミニウム合金からなる金属発泡体の気泡率(面積%)を示すグラフである。
 図9は、組成の異なるアルミニウム合金および純アルミニウムの温度と液相率の関係を示すグラフである。
FIG. 1 is an explanatory view of the method for manufacturing a composite vibration-damping metal plate of the present invention, and is a cross-sectional view in the thickness direction of the composite vibration-damping metal plate.
FIG. 2 is a cross-sectional view schematically showing an example of the composite vibration-damping metal plate of the present invention, and is a cross-sectional view in the thickness direction.
FIG. 3 is a drawing-substituting photograph showing a cross section of the composite vibration-damping metal plate of Example 1.
FIG. 4 is a graph showing the damping performance of the composite damping metal plate of Example 1, and also shows the damping performance of the foamed aluminum.
FIG. 5 shows a cross-sectional view of a metal foam made of pure aluminum, a 6061 alloy, and an aluminum alloy containing 7% by mass of silicon.
FIG. 6 is a graph showing the bubble ratio (area%) of each metal foam shown in FIG.
FIG. 7 shows an average cell diameter and a cross-sectional view of a metal foam made of an aluminum alloy containing 7% by mass of pure aluminum and silicon.
FIG. 8 is a graph showing the cell ratio (area%) of a metal foam made of an aluminum alloy containing 7% by mass of silicon.
FIG. 9 is a graph showing the relationship between the temperature and liquid phase ratio of aluminum alloys having different compositions and pure aluminum.
 以下に、本発明の複合制振金属板およびその製造方法を実施するための最良の形態を説明する。
[複合制振金属板]
 本発明の複合制振金属板(以下「制振金属板」と略記)は、金属板と、金属板に積層する金属発泡体層と、を有する。以下に、金属板および金属発泡層のそれぞれを説明する。
 金属板は、金属発泡体よりも機械的強度に優れる金属材料からなればよい。そのため、制振金属板の用途に応じて適宜選択すればよい。たとえば、軽量化の観点からは、アルミニウム板、アルミニウム合金板、マグネシウム板またはマグネシウム合金板などを使用することができる。機械的強度を一層向上させたい場合には、各種鋼材、銅、銅合金、マンガン、マンガン合金、チタンまたはチタン合金などからなる金属板を用いるとよい。また、制振性をさらに高めたい場合には、マグネシウム、あるいはマグネシウム合金、鉄系合金、銅合金またはマンガン合金などの制振合金からなる金属板を用いるとよい。具体的には、片状黒鉛鋳鉄、球状黒鉛鋳鉄、Fe−Al−Mn系合金、Fe−Cr系合金などの鉄を主成分とする鉄系制振合金のほか、Al−Zn超塑性合金、Co−Ni系合金、Mg−Zr系合金、Cu−Mn−Al系合金、Cu−Zn−Al系合金、Ni−Ti系合金などの制振合金が挙げられる。なお、制振合金は、損失係数ηが0.01以上とする。
 金属板の厚さに特に限定はなく、本発明の制振金属板の用途に応じて適宜選択すればよい。あえて規定するのであれば、0.5mm以上さらには1mm以上であるのが好ましい。金属板の厚さが0.5mm未満では、機械的強度が不十分であるとともに制振金属板の製造が困難となる。
 金属発泡体層は、金属板の表面に部分的に接合している。すなわち、本発明の制振金属板は、金属板と金属発泡体層とが積層された状態で一体的となっている。金属板と金属発泡体層とは、それぞれを一層ずつもつ二層構造の他、金属板/金属発泡体層/金属板というように三層構造であってもよく、金属板と金属発泡体層とをさらに交互に積層させた四層以上の構造であってもよい。このとき、金属発泡体層は、それぞれ金属板に挟持されているとよい。三層以上の構造である場合には、それぞれの金属板および金属発泡体層をなす金属は、同一であっても異なってもよい。また、強度の観点から、最外層(厚さ方向の両端面側に位置する)のうちの少なくとも一方を金属板とするのが好ましい。
 また、金属発泡体層が金属板の表面に部分的に接合している状態とは、積層している界面の全面で金属板と金属発泡体層とが密着している状態にはなく、金属板と金属発泡体層との間に部分的に空隙が存在することで、実質的な接合面積が減少している状態である。
 金属発泡体層は、気泡率が50面積%以上70面積%以下であるとよい。なお、本明細書において「気泡率」は、金属発泡体の断面において、自動画像認識により算出した断面全体の面積100%に対する、同じく自動画像認識により算出した気泡の部分の合計面積の割合であらわすこととする。気泡率が55面積%以上さらには60面積%以上であれば、軽量化効果はもちろんのこと、制振性が向上するため好ましい。しかし、気泡率が増加するにつれて強度は低下するため、気泡率を70面積%以下さらには65面積%以下とするのがよい。なお、焼結体では、焼結体の強度の面でも製造工程の面でも、気孔率(すなわち気泡率)を高くするのは困難である。
 また、金属発泡体層に存在する気泡の平均気泡径が小さいほど、エネルギー吸収能は高くなり、本発明の制振金属板の制振性は向上する。そのため、金属発泡体層の平均気泡径は、3mm以下さらには2mm以下であるとよい。なお、本明細書において「平均気泡径」は、金属発泡体の断面観察を行い、200~300個程度の気泡の最大径を測定して得た測定値の算術平均値とする。平均気泡径の下限に特に限定はないが、1.2mm以上さらには1.5mm以上であるとよい。平均気泡径が1.2mm未満の金属発泡体は、製造が困難であるとともに、制振性の大きな向上効果が見込めないためである。
 金属発泡体層の厚さに特に限定はなく、本発明の制振金属板の用途に応じて適宜選択すればよい。あえて規定するのであれば、0.3mm以上1.5mm以下さらには0.5mm以上1mm以下であるのが好ましい。金属発泡体層の厚さが0.3mm未満では、気泡の大きさに対して金属発泡体層の厚さが薄すぎて強度および製造の面で問題があるとともに制振性の大きな向上が見込めない。しかし、平均気泡径が小さいのであれば、金属発泡体層の厚さを薄くしても強度が保たれるし製造の困難さも低減される。さらに、金属発泡体層が金属板に挟持される構造であれば、金属発泡体層の厚さを薄くしても強度が保たれるし、製造も容易である。一方、金属発泡層が1.5mmを超えると、強度が不十分となるため、好ましくない。また、金属板の厚さTbと金属発泡体層の厚さTpとの比がTb:Tp=1:0.5~1であるとよい。
 金属発泡体層は、金属の種類に限定はなく、アルミニウム、鋼、銅、ニッケル、チタン等の一般的な金属発泡体から構成されていればよい。中でも、発泡アルミニウムは、軽量であるとともに珪素を含有することで強度を付与できるため、望ましい。また、珪素を含むアルミニウム合金からなる金属発泡体層は、高い気泡率をもち微細で均一に分散した気泡をもつため、エネルギー吸収能ひいては制振性の面で有効である。以下に、本発明の制振金属板の金属発泡体層に最適な発泡アルミニウムを説明する。
 発泡アルミニウムは、アルミニウムまたはアルミニウム合金からなる多孔質体である。珪素(Si)を含むアルミニウム合金からなる発泡アルミニウムは、軽量であるとともに純アルミニウムからなる発泡アルミニウムよりも高強度であるため、好ましい。Siを含むアルミニウム合金は、Si含有割合が固溶限以上で共晶点でのSi量未満であるとよい。なお、Si含有量を表す「固溶限」および「共晶点」とは、Al−Si系2元合金の平衡状態図において定義され、「固溶限以上で共晶点でのSi量未満」を具体的に数値で表すと、1.66質量%以上で11.7質量%未満である。Si量が共晶点でのSi量以上になると、硬質な初晶Siが晶出して金属発泡体自体が硬質となり、制振性が低下するため好ましくない。アルミニウム合金を100質量%としたときのSi含有量が3質量%以上、5質量%以上さらには6質量%以上、10質量%以下さらには9質量%以下である金属発泡体は、微細な気泡が発生しやすく高気泡率の金属発泡体を製造しやすい(後述)ためさらに好ましい。なお、アルミニウム合金は、Siと不可避不純物の他、Cu、Fe、Mg、Mn、Cr、Ti等のアルミニウム合金に一般的に含まれる合金元素を一種以上含有してもよい。ただし、これらの元素の含有割合は、珪素の含有割合よりも少ないものとする。
 本発明の複合制振金属板は、制振性および機械的強度に優れることから、衝撃吸収性が必要なバンパビーム、衝撃吸収性と剛性が必要なサイドフレーム、フード、制振性および防音性が必要なフロアパネルやダッシュボードなどの自動車用構造材として利用できる。そのほか、織機の綜絖枠において複数のヘルドを支持するロッドに適用可能である。ロッドは、織機の運転時にヘルドに衝突するため、振動および騒音の原因となる。本発明の複合制振金属板は、機械的強度に優れ、厚みを薄く成形することも可能であるため、綜絖枠のロッドに好適であり、織機の運転時に発生する振動および騒音を低減することができる。
 本発明の複合制振金属板は、金属粉末と加熱により分解して気体を発生する発泡助剤粉末との混合粉末を、金属板の表面で溶融させるとともに発泡助剤粉末を発泡させることで作製できる。また、所定の寸法および形状をもつ金属発泡体を板状に作製し、金属板に溶接したり接着剤で接着したりして接合することで作製することも可能である。また、金属粉末を板状に成形する際に、発泡させたい部位のみに溶融しやすい金属粉末および発泡助剤粉末を含有させて加熱することで、焼結体からなる金属板と金属発泡体層とからなる複合制振金属板を作製することもできる。以下に、本発明の制振金属板を製造可能な望ましい製造方法を説明する。
[複合制振金属板の製造方法]
 本発明の制振金属板の製造方法では、金属発泡体層が金属板の表面に部分的に接合した複合制振金属板が得られる。本発明の制振金属板の製造方法は、主として、調製工程、積層工程および加熱発泡工程を経て制振金属板を製造する。以下に、各工程を説明する。
 調製工程は、金属粉末と加熱により分解して気体を発生する発泡助剤粉末との混合粉末を調製する工程である。所定の質量比となるように秤量した金属粉末と発泡助剤粉末とを、粉末の混合に一般的に用いられる混合機により混合すればよい。このとき、潤滑剤、結合材などを必要に応じて添加してもよい。金属粉末および発泡助剤粉末は、両者の合計を100質量%としたときに、発泡助剤粉末の含有割合を0.3質量%以上1.5質量%以下さらには0.4質量%以上1質量%以下とするとよい。発泡助剤粉末の含有割合が0.3質量%未満では、気泡率の高い金属発泡体層が得られないため望ましくない。発泡助剤粉末の含有割合が多いほど、気泡率の高い金属発泡体が形成されやすくなるが、1.5質量%以下とすることで、粗大な気泡の形成が抑制される。
 金属粉末は、作製する金属発泡体層の組成に応じて適宜選択すればよい。合金からなる金属発泡体層を得るためには、その合金の組成に合わせて2種類以上の金属粉末を混合して用いてもよいし、その合金の組成をもつ合金粉末を用いてもよい。合金粉末を用いれば、均一な組成の金属発泡体層が得られるため望ましい。たとえば、珪素を含むアルミニウム合金からなる金属発泡体層を得るためには、珪素を含むアルミニウム合金からなる合金粉末を使用するとよい。アルミニウム合金の組成は、製造する金属発泡体の合金組成に応じて選択すればよい。しかし、発泡性の面から、珪素(Si)の含有割合が固溶限以上で共晶点でのSi量未満であるのが望ましい。なお、発泡性については、加熱発泡工程の説明で述べる。
 また、金属粉末としては、鋳塊を粉砕したり溶湯を粉化したりして得られる粉末が使用可能であり、たとえばアトマイズ粉末は市販されており容易に入手できる。金属粉末の平均粒径に限定はないが、150μm以下の金属発泡体の製造に一般的に用いられるサイズが望ましい。
 発泡助剤粉末は、加熱により分解して気体を発生する。発泡助剤粉末としては、金属発泡体の製造に一般的に用いられる粉体を使用すればよい。たとえば、水素化チタン(TiH)、炭酸マグネシウム(MgCO)、炭酸カルシウム(CaCO)等が挙げられる。特に、珪素を含むアルミニウム合金を用いる場合には、500~600℃で分解して水素ガスを発生するTiHが最適である。
 積層工程は、金属板と拘束板との間に混合粉末からなる混合粉末層を配置した少なくとも3層からなる積層体を得る工程である。積層工程を、図1を用いて説明する。図1は、本発明の制振金属板の製造方法の説明図であって、制振金属板の厚さ方向(すなわち積層方向)の断面図である。金属板1aの表面には、混合粉末からなる混合粉末層2’を積層する。さらに混合粉末層2’には、拘束板1bを積層する。拘束板1bは、混合粉末層2’に接触させて積層してもよいし、僅かに間隙を設けてもよい。間隙を設ける場合には、金属板1aと拘束板1bとの対向面間隔を、作製する制振金属板がもつ金属発泡体層の厚さとなるように固定する。また、積層体を厚さ方向に圧縮してもよい。あるいは、上記の調製工程で得られた混合粉末を成形して板状成形体を得る成形工程を行い、積層工程において、金属板と拘束板との間に板状成形体を配置してもよい。このとき、混合粉末層および板状成形体は、気孔率が、1体積%以下さらには0.8体積%以下となるように圧縮されるのが望ましい。
 積層工程において、拘束板1bはグラファイト板であるとよい。グラファイト板は、金属発泡体層との接合性が悪いため、金属発泡体の厚さ方向への成長を拘束する役割のみを果たす。この場合には、金属板と金属発泡体層との二層構造をもつ制振金属板が製造できる。また、グラファイト板を中間に挟むことにより、一度に2つ以上の制振金属板を作製することも可能となる。また、積層工程において、拘束板1bは、制振金属板を構成する他の金属板であってもよい。つまり、積層工程は、混合粉末層と2枚以上の金属板とを交互に積層させる工程であってもよい。図1において、拘束板1bが金属板であれば、金属板1a/金属発泡体層2/金属板1bからなる三層構造の制振金属板(図1の下図)を製造することができる。そして、複数枚の金属板を、混合粉末層を介して何枚も積層させてゆくことで、さらなる多層構造の制振金属板を製造することも可能となる。たとえば、図2の断面図に示すように、金属板1aと1bとの間に金属発泡体層2a、金属板1bと1cとの間に金属発泡体層2b、金属板1cと1dとの間に金属発泡体層2c、が挟持された制振金属板が得られる。なお、金属板1a~1dおよび金属発泡体層2a~2cは、同一の組成であってもよいし異なる組成であってもよいことは、既に説明した通りである。ただし、積層枚数が多い程、自重により厚さ方向へ圧縮されるため、混合粉末層および板状積層体の気孔率が低下したり、金属板と金属発泡体層との界面における密着性が必要以上に向上したり、といった問題がある。これらの問題は制振性の低下に繋がるため、金属板および金属発泡体層は、合計で2層以上10層以下さらには3層以上5層以下とするとよい。
 また、積層工程の前に、金属板に前処理を施してもよい。たとえば、金属板の表面の一部にあらかじめ離型剤を塗布することで金属板と金属発泡体層との接合面積を調整してもよい。金属板と金属発泡体層との部分的な接合を意図的に発生させることができる。
 加熱発泡工程は、積層体を加熱することで金属粉末を溶融させるとともに発泡助剤粉末を発泡させる工程である。上記の構成の積層体を加熱し、混合粉末層または板状積層体を溶融させ発泡させることで、金属発泡体層が金属板の表面に部分的に接合された複合制振金属板が得られる。加熱は、金属発泡体の製造に通常用いられる加熱炉を用いればよい。また、加熱は、真空中、不活性ガス雰囲気中のいずれで行っても構わない。
 金属粉末が合金粉末である場合には、積層体が固相線温度T以上に加熱されることで、合金粉末が半溶融状態となり、同時に、発泡助剤粉末が分解して気泡が発生して膨張していく。このとき、加熱発泡工程における加熱温度が合金の液相線温度Tを超えないようにするのが望ましい。積層体の加熱温度がTを超えると、発泡性が必要以上に高くなりすぎるため、微細な気泡を成形することが困難となる。
 また、加熱発泡工程において、微細で均一に分散する気泡が得られるような良好な発泡性を得るためには、上記のTとTとの差がある程度必要である。TとTとの差が小さいと、Tを超えるとすぐに半溶融状態の合金における液相の占める割合が高くなり、気泡が成長しすぎたり隣接する気泡同士が癒着しやすくなったりすると考えられるからである。つまり、加熱発泡工程における加熱温度は、液相率により定義することが可能である。液相率が70質量%以上90質量%以下さらには75質量%以上85質量%以下で加熱発泡工程を行えば、適度に固相が存在することで気泡の成長や癒着が抑制され、微細で均一に分散する気泡が得られやすい。つまり、Si含有量にかかわらず、上記液相率の範囲となる温度で加熱発泡工程を行うのが望ましい。
 金属発泡体層が珪素を含むアルミニウム合金からなる場合には、次のような組成とすることで、微細で均一に分散する気泡が形成される。図9は、Si含有量の異なるAl−Si合金の温度と液相率の関係を示すグラフである。図中、Siの前に記した数字は、Al−Si合金を100質量%としたときのSi含有量[質量%]である。また、純アルミニウム(1質量%程度の不純物を含む)と6061(JISで規定されるAl−Mg−Si系合金であってMg:0.75質量%、Si:0.68質量%)の温度と液相率の関係も合わせて示す。図9から、微細で均一に分散する気泡を得るためには、液相率を考慮して、アルミニウム合金を100質量%としたときの珪素の含有量が5質量%以上さらには6質量%以上、10質量%以下さらには9質量%以下であるアルミニウム合金粉末を用いるとよいことがわかる。換言すれば、珪素の含有量がこの範囲にある金属発泡体層は、微細で均一に分散する気泡をもつ。図9から、珪素含有量が10質量%を越えると、液相率を70~90%とすることが困難になってしまうため望ましくない。また、たとえば、図9で「7Si]と示されるSiを7質量%含むアルミニウム合金(「Al−7%Si合金」と略記)を合金粉末として用いる場合には、Al−7%Si合金の固相線温度はT=580℃、液相線温度はT=630℃であり、590℃以上625℃以下さらには600℃以上620℃以下の温度で加熱発泡工程を行うのが望ましい。
 積層体を加熱する際の昇温速度に特に限定はないが、10~20℃/分で上記の所定温度まで昇温させるとよい。また、積層体が所定温度に到達したら直ちに、あるいは所定温度で所定時間成形体を保持した後に、気泡を含む半溶融状態の金属を冷却して固化させることによって、金属発泡体層をもつ制振金属板が得られる。アルミニウム合金からなる金属発泡体層であれば、保持時間は0~30分さらには0~20分が望ましい。長時間保持すると、比較的低温であっても気泡が成長しやすいが、30分以上保持しても気泡の成長に特に影響はないからである。また、保持時間を20分以下とすることで、金属発泡体層が金属板に挟持されていない場合に、金属発泡体層の表面に発生する凹凸が抑制される。また、冷却は、気泡が所望の形状を保った状態で金属が固化する条件で行えばよく、冷却速度が200~300℃/分程度の空冷が望ましい。
 なお、冷却過程において、発泡助剤粉末の成分(TiHであればTi)が金属に固溶するが、既に述べたように、発泡助剤粉末は少量使用されるのみであるため、金属発泡体層を構成する金属の特性に悪影響はない。
 以上、本発明の複合制振金属板およびその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、本発明の複合制振金属板およびその製造方法の実施例を挙げて、本発明を具体的に説明する。
The best mode for carrying out the composite vibration-damping metal plate and the manufacturing method thereof of the present invention will be described below.
[Composite damping metal plate]
The composite damping metal plate of the present invention (hereinafter abbreviated as “damping metal plate”) has a metal plate and a metal foam layer laminated on the metal plate. Below, each of a metal plate and a metal foam layer is demonstrated.
The metal plate should just consist of a metal material which is excellent in mechanical strength than a metal foam. Therefore, what is necessary is just to select suitably according to the use of a damping metal plate. For example, from the viewpoint of weight reduction, an aluminum plate, an aluminum alloy plate, a magnesium plate, a magnesium alloy plate, or the like can be used. In order to further improve the mechanical strength, a metal plate made of various steel materials, copper, copper alloy, manganese, manganese alloy, titanium, titanium alloy, or the like may be used. Further, when it is desired to further improve the damping performance, it is preferable to use a metal plate made of damping alloy such as magnesium or magnesium alloy, iron-based alloy, copper alloy or manganese alloy. Specifically, in addition to iron-based damping alloys mainly composed of iron such as flake graphite cast iron, spheroidal graphite cast iron, Fe-Al-Mn alloy, Fe-Cr alloy, Al-Zn superplastic alloy, Examples thereof include damping alloys such as Co—Ni alloys, Mg—Zr alloys, Cu—Mn—Al alloys, Cu—Zn—Al alloys, Ni—Ti alloys, and the like. The damping alloy has a loss coefficient η of 0.01 or more.
The thickness of the metal plate is not particularly limited, and may be appropriately selected according to the use of the vibration-damping metal plate of the present invention. If it is specified, it is preferably 0.5 mm or more, and more preferably 1 mm or more. If the thickness of the metal plate is less than 0.5 mm, the mechanical strength is insufficient and it is difficult to manufacture the vibration-damping metal plate.
The metal foam layer is partially bonded to the surface of the metal plate. That is, the vibration-damping metal plate of the present invention is integrated in a state where the metal plate and the metal foam layer are laminated. The metal plate and the metal foam layer may have a three-layer structure such as a metal plate / metal foam layer / metal plate in addition to a two-layer structure having one layer each. Further, a structure of four or more layers may be alternately laminated. At this time, each of the metal foam layers may be sandwiched between metal plates. When the structure has three or more layers, the metal forming each metal plate and metal foam layer may be the same or different. Further, from the viewpoint of strength, it is preferable that at least one of the outermost layers (located on both end surfaces in the thickness direction) be a metal plate.
In addition, the state in which the metal foam layer is partially bonded to the surface of the metal plate is not a state in which the metal plate and the metal foam layer are in close contact with each other on the entire surface of the laminated interface. A substantial gap is present between the plate and the metal foam layer so that the substantial bonding area is reduced.
The metal foam layer may have a cell ratio of 50 area% or more and 70 area% or less. In the present specification, the “bubble ratio” is the ratio of the total area of the bubble portion calculated by automatic image recognition to the 100% area of the entire cross section calculated by automatic image recognition in the cross section of the metal foam. I will do it. If the bubble ratio is 55 area% or more, further 60 area% or more, it is preferable because the vibration damping property is improved as well as the lightening effect. However, since the strength decreases as the bubble rate increases, the bubble rate is preferably 70 area% or less, more preferably 65 area% or less. In the sintered body, it is difficult to increase the porosity (that is, the bubble ratio) in terms of the strength of the sintered body and the manufacturing process.
Further, the smaller the average bubble diameter of the bubbles present in the metal foam layer, the higher the energy absorption capacity, and the damping performance of the damping metal plate of the present invention is improved. Therefore, the average cell diameter of the metal foam layer is preferably 3 mm or less, and more preferably 2 mm or less. In the present specification, the “average bubble diameter” is an arithmetic average value of measured values obtained by observing a cross section of a metal foam and measuring the maximum diameter of about 200 to 300 bubbles. The lower limit of the average cell diameter is not particularly limited, but is preferably 1.2 mm or more, further 1.5 mm or more. This is because a metal foam having an average cell diameter of less than 1.2 mm is difficult to produce and a great improvement effect of vibration damping cannot be expected.
There is no limitation in particular in the thickness of a metal foam layer, What is necessary is just to select suitably according to the use of the damping metal plate of this invention. If stipulated, it is preferably 0.3 mm or more and 1.5 mm or less, more preferably 0.5 mm or more and 1 mm or less. If the thickness of the metal foam layer is less than 0.3 mm, the thickness of the metal foam layer is too thin relative to the size of the bubbles, causing problems in terms of strength and manufacturing, and a great improvement in vibration damping can be expected. Absent. However, if the average cell diameter is small, the strength is maintained and the manufacturing difficulty is reduced even if the thickness of the metal foam layer is reduced. Further, if the metal foam layer is sandwiched between the metal plates, the strength is maintained even if the thickness of the metal foam layer is reduced, and the manufacture is easy. On the other hand, if the metal foam layer exceeds 1.5 mm, the strength becomes insufficient, such being undesirable. The ratio between the thickness Tb of the metal plate and the thickness Tp of the metal foam layer is preferably Tb: Tp = 1: 0.5-1.
The metal foam layer is not limited to the type of metal, and may be composed of a general metal foam such as aluminum, steel, copper, nickel, titanium or the like. Among these, foamed aluminum is desirable because it is lightweight and can impart strength by containing silicon. In addition, the metal foam layer made of an aluminum alloy containing silicon has a high bubble ratio and has fine and uniformly dispersed bubbles, which is effective in terms of energy absorption and vibration damping. Below, the aluminum foam optimal for the metal foam layer of the damping metal plate of this invention is demonstrated.
Foamed aluminum is a porous body made of aluminum or an aluminum alloy. Foamed aluminum made of an aluminum alloy containing silicon (Si) is preferable because it is lightweight and has higher strength than foamed aluminum made of pure aluminum. In an aluminum alloy containing Si, the Si content is preferably not less than the solid solubility limit and less than the Si amount at the eutectic point. The “solid solubility limit” and “eutectic point” representing the Si content are defined in the equilibrium diagram of the Al—Si binary alloy, and are “above the solid solubility limit and less than the Si amount at the eutectic point”. "Is specifically expressed by a numerical value, it is 1.66 mass% or more and less than 11.7 mass%. When the Si amount is equal to or greater than the Si amount at the eutectic point, hard primary crystal Si is crystallized, the metal foam itself becomes hard, and vibration damping properties are lowered, which is not preferable. The metal foam having a Si content of 3% by mass or more, 5% by mass or more, further 6% by mass or more, 10% by mass or less, and further 9% by mass or less when the aluminum alloy is 100% by mass is a fine cell. Is more preferable because it is easy to produce a metal foam having a high cell rate (described later). In addition to Si and inevitable impurities, the aluminum alloy may contain one or more alloy elements generally contained in aluminum alloys such as Cu, Fe, Mg, Mn, Cr, and Ti. However, the content of these elements is less than the content of silicon.
Since the composite vibration-damping metal plate of the present invention is excellent in vibration damping and mechanical strength, it has a bumper beam that requires shock absorption, a side frame that requires shock absorption and rigidity, a hood, vibration damping and soundproofing. It can be used as automotive structural materials such as required floor panels and dashboards. In addition, the present invention can be applied to a rod that supports a plurality of healds in a frame of a loom. Since the rod collides with the heald during operation of the loom, it causes vibration and noise. The composite vibration-damping metal plate of the present invention is excellent in mechanical strength and can be formed with a small thickness. Therefore, the composite vibration-damping metal plate is suitable for a rod of a cocoon frame and reduces vibration and noise generated during operation of the loom. Can do.
The composite vibration-damping metal plate of the present invention is produced by melting a mixed powder of a metal powder and a foaming aid powder that decomposes by heating to generate a gas on the surface of the metal plate and foaming the foaming aid powder. it can. It is also possible to produce a metal foam having a predetermined size and shape in a plate shape and weld it to the metal plate or bond it with an adhesive to join it. In addition, when forming a metal powder into a plate shape, a metal plate and a metal foam layer made of a sintered body are contained by heating and containing a metal powder and a foaming aid powder that are easily melted only in the portion to be foamed. A composite vibration-damping metal plate consisting of Below, the desirable manufacturing method which can manufacture the damping metal plate of this invention is demonstrated.
[Production method of composite vibration-damping metal plate]
In the method for manufacturing a damping metal plate of the present invention, a composite damping metal plate in which the metal foam layer is partially bonded to the surface of the metal plate is obtained. The manufacturing method of the damping metal plate of this invention manufactures a damping metal plate mainly through a preparation process, a lamination process, and a heating foaming process. Below, each process is demonstrated.
The preparation step is a step of preparing a mixed powder of a metal powder and a foaming aid powder that decomposes by heating to generate gas. What is necessary is just to mix the metal powder and foaming auxiliary agent powder which were weighed so that it might become a predetermined mass ratio with the mixer generally used for mixing of powder. At this time, a lubricant, a binder or the like may be added as necessary. When the total amount of the metal powder and the foaming auxiliary powder is 100% by mass, the content of the foaming auxiliary powder is 0.3% by mass to 1.5% by mass, and further 0.4% by mass to 1%. It is good to be less than mass%. If the content of the foaming auxiliary powder is less than 0.3% by mass, a metal foam layer having a high cell rate cannot be obtained, which is not desirable. As the content of the foaming aid powder increases, a metal foam having a higher cell ratio is more easily formed. However, when the content is 1.5% by mass or less, formation of coarse bubbles is suppressed.
What is necessary is just to select a metal powder suitably according to the composition of the metal foam layer to produce. In order to obtain a metal foam layer made of an alloy, two or more kinds of metal powders may be mixed and used in accordance with the composition of the alloy, or an alloy powder having the composition of the alloy may be used. Use of alloy powder is desirable because a metal foam layer having a uniform composition can be obtained. For example, in order to obtain a metal foam layer made of an aluminum alloy containing silicon, an alloy powder made of an aluminum alloy containing silicon may be used. What is necessary is just to select the composition of an aluminum alloy according to the alloy composition of the metal foam to manufacture. However, from the viewpoint of foamability, it is desirable that the content ratio of silicon (Si) is not less than the solid solubility limit and less than the Si amount at the eutectic point. The foamability will be described in the description of the heating foaming process.
As the metal powder, a powder obtained by pulverizing an ingot or pulverizing a molten metal can be used. For example, atomized powder is commercially available and can be easily obtained. The average particle size of the metal powder is not limited, but a size generally used for the production of a metal foam of 150 μm or less is desirable.
The foaming auxiliary powder is decomposed by heating to generate gas. As the foaming aid powder, a powder generally used for the production of metal foams may be used. For example, titanium hydride (TiH 2 ), magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), and the like can be given. In particular, when an aluminum alloy containing silicon is used, TiH 2 that decomposes at 500 to 600 ° C. to generate hydrogen gas is optimal.
A lamination process is a process of obtaining the laminated body which consists of an at least 3 layer which has arrange | positioned the mixed powder layer which consists of mixed powder between a metal plate and a restraint board. A lamination process will be described with reference to FIG. FIG. 1 is an explanatory view of a method for manufacturing a damping metal plate according to the present invention, and is a cross-sectional view in the thickness direction (that is, the lamination direction) of the damping metal plate. A mixed powder layer 2 ′ made of mixed powder is laminated on the surface of the metal plate 1a. Further, a constraining plate 1b is laminated on the mixed powder layer 2 ′. The constraining plate 1b may be laminated in contact with the mixed powder layer 2 ′, or a slight gap may be provided. When the gap is provided, the distance between the opposing surfaces of the metal plate 1a and the restraining plate 1b is fixed so as to be the thickness of the metal foam layer of the vibration-damping metal plate to be produced. Further, the laminate may be compressed in the thickness direction. Alternatively, a molding step may be performed in which the mixed powder obtained in the above preparation step is molded to obtain a plate-shaped molded body, and the plate-shaped molded body may be disposed between the metal plate and the constraining plate in the lamination step. . At this time, it is desirable that the mixed powder layer and the plate-shaped molded body are compressed so that the porosity is 1% by volume or less, further 0.8% by volume or less.
In the laminating step, the constraining plate 1b is preferably a graphite plate. Since the graphite plate has poor bondability with the metal foam layer, it only plays a role of restraining the growth of the metal foam in the thickness direction. In this case, a damping metal plate having a two-layer structure of a metal plate and a metal foam layer can be manufactured. Further, by sandwiching the graphite plate in the middle, it is possible to produce two or more vibration-damping metal plates at a time. Further, in the laminating step, the restraint plate 1b may be another metal plate that constitutes the vibration-damping metal plate. That is, the lamination process may be a process of alternately laminating the mixed powder layer and two or more metal plates. In FIG. 1, if the constraining plate 1b is a metal plate, it is possible to manufacture a vibration-damping metal plate (lower diagram in FIG. 1) having a three-layer structure including the metal plate 1a / metal foam layer 2 / metal plate 1b. And it becomes possible to manufacture the damping metal plate of the further multilayered structure by laminating | stacking several metal plates through a mixed powder layer. For example, as shown in the sectional view of FIG. 2, the metal foam layer 2a is between the metal plates 1a and 1b, the metal foam layer 2b is between the metal plates 1b and 1c, and the metal plates 1c and 1d are between A damping metal plate is obtained in which the metal foam layer 2c is sandwiched between the two. As described above, the metal plates 1a to 1d and the metal foam layers 2a to 2c may have the same composition or different compositions. However, the larger the number of layers, the more compressed by its own weight in the thickness direction, so the porosity of the mixed powder layer and the plate-shaped laminate decreases, or the adhesion at the interface between the metal plate and the metal foam layer is required There are problems such as improvement. Since these problems lead to a decrease in vibration damping properties, the total number of metal plates and metal foam layers is preferably 2 to 10 layers, and more preferably 3 to 5 layers.
Moreover, you may pre-process a metal plate before a lamination process. For example, you may adjust the joining area of a metal plate and a metal foam layer by apply | coating a mold release agent beforehand to a part of surface of a metal plate. Partial joining of the metal plate and the metal foam layer can be intentionally generated.
The heating and foaming process is a process of melting the metal powder by heating the laminate and foaming the foaming auxiliary powder. A composite vibration-damping metal plate in which the metal foam layer is partially bonded to the surface of the metal plate is obtained by heating the laminate having the above-described configuration and melting and foaming the mixed powder layer or the plate-like laminate. . The heating may be performed using a heating furnace that is usually used for manufacturing metal foams. Heating may be performed in a vacuum or in an inert gas atmosphere.
When the metal powder is an alloy powder, the laminated body is heated to the solidus temperature T S or higher so that the alloy powder is in a semi-molten state, and at the same time, the foaming aid powder is decomposed and bubbles are generated. Will expand. At this time, it is desirable that the heating temperature in the heating and foaming process does not exceed the liquidus temperature TL of the alloy. When the heating temperature of the laminate exceeds TL , the foamability becomes excessively high, and it becomes difficult to form fine bubbles.
Further, in the heating foaming process, in order to obtain a fine and such bubbles uniformly dispersed can be obtained good foaming properties, the difference between the above T S and T L are somewhat necessary. When the difference between T S and T L is small, proportion of the liquid phase is increased in the alloy of the semi-molten state as soon as more than T S, or become bubbles between the bubbles adjacent excessively grow is likely to adhesions This is because it is considered. That is, the heating temperature in the heating and foaming process can be defined by the liquid phase rate. If the heating and foaming step is performed at a liquid phase ratio of 70% by mass or more and 90% by mass or less, and further 75% by mass or more and 85% by mass or less, the growth and adhesion of bubbles are suppressed due to the presence of an appropriate solid phase, and the liquid phase ratio is fine. It is easy to obtain bubbles that are uniformly dispersed. In other words, regardless of the Si content, it is desirable to perform the heating and foaming step at a temperature that falls within the range of the liquid phase ratio.
When the metal foam layer is made of an aluminum alloy containing silicon, fine and uniformly dispersed bubbles are formed with the following composition. FIG. 9 is a graph showing the relationship between the temperature and the liquid phase ratio of Al—Si alloys having different Si contents. In the figure, the number described before Si is the Si content [% by mass] when the Al—Si alloy is 100% by mass. Also, temperatures of pure aluminum (including about 1% by mass of impurities) and 6061 (Al—Mg—Si based alloy defined by JIS, Mg: 0.75% by mass, Si: 0.68% by mass) The relationship between the liquid phase ratio and the liquid phase ratio is also shown. From FIG. 9, in order to obtain fine and uniformly dispersed bubbles, the content of silicon is 5% by mass or more, further 6% by mass or more when the aluminum alloy is 100% by mass in consideration of the liquid phase ratio. It turns out that it is good to use the aluminum alloy powder which is 10 mass% or less, further 9 mass% or less. In other words, the metal foam layer having a silicon content within this range has fine and uniformly dispersed bubbles. From FIG. 9, when the silicon content exceeds 10% by mass, it is difficult to make the liquid phase ratio 70 to 90%, which is not desirable. Further, for example, when an aluminum alloy containing 7% by mass of Si shown as “7Si” in FIG. 9 (abbreviated as “Al-7% Si alloy”) is used as the alloy powder, the solid solution of the Al-7% Si alloy is used. The phase line temperature is T S = 580 ° C., the liquidus temperature is T L = 630 ° C., and it is desirable to perform the heating and foaming step at a temperature of 590 ° C. or more and 625 ° C. or less, further 600 ° C. or more and 620 ° C. or less.
There is no particular limitation on the rate of temperature increase when the laminate is heated, but it is preferable to increase the temperature to the predetermined temperature at 10 to 20 ° C./min. Further, immediately after the laminated body reaches a predetermined temperature, or after holding the molded body at a predetermined temperature for a predetermined time, the metal in a semi-molten state containing bubbles is cooled and solidified, thereby damping the metal foam layer. A metal plate is obtained. In the case of a metal foam layer made of an aluminum alloy, the holding time is preferably 0 to 30 minutes, more preferably 0 to 20 minutes. This is because, if held for a long time, bubbles tend to grow even at a relatively low temperature, but holding for 30 minutes or more does not particularly affect the growth of bubbles. Moreover, the unevenness | corrugation which generate | occur | produces on the surface of a metal foam layer is suppressed when a metal foam layer is not clamped by the metal plate by making holding time into 20 minutes or less. Cooling may be performed under the condition that the metal is solidified with the bubbles kept in a desired shape, and air cooling with a cooling rate of about 200 to 300 ° C./min is desirable.
Incidentally, in the cooling process, because components of the blowing aid powder (if TiH 2 Ti) is but a solid solution in the metal, which as already mentioned, foaming aid powder is only used a small amount, the metal foam There is no adverse effect on the properties of the metal constituting the body layer.
As mentioned above, although embodiment of the composite damping metal plate of this invention and its manufacturing method was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
Hereinafter, the present invention will be specifically described with reference to examples of the composite vibration-damping metal plate and the method for producing the same according to the present invention.
 [複合制振金属板の作製]
(調製工程)合金粉末としてAl−7%Si合金粉末(平均粒径:70μm)、発泡助剤粉末としてTiH粉末を準備した。TiH粉末は、篩により45μm以下とした。Al−7%Si合金粉末とTiH粉末とをボールミルにより混合して混合粉末を得た。混合割合は、混合粉末を100質量%としてTiH粉末を0.5質量%とした。
(成形工程)混合粉末を一軸プレスにより直径12mm長さ10mmの棒状に成形後さらに1mmの厚さまで長手方向に順に圧延し、板状プリカーサを得た。
(積層工程)20mm×180mmに切り出した板状プリカーサを、Fe−Al−Mn−Cr系合金からなる制振合金板(20mm×180mm×厚さ1mm)の上に載置し、さらに板状プリカーサの上に同様の制振合金板を載置した。こうして、厚さ3mmの積層体を得た。なお、積層体は、厚さが処理中に変化しないよう固定した。
(加熱発泡工程)積層体を赤外線大型イメージ炉(以下「加熱炉」と略記)で真空雰囲気において加熱して合金粉末を半溶融状態とするとともにTiH粉末を発泡させた。板状プリカーサは、500℃で20分間予熱後、15℃/分で所定温度まで昇温させ、600℃に達してから5分間保持した後、加熱炉から取り出し、4℃/秒で空冷した。
 上記の手順で得られた本実施例の複合制振金属板の断面写真を、図3に示す。上記の積層工程では、下から順に積層された。得られた複合制振金属板は、2枚の制振合金板と、それらの間に挟持された珪素を含むアルミニウム合金からなる発泡アルミニウム層と、を備え、それぞれの厚さは1mmであった。制振合金板と発泡アルミニウム層との界面には、両者が接合している接合部と、接合されていない非接合部と、が観察された。
 なお、実施例1の複合制振金属板が備える発泡アルミニウム層の気泡率は60面積%、平均気孔径は1.82mmであった。気泡率は、図3に示す金属発泡体層の断面において、自動画像認識により算出した断面全体の面積100%に対する、同じく自動画像認識により算出した気泡の部分の合計面積の割合(面積%)として求めた。また、平均気泡径は、金属発泡体の厚さ方向の断面で観察される全ての気泡の直径の最大径を測定し、算術平均値を求めた。
 [評価:制振性]
 得られた複合制振金属板(厚さ3mm)を10mm×160mmに切り出して試験片を作製し、中央加振法による損失係数の測定を行った。中央加振法は、三角治具で固定された試験片の中央部をランダム加振(振幅:1.0×10−7~1.0×10−5、周波数:20000Hz以下)する方法であって、加振により得られた周波数応答関数から半値幅法にて損失係数ηを算出する。周波応答関数の測定には、小野測器製DS−2000を用いた。結果を図4に示す。
 また、比較として、制振金属板のかわりにグラファイト板を用いた以外は上記実施例1と同様に作製した発泡アルミニウム(厚さ1mm)の制振性を同様に測定した。結果を図4に合わせて示す。なお、図示しないが、Fe−Al−Mn−Cr系合金からなる制振合金板の損失係数ηは、図4において実施例と比較例との間に位置する。
 実施例1の試料では、損失係数ηが0.04~0.08程度であって、樹脂材料に匹敵するような高い減衰能を示した。発泡アルミニウムのみの場合、制振金属板のみの場合、と比較して減衰能が大きく向上したのは、制振金属板と発泡アルミニウム層との間が部分的に接合されており、両者の界面においても振動エネルギーの吸収が行われるからであると考えられる。なお、Si含有割合が6.5質量%以上7.5質量%以下であるアルミニウム合金からなり、気泡率が57面積%以上63面積%以下、平均気泡径が1.6mm以上1.9mm以下の金属発泡体であれば、誤差範囲であり、実施例1の複合制振金属板と同等の減衰能を示すと考えられる。
[参考例]
 以下に、アルミニウムまたはアルミニウム合金からなる金属発泡体の製造方法を参考例として示す。作製された金属発泡体は、そのままあるいは所定の寸法に切り出して、各種金属板と接合することで、複合制振金属板が得られる。
 [金属発泡体の作製]
(調製工程)金属粉末としてAl−7%Si合金粉末、6061合金粉末および純Al粉末を準備した。これらの金属粉末の平均粒径は、Al−7%Si合金粉末が約70μm、純Al粉末が約30μmであった。また、発泡助剤粉末として、TiH粉末を用いた。TiH粉末は、篩により45μm以下とした。Al−7%Si合金粉末、6061合金粉末または純Al粉末と、TiH粉末と、をボールミルにより混合して混合粉末を得た。混合割合は、混合粉末を100質量%としてTiH粉末を0.5質量%とした。
(成形工程)混合粉末を一軸プレスにより直径12mm長さ10mmの棒状に成形後さらに1mmの厚さまで長手方向に順に圧延し、板状プリカーサを得た。
(加熱発泡工程)20mm×180mmに切り出した板状プリカーサを赤外線大型イメージ炉(以下「加熱炉」と略記)で真空雰囲気において加熱して金属粉末を半溶融状態とするとともにTiH粉末を発泡させた。板状プリカーサは、500℃で20分間予熱後、15℃/分で所定温度まで昇温させ、所定温度に達した時点で加熱炉から取り出し、4℃/秒で空冷した。取り出すときの温度を、Al−7%Si合金の固相線温度(T=580℃)より低い560℃、T以上で液相線温度(T=630℃)未満の580~620℃およびT以上の640~750℃の範囲でそれぞれ変化させ、複数の金属発泡体を作製した。なお、加熱発泡工程における温度は、加熱炉内の温度を熱電対で測定した値である。それぞれの混合粉末を用いて作製した金属発泡体の厚さ方向の断面写真を、取り出した温度毎に、図5に示す。
 いずれの金属粉末を用いても、金属粉末が溶融するとともにTiH粉末が発泡することで、気泡をもつ金属発泡体が得られた。純Al粉末を用いた場合には、690℃以下で形成される気泡は、板状プリカーサ内で厚さ方向へ剥離するように亀裂状に成長した。同様に、6061合金粉末を用いた場合には、660℃以下で形成される気泡は、板状プリカーサ内で厚さ方向へ剥離するように亀裂状に成長した。これは、温度が低く液相率が低い中で、TiH粉末の発泡が活発に発生したためである。いずれも、温度が上昇すると円形に近い気泡が形成された。
 一方、Al−7%Si合金を用いた場合には、固相線温度未満の560℃では、板状プリカーサに反りが発生するのみであった。固相線温度以上での加熱により、微細な気泡が均一に分散して形成された。しかし、温度が液相線温度以上に上昇すると気泡は大きく成長し、700℃以上では3mmを超えるような大きな気泡が多数観察された。
 [評価:平均気泡径および気泡率の測定]
 作製した金属発泡体の平均気泡径および気泡率を上記と同様に測定した。なお、平均気泡径の測定は、580℃または600℃で取り出したAl−7%Si合金からなる金属発泡体について測定した。結果は、それぞれ0.58mm(580℃)、0.83mm(600℃)であった。また、取り出し温度に対する各金属発泡体の気泡率を図6に示す。6061合金粉末を用いた場合ならびに純Al粉末を用いた場合には、温度の上昇に伴い、気泡率、平均気泡径ともに増大する傾向にあることがわかった。しかし、温度が高くなりすぎると、大きく膨らんだ気泡内部の水素が外へ抜けてしまい、発泡体は収縮した。一方、Al−7%Si合金粉末を用いた場合には、580℃で形成された微細な球状の気泡が、高温になるにつれてそのまま成長して気泡率が増加したと考えられる。しかし、640℃以上では、粗大な気泡が見られるようになった。これは、液相の占める割合が100%となったことで、気泡が成長しすぎたり隣接する気泡同士が癒着しやすくなったりしたためであると考えられる。
 また、上述のように、加熱温度が高くなりすぎると気泡が大きくなってしまう可能性が出てくる。しかし、Al−7%Si合金粉末を用いた場合に、液相率を約70~90%となるように加熱することで、微細な気泡を均一に発生させることができたと考えられる。そのため、珪素の含有量が7質量%以上であれば、より低い加熱温度であっても最適な液相率とすることができる。したがって、図9を考慮すると、Si含有量が7質量%以上10質量%以下であれば、微細な気泡を均一に発生させることができる可能性が高い。
 [板状金属発泡体の作製]
 次に、上記の手順で作製したAl−7%Si合金粉末とTiH粉末とからなる板状プリカーサ(厚さ1mm)を70mm×18mmに切り出し、2枚のグラファイト板の間に配設した状態で、加熱炉内で加熱して板状金属発泡体を作製した。板状プリカーサは、一方のグラファイト板の中央に載置した。このグラファイト板の四隅には、厚さ3mmのスペーサが固定されており、その上からもう一枚のグラファイト板を載置して固定した。下側のグラファイト板には、端面に開口し中央部へと延びる挿通孔が設けられており、挿通孔に熱電対を挿入して板状プリカーサの載置された中央部の温度を測定した。なお、グラファイト板は単なる拘束板であり、加熱発泡工程を経て冷却した後、板状金属発泡体とグラファイト板とは容易に分離する。
 板状プリカーサは、500℃で20分間予熱後、15℃/分で所定温度まで昇温させ、所定温度に達してから取り出すまでの時間(保持時間)を0、5、15、30、60分と変更して、複数の板状金属発泡体を作製した。なお、保持時間の間の加熱温度(保持温度)は一定とした。また、取り出してからの冷却速度を4℃/秒(空冷)とした。保持温度を600℃とした金属発泡体の厚さ方向の断面写真を、保持時間毎に図7に示す。
 また、純Al粉末とTiH粉末とからなる板状プリカーサ(厚さ1mm)についても同様にして、板状金属発泡体を作製した。ただし、保持温度を660℃とした。
 [評価:平均気泡径および気泡率の測定]
 上記の手順で作製した金属発泡体の平均気泡径および気泡率(Al−7%Si合金のみ)を測定した。結果を図7および図8に示す。
 Al−7%Si合金からなる板状金属発泡体に関しては、640℃になった時点で取り出した場合(図示せず)および600℃で5分以上保持した場合は、TiH粉末の発泡により上側のグラファイト板に接触した。また、保持温度が580℃以上では、保持時間をとることで気泡率を高くする効果が見られた。しかし、30分以上保持しても、気泡率、気泡径ともに大きな変化は見られなかった。特に、600℃で5~15分保持することで、気泡率が50面積%を超え平均気泡径が2mm未満である板状金属発泡体が得られた。
 また、純Alからなる板状金属発泡体に関しては、保持時間なしでは、板状プリカーサ内で厚さ方向へ剥離するように亀裂状に成長した。しかし、5分以上保持することで径の小さい気泡も発生し、全体として均一に分散した気泡をもつ金属発泡体層が形成された。
[Production of composite damping metal plate]
(Preparation step) Al-7% Si alloy powder (average particle size: 70 μm) was prepared as the alloy powder, and TiH 2 powder was prepared as the foaming aid powder. TiH 2 powder was 45μm or less by sieve. Al-7% Si alloy powder and TiH 2 powder were mixed by a ball mill to obtain a mixed powder. The mixing ratio was 100% by mass of the mixed powder and 0.5% by mass of the TiH 2 powder.
(Molding step) The mixed powder was formed into a rod shape having a diameter of 12 mm and a length of 10 mm by uniaxial pressing and then rolled in order in the longitudinal direction to a thickness of 1 mm to obtain a plate-like precursor.
(Lamination process) A plate-like precursor cut out to 20 mm x 180 mm is placed on a damping alloy plate (20 mm x 180 mm x thickness 1 mm) made of a Fe-Al-Mn-Cr alloy, and further a plate-like precursor. A similar damping alloy plate was placed on the top. Thus, a laminate having a thickness of 3 mm was obtained. The laminate was fixed so that the thickness did not change during processing.
Was (heating and foaming step) foaming a TiH 2 powder with an alloy powder by heating in a vacuum atmosphere in an infrared large image furnace laminate (hereinafter referred to as "furnace") and a semi-molten state. The plate-like precursor was preheated at 500 ° C. for 20 minutes, then heated to a predetermined temperature at 15 ° C./minute, held at 600 ° C. for 5 minutes, then removed from the heating furnace and air-cooled at 4 ° C./second.
A cross-sectional photograph of the composite vibration-damping metal plate of this example obtained by the above procedure is shown in FIG. In the above laminating step, the layers were laminated in order from the bottom. The obtained composite vibration-damping metal plate was provided with two vibration-damping alloy plates and a foamed aluminum layer made of an aluminum alloy containing silicon sandwiched between them, each having a thickness of 1 mm. . At the interface between the vibration-damping alloy plate and the foamed aluminum layer, a bonded portion where both were bonded and a non-bonded portion where they were not bonded were observed.
The foamed aluminum layer included in the composite vibration-damping metal plate of Example 1 had a cell ratio of 60 area% and an average pore diameter of 1.82 mm. The bubble ratio is the ratio (area%) of the total area of the bubble portion calculated by automatic image recognition to the area of 100% of the entire cross section calculated by automatic image recognition in the cross section of the metal foam layer shown in FIG. Asked. Moreover, the average bubble diameter measured the maximum diameter of the diameter of all the bubbles observed in the cross section of the thickness direction of a metal foam, and calculated | required the arithmetic average value.
[Evaluation: Vibration control]
The obtained composite damping metal plate (thickness 3 mm) was cut out to 10 mm × 160 mm to prepare a test piece, and the loss factor was measured by the central vibration method. The center excitation method is a method in which the center part of a test piece fixed with a triangular jig is subjected to random excitation (amplitude: 1.0 × 10 −7 to 1.0 × 10 −5 , frequency: 20000 Hz or less). Then, the loss coefficient η is calculated from the frequency response function obtained by the excitation by the half width method. For the measurement of the frequency response function, DS-2000 manufactured by Ono Sokki was used. The results are shown in FIG.
For comparison, the damping property of foamed aluminum (thickness 1 mm) produced in the same manner as in Example 1 was measured in the same manner except that a graphite plate was used instead of the damping metal plate. The results are shown in FIG. Although not shown, the loss coefficient η of the damping alloy plate made of the Fe—Al—Mn—Cr alloy is located between the example and the comparative example in FIG.
The sample of Example 1 had a loss coefficient η of about 0.04 to 0.08, and showed a high damping capacity comparable to that of the resin material. In the case of only foamed aluminum, the damping capacity is greatly improved compared to the case of only the damping metal plate, because the damping metal plate and the foamed aluminum layer are partially joined, and the interface between the two This is also because the vibration energy is absorbed. In addition, it consists of an aluminum alloy whose Si content rate is 6.5 mass% or more and 7.5 mass% or less, a bubble rate is 57 area% or more and 63 area% or less, and an average bubble diameter is 1.6 mm or more and 1.9 mm or less. If it is a metal foam, it is an error range, and it is thought that the damping capacity equivalent to the composite damping metal plate of Example 1 is shown.
[Reference example]
Below, the manufacturing method of the metal foam which consists of aluminum or an aluminum alloy is shown as a reference example. The produced metal foam is cut out as it is or into a predetermined size and joined to various metal plates to obtain a composite vibration-damping metal plate.
[Production of metal foam]
(Preparation step) Al-7% Si alloy powder, 6061 alloy powder and pure Al powder were prepared as metal powders. The average particle diameter of these metal powders was about 70 μm for Al-7% Si alloy powder and about 30 μm for pure Al powder. Further, as a foaming aid powder were used TiH 2 powder. TiH 2 powder was 45μm or less by sieve. Al-7% Si alloy powder, 6061 alloy powder or pure Al powder, and TiH 2 powder were mixed by a ball mill to obtain a mixed powder. The mixing ratio was 100% by mass of the mixed powder and 0.5% by mass of the TiH 2 powder.
(Molding step) The mixed powder was formed into a rod shape having a diameter of 12 mm and a length of 10 mm by uniaxial pressing and then rolled in order in the longitudinal direction to a thickness of 1 mm to obtain a plate-like precursor.
(Heating and foaming step) A plate-like precursor cut into 20 mm x 180 mm is heated in a vacuum atmosphere in an infrared large image furnace (hereinafter abbreviated as "heating furnace") to make the metal powder in a semi-molten state and to foam TiH 2 powder. It was. The plate-like precursor was preheated at 500 ° C. for 20 minutes, then heated to a predetermined temperature at 15 ° C./minute, taken out from the heating furnace when the predetermined temperature was reached, and air-cooled at 4 ° C./second. The temperature at the time of taking out is 560 ° C. lower than the solidus temperature (T S = 580 ° C.) of the Al-7% Si alloy, and 580 to 620 ° C. above T S and lower than the liquidus temperature (T L = 630 ° C.). And a plurality of metal foams were produced by changing the temperature in the range of 640 to 750 ° C. above TL . In addition, the temperature in a heating foaming process is the value which measured the temperature in a heating furnace with a thermocouple. FIG. 5 shows cross-sectional photographs in the thickness direction of the metal foams produced using the mixed powders, for each temperature taken out.
Whichever metal powder was used, a metal foam having bubbles was obtained by melting the metal powder and foaming the TiH 2 powder. When pure Al powder was used, the bubbles formed at 690 ° C. or lower grew in a crack shape so as to peel in the thickness direction in the plate-like precursor. Similarly, when 6061 alloy powder was used, bubbles formed at 660 ° C. or lower grew in a crack shape so as to peel in the thickness direction within the plate-like precursor. This is because the foaming of TiH 2 powder was actively generated while the temperature was low and the liquid phase ratio was low. In all cases, when the temperature rose, bubbles that were nearly circular were formed.
On the other hand, when the Al-7% Si alloy was used, the plate-like precursor was only warped at 560 ° C. below the solidus temperature. By heating above the solidus temperature, fine bubbles were uniformly dispersed and formed. However, when the temperature rose above the liquidus temperature, the bubbles grew greatly, and many large bubbles exceeding 3 mm were observed above 700 ° C.
[Evaluation: Measurement of average bubble diameter and bubble ratio]
The average bubble diameter and bubble ratio of the produced metal foam were measured in the same manner as described above. In addition, the measurement of the average bubble diameter was measured about the metal foam which consists of an Al-7% Si alloy taken out at 580 degreeC or 600 degreeC. The results were 0.58 mm (580 ° C.) and 0.83 mm (600 ° C.), respectively. Moreover, the bubble rate of each metal foam with respect to taking-out temperature is shown in FIG. It was found that when the 6061 alloy powder was used and when the pure Al powder was used, both the bubble ratio and the average bubble diameter tended to increase as the temperature increased. However, when the temperature became too high, the hydrogen inside the greatly expanded bubbles escaped outside, and the foam contracted. On the other hand, when Al-7% Si alloy powder is used, it is considered that fine spherical bubbles formed at 580 ° C. grow as they are and increase the bubble rate. However, coarse bubbles were observed at 640 ° C. or higher. This is presumably because the bubbles accounted for too much or the adjacent bubbles easily adhered to each other because the liquid phase accounted for 100%.
Further, as described above, if the heating temperature is too high, there is a possibility that bubbles will become large. However, when Al-7% Si alloy powder is used, it is considered that fine bubbles can be generated uniformly by heating the liquid phase ratio to about 70 to 90%. Therefore, when the silicon content is 7% by mass or more, an optimum liquid phase ratio can be obtained even at a lower heating temperature. Therefore, considering FIG. 9, if the Si content is 7% by mass or more and 10% by mass or less, there is a high possibility that fine bubbles can be generated uniformly.
[Preparation of sheet metal foam]
Next, a plate-like precursor (thickness 1 mm) made of Al-7% Si alloy powder and TiH 2 powder produced by the above procedure was cut into 70 mm × 18 mm, and placed between two graphite plates, A plate-shaped metal foam was produced by heating in a heating furnace. The plate-like precursor was placed at the center of one graphite plate. Spacers with a thickness of 3 mm were fixed at the four corners of the graphite plate, and another graphite plate was placed and fixed thereon. The lower graphite plate is provided with an insertion hole that opens to the end surface and extends to the central portion. A thermocouple was inserted into the insertion hole, and the temperature of the central portion on which the plate-like precursor was placed was measured. Note that the graphite plate is merely a restraint plate, and after cooling through the heating and foaming step, the plate-like metal foam and the graphite plate are easily separated.
The plate-like precursor is preheated at 500 ° C. for 20 minutes, then heated up to a predetermined temperature at 15 ° C./minute, and the time (holding time) from reaching the predetermined temperature to taking out is 0, 5, 15, 30, 60 minutes. A plurality of plate-like metal foams were produced. The heating temperature (holding temperature) during the holding time was constant. The cooling rate after removal was set to 4 ° C./second (air cooling). A cross-sectional photograph in the thickness direction of the metal foam with a holding temperature of 600 ° C. is shown in FIG. 7 for each holding time.
Further, a plate-shaped metal foam was produced in the same manner for a plate-shaped precursor (thickness 1 mm) made of pure Al powder and TiH 2 powder. However, the holding temperature was 660 ° C.
[Evaluation: Measurement of average bubble diameter and bubble ratio]
The average cell diameter and cell rate (only Al-7% Si alloy) of the metal foam produced by the above procedure were measured. The results are shown in FIG. 7 and FIG.
When the plate-like metal foam made of an Al-7% Si alloy is taken out when it reaches 640 ° C. (not shown) and kept at 600 ° C. for 5 minutes or more, the upper side is caused by foaming of TiH 2 powder. In contact with the graphite plate. In addition, when the holding temperature was 580 ° C. or higher, the effect of increasing the bubble ratio was observed by taking the holding time. However, no significant changes were observed in the bubble rate and bubble diameter even when held for 30 minutes or longer. In particular, by holding at 600 ° C. for 5 to 15 minutes, a plate-like metal foam having a cell ratio exceeding 50 area% and an average cell diameter of less than 2 mm was obtained.
Further, the plate-like metal foam made of pure Al grew like a crack so as to peel in the thickness direction in the plate-like precursor without holding time. However, by holding for 5 minutes or more, bubbles having small diameters were generated, and a metal foam layer having bubbles uniformly dispersed as a whole was formed.

Claims (14)

  1.  金属板と該金属板に積層する金属発泡体層とを有する複合制振金属板であって、
     前記金属発泡体層は、前記金属板の表面に部分的に接合していることを特徴とする複合制振金属板。
    A composite damping metal plate having a metal plate and a metal foam layer laminated on the metal plate,
    The composite vibration-damping metal plate, wherein the metal foam layer is partially bonded to the surface of the metal plate.
  2.  前記金属発泡体層の気泡率は、面積率で50面積%以上70面積%以下である請求項1記載の複合制振金属板。 2. The composite vibration-damping metal plate according to claim 1, wherein the metal foam layer has an area ratio of 50 area% to 70 area% in area ratio.
  3.  前記金属発泡体層は、発泡アルミニウムからなる請求項1記載の複合制振金属板。 The composite vibration-damping metal plate according to claim 1, wherein the metal foam layer is made of foamed aluminum.
  4.  前記発泡アルミニウムは、珪素を含むアルミニウム合金からなる請求項3記載の複合制振金属板。 The composite vibration-damping metal plate according to claim 3, wherein the foamed aluminum is made of an aluminum alloy containing silicon.
  5.  前記金属板は、制振合金からなる請求項1記載の複合制振金属板。 The composite vibration-damping metal plate according to claim 1, wherein the metal plate is made of a vibration-damping alloy.
  6.  前記制振合金は、鉄を主成分とする鉄系制振合金である請求項5記載の複合制振金属板。 The composite vibration-damping metal plate according to claim 5, wherein the vibration-damping alloy is an iron-based vibration-damping alloy containing iron as a main component.
  7.  前記金属板と前記金属発泡体層とが交互に積層された3層以上からなる多層構造をもつ請求項1記載の複合制振金属板。 The composite vibration-damping metal plate according to claim 1, wherein the composite vibration-damping metal plate has a multilayer structure composed of three or more layers in which the metal plate and the metal foam layer are alternately laminated.
  8.  前記金属発泡体層は、それぞれ前記金属板に挟持されている請求項7記載の複合制振金属板。 The composite vibration-damping metal plate according to claim 7, wherein each of the metal foam layers is sandwiched between the metal plates.
  9.  前記金属発泡体層は、金属粉末と加熱により分解して気体を発生する発泡助剤粉末との混合粉末を前記金属板の表面で溶融させるとともに該発泡助剤粉末を発泡させてなる請求項1記載の複合制振金属板。 The metal foam layer is formed by melting a mixed powder of a metal powder and a foaming auxiliary powder that decomposes by heating to generate gas on the surface of the metal plate and foaming the foaming auxiliary powder. The composite vibration-damping metal plate described.
  10.  金属板と該金属板に積層する金属発泡体層とを有する複合制振金属板の製造方法であって、
     金属粉末と加熱により分解して気体を発生する発泡助剤粉末との混合粉末を調製する調製工程と、
     前記金属板と拘束板との間に前記混合粉末からなる混合粉末層を配置した少なくとも3層からなる積層体を得る積層工程と、
     前記積層体を加熱することで前記金属粉末を溶融させるとともに前記発泡助剤粉末を発泡させる加熱発泡工程と、
     を含むことを特徴とする複合制振金属板の製造方法。
    A method of manufacturing a composite vibration-damping metal plate having a metal plate and a metal foam layer laminated on the metal plate,
    A preparation step of preparing a mixed powder of a metal powder and a foaming assistant powder that decomposes by heating to generate gas;
    A laminating step of obtaining a laminate composed of at least three layers in which a mixed powder layer composed of the mixed powder is disposed between the metal plate and the restraint plate;
    A heating and foaming step of melting the metal powder by heating the laminate and foaming the foaming auxiliary powder;
    A method for producing a composite vibration-damping metal plate, comprising:
  11.  さらに、前記調製工程で得られた前記混合粉末を成形して板状成形体を得る成形工程を含み、前記積層工程は、前記金属板と前記拘束板との間に該板状成形体を配置する工程である請求項10記載の複合制振金属板の製造方法。 Furthermore, it includes a forming step of forming the mixed powder obtained in the preparation step to obtain a plate-like formed body, and the laminating step arranges the plate-like formed body between the metal plate and the constraining plate. The method of manufacturing a composite vibration-damping metal plate according to claim 10, wherein
  12.  前記拘束板は前記複合制振金属板を構成する他の金属板であって、前記積層工程は、前記混合粉末層と2枚以上の前記金属板とを交互に積層させる工程である請求項10記載の複合制振金属板の製造方法。 11. The constraining plate is another metal plate constituting the composite vibration-damping metal plate, and the laminating step is a step of alternately laminating the mixed powder layer and two or more metal plates. The manufacturing method of the composite damping metal plate of description.
  13.  前記金属粉末は合金からなり、前記加熱発泡工程は、前記積層体を前記合金の固相線温度以上液相線温度以下の温度に加熱する工程である請求項10記載の複合制振金属板の製造方法。 The composite vibration-damping metal plate according to claim 10, wherein the metal powder is made of an alloy, and the heating and foaming step is a step of heating the laminate to a temperature not lower than a solidus temperature of the alloy and not higher than a liquidus temperature. Production method.
  14.  前記金属粉末は珪素を含むアルミニウム合金粉末であり、前記発泡助剤粉末はTiH粉末である請求項13記載の複合制振金属板の製造方法。 The method of manufacturing a composite vibration-damping metal plate according to claim 13, wherein the metal powder is an aluminum alloy powder containing silicon, and the foaming auxiliary powder is TiH 2 powder.
PCT/JP2009/069597 2008-11-14 2009-11-12 Composite damping metal sheet and method for producing same WO2010055957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-292827 2008-11-14
JP2008292827A JP2010117024A (en) 2008-11-14 2008-11-14 Composite damping metal sheet and method for producing the same

Publications (1)

Publication Number Publication Date
WO2010055957A1 true WO2010055957A1 (en) 2010-05-20

Family

ID=42170084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069597 WO2010055957A1 (en) 2008-11-14 2009-11-12 Composite damping metal sheet and method for producing same

Country Status (2)

Country Link
JP (1) JP2010117024A (en)
WO (1) WO2010055957A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390135A (en) * 2011-07-14 2012-03-28 东北大学 Preparation method of foamed aluminum sandwich plate
US20150007925A1 (en) * 2013-07-05 2015-01-08 Deeder Mohammad Aurongzeb High-strength structural elements using metal foam for portable information handling systems
CN105642671A (en) * 2016-01-11 2016-06-08 昆明理工大学 Preparation method of sandwich board with aluminium alloy foam core
US20180236835A1 (en) * 2015-09-11 2018-08-23 ThyssenKrupp Federn und Stabilisatoren GmbH Tube spring for motor vehicles and method for producing a tube spring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151949A (en) * 2012-01-24 2013-08-08 Toyota Industries Corp Composite damping metal sheet and method for producing the same
KR101282532B1 (en) 2012-03-12 2013-07-04 김태흥 Method and apparatus for the production of foamed aluminum board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176834A (en) * 1986-01-30 1987-08-03 神鋼鋼線工業株式会社 Composite material and manufacture thereof
JPS6349932U (en) * 1986-09-19 1988-04-05
JPH02243330A (en) * 1989-03-17 1990-09-27 Hitachi Ltd Panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176834A (en) * 1986-01-30 1987-08-03 神鋼鋼線工業株式会社 Composite material and manufacture thereof
JPS6349932U (en) * 1986-09-19 1988-04-05
JPH02243330A (en) * 1989-03-17 1990-09-27 Hitachi Ltd Panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390135A (en) * 2011-07-14 2012-03-28 东北大学 Preparation method of foamed aluminum sandwich plate
CN102390135B (en) * 2011-07-14 2013-10-16 东北大学 Preparation method of foamed aluminum sandwich plate
US20150007925A1 (en) * 2013-07-05 2015-01-08 Deeder Mohammad Aurongzeb High-strength structural elements using metal foam for portable information handling systems
US9321101B2 (en) * 2013-07-05 2016-04-26 Dell Products L.P. High-strength structural elements using metal foam for portable information handling systems
US20180236835A1 (en) * 2015-09-11 2018-08-23 ThyssenKrupp Federn und Stabilisatoren GmbH Tube spring for motor vehicles and method for producing a tube spring
CN105642671A (en) * 2016-01-11 2016-06-08 昆明理工大学 Preparation method of sandwich board with aluminium alloy foam core

Also Published As

Publication number Publication date
JP2010117024A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
WO2010055957A1 (en) Composite damping metal sheet and method for producing same
JP5754569B2 (en) Functionally gradient material precursor, method of producing functionally gradient material, functionally gradient material precursor and functionally gradient material
US8110143B2 (en) Composite metal foam and methods of preparation thereof
US20070264152A1 (en) Porous Metallic Materials and Method of Production Thereof
JP4189401B2 (en) Method for producing foamed aluminum
JP2010501794A (en) Shielding member, especially heat shield
Rabiei et al. Processing and characterization of a new composite metal foam
JP2017509791A (en) Method for producing metal matrix composite material
US20090202812A1 (en) Method for production of composite bodies and composite bodies produced thereby
JP2010116623A (en) Metal foamed body and method for producing metal foamed body
JP4061170B2 (en) Method for producing sandwich structure made of aluminum foam
JP2013151949A (en) Composite damping metal sheet and method for producing the same
US7329384B2 (en) Porous metal based composite material
JP2013151711A (en) Metal foamed body, composite damping metal plate, and method of manufacturing the metal foamed body
KR100253710B1 (en) Multi-layer, porous aluminium powder sintered material with a wire-net shaped reinforcing member therein and a manufacturing method thereof
JPS6184351A (en) Porous material
Baumeister et al. Metallic foams
Baumeister et al. Aluminum Foams—Processing, Properties, and Applications
JP6439550B2 (en) Porous aluminum sintered body, porous aluminum composite member, method for producing porous aluminum sintered body, method for producing porous aluminum composite member
KR102355057B1 (en) How to manufacture semi-finished products for composite materials
JP4230441B2 (en) Magnesium alloy hollow metal sphere
JP7477097B2 (en) Dissimilar material joint member and manufacturing method thereof
Abouei Mehrizi et al. Metallic Foams, New Generation of the Environmental Friendly Materials
KR20230108943A (en) Manufacturing method of aluminium foam
JP2010209374A (en) Foamed aluminum fitted with outer surface coating and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826201

Country of ref document: EP

Kind code of ref document: A1