WO2010067719A1 - Intracardiac defibrillation catheter - Google Patents

Intracardiac defibrillation catheter Download PDF

Info

Publication number
WO2010067719A1
WO2010067719A1 PCT/JP2009/070002 JP2009070002W WO2010067719A1 WO 2010067719 A1 WO2010067719 A1 WO 2010067719A1 JP 2009070002 W JP2009070002 W JP 2009070002W WO 2010067719 A1 WO2010067719 A1 WO 2010067719A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead wire
group
lumen
insulating tube
electrode group
Prior art date
Application number
PCT/JP2009/070002
Other languages
French (fr)
Japanese (ja)
Inventor
謙二 森
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008316715A external-priority patent/JP4346109B1/en
Priority claimed from JP2008316716A external-priority patent/JP4346110B1/en
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to CN200980146922.0A priority Critical patent/CN102223912B/en
Priority to KR1020117014755A priority patent/KR101261746B1/en
Publication of WO2010067719A1 publication Critical patent/WO2010067719A1/en
Priority to HK11113174.8A priority patent/HK1158562A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/046Specially adapted for shock therapy, e.g. defibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/395Heart defibrillators for treating atrial fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/0563Transvascular endocardial electrode systems specially adapted for defibrillation or cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3968Constructional arrangements, e.g. casings

Definitions

  • the present invention relates to an intracardiac defibrillation catheter that is inserted into a heart chamber to remove atrial fibrillation.
  • An external defibrillator is known as a defibrillator for removing atrial fibrillation (see, for example, Patent Document 1).
  • AED an external defibrillator
  • electrical energy is given to the patient's body by attaching an electrode pad to the patient's body surface and applying a DC voltage.
  • the electrical energy flowing from the electrode pad into the patient's body is usually 150 to 200 J, and a part (usually about several percent to 20%) of the fluid flows to the heart and is used for the defibrillation treatment.
  • Atrial fibrillation is likely to occur during cardiac catheterization, and even in this case, it is necessary to perform cardioversion.
  • AED that supplies electric energy from outside the body, it is difficult to supply effective electric energy (for example, 10 to 30 J) to the heart that is causing fibrillation.
  • the present invention has been made based on the circumstances as described above, and an object of the present invention is to ensure the necessary and sufficient electric energy for defibrillation for the heart that has undergone atrial fibrillation during cardiac catheterization. It is an object of the present invention to provide an intracardiac defibrillation catheter that can be supplied to a patient. Another object of the present invention is to provide an intracardiac defibrillation catheter capable of performing defibrillation treatment without causing burns on the patient's body surface.
  • the intracardiac defibrillation catheter of the present invention is a catheter for defibrillation inserted into the heart chamber, An insulating tube member having a multi-lumen structure; A handle connected to the proximal end of the tube member; A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member; A second electrode group (second DC electrode group) composed of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side; A substantially cylindrical connector that is built in the proximal end portion of the handle and has a plurality of pin terminals that protrude in the distal direction disposed on the distal end surface; A first insulating tube having a distal end connected to the first lumen of the tube member, extending inside the handle, and having a proximal end opened in the vicinity of the connector; A second insulating tube having a distal end connected to the second lumen of
  • the intracardiac defibrillation catheter having such a configuration is inserted into the heart chamber such that the first DC electrode group is located in the coronary vein and the second DC electrode group is located in the right atrium, and the first lead wire is inserted. Voltages having different polarities are applied to the first DC electrode group and the second DC electrode group via the group and the second lead wire group (a DC voltage is applied between the first DC electrode group and the second DC electrode group). Thus, electrical energy is directly applied to the heart that is causing fibrillation, whereby defibrillation treatment is performed.
  • the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber electrical energy is directly applied to the fibrillated heart.
  • the electrical stimulation (electric shock) necessary and sufficient for treatment can be reliably applied only to the heart. And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
  • a first lead wire group consisting of lead wires connected to each of the electrodes constituting the first DC electrode group, and a second lead wire group consisting of lead wires connected to each of the electrodes constituting the second DC electrode group. are respectively extended in different lumens (first lumen and second lumen) of the tube member, so that they are completely insulated and isolated in the tube member. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is reliably prevented from occurring between the first lead wire group and the second lead wire group in the tube member. be able to.
  • first lead wire group and the second lead wire group are respectively extended to different insulating tubes (first insulating tube and second insulating tube) extending inside the handle. Both are completely insulated and isolated even inside the handle. For this reason, When a voltage necessary for intracardiac defibrillation is applied, it is possible to reliably prevent a short circuit from occurring between the first lead wire group and the second lead wire group inside the handle.
  • the lead wire constituting the first lead wire group (the base end portion of the lead wire extending from the base end opening of the first insulating tube) by the partition plate separating the first terminal group region and the second terminal group region )
  • the lead wires constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube) can be reliably and orderly separated.
  • the partition plate separating the first terminal group region and the second terminal group region separates and contacts the lead wires constituting the first lead wire group and the lead wires constituting the second lead wire group. Therefore, when a voltage necessary for defibrillation in the heart chamber is applied, the lead wires constituting the first lead wire group (the base end of the lead wire extending from the base end opening of the first insulating tube) Part) and the lead wire constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube) is surely prevented from being short-circuited. Can do.
  • the partition plate separating the first terminal group region and the second terminal group region incorporates the lead wire constituting the first lead wire group and the lead wire constituting the second lead wire group in the handle. Since it can be connected to a terminal group concentrated on the distal end surface of one connector, there is no need to connect multiple connectors (cords) to the base end side of the handle, the configuration is simplified, and defibrillation The operability as a moving catheter is improved.
  • the distal end edge of the partition plate is positioned on the distal end side with respect to the proximal end of the first insulating tube and the proximal end of the second insulating tube. Preferably it is.
  • the lead wire (lead wire constituting the first lead wire group) extending from the proximal end opening of the first insulating tube, and the second insulating tube Since there is always a partition plate between the lead wires extending from the base end opening (lead wires constituting the second lead wire group), it is ensured that both are in contact and short-circuited. Can be prevented.
  • a proximal-side potential measurement electrode group comprising a plurality of ring-shaped electrodes mounted on the tube member and spaced from the second DC electrode group on the proximal end side; , A third insulating tube having a distal end connected to the third lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector; A plurality of lead wires connected to each of the electrodes constituting the proximal end side potential measurement electrode group, extending into the third lumen of the tube member and the third insulating tube, A third lead wire group extending from the proximal end opening of the tube and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector; It is preferable to become.
  • the cardiac potential (particularly, the cardiac potential of the superior vena cava where an abnormal potential is likely to occur) can be measured by the proximal potential measuring electrode group. Defibrillation treatment can be performed while monitoring the potential.
  • the third lead wire group extends to a third lumen different from any of the lumens (first lumen and second lumen) from which the first lead wire group or the second lead wire group extends.
  • the third lead wire group in the tube member is completely insulated and isolated from both the first lead wire group and the second lead wire group. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit occurs between the third lead wire group and the first lead wire group or the second lead wire group in the tube member. This can be surely prevented.
  • the third lead wire group extends in the third insulating tube having the tip connected to the third lumen, so that the third lead wire group inside the handle becomes the first lead wire group.
  • the second lead wire group are completely insulated and isolated from each other. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is caused between the third lead wire group and the first lead wire group or the second lead wire group even inside the handle. It is possible to reliably prevent the occurrence.
  • a pull wire for tip deflection operation extends to the fourth lumen of the tube member.
  • the pull wire for the tip deflection operation is formed by using the lumen (the first lead wire group, the second lead wire group, or the third lead wire group extending). Since the first lumen, the second lumen, and the third lumen) extend to a different lumen (fourth lumen), the lead wires constituting the lead wire group are formed by the pull wires that move in the axial direction during the tip deflection operation. There is no damage (eg, scratches).
  • the intracardiac defibrillation catheter of the present invention is preferably inserted into the heart chamber in order to remove atrial fibrillation that occurs during cardiac catheterization.
  • the intracardiac defibrillation catheter of the present invention is a catheter for defibrillation inserted into the heart chamber, An insulating tube member having a multi-lumen structure; A handle connected to the proximal end of the tube member; A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member; A second electrode group (second DC electrode group) composed of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side; A substantially cylindrical connector that is built in the proximal end portion of the handle and has a plurality of pin terminals that protrude in the distal direction disposed on the distal end surface; A first insulating tube having a distal end connected to the first lumen of the tube member, extending inside the handle, and having a proximal end opened in the vicinity of the connector; A second insulating tube having a distal end connected to the second lumen
  • the intracardiac defibrillation catheter having such a configuration is inserted into the heart chamber such that the first DC electrode group is located in the coronary vein and the second DC electrode group is located in the right atrium, and the first lead wire is inserted. Voltages having different polarities are applied to the first DC electrode group and the second DC electrode group via the group and the second lead wire group (a DC voltage is applied between the first DC electrode group and the second DC electrode group). Thus, electrical energy is directly applied to the heart that is causing fibrillation, whereby defibrillation treatment is performed.
  • the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber electrical energy is directly applied to the fibrillated heart.
  • the electrical stimulation (electric shock) necessary and sufficient for treatment can be reliably applied only to the heart. And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
  • a first lead wire group consisting of lead wires connected to each of the electrodes constituting the first DC electrode group, and a second lead wire group consisting of lead wires connected to each of the electrodes constituting the second DC electrode group. are respectively extended in different lumens (first lumen and second lumen) of the tube member, so that they are completely insulated and isolated in the tube member. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is reliably prevented from occurring between the first lead wire group and the second lead wire group in the tube member. be able to.
  • first lead wire group and the second lead wire group are respectively extended to different insulating tubes (first insulating tube and second insulating tube) extending inside the handle. Both are completely insulated and isolated even inside the handle. Therefore, it is possible to reliably prevent a short circuit from occurring between the first lead wire group and the second lead wire group inside the handle when a voltage necessary for intracardiac defibrillation is applied. Can do.
  • the plurality of lead wires constituting the first lead wire group and the plurality of lead wires constituting the second lead wire group are the base ends of the insulating tube (first insulating tube or second insulating tube).
  • the part (base end part) that extends from the opening and is divided and connected and fixed to each pin terminal of the connector is solidified with resin, so that the shape of each lead wire does not change Because it is held, when the intracardiac defibrillation catheter of the present invention is manufactured (for example, when a wired connector is mounted inside the handle), the lead wire extending from the proximal end opening of the insulating tube Can be prevented from being kinked or coming into contact with the edge of the pin terminal.
  • the plurality of lead wires constituting the first lead wire group and the plurality of lead wires constituting the second lead wire group can be kept separated from each other by the resin (insulation by the resin).
  • a lead wire constituting the first lead wire group (a base end portion of the lead wire extending from the base end opening of the first insulating tube); It is possible to reliably prevent a short circuit from occurring between the lead wires constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube).
  • the lead wires constituting the first lead wire group and the lead wires constituting the second lead wire group are connected to terminals intensively arranged on the distal end surface of one connector built in the handle. Therefore, it is not necessary to connect a plurality of connectors (cords) to the proximal end side of the handle, the configuration is simplified, and the operability as a defibrillation catheter is improved.
  • the proximal end portion of the first insulating tube and the proximal end portion of the second insulating tube are embedded in the resin.
  • the intracardiac defibrillation catheter having such a configuration, it extends from the proximal end opening of the insulating tube (the first insulating tube or the second insulating tube) until it is connected and fixed to the pin terminal.
  • the entire area of each lead wire can be completely covered with resin, and the shape of the lead wire (base end portion) can be completely held and fixed.
  • a proximal-side potential measurement electrode group including a plurality of ring-shaped electrodes attached to the tube member and spaced from the second DC electrode group to the proximal end side; , A third insulating tube having a distal end connected to the third lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector; A plurality of lead wires connected to each of the electrodes constituting the proximal end side potential measurement electrode group, extending into the third lumen of the tube member and the third insulating tube, A third lead wire group extending from the proximal end opening of the tube and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector; It is preferable to become.
  • a plurality of lead wires (base end portions) constituting the third lead wire group which extend from the base end opening of the third insulating tube and are divided and connected and fixed to each of the pin terminals of the connector. It is preferable that these shapes are retained by being solidified with the resin.
  • the cardiac potential (particularly, the cardiac potential of the superior vena cava where an abnormal potential is likely to occur) can be measured by the proximal potential measuring electrode group. Defibrillation treatment can be performed while monitoring the potential.
  • the third lead wire group extends to a third lumen different from any of the lumens (first lumen and second lumen) from which the first lead wire group or the second lead wire group extends.
  • the third lead wire group in the tube member is completely insulated and isolated from both the first lead wire group and the second lead wire group. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit occurs between the third lead wire group and the first lead wire group or the second lead wire group in the tube member. This can be surely prevented.
  • the third lead wire group extends in the third insulating tube having the tip connected to the third lumen, so that the third lead wire group inside the handle becomes the first lead wire group.
  • the second lead wire group are completely insulated and isolated from each other. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is caused between the third lead wire group and the first lead wire group or the second lead wire group even inside the handle. It is possible to reliably prevent the occurrence.
  • a pull wire for tip deflection operation extends to the fourth lumen of the tube member.
  • the pull wire for the tip deflection operation is formed by using the lumen (the first lead wire group, the second lead wire group, or the third lead wire group extending). Since the first lumen, the second lumen, and the third lumen) extend to a different lumen (fourth lumen), the lead wires constituting the lead wire group are formed by a pull wire that moves in the axial direction during the tip deflection operation. There is no damage (eg, scratches).
  • the intracardiac defibrillation catheter of the present invention is preferably inserted into the heart chamber to remove atrial fibrillation that occurs during cardiac catheterization.
  • the electrical energy necessary and sufficient for defibrillation can be reliably supplied to the heart that has undergone atrial fibrillation or the like during cardiac catheterization. In addition, it does not cause burns on the patient's body surface and is less invasive. In addition, it is ensured that a short circuit will occur between the first lead wire group and the second lead wire group inside the tube member and the handle when a voltage necessary for intracardiac defibrillation is applied. Can be prevented.
  • the lead wires constituting the first lead wire group (of the first insulating tube) Between the lead wire portion extending from the base end opening) and the lead wire constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube).
  • the lead wires constituting the first lead wire group Between the lead wire portion extending from the base end opening) and the lead wire constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube).
  • the lead wire extending from the proximal end opening of the insulating tube is kinked or contacted with the edge of the pin terminal at the time of manufacture. Can be prevented.
  • FIG. 1 is a plan view for explaining one embodiment of an intracardiac defibrillation catheter of the present invention (a diagram for explaining dimensions and hardness).
  • FIG. 2 is a transverse sectional view showing a section AA in FIG. 1.
  • FIG. 2 is a transverse sectional view showing a BB section, a CC section, and a DD section in FIG.
  • FIG. 2 is a perspective view showing an internal structure of a handle of an embodiment of the intracardiac defibrillation catheter shown in FIG. 1.
  • FIG. 1 is a plan view for explaining one embodiment of an intracardiac defibrillation catheter of the present invention (a diagram for explaining dimensions and hardness).
  • FIG. 2 is a transverse sectional view showing a section AA in FIG. 1.
  • FIG. 2 is a transverse sectional view showing a BB section, a CC section, and a DD section in FIG.
  • FIG. 2 is a perspective view showing an internal structure of a handle of
  • FIG. 6 is a partially enlarged view of the inside (front end side) of the handle shown in FIG. 5.
  • FIG. 6 is a partially enlarged view of the inside (base end side) of the handle shown in FIG. 5.
  • It which looked at the connection state to the pin terminal of the lead wire shown in FIG. 10 from the front end side.
  • FIGS. 2C to 2C are cross-sectional views showing a BB cross section, a CC cross section, and a DD cross section of FIG.
  • the intracardiac defibrillation catheter 100 of this embodiment includes a multi-lumen tube 10, a handle 20, a first DC electrode group 31G, a second DC electrode group 32G, a proximal-side potential measurement electrode group 33G, A lead wire group 41G, a second lead wire group 42G, and a third lead wire group 43G are provided.
  • the multi-lumen tube 10 (insulating tube member having a multi-lumen structure) constituting the intracardiac defibrillation catheter 100 of this embodiment has four lumens (first A lumen 11, a second lumen 12, a third lumen 13, and a fourth lumen 14) are formed.
  • 15 is a fluororesin layer that divides the lumen
  • 16 is an inner (core) portion made of a low hardness nylon elastomer
  • 17 is an outer (shell) portion made of a high hardness nylon elastomer.
  • 3 and 18 in FIG. 3 is a stainless steel wire forming a braided blade.
  • the fluororesin layer 15 partitioning the lumen is made of a highly insulating material such as perfluoroalkyl vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE).
  • PFA perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • the nylon elastomer that forms the outer portion 17 of the multi-lumen tube 10 has a hardness that varies depending on the axial direction. Thereby, the multi-lumen tube 10 is comprised so that hardness may become high in steps toward the base end side from the front end side.
  • the hardness of the region indicated by L1 (length 52 mm) (hardness by a D-type hardness meter) is 40, and the hardness of the region indicated by L2 (length 108 mm) is 55, L3 (long).
  • the hardness of the region shown by 25.7 mm) is 63, the hardness of the region shown by L4 (length 10 mm) is 68, and the hardness of the region shown by L5 (length 500 mm) is 72.
  • the braided blade composed of the stainless steel wire 18 is formed only in the region indicated by L5 in FIG. 2, and is provided between the inner portion 16 and the outer portion 17 as shown in FIG.
  • the outer diameter of the multi-lumen tube 10 is, for example, 1.2 to 3.3 mm.
  • the method for manufacturing the multi-lumen tube 10 is not particularly limited.
  • the handle 20 constituting the intracardiac defibrillation catheter 100 of this embodiment includes a handle main body 21, a knob 22, and a strain relief 24. By rotating the knob 22, the tip of the multi-lumen tube 10 can be deflected (swinged).
  • the first DC electrode group 31G, the second DC electrode group 32G, and the proximal-side potential measurement electrode group 33G are attached to the outer periphery of the multi-lumen tube 10 (a distal end region where no braid is formed).
  • the “electrode group” is a set of a plurality of electrodes that constitute the same pole (having the same polarity) or are mounted at a narrow interval (for example, 5 mm or less) with the same purpose. Refers to the body.
  • the first DC electrode group is formed by mounting a plurality of electrodes constituting the same pole (-pole or + pole) at a narrow interval in the tip region of the multi-lumen tube.
  • the number of electrodes constituting the first DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
  • the first DC electrode group 31 ⁇ / b> G includes eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10.
  • the electrodes 31 constituting the first DC electrode group 31G are connected to terminals of the same pole in the DC power supply device via lead wires (lead wires 41 constituting the first lead wire group 41G) and connectors described later. .
  • the width (length in the axial direction) of the electrode 31 is preferably 2 to 5 mm, and is 4 mm as a suitable example. If the width of the electrode 31 is too narrow, the amount of heat generated when a voltage is applied may be excessive, which may damage surrounding tissues. On the other hand, if the width of the electrode 31 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the first DC electrode group 31G is provided may be impaired.
  • the mounting interval of the electrodes 31 is preferably 1 to 5 mm, and 2 mm is a preferable example.
  • the first DC electrode group 31G is located, for example, in the coronary vein.
  • the second DC electrode group is spaced from the mounting position of the first DC electrode group of the multi-lumen tube toward the base end side, and a plurality of electrodes constituting a pole (+ pole or ⁇ pole) opposite to the first DC electrode group are narrow Installed at intervals.
  • the number of electrodes constituting the second DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
  • the second DC electrode group 32G is composed of eight ring-shaped electrodes 32 that are mounted on the multi-lumen tube 10 while being spaced apart from the mounting position of the first DC electrode group 31G toward the proximal end side.
  • the electrode 32 constituting the second DC electrode group 32G is connected to a terminal (first DC electrode group) of the same polarity in the DC power supply device via a lead wire (lead wire 42 constituting the second lead wire group 42G) and a connector described later.
  • the electrode groups have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode).
  • the width (length in the axial direction) of the electrode 32 is preferably 2 to 5 mm, and is 4 mm as a suitable example. If the width of the electrode 32 is too narrow, the amount of heat generated at the time of voltage application becomes excessive, which may damage the surrounding tissue. On the other hand, if the width of the electrode 32 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the second DC electrode group 32G is provided may be impaired.
  • the mounting interval of the electrodes 32 is preferably 1 to 5 mm, and 2 mm is a preferable example.
  • the second DC electrode group 32G is located, for example, in the right atrium.
  • the proximal-side potential measurement electrode group 33G is separated from the attachment position of the second DC electrode group 32G toward the proximal end side, and the four ring electrodes 3 attached to the multi-lumen tube 10. It is composed of three.
  • the electrodes 33 constituting the proximal-side potential measuring electrode group 33G are connected to the electrocardiograph via lead wires (lead wires 43 constituting the third lead wire group 43G) and connectors described later.
  • the width (length in the axial direction) of the electrode 33 is preferably 0.5 to 2.0 mm, and 1.2 mm is a preferable example. If the width of the electrode 33 is too wide, the measurement accuracy of the cardiac potential is lowered, or it is difficult to specify the site where the abnormal potential is generated.
  • the mounting interval of the electrodes 33 (the distance between adjacent electrodes) is preferably 1.0 to 10.0 mm, and 5 mm is a preferable example.
  • the proximal-side potential measurement electrode group 33G is located, for example, in the superior vena cava where an abnormal potential is likely to occur.
  • a distal tip 35 is attached to the distal end of the intracardiac defibrillation catheter 100.
  • a lead wire is not connected to the tip chip 35 and is not used as an electrode in this embodiment. However, it can also be used as an electrode by connecting a lead wire.
  • the constituent material of the tip 35 is not particularly limited, such as metal materials such as platinum and stainless steel, various resin materials, and the like.
  • the separation distance d2 between the first DC electrode group 31G (base end side electrode 31) and the second DC electrode group 32G (tip end side electrode 32) is preferably 40 to 100 mm, and 66 mm is a preferable example. is there.
  • the distance d3 between the second DC electrode group 32G (base end side electrode 32) and the base end side potential measurement electrode group 33G (tip end side electrode 33) is preferably 5 to 50 mm, and a suitable example is shown. 30 mm.
  • platinum or a platinum-based material is used in order to improve the contrast with respect to X-rays. It is preferable to consist of these alloys.
  • the first lead wire group 41G shown in FIGS. 3 and 4 is an aggregate of eight lead wires 41 connected to each of the eight electrodes (31) constituting the first DC electrode group (31G). .
  • first lead wire group 41G (lead wire 41)
  • each of the eight electrodes 31 constituting the first DC electrode group 31G can be electrically connected to the DC power supply device.
  • the eight electrodes 31 constituting the first DC electrode group 31G are connected to different lead wires 41, respectively.
  • Each of the lead wires 41 is welded to the inner peripheral surface of the electrode 31 at the tip portion, and enters the first lumen 11 from a side hole formed in the tube wall of the multi-lumen tube 10.
  • the eight lead wires 41 that have entered the first lumen 11 extend to the first lumen 11 as a first lead wire group 41G.
  • the second lead wire group 42G shown in FIGS. 3 and 4 is an aggregate of eight lead wires 42 connected to each of the eight electrodes (32) constituting the second DC electrode group (32G). .
  • Each of the eight electrodes 32 constituting the second DC electrode group 32G can be electrically connected to the DC power supply device by the second lead wire group 42G (lead wire 42).
  • the eight electrodes 32 constituting the second DC electrode group 32G are connected to different lead wires 42, respectively.
  • Each of the lead wires 42 is welded to the inner peripheral surface of the electrode 32 at the tip portion thereof, and the second lumen 12 (the first lead wire group 41G extends from the side hole formed in the tube wall of the multi-lumen tube 10. A different lumen from the existing first lumen 11 is entered.
  • the eight lead wires 42 that have entered the second lumen 12 extend to the second lumen 12 as a second lead wire group 42G.
  • the first lead wire group 41G extends to the first lumen 11 and the second lead wire group 42G extends to the second lumen 12. Fully insulated and isolated. Therefore, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G (first DC electrode group 31G) and the second lead wire group 42G (second DC electrode group 32G). Can be reliably prevented.
  • the third lead wire group 43G shown in FIG. 3 is an assembly of four lead wires 43 connected to each of the electrodes (33) constituting the proximal-side potential measurement electrode group (33G). With the third lead wire group 43G (lead wire 43), each of the electrodes 33 constituting the proximal end side potential measurement electrode group 33G can be connected to an electrocardiograph.
  • the four electrodes 33 constituting the base end side potential measurement electrode group 33G are connected to different lead wires 43, respectively.
  • Each of the lead wires 43 is welded to the inner peripheral surface of the electrode 33 at the tip portion thereof, and enters the third lumen 13 from a side hole formed in the tube wall of the multi-lumen tube 10.
  • the four lead wires 43 that have entered the third lumen 13 extend to the third lumen 13 as a third lead wire group 43G.
  • the third lead wire group 43G extending to the third lumen 13 is completely insulated and isolated from both the first lead wire group 41G and the second lead wire group 42G. Therefore, when a voltage necessary for defibrillation is applied, the third lead wire group 43G (base end side potential measurement electrode group 33G) and the first lead wire group 41G (first DC electrode group 31G) or the first A short circuit between the two lead wire group 42G (second DC electrode group 32G) can be reliably prevented.
  • the lead wire 41, the lead wire 42, and the lead wire 43 are all made of a resin-coated wire in which the outer peripheral surface of the metal conducting wire is covered with a resin such as polyimide.
  • the coating resin has a thickness of about 2 to 30 ⁇ m.
  • reference numeral 71 denotes a pull wire.
  • the pull wire 71 extends to the fourth lumen 14 and extends eccentrically with respect to the central axis of the multi-lumen tube 10.
  • the tip portion of the pull wire 71 is fixed to the tip tip 35 with solder. Further, a large diameter portion for retaining (a retaining portion) may be formed at the tip of the pull wire 71. Thereby, the tip tip 35 and the pull wire 71 are firmly coupled, and the tip tip 35 can be reliably prevented from falling off.
  • the proximal end portion of the pull wire 71 is connected to the knob 22 of the handle 20, and the pull wire 71 is pulled by operating the knob 22, whereby the distal end portion of the multi-lumen tube 10 is deflected.
  • the pull wire 71 is made of stainless steel or a Ni—Ti superelastic alloy, but is not necessarily made of metal.
  • the pull wire 71 may be constituted by a high-strength non-conductive wire, for example. Note that the mechanism for deflecting the distal end portion of the multi-lumen tube is not limited to this, and may be a plate spring, for example.
  • the first lead wire group 41G, the second lead wire group 42G, and the third lead wire group 43G are insulated and isolated even inside the handle 20. .
  • FIG. 5 is a perspective view showing the internal structure of the handle of the intracardiac defibrillation catheter 100 of the present embodiment
  • FIG. 6 is a partially enlarged view of the inside of the handle (distal side)
  • FIG. FIG. 5 is a perspective view showing the internal structure of the handle of the intracardiac defibrillation catheter 100 of the present embodiment
  • FIG. 6 is a partially enlarged view of the inside of the handle (distal side)
  • the base end portion of the multi-lumen tube 10 is inserted into the distal end opening of the handle 20, whereby the multi-lumen tube 10 and the handle 20 are connected.
  • a cylindrical connector 50 formed by arranging a plurality of pin terminals (51, 52, 53) protruding in the distal direction on the distal end surface 50 ⁇ / b> A is provided at the proximal end of the handle 20.
  • each of the three lead wire groups (first lead wire group 41G, second lead wire group 42G, and third lead wire group 43G) is provided inside the handle 20.
  • Three insulating tubes (a first insulating tube 26, a second insulating tube 27, and a third insulating tube 28) to be inserted extend.
  • the distal end portion (about 10 mm from the distal end) of the first insulating tube 26 is inserted into the first lumen 11 of the multi-lumen tube 10, whereby the first insulating tube 26 is
  • the first lead wire group 41G is connected to the first lumen 11 extending.
  • the first insulating tube 26 connected to the first lumen 11 passes through the inner hole of the first protective tube 61 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the first lead wire group 41G to the vicinity of the connector 50.
  • the first lead wire group 41G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the first insulating tube 26) without being kinked. Can do.
  • the first lead wire group 41G extending from the base end opening of the first insulating tube 26 is divided into eight lead wires 41 constituting the first lead wire group 41G, and each of the lead wires 41 is a front end surface 50A of the connector 50.
  • each of the lead wires 41 is a front end surface 50A of the connector 50.
  • a region where the pin terminals (pin terminals 51) to which the lead wires 41 constituting the first lead wire group 41G are connected and fixed is arranged is referred to as a “first terminal group region”.
  • the eight electrodes 31 constituting the first DC electrode group 31G are connected via the eight lead wires 41 constituting the first lead wire group 41G and the connector 50 (pin terminals 51 in the first terminal group region). And can be connected to a terminal of one of the poles in the DC power supply device.
  • the distal end portion (about 10 mm from the distal end) of the second insulating tube 27 is inserted into the second lumen 12 of the multi-lumen tube 10, whereby the second lead wire group 42G extends in the second insulating tube 27.
  • the second insulating tube 27 connected to the second lumen 12 passes through the inner hole of the second protective tube 62 extending to the inside of the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the second lead wire group 42G to the vicinity of the connector 50.
  • the second lead wire group 42G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the second insulating tube 27) without being kinked. Can do.
  • the second lead wire group 42G extending from the proximal end opening of the second insulating tube 27 is divided into eight lead wires 42 constituting the second lead wire group 42G, and each of these lead wires 42 is a front end surface 50A of the connector 50.
  • a region where the pin terminals (pin terminals 52) to which the lead wires 42 constituting the second lead wire group 42G are connected and fixed is disposed is referred to as a “second terminal group region”.
  • the eight electrodes 32 constituting the second DC electrode group 32G are connected via the eight lead wires 42 constituting the second lead wire group 42G and the connector 50 (pin terminals 52 in the second terminal group region).
  • the terminal of the other pole in the direct current power supply device can be connected.
  • the distal end portion (about 10 mm from the distal end) of the third insulating tube 28 is inserted into the third lumen 13 of the multi-lumen tube 10, whereby the third lead wire group 43G extends in the third insulating tube 28.
  • the third insulating tube 28 connected to the third lumen 13 passes through the inner hole of the second protective tube 62 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path for guiding the proximal end portion of the third lead wire group 43G to the vicinity of the connector 50.
  • the third lead wire group 43G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the third insulating tube 28) without kinking. Can do.
  • the third lead wire group 43G extending from the proximal end opening of the third insulating tube 28 is divided into four lead wires 43 constituting the third lead wire group 43, and each of the lead wires 43 is connected to the distal end surface 50A of the connector 50.
  • an area where the pin terminals (pin terminals 53) to which the lead wires 43 constituting the third lead wire group 43G are connected and fixed is arranged is referred to as a “third terminal group area”.
  • the four electrodes 33 constituting the proximal-side potential measurement electrode group 33G are transferred to the electrocardiograph via the four lead wires 43 and the connector 50 (pin terminal 53) constituting the third lead wire group 43G.
  • examples of the constituent material of the insulating tubes include polyimide resin, polyamide resin, and polyamideimide resin. .
  • a polyimide resin is particularly preferable because of its high hardness, easy insertion of the lead wire group, and capable of thin molding.
  • the thickness of the insulating tube is preferably 20 to 40 ⁇ m, and is 30 ⁇ m as a suitable example.
  • nylon elastomer such as “Pebax” (registered trademark of ARKEMA) is exemplified. be able to.
  • the first lead wire group 41G extends in the first insulating tube 26, and in the second insulating tube 27. Since the second lead wire group 42G extends and the third lead wire group 43G extends in the third insulating tube 28, the first lead wire group 41G, The two-lead wire group 42G and the third lead wire 43G can be completely insulated and isolated. As a result, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G, the second lead wire group 42G, and the third lead wire 43G inside the handle 20 (particularly, Short circuit between the lead wire groups extending near the opening of the lumen can be reliably prevented.
  • the first insulating tube 26 is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52.
  • the insulating tube is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52.
  • the distal end surface 50A of the connector 50 on which a plurality of pin terminals are arranged is divided into a first terminal group region, a second terminal group region, and a third terminal group region.
  • a partition plate 55 for separating the lead wire 41 and the lead wire 42 and the lead wire 43 from each other is provided.
  • the partition plate 55 that partitions the first terminal group region, the second terminal group region, and the third terminal group region is formed by molding an insulating resin into a bowl shape having flat surfaces on both sides.
  • the insulating resin constituting the partition plate 55 is not particularly limited, and a general-purpose resin such as polyethylene can be used.
  • the thickness of the partition plate 55 is, for example, 0.1 to 0.5 mm, and 0.2 mm is a preferable example.
  • the height of the partition plate 55 (distance from the base end edge to the front end edge) is higher than the separation distance between the front end surface 50A of the connector 50 and the insulating tubes (the first insulating tube 26 and the second insulating tube 27).
  • the separation distance is 7 mm
  • the height of the partition plate 55 is, for example, 8 mm.
  • the distal end edge cannot be positioned on the distal end side with respect to the proximal end of the insulating tube.
  • the lead wire 41 (the base end portion of the lead wire 41 extending from the base end opening of the first insulating tube 26) constituting the first lead wire group 41G, and the second lead wire group
  • the lead wire 42 (the base end portion of the lead wire 42 extending from the base end opening of the second insulating tube 27) constituting the 42G can be reliably and orderly isolated.
  • the lead wires 41 constituting the first lead wire group 41G and the lead wires 42 constituting the second lead wire group 42G, to which voltages having different polarities are applied, are separated from each other by the partition plate 55 and are in contact with each other. Therefore, when the intracardiac defibrillation catheter 100 is used, even if a voltage necessary for the intracardiac defibrillation is applied, the lead wires 41 (the first leads 41G constituting the first lead wire group 41G) The lead end portion of the lead wire 41 extending from the base end opening of the insulating tube 26 and the lead wire 42 constituting the second lead wire group 42G (the lead extending from the base end opening of the second insulating tube 27). A short circuit does not occur with the base end portion of the line 42.
  • the lead wire 41 constituting the first lead wire group 41G is connected to the second terminal.
  • the lead 41 When connected to a pin terminal in the group region, the lead 41 straddles the partition wall 55, so that a connection error can be easily found.
  • the lead wire 43 (pin terminal 53) constituting the third lead wire group 43G is separated from the lead wire 41 (pin terminal 51) by the partition plate 55 together with the lead wire 42 (pin terminal 52).
  • the present invention is not limited to this, and may be separated from the lead wire 42 (pin terminal 52) by the partition plate 55 together with the lead wire 41 (pin terminal 51).
  • the distal end edge of the partition wall plate 55 is positioned on the distal end side with respect to both the proximal end of the first insulating tube 26 and the proximal end of the second insulating tube 27. ing.
  • the lead wire (lead wire 41 constituting the first lead wire group 41G) extending from the base end opening of the first insulating tube 26 and the lead extending from the base end opening of the second insulating tube 27 are provided.
  • the partition plate 55 is always present, and the short circuit due to the contact between the lead wires 41 and the lead wires 42 is surely prevented. Can do.
  • eight lead wires 41 extending from the base end opening of the first insulating tube 26 and connected and fixed to the pin terminal 51 of the connector 50, and from the base end opening of the second insulating tube 27
  • Eight lead wires 42 extending and fixedly connected to the pin terminal 52 of the connector 50, and four leads extending from the proximal end opening of the third insulating tube 28 and fixedly connected to the pin terminal 53 of the connector 50
  • the shape of the wire 43 is held and fixed by fixing the periphery of the wire 43 with the resin 80.
  • the resin 80 that retains the shape of the lead wire is formed into a cylindrical shape having the same diameter as the connector 50, and the pin terminal, the lead wire, the base end portion of the insulating tube, and the partition plate 55 are formed inside the resin molded body. Is embedded. According to the configuration in which the proximal end portion of the insulating tube is embedded in the resin molded body, the lead wire (base) from the base end opening of the insulating tube until it is connected and fixed to the pin terminal. The entire area of the end portion can be completely covered with the resin 80, and the shape of the lead wire (base end portion) can be completely held and fixed. Further, the height of the resin molded body (distance from the base end surface to the front end surface) is preferably higher than the height of the partition plate 55, and is 9 mm, for example, when the height of the partition plate 55 is 8 mm.
  • the resin 80 constituting the resin molded body is not particularly limited, but it is preferable to use a thermosetting resin or a photocurable resin.
  • a thermosetting resin or a photocurable resin Specifically, urethane-based, epoxy-based, and urethane-epoxy-based curable resins can be exemplified.
  • the shape of the lead wire is held and fixed by the resin 80, when the intracardiac defibrillation catheter 100 is manufactured (when the connector 50 is mounted inside the handle 20), It is possible to prevent the lead wire extending from the base end opening of the insulating tube from being kinked or coming into contact with the edge of the pin terminal (for example, cracking occurs in the coating resin of the lead wire).
  • each lead wire extending from the base end opening of the insulating tube and fixed in contact with each pin terminal is embedded in the resin molded body is as follows. In this way, it can be manufactured.
  • Lead wire soldering process As shown in FIG. 8, the eight lead wires 41 constituting the first lead wire group 41G and the eight lead wires constituting the second lead wire group 42G are provided on each of the pin terminals arranged on the distal end surface 50A of the connector 50.
  • the lead wires 42 and the four lead wires 43 constituting the third lead wire group 43G are connected and fixed with solder.
  • the tip ends of these lead wires (lead wire 41, lead wire 42, lead wire 43) are respectively electrode groups (first DC electrode group 31G, second DC electrode group 32G, proximal potential measuring electrode group 33G). Are already connected to the electrodes (electrode 31, electrode 32, electrode 33).
  • a lead wire group (first lead wire group 41G, second lead wire group 42G, third lead wire group 43G) by these lead wires (lead wire 41, lead wire 42, lead wire 43) extends.
  • the insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) each have a distal end portion of the lumen of the multi-lumen tube 10 (the first lumen 11, the second lumen 12, By being inserted deeply into the third lumen 13), it is retracted to the tip side (upper side in the figure).
  • each of the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28 is moved to the base end side (lowered in the same figure).
  • the distance between the distal end surface 50A of the connector 50 and the base end of each insulating tube is shorter than the height of the partition plate 55, for example, 7 mm.
  • the distal ends of the insulating tubes are the lumens of the multi-lumen tube 10 (the first lumen 11, the second lumen 12, The third lumen 13) is inserted about 10 mm (the state shown in FIG. 6).
  • FIG. 11 is a view of the connection state of the lead wire shown in FIG. 10 to the pin terminal as viewed from the tip side. As shown in FIG. The terminal 52) and the lead wire 43 (pin terminal 53) are separated by the partition plate 55.
  • first lead wire 41, second lead wire 42, third lead wire 43 connected and fixed to pin terminals (pin terminal 51, pin terminal 52, pin terminal 53).
  • the constituent material of the mold 90 is not particularly limited, but a fluorine-based resin such as PTFE, PFA, FEP, ETFE, and PVDF is preferable because of good releasability.
  • a sheet in which both ends of a sheet made of such a fluororesin are bonded with an adhesive tape to form a cylinder can be used.
  • the height of the mold 90 is, for example, 10 mm.
  • Curable resin injection process Next, as shown in FIG. 13, a curable resin 80A is injected into the mold 90 using a Dispenser or the like.
  • the liquid level of the injected curable resin 80A (the distance of the liquid surface from the tip surface 50A of the connector 50) is set to 9 mm, for example.
  • lead wires (lead wire 41, lead wire 42, lead wire) extending from the base end opening of the insulating tube and connected and fixed to the pin terminals (pin terminal 51, pin terminal 52, pin terminal 53) of connector 50 are provided. 43) and the partition plate 55 are embedded in the curable resin 80A.
  • the curable resin injected into the mold 90 is photocured or thermally cured, and then FIG.
  • the lead wire (first lead wire 41, first lead wire 41, which is made of a cured resin 80, is a cylindrical molded body having the same diameter as the connector 50, and is fixed to the pin terminal by removing the mold 90.
  • a resin molded body (9 mm high molded body having the structure shown in FIG. 7) in which the second lead wire 42, the third lead wire 43) and the partition plate 55 are embedded can be obtained.
  • the periphery of the lead wire is solidified with resin means that the lead wire (base end portion) from extending from the base end opening of the insulating tube to being fixed to the pin terminal is fixed. This is to form a resin molded body that fills the entire region, and is clearly distinguished from simple potting.
  • a direct current voltage is applied between the first DC electrode group 31G and the second DC electrode group 32G, so that electrical energy is directly applied to the heart causing fibrillation.
  • This is a catheter for performing defibrillation treatment by applying a function and is different from a conventionally known electrode catheter used for arrhythmia diagnosis (cardiac potential measurement) and ablation treatment.
  • the intracardiac defibrillation catheter 100 of this embodiment is suitably used when performing cardiac catheterization that is likely to cause atrial fibrillation.
  • the cardiac catheterization is performed after the intracardiac defibrillation catheter 100 is inserted into the heart chamber of the patient in advance.
  • the intracardiac defibrillation catheter 100 is inserted into the heart chamber such that the first DC electrode group 31G is located in the coronary vein and the second DC electrode group 32G is located in the right atrium. As a result, the heart is sandwiched between the first DC electrode group 31G and the second DC electrode group 32G.
  • the electrocardiogram measured by the proximal potential measurement electrode group 33G is monitored (monitored), and when atrial fibrillation occurs, the cardiac catheterization is interrupted and the intracardiac defibrillation catheter is interrupted.
  • Defibrillation treatment with 100 is performed. Specifically, a DC voltage is applied between the first DC electrode group 31G and the second DC electrode group 32G via the first lead wire group 41G and the second lead wire group 42G to cause fibrillation. Give electrical energy directly to the heart.
  • the electrical energy supplied to the heart by the intracardiac defibrillation catheter 100 is preferably 10 to 30 J. If the electrical energy is too low, sufficient defibrillation therapy cannot be performed. On the other hand, when the electrical energy is excessive, there is a risk that the surrounding tissue where the first DC electrode group 31G and the second DC electrode group 32G are located is damaged.
  • the horizontal axis represents time and the vertical axis represents potential.
  • the time (t 1 ) is, for example, 1.5 to 10.0 seconds
  • the measured peak voltage (V 1 ) is, for example, 300 to 500V.
  • intracardiac defibrillation catheter 100 of the present embodiment although it is low compared to the AED, high electric energy is supplied (a high voltage is applied), so that it has not been a problem with conventional electrode catheters. It is necessary to reliably prevent the occurrence of a short circuit and ensure safety.
  • the first lead wire group 41G connected to the first DC electrode group 31G is connected to the first lumen 11 formed in the multi-lumen tube 10 and the first inside the handle 20.
  • the multi-lumen tube 10 is formed with a second lead wire group 42G that extends into the insulating tube 26 and is connected to the pin terminal 51 in the first terminal group region of the connector 50 and connected to the second DC electrode group 32G.
  • the second lumen 12 and the handle 20 are extended into the second insulating tube 27 and connected to the pin terminal 52 in the second terminal group region of the connector 50, and connected to the proximal potential measuring electrode group 33G.
  • the third group of lead wires 43G is connected to the third lumen 13 and the handle 20 formed in the multi-lumen tube 10. Third by extending into the insulating tube 28 in connected to the pin terminal 53 in the third terminal group region of the connector 50.
  • the first lead wire group 41G, the second lead wire group 42G, and the third lead wire 43G can be completely insulated and isolated within the multi-lumen tube 10 and the handle 20. Accordingly, when a voltage necessary for defibrillation is applied, the first lead wire group 41G (first DC electrode group 31G), the second lead wire group 42G (second DC electrode group 32G), and the third lead wire It is possible to reliably prevent a short circuit between the group 43G (base end side potential measurement electrode group 33G).
  • the lead wires 41 constituting the first lead wire group 41G and the lead wires 42 constituting the second lead wire group 42G are separated from each other by the partition plate that partitions the first terminal group region and the second terminal group region. Therefore, when the intracardiac defibrillation catheter 100 is used, even if a voltage necessary for the intracardiac defibrillation is applied, the lead 41 constituting the first lead group 41G is used. (The base end portion of the lead wire 41 extending from the base end opening of the first insulating tube 26) and the lead wire 42 (the base end opening of the second insulating tube 27) constituting the second lead wire group 42G. A short circuit does not occur between the lead wire 42 and the base end portion of the lead wire 42.
  • the eight lead wires 41 extending from the proximal end opening of the first insulating tube 26 and divided and connected and fixed to each of the pin terminals 51 of the connector 50 and the proximal end opening of the second insulating tube 27 are separated.
  • the four lead wires 43 connected and fixed to the respective 53 are held in their respective shapes by being solidified with resin, so that when the intracardiac defibrillation catheter 100 is manufactured ( When the connector 50 is attached to the inside of the handle 20, the insulating tube (the first insulating tube 26, the second insulating tube 27, the third insulating tube 28) extends from the proximal end opening. Out lead wires can be prevented that the (lead wire 41, lead wires 42, lead wires 43) is damaged or contact or kink, the edge of the pin terminal.
  • the intracardiac defibrillation catheter of this invention is not limited to these, A various change is possible.
  • the connector in an intracardiac defibrillation catheter provided with a partition plate as described above for partitioning a first terminal group region and a second terminal group region, the connector extends from the proximal end opening of the insulating tube. Even if the periphery of the lead wire connected and fixed to the pin terminal is not solidified with resin, it is included in the present invention.
  • the first terminal group region and Even the one that does not include a partition plate that partitions the second terminal group region is included in the present invention.

Abstract

An intracardiac defibrillation catheter is equipped with a tube member (10) having a multilumen structure, a handle (20), a first DC electrode group (31G), a second DC electrode group (32G), a connector (50), insulating tubes (26, 27), a first lead wire group (41G) connecting the constituent electrodes (31) of the first DC electrode group (31G) to the pin terminals of the connector (50), a second lead wire group (42G) connecting the constituent electrodes(32) of the second DC electrode group (32G) to the pin terminals of the connector (50), and a separating sheet (55) separating the end surface (50A) of the connector (50) into a first terminal group region and a second terminal group region.  Electric energy required and sufficient for defibrillation can be reliably supplied, thereby performing defibrillation without burning the skin of the patient.

Description

心腔内除細動カテーテルIntracardiac defibrillation catheter
 本発明は、心腔内に挿入されて、心房細動を除去する心腔内除細動カテーテルに関する。 The present invention relates to an intracardiac defibrillation catheter that is inserted into a heart chamber to remove atrial fibrillation.
 心房細動を除去する除細動器として体外式除細動器(AED)が知られている(例えば、特許文献1参照)。
 AEDによる除細動治療では、患者の体表に電極パッドを装着して直流電圧を印加することにより、患者の体内に電気エネルギーを与える。ここに、電極パッドから患者の体内に流れる電気エネルギーは、通常150~200Jとされ、そのうちの一部(通常、数%~20%程度)が心臓に流れて除細動治療に供される。
An external defibrillator (AED) is known as a defibrillator for removing atrial fibrillation (see, for example, Patent Document 1).
In defibrillation treatment by AED, electrical energy is given to the patient's body by attaching an electrode pad to the patient's body surface and applying a DC voltage. Here, the electrical energy flowing from the electrode pad into the patient's body is usually 150 to 200 J, and a part (usually about several percent to 20%) of the fluid flows to the heart and is used for the defibrillation treatment.
特開2001-112874号公報参照See JP 2001-112874 A
 しかして、心房細動は、心臓カテーテル術中において起こりやすく、この場合にも電気的除細動を行う必要がある。
 しかしながら、電気エネルギーを体外から供給するAEDによっては、細動を起こしている心臓に対して効果的な電気エネルギー(例えば10~30J)を供給することは困難である。
Thus, atrial fibrillation is likely to occur during cardiac catheterization, and even in this case, it is necessary to perform cardioversion.
However, depending on the AED that supplies electric energy from outside the body, it is difficult to supply effective electric energy (for example, 10 to 30 J) to the heart that is causing fibrillation.
 すなわち、体外から供給される電気エネルギーのうち、心臓に流れる割合が少ない場合(例えば数%程度)には、十分な除細動治療を行うことができない。
 一方、体外から供給される電気エネルギーが高い割合で心臓に流れた場合には、心臓の組織が損傷を受ける虞も考えられる。
 また、AEDによる除細動治療では、電極パッドを装着した体表に火傷が生じやすい。そして、上記のように、心臓に流れる電気エネルギーの割合が少ない場合には、電気エネルギーの供給を繰り返して行うことによって火傷の程度が重くなり、カテーテル術を受けている患者にとって相当の負担となる。
That is, sufficient defibrillation treatment cannot be performed when the proportion of electrical energy supplied from outside the body is small (for example, about several percent).
On the other hand, when the electrical energy supplied from outside the body flows to the heart at a high rate, the heart tissue may be damaged.
Further, in the defibrillation treatment by AED, burns are likely to occur on the body surface to which the electrode pad is attached. And as mentioned above, when the ratio of the electrical energy flowing to the heart is small, repeated supply of electrical energy increases the degree of burns, which is a considerable burden for patients undergoing catheterization. .
 本発明は以上のような事情に基いてなされたものあって、本発明の目的は、心臓カテーテル術中に心房細動を起こした心臓に対して、除細動に必要かつ十分な電気エネルギーを確実に供給することができる心腔内除細動カテーテルを提供することにある。
 本発明の他の目的は、患者の体表に火傷を生じさせることなく、除細動治療を行うことのできる心腔内除細動カテーテルを提供することにある。
The present invention has been made based on the circumstances as described above, and an object of the present invention is to ensure the necessary and sufficient electric energy for defibrillation for the heart that has undergone atrial fibrillation during cardiac catheterization. It is an object of the present invention to provide an intracardiac defibrillation catheter that can be supplied to a patient.
Another object of the present invention is to provide an intracardiac defibrillation catheter capable of performing defibrillation treatment without causing burns on the patient's body surface.
(1)本発明の心腔内除細動カテーテルは、心腔内に挿入されて除細動を行うためのカテーテルであって、
 マルチルーメン構造を有する絶縁性のチューブ部材と、
 前記チューブ部材の基端に接続されたハンドルと、
 前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群(第1DC電極群)と、
 前記第1DC電極群から基端側に離間して前記チューブ部材に装着された複数のリング
状電極からなる第2電極群(第2DC電極群)と、
 前記ハンドルの基端部に内蔵され、先端方向に突出する複数のピン端子を先端面に配置してなる略円筒状のコネクタと、
 前記チューブ部材の第1ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第1絶縁性チューブと、
 前記チューブ部材の第2ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第2絶縁性チューブと、
 前記第1DC電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第1ルーメンおよび前記第1絶縁性チューブ内に延在し、当該第1絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第1リード線群と、
 前記第2DC電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第2ルーメンおよび前記第2絶縁性チューブ内に延在し、当該第2絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第2リード線群と、
 複数のピン端子が配置された前記コネクタの先端面を、前記第1リード線群を構成するリード線が接続固定されたピン端子が配置されている第1端子群領域と、前記第2リード線群を構成するリード線が接続固定されたピン端子が配置されている第2端子群領域とに仕切り、前記第1リード線群を構成するリード線(第1絶縁性チューブの基端開口から延び出したリード線の基端部分)と、前記第2リード線群を構成するリード線(第2絶縁性チューブの基端開口から延び出したリード線の基端部分)とを隔離する隔壁板と、を備えてなり、
 除細動を行うときには、前記第1DC電極群と、前記第2DC電極群とに、互いに異なる極性の電圧が印加されることを特徴とする。
(1) The intracardiac defibrillation catheter of the present invention is a catheter for defibrillation inserted into the heart chamber,
An insulating tube member having a multi-lumen structure;
A handle connected to the proximal end of the tube member;
A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member;
A second electrode group (second DC electrode group) composed of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side;
A substantially cylindrical connector that is built in the proximal end portion of the handle and has a plurality of pin terminals that protrude in the distal direction disposed on the distal end surface;
A first insulating tube having a distal end connected to the first lumen of the tube member, extending inside the handle, and having a proximal end opened in the vicinity of the connector;
A second insulating tube having a distal end connected to the second lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
A plurality of lead wires connected to each of the electrodes constituting the first DC electrode group, extending into the first lumen of the tube member and the first insulating tube, and a base of the first insulating tube A first lead wire group extending from the end opening and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
A plurality of lead wires connected to each of the electrodes constituting the second DC electrode group, extending into the second lumen of the tube member and the second insulating tube, and a base of the second insulating tube A second lead wire group extending from the end opening and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
A first terminal group region in which pin terminals to which lead wires constituting the first lead wire group are connected and fixed are arranged on the front end surface of the connector in which a plurality of pin terminals are arranged, and the second lead wire The lead wires constituting the group are divided into second terminal group regions where pin terminals to which the lead wires are connected and fixed are arranged, and lead wires constituting the first lead wire group (extending from the proximal end opening of the first insulating tube) A partition plate that separates a lead end portion of the lead wire extended from the lead wire constituting the second lead wire group (a base end portion of the lead wire extending from the base end opening of the second insulating tube); With
When defibrillation is performed, voltages having different polarities are applied to the first DC electrode group and the second DC electrode group.
 このような構成の心腔内除細動カテーテルを、第1DC電極群が冠状静脈内に位置し、第2DC電極群が右心房内に位置するように心腔内に挿入し、第1リード線群および第2リード線群を介して、第1DC電極群と第2DC電極群とに、互いに異なる極性の電圧を印加する(第1DC電極群と第2DC電極群との間に直流電圧を印加する)ことにより、細動を起こしている心臓に直接的に電気エネルギーが与えられ、これにより除細動治療が行われる。 The intracardiac defibrillation catheter having such a configuration is inserted into the heart chamber such that the first DC electrode group is located in the coronary vein and the second DC electrode group is located in the right atrium, and the first lead wire is inserted. Voltages having different polarities are applied to the first DC electrode group and the second DC electrode group via the group and the second lead wire group (a DC voltage is applied between the first DC electrode group and the second DC electrode group). Thus, electrical energy is directly applied to the heart that is causing fibrillation, whereby defibrillation treatment is performed.
 このように、心腔内に配置した除細動カテーテルの第1DC電極群および第2DC電極群により、細動を起こした心臓に対して直接的に電気エネルギーを与えることによれば、除細動治療に必要かつ十分な電気的刺激(電気ショック)を心臓のみに確実に与えることができる。
 そして、心臓に直接的に電気エネルギーを与えることができるので、患者の体表に火傷を生じさせることもない。
As described above, according to the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber, electrical energy is directly applied to the fibrillated heart. The electrical stimulation (electric shock) necessary and sufficient for treatment can be reliably applied only to the heart.
And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
 また、第1DC電極群を構成する電極の各々に接続されたリード線からなる第1リード線群と、第2DC電極群を構成する電極の各々に接続されたリード線からなる第2リード線群とが、チューブ部材の異なるルーメン(第1ルーメンおよび第2ルーメン)にそれぞれ延在していることにより、両者は、チューブ部材内において完全に絶縁隔離されている。このため、心腔内除細動に必要な電圧を印加したときに、チューブ部材内において、第1リード線群と、第2リード線群との間で短絡が発生することを確実に防止することができる。 Also, a first lead wire group consisting of lead wires connected to each of the electrodes constituting the first DC electrode group, and a second lead wire group consisting of lead wires connected to each of the electrodes constituting the second DC electrode group. Are respectively extended in different lumens (first lumen and second lumen) of the tube member, so that they are completely insulated and isolated in the tube member. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is reliably prevented from occurring between the first lead wire group and the second lead wire group in the tube member. be able to.
 さらに、第1リード線群と、第2リード線群とが、ハンドルの内部に延在する異なる絶縁性チューブ(第1絶縁性チューブおよび第2絶縁性チューブ)にそれぞれ延在していることにより、両者は、ハンドルの内部においても完全に絶縁隔離されている。このため、
心腔内除細動に必要な電圧を印加したときに、ハンドル内部において、第1リード線群と、第2リード線群との間で短絡が発生することを確実に防止することができる。
Further, the first lead wire group and the second lead wire group are respectively extended to different insulating tubes (first insulating tube and second insulating tube) extending inside the handle. Both are completely insulated and isolated even inside the handle. For this reason,
When a voltage necessary for intracardiac defibrillation is applied, it is possible to reliably prevent a short circuit from occurring between the first lead wire group and the second lead wire group inside the handle.
 さらに、第1端子群領域と第2端子群領域とを仕切る隔壁板により、第1リード線群を構成するリード線(第1絶縁性チューブの基端開口から延び出したリード線の基端部分)と、第2リード線群を構成するリード線(第2絶縁性チューブの基端開口から延び出したリード線の基端部分)とを確実かつ整然と隔離することができる。 Furthermore, the lead wire constituting the first lead wire group (the base end portion of the lead wire extending from the base end opening of the first insulating tube) by the partition plate separating the first terminal group region and the second terminal group region ) And the lead wires constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube) can be reliably and orderly separated.
 さらに、第1端子群領域と第2端子群領域とを仕切る隔壁板により、第1リード線群を構成するリード線と、第2リード線群を構成するリード線とが互いに隔離されて接触することがないので、心腔内除細動に必要な電圧を印加したときに、第1リード線群を構成するリード線(第1絶縁性チューブの基端開口から延び出したリード線の基端部分)と、第2リード線群を構成するリード線(第2絶縁性チューブの基端開口から延び出したリード線の基端部分)との間で短絡が発生することを確実に防止することができる。 Furthermore, the partition plate separating the first terminal group region and the second terminal group region separates and contacts the lead wires constituting the first lead wire group and the lead wires constituting the second lead wire group. Therefore, when a voltage necessary for defibrillation in the heart chamber is applied, the lead wires constituting the first lead wire group (the base end of the lead wire extending from the base end opening of the first insulating tube) Part) and the lead wire constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube) is surely prevented from being short-circuited. Can do.
 さらに、第1端子群領域と第2端子群領域とを仕切る隔壁板により、第1リード線群を構成するリード線と、第2リード線群を構成するリード線とを、ハンドルに内蔵された1つのコネクタの先端面に集中的に配置された端子群に接続させることができるので、ハンドルの基端側に複数のコネクタ(コード)を接続させる必要はなく、構成が簡単になり、除細動カテーテルとしての操作性が向上する。 Furthermore, the partition plate separating the first terminal group region and the second terminal group region incorporates the lead wire constituting the first lead wire group and the lead wire constituting the second lead wire group in the handle. Since it can be connected to a terminal group concentrated on the distal end surface of one connector, there is no need to connect multiple connectors (cords) to the base end side of the handle, the configuration is simplified, and defibrillation The operability as a moving catheter is improved.
(2)本発明の心腔内除細動カテーテルにおいて、前記隔壁板の先端縁は、前記第1絶縁性チューブの基端および前記第2絶縁性チューブの基端よりも先端側に位置していることが好ましい。 (2) In the intracardiac defibrillation catheter of the present invention, the distal end edge of the partition plate is positioned on the distal end side with respect to the proximal end of the first insulating tube and the proximal end of the second insulating tube. Preferably it is.
 このような構成の心腔内除細動カテーテルによれば、第1絶縁性チューブの基端開口から延び出したリード線(第1リード線群を構成するリード線)と、第2絶縁性チューブの基端開口から延び出したリード線(第2リード線群を構成するリード線)との間には、常に、隔壁板が存在することになるため、両者が接触して短絡することを確実に防止することができる。 According to the intracardiac defibrillation catheter having such a configuration, the lead wire (lead wire constituting the first lead wire group) extending from the proximal end opening of the first insulating tube, and the second insulating tube Since there is always a partition plate between the lead wires extending from the base end opening (lead wires constituting the second lead wire group), it is ensured that both are in contact and short-circuited. Can be prevented.
(3)本発明の心腔内除細動カテーテルにおいて、前記第2DC電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる基端側電位測定電極群と、
 前記チューブ部材の第3ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第3絶縁性チューブと、
 前記基端側電位測定電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第3ルーメンおよび前記第3絶縁性チューブ内に延在し、当該第3絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第3リード線群と、を備えてなることが好ましい。
(3) In the intracardiac defibrillation catheter of the present invention, a proximal-side potential measurement electrode group comprising a plurality of ring-shaped electrodes mounted on the tube member and spaced from the second DC electrode group on the proximal end side; ,
A third insulating tube having a distal end connected to the third lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
A plurality of lead wires connected to each of the electrodes constituting the proximal end side potential measurement electrode group, extending into the third lumen of the tube member and the third insulating tube, A third lead wire group extending from the proximal end opening of the tube and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector; It is preferable to become.
 このような構成の心腔内除細動カテーテルによれば、基端側電位測定電極群により心電位(特に、異常電位が発生しやすい上大静脈の心電位)を測定することができ、心電位を監視(モニタリング)しながら除細動治療を行うことができる。 According to the intracardiac defibrillation catheter having such a configuration, the cardiac potential (particularly, the cardiac potential of the superior vena cava where an abnormal potential is likely to occur) can be measured by the proximal potential measuring electrode group. Defibrillation treatment can be performed while monitoring the potential.
 また、第3リード線群が、第1リード線群または第2リード線群が延在しているルーメン(第1ルーメンおよび第2ルーメン)のいずれとも異なる第3ルーメンに延在していることにより、チューブ部材における第3リード線群は、第1リード線群および第2リード線群の何れからも完全に絶縁隔離されている。このため、心腔内除細動に必要な電圧が印
加されたときに、チューブ部材内において、第3リード線群と、第1リード線群または第2リード線群との間で短絡が発生することを確実に防止することができる。
The third lead wire group extends to a third lumen different from any of the lumens (first lumen and second lumen) from which the first lead wire group or the second lead wire group extends. Thus, the third lead wire group in the tube member is completely insulated and isolated from both the first lead wire group and the second lead wire group. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit occurs between the third lead wire group and the first lead wire group or the second lead wire group in the tube member. This can be surely prevented.
 さらに、第3リード線群が、第3ルーメンに先端部が連結された第3絶縁性チューブ内に延在していることにより、ハンドルの内部における第3リード線群は、第1リード線群および第2リード線群の何れからも完全に絶縁隔離されている。このため、心腔内除細動に必要な電圧が印加されたときに、ハンドルの内部においても、第3リード線群と、第1リード線群または第2リード線群との間で短絡が発生することを確実に防止することができる。 Further, the third lead wire group extends in the third insulating tube having the tip connected to the third lumen, so that the third lead wire group inside the handle becomes the first lead wire group. And the second lead wire group are completely insulated and isolated from each other. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is caused between the third lead wire group and the first lead wire group or the second lead wire group even inside the handle. It is possible to reliably prevent the occurrence.
(4)上記(3)の心腔内除細動カテーテルにおいて、先端偏向操作用のプルワイヤが、前記チューブ部材の第4ルーメンに延在していることが好ましい。 (4) In the intracardiac defibrillation catheter of (3) above, it is preferable that a pull wire for tip deflection operation extends to the fourth lumen of the tube member.
 このような構成の心腔内除細動カテーテルによれば、先端偏向操作用のプルワイヤを、第1リード線群、第2リード線群または第3リード線群が延在しているルーメン(第1ルーメン、第2ルーメンおよび第3ルーメン)とは異なるルーメン(第4ルーメン)に延在しているので、先端偏向操作時において軸方向に移動するプルワイヤにより、リード線群を構成するリード線が損傷(例えば擦過傷)を受けるようなことはない。 According to the intracardiac defibrillation catheter having such a configuration, the pull wire for the tip deflection operation is formed by using the lumen (the first lead wire group, the second lead wire group, or the third lead wire group extending). Since the first lumen, the second lumen, and the third lumen) extend to a different lumen (fourth lumen), the lead wires constituting the lead wire group are formed by the pull wires that move in the axial direction during the tip deflection operation. There is no damage (eg, scratches).
(5)本発明の心腔内除細動カテーテルにおいては、心臓カテーテル術中に起こる心房細動を除去するために心腔内に挿入されることが好ましい。 (5) The intracardiac defibrillation catheter of the present invention is preferably inserted into the heart chamber in order to remove atrial fibrillation that occurs during cardiac catheterization.
(6)本発明の心腔内除細動カテーテルは、心腔内に挿入されて除細動を行うためのカテーテルであって、
 マルチルーメン構造を有する絶縁性のチューブ部材と、
 前記チューブ部材の基端に接続されたハンドルと、
 前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群(第1DC電極群)と、
 前記第1DC電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群(第2DC電極群)と、
 前記ハンドルの基端部に内蔵され、先端方向に突出する複数のピン端子を先端面に配置してなる略円筒状のコネクタと、
 前記チューブ部材の第1ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第1絶縁性チューブと、
 前記チューブ部材の第2ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第2絶縁性チューブと、
 前記第1DC電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第1ルーメンおよび前記第1絶縁性チューブ内に延在し、当該第1絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第1リード線群と、
 前記第2DC電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第2ルーメンおよび前記第2絶縁性チューブ内に延在し、当該第2絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第2リード線群とを備えてなり、
 前記第1絶縁性チューブの基端開口から延び出して分割され、前記コネクタのピン端子の各々に接続固定された、前記第1リード線群を構成する複数のリード線(基端部分)、および、前記第2絶縁性チューブの基端開口から延び出して分割され、前記コネクタのピン端子の各々に接続固定された、前記第2リード線群を構成する複数のリード線(基端部分)は、これらの周囲が樹脂で固められることにより、それぞれの形状が保持されており

 除細動を行うときには、前記第1DC電極群と、前記第2DC電極群とに、互いに異なる極性の電圧が印加されることを特徴とする。
(6) The intracardiac defibrillation catheter of the present invention is a catheter for defibrillation inserted into the heart chamber,
An insulating tube member having a multi-lumen structure;
A handle connected to the proximal end of the tube member;
A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member;
A second electrode group (second DC electrode group) composed of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side;
A substantially cylindrical connector that is built in the proximal end portion of the handle and has a plurality of pin terminals that protrude in the distal direction disposed on the distal end surface;
A first insulating tube having a distal end connected to the first lumen of the tube member, extending inside the handle, and having a proximal end opened in the vicinity of the connector;
A second insulating tube having a distal end connected to the second lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
A plurality of lead wires connected to each of the electrodes constituting the first DC electrode group, extending into the first lumen of the tube member and the first insulating tube, and a base of the first insulating tube A first lead wire group extending from the end opening and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
A plurality of lead wires connected to each of the electrodes constituting the second DC electrode group, extending into the second lumen of the tube member and the second insulating tube, and a base of the second insulating tube A second lead wire group that extends from the end opening and is divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
A plurality of lead wires (base end portions) constituting the first lead wire group, which are divided by extending from a base end opening of the first insulating tube and connected and fixed to each of the pin terminals of the connector; and A plurality of lead wires (base end portions) constituting the second lead wire group, which are divided by extending from the base end opening of the second insulating tube and connected and fixed to the pin terminals of the connector, Each of these shapes is retained by being solidified with resin.
When defibrillation is performed, voltages having different polarities are applied to the first DC electrode group and the second DC electrode group.
 このような構成の心腔内除細動カテーテルを、第1DC電極群が冠状静脈内に位置し、第2DC電極群が右心房内に位置するように心腔内に挿入し、第1リード線群および第2リード線群を介して、第1DC電極群と第2DC電極群とに、互いに異なる極性の電圧を印加する(第1DC電極群と第2DC電極群との間に直流電圧を印加する)ことにより、細動を起こしている心臓に直接的に電気エネルギーが与えられ、これにより除細動治療が行われる。 The intracardiac defibrillation catheter having such a configuration is inserted into the heart chamber such that the first DC electrode group is located in the coronary vein and the second DC electrode group is located in the right atrium, and the first lead wire is inserted. Voltages having different polarities are applied to the first DC electrode group and the second DC electrode group via the group and the second lead wire group (a DC voltage is applied between the first DC electrode group and the second DC electrode group). Thus, electrical energy is directly applied to the heart that is causing fibrillation, whereby defibrillation treatment is performed.
 このように、心腔内に配置した除細動カテーテルの第1DC電極群および第2DC電極群により、細動を起こした心臓に対して直接的に電気エネルギーを与えることによれば、除細動治療に必要かつ十分な電気的刺激(電気ショック)を心臓のみに確実に与えることができる。
 そして、心臓に直接的に電気エネルギーを与えることができるので、患者の体表に火傷を生じさせることもない。
As described above, according to the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber, electrical energy is directly applied to the fibrillated heart. The electrical stimulation (electric shock) necessary and sufficient for treatment can be reliably applied only to the heart.
And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
 また、第1DC電極群を構成する電極の各々に接続されたリード線からなる第1リード線群と、第2DC電極群を構成する電極の各々に接続されたリード線からなる第2リード線群とが、チューブ部材の異なるルーメン(第1ルーメンおよび第2ルーメン)にそれぞれ延在していることにより、両者は、チューブ部材内において完全に絶縁隔離されている。このため、心腔内除細動に必要な電圧を印加したときに、チューブ部材内において、第1リード線群と、第2リード線群との間で短絡が発生することを確実に防止することができる。 Also, a first lead wire group consisting of lead wires connected to each of the electrodes constituting the first DC electrode group, and a second lead wire group consisting of lead wires connected to each of the electrodes constituting the second DC electrode group. Are respectively extended in different lumens (first lumen and second lumen) of the tube member, so that they are completely insulated and isolated in the tube member. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is reliably prevented from occurring between the first lead wire group and the second lead wire group in the tube member. be able to.
 さらに、第1リード線群と、第2リード線群とが、ハンドルの内部に延在する異なる絶縁性チューブ(第1絶縁性チューブおよび第2絶縁性チューブ)にそれぞれ延在していることにより、両者は、ハンドルの内部においても完全に絶縁隔離されている。このため、心腔内除細動に必要な電圧を印加したときに、ハンドル内部において、第1リード線群と、第2リード線群との間で短絡が発生することを確実に防止することができる。 Further, the first lead wire group and the second lead wire group are respectively extended to different insulating tubes (first insulating tube and second insulating tube) extending inside the handle. Both are completely insulated and isolated even inside the handle. Therefore, it is possible to reliably prevent a short circuit from occurring between the first lead wire group and the second lead wire group inside the handle when a voltage necessary for intracardiac defibrillation is applied. Can do.
 さらに、第1リード線群を構成する複数のリード線と、第2リード線群を構成する複数のリード線とは、絶縁性チューブ(第1絶縁性チューブまたは第2絶縁性チューブ)の基端開口から延び出して分割され、コネクタのピン端子の各々に接続固定されるまでの部分(基端部分)において、これらの周囲が樹脂で固められて、それぞれのリード線の形状が変化することなく保持されているので、本発明の心腔内除細動カテーテルを製造する(例えば、配線済のコネクタをハンドルの内部に装着する)ときに、絶縁性チューブの基端開口から延び出したリード線がキンクしたり、ピン端子のエッジと接触したりして損傷することを防止することができる。 Further, the plurality of lead wires constituting the first lead wire group and the plurality of lead wires constituting the second lead wire group are the base ends of the insulating tube (first insulating tube or second insulating tube). The part (base end part) that extends from the opening and is divided and connected and fixed to each pin terminal of the connector is solidified with resin, so that the shape of each lead wire does not change Because it is held, when the intracardiac defibrillation catheter of the present invention is manufactured (for example, when a wired connector is mounted inside the handle), the lead wire extending from the proximal end opening of the insulating tube Can be prevented from being kinked or coming into contact with the edge of the pin terminal.
 さらに、第1リード線群を構成する複数のリード線と、第2リード線群を構成する複数のリード線とが、樹脂により互いに離間した状態(樹脂による絶縁性)を維持することができるので、心腔内除細動に必要な電圧を印加したときに、第1リード線群を構成するリード線(第1絶縁性チューブの基端開口から延び出したリード線の基端部分)と、第2リード線群を構成するリード線(第2絶縁性チューブの基端開口から延び出したリード線の基端部分)との間で短絡が発生することを確実に防止することができる。 Further, since the plurality of lead wires constituting the first lead wire group and the plurality of lead wires constituting the second lead wire group can be kept separated from each other by the resin (insulation by the resin). When a voltage necessary for defibrillation in the heart chamber is applied, a lead wire constituting the first lead wire group (a base end portion of the lead wire extending from the base end opening of the first insulating tube); It is possible to reliably prevent a short circuit from occurring between the lead wires constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube).
 さらに、第1リード線群を構成するリード線と、第2リード線群を構成するリード線とを、ハンドルに内蔵された1つのコネクタの先端面に集中的に配置された端子に接続させ
ているので、ハンドルの基端側に複数のコネクタ(コード)を接続させる必要はなく、構成が簡単になり、除細動カテーテルとしての操作性が向上する。
Further, the lead wires constituting the first lead wire group and the lead wires constituting the second lead wire group are connected to terminals intensively arranged on the distal end surface of one connector built in the handle. Therefore, it is not necessary to connect a plurality of connectors (cords) to the proximal end side of the handle, the configuration is simplified, and the operability as a defibrillation catheter is improved.
(7)本発明の心腔内除細動カテーテルにおいて、第1絶縁性チューブの基端部および第2絶縁性チューブの基端部が、前記樹脂中に埋め込まれていることが好ましい。 (7) In the intracardiac defibrillation catheter of the present invention, it is preferable that the proximal end portion of the first insulating tube and the proximal end portion of the second insulating tube are embedded in the resin.
 このような構成の心腔内除細動カテーテルによれば、絶縁性チューブ(第1絶縁性チューブまたは第2絶縁性チューブ)の基端開口より延び出してからピン端子に接続固定されるまでの各リード線の全域を樹脂によって完全に覆うことができ、リード線(基端部分)の形状を完全に保持固定することができる。 According to the intracardiac defibrillation catheter having such a configuration, it extends from the proximal end opening of the insulating tube (the first insulating tube or the second insulating tube) until it is connected and fixed to the pin terminal. The entire area of each lead wire can be completely covered with resin, and the shape of the lead wire (base end portion) can be completely held and fixed.
(8)本発明の心腔内除細動カテーテルにおいて、前記第2DC電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる基端側電位測定電極群と、
 前記チューブ部材の第3ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第3絶縁性チューブと、
 前記基端側電位測定電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第3ルーメンおよび前記第3絶縁性チューブ内に延在し、当該第3絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第3リード線群と、を備えてなることが好ましい。
 また、前記第3絶縁性チューブの基端開口から延び出して分割され、前記コネクタのピン端子の各々に接続固定された、前記第3リード線群を構成する複数のリード線(基端部分)は、これらの周囲が、前記樹脂で固められることにより、それぞれの形状が保持されていることが好ましい。
(8) In the intracardiac defibrillation catheter of the present invention, a proximal-side potential measurement electrode group including a plurality of ring-shaped electrodes attached to the tube member and spaced from the second DC electrode group to the proximal end side; ,
A third insulating tube having a distal end connected to the third lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
A plurality of lead wires connected to each of the electrodes constituting the proximal end side potential measurement electrode group, extending into the third lumen of the tube member and the third insulating tube, A third lead wire group extending from the proximal end opening of the tube and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector; It is preferable to become.
Also, a plurality of lead wires (base end portions) constituting the third lead wire group, which extend from the base end opening of the third insulating tube and are divided and connected and fixed to each of the pin terminals of the connector. It is preferable that these shapes are retained by being solidified with the resin.
 このような構成の心腔内除細動カテーテルによれば、基端側電位測定電極群により心電位(特に、異常電位が発生しやすい上大静脈の心電位)を測定することができ、心電位を監視(モニタリング)しながら除細動治療を行うことができる。 According to the intracardiac defibrillation catheter having such a configuration, the cardiac potential (particularly, the cardiac potential of the superior vena cava where an abnormal potential is likely to occur) can be measured by the proximal potential measuring electrode group. Defibrillation treatment can be performed while monitoring the potential.
 また、第3リード線群が、第1リード線群または第2リード線群が延在しているルーメン(第1ルーメンおよび第2ルーメン)のいずれとも異なる第3ルーメンに延在していることにより、チューブ部材における第3リード線群は、第1リード線群および第2リード線群の何れからも完全に絶縁隔離されている。このため、心腔内除細動に必要な電圧が印加されたときに、チューブ部材内において、第3リード線群と、第1リード線群または第2リード線群との間で短絡が発生することを確実に防止することができる。 The third lead wire group extends to a third lumen different from any of the lumens (first lumen and second lumen) from which the first lead wire group or the second lead wire group extends. Thus, the third lead wire group in the tube member is completely insulated and isolated from both the first lead wire group and the second lead wire group. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit occurs between the third lead wire group and the first lead wire group or the second lead wire group in the tube member. This can be surely prevented.
 さらに、第3リード線群が、第3ルーメンに先端部が連結された第3絶縁性チューブ内に延在していることにより、ハンドルの内部における第3リード線群は、第1リード線群および第2リード線群の何れからも完全に絶縁隔離されている。このため、心腔内除細動に必要な電圧が印加されたときに、ハンドルの内部においても、第3リード線群と、第1リード線群または第2リード線群との間で短絡が発生することを確実に防止することができる。 Further, the third lead wire group extends in the third insulating tube having the tip connected to the third lumen, so that the third lead wire group inside the handle becomes the first lead wire group. And the second lead wire group are completely insulated and isolated from each other. For this reason, when a voltage necessary for defibrillation in the heart chamber is applied, a short circuit is caused between the third lead wire group and the first lead wire group or the second lead wire group even inside the handle. It is possible to reliably prevent the occurrence.
(9)上記(8)の心腔内除細動カテーテルにおいて、先端偏向操作用のプルワイヤが、前記チューブ部材の第4ルーメンに延在していることが好ましい。 (9) In the intracardiac defibrillation catheter according to (8), it is preferable that a pull wire for tip deflection operation extends to the fourth lumen of the tube member.
 このような構成の心腔内除細動カテーテルによれば、先端偏向操作用のプルワイヤを、第1リード線群、第2リード線群または第3リード線群が延在しているルーメン(第1ルーメン、第2ルーメンおよび第3ルーメン)とは異なるルーメン(第4ルーメン)に延在
しているので、先端偏向操作時において軸方向に移動するプルワイヤにより、リード線群を構成するリード線が損傷(例えば擦過傷)を受けるようなことはない。
According to the intracardiac defibrillation catheter having such a configuration, the pull wire for the tip deflection operation is formed by using the lumen (the first lead wire group, the second lead wire group, or the third lead wire group extending). Since the first lumen, the second lumen, and the third lumen) extend to a different lumen (fourth lumen), the lead wires constituting the lead wire group are formed by a pull wire that moves in the axial direction during the tip deflection operation. There is no damage (eg, scratches).
(10)本発明の心腔内除細動カテーテルにおいては、心臓カテーテル術中に起こる心房細動を除去するために心腔内に挿入されることが好ましい。 (10) The intracardiac defibrillation catheter of the present invention is preferably inserted into the heart chamber to remove atrial fibrillation that occurs during cardiac catheterization.
 本発明の心腔内除細動カテーテルによれば、心臓カテーテル術中に心房細動等を起こした心臓に対して、除細動に必要かつ十分な電気エネルギーを確実に供給することができる。また、患者の体表に火傷を生じさせることもなく侵襲性も少ない。
 また、心腔内除細動に必要な電圧が印加されたときに、チューブ部材およびハンドルの内部において、第1リード線群と、第2リード線群との間で短絡が発生することを確実に防止することができる。
According to the intracardiac defibrillation catheter of the present invention, the electrical energy necessary and sufficient for defibrillation can be reliably supplied to the heart that has undergone atrial fibrillation or the like during cardiac catheterization. In addition, it does not cause burns on the patient's body surface and is less invasive.
In addition, it is ensured that a short circuit will occur between the first lead wire group and the second lead wire group inside the tube member and the handle when a voltage necessary for intracardiac defibrillation is applied. Can be prevented.
 上記(1)の心腔内除細動カテーテルによれば、心腔内除細動に必要な電圧が印加されたときに、第1リード線群を構成するリード線(第1絶縁性チューブの基端開口から延び出したリード線の基端部分)と、第2リード線群を構成するリード線(第2絶縁性チューブの基端開口から延び出したリード線の基端部分)との間で短絡が発生することを確実に防止することができる。 According to the intracardiac defibrillation catheter of (1) above, when a voltage necessary for the intracardiac defibrillation is applied, the lead wires constituting the first lead wire group (of the first insulating tube) Between the lead wire portion extending from the base end opening) and the lead wire constituting the second lead wire group (the base end portion of the lead wire extending from the base end opening of the second insulating tube). Thus, it is possible to reliably prevent a short circuit from occurring.
 上記(6)の心腔内除細動カテーテルによれば、その製造時において、絶縁性チューブの基端開口から延び出したリード線がキンクしたり、ピン端子のエッジと接触したりして損傷することを防止することができる。 According to the intracardiac defibrillation catheter of (6) above, the lead wire extending from the proximal end opening of the insulating tube is kinked or contacted with the edge of the pin terminal at the time of manufacture. Can be prevented.
本発明の心腔内除細動カテーテルの一実施形態を示す説明用平面図である。It is an explanatory top view showing one embodiment of an intracardiac defibrillation catheter of the present invention. 本発明の心腔内除細動カテーテルの一実施形態を示す説明用平面図(寸法および硬度を説明するための図)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view for explaining one embodiment of an intracardiac defibrillation catheter of the present invention (a diagram for explaining dimensions and hardness). 図1のA-A断面を示す横断面図である。FIG. 2 is a transverse sectional view showing a section AA in FIG. 1. 図1のB-B断面、C-C断面、D-D断面を示す横断面図である。FIG. 2 is a transverse sectional view showing a BB section, a CC section, and a DD section in FIG. 図1に示した心腔内除細動カテーテルの一実施形態のハンドルの内部構造を示す斜視図である。FIG. 2 is a perspective view showing an internal structure of a handle of an embodiment of the intracardiac defibrillation catheter shown in FIG. 1. 図5に示したハンドル内部(先端側)の部分拡大図である。FIG. 6 is a partially enlarged view of the inside (front end side) of the handle shown in FIG. 5. 図5に示したハンドル内部(基端側)の部分拡大図である。FIG. 6 is a partially enlarged view of the inside (base end side) of the handle shown in FIG. 5. 図7に示した構造の作製手順(リード線のハンダ付け工程)を示す説明図である。It is explanatory drawing which shows the preparation procedures (the soldering process of a lead wire) of the structure shown in FIG. 図7に示した構造の作製手順(隔壁板の載置工程)を示す説明図である。It is explanatory drawing which shows the preparation procedures (mounting process of a partition plate) of the structure shown in FIG. 図7に示した構造の作製手順(絶縁性チューブの移動工程)を示す説明図である。It is explanatory drawing which shows the preparation procedures (movement process of an insulating tube) of the structure shown in FIG. 図10に示したリード線のピン端子への接続状態を先端側から見た図である。It is the figure which looked at the connection state to the pin terminal of the lead wire shown in FIG. 10 from the front end side. 図7に示した構造の作製手順(型枠の装着工程)を示す説明図である。It is explanatory drawing which shows the preparation procedures (formwork mounting process) of the structure shown in FIG. 図7に示した構造の作製手順(硬化性樹脂の注入工程)を示す説明図である。It is explanatory drawing which shows the preparation procedures (injection process of curable resin) of the structure shown in FIG. 図7に示した構造の作製手順(型枠の取外し工程)を示す説明図である。It is explanatory drawing which shows the preparation procedures (the removal process of a formwork) of the structure shown in FIG. 本発明の心腔内除細動カテーテルによって所定の電気エネルギーを付与した際に測定される電位波形図である。It is an electric potential waveform diagram measured when predetermined | prescribed electric energy is provided with the intracardiac defibrillation catheter of this invention.
 図1および図2は、本発明の心腔内除細動カテーテルの一実施形態を示す説明用平面図
、図3は、図1のA-A断面を示す横断面図、図4(a)~(c)は、図1のB-B断面、C-C断面、D-D断面を示す横断面図である。
1 and 2 are explanatory plan views showing an embodiment of the intracardiac defibrillation catheter of the present invention, FIG. 3 is a cross-sectional view showing the AA cross section of FIG. 1, and FIG. 4 (a). FIGS. 2C to 2C are cross-sectional views showing a BB cross section, a CC cross section, and a DD cross section of FIG.
 本実施形態の心腔内除細動カテーテル100は、マルチルーメンチューブ10と、ハンドル20と、第1DC電極群31Gと、第2DC電極群32Gと、基端側電位測定電極群33Gと、第1リード線群41Gと、第2リード線群42Gと、第3リード線群43Gとを備えている。 The intracardiac defibrillation catheter 100 of this embodiment includes a multi-lumen tube 10, a handle 20, a first DC electrode group 31G, a second DC electrode group 32G, a proximal-side potential measurement electrode group 33G, A lead wire group 41G, a second lead wire group 42G, and a third lead wire group 43G are provided.
 図3および図4に示すように、本実施形態の心腔内除細動カテーテル100を構成するマルチルーメンチューブ10(マルチルーメン構造を有する絶縁性のチューブ部材)には、4つのルーメン(第1ルーメン11、第2ルーメン12、第3ルーメン13、第4ルーメン14)が形成されている。 As shown in FIGS. 3 and 4, the multi-lumen tube 10 (insulating tube member having a multi-lumen structure) constituting the intracardiac defibrillation catheter 100 of this embodiment has four lumens (first A lumen 11, a second lumen 12, a third lumen 13, and a fourth lumen 14) are formed.
 図3および図4において、15は、ルーメンを区画するフッ素樹脂層、16は、低硬度のナイロンエラストマーからなるインナー(コア)部、17は、高硬度のナイロンエラストマーからなるアウター(シェル)部であり、図3における18は、編組ブレードを形成するステンレス素線である。 3 and 4, 15 is a fluororesin layer that divides the lumen, 16 is an inner (core) portion made of a low hardness nylon elastomer, and 17 is an outer (shell) portion made of a high hardness nylon elastomer. 3 and 18 in FIG. 3 is a stainless steel wire forming a braided blade.
 ルーメンを区画するフッ素樹脂層15は、例えばパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などの絶縁性の高い材料により構成されている。 The fluororesin layer 15 partitioning the lumen is made of a highly insulating material such as perfluoroalkyl vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE).
 マルチルーメンチューブ10のアウター部17を構成するナイロンエラストマーは、軸方向によって異なる硬度のものが用いられている。これにより、マルチルーメンチューブ10は、先端側から基端側に向けて段階的に硬度が高くなるよう構成されている。
 好適な一例を示せば、図2において、L1(長さ52mm)で示す領域の硬度(D型硬度計による硬度)は40、L2(長さ108mm)で示す領域の硬度は55、L3(長さ25.7mm)で示す領域の硬度は63、L4(長さ10mm)で示す領域の硬度は68、L5(長さ500mm)で示す領域の硬度は72である。
The nylon elastomer that forms the outer portion 17 of the multi-lumen tube 10 has a hardness that varies depending on the axial direction. Thereby, the multi-lumen tube 10 is comprised so that hardness may become high in steps toward the base end side from the front end side.
As a preferred example, in FIG. 2, the hardness of the region indicated by L1 (length 52 mm) (hardness by a D-type hardness meter) is 40, and the hardness of the region indicated by L2 (length 108 mm) is 55, L3 (long). The hardness of the region shown by 25.7 mm) is 63, the hardness of the region shown by L4 (length 10 mm) is 68, and the hardness of the region shown by L5 (length 500 mm) is 72.
 ステンレス素線18により構成される編組ブレードは、図2においてL5で示される領域においてのみ形成され、図3に示すように、インナー部16とアウター部17との間に設けられている。
 マルチルーメンチューブ10の外径は、例えば1.2~3.3mmとされる。
 マルチルーメンチューブ10を製造する方法としては特に限定されるものではない。
The braided blade composed of the stainless steel wire 18 is formed only in the region indicated by L5 in FIG. 2, and is provided between the inner portion 16 and the outer portion 17 as shown in FIG.
The outer diameter of the multi-lumen tube 10 is, for example, 1.2 to 3.3 mm.
The method for manufacturing the multi-lumen tube 10 is not particularly limited.
 本実施形態の心腔内除細動カテーテル100を構成するハンドル20は、ハンドル本体21と、摘まみ22と、ストレインリリーフ24とを備えている。
 摘まみ22を回転操作することにより、マルチルーメンチューブ10の先端部を偏向(首振り)させることができる。
The handle 20 constituting the intracardiac defibrillation catheter 100 of this embodiment includes a handle main body 21, a knob 22, and a strain relief 24.
By rotating the knob 22, the tip of the multi-lumen tube 10 can be deflected (swinged).
 マルチルーメンチューブ10の外周(内部に編組が形成されていない先端領域)には、第1DC電極群31G、第2DC電極群32Gおよび基端側電位測定電極群33Gが装着されている。ここに、「電極群」とは、同一の極を構成し(同一の極性を有し)、または、同一の目的を持って、狭い間隔(例えば5mm以下)で装着された複数の電極の集合体をいう。 The first DC electrode group 31G, the second DC electrode group 32G, and the proximal-side potential measurement electrode group 33G are attached to the outer periphery of the multi-lumen tube 10 (a distal end region where no braid is formed). Here, the “electrode group” is a set of a plurality of electrodes that constitute the same pole (having the same polarity) or are mounted at a narrow interval (for example, 5 mm or less) with the same purpose. Refers to the body.
 第1DC電極群は、マルチルーメンチューブの先端領域において、同一の極(-極または+極)を構成する複数の電極が狭い間隔で装着されてなる。ここに、第1DC電極群を構成する電極の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個とさ
れ、好ましくは8~10個とされる。
The first DC electrode group is formed by mounting a plurality of electrodes constituting the same pole (-pole or + pole) at a narrow interval in the tip region of the multi-lumen tube. Here, the number of electrodes constituting the first DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
 本実施形態において、第1DC電極群31Gは、マルチルーメンチューブ10の先端領域に装着された8個のリング状電極31から構成されている。
 第1DC電極群31Gを構成する電極31は、リード線(第1リード線群41Gを構成するリード線41)および後述するコネクタを介して、直流電源装置における同一の極の端子に接続されている。
In the present embodiment, the first DC electrode group 31 </ b> G includes eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10.
The electrodes 31 constituting the first DC electrode group 31G are connected to terminals of the same pole in the DC power supply device via lead wires (lead wires 41 constituting the first lead wire group 41G) and connectors described later. .
 ここに、電極31の幅(軸方向の長さ)は、2~5mmであることが好ましく、好適な一例を示せば4mmである。
 電極31の幅が狭過ぎると、電圧印加時の発熱量が過大となって、周辺組織に損傷を与える虞がある。一方、電極31の幅が広過ぎると、マルチルーメンチューブ10における第1DC電極群31Gが設けられている部分の可撓性・柔軟性が損なわれることがある。
   
Here, the width (length in the axial direction) of the electrode 31 is preferably 2 to 5 mm, and is 4 mm as a suitable example.
If the width of the electrode 31 is too narrow, the amount of heat generated when a voltage is applied may be excessive, which may damage surrounding tissues. On the other hand, if the width of the electrode 31 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the first DC electrode group 31G is provided may be impaired.
 電極31の装着間隔(隣り合う電極の離間距離)は、1~5mmであることが好ましく、好適な一例を示せば2mmである。
 心腔内除細動カテーテル100の使用時(心腔内に配置されるとき)において、第1DC電極群31Gは、例えば冠状静脈内に位置する。
The mounting interval of the electrodes 31 (distance between adjacent electrodes) is preferably 1 to 5 mm, and 2 mm is a preferable example.
When the intracardiac defibrillation catheter 100 is used (when placed in the heart chamber), the first DC electrode group 31G is located, for example, in the coronary vein.
 第2DC電極群は、マルチルーメンチューブの第1DC電極群の装着位置から基端側に離間して、第1DC電極群とは逆の極(+極または-極)を構成する複数の電極が狭い間隔で装着されてなる。ここに、第2DC電極群を構成する電極の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個とされ、好ましくは8~10個とされる。 The second DC electrode group is spaced from the mounting position of the first DC electrode group of the multi-lumen tube toward the base end side, and a plurality of electrodes constituting a pole (+ pole or −pole) opposite to the first DC electrode group are narrow Installed at intervals. Here, the number of electrodes constituting the second DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
 本実施形態において、第2DC電極群32Gは、第1DC電極群31Gの装着位置から基端側に離間してマルチルーメンチューブ10に装着された8個のリング状電極32から構成されている。
 第2DC電極群32Gを構成する電極32は、リード線(第2リード線群42Gを構成するリード線42)および後述するコネクタを介して、直流電源装置における同一の極の端子(第1DC電極群31Gが接続されているものとは逆の極の端子)に接続される。
 これにより、第1DC電極群31G(電極31)と、第2DC電極群32G(電極32)とに、互いに異なる極性の電圧が印加され、第1DC電極群31Gと、第2DC電極群32Gとは、互いに極性の異なる電極群(一方の電極群が-極のときに、他方の電極群は+極)となる。
In the present embodiment, the second DC electrode group 32G is composed of eight ring-shaped electrodes 32 that are mounted on the multi-lumen tube 10 while being spaced apart from the mounting position of the first DC electrode group 31G toward the proximal end side.
The electrode 32 constituting the second DC electrode group 32G is connected to a terminal (first DC electrode group) of the same polarity in the DC power supply device via a lead wire (lead wire 42 constituting the second lead wire group 42G) and a connector described later. The terminal of the opposite polarity to that to which 31G is connected).
Thereby, voltages having different polarities are applied to the first DC electrode group 31G (electrode 31) and the second DC electrode group 32G (electrode 32), and the first DC electrode group 31G and the second DC electrode group 32G are: The electrode groups have different polarities (when one electrode group is a negative electrode, the other electrode group is a positive electrode).
 ここに、電極32の幅(軸方向の長さ)は、2~5mmであることが好ましく、好適な一例を示せば4mmである。
 電極32の幅が狭過ぎると、電圧印加時の発熱量が過大となって、周辺組織に損傷を与える虞がある。一方、電極32の幅が広過ぎると、マルチルーメンチューブ10における第2DC電極群32Gが設けられている部分の可撓性・柔軟性が損なわれることがある。
   
Here, the width (length in the axial direction) of the electrode 32 is preferably 2 to 5 mm, and is 4 mm as a suitable example.
If the width of the electrode 32 is too narrow, the amount of heat generated at the time of voltage application becomes excessive, which may damage the surrounding tissue. On the other hand, if the width of the electrode 32 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the second DC electrode group 32G is provided may be impaired.
 電極32の装着間隔(隣り合う電極の離間距離)は、1~5mmであることが好ましく、好適な一例を示せば2mmである。
 心腔内除細動カテーテル100の使用時(心腔内に配置されるとき)において、第2DC電極群32Gは、例えば右心房に位置する。
The mounting interval of the electrodes 32 (distance between adjacent electrodes) is preferably 1 to 5 mm, and 2 mm is a preferable example.
When the intracardiac defibrillation catheter 100 is used (when placed in the heart chamber), the second DC electrode group 32G is located, for example, in the right atrium.
 本実施形態において、基端側電位測定電極群33Gは、第2DC電極群32Gの装着位置から基端側に離間してマルチルーメンチューブ10に装着された4個のリング状電極3
3から構成されている。
 基端側電位測定電極群33Gを構成する電極33は、リード線(第3リード線群43Gを構成するリード線43)および後述するコネクタを介して心電図計に接続される。
In the present embodiment, the proximal-side potential measurement electrode group 33G is separated from the attachment position of the second DC electrode group 32G toward the proximal end side, and the four ring electrodes 3 attached to the multi-lumen tube 10.
It is composed of three.
The electrodes 33 constituting the proximal-side potential measuring electrode group 33G are connected to the electrocardiograph via lead wires (lead wires 43 constituting the third lead wire group 43G) and connectors described later.
 ここに、電極33の幅(軸方向の長さ)は0.5~2.0mmであることが好ましく、好適な一例を示せば1.2mmである。
 電極33の幅が広過ぎると、心電位の測定精度が低下したり、異常電位の発生部位の特定が困難となったりする。
Here, the width (length in the axial direction) of the electrode 33 is preferably 0.5 to 2.0 mm, and 1.2 mm is a preferable example.
If the width of the electrode 33 is too wide, the measurement accuracy of the cardiac potential is lowered, or it is difficult to specify the site where the abnormal potential is generated.
 電極33の装着間隔(隣り合う電極の離間距離)は、1.0~10.0mmであることが好ましく、好適な一例を示せば5mmである。
 心腔内除細動カテーテル100の使用時(心腔内に配置されるとき)において、基端側電位測定電極群33Gは、例えば、異常電位が発生しやすい上大静脈に位置する。
The mounting interval of the electrodes 33 (the distance between adjacent electrodes) is preferably 1.0 to 10.0 mm, and 5 mm is a preferable example.
When the intracardiac defibrillation catheter 100 is used (when placed in the heart chamber), the proximal-side potential measurement electrode group 33G is located, for example, in the superior vena cava where an abnormal potential is likely to occur.
 心腔内除細動カテーテル100の先端には、先端チップ35が装着されている。
 この先端チップ35には、リード線は接続されておらず、本実施形態では電極として使用していない。但し、リード線を接続させることにより、電極として使用することも可能である。先端チップ35の構成材料は、白金、ステンレスなどの金属材料、各種の樹脂材料など、特に限定されるものではない。
A distal tip 35 is attached to the distal end of the intracardiac defibrillation catheter 100.
A lead wire is not connected to the tip chip 35 and is not used as an electrode in this embodiment. However, it can also be used as an electrode by connecting a lead wire. The constituent material of the tip 35 is not particularly limited, such as metal materials such as platinum and stainless steel, various resin materials, and the like.
 第1DC電極群31G(基端側の電極31)と、第2DC電極群32G(先端側の電極32)との離間距離d2は40~100mmであることが好ましく、好適な一例を示せば66mmである。 The separation distance d2 between the first DC electrode group 31G (base end side electrode 31) and the second DC electrode group 32G (tip end side electrode 32) is preferably 40 to 100 mm, and 66 mm is a preferable example. is there.
 第2DC電極群32G(基端側の電極32)と、基端側電位測定電極群33G(先端側の電極33)との離間距離d3は5~50mmであることが好ましく、好適な一例を示せば30mmである。 The distance d3 between the second DC electrode group 32G (base end side electrode 32) and the base end side potential measurement electrode group 33G (tip end side electrode 33) is preferably 5 to 50 mm, and a suitable example is shown. 30 mm.
 第1DC電極群31G、第2DC電極群32Gおよび基端側電位測定電極群33Gを構成する電極31,32,33としては、X線に対する造影性を良好なものとするために、白金または白金系の合金からなることが好ましい。 As the electrodes 31, 32, 33 constituting the first DC electrode group 31G, the second DC electrode group 32G, and the proximal-side potential measurement electrode group 33G, platinum or a platinum-based material is used in order to improve the contrast with respect to X-rays. It is preferable to consist of these alloys.
 図3および図4に示される第1リード線群41Gは、第1DC電極群(31G)を構成する8個の電極(31)の各々に接続された8本のリード線41の集合体である。
 第1リード線群41G(リード線41)により、第1DC電極群31Gを構成する8個の電極31の各々を直流電源装置に電気的に接続することができる。
The first lead wire group 41G shown in FIGS. 3 and 4 is an aggregate of eight lead wires 41 connected to each of the eight electrodes (31) constituting the first DC electrode group (31G). .
With the first lead wire group 41G (lead wire 41), each of the eight electrodes 31 constituting the first DC electrode group 31G can be electrically connected to the DC power supply device.
 第1DC電極群31Gを構成する8個の電極31は、それぞれ、異なるリード線41に接続される。リード線41の各々は、その先端部分において電極31の内周面に溶接されるとともに、マルチルーメンチューブ10の管壁に形成された側孔から第1ルーメン11に進入する。第1ルーメン11に進入した8本のリード線41は、第1リード線群41Gとして、第1ルーメン11に延在する。 The eight electrodes 31 constituting the first DC electrode group 31G are connected to different lead wires 41, respectively. Each of the lead wires 41 is welded to the inner peripheral surface of the electrode 31 at the tip portion, and enters the first lumen 11 from a side hole formed in the tube wall of the multi-lumen tube 10. The eight lead wires 41 that have entered the first lumen 11 extend to the first lumen 11 as a first lead wire group 41G.
 図3および図4に示される第2リード線群42Gは、第2DC電極群(32G)を構成する8個の電極(32)の各々に接続された8本のリード線42の集合体である。
 第2リード線群42G(リード線42)により、第2DC電極群32Gを構成する8個の電極32の各々を直流電源装置に電気的に接続することができる。
The second lead wire group 42G shown in FIGS. 3 and 4 is an aggregate of eight lead wires 42 connected to each of the eight electrodes (32) constituting the second DC electrode group (32G). .
Each of the eight electrodes 32 constituting the second DC electrode group 32G can be electrically connected to the DC power supply device by the second lead wire group 42G (lead wire 42).
 第2DC電極群32Gを構成する8個の電極32は、それぞれ、異なるリード線42に接続される。リード線42の各々は、その先端部分において電極32の内周面に溶接され
るとともに、マルチルーメンチューブ10の管壁に形成された側孔から第2ルーメン12(第1リード線群41Gが延在する第1ルーメン11とは異なるルーメン)に進入する。第2ルーメン12に進入した8本のリード線42は、第2リード線群42Gとして、第2ルーメン12に延在する。
The eight electrodes 32 constituting the second DC electrode group 32G are connected to different lead wires 42, respectively. Each of the lead wires 42 is welded to the inner peripheral surface of the electrode 32 at the tip portion thereof, and the second lumen 12 (the first lead wire group 41G extends from the side hole formed in the tube wall of the multi-lumen tube 10. A different lumen from the existing first lumen 11 is entered. The eight lead wires 42 that have entered the second lumen 12 extend to the second lumen 12 as a second lead wire group 42G.
 上記のように、第1リード線群41Gが第1ルーメン11に延在し、第2リード線群42Gが第2ルーメン12に延在していることにより、両者は、マルチルーメンチューブ10内において完全に絶縁隔離されている。このため、除細動に必要な電圧が印加されたときに、第1リード線群41G(第1DC電極群31G)と、第2リード線群42G(第2DC電極群32G)との間の短絡を確実に防止することができる。 As described above, the first lead wire group 41G extends to the first lumen 11 and the second lead wire group 42G extends to the second lumen 12. Fully insulated and isolated. Therefore, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G (first DC electrode group 31G) and the second lead wire group 42G (second DC electrode group 32G). Can be reliably prevented.
 図3に示される第3リード線群43Gは、基端側電位測定電極群(33G)を構成する電極(33)の各々に接続された4本のリード線43の集合体である。
 第3リード線群43G(リード線43)により、基端側電位測定電極群33Gを構成する電極33の各々を、心電図計に接続することができる。
The third lead wire group 43G shown in FIG. 3 is an assembly of four lead wires 43 connected to each of the electrodes (33) constituting the proximal-side potential measurement electrode group (33G).
With the third lead wire group 43G (lead wire 43), each of the electrodes 33 constituting the proximal end side potential measurement electrode group 33G can be connected to an electrocardiograph.
 基端側電位測定電極群33Gを構成する4個の電極33は、それぞれ、異なるリード線43に接続されている。リード線43の各々は、その先端部分において電極33の内周面に溶接されるとともに、マルチルーメンチューブ10の管壁に形成された側孔から第3ルーメン13に進入する。第3ルーメン13に進入した4本のリード線43は、第3リード線群43Gとして、第3ルーメン13に延在する。 The four electrodes 33 constituting the base end side potential measurement electrode group 33G are connected to different lead wires 43, respectively. Each of the lead wires 43 is welded to the inner peripheral surface of the electrode 33 at the tip portion thereof, and enters the third lumen 13 from a side hole formed in the tube wall of the multi-lumen tube 10. The four lead wires 43 that have entered the third lumen 13 extend to the third lumen 13 as a third lead wire group 43G.
 上記のように、第3ルーメン13に延在している第3リード線群43Gは、第1リード線群41Gおよび第2リード線群42Gの何れからも完全に絶縁隔離されている。このため、除細動に必要な電圧が印加されたときに、第3リード線群43G(基端側電位測定電極群33G)と、第1リード線群41G(第1DC電極群31G)または第2リード線群42G(第2DC電極群32G)との間の短絡を確実に防止することができる。 As described above, the third lead wire group 43G extending to the third lumen 13 is completely insulated and isolated from both the first lead wire group 41G and the second lead wire group 42G. Therefore, when a voltage necessary for defibrillation is applied, the third lead wire group 43G (base end side potential measurement electrode group 33G) and the first lead wire group 41G (first DC electrode group 31G) or the first A short circuit between the two lead wire group 42G (second DC electrode group 32G) can be reliably prevented.
 リード線41、リード線42およびリード線43は、何れも、ポリイミドなどの樹脂によって金属導線の外周面が被覆された樹脂被覆線からなる。ここに、被覆樹脂の膜厚としては2~30μm程度とされる。 The lead wire 41, the lead wire 42, and the lead wire 43 are all made of a resin-coated wire in which the outer peripheral surface of the metal conducting wire is covered with a resin such as polyimide. Here, the coating resin has a thickness of about 2 to 30 μm.
 図3および図4において71はプルワイヤである。
 プルワイヤ71は、第4ルーメン14に延在し、マルチルーメンチューブ10の中心軸に対して偏心して延びている。
3 and 4, reference numeral 71 denotes a pull wire.
The pull wire 71 extends to the fourth lumen 14 and extends eccentrically with respect to the central axis of the multi-lumen tube 10.
 プルワイヤ71の先端部分は、ハンダによって先端チップ35に固定されている。また、プルワイヤ71の先端には抜け止め用大径部(抜け止め部)が形成されていてもよい。これにより、先端チップ35とプルワイヤ71とは強固に結合され、先端チップ35の脱落などを確実に防止することができる。 The tip portion of the pull wire 71 is fixed to the tip tip 35 with solder. Further, a large diameter portion for retaining (a retaining portion) may be formed at the tip of the pull wire 71. Thereby, the tip tip 35 and the pull wire 71 are firmly coupled, and the tip tip 35 can be reliably prevented from falling off.
 一方、プルワイヤ71の基端部分は、ハンドル20の摘まみ22に接続されており、摘まみ22を操作することによってプルワイヤ71が引っ張られ、これにより、マルチルーメンチューブ10の先端部が偏向する。
 プルワイヤ71は、ステンレスやNi-Ti系超弾性合金製で構成してあるが、必ずしも金属で構成する必要はない。プルワイヤ71は、たとえば高強度の非導電性ワイヤなどで構成してもよい。
 なお、マルチルーメンチューブの先端部を偏向させる機構は、これに限定されるものではなく、例えば、板バネを備えてなるものであってもよい。
On the other hand, the proximal end portion of the pull wire 71 is connected to the knob 22 of the handle 20, and the pull wire 71 is pulled by operating the knob 22, whereby the distal end portion of the multi-lumen tube 10 is deflected.
The pull wire 71 is made of stainless steel or a Ni—Ti superelastic alloy, but is not necessarily made of metal. The pull wire 71 may be constituted by a high-strength non-conductive wire, for example.
Note that the mechanism for deflecting the distal end portion of the multi-lumen tube is not limited to this, and may be a plate spring, for example.
 マルチルーメンチューブ10の第4ルーメン14には、プルワイヤ71のみが延在しており、リード線(群)は延在していない。これにより、マルチルーメンチューブ10の先端部の偏向操作時において、軸方向に移動するプルワイヤ71によってリード線が損傷(例えば、擦過傷)を受けることを防止することができる。 In the fourth lumen 14 of the multi-lumen tube 10, only the pull wire 71 extends, and the lead wire (group) does not extend. Thereby, it is possible to prevent the lead wire from being damaged (for example, scratched) by the pull wire 71 moving in the axial direction during the deflection operation of the distal end portion of the multi-lumen tube 10.
 本実施形態の心腔内除細動カテーテル100は、ハンドル20の内部においても、第1リード線群41Gと、第2リード線群42Gと、第3リード線群43Gとが絶縁隔離されている。 In the intracardiac defibrillation catheter 100 of the present embodiment, the first lead wire group 41G, the second lead wire group 42G, and the third lead wire group 43G are insulated and isolated even inside the handle 20. .
 図5は、本実施形態の心腔内除細動カテーテル100のハンドルの内部構造を示す斜視図、図6は、ハンドル内部(先端側)の部分拡大図、図7は、ハンドル内部(基端側)の部分拡大図である。 FIG. 5 is a perspective view showing the internal structure of the handle of the intracardiac defibrillation catheter 100 of the present embodiment, FIG. 6 is a partially enlarged view of the inside of the handle (distal side), and FIG. FIG.
 図5に示すように、マルチルーメンチューブ10の基端部は、ハンドル20の先端開口に挿入され、これにより、マルチルーメンチューブ10と、ハンドル20とが接続されている。 As shown in FIG. 5, the base end portion of the multi-lumen tube 10 is inserted into the distal end opening of the handle 20, whereby the multi-lumen tube 10 and the handle 20 are connected.
 図5および図7に示すように、ハンドル20の基端部には、先端方向に突出する複数のピン端子(51、52、53)を先端面50Aに配置してなる円筒状のコネクタ50が内蔵されている。
 また、図5乃至図7に示すように、ハンドル20の内部には、3本のリード線群(第1リード線群41G、第2リード線群42G、第3リード線群43G)の各々が挿通される3本の絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27、第3絶縁性チューブ28)が延在している。
As shown in FIGS. 5 and 7, a cylindrical connector 50 formed by arranging a plurality of pin terminals (51, 52, 53) protruding in the distal direction on the distal end surface 50 </ b> A is provided at the proximal end of the handle 20. Built in.
5 to 7, each of the three lead wire groups (first lead wire group 41G, second lead wire group 42G, and third lead wire group 43G) is provided inside the handle 20. Three insulating tubes (a first insulating tube 26, a second insulating tube 27, and a third insulating tube 28) to be inserted extend.
 図5および図6に示すように、第1絶縁性チューブ26の先端部(先端から10mm程度)は、マルチルーメンチューブ10の第1ルーメン11に挿入され、これにより、第1絶縁性チューブ26は、第1リード線群41Gが延在する第1ルーメン11に連結されている。
 第1ルーメン11に連結された第1絶縁性チューブ26は、ハンドル20の内部に延在する第1の保護チューブ61の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第1リード線群41Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第1ルーメン11)から延び出した第1リード線群41Gは、キンクすることなく、ハンドル20の内部(第1絶縁性チューブ26の内孔)を延在することができる。
 第1絶縁性チューブ26の基端開口から延び出した第1リード線群41Gは、これを構成する8本のリード線41にばらされ、これらリード線41の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第1リード線群41Gを構成するリード線41が接続固定されたピン端子(ピン端子51)が配置されている領域を「第1端子群領域」とする。
 これにより、第1DC電極群31Gを構成する8個の電極31は、第1リード線群41Gを構成する8本のリード線41およびコネクタ50(第1端子群領域におけるピン端子51)を介して、直流電源装置における一方の極の端子に接続することができる。
As shown in FIGS. 5 and 6, the distal end portion (about 10 mm from the distal end) of the first insulating tube 26 is inserted into the first lumen 11 of the multi-lumen tube 10, whereby the first insulating tube 26 is The first lead wire group 41G is connected to the first lumen 11 extending.
The first insulating tube 26 connected to the first lumen 11 passes through the inner hole of the first protective tube 61 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the first lead wire group 41G to the vicinity of the connector 50. Thereby, the first lead wire group 41G extending from the multi-lumen tube 10 (first lumen 11) extends inside the handle 20 (inner hole of the first insulating tube 26) without being kinked. Can do.
The first lead wire group 41G extending from the base end opening of the first insulating tube 26 is divided into eight lead wires 41 constituting the first lead wire group 41G, and each of the lead wires 41 is a front end surface 50A of the connector 50. Are fixedly connected to each of the pin terminals arranged by soldering. Here, a region where the pin terminals (pin terminals 51) to which the lead wires 41 constituting the first lead wire group 41G are connected and fixed is arranged is referred to as a “first terminal group region”.
Thus, the eight electrodes 31 constituting the first DC electrode group 31G are connected via the eight lead wires 41 constituting the first lead wire group 41G and the connector 50 (pin terminals 51 in the first terminal group region). And can be connected to a terminal of one of the poles in the DC power supply device.
 第2絶縁性チューブ27の先端部(先端から10mm程度)は、マルチルーメンチューブ10の第2ルーメン12に挿入され、これにより、第2絶縁性チューブ27は、第2リード線群42Gが延在する第2ルーメン12に連結されている。
 第2ルーメン12に連結された第2絶縁性チューブ27は、ハンドル20の内部に延在する第2の保護チューブ62の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第2リード線群42Gの基端部をコネクタ50の近傍に
案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第2ルーメン12)から延び出した第2リード線群42Gは、キンクすることなく、ハンドル20の内部(第2絶縁性チューブ27の内孔)を延在することができる。
 第2絶縁性チューブ27の基端開口から延び出した第2リード線群42Gは、これを構成する8本のリード線42にばらされ、これらリード線42の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第2リード線群42Gを構成するリード線42が接続固定されたピン端子(ピン端子52)が配置されている領域を「第2端子群領域」とする。
 これにより、第2DC電極群32Gを構成する8個の電極32は、第2リード線群42Gを構成する8本のリード線42およびコネクタ50(第2端子群領域におけるピン端子52)を介して、直流電源装置における他方の極の端子に接続することができる。
The distal end portion (about 10 mm from the distal end) of the second insulating tube 27 is inserted into the second lumen 12 of the multi-lumen tube 10, whereby the second lead wire group 42G extends in the second insulating tube 27. Connected to the second lumen 12.
The second insulating tube 27 connected to the second lumen 12 passes through the inner hole of the second protective tube 62 extending to the inside of the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the second lead wire group 42G to the vicinity of the connector 50. Accordingly, the second lead wire group 42G extending from the multi-lumen tube 10 (second lumen 12) extends inside the handle 20 (inner hole of the second insulating tube 27) without being kinked. Can do.
The second lead wire group 42G extending from the proximal end opening of the second insulating tube 27 is divided into eight lead wires 42 constituting the second lead wire group 42G, and each of these lead wires 42 is a front end surface 50A of the connector 50. Are fixedly connected to each of the pin terminals arranged by soldering. Here, a region where the pin terminals (pin terminals 52) to which the lead wires 42 constituting the second lead wire group 42G are connected and fixed is disposed is referred to as a “second terminal group region”.
Thereby, the eight electrodes 32 constituting the second DC electrode group 32G are connected via the eight lead wires 42 constituting the second lead wire group 42G and the connector 50 (pin terminals 52 in the second terminal group region). The terminal of the other pole in the direct current power supply device can be connected.
 第3絶縁性チューブ28の先端部(先端から10mm程度)は、マルチルーメンチューブ10の第3ルーメン13に挿入され、これにより、第3絶縁性チューブ28は、第3リード線群43Gが延在する第3ルーメン13に連結されている。
 第3ルーメン13に連結された第3絶縁性チューブ28は、ハンドル20の内部に延在する第2の保護チューブ62の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第3リード線群43Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第3ルーメン13)から延び出した第3リード線群43Gは、キンクすることなく、ハンドル20の内部(第3絶縁性チューブ28の内孔)を延在することができる。
 第3絶縁性チューブ28の基端開口から延び出した第3リード線群43Gは、これを構成する4本のリード線43にばらされ、これらリード線43の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第3リード線群43Gを構成するリード線43が接続固定されたピン端子(ピン端子53)が配置されている領域を「第3端子群領域」とする。
 これにより、基端側電位測定電極群33Gを構成する4個の電極33は、第3リード線群43Gを構成する4本のリード線43およびコネクタ50(ピン端子53)を介して、心電図計に接続することができる。
The distal end portion (about 10 mm from the distal end) of the third insulating tube 28 is inserted into the third lumen 13 of the multi-lumen tube 10, whereby the third lead wire group 43G extends in the third insulating tube 28. Connected to the third lumen 13.
The third insulating tube 28 connected to the third lumen 13 passes through the inner hole of the second protective tube 62 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path for guiding the proximal end portion of the third lead wire group 43G to the vicinity of the connector 50. As a result, the third lead wire group 43G extending from the multi-lumen tube 10 (third lumen 13) extends inside the handle 20 (inner hole of the third insulating tube 28) without kinking. Can do.
The third lead wire group 43G extending from the proximal end opening of the third insulating tube 28 is divided into four lead wires 43 constituting the third lead wire group 43, and each of the lead wires 43 is connected to the distal end surface 50A of the connector 50. Are fixedly connected to each of the pin terminals arranged by soldering. Here, an area where the pin terminals (pin terminals 53) to which the lead wires 43 constituting the third lead wire group 43G are connected and fixed is arranged is referred to as a “third terminal group area”.
As a result, the four electrodes 33 constituting the proximal-side potential measurement electrode group 33G are transferred to the electrocardiograph via the four lead wires 43 and the connector 50 (pin terminal 53) constituting the third lead wire group 43G. Can be connected to.
 ここに、絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27および第3絶縁性チューブ28)の構成材料としては、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂などを例示することができる。これらのうち、硬度が高くて、リード線群を挿通しやすく、肉薄成形が可能なポリイミド樹脂が特に好ましい。
 絶縁性チューブの肉厚としては、20~40μmであることが好ましく、好適な一例を示せば30μmである。
Here, examples of the constituent material of the insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) include polyimide resin, polyamide resin, and polyamideimide resin. . Of these, a polyimide resin is particularly preferable because of its high hardness, easy insertion of the lead wire group, and capable of thin molding.
The thickness of the insulating tube is preferably 20 to 40 μm, and is 30 μm as a suitable example.
 また、絶縁性チューブが内挿される保護チューブ(第1の保護チューブ61および第2の保護チューブ62)の構成材料としては、「Pebax」(ARKEMA社の登録商標)などのナイロン系エラストマーを例示することができる。 Moreover, as a constituent material of the protective tube (the first protective tube 61 and the second protective tube 62) into which the insulating tube is inserted, nylon elastomer such as “Pebax” (registered trademark of ARKEMA) is exemplified. be able to.
 上記のような構成を有する本実施形態の心腔内除細動カテーテル100によれば、第1絶縁性チューブ26内に第1リード線群41Gが延在し、第2絶縁性チューブ27内に第2リード線群42Gが延在し、第3絶縁性チューブ28内に第3リード線群43Gが延在していることで、ハンドル20の内部においても、第1リード線群41Gと、第2リード線群42Gと、第3リード線43Gとを完全に絶縁隔離することができる。この結果、除細動に必要な電圧が印加されたときにおいて、ハンドル20の内部における第1リード線群41Gと、第2リード線群42Gと、第3リード線43Gとの間の短絡(特に、ルーメンの開口付近において延び出したリード線群間における短絡)を確実に防止することができる。 According to the intracardiac defibrillation catheter 100 of the present embodiment having the above-described configuration, the first lead wire group 41G extends in the first insulating tube 26, and in the second insulating tube 27. Since the second lead wire group 42G extends and the third lead wire group 43G extends in the third insulating tube 28, the first lead wire group 41G, The two-lead wire group 42G and the third lead wire 43G can be completely insulated and isolated. As a result, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G, the second lead wire group 42G, and the third lead wire 43G inside the handle 20 (particularly, Short circuit between the lead wire groups extending near the opening of the lumen can be reliably prevented.
 さらに、ハンドル20の内部において、第1絶縁性チューブ26が第1の保護チューブ61によって保護され、第2絶縁性チューブ27および第3絶縁性チューブ28が第2の保護チューブ52によって保護されていることにより、例えば、マルチルーメンチューブ10の先端部の偏向操作時に摘まみ22の構成部材(可動部品)が接触・擦過することによって絶縁性チューブが損傷することを防止することができる。 Further, in the handle 20, the first insulating tube 26 is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52. Thereby, for example, it is possible to prevent the insulating tube from being damaged by contact and rubbing of the constituent members (movable parts) of the knob 22 during the deflection operation of the distal end portion of the multi-lumen tube 10.
 本実施形態の心腔内除細動カテーテル100は、複数のピン端子が配置されたコネクタ50の先端面50Aを、第1端子群領域と、第2端子群領域および第3端子群領域とに仕切り、リード線41と、リード線42およびリード線43とを互いに隔離する隔壁板55を備えている。 In the intracardiac defibrillation catheter 100 of the present embodiment, the distal end surface 50A of the connector 50 on which a plurality of pin terminals are arranged is divided into a first terminal group region, a second terminal group region, and a third terminal group region. A partition plate 55 for separating the lead wire 41 and the lead wire 42 and the lead wire 43 from each other is provided.
 第1端子群領域と、第2端子群領域および第3端子群領域とを仕切る隔壁板55は、絶縁性樹脂を、両側に平坦面を有する樋状に成型加工してなる。隔壁板55を構成する絶縁性樹脂としては、特に限定されるものではなく、ポリエチレンなどの汎用樹脂を使用することができる。 The partition plate 55 that partitions the first terminal group region, the second terminal group region, and the third terminal group region is formed by molding an insulating resin into a bowl shape having flat surfaces on both sides. The insulating resin constituting the partition plate 55 is not particularly limited, and a general-purpose resin such as polyethylene can be used.
 隔壁板55の厚さは、例えば0.1~0.5mmとされ、好適な一例を示せば0.2mmである。
 隔壁板55の高さ(基端縁から先端縁までの距離)は、コネクタ50の先端面50Aと絶縁性チューブ(第1絶縁性チューブ26および第2絶縁性チューブ27)との離間距離より高いことが必要であり、この離間距離が7mmの場合、隔壁板55の高さは、例えば8mmとされる。高さが7mm未満の隔壁板では、その先端縁を、絶縁性チューブの基端よりも先端側に位置させることができない。
The thickness of the partition plate 55 is, for example, 0.1 to 0.5 mm, and 0.2 mm is a preferable example.
The height of the partition plate 55 (distance from the base end edge to the front end edge) is higher than the separation distance between the front end surface 50A of the connector 50 and the insulating tubes (the first insulating tube 26 and the second insulating tube 27). When the separation distance is 7 mm, the height of the partition plate 55 is, for example, 8 mm. In the partition plate having a height of less than 7 mm, the distal end edge cannot be positioned on the distal end side with respect to the proximal end of the insulating tube.
 このような構成によれば、第1リード線群41Gを構成するリード線41(第1絶縁性チューブ26の基端開口から延び出したリード線41の基端部分)と、第2リード線群42Gを構成するリード線42(第2絶縁性チューブ27の基端開口から延び出したリード線42の基端部分)とを確実かつ整然と隔離することができる。 According to such a configuration, the lead wire 41 (the base end portion of the lead wire 41 extending from the base end opening of the first insulating tube 26) constituting the first lead wire group 41G, and the second lead wire group The lead wire 42 (the base end portion of the lead wire 42 extending from the base end opening of the second insulating tube 27) constituting the 42G can be reliably and orderly isolated.
 そして、互いに異なる極性の電圧が印加される、第1リード線群41Gを構成するリード線41と、第2リード線群42Gを構成するリード線42とが、隔壁板55により互いに隔離されて接触することがないので、心腔内除細動カテーテル100の使用時において、心腔内除細動に必要な電圧を印加しても、第1リード線群41Gを構成するリード線41(第1絶縁性チューブ26の基端開口から延び出したリード線41の基端部分)と、第2リード線群42Gを構成するリード線42(第2絶縁性チューブ27の基端開口から延び出したリード線42の基端部分)との間で短絡が発生することはない。 The lead wires 41 constituting the first lead wire group 41G and the lead wires 42 constituting the second lead wire group 42G, to which voltages having different polarities are applied, are separated from each other by the partition plate 55 and are in contact with each other. Therefore, when the intracardiac defibrillation catheter 100 is used, even if a voltage necessary for the intracardiac defibrillation is applied, the lead wires 41 (the first leads 41G constituting the first lead wire group 41G) The lead end portion of the lead wire 41 extending from the base end opening of the insulating tube 26 and the lead wire 42 constituting the second lead wire group 42G (the lead extending from the base end opening of the second insulating tube 27). A short circuit does not occur with the base end portion of the line 42.
 また、心腔内除細動カテーテルの製造時において、リード線をピン端子に接続固定する際に誤りが生じた場合、例えば、第1リード線群41Gを構成するリード線41を、第2端子群領域におけるピン端子に接続した場合には、そのリード41は隔壁55を跨ぐことになるので、接続の誤りを容易に発見することができる。 Further, when an error occurs when the lead wire is connected and fixed to the pin terminal during the manufacture of the intracardiac defibrillation catheter, for example, the lead wire 41 constituting the first lead wire group 41G is connected to the second terminal. When connected to a pin terminal in the group region, the lead 41 straddles the partition wall 55, so that a connection error can be easily found.
 なお、第3リード線群43Gを構成するリード線43(ピン端子53)は、リード線42(ピン端子52)とともに、隔壁板55によりリード線41(ピン端子51)から隔離されているが、これに限定されるものではなく、リード線41(ピン端子51)とともに、隔壁板55によってリード線42(ピン端子52)から隔離されていてもよい。 The lead wire 43 (pin terminal 53) constituting the third lead wire group 43G is separated from the lead wire 41 (pin terminal 51) by the partition plate 55 together with the lead wire 42 (pin terminal 52). However, the present invention is not limited to this, and may be separated from the lead wire 42 (pin terminal 52) by the partition plate 55 together with the lead wire 41 (pin terminal 51).
 本実施形態の心腔内除細動カテーテル100において、隔壁板55の先端縁は、第1絶縁性チューブ26の基端および第2絶縁性チューブ27の基端の何れよりも先端側に位置
している。
 これにより、第1絶縁性チューブ26の基端開口から延び出したリード線(第1リード線群41Gを構成するリード線41)と、第2絶縁性チューブ27の基端開口から延び出たリード線(第2リード線群42Gを構成するリード線42)との間には、常に隔壁板55が存在することになり、リード線41とリード線42との接触による短絡を確実に防止することができる。
In the intracardiac defibrillation catheter 100 of the present embodiment, the distal end edge of the partition wall plate 55 is positioned on the distal end side with respect to both the proximal end of the first insulating tube 26 and the proximal end of the second insulating tube 27. ing.
Thereby, the lead wire (lead wire 41 constituting the first lead wire group 41G) extending from the base end opening of the first insulating tube 26 and the lead extending from the base end opening of the second insulating tube 27 are provided. Between the wires (the lead wires 42 constituting the second lead wire group 42G), the partition plate 55 is always present, and the short circuit due to the contact between the lead wires 41 and the lead wires 42 is surely prevented. Can do.
 図7に示すように、第1絶縁性チューブ26の基端開口から延び出してコネクタ50のピン端子51に接続固定された8本のリード線41、第2絶縁性チューブ27の基端開口から延び出してコネクタ50のピン端子52に接続固定された8本のリード線42、第3絶縁性チューブ28の基端開口から延び出してコネクタ50のピン端子53に接続固定された4本のリード線43は、これらの周囲が樹脂80で固められることにより、それぞれの形状が保持固定されている。 As shown in FIG. 7, eight lead wires 41 extending from the base end opening of the first insulating tube 26 and connected and fixed to the pin terminal 51 of the connector 50, and from the base end opening of the second insulating tube 27 Eight lead wires 42 extending and fixedly connected to the pin terminal 52 of the connector 50, and four leads extending from the proximal end opening of the third insulating tube 28 and fixedly connected to the pin terminal 53 of the connector 50 The shape of the wire 43 is held and fixed by fixing the periphery of the wire 43 with the resin 80.
 リード線の形状を保持する樹脂80は、コネクタ50と同径の円筒状に成形されており、この樹脂成形体の内部に、ピン端子、リード線、絶縁性チューブの基端部および隔壁板55が埋め込まれた状態となっている。
 そして、絶縁性チューブの基端部が樹脂成形体の内部に埋め込まれている構成によれば、絶縁性チューブの基端開口より延び出してからピン端子に接続固定されるまでのリード線(基端部分)の全域を樹脂80によって完全に覆うことができ、リード線(基端部分)の形状を完全に保持固定することができる。
 また、樹脂成形体の高さ(基端面から先端面までの距離)は、隔壁板55の高さよりも高いことが好ましく、隔壁板55の高さが8mmの場合に、例えば9mmとされる。
The resin 80 that retains the shape of the lead wire is formed into a cylindrical shape having the same diameter as the connector 50, and the pin terminal, the lead wire, the base end portion of the insulating tube, and the partition plate 55 are formed inside the resin molded body. Is embedded.
According to the configuration in which the proximal end portion of the insulating tube is embedded in the resin molded body, the lead wire (base) from the base end opening of the insulating tube until it is connected and fixed to the pin terminal. The entire area of the end portion can be completely covered with the resin 80, and the shape of the lead wire (base end portion) can be completely held and fixed.
Further, the height of the resin molded body (distance from the base end surface to the front end surface) is preferably higher than the height of the partition plate 55, and is 9 mm, for example, when the height of the partition plate 55 is 8 mm.
 ここに、樹脂成形体を構成する樹脂80としては特に限定されるのではないが、熱硬化性樹脂または光硬化性樹脂を使用することが好ましい。具体的には、ウレタン系、エポキシ系、ウレタン-エポキシ系の硬化性樹脂を例示することができる。 Here, the resin 80 constituting the resin molded body is not particularly limited, but it is preferable to use a thermosetting resin or a photocurable resin. Specifically, urethane-based, epoxy-based, and urethane-epoxy-based curable resins can be exemplified.
 上記のような構成によれば、樹脂80によってリード線の形状が保持固定されるので、心腔内除細動カテーテル100を製造する際(ハンドル20の内部にコネクタ50を装着する際)に、絶縁性チューブの基端開口から延び出したリード線がキンクしたり、ピン端子のエッジと接触したりして損傷(例えば、リード線の被覆樹脂にクラックが発生)することを防止することができる。 According to the above configuration, since the shape of the lead wire is held and fixed by the resin 80, when the intracardiac defibrillation catheter 100 is manufactured (when the connector 50 is mounted inside the handle 20), It is possible to prevent the lead wire extending from the base end opening of the insulating tube from being kinked or coming into contact with the edge of the pin terminal (for example, cracking occurs in the coating resin of the lead wire). .
 図7に示したような構造、すなわち、絶縁性チューブの基端開口から延び出してピン端子の各々に接触固定されたリード線の各々を樹脂成形体中に埋設してなる構造は、下記のようにして作製することができる。 The structure as shown in FIG. 7, that is, a structure in which each lead wire extending from the base end opening of the insulating tube and fixed in contact with each pin terminal is embedded in the resin molded body is as follows. In this way, it can be manufactured.
(1)リード線のハンダ付け工程:
 図8に示すように、コネクタ50の先端面50Aに配置されたピン端子の各々に、第1リード線群41Gを構成する8本のリード線41、第2リード線群42Gを構成する8本のリード線42、第3リード線群43Gを構成する4本のリード線43の各々をハンダにより接続固定する。
 ここに、これらのリード線(リード線41、リード線42、リード線43)の先端は、それぞれ、電極群(第1DC電極群31G、第2DC電極群32G、基端側電位測定電極群33G)を構成する電極(電極31、電極32、電極33)に既に接続されている。
 また、これらのリード線(リード線41、リード線42、リード線43)によるリード線群(第1リード線群41G、第2リード線群42G、第3リード線群43G)が延在している絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27、第3絶縁性チューブ28)は、それぞれの先端部をマルチルーメンチューブ10のルーメン(第1ル
ーメン11、第2ルーメン12、第3ルーメン13)に深く挿入させることにより、先端側(同図において上側)に退避させている。
(1) Lead wire soldering process:
As shown in FIG. 8, the eight lead wires 41 constituting the first lead wire group 41G and the eight lead wires constituting the second lead wire group 42G are provided on each of the pin terminals arranged on the distal end surface 50A of the connector 50. The lead wires 42 and the four lead wires 43 constituting the third lead wire group 43G are connected and fixed with solder.
Here, the tip ends of these lead wires (lead wire 41, lead wire 42, lead wire 43) are respectively electrode groups (first DC electrode group 31G, second DC electrode group 32G, proximal potential measuring electrode group 33G). Are already connected to the electrodes (electrode 31, electrode 32, electrode 33).
Further, a lead wire group (first lead wire group 41G, second lead wire group 42G, third lead wire group 43G) by these lead wires (lead wire 41, lead wire 42, lead wire 43) extends. The insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) each have a distal end portion of the lumen of the multi-lumen tube 10 (the first lumen 11, the second lumen 12, By being inserted deeply into the third lumen 13), it is retracted to the tip side (upper side in the figure).
(2)隔壁板の載置工程:
 次に、図9に示すように、リード線41が接続固定されたピン端子51が配置されている第1端子群領域と、リード線42が接続固定されたピン端子52が配置されている第2端子群領域およびリード線43が接続固定されたピン端子53が配置されている第3端子群領域とを仕切り、リード線41と、リード線42およびリード線43とを隔離するように、コネクタ50の先端面50Aに隔壁板55を載置する。
 ここに、リード線43(ピン端子53)は、リード線42(ピン端子52)とともに、隔壁板55によってリード線41(ピン端子51)から隔離されている。
 隔壁板55の高さは、例えば8mmとされる。
(2) Partition plate placement process:
Next, as shown in FIG. 9, the first terminal group region in which the pin terminal 51 to which the lead wire 41 is connected and fixed and the pin terminal 52 to which the lead wire 42 is connected and fixed are arranged. The connector is separated from the second terminal group region and the third terminal group region where the pin terminal 53 to which the lead wire 43 is connected and fixed is disposed, and the lead wire 41, the lead wire 42, and the lead wire 43 are isolated. The partition plate 55 is placed on the front end surface 50 </ b> A of the 50.
Here, the lead wire 43 (pin terminal 53) is separated from the lead wire 41 (pin terminal 51) by the partition plate 55 together with the lead wire 42 (pin terminal 52).
The height of the partition plate 55 is, for example, 8 mm.
(3)絶縁性チューブの移動工程:
 次に、図10に示すように、第1絶縁性チューブ26、第2絶縁性チューブ27、第3絶縁性チューブ28の各々を基端側に移動する(同図において下降させる)。
 絶縁性チューブの移動後において、コネクタ50の先端面50Aと、各絶縁性チューブの基端との離間距離は、隔壁板55の高さより短く、例えば7mmとされる。
 なお、絶縁性チューブをこれよりも更に移動させること(離間距離を7mm未満とすること)は、これに伴ってリード線に過大な張力がかかるので実質的に不可能である。
 このとき、絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27、第3絶縁性チューブ28)の先端部は、マルチルーメンチューブ10のルーメン(第1ルーメン11、第2ルーメン12、第3ルーメン13)に、10mm程度挿入した状態(図6に示した状態)となっている。
(3) Insulating tube moving process:
Next, as shown in FIG. 10, each of the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28 is moved to the base end side (lowered in the same figure).
After the movement of the insulating tube, the distance between the distal end surface 50A of the connector 50 and the base end of each insulating tube is shorter than the height of the partition plate 55, for example, 7 mm.
In addition, it is substantially impossible to move the insulating tube further (make the separation distance less than 7 mm) because an excessive tension is applied to the lead wire.
At this time, the distal ends of the insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) are the lumens of the multi-lumen tube 10 (the first lumen 11, the second lumen 12, The third lumen 13) is inserted about 10 mm (the state shown in FIG. 6).
 図11は、図10に示したリード線のピン端子への接続状態を先端側から見た図であり、図11に示すように、リード線41(ピン端子51)と、リード線42(ピン端子52)およびリード線43(ピン端子53)とが、隔壁板55によって隔離されている。 FIG. 11 is a view of the connection state of the lead wire shown in FIG. 10 to the pin terminal as viewed from the tip side. As shown in FIG. The terminal 52) and the lead wire 43 (pin terminal 53) are separated by the partition plate 55.
(4)型枠の装着工程:
 次に、図12に示すように、ピン端子(ピン端子51、ピン端子52、ピン端子53)に接続固定されたリード線(第1リード線41、第2リード線42、第3リード線43)および隔壁板55を取り囲むように型枠90を装着する。
 型枠90の構成材料としては特に制限されるものではないが、離型性が良好であることから、PTFE、PFA、FEP、ETFE、PVDFなどのフッ素系樹脂が好ましい。型枠90は、これらのフッ素系樹脂からなるシートの両端部を粘着テープで貼り合わせて筒状にしたものを用いることができる。型枠90の高さは、例えば10mmとされる。
(4) Forming process:
Next, as shown in FIG. 12, lead wires (first lead wire 41, second lead wire 42, third lead wire 43) connected and fixed to pin terminals (pin terminal 51, pin terminal 52, pin terminal 53). ) And the mold plate 90 so as to surround the partition plate 55.
The constituent material of the mold 90 is not particularly limited, but a fluorine-based resin such as PTFE, PFA, FEP, ETFE, and PVDF is preferable because of good releasability. As the formwork 90, a sheet in which both ends of a sheet made of such a fluororesin are bonded with an adhesive tape to form a cylinder can be used. The height of the mold 90 is, for example, 10 mm.
(5)硬化性樹脂の注入工程:
 次に、図13に示すように、Dispenserなどを用いて型枠90内に硬化性樹脂80Aを注入する。
 ここに、注入された硬化性樹脂80Aの液面レベル(コネクタ50の先端面50Aからの液面の距離)を例えば9mmとする。
 これにより、絶縁性チューブの基端開口から延び出してコネクタ50のピン端子(ピン端子51、ピン端子52、ピン端子53)に接続固定されたリード線(リード線41、リード線42、リード線43)の全域および隔壁板55が、硬化性樹脂80Aに埋め込まれた状態となる。
(5) Curable resin injection process:
Next, as shown in FIG. 13, a curable resin 80A is injected into the mold 90 using a Dispenser or the like.
Here, the liquid level of the injected curable resin 80A (the distance of the liquid surface from the tip surface 50A of the connector 50) is set to 9 mm, for example.
As a result, lead wires (lead wire 41, lead wire 42, lead wire) extending from the base end opening of the insulating tube and connected and fixed to the pin terminals (pin terminal 51, pin terminal 52, pin terminal 53) of connector 50 are provided. 43) and the partition plate 55 are embedded in the curable resin 80A.
(6)樹脂の硬化および型枠の取外し工程:
 次に、型枠90内に注入された硬化性樹脂を光硬化または熱硬化させ、その後、図14
に示すように、型枠90を取り外すことにより、硬化樹脂80からなり、コネクタ50と同径の円筒状で成形体であって、ピン端子に接続固定されたリード線(第1リード線41、第2リード線42、第3リード線43)および隔壁板55を埋め込んでなる樹脂成形体(図7に示した構造を有する高さ9mmの成形体)を得ることができる。
 このように、本実施形態において、リード線の周囲が樹脂で固められるとは、絶縁性チューブの基端開口より延び出してからピン端子に接続固定されるまでのリード線(基端部分)の全域を埋め込む樹脂成形体を形成することであり、単なるポッティングとは明確に区別される。
(6) Resin curing and mold removal step:
Next, the curable resin injected into the mold 90 is photocured or thermally cured, and then FIG.
As shown, the lead wire (first lead wire 41, first lead wire 41, which is made of a cured resin 80, is a cylindrical molded body having the same diameter as the connector 50, and is fixed to the pin terminal by removing the mold 90. A resin molded body (9 mm high molded body having the structure shown in FIG. 7) in which the second lead wire 42, the third lead wire 43) and the partition plate 55 are embedded can be obtained.
Thus, in this embodiment, the periphery of the lead wire is solidified with resin means that the lead wire (base end portion) from extending from the base end opening of the insulating tube to being fixed to the pin terminal is fixed. This is to form a resin molded body that fills the entire region, and is clearly distinguished from simple potting.
 本実施形態の心腔内除細動カテーテル100は、第1DC電極群31Gと第2DC電極群32Gとの間に直流電圧を印加することにより、細動を起こしている心臓に直接的に電気エネルギーを与えて除細動治療を行うためのカテーテルであり、不整脈の診断(心電位測定)や焼灼治療に用いられる従来公知の電極カテーテルとは、用途および機能が異なる。 In the intracardiac defibrillation catheter 100 of this embodiment, a direct current voltage is applied between the first DC electrode group 31G and the second DC electrode group 32G, so that electrical energy is directly applied to the heart causing fibrillation. This is a catheter for performing defibrillation treatment by applying a function and is different from a conventionally known electrode catheter used for arrhythmia diagnosis (cardiac potential measurement) and ablation treatment.
 本実施形態の心腔内除細動カテーテル100は、心房細動が生じやすい心臓カテーテル術を行う際に好適に使用される。特に好ましくは、心腔内除細動カテーテル100を患者の心腔内に予め挿入してから、心臓カテーテル術を行う。
 心腔内除細動カテーテル100は、第1DC電極群31Gが冠状静脈内に位置し、第2DC電極群32Gが右心房内に位置するようにして心腔内に挿入される。これにより、第1DC電極群31Gと第2DC電極群32Gとによって心臓が挟み込まれるような状態となる。
The intracardiac defibrillation catheter 100 of this embodiment is suitably used when performing cardiac catheterization that is likely to cause atrial fibrillation. Particularly preferably, the cardiac catheterization is performed after the intracardiac defibrillation catheter 100 is inserted into the heart chamber of the patient in advance.
The intracardiac defibrillation catheter 100 is inserted into the heart chamber such that the first DC electrode group 31G is located in the coronary vein and the second DC electrode group 32G is located in the right atrium. As a result, the heart is sandwiched between the first DC electrode group 31G and the second DC electrode group 32G.
 心臓カテーテル術中において、基端側電位測定電極群33Gにより測定される心電図を監視(モニタリング)し、心房細動が起きた場合には、心臓カテーテル術を中断して、心腔内除細動カテーテル100による除細動治療を行う。具体的には、第1リード線群41Gおよび第2リード線群42Gを介して、第1DC電極群31Gと、第2DC電極群32Gとの間で直流電圧を印加して、細動を起こしている心臓に直接的に電気エネルギーを与える。 During cardiac catheterization, the electrocardiogram measured by the proximal potential measurement electrode group 33G is monitored (monitored), and when atrial fibrillation occurs, the cardiac catheterization is interrupted and the intracardiac defibrillation catheter is interrupted. Defibrillation treatment with 100 is performed. Specifically, a DC voltage is applied between the first DC electrode group 31G and the second DC electrode group 32G via the first lead wire group 41G and the second lead wire group 42G to cause fibrillation. Give electrical energy directly to the heart.
 ここに、心腔内除細動カテーテル100により心臓に供給される電気エネルギーとしては10~30Jであることが好ましい。
 電気エネルギーが過少である場合には、十分な除細動治療を行うことができない。一方、電気エネルギーが過剰である場合には、第1DC電極群31Gおよび第2DC電極群32Gが位置する周辺の組織が損傷を受ける虞がある。
Here, the electrical energy supplied to the heart by the intracardiac defibrillation catheter 100 is preferably 10 to 30 J.
If the electrical energy is too low, sufficient defibrillation therapy cannot be performed. On the other hand, when the electrical energy is excessive, there is a risk that the surrounding tissue where the first DC electrode group 31G and the second DC electrode group 32G are located is damaged.
 図15は、本実施形態の心腔内除細動カテーテル100によって所定の電気エネルギー(例えば、設定出力=10J)を付与した際に測定される電位波形を示す図である。同図において、横軸は時間、縦軸は電位を表す。
 先ず、第1DC電極群31Gが-極、第2DC電極群32Gが+極となるよう、両者の間で直流電圧が印加されることにより、電気エネルギーが供給されて測定電位が立ち上がる(Vは、このときのピーク電圧である。)。一定時間(t)経過後、第1DC電極群31Gが+極、第2DC電極群32Gが-極となるよう、±を反転した直流電圧が両者の間で印加されることにより、電気エネルギーが供給されて測定電位が立ち上がる(Vは、このときのピーク電圧である。)。
FIG. 15 is a diagram illustrating a potential waveform measured when predetermined electrical energy (for example, set output = 10 J) is applied by the intracardiac defibrillation catheter 100 of the present embodiment. In the figure, the horizontal axis represents time and the vertical axis represents potential.
First, by applying a DC voltage between the first DC electrode group 31G and the second DC electrode group 32G so that the first DC electrode group 31G is the negative electrode and the second positive electrode group 32G, the electric potential is supplied and the measurement potential rises (V 1 is This is the peak voltage at this time.) After a lapse of a certain time (t 1 ), a DC voltage obtained by inverting ± is applied between the two so that the first DC electrode group 31G becomes a positive electrode and the second DC electrode group 32G becomes a negative electrode. When supplied, the measurement potential rises (V 2 is the peak voltage at this time).
 ここに、時間(t)は、例えば、1.5~10.0秒とされ、測定されるピーク電圧(V)は、例えば300~500Vとされる。 Here, the time (t 1 ) is, for example, 1.5 to 10.0 seconds, and the measured peak voltage (V 1 ) is, for example, 300 to 500V.
 本実施形態の心腔内除細動カテーテル100においては、AEDと比較して低いものの
、高い電気エネルギーを供給する(高い電圧が印加される)ため、従来の電極カテーテルでは問題とされなかった、短絡(ショート)の発生を確実に防止して、安全性を確保する必要がある。
In the intracardiac defibrillation catheter 100 of the present embodiment, although it is low compared to the AED, high electric energy is supplied (a high voltage is applied), so that it has not been a problem with conventional electrode catheters. It is necessary to reliably prevent the occurrence of a short circuit and ensure safety.
 そこで、心腔内除細動カテーテル100では、第1DC電極群31Gに接続されている第1リード線群41Gを、マルチルーメンチューブ10に形成された第1ルーメン11およびハンドル20の内部における第1絶縁性チューブ26内に延在させてコネクタ50の第1端子群領域におけるピン端子51に接続し、第2DC電極群32Gに接続されている第2リード線群42Gを、マルチルーメンチューブ10に形成された第2ルーメン12およびハンドル20の内部における第2絶縁性チューブ27内に延在させてコネクタ50の第2端子群領域におけるピン端子52に接続し、基端側電位測定電極群33Gに接続されている第3リード線群43Gを、マルチルーメンチューブ10に形成された第3ルーメン13およびハンドル20の内部における第3絶縁性チューブ28内に延在させてコネクタ50の第3端子群領域におけるピン端子53に接続する。 Therefore, in the intracardiac defibrillation catheter 100, the first lead wire group 41G connected to the first DC electrode group 31G is connected to the first lumen 11 formed in the multi-lumen tube 10 and the first inside the handle 20. The multi-lumen tube 10 is formed with a second lead wire group 42G that extends into the insulating tube 26 and is connected to the pin terminal 51 in the first terminal group region of the connector 50 and connected to the second DC electrode group 32G. The second lumen 12 and the handle 20 are extended into the second insulating tube 27 and connected to the pin terminal 52 in the second terminal group region of the connector 50, and connected to the proximal potential measuring electrode group 33G. The third group of lead wires 43G is connected to the third lumen 13 and the handle 20 formed in the multi-lumen tube 10. Third by extending into the insulating tube 28 in connected to the pin terminal 53 in the third terminal group region of the connector 50.
 これにより、マルチルーメンチューブ10の内部およびハンドル20の内部において、第1リード線群41Gと、第2リード線群42Gと、第3リード線43Gとを完全に絶縁隔離することができる。
 従って、除細動に必要な電圧を印加されたときに、第1リード線群41G(第1DC電極群31G)と、第2リード線群42G(第2DC電極群32G)と、第3リード線群43G(基端側電位測定電極群33G)と間の短絡を確実に防止することができる。
As a result, the first lead wire group 41G, the second lead wire group 42G, and the third lead wire 43G can be completely insulated and isolated within the multi-lumen tube 10 and the handle 20.
Accordingly, when a voltage necessary for defibrillation is applied, the first lead wire group 41G (first DC electrode group 31G), the second lead wire group 42G (second DC electrode group 32G), and the third lead wire It is possible to reliably prevent a short circuit between the group 43G (base end side potential measurement electrode group 33G).
 さらに、第1端子群領域と第2端子群領域とを仕切る隔壁板により、第1リード線群41Gを構成するリード線41と、第2リード線群42Gを構成するリード線42とが互いに隔離されて接触することがないので、心腔内除細動カテーテル100の使用時において、心腔内除細動に必要な電圧を印加しても、第1リード線群41Gを構成するリード線41(第1絶縁性チューブ26の基端開口から延び出したリード線41の基端部分)と、第2リード線群42Gを構成するリード線42(第2絶縁性チューブ27の基端開口から延び出したリード線42の基端部分)との間で短絡が発生することはない。 Further, the lead wires 41 constituting the first lead wire group 41G and the lead wires 42 constituting the second lead wire group 42G are separated from each other by the partition plate that partitions the first terminal group region and the second terminal group region. Therefore, when the intracardiac defibrillation catheter 100 is used, even if a voltage necessary for the intracardiac defibrillation is applied, the lead 41 constituting the first lead group 41G is used. (The base end portion of the lead wire 41 extending from the base end opening of the first insulating tube 26) and the lead wire 42 (the base end opening of the second insulating tube 27) constituting the second lead wire group 42G. A short circuit does not occur between the lead wire 42 and the base end portion of the lead wire 42.
 さらに、第1絶縁性チューブ26の基端開口から延び出して分割され、コネクタ50のピン端子51の各々に接続固定された8本のリード線41、第2絶縁性チューブ27の基端開口から延び出して分割され、コネクタ50のピン端子52の各々に接続固定された8本のリード線42、および、第3絶縁性チューブ28の基端開口から延び出して分割され、コネクタ50のピン端子53の各々に接続固定された4本のリード線43は、これらの周囲が樹脂で固められることにより、それぞれの形状が保持されているので、心腔内除細動カテーテル100を製造する際(ハンドル20の内部にコネクタ50を装着する際)に、絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27、第3絶縁性チューブ28)の基端開口から延び出したリード線(リード線41、リード線42、リード線43)がキンクしたり、ピン端子のエッジと接触したりして損傷することを防止することができる。 Further, the eight lead wires 41 extending from the proximal end opening of the first insulating tube 26 and divided and connected and fixed to each of the pin terminals 51 of the connector 50 and the proximal end opening of the second insulating tube 27 are separated. The eight lead wires 42 that are extended and divided and connected and fixed to each of the pin terminals 52 of the connector 50, and the pin terminals of the connector 50 that are extended and divided from the proximal end opening of the third insulating tube 28. The four lead wires 43 connected and fixed to the respective 53 are held in their respective shapes by being solidified with resin, so that when the intracardiac defibrillation catheter 100 is manufactured ( When the connector 50 is attached to the inside of the handle 20, the insulating tube (the first insulating tube 26, the second insulating tube 27, the third insulating tube 28) extends from the proximal end opening. Out lead wires can be prevented that the (lead wire 41, lead wires 42, lead wires 43) is damaged or contact or kink, the edge of the pin terminal.
 以上、本発明の一実施形態について説明したが、本発明の心腔内除細動カテーテルは、これらに限定されるものではなく、種々の変更が可能である。
 例えば、第1端子群領域と第2端子群領域とを仕切る上記のような隔壁板を備えている心腔内除細動カテーテルにあっては、絶縁性チューブの基端開口から延び出してコネクタのピン端子に接続固定されたリード線の周囲を樹脂で固めていないものであっても本発明に包含される。
 また、絶縁性チューブの基端開口から延び出してコネクタのピン端子に接続固定されたリード線の周囲を樹脂で固めている心腔内除細動カテーテルにあっては、第1端子群領域
と第2端子群領域とを仕切る隔壁板を備えていないものであっても本発明に包含される。
As mentioned above, although one Embodiment of this invention was described, the intracardiac defibrillation catheter of this invention is not limited to these, A various change is possible.
For example, in an intracardiac defibrillation catheter provided with a partition plate as described above for partitioning a first terminal group region and a second terminal group region, the connector extends from the proximal end opening of the insulating tube. Even if the periphery of the lead wire connected and fixed to the pin terminal is not solidified with resin, it is included in the present invention.
In the intracardiac defibrillation catheter that extends from the proximal end opening of the insulating tube and is fixed around the lead wire connected and fixed to the pin terminal of the connector with a resin, the first terminal group region and Even the one that does not include a partition plate that partitions the second terminal group region is included in the present invention.
 100 心腔内除細動カテーテル
 10  マルチルーメンチューブ
 11  第1ルーメン
 12  第2ルーメン
 13  第3ルーメン
 14  第4ルーメン
 15  フッ素樹脂層
 16  インナー(コア)部
 17  アウター(シェル)部
 18  ステンレス素線
 20  ハンドル
 21  ハンドル本体
 22  摘まみ
 24  ストレインリリーフ
 26  第1絶縁性チューブ
 27  第2絶縁性チューブ
 28  第3絶縁性チューブ
 31G 第1DC電極群
 31  リング状電極
 32G 第2DC電極群
 32  リング状電極
 33G 基端側電位測定電極群
 33  リング状電極
 35  先端チップ
 41G 第1リード線群
 41  リード線
 42G 第2リード線群
 42  リード線
 43G 第3リード線群
 43  リード線
 51  ピン端子
 52  ピン端子
 53  ピン端子
 55  隔壁板
 61  第1の保護チューブ
 62  第2の保護チューブ
 71  プルワイヤ
 80  樹脂(硬化樹脂)
 80A 硬化性樹脂                              
 90  型枠
DESCRIPTION OF SYMBOLS 100 Intracardiac defibrillation catheter 10 Multi-lumen tube 11 1st lumen 12 2nd lumen 13 3rd lumen 14 4th lumen 15 Fluororesin layer 16 Inner (core) part 17 Outer (shell) part 18 Stainless steel strand 20 Handle 21 handle body 22 knob 24 strain relief 26 first insulating tube 27 second insulating tube 28 third insulating tube 31G first DC electrode group 31 ring electrode 32G second DC electrode group 32 ring electrode 33G proximal side potential Measurement electrode group 33 Ring-shaped electrode 35 Tip tip 41G First lead wire group 41 Lead wire 42G Second lead wire group 42 Lead wire 43G Third lead wire group 43 Lead wire 51 Pin terminal 52 Pin terminal 53 Pin terminal 55 Bulkhead plate 61 First Protective tube 62 Second protective tube 71 Pull wire 80 Resin (cured resin)
80A curable resin
90 formwork

Claims (10)

  1.  心腔内に挿入されて除細動を行うためのカテーテルであって、
     マルチルーメン構造を有する絶縁性のチューブ部材と、
     前記チューブ部材の基端に接続されたハンドルと、
     前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群と、
     前記第1電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群と、
     前記ハンドルの基端部に内蔵され、先端方向に突出する複数のピン端子を先端面に配置してなるコネクタと、
     前記チューブ部材の第1ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第1絶縁性チューブと、
     前記チューブ部材の第2ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第2絶縁性チューブと、
     前記第1電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第1ルーメンおよび前記第1絶縁性チューブ内に延在し、当該第1絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第1リード線群と、
     前記第2電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第2ルーメンおよび前記第2絶縁性チューブ内に延在し、当該第2絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第2リード線群と、
     複数のピン端子が配置された前記コネクタの先端面を、前記第1リード線群を構成するリード線が接続固定されたピン端子が配置されている第1端子群領域と、前記第2リード線群を構成するリード線が接続固定されたピン端子が配置されている第2端子群領域とに仕切り、前記第1リード線群を構成するリード線と、前記第2リード線群を構成するリード線とを隔離する隔壁板と、を備えてなり、
     除細動を行うときには、前記第1電極群と、前記第2電極群とに、互いに異なる極性の電圧が印加されることを特徴とする心腔内除細動カテーテル。
    A catheter inserted into the heart chamber for defibrillation,
    An insulating tube member having a multi-lumen structure;
    A handle connected to the proximal end of the tube member;
    A first electrode group consisting of a plurality of ring-shaped electrodes attached to the tip region of the tube member;
    A second electrode group consisting of a plurality of ring-shaped electrodes mounted on the tube member apart from the first electrode group on the proximal side;
    A connector built in a proximal end portion of the handle and having a plurality of pin terminals protruding in the distal direction arranged on the distal end surface;
    A first insulating tube having a distal end connected to the first lumen of the tube member, extending inside the handle, and having a proximal end opened in the vicinity of the connector;
    A second insulating tube having a distal end connected to the second lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
    A plurality of lead wires connected to each of the electrodes constituting the first electrode group, extending into the first lumen of the tube member and the first insulating tube, and a base of the first insulating tube A first lead wire group extending from the end opening and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
    A plurality of lead wires connected to each of the electrodes constituting the second electrode group, extending into the second lumen of the tube member and the second insulating tube, and a base of the second insulating tube; A second lead wire group extending from the end opening and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
    A first terminal group region in which pin terminals to which lead wires constituting the first lead wire group are connected and fixed are arranged on the front end surface of the connector in which a plurality of pin terminals are arranged, and the second lead wire A lead terminal constituting the first lead wire group and a lead constituting the second lead wire group are partitioned into a second terminal group region where pin terminals to which the lead wires constituting the group are connected and fixed are arranged. A partition plate that separates the wire,
    When performing defibrillation, an intracardiac defibrillation catheter in which voltages having different polarities are applied to the first electrode group and the second electrode group.
  2.  前記隔壁板の先端縁は、前記第1絶縁性チューブの基端および前記第2絶縁性チューブの基端よりも先端側に位置していることを特徴とする請求項1に記載の心腔内除細動カテーテル。 2. The intracardiac cavity according to claim 1, wherein a distal end edge of the partition plate is located on a distal end side with respect to a proximal end of the first insulating tube and a proximal end of the second insulating tube. Defibrillation catheter.
  3.  前記第2電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる基端側電位測定電極群と、
     前記チューブ部材の第3ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第3絶縁性チューブと、
     前記基端側電位測定電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第3ルーメンおよび前記第3絶縁性チューブ内に延在し、当該第3絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第3リード線群と、を備えてなることを特徴とする請求項1または請求項2に記載の心腔内除細動カテーテル。
    A proximal-side potential measurement electrode group comprising a plurality of ring-shaped electrodes mounted on the tube member apart from the second electrode group on the proximal side;
    A third insulating tube having a distal end connected to the third lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
    A plurality of lead wires connected to each of the electrodes constituting the proximal end side potential measurement electrode group, extending into the third lumen of the tube member and the third insulating tube, A third lead wire group extending from the proximal end opening of the tube and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector; The intracardiac defibrillation catheter according to claim 1 or 2, characterized by comprising:
  4.  先端偏向操作用のプルワイヤが、前記チューブ部材の第4ルーメンに延在していることを特徴とする請求項3に記載の心腔内除細動カテーテル。 The intracardiac defibrillation catheter according to claim 3, wherein a pull wire for tip deflection operation extends to a fourth lumen of the tube member.
  5.  心臓カテーテル術中に起こる心房細動を除去するために心腔内に挿入されることを特徴とする請求項1乃至請求項4の何れかに記載の心腔内除細動カテーテル。 The intracardiac defibrillation catheter according to any one of claims 1 to 4, wherein the catheter is inserted into the heart chamber in order to remove atrial fibrillation that occurs during cardiac catheterization.
  6.  心腔内に挿入されて除細動を行うためのカテーテルであって、
     マルチルーメン構造を有する絶縁性のチューブ部材と、
     前記チューブ部材の基端に接続されたハンドルと、
     前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群と、
     前記第1電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群と、
     前記ハンドルの基端部に内蔵され、先端方向に突出する複数のピン端子を先端面に配置してなるコネクタと、
     前記チューブ部材の第1ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第1絶縁性チューブと、
     前記チューブ部材の第2ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第2絶縁性チューブと、
     前記第1電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第1ルーメンおよび前記第1絶縁性チューブ内に延在し、当該第1絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第1リード線群と、
     前記第2電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第2ルーメンおよび前記第2絶縁性チューブ内に延在し、当該第2絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第2リード線群とを備えてなり、
     前記第1絶縁性チューブの基端開口から延び出して分割され、前記コネクタのピン端子の各々に接続固定された、前記第1リード線群を構成する複数のリード線、および、前記第2絶縁性チューブの基端開口から延び出して分割され、前記コネクタのピン端子の各々に接続固定された、前記第2リード線群を構成する複数のリード線は、これらの周囲が樹脂で固められることにより、それぞれの形状が保持されており、
     除細動を行うときには、前記第1電極群と、前記第2電極群とに、互いに異なる極性の電圧が印加されることを特徴とする心腔内除細動カテーテル。
    A catheter inserted into the heart chamber for defibrillation,
    An insulating tube member having a multi-lumen structure;
    A handle connected to the proximal end of the tube member;
    A first electrode group consisting of a plurality of ring-shaped electrodes attached to the tip region of the tube member;
    A second electrode group consisting of a plurality of ring-shaped electrodes mounted on the tube member apart from the first electrode group on the proximal side;
    A connector built in a proximal end portion of the handle and having a plurality of pin terminals protruding in the distal direction arranged on the distal end surface;
    A first insulating tube having a distal end connected to the first lumen of the tube member, extending inside the handle, and having a proximal end opened in the vicinity of the connector;
    A second insulating tube having a distal end connected to the second lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
    A plurality of lead wires connected to each of the electrodes constituting the first electrode group, extending into the first lumen of the tube member and the first insulating tube, and a base of the first insulating tube A first lead wire group extending from the end opening and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
    A plurality of lead wires connected to each of the electrodes constituting the second electrode group, extending into the second lumen of the tube member and the second insulating tube, and a base of the second insulating tube; A second lead wire group that extends from the end opening and is divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector;
    A plurality of lead wires constituting the first lead wire group, which are divided by extending from a proximal end opening of the first insulating tube, and are connected and fixed to each of the pin terminals of the connector; and the second insulation The plurality of lead wires constituting the second lead wire group, which are divided by extending from the proximal end opening of the conductive tube and connected and fixed to each of the pin terminals of the connector, have their periphery hardened with resin. Each shape is retained by
    When performing defibrillation, an intracardiac defibrillation catheter in which voltages having different polarities are applied to the first electrode group and the second electrode group.
  7.  前記第1絶縁性チューブの基端部および前記第2絶縁性チューブの基端部が、前記樹脂中に埋め込まれていることを特徴とする請求項6に記載の心腔内除細動カテーテル。 The intracardiac defibrillation catheter according to claim 6, wherein a proximal end portion of the first insulating tube and a proximal end portion of the second insulating tube are embedded in the resin.
  8.  前記第2電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる基端側電位測定電極群と、
     前記チューブ部材の第3ルーメンに先端部が連結され、前記ハンドルの内部に延在し、前記コネクタの近傍で基端が開口する第3絶縁性チューブと、
     前記基端側電位測定電極群を構成する電極の各々に接続された複数のリード線からなり、前記チューブ部材の第3ルーメンおよび前記第3絶縁性チューブ内に延在し、当該第3絶縁性チューブの基端開口から延び出して、前記複数のリード線に分割され、分割されたリード線の各々が前記コネクタの有するピン端子の各々に接続固定される第3リード線群と、を備えてなることを特徴とする請求項6または請求項7に記載の心腔内除細動カテーテル。
    A proximal-side potential measurement electrode group comprising a plurality of ring-shaped electrodes mounted on the tube member apart from the second electrode group on the proximal side;
    A third insulating tube having a distal end connected to the third lumen of the tube member, extending into the handle, and having a proximal end opened in the vicinity of the connector;
    A plurality of lead wires connected to each of the electrodes constituting the proximal end side potential measurement electrode group, extending into the third lumen of the tube member and the third insulating tube, A third lead wire group extending from the proximal end opening of the tube and divided into the plurality of lead wires, and each of the divided lead wires is connected and fixed to each of the pin terminals of the connector; The intracardiac defibrillation catheter according to claim 6 or 7, characterized by comprising:
  9.  先端偏向操作用のプルワイヤが、前記チューブ部材の第4ルーメンに延在していることを特徴とする請求項8に記載の心腔内除細動カテーテル。 The intracardiac defibrillation catheter according to claim 8, wherein a pull wire for tip deflection operation extends to a fourth lumen of the tube member.
  10.  心臓カテーテル術中に起こる心房細動を除去するために心腔内に挿入されることを特徴とする請求項6乃至請求項9の何れかに記載の心腔内除細動カテーテル。 The intracardiac defibrillation catheter according to any one of claims 6 to 9, wherein the catheter is inserted into the heart chamber in order to remove atrial fibrillation that occurs during cardiac catheterization.
PCT/JP2009/070002 2008-12-12 2009-11-27 Intracardiac defibrillation catheter WO2010067719A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980146922.0A CN102223912B (en) 2008-12-12 2009-11-27 Intracardiac defibrillation catheter
KR1020117014755A KR101261746B1 (en) 2008-12-12 2009-11-27 Intracardiac defibrillation catheter
HK11113174.8A HK1158562A1 (en) 2008-12-12 2011-12-06 Intracardiac defibrillation catheter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-316716 2008-12-12
JP2008-316715 2008-12-12
JP2008316715A JP4346109B1 (en) 2008-12-12 2008-12-12 Defibrillation catheter
JP2008316716A JP4346110B1 (en) 2008-12-12 2008-12-12 Defibrillation catheter

Publications (1)

Publication Number Publication Date
WO2010067719A1 true WO2010067719A1 (en) 2010-06-17

Family

ID=42242708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070002 WO2010067719A1 (en) 2008-12-12 2009-11-27 Intracardiac defibrillation catheter

Country Status (4)

Country Link
KR (1) KR101261746B1 (en)
CN (1) CN102223912B (en)
HK (1) HK1158562A1 (en)
WO (1) WO2010067719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3939652A4 (en) * 2019-03-15 2022-09-28 Japan Lifeline Co., Ltd. Intercardiac defibrillation catheter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023721A (en) * 2012-07-26 2014-02-06 Japan Lifeline Co Ltd Electrode catheter
CN106362292A (en) * 2015-08-21 2017-02-01 贾玉和 Dual-purpose catheter used for intracardial mapping and defibrillation
JP6570123B2 (en) * 2016-02-29 2019-09-04 日本ライフライン株式会社 Intracardiac defibrillation catheter
JP6544776B2 (en) * 2017-03-07 2019-07-17 日本ライフライン株式会社 Electrode catheter
KR102045714B1 (en) * 2017-03-31 2019-11-15 니혼라이프라인 가부시키가이샤 Defibrillation catheter system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942536A (en) * 1971-03-15 1976-03-09 Mieczyslaw Mirowski Cardioverting device having single intravascular catheter electrode system and method for its use
US4603705A (en) * 1984-05-04 1986-08-05 Mieczyslaw Mirowski Intravascular multiple electrode unitary catheter
JPH05115567A (en) * 1991-08-14 1993-05-14 Cardiac Pacemakers Inc Remover for thin movement in blood vessel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY135619A (en) * 2002-11-12 2008-05-30 Nitto Denko Corp Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
US7130700B2 (en) * 2002-11-19 2006-10-31 Medtronic, Inc. Multilumen body for an implantable medical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942536A (en) * 1971-03-15 1976-03-09 Mieczyslaw Mirowski Cardioverting device having single intravascular catheter electrode system and method for its use
US3942536B1 (en) * 1971-03-15 1987-03-24
US4603705A (en) * 1984-05-04 1986-08-05 Mieczyslaw Mirowski Intravascular multiple electrode unitary catheter
JPH05115567A (en) * 1991-08-14 1993-05-14 Cardiac Pacemakers Inc Remover for thin movement in blood vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3939652A4 (en) * 2019-03-15 2022-09-28 Japan Lifeline Co., Ltd. Intercardiac defibrillation catheter

Also Published As

Publication number Publication date
KR20110091787A (en) 2011-08-12
CN102223912B (en) 2014-02-12
KR101261746B1 (en) 2013-05-07
HK1158562A1 (en) 2012-07-20
CN102223912A (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4545210B2 (en) Defibrillation catheter
JP4545216B1 (en) Intracardiac defibrillation catheter system
KR102140881B1 (en) Defibrillation catheter in deep heart
WO2010067719A1 (en) Intracardiac defibrillation catheter
JP4672802B1 (en) Intracardiac defibrillation catheter system
WO2012029413A1 (en) Intracardiac defibrillating catheter
JP4346110B1 (en) Defibrillation catheter
JP4346109B1 (en) Defibrillation catheter
JP2012192124A (en) Intracardiac defibrillation catheter
JP6628755B2 (en) Intracardiac defibrillation catheter
JP4672801B1 (en) Intracardiac defibrillation catheter system
WO2020188642A1 (en) Intercardiac defibrillation catheter
WO2021191988A1 (en) Intercardiac defibrillation catheter system
JP6881870B2 (en) Intracardiac defibrillation catheter
JP2019122862A (en) Intracardiac defibrillation catheter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146922.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117014755

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09831823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP