WO2010067746A1 - 有機エレクトロルミネッセンス素子、表示装置、及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、表示装置、及び照明装置 Download PDF

Info

Publication number
WO2010067746A1
WO2010067746A1 PCT/JP2009/070321 JP2009070321W WO2010067746A1 WO 2010067746 A1 WO2010067746 A1 WO 2010067746A1 JP 2009070321 W JP2009070321 W JP 2009070321W WO 2010067746 A1 WO2010067746 A1 WO 2010067746A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
layer
compound
organic electroluminescence
Prior art date
Application number
PCT/JP2009/070321
Other languages
English (en)
French (fr)
Inventor
田中 達夫
片倉 利恵
加藤 栄作
北 弘志
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010542086A priority Critical patent/JP5402942B2/ja
Priority to US13/132,685 priority patent/US20120037889A1/en
Publication of WO2010067746A1 publication Critical patent/WO2010067746A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an organic electroluminescence element, a display device, and a lighting device.
  • an organic electroluminescence device hereinafter also referred to as an organic EL device
  • development focusing on the structure of the contained compound has progressed, and as a result, there is a possibility that it can withstand practical use.
  • organic EL device organic electroluminescence device
  • organic EL elements using a polymer material having a specific weight average molecular weight have been introduced as a known technique (for example, see Patent Document 3).
  • An object of the present invention is to provide an organic electroluminescence element, a display device, and a lighting device that do not increase in driving voltage even after long-time driving and have a long lifetime.
  • an organic compound layer containing at least a phosphorescent dopant and a polymer compound containing a partial structure represented by the following general formula (1) and end-capped at the end is sandwiched.
  • An organic electroluminescence device comprising: a ligand in which the phosphorescent dopant is bonded to a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle and a 5-membered nitrogen-containing aromatic heterocycle
  • Ar 1 and Ar 3 each independently represent an arylene group which may have a substituent, and Ar 1 and Ar 3 may be bonded via a linking group.
  • Ar 2 and Ar 4 each independently represents an aryl group or an aromatic heterocyclic group which may have a substituent.
  • n1 and n2 represent integers of 0 to 2, and n1 and n2 are not 0 at the same time.
  • n3 represents an integer of 10 to 1000.
  • P and Q represent a carbon atom or a nitrogen atom
  • A1 represents an atomic group which forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring together with P—C.
  • A3 represents an atomic group that forms an aromatic heterocycle with NQN.
  • P 1 -L1-P 2 represents a bidentate ligand, and P 1 and P 2 each independently represent a carbon atom, a nitrogen atom, or an oxygen atom.
  • L1 represents an atomic group forming a bidentate ligand together with P 1 and P 2 .
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 is 2 or 3.
  • M 1 represents a group 8-10 transition metal element in the periodic table.
  • Z represents a substituent.
  • Ar 5 and Ar 7 each independently represent an arylene group which may have a substituent
  • Ar 6 represents an aryl group or an aromatic heterocyclic group which may have a substituent
  • n4 represents an integer of 10 to 1000.
  • Ar 8 represents an aryl group or an aromatic heterocyclic group which may have a substituent
  • n5 represents an integer of 10 to 1,000.
  • An illuminating device comprising the organic electroluminescent element according to any one of 1 to 8 above.
  • a display device comprising the organic electroluminescence element according to any one of 1 to 8 above.
  • an organic electroluminescence element a blue light emitting element, a white light emitting element, a display device, and a lighting device that do not increase in driving voltage even when driven for a long time and have a long lifetime.
  • FIG. 1 It is the schematic of an illuminating device. It is a schematic diagram of an illuminating device. It is the schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 4 is a schematic diagram of a display unit A. FIG.
  • the present inventors have studied various solutions to the above conventional problems, but the voltage increase is suppressed by using a high molecular weight polymer compound than has been studied so far. As a result, it was found that long life can be realized by suppressing the voltage rise, and the present invention has been achieved.
  • a layer having a high solvent resistance suitable for a wet process and a smooth surface can be obtained. Further, it has become possible to form a laminated structure by a wet process.
  • the dopant concentration of the dopant used in the light emitting layer is used in a range of up to about 10%, and there are many suitable concentrations within this range, but in the organic EL device of the present invention, it is higher. It has been found that there are optimum points of efficiency and light emission lifetime in the concentration range of 10% to 40%, and that higher light emission efficiency can be obtained than using conventional dopants.
  • the organic electroluminescence device of the present invention comprises an organic compound layer containing a phosphorescent dopant and a polymer compound having a partial structure represented by any one of the general formulas (1) to (3) according to the present invention.
  • a constituent layer By using it as a constituent layer, it is possible to suppress contamination between layers that occurs when applying a wet process, and it is possible to optimize the doping concentration, and as a result, it is possible to provide an organic electroluminescence device with high luminous efficiency became.
  • examples of the arylene group which may have a substituent represented by Ar 1 , Ar 3 , Ar 5 , or Ar 7 include a phenylene group and a biphenyldiyl group (for example, , [1,1′-biphenyl] -4,4′-diyl group, 3,3′-biphenyldiyl group, 3,6-biphenyldiyl group, etc.). These groups may have a substituent such as a lower alkyl group or a lower alkoxy group.
  • Ar 1 , Ar 3 , Ar 5 , or Ar 7 may be bonded via a bonding group. What is a linking group?
  • Preferred Ar 1 , Ar 3 , Ar 5 , or Ar 7 is
  • Ar 2 , Ar 4 , Ar 6 , or Ar 8 each independently represents an aryl group that may have a substituent, such as a phenyl group, a biphenylyl group, or a heterocyclic group such as thienyl, furyl, and the like. These groups may have a substituent such as an alkyl group or an alkoxy group.
  • Ar 2 , Ar 4 , Ar 6 , or Ar 8 is a phenyl group having a phenyl group, an alkyl group, or an alkoxy group as a substituent.
  • N1 represents an integer of 0 to 2, preferably 0 to 1.
  • n2 represents an integer of 0 to 2, preferably 0 to 1.
  • n1 and n2 are not 0 at the same time.
  • n3, n4 or n5 each independently represents an integer of 10 to 1000, preferably 20 to 1000.
  • substituents that can be substituted in the general formulas (1) to (3) include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl) Group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xyl
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • the polymer compound having a partial structure represented by any one of the general formulas (1) to (3) according to the present invention is characterized in that the end of the polymer compound is end-capped.
  • an end-capping agent a compound that stops polymer growth
  • an end-capping agent a compound that stops polymer growth
  • the endcapping agent is added in excess (eg, at a step where it is desirable to stop the polymerization)
  • further growth of the polymer chain is substantially increased. (For example, substantially stopped).
  • the end-capping agent adds end groups to the polymer chain that are substantially incapable of undergoing coupling under polymerization conditions (eg, with other polymer precursors and / or other portions of the polymer chain)
  • the end groups end-cap the polymer chain and substantially reduce (preferably stop) the possibility of further polymerization by blocking sites where the polymer chain would grow under polymerization conditions if not end-capped. ) Work like that.
  • the polymerization sites are blocked by at least one terminal substituent. More preferably, substantially all sites are blocked (in one case).
  • the purpose of the end cap treatment according to the present invention is to suppress the polymerization reaction by adding an end capping agent during the polymerization reaction, but also inactivate the reaction site remaining at the polymer terminal after the polymerization reaction. Is one of the important purposes.
  • end caps include a hydrogen atom, an alkyl group (eg, methyl group, ethyl group, butyl group, etc.), an aryl group (eg, phenyl group, tolyl group, etc.), a heteroaryl group (eg, thienyl group, pyridyl group). Etc.), disubstituted amino groups (eg, diethylamino group, diphenylamino group, etc.), trisubstituted silyl groups (trimethylsilyl group, triphenylsilyl group, etc.), and the like.
  • an alkyl group eg, methyl group, ethyl group, butyl group, etc.
  • an aryl group eg, phenyl group, tolyl group, etc.
  • a heteroaryl group eg, thienyl group, pyridyl group.
  • Etc. disubstituted amino groups (eg, diethy
  • the end cap treatment include a method of adding the above-mentioned end capping agent during the reaction or after the completion of the reaction, and a reduction using an alkylated metal such as hydrogenation, a grinder reagent, or butyl lithium as preferable examples. be able to.
  • the content of halogen at the end of the polymer after end cap is preferably 1% (1000 ppm) or less, and preferably 100 ppm or less.
  • n represents the degree of polymerization and represents an integer of 10 to 1000.
  • Exemplified Compound 50a (19.0 g, weight average molecular weight 5000, molecular weight distribution 2.2). It was.
  • the structure of the exemplary compound 50a was confirmed using 1 H-NMR, 13 C-NMR and the like.
  • each of the exemplary compounds 50b, 50c, and 50d was confirmed using 1 H-NMR, 13 C-NMR, and the like.
  • the formed precipitate was collected by filtration, washed repeatedly with methanol and pure water, and then dried in a vacuum oven at 60 ° C. for 10 hours to obtain Compound 62Br (18.0 g, weight average molecular weight 8000, molecular weight distribution 2.3). Obtained.
  • reaction solution was cooled to 60 ° C. and slowly added with stirring to a mixture of 2 L of methanol and 200 ml of pure water.
  • the precipitate was collected by filtration, washed repeatedly with methanol and pure water, and then dried in a vacuum oven at 60 ° C. for 10 hours to obtain Compound 62 (9.8 g, weight average molecular weight 8000, molecular weight distribution 2.3). .
  • the polymer compound having a partial structure represented by any one of the general formulas (1) to (3) according to the present invention is less contaminated with low molecular weight components and heavy metals from the viewpoint of light emission efficiency and device lifetime, and has a molecular weight. It is preferable that the distribution is small.
  • the content of the organic component having a weight average molecular weight of 1000 or less is preferably 1% or less, and the content of the organic component having a weight average molecular weight of 1000 or less is preferably 1% or less.
  • the range of the weight average molecular weight of the polymer compound containing the partial structure represented by the general formulas (1) to (3) according to the present invention is preferably in the range of 50,000 to 500,000, Preferably, it is in the range of 70,000 to 100,000.
  • the molecular weight distribution (Mw / Mn) is preferably 3 or less, more preferably 2.5 or less.
  • the content of heavy metals (Pd, Cu, Pt, etc.) in the polymer compound containing the partial structure represented by the general formulas (1) to (3) according to the present invention is preferably 500 ppm or less, more preferably 50 ppm or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer compound containing the partial structure represented by the general formulas (1) to (3) according to the present invention are measured using THF (tetrahydrofuran) as a column solvent. Molecular weight measurement can be performed using GPC (gel permeation chromatography) to be used.
  • GPC measurement conditions are measured by stabilizing the column at 40 ° C., flowing THF (tetrahydrofuran) at a flow rate of 1 ml / min, and injecting about 100 ⁇ l of a sample having a concentration of 1 mg / ml.
  • the column it is preferable to use a combination of commercially available polystyrene gel columns.
  • RI detector refractive index detector
  • UV detector UV detector
  • the molecular weight distribution of the sample is calculated using a calibration curve created using monodisperse polystyrene standard particles. About 10 points are preferably used as polystyrene for preparing a calibration curve.
  • molecular weight was measured under the following measurement conditions.
  • examples of the aromatic hydrocarbon ring that A1 forms with PC include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and
  • the aromatic heterocycle formed by A1 together with P—C includes furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine.
  • the diazacarbazole ring refers to one in which one or more carbon atoms of the benzene ring constituting the carboline ring are replaced with nitrogen atoms. These rings may further have a substituent.
  • Examples of the substituent of the aromatic hydrocarbon ring or aromatic heterocycle include the substituents that can be substituted in the above general formulas (1) to (3).
  • Examples of the aromatic heterocycle in which A3 forms an aromatic heterocycle with NQN in the general formula (D-1) include an imidazole ring, a triazole ring, a tetrazole ring, a benzimidazole ring, a thiadiazole ring, An azole ring, a pyrimidine ring, a purine ring, etc. are mentioned.
  • the structure formed by A1 and A3 is preferably a phenylimidazole skeleton.
  • Z represents a substituent, and examples of the substituent that can be substituted in the general formulas (1) to (3) can be given as preferable examples of the substituent.
  • the type of the ligand used in the compound represented by the general formula (D-1) according to the present invention may be one type or a plurality of types.
  • the number of ligands in the complex is preferably 1 to 3, more preferably 1, 2 and even more preferably 1.
  • examples of the transition metal element of group 8 to 10 in the periodic table of elements represented by M 1 include iridium and platinum as preferable transition metal elements.
  • a white light emitting layer may be formed by laminating at least three of these light emitting layers.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the organic EL element according to the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.
  • a polymer compound containing a partial structure represented by the general formula (1) and a phosphorescent dopant are used, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, etc.
  • the film can be formed by a known thinning method.
  • the light emitting layer of the organic EL device of the present invention contains a light emitting dopant (phosphorescent dopant, fluorescent dopant, etc.) compound and a light emitting host compound.
  • a light emitting dopant phosphorescent dopant, fluorescent dopant, etc.
  • Luminescent dopant compound The luminescent dopant compound will be described.
  • the luminescent dopant compound As the luminescent dopant compound, a fluorescent dopant compound (also referred to as a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, etc.) can be used.
  • the light-emitting dopant compound used in the light-emitting layer or light-emitting unit of the organic EL device of the present invention is a compound represented by the general formula (D-1). Is contained as a phosphorescent dopant.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield.
  • the phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitting dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
  • the energy transfer type is to obtain light emission from the phosphorescent dopant by moving to the light emitting dopant, and the other is that the phosphorescent dopant becomes a carrier trap, and recombination of carriers on the phosphorescent dopant is performed.
  • This is a carrier trap type in which light emission from the phosphorescent dopant can be obtained, but in any case, the excited state energy of the phosphorescent dopant must be lower than the excited state energy of the host compound. It is.
  • the phosphorescent dopant can be appropriately selected from the compounds represented by the general formula (D-1).
  • the light emitting layer of the organic EL device of the present invention preferably contains two or more phosphorescent light emitting dopants.
  • the dopant concentration in the light emitting layer is 10% by mass to 40% by mass. It is preferable to adjust to the range, and more preferably to adjust to the range of 15% by mass to 30% by mass.
  • the light-emitting host compound has a mass ratio in the layer of 20% or more among the compounds contained in the light-emitting layer, and a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.). It is defined as a compound of less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the light-emitting host that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used.
  • a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from becoming longer wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the light-emitting host of the present invention may be used alone or in combination of two or more.
  • the light emitting host used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host). Of course, one or more of such compounds may be used.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .
  • LiF is used as a commonly used electron injection material, but KF, CsF, etc. are preferably used from the viewpoint of lowering the driving voltage of the element.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, depending on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device according to the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer preferably contains the carbazole derivative, carboline derivative or diazacarbazole derivative mentioned as the host compound.
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably in the range of 3 nm to 100 nm, and more preferably in the range of 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • the polymer compound containing the partial structure represented by the general formula (1) is used, but the following known compounds may be used in combination.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
  • stilbene derivatives silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds may be used.
  • the hole transport layer can be prepared by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the film thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group, a carboline derivative (of the carbon atom constituting the carbazole ring)
  • a compound in which one is replaced with a nitrogen atom a multiazacarbazole derivative (a compound in which one or more of carbon atoms constituting the carboline ring is replaced with a nitrogen atom), or a pyridine-containing compound can also be used as an electron transporting material.
  • a pyridine-containing compound or a multiazacarbazole derivative having an N content of 2 to 5 is preferable from the viewpoint of the driving voltage of the organic EL device.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq) 3 , tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be produced by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the film thickness of the electron transport layer is preferably adjusted in the range of 5 nm to 5 ⁇ m, more preferably in the range of 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities can be used.
  • JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175 are disclosed. J. et al. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness is preferably in the range of 10 nm to 1000 nm, more preferably in the range of 10 nm to 200 nm, although it depends on the material.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is preferably in the range of 10 nm to 5 ⁇ m, more preferably in the range of 50 nm to 200 nm.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device according to the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. Or opaque.
  • the support substrate When extracting light from the support substrate side, the support substrate is preferably transparent.
  • the transparent instruction substrate include glass, quartz, and a transparent resin film.
  • Particularly preferred support substrates include resin films that can give flexibility to organic EL elements.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade
  • the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
  • a high barrier film having a permeability of 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less is preferable. More preferably, the transmittance is 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • the material for forming the barrier film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for producing the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL element of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • ⁇ Sealing> As a sealing means used for this invention, the method of adhere
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less, according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by the above method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • an inorganic or organic layer as a sealing film by covering the organic layer with the electrode and the organic layer on the outer side of the electrode facing the support substrate, in contact with the support substrate.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for producing these films is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the sealing is performed by the sealing film, the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
  • a method for improving the light extraction efficiency for example, a method of making irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. Sho 63-314795), a method for producing a reflecting surface on a side surface of an element (Japanese Patent Laid-Open No. Hei 1-220394), light emission from a substrate A method of producing an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device according to the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, more preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded in the evanescent field enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device according to the present invention can be processed on the light extraction side of the substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the device light emitting surface.
  • luminance in a specific direction can be raised by condensing in a front direction.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm.
  • a method for producing each of these layers there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but a homogeneous film is easily obtained and pinholes are not easily generated.
  • a wet process is preferable, and film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is particularly preferable.
  • three or more organic compound layers are formed and produced by a wet process.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a sensor light source.
  • it can be effectively used as a backlight of a liquid crystal display device and an illumination light source.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • the electrode In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • the organic EL element according to the present invention is a white element
  • Example 1 Production of Organic EL Element 1-1 >> After patterning on a substrate (NH Techno Glass Co., Ltd. NA-45) having a 150 nm ITO film on glass as the anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. This substrate was transferred to a nitrogen atmosphere, a film was formed by spin coating at 1000 rpm for 30 seconds using a solution of compound 50a (60 mg) dissolved in 6 ml of toluene, and then dried in vacuum at 150 ° C. for 1 hour. A hole transport layer having a thickness of 30 nm was provided.
  • this transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while CBP, D-9, BCP, and Alq 3 are placed in five tantalum resistance heating boats, respectively. Attached to the tank). Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
  • the heating boat containing CBP and the boat containing D-9 are energized independently to adjust the deposition rate of CBP as a light emitting host and D-9 as a light emitting dopant to 100: 6. Then, a light emitting layer was provided by vapor deposition to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated to provide a first electron transport layer having a thickness of 10 nm at a deposition rate of 0.1 to 0.2 nm / second. Further, the heating boat containing Alq 3 was heated by energization to provide a second electron transport layer having a film thickness of 20 nm at a deposition rate of 0.1 to 0.2 nm / second.
  • a stainless steel rectangular perforated mask is arranged on the electron transport layer from the outside of the apparatus. Installed with remote control. After depressurizing the second vacuum tank to 2 ⁇ 10 ⁇ 4 Pa, a current was passed through a boat containing lithium fluoride to provide a cathode buffer layer having a thickness of 0.5 nm at a deposition rate of 0.01 to 0.02 nm / second, Next, a boat containing aluminum was energized, a cathode having a film thickness of 150 nm was attached at a deposition rate of 1 to 2 nm / second, and an organic EL device 1-1 was produced.
  • Organic EL elements 1-2 to 1-4 were prepared in the same manner as in the preparation of organic EL element 1-1 except that the hole transport material was changed as shown in Table 1.
  • FIG. 1 shows a schematic diagram of a lighting device, in which an organic EL element 101 is covered with a glass cover 102 (in addition, sealing with a glass cover is performed in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
  • FIG. 2 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • CS-1000 manufactured by Konica Minolta Sensing
  • the external extraction quantum efficiency was expressed as a relative value where the organic EL element 1-1 was 100.
  • the organic EL element was continuously lit at a constant current of 2.5 mA / cm 2 at room temperature, and the time ( ⁇ 1/2 ) required to reach half the initial luminance was measured.
  • the light emission lifetime was expressed as a relative value where the organic EL element 1-1 was set to 100.
  • the voltage when the luminance is halved with respect to the initial voltage at the start of lighting is compared, and the rate of increase is expressed as the rate of voltage increase.
  • the rate of voltage increase in the organic EL element 1-1 is 100. Expressed as a relative value to set.
  • the organic EL device 1-1 produced using the hole transport material 50a (weight average molecular weight 5000) according to the present invention exhibited excellent characteristics in all of the external extraction quantum efficiency, the light emission lifetime, and the voltage increase rate.
  • the organic EL devices 1-1 to 1-4 prepared using the hole transport material according to the present invention each have excellent characteristics in terms of external extraction quantum efficiency, emission lifetime, and voltage increase rate.
  • the organic EL device using the hole transport material having a weight average molecular weight in the range of 50,000 to 500,000 (50b, 50c, 50d) as compared with the one using the compound 50a having a weight average molecular weight of 5,000 It has been found that improvement in characteristics such as prolonging the light emission lifetime and drastically reducing the voltage increase rate can be achieved.
  • Example 2 Preparation of organic EL element 2-1 >> After patterning on a substrate (NH Techno Glass Co., Ltd. NA-45) having a 150 nm ITO film on glass as the anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • a substrate NH Techno Glass Co., Ltd. NA-45
  • UV ozone cleaning was performed for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, a film was formed by spin coating at 1000 rpm for 30 seconds using a solution of compound 50a (60 mg) dissolved in 6 ml of toluene, and then dried in vacuum at 150 ° C. for 1 hour.
  • a hole transport layer having a thickness of 30 nm was provided.
  • a film obtained by dissolving Host-25 (60 mg) and D-26 (6.0 mg) in 6 ml of toluene was formed on the hole transport layer by spin coating at 1000 rpm for 30 seconds. Then, it heated at 150 degreeC in vacuum for 1 hour, and was set as the light emitting layer with a film thickness of 40 nm. Furthermore, a film in which Host-19 (20 mg) was dissolved in 6 ml of butanol was used, and a film was formed by spin coating under conditions of 1000 rpm and 30 seconds. Heating was performed in vacuum at 100 ° C. for 1 hour to form a first electron transport layer having a thickness of 20 nm.
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, 200 mg of Alq 3 was placed in a molybdenum resistance heating boat, and attached to the vacuum deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing Alq 3 and deposited on the first electron transport layer at a deposition rate of 0.1 nm / second, Further, a second electron transport layer having a thickness of 40 nm was provided.
  • the substrate temperature at the time of vapor deposition was room temperature. Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited to produce a cathode, and an organic EL element 2-1 was produced.
  • Organic EL elements 2-2 to 2-4 were prepared in the same manner as in the preparation of organic EL element 2-1, except that the hole transport material was changed as shown in Table 2.
  • the organic EL element 2-1 produced using the hole transport material 50a according to the present invention and the phosphorescent dopant D-26 according to the present invention is more externally extracted than the organic EL element 1-1 of Example 1. Excellent characteristics were exhibited in all of the quantum efficiency, emission lifetime, and voltage increase rate.
  • the hole transport material has a weight average molecular weight in the range of 50,000 to 500,000 (50b, 50c, 50d) as compared with the organic EL device 2-1 using the compound 50a having a weight average molecular weight of 5,000. It has been found that the organic EL device using the material exhibits further excellent characteristics in improving the characteristics such as the extension of the light emission lifetime and the significant reduction in the voltage increase rate.
  • Example 3 Provide of full-color display device> (Production of blue light emitting element)
  • the organic EL element 2-4 of Example 2 was used as a blue light emitting element.
  • a green light emitting device was produced in the same manner as in the organic EL device 1-4 of Example 1 except that D-9 was changed to D-1, and this was used as the green light emitting device.
  • red light emitting device was produced in the same manner as in the organic EL device 1-4 of Example 1 except that D-9 was changed to D-6, and this was used as a red light emitting device.
  • the red, green, and blue light-emitting organic EL elements produced above were juxtaposed on the same substrate to produce an active matrix type full-color display device having a configuration as shown in FIG.
  • FIG. 4 only the schematic diagram of the display part A of the produced display device is shown. That is, a plurality of pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate.
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions (for details, see FIG. Not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5.
  • the image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was produced by appropriately juxtaposing red, green, and blue pixels.
  • Example 4 Preparation of white light emitting element and white lighting device >> Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, a film was formed by spin coating at 1000 rpm for 30 seconds using a solution of compound 50d (60 mg) dissolved in 6 ml of toluene, and then dried at 150 ° C. for 1 hour in a vacuum. A hole transport layer having a thickness of 30 nm was provided.
  • this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, and 200 mg of Alq 3 was put into a molybdenum resistance heating boat and attached to the vacuum vapor deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing Alq 3 and deposited on the first electron transport layer at a deposition rate of 0.1 nm / second, Further, a second electron transport layer having a thickness of 40 nm was provided.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Example 5 Preparation of organic EL element 5-1 >> After patterning on a substrate (NH Techno Glass Co., Ltd. NA-45) having a 150 nm ITO film on glass as the anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • a substrate NH Techno Glass Co., Ltd. NA-45
  • UV ozone cleaning was performed for 5 minutes.
  • the substrate was transferred to a nitrogen atmosphere, a film obtained by dissolving Compound 62 (60 mg) in 6 ml of toluene was formed by spin coating at 1000 rpm for 30 seconds, and then dried in vacuum at 150 ° C. for 1 hour.
  • a hole transport layer having a thickness of 30 nm was provided.
  • a film obtained by dissolving Host-25 (60 mg) and D-26 (6.0 mg) in 6 ml of toluene was formed on the hole transport layer by spin coating at 1000 rpm for 30 seconds. Then, it heated at 150 degreeC in vacuum for 1 hour, and was set as the light emitting layer with a film thickness of 40 nm.
  • a film was formed by spin coating under conditions of 1000 rpm and 30 seconds, and then heated at 100 ° C. in a vacuum for 1 hour to obtain a film thickness of 20 nm.
  • the first electron transport layer was used.
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and 200 mg of Alq 3 was placed in a molybdenum resistance heating boat and attached to the vacuum deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing Alq 3 and deposited on the first electron transport layer at a deposition rate of 0.1 nm / second, Further, a second electron transport layer having a thickness of 40 nm was provided.
  • the substrate temperature at the time of vapor deposition was room temperature. Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited to produce a cathode, and an organic EL device 5-1 was produced.
  • the halogen content of compounds 62Br and 62 was measured by the inductively coupled plasma mass spectrometry (ICP-MS) measurement method (apparatus name: SPQ9700, manufacturer: SII nanotechnology) and shown in Table 3.
  • ICP-MS inductively coupled plasma mass spectrometry
  • the organic EL device 5-1 of the present invention subjected to the end cap treatment compared with the comparative organic EL device 5-2 manufactured using the hole transport material 62Br without the end cap treatment has the light emission. It is clear that the efficiency and device lifetime are greatly improved.
  • Example 6 As described below, organic EL elements 5-3 and 5-4 were produced as comparative elements of the organic EL element 5-1 of Example 5. The organic EL element 5-1 was produced in the same manner as in Example 5.
  • the substrate was transferred to a nitrogen atmosphere, and a film was formed by spin coating using a solution of compound 6 (compound described in WO 02/094965) (60 mg) dissolved in 6 ml of toluene at 1000 rpm for 30 seconds. Then, it was dried in vacuum at 150 ° C. for 1 hour to provide a 30 nm-thick hole transport layer.
  • compound 6 compound described in WO 02/094965
  • a film obtained by dissolving Host-25 (60 mg) and D-26 (6.0 mg) in 6 ml of toluene was formed on the hole transport layer by spin coating at 1000 rpm for 30 seconds. Then, it heated at 150 degreeC in vacuum for 1 hour, and was set as the light emitting layer with a film thickness of 40 nm.
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and 200 mg of Alq 3 was placed in a molybdenum resistance heating boat and attached to the vacuum deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing Alq 3 and deposited on the first electron transport layer at a deposition rate of 0.1 nm / second, Further, a second electron transport layer having a thickness of 40 nm was provided.
  • the substrate temperature at the time of vapor deposition was room temperature. Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited to produce a cathode, and an organic EL element 5-3 was produced.
  • This substrate was transferred to a nitrogen atmosphere, and a solution prepared by dissolving A-2 (compound described in WO08 / 090795 pamphlet) (60 mg) in 6 ml of toluene was spin-coated at 1000 rpm for 30 seconds (film thickness). 30 nm) and vacuum-dried at 60 ° C. for 1 hour, and then irradiated with ultraviolet light for 5 minutes to form a hole transport layer.
  • A-2 compound described in WO08 / 090795 pamphlet
  • a film obtained by dissolving Host-25 (60 mg) and D-26 (6.0 mg) in 6 ml of toluene was formed on the hole transport layer by spin coating at 1000 rpm for 30 seconds. Then, it heated at 150 degreeC in vacuum for 1 hour, and was set as the light emitting layer with a film thickness of 40 nm.
  • a film in which Host-19 (20 mg) was dissolved in 6 ml of butanol was used, and a film was formed by spin coating under conditions of 1000 rpm and 30 seconds. Heating was performed in vacuum at 100 ° C. for 1 hour to form a first electron transport layer having a thickness of 20 nm.
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and 200 mg of Alq 3 was placed in a molybdenum resistance heating boat and attached to the vacuum deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing Alq 3 and deposited on the first electron transport layer at a deposition rate of 0.1 nm / second, Further, a second electron transport layer having a thickness of 40 nm was provided.
  • the substrate temperature at the time of vapor deposition was room temperature. Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited to produce a cathode, and an organic EL element 5-4 was produced.
  • the organic EL device 5-1 of the present invention using the polymer compound shows significantly higher light emission efficiency and device lifetime than the comparative organic EL devices 5-3 and 5-4. It is clear.
  • the organic EL element 5-3 does not function sufficiently as a light emitting element due to the mixture of the hole transport material layer and the light emitting layer, and the organic EL element 5-4 is subject to the ultraviolet ray transport during the hole transport layer preparation. It can be seen that the layer is damaged and the characteristics of the device are deteriorated.
  • Example 7 (dopant concentration) ⁇ Preparation of organic EL elements 7-1 to 7-4 >> In the production of the organic EL element 5-1, the addition amount of D-26 was adjusted so that the doping concentration (mass ratio of dopant in the light emitting layer) described in Table 5 was obtained, and the organic EL elements 7-1 to 7-4 was prepared.
  • Organic EL elements 7-5 to 7-16 were prepared in the same manner except that the dopant and the doping concentration were changed as shown in Table 5 in the production of the organic EL element 5-1.
  • the organic EL elements 7-1 to 7-8 of the present invention using the phosphorescent dopant according to the present invention are comparative organic EL elements 7-9 to 7-7 using the conventional phosphorescent dopant.
  • 7-12 using D-1
  • comparative organic EL elements 7-13 to 7-16 using D-9

Abstract

 長時間駆動させても、駆動電圧の上昇がなく、長寿命な有機エレクトロルミネッセンス素子、青色発光素子、白色発光素子、表示装置、及び照明装置を提供する。

Description

有機エレクトロルミネッセンス素子、表示装置、及び照明装置
 本発明は、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。
 従来、有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)の寿命を改善する手段の一つとして、含有される化合物の構造に着目した開発が進められてきた結果、実用に耐えうる可能性のある材料が幾つか見出されている。
 しかしながら、置換基の導入などの構造の小さな変更が、寿命、発光特性などの様々な特性に与える影響が大きく、しかも予測が難しいため、解決すべき課題が残されていた。
 有機EL素子の構成材料として高分子化合物を使用することは、既に広く知られており(例えば、特許文献1及び2参照。)、有用な技術として認識されている。
 また、特定の重量平均分子量の高分子材料を用いた有機EL素子については、公知技術として紹介されている(例えば、特許文献3参照。)。
 これらの特許文献を参考に、リン光発光性の有機EL素子の材料として、高分子化合物をリン光発光性ドーパントを用いれば、極めて有用な素子を得ることができると考え、開発を検討したところ、特許文献には記載されていなかった新たな問題があることが判明した。
 すなわち、有機EL材料として高分子化合物とリン光発光性ドーパントを使用すると、得られた素子を長時間駆動させた場合に、駆動電圧が上昇するといった課題があり、素子寿命に悪影響を与えていることが示唆され、これら諸問題の解決が要望されている。
特開平10-308280号公報 特表2001-527102号公報 特開2004-292782号公報
 本発明の目的は、長時間駆動後も、駆動電圧の上昇がなく、長寿命な有機エレクトロルミネッセンス素子、表示装置及び照明装置を提供することである。
 本発明の上記目的は、以下の構成により達成された。
 1.陽極と陰極の間に、少なくともリン光発光性ドーパントと、下記一般式(1)で表される部分構造を含み、末端がエンドキャップ処理された高分子化合物とを含有する有機化合物層が挟持されてなる有機エレクトロルミネッセンス素子であって、該リン光発光性ドーパントが5員または6員の芳香族炭化水素環または芳香族複素環と、5員の含窒素芳香族複素環が結合した配位子を有する金属錯体であることを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000005
 式中、Ar、Arはそれぞれ独立して、置換基を有してもよいアリーレン基を表し、Ar、Arはそれぞれ連結基を介して結合していてもよい。Ar、Arは、それぞれ独立して、置換基を有してもよいアリール基または芳香族複素環基を表す。n1、n2は0~2の整数を表し、n1とn2が同時に0となることはない。n3は10~1000の整数を表す。
 2.前記リン光発光性ドーパントが下記一般式(D-1)で表される化合物であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
 式中、P及びQは炭素原子又は窒素原子を表し、A1はP-Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。A3はN-Q-Nと共に芳香族複素環を形成する原子群を表す。P-L1-Pは2座の配位子を表し、P、Pは各々独立に炭素原子、窒素原子、又は酸素原子を表す。L1はP、Pと共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2又は3である。Mは元素周期表における8族~10族の遷移金属元素を表す。Zは置換基を表す。
 3.前記一般式(1)で表される部分構造を含む高分子化合物が下記一般式(2)で表される部分構造を含むことを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000007
 式中、Ar、Arはそれぞれ独立して、置換基を有してもよいアリーレン基を表し、Arは置換基を有してもよいアリール基または芳香族複素環基を表し、n4は10~1000の整数を表す。
 4.前記一般式(1)で表される部分構造を含む高分子化合物が下記一般式(3)で表される部分構造を含むことを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000008
 式中、Arは置換基を有してもよいアリール基または芳香族複素環基を表し、n5は10~1000の整数を表す。
 5.前記一般式(1)で表される部分構造を含む高分子化合物の重量平均分子量が、ポリスチレン換算で50000~500000であることを特徴とする前記1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 6.前記リン光発光性ドーパントが青色リン光発光性ドーパントであることを特徴とする前記1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 7.前記有機化合物層の少なくとも2層がウェットプロセスにより成膜、形成される工程を経て作製されたことを特徴とする前記1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 8.白色に発光することを特徴とする前記1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 9.前記1~8のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
 10.前記1~8のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
 本発明により、長時間駆動させても、駆動電圧の上昇がなく、長寿命な有機エレクトロルミネッセンス素子、青色発光素子、白色発光素子、表示装置、及び照明装置を提供することができた。
照明装置の概略図である。 照明装置の模式図である。 有機EL素子から構成される表示装置の一例を示した模式図である。 表示部Aの模式図である。
 本発明者等は、上記従来の問題に対し様々な解決策を検討したが、これまで検討されてきたものより、高分子量化された高分子化合物を用いることで、電圧上昇が抑制されることが見出され、電圧上昇を抑えることで長寿命化が実現されることが分かり本発明を成すに至った。
 これらの知見は、従来技術では実施されていない新しい領域を丹念に調査することで初めて明らかになった点であり、極めて重要な技術であると認識している。
 本発明に係る一般式(1)~(3)のいずれかで表される部分構造を有する高分子化合物を使用することで、ウェットプロセスに適した耐溶剤適性が高くかつ表面の平滑な層を形成でき、更に積層構成をウェットプロセスで作製することが可能となった。
 例えば、本発明に係る一般式(1)~(3)のいずれかで表される部分構造を有する高分子化合物と同じ繰り返し単位を持つ、より低分子量のオリゴマーを含有する層を作製した場合、該オリゴマーを含有する層に隣接する有機化合物層(有機層ともいう)の作製時に、ウェットプロセスを用いた場合、前記オリゴマー分子が隣接する有機化合物層に溶出する可能性が高く、その結果、ウェットプロセスでの成膜が困難となる問題点があった。
 一方、重合性の低分子化合物をウェットプロセスで薄膜化した後、紫外光や熱で重合させ溶剤不溶化した後、隣接層をウェットプロセスで作製する方法では、光や熱により膜にダメージが与えられる可能性が高く平滑性の確保が困難となり、目的の性能を満足する素子を得ることが難しい。
 また、本発明に係るリン光発光性ドーパントと本発明に係る一般式(1)~(3)のいずれかで表される部分構造を有する高分子化合物を併用することにより、有機エレクトロルミネッセンス素子の発光効率が改良されることも見出された。
 従来、発光層で用いられるドーパントのドープ濃度は、10%程度までの範囲で使用され、この範囲のドープ濃度に適点存在しているが多いが、本発明の有機EL素子においては、より高濃度である10%~40%の範囲に効率・発光寿命の最適点が存在し、しかも従来のドーパントを用いるよりもより高効率の発光効率得られることが判明した。
 しかしながら、ドーパントのドープ濃度を高くした場合、発光層をウェットプロセスで作製すると、事前に作製した隣接層へのドーパントのコンタミネーションが発生し、寿命、発光効率の低下を招くこととなる。
 本発明の有機エレクトロルミネッセンス素子は、リン光発光性ドーパントと本発明に係る一般式(1)~(3)のいずれかで表される部分構造を有する高分子化合物とを含有する有機化合物層を構成層として用いることにより、ウェットプロセス適用時に発生する層間のコンタミネーションを抑制でき、また、ドープ濃度の最適化を実現でき、その結果、発光効率の高い有機エレクトロルミネッセンス素子を提供することが可能になった。
 《一般式(1)~(3)のいずれかで表される部分構造》
 本発明に係る一般式(1)~(3)のいずれかで表される部分構造について説明する。
 一般式(1)~(3)において、Ar、Ar、Ar、又はArで表される置換基を有してもよいアリーレン基としては、例えば、フェニレン基、ビフェニルジイル基(例えば、[1,1′-ビフェニル]-4,4′-ジイル基、3,3′-ビフェニルジイル基、3,6-ビフェニルジイル基等)等を表す。それらの基は低級アルキル基、あるいは低級アルコキシ基等の置換基を有していてもよい。またAr、Ar、Ar、又はArはそれぞれ結合基を介して結合していてもよい。結合基とは
Figure JPOXMLDOC01-appb-C000009
などの2価の基であり、Ar、Ar、Ar、又はArが結合基を介して結合するとは、例えば結合基が-O-や-S-であると
Figure JPOXMLDOC01-appb-C000010
のように結合している状態をいう。
 好ましいAr、Ar、Ar、又はAr
Figure JPOXMLDOC01-appb-C000011
である。
 Ar、Ar、Ar、又はArは、それぞれ独立して、置換基を有してもよいアリール基、例えばフェニル基、ビフェニリル基等または複素環基、例えばチエニル、フリル等を表す。それらの基はアルキル基またはアルコキシ基等の置換基を有していてもよい。
 好ましいAr、Ar、Ar、又はArはフェニル基、アルキル基またはアルコキシ基を置換基として有するフェニル基である。
 n1は0~2、好ましくは0~1の整数を表す。n2は0~2、好ましくは0~1の整数を表す。ただし、n1とn2は同時に0ではない。n3、n4又はn5はそれぞれ独立して、10~1000の整数を表し、好ましくは20~1000である。
 一般式(1)~(3)に置換することができる置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 また、これらの置換基は上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 本発明に係る一般式(1)~(3)のいずれかで表される部分構造を有する高分子化合物は、高分子化合物の末端がエンドキャップされていることが特徴である。
 ここで、エンドキャップとは、特許文献2にて詳細に説明されており、概要は以下の通りである。
 エンドキャッピング剤(ポリマー成長を停止する化合物)をポリマー合成反応中に添加することによって重合を制御し、ポリマー鎖の更なる成長を制限することが可能となる。したがって、エンドキャッピング剤を過剰に加えると(例えば、重合を停止するのが望ましいステップで)、ポリマー鎖(及び/又はポリマーが分枝及び/又は架橋の場合ポリマーネットワーク)の更なる成長は実質的に抑制(例えば実質的に停止)されることとなる。
 すなわち、エンドキャッピング剤は、ポリマー鎖に、重合条件下で(例えば他のポリマー前駆体及び/又はポリマー鎖の他の部分との)カップリングを受けることが実質的にできない末端基を加え、この末端基がポリマー鎖をエンドキャップし、エンドキャップされなければ重合条件下でポリマー鎖が成長するであろう部位をブロックすることによって、更なる重合の可能性を実質的に減ずる(好ましくは停止する)ように働く。
 本発明に係る化合物において、約60%~実質的にすべての重合部位が、少なくとも一つの末端置換基によってブロックされることが好ましい。更に好ましくは、(一つの場合において)実質的にすべての部位がブロックされる。
 別の更に好ましい場合においては、約60%~約90%のこれらの部位がブロックされる。エンドキャッピング剤の具体例については、特許文献2、特許文献3に記載された例を引用することができる。
 本発明に係るエンドキャップ処理の目的は、重合反応中にエンドキャッピング剤を添加することによる重合反応の抑制にあるが、合わせて重合反応後のポリマー末端に残留した反応部位を不活性化することも重要な目的の一つである。
 即ち、ホモカップリング、クロスカップリング等の重合反応終了時のポリマー末端に残ったハロゲン、ボレート、アミノ基、ハロゲン化メタル等の反応性置換基をエンドキャップ処理によって不活性化することにより、有機EL素子の素子寿命の大幅な改善が見込まれる。
 エンドキャップの例としては、水素原子、アルキル基(例えば、メチル基、エチル基、ブチル基等)、アリール基(例えば、フェニル基、トリル基等)、ヘテロアリール基(例えば、チエニル基、ピリジル基等)、ジ置換アミノ基(例えばジエチルアミノ基、ジフェニルアミノ基等)、トリ置換シリル基(トリメチルシリル基、トリフェニルシリル基等)等が挙げられる。
 エンドキャップ処理を施す具体的な方法としては、反応中または反応終了後に上記エンドキャッピング剤を添加する方法や、水素添加、グリニア試薬、ブチルリチウム等のアルキル化メタルを用いた還元を好ましい例として挙げることができる。
 有機EL素子の発光寿命の点から、エンドキャップ実施後のポリマーの末端のハロゲンの含有率は、1%(1000ppm)以下が好ましく、100ppm以下であることが好ましい。
 以下、本発明の一般式(1)~(3)のいずれかで表される部分構造の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 以下、本発明に係る一般式(1)~(3)で表される部分構造を含む高分子化合物の具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 尚、上記nは重合度を表し、10~1000の整数を表す。
 一般式(1)~(3)で表される部分構造を含む高分子化合物は、Makromol.Chem.193,909頁(1992)等記載の公知の方法で製造することができる。
 ここで、本発明に係る一般式(1)~(3)で表される部分構造を含む高分子化合物の合成例の一例を示すが、本発明はこれらに限定されない。
 まず、例示化合物(50)の合成例として、重量平均分子量や分子量分布の異なる化合物50a~50dの合成を以下に示す。
 《例示化合物50aの合成》
Figure JPOXMLDOC01-appb-C000021
 化合物50-1(15.0g)及び化合物50-2(18.0g)をトルエン200mlに溶解し、窒素下において、Aliquat336(1.0g)及び2mol/Lの炭酸水素ナトリウム溶液30mlを加えた。この混合物を激しく撹拌し、2時間加熱還流した後、1gのブロモベンゼンを加え5時間加熱した。この反応液を60℃まで冷却し、3Lのメタノールと300mlの純水の混合液中に、撹拌下ゆっくりと添加した。
 析出物を濾取し、メタノールと純水で繰り返し洗浄したのち、真空オーブン内で60℃において10時間乾燥させ、例示化合物50a(19.0g、重量平均分子量5000、分子量分布2.2)を得た。
 例示化合物50aの構造は、H-NMR、13C-NMR等を用いて確認した。
 《例示化合物50b、50c、50dの合成》
 反応時間を2時間から10時間に変更した以外は同様の処理を行い、化合物50b(重量平均分子量55000、分子量分布2.0)を、反応時間を2時間から20時間に変更した以外は同様の処理を行い、化合物50c(重量平均分子量80000、分子量分布1.9)を、反応時間を2時間から50時間に変更した以外は同様の処理を行い、化合物50d(重量平均分子量150000、分子量分布1.9)を得た。
 例示化合物50b、50c、50dの各々の構造は、H-NMR、13C-NMR等を用いて確認した。
 《例示化合物62の合成》
Figure JPOXMLDOC01-appb-C000022
 化合物62-1(22.0g)及び化合物62-2(18.0g)をトルエン200mlに溶解し、窒素下において、Aliquat336(1.0g)及び2mol/Lの炭酸水素ナトリウム溶液30mlを加えた混合物を調製した。
 上記の混合物を激しく撹拌し、20時間加熱還流した後、得られた反応液を60℃まで冷却し、3Lのメタノールと300mlの純水の混合液中に、撹拌下ゆっくりと添加した。
 生成した析出物を濾取し、メタノールと純水で繰り返し洗浄したのち、真空オーブン内で60℃において10時間乾燥させ、化合物62Br(18.0g、重量平均分子量8000、分子量分布2.3)を得た。
 続いて、化合物62Br(10g)及びフェニルボロン酸ピナコールエステル(1g)をトルエン120mlに溶解し、窒素下において、Aliquat336(1.0g)及び2mol/Lの炭酸水素ナトリウム溶液30mlを加えた。この混合物を激しく撹拌し、10時間加熱還流した。
 この反応液を60℃まで冷却し、2Lのメタノールと200mlの純水の混合液中に、撹拌下ゆっくりと添加した。析出物をろ取し、メタノールと純水で繰り返し洗浄したのち、真空オーブン内で60℃において10時間乾燥させ、化合物62(9.8g、重量平均分子量8000、分子量分布2.3)を得た。
 本発明に係る一般式(1)~(3)のいずれかで表される部分構造を有する高分子化合物は、発光効率、素子寿命の観点から、低分子量成分や重金属などの混入が少なく、分子量分布が小さいことが好ましい。
 具体的には重量平均分子量が1000以下の有機物成分の含有量が1%以下であること、更には、重量平均分子量が1000以下の有機物成分の含有量が1%以下であることが好ましい。
 また、本発明に係る一般式(1)~(3)で表される部分構造を含む高分子化合物の重量平均分子量の範囲は、50,000~500,000の範囲であることが好ましく、更に好ましくは、70,000~100,000の範囲である。
 更に、分子量分布(Mw/Mn)は、3以下であることが好ましく、更に好ましくは2.5以下である。
 本発明に係る一般式(1)~(3)で表される部分構造を含む高分子化合物中の重金属(Pd、Cu、Pt等)の含有量は500ppm以下であることが好ましく、更に好ましくは50ppm以下である。
 尚、本発明に係る一般式(1)~(3)で表される部分構造を含む高分子化合物の分子量(数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn))等)について説明する。
 本発明に係る一般式(1)~(3)で表される部分構造を含む高分子化合物の重量平均分子量(Mw)、数平均分子量(Mn)の測定は、THF(テトラヒドロフラン)をカラム溶媒として用いるGPC(ゲルパーミエーションクロマトグラフィー)を用いて分子量測定を行うことができる。
 具体的には、測定試料を1mgに対してTHF(脱気処理を行ったものを用いる)を1ml加え、室温下にてマグネチックスターラーを用いて撹拌を行い、充分に溶解させる。ついで、ポアサイズ0.45μm~0.50μmのメンブランフィルターで処理した後に、GPC(ゲルパーミエーションクロマトグラフ)装置に注入する。
 GPC測定条件は、40℃にてカラムを安定化させ、THF(テトラヒドロフラン)を毎分1mlの流速で流し、1mg/mlの濃度の試料を約100μl注入して測定する。
 カラムとしては、市販のポリスチレンジェルカラムを組み合わせて使用することが好ましい。例えば、昭和電工社製のShodex GPC KF-801、802、803、804、805、806、807の組合せや、東ソー社製のTSKgelG1000H、G2000H、G3000H、G4000H、G5000H、G6000H、G7000H、TSK guard column等の組合せ等が好ましい。
 検出器としては、屈折率検出器(RI検出器)、あるいはUV検出器が好ましく用いられる。
 試料の分子量測定では、試料の有する分子量分布を単分散のポリスチレン標準粒子を用いて作成した検量線を用いて算出する。検量線作成用のポリスチレンとしては10点程度用いることが好ましい。
 本発明では、下記の測定条件にて分子量測定を行った。
 (測定条件)
  装置:東ソー高速GPC装置 HLC-8220GPC
  カラム:TOSOH TSKgel Super HM-M
  検出器:RI及び/またはUV
  溶出液流速:0.6ml/分
  試料濃度:0.1質量%
  試料量:100μl
  検量線:標準ポリスチレンにて作製:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルを用いて検量線(校正曲線ともいう)を作成、分子量の算出に使用した。13サンプルは、ほぼ等間隔にすることが好ましい。
 《一般式(D-1)で表される化合物》
 一般式(D-1)において、A1が、P-Cと共に形成する芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に置換基を有してもよい。
 一般式(D-1)において、A1が、P-Cと共に形成する芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環等が挙げられる。
 ここで、ジアザカルバゾール環とは、カルボリン環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は更に置換基を有してもよい。
 上記、芳香族炭化水素環又は芳香族複素環の置換基の例としては、前記一般式(1)~(3)に置換できる置換基の例を挙げることができる。
 一般式(D-1)において、A3が、N-Q-Nと共に芳香族複素環を形成する芳香族複素環としては、イミダゾール環、トリアゾール環、テトラゾール環、ベンゾイミダゾール環、チアジアゾール環、オキサジアゾール環、ピリミジン環、プリン環等が挙げられる。
 A1とA3で形成される構造としては、フェニルイミダゾール骨格が好ましい。
 一般式(D-1)において、Zは置換基を表し、一般式(1)~(3)に置換することができる置換基の例を好ましい置換基の例として挙げることができる。
 一般式(D-1)において、P-L1-Pで表される2座の配位子としては、種々の公知の配位子を用いることができるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer-Verlag社 H.Yersin著 1987年発行、「有機金属化学-基礎と応用-」 裳華房社 山本明夫著 1982年発行 等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロ環配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子等)を挙げることができる。
 本発明に係る一般式(D-1)で表される化合物に用いられる配位子の種類は1種類でもよいし、複数の種類があってもよい。錯体中の配位子の数は好ましくは1~3種類であり、特に好ましくは1、2種類であり、更に好ましくは1種類である。
 一般式(D-1)において、Mで表される元素周期表における8~10族の遷移金属元素(単に遷移金属ともいう)としてはイリジウム、白金が好ましい遷移金属元素として挙げられる。
 以下、本発明に係る、一般式(D-1)で表される化合物の具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 これらの金属錯体は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
 《有機EL素子の構成層》
 本発明に係る有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 本発明に係る有機EL素子においては、青色発光層の発光極大波長は430nm~480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm~550nm、赤色発光層は発光極大波長が600nm~640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。
 また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。
 更に、発光層間には非発光性の中間層を有していてもよい。本発明に係る有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
 本発明に係る有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、更に好ましくは2nm~200nmの範囲に調整され、特に好ましくは、10nm~20nmの範囲である。
 発光層の作製には、一般式(1)で表される部分構造を含む高分子化合物とリン光発光性ドーパントを、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して作製することができる。
 本発明の有機EL素子の発光層には、発光性ドーパント(リン光発光性ドーパントや蛍光ドーパント等)化合物と、発光ホスト化合物を含有する。
 (発光性ドーパント化合物)
 発光性ドーパント化合物について説明する。
 発光性ドーパント化合物としては、蛍光ドーパント化合物(蛍光性化合物ともいう)、リン光発光性ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光性ドーパント化合物としては、前記一般式(D-1)で表される化合物をリン光発光性ドーパントとして含有する。
 (リン光発光性ドーパント)
 本発明に係るリン光発光性ドーパントについて説明する。
 本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光発光性ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光性ホスト化合物の励起状態が生成し、このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こりリン光発光性ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 本発明においては、リン光発光性ドーパントは、前記一般式(D-1)で表される化合物の中から適宜選択して用いることができる。
 また、本発明においては、前記一般式(D-1)で表される化合物から選ばれるもの以外にも、有機EL素子の発光層に使用される公知のリン光発光性ドーパントを用いることができる。
 本発明の有機EL素子の発光層は、2種以上のリン光発光性ドーパントを含有していることが好ましく、また、発光層中のドーパントのドープ濃度としては、10質量%~40質量%の範囲に調整することが好ましく、更に好ましくは15質量%~30質量%の範囲に調整することである。
 以下に、リン光発光性ドーパントとして用いられる公知の化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704~1711に記載の方法等により合成できる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 (発光ホスト化合物(発光ホスト等ともいう))
 本発明において発光ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
 本発明に用いることができる発光ホストとしては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やマルチアザカルバゾール誘導体(ここで、マルチアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも1つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
 本発明に用いることができる公知の発光ホストとしては正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
 また、本発明においては、(本発明の発光ホスト及び/または公知の発光ホスト)を単独で用いてもよく、または複数種併用して用いてもよい。
 発光ホストを複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 また、前記リン光発光性ドーパントとして用いられる公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 また、本発明に用いられる発光ホストとしては、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもよく、このような化合物を一種または複数種用いても良い。
 公知の発光ホストの具体例としては、以下の文献に記載の化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 次に、本発明に係る有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
 また、よく使用されている電子注入材料としては、LiFが用いられるが、素子の駆動電圧をより低くする観点からは、KF、CsF等が好ましく用いられる。
 上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
 本発明に係る有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 正孔阻止層には、前述のホスト化合物として挙げたカルバゾール誘導体、またカルボリン誘導体やジアザカルバゾール誘導体を含有することが好ましい。
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。
 更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては3nm~100nmの範囲が好ましく、更に好ましくは5nm~30nmの範囲である。
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。本発明においては、前記一般式(1)で表される部分構造を含む高分子化合物を用いるが、以下の公知の化合物を併用してもよい。
 例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いてもよい。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより作製することができる。
 正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
 更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体、カルボリン誘導体(カルバゾール環を構成する炭素原子の1つが窒素原子で置き換わった化合物)、マルチアザカルバゾール誘導体(カルボリン環を構成する炭素原子の1つ以上が窒素原子で置き換わった化合物)、ピリジン含有化合物も電子輸送材料として用いることができる。
 特に、ピリジン含有化合物や含N数2~5のマルチアザカルバゾール誘導体等が有機EL素子の駆動電圧等の点から好ましい。
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより作製することができる。
 電子輸送層の膜厚については、5nm~5μmの範囲に調整することが好ましく、更に好ましくは5nm~200nmの範囲である。
 また、電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたn性の高い電子輸送層を用いることもでき、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
 以下、本発明の有機EL素子に用いられる正孔輸送材料、発光ホスト、電子輸送材料等に用いられる化合物の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を作製させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
 更に、膜厚は材料にもよるが、10nm~1000nmの範囲が好ましく、更に好ましくは10nm~200nmの範囲である。
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は、10nm~5μmの範囲が好ましく、更に好ましくは50nm~200nmの範囲である。
 尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度の向上の観点から好ましい。
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《支持基板》
 本発明に係る有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。
 支持基板側から光を取り出す場合には、支持基板は透明であることが好ましく、例えば、透明な指示基板として、ガラス、石英、透明樹脂フィルムを挙げることができる。
 特に好ましい支持基板としては、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルム等が挙げられる。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3cm/(m・24h・atm)以下、水蒸気透過度が10-3g/(m・24h)以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度が10-5g/(m・24h)以下であることが更に好ましい。
 バリア膜を作製する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の作製方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
 《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3cm/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10-3g/(m・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を作製し封止膜とすることも好適にできる。
 この場合、該膜を作製する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
 更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の作製方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられるが、中でも、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。
 特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。
 これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%~20%程度の光しか取り出せないことが一般的に言われている。
 これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を作製し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を作製する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を作製する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を作製する方法(特開平11-283751号公報)等がある。
 本発明においては、これらの方法を本発明に係る有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましく、更に好ましくは1.35以下である。
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセント場で染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明に係る有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
 《有機EL素子の作製方法》
 本発明に係る有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
 まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を作製させる。
 これら各層の作製方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、本発明においてはウェットプロセスが好ましく、中でも、スピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。
 更に好ましい態様としては、3層以上の有機化合物層がウェットプロセスにより成膜・作製されることが好ましい。
 本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 これらの層を作製後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50nm~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により作製させ、陰極を設けることにより所望の有機EL素子が得られる。
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
 発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれらに限定されない。
 特に好ましい態様としては、液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。
 パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明に係る有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。また、実施例に用いる化合物の構造式を下記に示す。尚、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 実施例1
 《有機EL素子1-1の作製》
 陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso-プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板を窒素雰囲気下に移し、化合物50a(60mg)をトルエン6mlに溶解した溶液を用い1000rpm、30秒の条件にてスピンコート法により成膜した後、真空中150℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
 次に、この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方5つのタンタル製抵抗加熱ボートにCBP、D-9、BCP、Alqをそれぞれ入れ、真空蒸着装置(第1真空槽)に取り付けた。更に、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。
 まず、CBPの入った前記加熱ボートとD-9の入ったボートをそれぞれ独立に通電して、発光ホストであるCBPと発光ドーパントであるD-9の蒸着速度が100:6になるように調節し、膜厚30nmの厚さになるように蒸着し発光層を設けた。
 続けて、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒で厚さ10nmの第1の電子輸送層を設けた。更にAlqの入った前記加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒で膜厚20nmの第2の電子輸送層を設けた。
 次に、第2の電子輸送層まで成膜した素子を真空のまま第2真空槽に移した後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。第2真空槽を2×10-4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸着速度0.01~0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して、蒸着速度1~2nm/秒で膜厚150nmの陰極をつけ、有機EL素子1-1を作製した。
 《有機EL素子1-2~1-4の作製》
 有機EL素子1-1の作製において、表1に記載のように正孔輸送材料を変更した以外は同様にして、有機EL素子1-2~1-4を作製した。
 《有機EL素子の評価》
 得られた有機EL素子1-1~1-4を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図1、図2に示すような照明装置を作製して評価した。
 図1は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。図2は照明装置の断面図を示し、図2において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 (外部取り出し量子効率)
 有機EL素子を室温(約23℃~25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いた。また、外部取り出し量子効率は有機EL素子1-1を100とする相対値で表した。
 (発光寿命及び電圧上昇率)
 有機EL素子を室温下、2.5mA/cmの定電流条件下による連続点灯を行い、初期輝度の半分の輝度になるのに要する時間(τ1/2)を測定した。発光寿命は有機EL素子1-1を100と設定する相対値で表した。
 また、点灯開始時点の初期電圧に対して、輝度が半分になったときの電圧を比較し、その上昇率を電圧上昇率として表現し、有機EL素子1-1での電圧上昇率を100と設定する相対値で表した。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000045
 本発明に係る正孔輸送材料50a(重量平均分子量5000)を用いて作製した有機EL素子1-1は、外部取り出し量子効率、発光寿命及び電圧上昇率のすべてにおいて優れた特性を示した。
 更に、表1から、本発明に係る正孔輸送材料を用いて作製した有機EL素子1-1~1-4は、各々、外部取り出し量子効率、発光寿命、電圧上昇率共に優れた特性を示すが、重量平均分子量が5000の化合物50aを用いたものに比べて、正孔輸送材料の重量平均分子量が50000~500000の範囲のもの(50b、50c、50d)を用いた有機EL素子は、更に発光寿命の長寿命化、電圧上昇率の大幅なる低減等の特性向上が達成できることが分かった。
 実施例2
 《有機EL素子2-1の作製》
 陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso-プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この基板を窒素雰囲気下に移し、化合物50a(60mg)をトルエン6mlに溶解した溶液を用い1000rpm、30秒の条件にてスピンコート法により成膜した後、真空中150℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
 続いて、正孔輸送層上に、Host-25(60mg)、D-26(6.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した後、真空中150℃で1時間加熱を行い、膜厚40nmの発光層とした。更に、Host-19(20mg)をブタノール6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した。真空中100℃で1時間加熱を行い、膜厚20nmの第1電子輸送層とした。
 次に、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10-4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層の上に蒸着して、更に膜厚40nmの第2電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を作製し、有機EL素子2-1を作製した。
 《有機EL素子2-2~2-4の作製》
 有機EL素子2-1の作製において、表2に記載のように正孔輸送材料を変更した以外は同様にして、有機EL素子2-2~2-4を作製した。
 《有機EL素子の評価》
 得られた有機EL素子2-1~2-4を評価するに際しては、実施例1と同様の方法を用いて評価を行い、外部取り出し量子効率及び発光寿命は有機EL素子2-1を100と設定する相対値で表した。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000046
 本発明に係る正孔輸送材料50aと本発明に係るリン光発光性ドーパントD-26を用いて作製した有機EL素子2-1は、実施例1の有機EL素子1-1よりも、外部取り出し量子効率、発光寿命、電圧上昇率の全てにおいて、更に優れた特性を示した。
 更に、表2から、重量平均分子量が5000の化合物50aを用いた有機EL素子2-1に比べて、正孔輸送材料の重量平均分子量が50000~500000の範囲のもの(50b、50c、50d)を用いた有機EL素子は、発光寿命の長寿命化、電圧上昇率の大幅なる低減等の特性向上において、更に優れた特性を示すことが分かった。
 実施例3
 《フルカラー表示装置の作製》
 (青色発光素子の作製)
 実施例2の有機EL素子2-4を青色発光素子として用いた。
 (緑色発光素子の作製)
 実施例1の有機EL素子1-4において、D-9をD-1に変更した以外は同様にして、緑色発光素子を作製し、これを緑色発光素子として用いた。
 (赤色発光素子の作製)
 実施例1の有機EL素子1-4において、D-9をD-6に変更した以外は同様にして、赤色発光素子を作製し、これを赤色発光素子として用いた。
 上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図3に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。図4には、作製した前記表示装置の表示部Aの模式図のみを示した。即ち、同一基板上に複数の走査線5及びデータ線6を含む配線部と並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
 このフルカラー表示装置は駆動することにより、輝度が高く、高耐久性を有し、かつ鮮明なフルカラー動画表示が得られることが分かった。
 実施例4
 《白色発光素子及び白色照明装置の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この基板を窒素雰囲気下に移し、化合物50d(60mg)をトルエン6mlに溶解した溶液を用い1000rpm、30秒の条件にてスピンコート法により成膜した後、真空中150℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
 続いて、正孔輸送層上に、CBP(60mg)、化合物D-6(0.5mg)、D-26(5.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した。真空中150℃で1時間加熱を行い発光層とした。
 更に、例示BCP(20mg)をブタノール6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した。真空中80℃で1時間加熱を行い第1電子輸送層とした。
 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10-4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層の上に蒸着して、更に膜厚40nmの第2電子輸送層を設けた。
 なお、蒸着時の基板温度は室温であった。
 引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を作製し、白色発光有機EL素子を作製した。
 この素子に通電したところほぼ白色の光が得られ、照明装置として使用できることが分かった。
 実施例5
 《有機EL素子5-1の作製》
 陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso-プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この基板を窒素雰囲気下に移し、化合物62(60mg)をトルエン6mlに溶解した溶液を用い1000rpm、30秒の条件にてスピンコート法により成膜した後、真空中150℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
 続いて、正孔輸送層上に、Host-25(60mg)、D-26(6.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した後、真空中150℃で1時間加熱を行い、膜厚40nmの発光層とした。
 更に、Host-19(20mg)をブタノール6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜し、次いで、真空中100℃で1時間加熱を行い、膜厚20nmの第1電子輸送層とした。
 次に、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。
 真空槽を4×10-4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層の上に蒸着して、更に、膜厚40nmの第2電子輸送層を設けた。
 尚、蒸着時の基板温度は室温であった。引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を作製し、有機EL素子5-1を作製した。
 《有機EL素子5-2の作製》
 有機EL素子5-1の作製において、化合物62を化合物62Brに変更した以外は同様にして有機EL素子5-2を作製した。
 《正孔輸送材料のハロゲン含有量の測定》
 有機EL素子5-1、5-2の各正孔輸送層の作製に用いられた化合物62、62Brについては、エンドキャップ処理の有無をハロゲン含有率の測定により確認した。
 化合物62Br及び化合物62のハロゲン含有率の測定は、誘導結合プラズマ質量分析(ICP-MS)測定方法(装置名:SPQ9700、メーカー:SIIナノテクノロジー)によりハロゲン含有率を求め、表3に示した。
 《有機EL素子の評価》
 得られた有機EL素子5-1、5-2を評価するに際しては、実施例1と同様の方法を用いて評価を行い、外部取り出し量子効率及び発光寿命は有機EL素子5-1を100と設定する相対値で表した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000047
 表3から、エンドキャップ処理無しの正孔輸送材料62Brを用いて作製した、比較の有機EL素子5-2に比べて、エンドキャップ処理を施した本発明の有機EL素子5-1は、発光効率及び素子寿命が大幅に改善されたことが明らかである。
 実施例6
 以下に記載のように、実施例5の有機EL素子5-1の比較素子として、有機EL素子5-3、5-4を作製した。尚、有機EL素子5-1は、実施例5と同様にして作製した。
 《有機EL素子5-3の作製》
 陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso-プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この基板を窒素雰囲気下に移し、化合物6(国際公開第02/094965号パンフレット記載の化合物)(60mg)をトルエン6mlに溶解した溶液を用い1000rpm、30秒の条件にてスピンコート法により成膜した後、真空中150℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
 続いて、正孔輸送層上に、Host-25(60mg)、D-26(6.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した後、真空中150℃で1時間加熱を行い、膜厚40nmの発光層とした。
 更に、Host-19(20mg)をブタノール6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜し、真空中100℃で1時間加熱を行い、膜厚20nmの第1電子輸送層とした。
 次に、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10-4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層の上に蒸着して、更に膜厚40nmの第2電子輸送層を設けた。
 尚、蒸着時の基板温度は室温であった。引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を作製し、有機EL素子5-3を作製した。
 《有機EL素子5-4の作製》
 陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso-プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この基板を窒素雰囲気下に移し、A-2(国際公開第08/090795号パンフレット記載の化合物)(60mg)をトルエン6mlに溶解した溶液を1000rpm、30秒の条件下、スピンコートし(膜厚30nm)、60℃で1時間真空乾燥した後、紫外光を5分間照射し、正孔輸送層とした。
 続いて、正孔輸送層上に、Host-25(60mg)、D-26(6.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した後、真空中150℃で1時間加熱を行い、膜厚40nmの発光層とした。
 更に、Host-19(20mg)をブタノール6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した。真空中100℃で1時間加熱を行い、膜厚20nmの第1電子輸送層とした。
 次に、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10-4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層の上に蒸着して、更に膜厚40nmの第2電子輸送層を設けた。
 尚、蒸着時の基板温度は室温であった。引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を作製し、有機EL素子5-4を作製した。
 《有機EL素子の評価》
 得られた有機EL素子5-1、5-3、5-4を評価するに際しては、実施例1と同様の方法を用いて評価を行い、外部取り出し量子効率及び発光寿命は有機EL素子5-1を100と設定する相対値で表した。
 得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000048
 表4から、高分子化合物を用いた本発明の有機EL素子5-1は、比較の有機EL素子5-3、5-4に比べ、発光効率及び素子寿命が大幅に高い数値を示していることが明らかである。
 また、有機EL素子5-3は正孔輸送材層と発光層の混合により、発光素子として十分に機能せず、有機EL素子5-4は正孔輸送層作製時の紫外線照射が正孔輸送層にダメージを受け、素子としての特性が劣化していることが分かる。
 実施例7(ドーパント濃度)
 《有機EL素子7-1~7-4の作製》
 有機EL素子5-1の作製において、表5に記載したドープ濃度(発光層におけるドーパントの質量比)になるようにD-26の添加量を調製し、有機EL素子7-1~7-4を調製した。
 《有機EL素子7-5~7-16の作製》
 有機EL素子5-1の作製において、ドーパント及びドープ濃度を表5に記載したように変更した以外は同様にして、有機EL素子7-5~7-16を各々作製した。
 《有機EL素子の評価》
 得られた有機EL素子7-1~7-16を評価は、実施例1と同様の方法を用いて行い、外部取り出し量子効率及び発光寿命は有機EL素子7-1を100と設定する相対値で表した。
 得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000049
 表5から、本発明に係るリン光発光性ドーパントを用いた本発明の有機EL素子7-1~7-8は、従来のリン光発光性ドーパントを用いた比較の有機EL素子7-9~7-12(D-1使用)、比較の有機EL素子7-13~7-16(D-9使用)に比べて、外部取り出し量子効率及び発光寿命が大幅に改善されたことが分かる。
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 A 表示部
 B 制御部
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤

Claims (10)

  1. 陽極と陰極の間に、少なくともリン光発光性ドーパントと、下記一般式(1)で表される部分構造を含み、末端がエンドキャップ処理された高分子化合物とを含有する有機化合物層が挟持されてなる有機エレクトロルミネッセンス素子であって、該リン光発光性ドーパントが5員または6員の芳香族炭化水素環または芳香族複素環と、5員の含窒素芳香族複素環が結合した配位子を有する金属錯体であることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Ar、Arはそれぞれ独立して、置換基を有してもよいアリーレン基を表し、Ar、Arはそれぞれ連結基を介して結合していてもよい。Ar、Arは、それぞれ独立して、置換基を有してもよいアリール基または芳香族複素環基を表す。n1、n2は0~2の整数を表し、n1とn2が同時に0となることはない。n3は10~1000の整数を表す。)
  2. 前記リン光発光性ドーパントが下記一般式(D-1)で表される化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、P及びQは炭素原子又は窒素原子を表し、A1はP-Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。A3はN-Q-Nと共に芳香族複素環を形成する原子群を表す。P-L1-Pは2座の配位子を表し、P、Pは各々独立に炭素原子、窒素原子、又は酸素原子を表す。L1はP、Pと共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2又は3である。Mは元素周期表における8族~10族の遷移金属元素を表す。Zは置換基を表す。〕
  3. 前記一般式(1)で表される部分構造を含む高分子化合物が下記一般式(2)で表される部分構造を含むことを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003

    (式中、Ar、Arはそれぞれ独立して、置換基を有してもよいアリーレン基を表し、Arは置換基を有してもよいアリール基または芳香族複素環基を表し、n4は10~1000の整数を表す。)
  4. 前記一般式(1)で表される部分構造を含む高分子化合物が下記一般式(3)で表される部分構造を含むことを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    (式中、Arは置換基を有してもよいアリール基または芳香族複素環基を表し、n5は10~1000の整数を表す。)
  5. 前記一般式(1)で表される部分構造を含む高分子化合物の重量平均分子量が、ポリスチレン換算で50000~500000であることを特徴とする請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6. 前記リン光発光性ドーパントが青色リン光発光性ドーパントであることを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  7. 前記有機化合物層の少なくとも2層がウェットプロセスにより成膜、形成される工程を経て作製されたことを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8. 白色に発光することを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9. 請求項1~8のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
  10. 請求項1~8のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
PCT/JP2009/070321 2008-12-08 2009-12-03 有機エレクトロルミネッセンス素子、表示装置、及び照明装置 WO2010067746A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010542086A JP5402942B2 (ja) 2008-12-08 2009-12-03 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
US13/132,685 US20120037889A1 (en) 2008-12-08 2009-12-03 Organic electroluminescence element, display device and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-311884 2008-12-08
JP2008311884 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010067746A1 true WO2010067746A1 (ja) 2010-06-17

Family

ID=42242734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070321 WO2010067746A1 (ja) 2008-12-08 2009-12-03 有機エレクトロルミネッセンス素子、表示装置、及び照明装置

Country Status (3)

Country Link
US (1) US20120037889A1 (ja)
JP (1) JP5402942B2 (ja)
WO (1) WO2010067746A1 (ja)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US20120302762A1 (en) * 2011-05-27 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Carbazole Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
EP2539913A1 (en) * 2010-02-25 2013-01-02 Universal Display Corporation Phosphorescent emitters
JP2013187211A (ja) * 2012-03-06 2013-09-19 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
JP2015038195A (ja) * 2013-07-17 2015-02-26 住友化学株式会社 高分子化合物およびそれを用いた発光素子
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
WO2016009908A1 (ja) * 2014-07-16 2016-01-21 住友化学株式会社 発光素子の製造方法
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
JP2017052709A (ja) * 2015-09-07 2017-03-16 住友化学株式会社 金属錯体および該金属錯体を含む発光素子
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
US9761812B2 (en) 2012-11-26 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
WO2018143438A1 (ja) * 2017-02-03 2018-08-09 日立化成株式会社 有機エレクトロニクス材料及びその利用
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
CN109980125A (zh) * 2014-10-23 2019-07-05 剑桥显示技术有限公司 有机发光器件
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201108865D0 (en) * 2011-05-26 2011-07-06 Ct For Process Innovation The Ltd Semiconductor compounds
GB201108864D0 (en) 2011-05-26 2011-07-06 Ct For Process Innovation The Ltd Transistors and methods of making them
US10818843B2 (en) 2013-09-11 2020-10-27 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
CN107216257A (zh) * 2017-06-13 2017-09-29 合肥大麦灯箱器材有限公司 一种有机空穴传输材料及其合成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527102A (ja) * 1997-12-19 2001-12-25 アベシア・リミテッド 化合物、組成物及び使用
JP2004292782A (ja) * 2003-02-06 2004-10-21 Tosoh Corp 新規トリアリールアミンポリマー、その製造方法及びその用途
JP2004532348A (ja) * 2001-06-22 2004-10-21 ケンブリッジ ディスプレイ テクノロジー リミテッド 置換されたトリフェニルアミン繰返し単位を含有するポリマー
JP2005259442A (ja) * 2004-03-10 2005-09-22 Fuji Xerox Co Ltd 有機電界発光素子
JP2005276815A (ja) * 2004-02-24 2005-10-06 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子
WO2008014037A2 (en) * 2006-07-28 2008-01-31 General Electric Company Organic iridium compositions and their use in electronic devices
JP2008106125A (ja) * 2006-10-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
WO2008146838A1 (ja) * 2007-05-30 2008-12-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200141A (ja) * 2002-10-24 2004-07-15 Toyota Industries Corp 有機el素子
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
GB2442885B (en) * 2005-06-09 2011-07-13 Konica Minolta Holdings Inc Organic electroluminescence element, illuminator and display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527102A (ja) * 1997-12-19 2001-12-25 アベシア・リミテッド 化合物、組成物及び使用
JP2004532348A (ja) * 2001-06-22 2004-10-21 ケンブリッジ ディスプレイ テクノロジー リミテッド 置換されたトリフェニルアミン繰返し単位を含有するポリマー
JP2004292782A (ja) * 2003-02-06 2004-10-21 Tosoh Corp 新規トリアリールアミンポリマー、その製造方法及びその用途
JP2005276815A (ja) * 2004-02-24 2005-10-06 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子
JP2005259442A (ja) * 2004-03-10 2005-09-22 Fuji Xerox Co Ltd 有機電界発光素子
WO2008014037A2 (en) * 2006-07-28 2008-01-31 General Electric Company Organic iridium compositions and their use in electronic devices
JP2008106125A (ja) * 2006-10-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
WO2008146838A1 (ja) * 2007-05-30 2008-12-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
EP2539913A1 (en) * 2010-02-25 2013-01-02 Universal Display Corporation Phosphorescent emitters
EP2539913A4 (en) * 2010-02-25 2013-11-06 Universal Display Corp PHOSPHORESCENT EMITTERS
JP2013520508A (ja) * 2010-02-25 2013-06-06 ユニバーサル ディスプレイ コーポレイション リン光発光体
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
US9079855B2 (en) * 2011-05-27 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, light-emitting element, light-emitting device, electronic device, and lighting device
US20120302762A1 (en) * 2011-05-27 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Carbazole Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
JP2013010749A (ja) * 2011-05-27 2013-01-17 Semiconductor Energy Lab Co Ltd カルバゾール化合物、発光素子、発光装置、電子機器、および照明装置
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
JP2013187211A (ja) * 2012-03-06 2013-09-19 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
EP3133079A1 (en) 2012-07-19 2017-02-22 UDC Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US10629823B2 (en) 2012-11-26 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9761812B2 (en) 2012-11-26 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
EP3608329A1 (en) 2013-07-02 2020-02-12 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3266789A1 (en) 2013-07-02 2018-01-10 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
JP2018138658A (ja) * 2013-07-17 2018-09-06 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2015038195A (ja) * 2013-07-17 2015-02-26 住友化学株式会社 高分子化合物およびそれを用いた発光素子
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
TWI601734B (zh) * 2014-07-16 2017-10-11 住友化學股份有限公司 發光元件之製造方法
CN106538059A (zh) * 2014-07-16 2017-03-22 住友化学株式会社 发光元件的制造方法
WO2016009908A1 (ja) * 2014-07-16 2016-01-21 住友化学株式会社 発光素子の製造方法
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
CN109980125A (zh) * 2014-10-23 2019-07-05 剑桥显示技术有限公司 有机发光器件
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
WO2016125110A1 (en) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bisimidazolodiazocines
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
JP2017052709A (ja) * 2015-09-07 2017-03-16 住友化学株式会社 金属錯体および該金属錯体を含む発光素子
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
JPWO2018143438A1 (ja) * 2017-02-03 2019-12-26 日立化成株式会社 有機エレクトロニクス材料及びその利用
CN110235269A (zh) * 2017-02-03 2019-09-13 日立化成株式会社 有机电子材料及其利用
WO2018143438A1 (ja) * 2017-02-03 2018-08-09 日立化成株式会社 有機エレクトロニクス材料及びその利用

Also Published As

Publication number Publication date
JPWO2010067746A1 (ja) 2012-05-17
US20120037889A1 (en) 2012-02-16
JP5402942B2 (ja) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5402942B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5304010B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5967057B2 (ja) 有機エレクトロルミネッセンス素子とその製造方法、照明装置及び表示装置
JP5708781B2 (ja) 有機エレクトロルミネッセンス素子
JP5332614B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5600894B2 (ja) 白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5724204B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5577650B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
WO2010044342A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5561272B2 (ja) 有機エレクトロルミネッセンス素子
JP2008311608A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008066569A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2009059767A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2009182298A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2010267847A (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5699603B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011187783A (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5636630B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5600884B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
WO2013080696A1 (ja) 有機el素子
JP5515283B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2018221173A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010028014A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2008047428A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
JP5724987B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13132685

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09831850

Country of ref document: EP

Kind code of ref document: A1