WO2010072861A1 - Procedure for manufacturing nanochannels - Google Patents

Procedure for manufacturing nanochannels Download PDF

Info

Publication number
WO2010072861A1
WO2010072861A1 PCT/ES2009/000587 ES2009000587W WO2010072861A1 WO 2010072861 A1 WO2010072861 A1 WO 2010072861A1 ES 2009000587 W ES2009000587 W ES 2009000587W WO 2010072861 A1 WO2010072861 A1 WO 2010072861A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
layer
master
pdms
nanochannels
Prior art date
Application number
PCT/ES2009/000587
Other languages
Spanish (es)
French (fr)
Inventor
Aleix GARCIA GÜELL
Fausto Sanz Carrasco
Original Assignee
Universidad De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Barcelona filed Critical Universidad De Barcelona
Publication of WO2010072861A1 publication Critical patent/WO2010072861A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents

Definitions

  • the present invention is related to the field of technology known as nanofluidics. It refers specifically to the manufacture of nanochannels, i.e. channels with at least one dimension in the nanoscale, which are used in this field of technology.
  • Nanofluidics has emerged as a discipline of science and engineering, where a fluid flows in structures with at least one transverse dimension close to the nanometric range. Although the phenomena of fluid transport in the nanoscale have already been studied in the past, the nanofluidic terminology has been appearing and becoming popular only in recent years. This growing interest comes from the new opportunities offered by micro- and nanotechnologies. While materials known as zeolites naturally include a random pore network, the new technologies allow the fabrication of well-defined nanochannel networks (cf. P. Abgrall et al., "Nanofluidic Devices and Their Applications", Analvtical Chemistrv 2008 , vol. 80, pp. 2326-2341).
  • An important parameter of a nanochannel is its aspect ratio (AR) between the height and width of its section.
  • Many nanofluidic devices are based on flat or low AR nanochannels. Square nanochannels have AR close to 1.
  • Nanochannel patterns can occur in two types of networks, called 1 D (one-dimensional, when there are only connections between nanochannels and deposits) and 2D (two-dimensional, including connections between the nano-channels themselves).
  • 1 D one-dimensional, when there are only connections between nanochannels and deposits
  • 2D two-dimensional, including connections between the nano-channels themselves.
  • nanochannel manufacturing techniques suffer from difficulties in the precise definition / drawing of the pattern, and / or the lack of independent control of the height and / or the width of the channel .
  • the insulating substrate is glass, silicon or a polyimide (eg a Kapton® polyimide film manufactured by DuPont), with glass being preferred.
  • the metal electrode layer is made of nickel, silver or chrome, with nickel being preferred. Nickel can be deposited on glass by physical vapor deposition (PVD). The height of the metal electrode layer is directly related to the salient characteristic of the master, and consequently with the height of the nanochannel (10-200 nm can be easily reached).
  • photoresist a layer of photosensitive material (referred to as photoresist in the following) on the metal electrode layer.
  • a photoresist well known to those skilled in the art, it is a light sensitive material and used in various industrial processes, such as photolithography and photo-recording, to form a patterned coating on a surface.
  • the photoresist is a positive photoresist, ie of the type in which the portion of the photoresist that is exposed to the light is soluble to the developer, and the portion of the photoresist that is not exposed remains insoluble to the developer.
  • the photoresist can be deposited by spin-coating, following the recommended procedure for the photoresist in question.
  • the pattern mask is directly related to the final two-dimensional arrangement of the nanochannels.
  • the start-up is carried out by electrooxidation, i.e. by electrochemical or potentiostatic start-up.
  • the start-up is carried out by chemical attack, for example by immersion in a solution of nitric acid, which is especially suitable when the metal electrode layer is made of nickel.
  • the electrochemical start-up implies a counter-electrode (eg a platinum sheet or wire), and a reference electrode with respect to which the potential applied to the sample refers (eg a silver-chloride reference electrode of silver, or one of calomelanos).
  • (v) Fill the ditches with a metal by electrodeposition.
  • the metal used to fill the ditches is palladium, platinum, gold, cadmium or bismuth, with palladium being preferred.
  • the material Castable is a prepolymer that forms a polymer in situ.
  • the polymer can be formed in situ from a mixture of prepolymer and catalyst, with PDMS being a preferred polymer.
  • a 10: 1 weight ratio of PDMS prepolymer to catalyst is preferred.
  • the formation of air bubbles is avoided, eg by vacuum treatment.
  • the surface of the master is previously coated with a non-stick layer to facilitate the separation step (viii).
  • a preferred nonstick is trichloroperfluorooctylsilane, which is deposited as a monolayer by gas phase deposition ("gas-phase deposition").
  • the flat covering part is made of glass, silicon, PDMS or a thermoplastic, the glass being preferred.
  • the molded part is made of PDMS, and the flat covering part is another molded part of PDMS, both parts having their respective molded surfaces facing each other to form multidimensional nanochannels.
  • PDMS can be sealed with itself, or with other surfaces such as glass, reversibly or irreversibly, and without distortion of the channels. It is preferable to join the PDMS with the glass irreversibly, since this provides more consistent yields, reproducible results, a higher success rate and a lower probability of leakage during handling.
  • the molded surface of the molded part made of PDMS and the flat covering part are glued with the aid of an oxygen plasma. This treatment generates silanol groups on the surface of the PDMS by oxidation of methyl groups.
  • the oxidized surface PDMS can bind itself, glass, silicon or other thermoplastics.
  • the atomic force microscopy (AFM) for the characterization of the substrates.
  • the manufacturing steps of the masters with salient pattern that are desired, illustrated in Example 1 have the possibility of creating patterns of nanostructured characteristics through traditional UV photolithography techniques in several possible substrates, such as silicon oxide, glass or polyimide surfaces (eg DuPont Kapton® polyimide film).
  • the nanostructure of the master with protruding pattern can be made of various materials, such as gold, palladium or platinum, and with a high and independent control of its width (from 20 to 1,000 nm) and its height (from 10 to 200 nm) .
  • palladium has been used as metal, but other metals can also be used, since only the shape of the nanostructure matters and not the material from which it is made.
  • the process of the present invention makes it possible to manufacture nanochannels with a well defined pattern is an advantageous feature that opens up a wide range of applications. For example, using a specific pattern mask with a spiral pattern, it is possible to manufacture a single channel of an extraordinarily large length, over a very small area, thus minimizing the total size of the device. This configuration is highly desired eg in micrometric or nanometric chromatographs.
  • nanochannels presents a behavior similar to electronic functions (eg rectification, field-effect or actions of bipolar transistor)
  • electronic functions eg rectification, field-effect or actions of bipolar transistor
  • nanochannels so far only very simple architectures have been studied, due to the difficulties of obtaining complex nanochannel circuits.
  • the process of the present invention is very suitable for manufacturing real circuits for the so-called “nanofluidic computers", due to their ability to create practically all the desired nanochannel circuits.
  • the ability to manufacture nanochannels with controllable and independent dimensions is another advantageous feature of the present invention.
  • FIG. 1 is a 3D view of an atomic force microscopy (AFM) image of a master with an outgoing pattern made of palladium, used as a template for the preparation of nanochannels according to the present invention.
  • AFM atomic force microscopy
  • FIG. 3 is a 3D view of an AFM image of a sample after the transfer of the pattern to PDMS, illustrating an empty ditch.
  • FIG. 4 is a zenith AFM image of a part of the sample of FIG. 3, illustrating the dimensions of an empty ditch.
  • Example 1 Manufacture of a master with outgoing pattern
  • nanowires As insulating substrates glass plates were used for microscopy. They were scrupulously washed with strong oxidizing agents, such as piranha solution or Nochromix®, for at least 1 hour.
  • the nickel-coated glass samples were coated with a positive photoresist layer by spin-coating, following the standard procedure recommended for the photoresist.
  • a positive photoresist layer by spin-coating, following the standard procedure recommended for the photoresist.
  • Shipley S1808 positive photoresist was used, at a speed of 2500 rpm for 40 s. This photoresist layer was then cured at 90 0 C gently for 30 min to produce a photoresist layer thickness of about 500 nm.
  • the formation of the ditches could be carried out by dissolving the metal electrode by chemical attack (“etching")
  • etching chemical attack
  • the starting of the nickel layer was carried out electrochemically or potentiostatically in a single compartment cell with three electrodes, with a solution 0.1 M of KCI and 0.1 ml_ of concentrated HCI (for 50 mL of solution).
  • the nickel layer was dissolved, starting with the most exposed areas, and, after these were dissolved, the nickel layer that resided under the photoresist layer continued its dissolution, thus creating a ditch.
  • this ditch was filled by electrodeposition of Pd, using the following electrochemical conditions: a single compartment cell with three electrodes, and a potentiostat to apply to the sample the appropriate potential to selectively electrodeposite the desired metal; Pd was deposited from a 2 mM solution of PdCI 2 and 0.1 M of KCI, applying 0.2 V to the sample with respect to a silver-silver chloride reference electrode.
  • the photoresist layer was removed by washing the samples with acetone, ethanol and ultrapure water, respectively. Finally, the sample was dried with a nitrogen jet. The remaining nickel layer was removed by immersing the sample in diluted HNO 3 , leaving the electrodeposited palladium with the desired shape to be used as a master for the manufacture of nanochannels.
  • the nanometric characteristics had the height of the initial film thickness, the width proportional to the electrodeposition time, and the pattern given by the mask.
  • Example 2 Transfer to PDMS of the master pattern characteristics
  • a self-assembled trichloroperfluorooctylsilane monolayer (from Aldrich) was applied first over the Ia Master surface with protruding pattern, as a non-stick layer.
  • This monolayer was formed by gas phase deposition by placing the samples and a glass plate with a drop of this silane in a desiccator, and vacuuming for 30 min. To achieve a uniform and densely compact monolayer of fluorinated hydrocarbon with high mechanical resistance, the sample was placed in an oven for 1 h at 80 ° C.
  • a mixture with a ratio of 10: 1 weight / weight of PDMS prepolymer and its catalyst was scrupulously mixed for 5 minutes in a single-use container. After mixing, the air bubbles were removed by placing the single-use container under vacuum conditions for 30 min.
  • Example 1 The previously fabricated master pattern of Example 1 was placed in a Petri dish, and then the PDMS mixture free of air bubbles was turned over the master, paying attention to avoid trapping any air bubble around the master. To ensure that the PDMS replica was flat, the whole set was placed in a flat place for 1 day. Finally, to solidify and completely polymerize / cure the PDMS, the samples were placed in an oven for 1 h at 80 ° C.
  • a scalpel was used to separate the PDMS polymer from the master. Thanks to the non-stick monolayer previously used, and favored by the elasticity of the PDMS, the separation of the PDMS from the rigid master was carried out without damaging any of the parts, and thus they could be used many times.
  • An AFM analysis showed that the nanometric characteristics of the master with an outgoing pattern had been correctly transferred to the molded part of PDMS.
  • Example 3 Joining a molded part of PDMS to a flat glass covering part
  • extremely clean glass plates were used as a flat covering part. Glass plates were washed with 95% ethanol in an ultrasonic bath for 30 min, then with ultra pure water, and then dried in a laminar flow hood. After the separation of the master, the faces with features of the molded part made of PDMS and the glass plate were placed in an oxygen plasma cleaner, with the faces facing up. The vacuum was connected until a pressure of 200 mTor was reached. At this time, the plasma was connected for 1-2 minutes at low power ( ⁇ 100 W).
  • the chamber was opened and the two surfaces (the molded part and the flat covering part) were quickly contacted (in less than 1 min) after the oxidation, to avoid the reconstruction in the PDMS air rusty. Then, the devices were ready to be filled with the appropriate solutions for the desired experiments or applications. Water-filled devices could be stored in a humidified incubator for 2 or 3 days before use. The contact with water or polar organic solvents maintained the hydrophilic nature of the surface indefinitely.
  • FIG. 1 provides a topographic 3D view of a master with an outgoing palladium pattern.
  • FIG. 2 presents a profile to illustrate the form of the section and the nanometric dimensions of the structure of the pattern in the glass substrate. To ensure uniformity in height and width along the entire length with pattern, many random AFM profiles were taken along their axes, obtaining an average value.
  • FIG. 3 is a 3D view of an AFM image of a PDMS sample after the transfer step, which demonstrates the existence of empty trenches that reproduce the nanometric characteristics of the master with an outgoing pattern.
  • FIG 4. is an overhead view of a channel on an enlarged scale.
  • a profile of a molded part of PDMS is represented in FIG. 5, showing the nanometric depth of the trench and its rectangular shape.
  • the following instrumental parameters were set: starting amplitude ("setpoint amplitude" of 1.3 V; integral gain of 1; proportional gain of 1 and “drive amplitude" of 125 mV. As is evident for the experts in the field, all these parameters can be changed depending on the probe used, the sample, the microscope, etc.
  • the parameters for the characterization of the master may not be the same as those used for the characterization of the PDMS, because to the differences in the mechanical properties of each sample.
  • All AFM images were processed with the MFP Igor Pro 5.05A software provided by Asylum Research.

Abstract

It comprises the following steps: (i) Depositing on glass a nickel electrode layer; (ii) depositing a layer of photosensitive material (photoresist) on the electrode layer; (iii) conferring a pattern on the photoresist having photolithographic form, covering it with a pattern mask and exposing it to light; (iv) lifting off the exposed portion of the nickel layer, forming in this manner a pattern of grooves; (v) filling such grooves with palladium by electrodeposition; (vi) removing the residual layer of photoresist and the residual layer of nickel, obtaining in this manner a master having a projecting pattern; (vii) transferring the pattern of the master to polydimethylsiloxane to obtain a moulded part; (viii) separating the moulded part and (ix) joining it to the planar covering part to cover the empty grooves. It is useful for manufacturing nanochannels having complicated and well-defined patterns of independently-controlled width and height.

Description

Procedimiento de fabricación de nanocanales Nanochannel Manufacturing Procedure
La presente invención está relacionada con el campo de Ia tecnología conocido como nanofluídica. Se refiere específicamente a Ia fabricación de nanocanales, i.e. canales con al menos una dimensión en Ia nanoescala, los cuales son usados en este campo de Ia tecnología.The present invention is related to the field of technology known as nanofluidics. It refers specifically to the manufacture of nanochannels, i.e. channels with at least one dimension in the nanoscale, which are used in this field of technology.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
La nanofluídica ha surgido como una disciplina de ciencia y ingeniería, en donde un fluido fluye en estructuras con al menos una dimensión transversal próxima al rango nanométrico. Aunque los fenómenos de transporte de fluidos en Ia nanoescala ya han sido estudiados en el pasado, Ia terminología de Ia nanofluídica ha estado apareciendo y haciéndose popular sólo en los últimos años. Este creciente interés proviene de las nuevas oportunidades ofrecidas por las micro- y nanotecnologías. Mientras que materiales conocidos como las zeolitas incluyen de forma natural una red aleatoria de poros, las nuevas tecnologías permiten Ia fabrication de redes de nanocanales bien definidas (cf. P. Abgrall et al., "Nanofluidic Devices and Their Applications", Analvtical Chemistrv 2008, vol. 80, pp. 2326-2341 ).Nanofluidics has emerged as a discipline of science and engineering, where a fluid flows in structures with at least one transverse dimension close to the nanometric range. Although the phenomena of fluid transport in the nanoscale have already been studied in the past, the nanofluidic terminology has been appearing and becoming popular only in recent years. This growing interest comes from the new opportunities offered by micro- and nanotechnologies. While materials known as zeolites naturally include a random pore network, the new technologies allow the fabrication of well-defined nanochannel networks (cf. P. Abgrall et al., "Nanofluidic Devices and Their Applications", Analvtical Chemistrv 2008 , vol. 80, pp. 2326-2341).
Los nanocanales (también llamados canales de nanofluídica) son canales con al menos una dimensión en Ia nanoescala, definiéndose ésta usualmente como el rango comprendido entre 1 y 100 nm, mientras que el término submicrométrico se usa para objetos en el rango comprendido entre 100 nm y 1.000 nm ( = 1 μm). Un parámetro importante de un nanocanal es su relación de aspecto (AR, "aspect ratio") entre Ia altura y Ia anchura de su sección. Muchos dispositivos de nanofluídica están basados en nanocanales planos o de AR bajas. Los nanocanales cuadrados tienen AR próximas a 1. Los patrones de nanocanales pueden presentarse en dos tipos de redes, llamadas 1 D (unidimensionales, cuando hay sólo conexiones entre nanocanales y depósitos) y 2D (bidimensionales, incluyendo además conexiones entre los propios nanocanales). El artículo de P. Abgrall et al. citado anteriormente proporciona una revisión actualizada de las técnicas de preparación usadas para Ia fabricación de nanocanales. Para el caso más simple, i.e. el de nanocanales planos, se describen varias técnicas, siendo clasificadas como técnicas de base enlazada ("bonding-based techniques") o como técnicas sacrificiales. Para redes 2D y 3D de nanocanales cuadrados, se conocen varias de las llamadas técnicas de arriba-a-abajo ("top-down") de formación de patrones nanométricos, siendo clasificadas entre fotolitografías, técnicas de patrones en serie y técnicas de replicación. Este documento menciona que Ia replicación por moldeado ("casting") de poli(dimetilsiloxano) (referido como "PDMS" en Io que sigue) se usa ampliamente, obteniéndose canales con secciones tan pequeñas como 200 nm por 200 nm, pero que estas estructuras adolecen de colapsos a medida que las dimensiones y las ARs disminuyen.The nanochannels (also called nanofluidic channels) are channels with at least one dimension in the nanoscale, this usually being defined as the range between 1 and 100 nm, while the submicrometer term is used for objects in the range between 100 nm and 1,000 nm (= 1 μm). An important parameter of a nanochannel is its aspect ratio (AR) between the height and width of its section. Many nanofluidic devices are based on flat or low AR nanochannels. Square nanochannels have AR close to 1. Nanochannel patterns can occur in two types of networks, called 1 D (one-dimensional, when there are only connections between nanochannels and deposits) and 2D (two-dimensional, including connections between the nano-channels themselves). The article by P. Abgrall et al. cited above provides an updated review of the preparation techniques used for the manufacture of nanochannels. For the simplest case, ie that of flat nanochannels, several techniques are described, being classified as bond-based techniques ("bonding-based techniques") or as sacrificial techniques. For 2D and 3D networks of square nanochannels, several of the so-called top-down techniques of nanometric pattern formation are known, being classified among photolithography, serial pattern techniques and replication techniques. This document mentions that the replication by molding ("casting") of poly (dimethylsiloxane) (referred to as "PDMS" in the following) is widely used, obtaining channels with sections as small as 200 nm by 200 nm, but that these structures They suffer from collapses as dimensions and ARs decrease.
A parte del riesgo de colapso y del coste relativamente elevado, varias técnicas de fabricación de nanocanales adolecen de las dificultades en Ia definición/dibujo preciso del patrón, y/o de Ia falta de control independiente de Ia altura y/o Ia anchura del canal. Así pues, es deseable disponer de nuevos procedimientos de fabricación de nanocanales, tanto planos como cuadrados, que permitan pequeñas dimensiones y alta calidad, a un coste relativamente bajo.Apart from the risk of collapse and the relatively high cost, several nanochannel manufacturing techniques suffer from difficulties in the precise definition / drawing of the pattern, and / or the lack of independent control of the height and / or the width of the channel . Thus, it is desirable to have new nanochannel manufacturing processes, both flat and square, that allow for small dimensions and high quality, at a relatively low cost.
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Según Ia presente invención se proporciona un procedimiento (método) para Ia fabricación (manufactura, preparación) de nanocanales, que comprende los siguientes pasos (i)-(ix):According to the present invention, there is provided a method (method) for the manufacture (manufacture, preparation) of nanochannels, comprising the following steps (i) - (ix):
(i) Depositar una capa de electrodo metálico sobre un sustrato aislante. En realizaciones particulares el sustrato aislante es vidrio, silicio o una poliimida (p.ej. una película de poliimida Kapton® fabricada por DuPont), prefiriéndose el vidrio. En realizaciones particulares Ia capa de electrodo metálico está hecha de níquel, plata o cromo, prefiriéndose el níquel. El níquel puede depositarse sobre vidrio mediante deposición física de vapor (PVD, "physical vapor deposition"). La altura de Ia capa del electrodo metálico está directamente relacionada con Ia característica saliente del máster, y consecuentemente con Ia altura del nanocanal (pudiéndose alcanzar fácilmente 10-200 nm).(i) Deposit a layer of metallic electrode on an insulating substrate. In particular embodiments the insulating substrate is glass, silicon or a polyimide (eg a Kapton® polyimide film manufactured by DuPont), with glass being preferred. In particular embodiments, the metal electrode layer is made of nickel, silver or chrome, with nickel being preferred. Nickel can be deposited on glass by physical vapor deposition (PVD). The height of the metal electrode layer is directly related to the salient characteristic of the master, and consequently with the height of the nanochannel (10-200 nm can be easily reached).
(ii) Depositar una capa de material fotosensible (referido como photoresist en Io que sigue) sobre Ia capa de electrodo metálico. Un photoresist, bien conocido por los expertos en Ia materia, es un material sensible a Ia luz y usado en varios procesos industriales, tales como fotolitografía y fotograbación, para formar un recubrimiento con patrón sobre una superficie. En una realización particular el photoresist es un photoresist positivo, i.e. del tipo en el que Ia porción del photoresist que se expone a Ia luz resulta soluble al revelador, y Ia porción del photoresist que no se expone permanece insoluble al revelador. El photoresist puede depositarse mediante recubrimiento por giro ("spin-coating"), siguiendo el procedimiento recomendado para el photoresist en cuestión.(ii) Deposit a layer of photosensitive material (referred to as photoresist in the following) on the metal electrode layer. A photoresist, well known to those skilled in the art, it is a light sensitive material and used in various industrial processes, such as photolithography and photo-recording, to form a patterned coating on a surface. In a particular embodiment the photoresist is a positive photoresist, ie of the type in which the portion of the photoresist that is exposed to the light is soluble to the developer, and the portion of the photoresist that is not exposed remains insoluble to the developer. The photoresist can be deposited by spin-coating, following the recommended procedure for the photoresist in question.
(iii) Fotolitográficamente conferir un patrón a Ia capa de photoresist, cubriéndola con una máscara de patrón y exponiéndola a Ia luz, preferentemente a Ia luz ultravioleta. La máscara de patrón está directamente relacionada con Ia disposición bidimensional final de los nanocanales.(iii) Photolithographically confer a pattern to the photoresist layer, covering it with a pattern mask and exposing it to light, preferably to ultraviolet light. The pattern mask is directly related to the final two-dimensional arrangement of the nanochannels.
(iv) Arrancar Ia porción expuesta de Ia capa de electrodo metálico, formando así un patrón de zanjas. En una realización particular el arrancamiento se realiza por electrooxidación, i.e. por arrancamiento electroquímico o potencioestático. En otra realización particular el arrancamiento se realiza por ataque químico, p.ej. por inmersión en una solución de ácido nítrico, el cual es especialmente adecuado cuando Ia capa de electrodo metálico está hecha de níquel. El arrancamiento electroquímico implica un contra-electrodo (p.ej. una lámina o alambre de platino), y un electrodo de referencia respecto al que se refiere el potential aplicado a Ia muestra (p.ej. un electrodo de referencia de plata-cloruro de plata, o uno de calomelanos).(iv) Start the exposed portion of the metal electrode layer, thus forming a pattern of trenches. In a particular embodiment, the start-up is carried out by electrooxidation, i.e. by electrochemical or potentiostatic start-up. In another particular embodiment, the start-up is carried out by chemical attack, for example by immersion in a solution of nitric acid, which is especially suitable when the metal electrode layer is made of nickel. The electrochemical start-up implies a counter-electrode (eg a platinum sheet or wire), and a reference electrode with respect to which the potential applied to the sample refers (eg a silver-chloride reference electrode of silver, or one of calomelanos).
(v) Rellenar las zanjas con un metal mediante electrodeposición. En realizaciones particulares el metal usado para rellenar las zanjas es paladio, platino, oro, cadmio o bismuto, prefiriéndose el paladio.(v) Fill the ditches with a metal by electrodeposition. In particular embodiments the metal used to fill the ditches is palladium, platinum, gold, cadmium or bismuth, with palladium being preferred.
(vi) Quitar Ia capa restante de photoresist y Ia capa restante de electrodo metálico, obteniéndose así un máster con patrón saliente. Se seleccionan las condiciones según Ia naturaleza del photoresist y Ia capa de electrodo metálico, tal como se conoce en Ia técnica.(vi) Remove the remaining photoresist layer and the remaining metal electrode layer, thus obtaining a master with an outgoing pattern. The conditions are selected according to the nature of the photoresist and the metal electrode layer, as is known in the art.
(vii) Transferir el patrón del máster a un material moldeable, obteniendo así una parte moldeada ("cast moiety"). En realizaciones particulares el material moldeable es un prepolímero que forma un polímero in situ. El polímero puede formarse in situ a partir de una mezcla de prepolímero y catalizador, siendo el PDMS un polímero preferido. Se prefiere una relación 10:1 en peso de prepolímero de PDMS a catalizador. Preferentemente se evita Ia formación de burbujas de aire, p.ej. por tratamiento al vacío. En una realización particular Ia superficie del máster se recubre previamente con una capa antiadherente para facilitar el paso de separación (viii). Un antiadherente preferido es tricloroperfluorooctilsilano, que se deposita como monocapa mediante deposición en fase gas ("gas-phase deposition").(vii) Transfer the master's pattern to a moldable material, thus obtaining a molded part ("cast moiety"). In particular embodiments the material Castable is a prepolymer that forms a polymer in situ. The polymer can be formed in situ from a mixture of prepolymer and catalyst, with PDMS being a preferred polymer. A 10: 1 weight ratio of PDMS prepolymer to catalyst is preferred. Preferably, the formation of air bubbles is avoided, eg by vacuum treatment. In a particular embodiment, the surface of the master is previously coated with a non-stick layer to facilitate the separation step (viii). A preferred nonstick is trichloroperfluorooctylsilane, which is deposited as a monolayer by gas phase deposition ("gas-phase deposition").
(viii) Separar del máster Ia parte moldeada, donde esta parte moldeada comprende zanjas vacías. La separación mediante medios mecánicos se favorece cuando Ia superficie del máster estaba previamente recubierta con una capa antiadherente.(viii) Separate the molded part from the master, where this molded part comprises empty ditches. The separation by mechanical means is favored when the surface of the master was previously coated with a non-stick layer.
(ix) Unir Ia parte moldeada a Ia parte cubridora ("capping moiety") plana que tapa las zanjas vacías, obteniéndose así los nanocanales correspondientes a Ia máscara de patrón. En una realización particular Ia parte cubridora plana está hecha de vidrio, silicio, PDMS o de un termoplástico, prefiriéndose el vidrio. En otra realización particular Ia parte moldeada está hecha de PDMS, y Ia parte cubridora plana es otra parte moldeada de PDMS, teniendo ambas partes sus respectivas superficies moldeadas enfrentadas una a otra para formar nanocanales multidimensionales.(ix) Join the molded part to the flat covering part ("capping moiety") that covers the empty ditches, thus obtaining the nanochannels corresponding to the pattern mask. In a particular embodiment the flat covering part is made of glass, silicon, PDMS or a thermoplastic, the glass being preferred. In another particular embodiment, the molded part is made of PDMS, and the flat covering part is another molded part of PDMS, both parts having their respective molded surfaces facing each other to form multidimensional nanochannels.
Una ventaja del PDMS es que puede sellarse con él mismo, o con otras superficies como vidrio, reversible o irreversiblemente, y sin distorsión de los canales. Es preferible unir el PDMS con el vidrio irreversiblemente, ya que ello proporciona rendimientos más consistentes, resultados reproducibles, mayor tasa de éxito y menor probabilidad de fugas durante su manipulación. En una realización preferida, Ia superficie moldeada de Ia parte moldeada hecha de PDMS y Ia parte cubridora plana se pegan con Ia ayuda de un plasma de oxígeno. Este tratamiento genera grupos silanol en Ia superficie del PDMS por oxidación de grupos metilo. El PDMS con superficie oxidada puede unirse a sí mismo, al vidrio, al silicio o a otros termoplásticos.An advantage of PDMS is that it can be sealed with itself, or with other surfaces such as glass, reversibly or irreversibly, and without distortion of the channels. It is preferable to join the PDMS with the glass irreversibly, since this provides more consistent yields, reproducible results, a higher success rate and a lower probability of leakage during handling. In a preferred embodiment, the molded surface of the molded part made of PDMS and the flat covering part are glued with the aid of an oxygen plasma. This treatment generates silanol groups on the surface of the PDMS by oxidation of methyl groups. The oxidized surface PDMS can bind itself, glass, silicon or other thermoplastics.
Debido a las dimensiones de las características del máster con patrón saliente y de los nanocanales creados en Ia réplica de PDMS, se usa normalmente Ia microscopía de fuerzas atómicas (AFM, "atomic forcé microscopy") para Ia caracterización de los sustratos.Due to the dimensions of the characteristics of the master with outgoing pattern and of the nanochannels created in the PDMS replica, it is used Normally, the atomic force microscopy (AFM) for the characterization of the substrates.
El método de fabricación de nanocanales de Ia presente invención tiene varias ventajas respecto a los conocidos en Ia técnica. Así, los pasos de fabricación de los másters con patrón saliente que se deseen, ilustrado en el Ejemplo 1 , tiene Ia posibilidad de crear patrones de características nanoestructurados a través de las técnicas de fotolitografía UV tradicionales en varios posibles sustratos, como óxido de silicio, vidrio o superficies de poliimida (p.ej. film de poliimida Kapton® de DuPont). Además, Ia nanoestructura del máster con patrón saliente puede hacerse de varios materiales, como oro, paladio o platino, y con un elevado e independiente control de su anchura (desde 20 a 1.000 nm) y de su altura (desde 10 a 200 nm). En los ejemplos que acompañan, el paladio se ha usado como metal, pero también se pueden usar otros metales, ya que sólo importa Ia forma de Ia nanoestructura y no el material del que está hecha.The method of manufacturing nanochannels of the present invention has several advantages over those known in the art. Thus, the manufacturing steps of the masters with salient pattern that are desired, illustrated in Example 1, have the possibility of creating patterns of nanostructured characteristics through traditional UV photolithography techniques in several possible substrates, such as silicon oxide, glass or polyimide surfaces (eg DuPont Kapton® polyimide film). In addition, the nanostructure of the master with protruding pattern can be made of various materials, such as gold, palladium or platinum, and with a high and independent control of its width (from 20 to 1,000 nm) and its height (from 10 to 200 nm) . In the accompanying examples, palladium has been used as metal, but other metals can also be used, since only the shape of the nanostructure matters and not the material from which it is made.
El hecho de que el procedimiento de Ia presente invención permite fabricar nanocanales con un patrón bien definido es una característica ventajosa que abre un amplio abanico de aplicaciones. Por ejemplo, usando una máscara de patrón específica con un patrón en espiral, es posible fabricar un único canal de una longitud extraordinariamente grande, sobre una área muy pequeña, minimizando así el tamaño total del dispositivo. Esta configuración es altamente deseada p.ej. en cromatógrafos micrométricos o nanométricos.The fact that the process of the present invention makes it possible to manufacture nanochannels with a well defined pattern is an advantageous feature that opens up a wide range of applications. For example, using a specific pattern mask with a spiral pattern, it is possible to manufacture a single channel of an extraordinarily large length, over a very small area, thus minimizing the total size of the device. This configuration is highly desired eg in micrometric or nanometric chromatographs.
De Ia observación de que el flujo de iones a través de nanocanales presenta un comportamiento similar a funciones electrónicas (p.ej. rectificación, efecto- campo o acciones de transistor bipolar), se prevé una próxima generación de dispositivos electrónicos en Io que se llama "computación nanofluídica". Sin embargo, hasta ahora solo se han estudiado arquitecturas muy simples, debido a las dificultades de obtener circuitos complejos de nanocanales. El procedimiento de Ia presente invención es muy adecuado para fabricar circuitos reales para los llamados "computadores nanofluídicos", debido a su capacidad para crear prácticamente todos los circuitos de nanocanal que se deseen. La capacidad para fabricar nanocanales con dimensiones controlables e independientes es otra de las características ventajosas de Ia presente invención. Varias aplicaciones analíticas, como separaciones analíticas y determinación de biomoléculas (proteínas, ADN ...), se mejoran basándose en Ia similitud de tamaños entre las biomoléculas y los nanocanales. Por ejemplo, en los chips de screening de ADN, las moléculas de ADN se pasan a través de los nanocanales, haciendo posible ser analizadas y determinar su secuencia de bases. En estos casos, se requiere un elevado control de las dimensiones del nanocanal.From the observation that the flow of ions through nanochannels presents a behavior similar to electronic functions (eg rectification, field-effect or actions of bipolar transistor), a next generation of electronic devices is expected in what is called "nanofluidic computing". However, so far only very simple architectures have been studied, due to the difficulties of obtaining complex nanochannel circuits. The process of the present invention is very suitable for manufacturing real circuits for the so-called "nanofluidic computers", due to their ability to create practically all the desired nanochannel circuits. The ability to manufacture nanochannels with controllable and independent dimensions is another advantageous feature of the present invention. Several analytical applications, such as analytical separations and determination of biomolecules (proteins, DNA ...), are improved based on the similarity of sizes between the biomolecules and the nanochannels. For example, in DNA screening chips, the DNA molecules are passed through the nanochannels, making it possible to be analyzed and determine their base sequence. In these cases, high control of the nanochannel dimensions is required.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención. Además, Ia presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas.Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein.
BREVE DESCRIPCIÓN DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS
La FIG. 1 es una visión 3D de una imagen de microscopía de fuerzas atómicas (AFM, "atomic forcé microcopy") de un máster con patrón saliente hecho de paladio, usado como molde para Ia preparación de nanocanales según Ia presente invención.FIG. 1 is a 3D view of an atomic force microscopy (AFM) image of a master with an outgoing pattern made of palladium, used as a template for the preparation of nanochannels according to the present invention.
La FIG. 2 es el perfil de una sección del máster de Ia FIG. 1 , ilustrando su forma y dimesiones (H = altura).FIG. 2 is the profile of a section of the master of FIG. 1, illustrating its shape and dimensions (H = height).
La FIG. 3 es una visión 3D de una imagen AFM de una muestra después del paso de transferencia del patrón a PDMS, ilustrando una zanja vacía.FIG. 3 is a 3D view of an AFM image of a sample after the transfer of the pattern to PDMS, illustrating an empty ditch.
La FIG. 4 es una imagen AFM cenital de una parte de Ia muestra de Ia FIG. 3, ilustrando las dimensiones de una zanja vacía. La FIG. 5 es el perfil de una sección de Ia muestra de Ia FIG. 3, ilustrando su forma y dimensiones (H = altura).FIG. 4 is a zenith AFM image of a part of the sample of FIG. 3, illustrating the dimensions of an empty ditch. FIG. 5 is the profile of a section of the sample of FIG. 3, illustrating its shape and dimensions (H = height).
DESCRIPCIÓN DETALLADA DE REALIZACIONES PARTICULARESDETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS
Ejemplo 1 : Fabricación de un máster con patrón salienteExample 1: Manufacture of a master with outgoing pattern
La fabricación de un máster con patrón saliente fue realizada siguiendo un procedimiento análogo a uno conocido en Ia técnica para Ia preparación de nanoalambres ("nanowires") (cf. WO 2008/024783 A2, ó C. Xiang et al., "Lithographically Pattemed Nanowire Electrodeposition: A Method for Patterning Electrically Continuous Metal Nanowires on Dielectrics", ACS Nano 2008, vol. 2, pp. 1939-1949). Como sustratos aislantes se usaron platinas de vidrio para microscopio. Se lavaron escrupulosamente con agentes oxidantes fuertes, como solución piraña o Nochromix®, durante al menos 1 hora. Después fueron escrupulosamente lavadas con agua ultra pura para asegurar una completa eliminación de los agentes oxidantes del paso previo de limpieza, y finalmente fueron secadas en un chorro de nitrógeno de elevada pureza. Después un film de níquel fue depositado mediante deposición física de vapor (PVD, "physical vapor deposition") sobre estas platinas de vidrio limpias, usando un evaporador a velocidades de 0.5-1.5 A/s. Este film actuó como una capa de electrodo metálico, y su grosor está directamente relacionado con Ia altura de Ia característica saliente final del máster, y consecuentemente, con Ia profundidad o altura del nanocanal. Se sintetizaron características salientes satisfactoriamente, usando films de níquel de grosores entre 10 y 200 nm.The manufacture of a master with an outgoing pattern was carried out following a procedure analogous to one known in the art for the preparation of nanowires ("nanowires") (cf. WO 2008/024783 A2, or C. Xiang et al., "Lithographically Pattemed Nanowire Electrodeposition: A Method for Patterning Electrically Continuous Metal Nanowires on Dielectrics ", ACS Nano 2008, vol. 2, pp. 1939-1949). As insulating substrates glass plates were used for microscopy. They were scrupulously washed with strong oxidizing agents, such as piranha solution or Nochromix®, for at least 1 hour. They were then scrupulously washed with ultra pure water to ensure complete removal of the oxidizing agents from the previous cleaning step, and finally they were dried in a high purity nitrogen stream. Then a nickel film was deposited by physical vapor deposition (PVD) on these clean glass plates, using an evaporator at speeds of 0.5-1.5 A / s. This film acted as a layer of metallic electrode, and its thickness is directly related to the height of the final projecting characteristic of the master, and consequently, to the depth or height of the nanochannel. Outgoing characteristics were synthesized satisfactorily, using nickel films of thicknesses between 10 and 200 nm.
Las muestras de vidrio cubiertas de níquel fueron recubiertas con una capa de photoresist positiva mediante spin-coating, siguiendo el procedimiento estándar recomendado para el photoresist. En el ejemplo presente se usó photoresist positiva Shipley S1808, a una velocidad de 2500 rpm durante 40 s. Esta capa de photoresist fue después curada suavemente a 90 0C durante 30 min para producir una grosor de capa de photoresist de aproximadamente 500 nm.The nickel-coated glass samples were coated with a positive photoresist layer by spin-coating, following the standard procedure recommended for the photoresist. In the present example, Shipley S1808 positive photoresist was used, at a speed of 2500 rpm for 40 s. This photoresist layer was then cured at 90 0 C gently for 30 min to produce a photoresist layer thickness of about 500 nm.
Después de enfriar a temperatura ambiente, se usó litografía estándar con una máscara de patrón para crear un patrón. Un haz de luz UV pasó a través de una máscara de patrón transparente en contacto con Ia muestra recubierta de photoresist apretada con una placa de cuarzo (el tiempo y Ia intensidad de luz y Ia longitud de onda pueden cambiar según las características del photoresist usado). Después de Ia exposición a Ia luz UV, Ia muestra se sumergió en una solución reveladora y limpiada con agua ultra pura. La muestra era una platina de vidrio con una capa de níquel evaporada de cierto grosor, recubierta por una capa de polímero con patrón mediante técnicas fotolitográficas. Unas partes de Ia capa de níquel estaban recubiertas (i.e. protegidas) por Ia capa de polímero, y otras partes estaban expuestas.After cooling to room temperature, standard lithography with a pattern mask was used to create a pattern. A beam of UV light passed through of a transparent pattern mask in contact with the photoresist coated sample tight with a quartz plate (time and light intensity and wavelength may change according to the characteristics of the photoresist used). After exposure to UV light, the sample was immersed in a developer solution and cleaned with ultra pure water. The sample was a glass plate with a layer of evaporated nickel of a certain thickness, covered by a polymer layer with pattern by photolithographic techniques. Some parts of the nickel layer were coated (ie protected) by the polymer layer, and other parts were exposed.
Aunque Ia formación de las zanjas pudo realizarse disolviendo el electrodo metálico por ataque químico ("etching"), en este ejemplo el arrancamiento de Ia capa de níquel fue realizado electroquímica o potencioestáticamente en una celda de un único compartimiento con tres electrodos, con una solución 0.1 M de KCI y 0.1 ml_ de HCI concentrado (para 50 mL de disolución). La capa de níquel fue disuelta, empezando por las áreas más expuestas, y, después de que éstas fueron disueltas, Ia capa de níquel que residía bajo Ia capa de photoresist continuó su disolución, creando así una zanja. Después esta zanja fue rellenada mediante electrodeposición de Pd, usando las siguientes condiciones electroquímicas: una celda de un único compartimiento con tres electrodos, y un potenciostato para aplicar a Ia muestra el potencial adequado para electrodepositar selectivamente el metal deseado; se depositó Pd desde una disolución 2 mM de PdCI2 y 0.1 M de KCI, aplicando 0.2 V a Ia muestra respecto a un electrodo de referencia plata- cloruro de plata.Although the formation of the ditches could be carried out by dissolving the metal electrode by chemical attack ("etching"), in this example the starting of the nickel layer was carried out electrochemically or potentiostatically in a single compartment cell with three electrodes, with a solution 0.1 M of KCI and 0.1 ml_ of concentrated HCI (for 50 mL of solution). The nickel layer was dissolved, starting with the most exposed areas, and, after these were dissolved, the nickel layer that resided under the photoresist layer continued its dissolution, thus creating a ditch. Then this ditch was filled by electrodeposition of Pd, using the following electrochemical conditions: a single compartment cell with three electrodes, and a potentiostat to apply to the sample the appropriate potential to selectively electrodeposite the desired metal; Pd was deposited from a 2 mM solution of PdCI 2 and 0.1 M of KCI, applying 0.2 V to the sample with respect to a silver-silver chloride reference electrode.
Subsiguientemente Ia capa de photoresist fue quitada lavando las muestras con acetona, etanol y agua ultra pura, respectivamente. Finalmente Ia muestra fue secada con un chorro de nitrógeno. La capa de níquel sobrante fue quitada sumergiendo Ia muestra en HNO3 diluido, dejando el paladio electrodepositado con Ia forma deseada para ser usado como máster para Ia fabricación de nanocanales. Las características nanométricos tenían Ia altura del grosor del film inicial, Ia anchura proporcional al tiempo de Ia electrodeposición, y el patrón dado por Ia máscara.Subsequently, the photoresist layer was removed by washing the samples with acetone, ethanol and ultrapure water, respectively. Finally, the sample was dried with a nitrogen jet. The remaining nickel layer was removed by immersing the sample in diluted HNO 3 , leaving the electrodeposited palladium with the desired shape to be used as a master for the manufacture of nanochannels. The nanometric characteristics had the height of the initial film thickness, the width proportional to the electrodeposition time, and the pattern given by the mask.
Ejemplo 2: Transferencia a PDMS de las características del patrón del máster Para mejorar Ia separación final entre el molde de PDMS y el máster con patrón saliente, y evitar cualquier desperfecto o enganche de las características nanométricos de Pd en el polímero, se aplicó en primer lugar una monocapa autoensamblada de tricloroperfluorooctilsilano (de Aldrich) encima de Ia superficie del máster con patrón saliente, como capa antiadherente. Esta monocapa se formó por deposición en fase gas situando las muestras y una platina de vidrio con una gota de este silano en un desecador, y haciendo vacío durante 30 min. Para conseguir una monocapa uniforme y densamente compacta del hidrocarburo fluorado con alta resistencia mecánica, Ia muestra se situó en un horno durante 1 h a 80 0C.Example 2: Transfer to PDMS of the master pattern characteristics In order to improve the final separation between the PDMS mold and the master with protruding pattern, and to avoid any damage or engagement of the nanometric characteristics of Pd in the polymer, a self-assembled trichloroperfluorooctylsilane monolayer (from Aldrich) was applied first over the Ia Master surface with protruding pattern, as a non-stick layer. This monolayer was formed by gas phase deposition by placing the samples and a glass plate with a drop of this silane in a desiccator, and vacuuming for 30 min. To achieve a uniform and densely compact monolayer of fluorinated hydrocarbon with high mechanical resistance, the sample was placed in an oven for 1 h at 80 ° C.
Una mezcla con relación de 10:1 peso/peso de prepolímero de PDMS y su catalizador fue escrupulosamente mezclada durante 5 minutos en un contenedor de un solo uso. Después del mezclado, las burbujas de aire fueron eliminadas situando el contenedor de un solo uso en condiciones de vacío durante 30 min.A mixture with a ratio of 10: 1 weight / weight of PDMS prepolymer and its catalyst was scrupulously mixed for 5 minutes in a single-use container. After mixing, the air bubbles were removed by placing the single-use container under vacuum conditions for 30 min.
El máster con patrón saliente previamente fabricado del Ejemplo 1 fue situado en un placa de Petri, y después Ia mezcla de PDMS libre de burbujas de aire fue volcada sobre el máster, prestando atención a evitar atrapar alguna burbuja de aire alrededor del máster. Para asegurarse de que Ia réplica de PDMS era llana, todo el conjunto fue situado en un sitio plano durante 1 día. Finalmente, para solidificar y polimerizar/curar completamente el PDMS, las muestras se situaron en un horno durante 1 h a 80 0C.The previously fabricated master pattern of Example 1 was placed in a Petri dish, and then the PDMS mixture free of air bubbles was turned over the master, paying attention to avoid trapping any air bubble around the master. To ensure that the PDMS replica was flat, the whole set was placed in a flat place for 1 day. Finally, to solidify and completely polymerize / cure the PDMS, the samples were placed in an oven for 1 h at 80 ° C.
Una vez el PDMS fue curado, un bisturí fue usado para separar el polímero PDMS del máster. Gracias a Ia monocapa antiadherente usada previamente, y favorecido por Ia elasticidad del PDMS, Ia separación del PDMS del máster rígido fue llevada a cabo sin dañar ninguna de las partes, y así pudieron ser usados muchas veces. Un análisis AFM mostró que las características nanométricos del máster con patrón saliente se habían transferido correctamente a Ia parte moldeada de PDMS.Once the PDMS was cured, a scalpel was used to separate the PDMS polymer from the master. Thanks to the non-stick monolayer previously used, and favored by the elasticity of the PDMS, the separation of the PDMS from the rigid master was carried out without damaging any of the parts, and thus they could be used many times. An AFM analysis showed that the nanometric characteristics of the master with an outgoing pattern had been correctly transferred to the molded part of PDMS.
Ejemplo 3: Unión de una parte moldeada de PDMS a una parte cubridora plana de vidrio Para formar los nanocanales, se usaron platinas de vidrio extremadamente limpias como parte cubridora plana. Se lavaron platinas de vidrio con etanol 95% en un baño de ultrasonidos durante 30 min, y después con agua ultra pura, y después se secaron en una campana de flujo laminar. Después de Ia separación del máster, las caras con características de Ia parte moldeada hecha de PDMS y Ia platina de vidrio se situaron en un limpiador por plasma de oxígeno, con las caras hacia arriba. Se conectó el vacío hasta llegar a una presión de 200 mTor. En este momento, se conectó el plasma durante 1-2 minutos a baja potencia (<100 W). Inmediatamente después de este tiempo, Ia cámara se abrió y se pusieron en contacto las dos superficies (Ia parte moldeada y Ia parte cubridora plana) rápidamente (en menos de 1 min) después de la oxidación, para evitar Ia reconstrucción en el aire del PDMS oxidado. Entonces, los dispositivos ya estaban a punto para ser rellenados con las soluciones adequadas para los experimentos o aplicaciones deseadas. Los dispositivos rellenados con agua podían ser almacenados en un incubador humidificado durante 2 o 3 días antes de su uso. El contacto con agua o disolventes orgánicos polares mantuvieron Ia naturaleza hidrofílica de Ia superficie indefinidamente.Example 3: Joining a molded part of PDMS to a flat glass covering part To form the nanochannels, extremely clean glass plates were used as a flat covering part. Glass plates were washed with 95% ethanol in an ultrasonic bath for 30 min, then with ultra pure water, and then dried in a laminar flow hood. After the separation of the master, the faces with features of the molded part made of PDMS and the glass plate were placed in an oxygen plasma cleaner, with the faces facing up. The vacuum was connected until a pressure of 200 mTor was reached. At this time, the plasma was connected for 1-2 minutes at low power (<100 W). Immediately after this time, the chamber was opened and the two surfaces (the molded part and the flat covering part) were quickly contacted (in less than 1 min) after the oxidation, to avoid the reconstruction in the PDMS air rusty. Then, the devices were ready to be filled with the appropriate solutions for the desired experiments or applications. Water-filled devices could be stored in a humidified incubator for 2 or 3 days before use. The contact with water or polar organic solvents maintained the hydrophilic nature of the surface indefinitely.
Caracterización por AFM de los sustratosAFM characterization of substrates
Para esta caracterización se usó un microscopio de fuerzas atómicas MFP- 3D Stand Alone (de Asylum Research, Santa Barbara, California, USA). Las sondas de AFM fueron puntas de silicio de Nanosensors NanoworldFor this characterization, an MFP-3D Stand Alone atomic force microscope (from Asylum Research, Santa Barbara, California, USA) was used. The AFM probes were silicon tips from Nanosensors Nanoworld
Innovative Technologies, con las siguientes caracteristicas: Sondas de silicio SPM arrow - NCR-W; modo de no contacto; grosor de 4.6 μm; longitud de 160 μm; anchura de 45 μm; frecuencia de resonancia de 285 kHz y constante de fuerza de 42 N/m. Las imágenes AFM fueron obtenidas en aire con el modo AC acústico (modo de no contacto), dependiento la frecuencia de trabajo de varios factores, como el tipo de sonda usada. La frecuencia fue usualmente de entre 250 kHz y 300 kHz.Innovative Technologies, with the following characteristics: SPM silicon probes arrow - NCR-W; no contact mode; 4.6 μm thickness; length of 160 μm; width of 45 μm; resonance frequency of 285 kHz and force constant of 42 N / m. AFM images were obtained in air with the acoustic AC mode (non-contact mode), depending on the working frequency of several factors, such as the type of probe used. The frequency was usually between 250 kHz and 300 kHz.
Los grosores y anchuras de las características de los másters y de ios nanocanales fueron medidos usando AFM y operando en modo AFM de no contacto. La FIG. 1 proporciona una visión 3D topográfica de un máster con patrón saliente de paladio. La FIG. 2 presenta un perfil para ilustrar Ia forma de la sección y las dimensiones nanométricas de Ia estructura del patrón en el sustrato vidrio. Para asegurar Ia uniformidad en altura y anchura a Io largo de toda Ia longitud con patrón, se tomaron muchos perfiles de AFM al azar a Io largo de sus ejes, obteniendo un valor medio.The thicknesses and widths of the characteristics of the masters and of the nanochannels were measured using AFM and operating in non-contact AFM mode. FIG. 1 provides a topographic 3D view of a master with an outgoing palladium pattern. FIG. 2 presents a profile to illustrate the form of the section and the nanometric dimensions of the structure of the pattern in the glass substrate. To ensure uniformity in height and width along the entire length with pattern, many random AFM profiles were taken along their axes, obtaining an average value.
La FIG. 3 es una visión 3D de una imagen de AFM de una muestra de PDMS después del paso de transferencia, que demuestra Ia existencia de zanjas vacías que reproducen los características nanométricos del máster con patrón saliente. También se muestra en Ia FIG 4. una vista cenital de un canal en una escala ampliada. Un perfil de una parte moldeada de PDMS se representa en Ia FIG. 5, mostrando Ia profundidad nanométrica de Ia zanja y su forma rectangular. Para Ia adquisición correcta de las imágenes, se fijaron los siguientes parámetros instrumentales: amplitud de partida ("setpoint amplitude" de 1.3 V; ganancia integral de 1 ; ganancia proporcional de 1 y "drive amplitude" de 125 mV. Como es evidente para los expertos en Ia materia, todos estos parámetros pueden ser cambiados dependiente de Ia sonda usada, Ia muestra, el microscopio, etc. Por ejemplo, los parámetros para Ia caracterización del máster pueden no ser los mismos que los usados para Ia caracterización del PDMS, debido a Ia diferencias en las propiedades mecánicas de cada muestra. Todas las imágenes AFM fueron procesadas con el software MFP Igor Pro 5.05A suministrado por Asylum Research. FIG. 3 is a 3D view of an AFM image of a PDMS sample after the transfer step, which demonstrates the existence of empty trenches that reproduce the nanometric characteristics of the master with an outgoing pattern. Also shown in FIG 4. is an overhead view of a channel on an enlarged scale. A profile of a molded part of PDMS is represented in FIG. 5, showing the nanometric depth of the trench and its rectangular shape. For the correct acquisition of the images, the following instrumental parameters were set: starting amplitude ("setpoint amplitude" of 1.3 V; integral gain of 1; proportional gain of 1 and "drive amplitude" of 125 mV. As is evident for the experts in the field, all these parameters can be changed depending on the probe used, the sample, the microscope, etc. For example, the parameters for the characterization of the master may not be the same as those used for the characterization of the PDMS, because to the differences in the mechanical properties of each sample.All AFM images were processed with the MFP Igor Pro 5.05A software provided by Asylum Research.

Claims

REIVINDICACIONES
1. Procedimiento para Ia fabricación de nanocanales que comprende los pasos de: (i) depositar una capa de electrodo metálico sobre un sustrato aislante;1. Procedure for the manufacture of nanochannels comprising the steps of: (i) depositing a layer of metallic electrode on an insulating substrate;
(ii) depositar una capa de material fotosensible {photoresisf) sobre Ia capa de electrodo metálico;(ii) depositing a layer of photosensitive material {photoresisf) on the metal electrode layer;
(iii) conferir fotolitográficamente un patrón a Ia capa de photoresist, cubriéndola con una máscara de patrón y exponiéndola a Ia luz; (iv) arrancar Ia porción expuesta de Ia capa de electrodo metálico, formando así un patrón de zanjas;(iii) confer photolithographically a pattern to the photoresist layer, covering it with a pattern mask and exposing it to light; (iv) tear off the exposed portion of the metal electrode layer, thus forming a pattern of trenches;
(v) rellenar las zanjas con un metal mediante electrodeposición;(v) fill the ditches with a metal by electrodeposition;
(vi) quitar Ia capa restante de photoresist y Ia capa restante de electrodo metálico, obteniendo así un máster con patrón saliente; (vii) transferir el patrón del máster a un material moldeable, para obtener una parte moldeada;(vi) remove the remaining photoresist layer and the remaining metal electrode layer, thus obtaining a master with protruding pattern; (vii) transfer the master's pattern to a moldable material, to obtain a molded part;
(viii) separar del máster Ia parte moldeada, donde esta parte moldeada comprende zanjas vacías, y(viii) separate from the master the molded part, where this molded part comprises empty ditches, and
(ix) unir Ia parte moldeada a una parte cubridora plana para tapar las zanjas vacías, obteniéndose así los nanocanales correspondientes a Ia máscara de patrón.(ix) joining the molded part to a flat covering part to cover the empty ditches, thus obtaining the nanochannels corresponding to the pattern mask.
2. Procedimiento según Ia reivindicación 1 , donde en el paso de transferencia (vii) el material moldeable es un prepolímero que forma in situ un polímero.2. Method according to claim 1, wherein in the transfer step (vii) the moldable material is a prepolymer that forms a polymer in situ.
3. Procedimiento según Ia reivindicación 2, donde el polímero es poli(dimetilsiloxano) (PDMS).3. Method according to claim 2, wherein the polymer is poly (dimethylsiloxane) (PDMS).
4. Procedimiento según cualquiera de las reivindicaciones 1-3, donde en el paso de unión (ix), Ia parte cubridora plana está hecha de un material seleccionado del grupo que consiste en vidrio, silicio, PDMS y un termoplástico.4. Method according to any of claims 1-3, wherein in the joining step (ix), the flat covering part is made of a material selected from the group consisting of glass, silicon, PDMS and a thermoplastic.
5. Procedimiento según Ia reivindicación 4, donde el material es vidrio.5. Method according to claim 4, wherein the material is glass.
6. Procedimiento según Ia reivindicación 5, donde en el paso de transferencia (vii) Ia superficie del máster está previamente recubierta con una capa antiadherente para facilitar el paso de separación (viü).6. Method according to claim 5, wherein in the transfer step (vii) the surface of the master is previously coated with a layer non-stick to facilitate the separation step (viü).
7. Procedimiento según Ia reivindicación 4, donde Ia parte moldeada está hecha de PDMS, y Ia parte cubridora plana también está hecha de PDMS, siendu unidas ambas partes con sus respectivas superficies moldeadas enfrentadas una a otra.7. Method according to claim 4, wherein the molded part is made of PDMS, and the flat covering part is also made of PDMS, both parts being joined with their respective molded surfaces facing each other.
8. Procedimiento según cualquiera de las reivindicaciones 1-7, donde Ia capa de electrodo metálico está hecha de un material seleccionado del grupo que consiste en níquel, plata y cromo.8. Method according to any of claims 1-7, wherein the metal electrode layer is made of a material selected from the group consisting of nickel, silver and chromium.
9. Procedimiento según Ia reivindicación 8, donde Ia capa de electrodo metálico está hecha de níquel.9. Method according to claim 8, wherein the metal electrode layer is made of nickel.
10. Procedimiento según cualquiera de las reivindicaciones 1-9, donde el sustrato aislante es un material seleccionado del grupo que consiste en vidrio, silicio y una poliimida.10. Method according to any of claims 1-9, wherein the insulating substrate is a material selected from the group consisting of glass, silicon and a polyimide.
11. Procedimiento según Ia reivindicación 10, donde el sustrato aislante es vidrio.11. Method according to claim 10, wherein the insulating substrate is glass.
12. Procedimiento según cualquiera de las reivindicaciones 1-11 , donde el paso de arrancamiento (iv) se realiza o bien por electrooxidación, o bien por ataque químico.12. Method according to any of claims 1-11, wherein the starting step (iv) is carried out either by electrooxidation, or by chemical attack.
13. Procedimiento según Ia reivindicación 12, donde el metal usado para llenar las zanjas en el paso de llenado (v) se selecciona del grupo que consiste en paladio, platino, oro, cadmio y bismuto.13. Method according to claim 12, wherein the metal used to fill the trenches in the filling step (v) is selected from the group consisting of palladium, platinum, gold, cadmium and bismuth.
14. Procedimiento según Ia reivindicación 13, donde el metal es paladio.14. Method according to claim 13, wherein the metal is palladium.
15. Procedimiento según cualquiera de las reivindicaciones anteriores, donde el photoresist es positivo. 15. Method according to any of the preceding claims, wherein the photoresist is positive.
PCT/ES2009/000587 2008-12-22 2009-12-21 Procedure for manufacturing nanochannels WO2010072861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200900007 2008-12-22
ES200900007 2008-12-22

Publications (1)

Publication Number Publication Date
WO2010072861A1 true WO2010072861A1 (en) 2010-07-01

Family

ID=42286933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000587 WO2010072861A1 (en) 2008-12-22 2009-12-21 Procedure for manufacturing nanochannels

Country Status (1)

Country Link
WO (1) WO2010072861A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689245B2 (en) 2018-02-27 2020-06-23 International Business Machines Corporation Vertically stacked nanofluidic channel array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040182820A1 (en) * 2003-03-20 2004-09-23 Shigehisa Motowaki Nanoprint equipment and method of making fine structure
US20050221644A1 (en) * 2003-02-04 2005-10-06 Kieun Kim Microprobe tips and methods for making
WO2006027780A2 (en) * 2004-09-08 2006-03-16 Ramot At Tel Aviv University Ltd. Peptide nanostructures containing end-capping modified peptides and methods of generating and using the same
US20070135698A1 (en) * 2005-12-13 2007-06-14 Rajiv Shah Biosensors and methods for making and using them
WO2008024783A2 (en) * 2006-08-24 2008-02-28 The Regents Of The University Of California Lithographically patterned nanowire electrodeposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221644A1 (en) * 2003-02-04 2005-10-06 Kieun Kim Microprobe tips and methods for making
US20040182820A1 (en) * 2003-03-20 2004-09-23 Shigehisa Motowaki Nanoprint equipment and method of making fine structure
WO2006027780A2 (en) * 2004-09-08 2006-03-16 Ramot At Tel Aviv University Ltd. Peptide nanostructures containing end-capping modified peptides and methods of generating and using the same
US20070135698A1 (en) * 2005-12-13 2007-06-14 Rajiv Shah Biosensors and methods for making and using them
WO2008024783A2 (en) * 2006-08-24 2008-02-28 The Regents Of The University Of California Lithographically patterned nanowire electrodeposition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STERN ET AL.: "Nanochannthe Fabrication for Chemical Sensors", JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B: MICROELECTRONICS AND NANOMETER STRUCTURES, vol. 15, no. ISSUE, November 1997 (1997-11-01), pages 2887 - 2891 *
TRUSKETT ET AL.: "Trends in Imprint Lithography for Biological Applications", TRENDS IN BIOTECHNOLOGY, vol. 24, no. 7, CAMBRIDGE, GB, pages 312 - 317 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689245B2 (en) 2018-02-27 2020-06-23 International Business Machines Corporation Vertically stacked nanofluidic channel array

Similar Documents

Publication Publication Date Title
Saavedra et al. Hybrid strategies in nanolithography
Jeong et al. Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement
Son et al. Placement control of nanomaterial arrays on the surface-reconstructed block copolymer thin films
US20190376925A1 (en) Nucleic acid sequencing device containing graphene
Tian et al. DNA nanostructures-mediated molecular imprinting lithography
Hoeppener et al. Constructive microlithography: electrochemical printing of monolayer template patterns extends constructive nanolithography to the micrometer− millimeter dimension range
Chai et al. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires
Cavallini et al. Micro-and nanopatterning by lithographically controlled wetting
Childs et al. Masterless Soft Lithography: Patterning UV/Ozone− Induced Adhesion on Poly (dimethylsiloxane) Surfaces
Al-Haddad et al. Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning
Andrews et al. Double-sided opportunities using chemical lift-off lithography
Bui et al. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern
Xu et al. Microcontact printing of dendrimers, proteins, and nanoparticles by porous stamps
Wolfrum et al. Suspended nanoporous membranes as interfaces for neuronal biohybrid systems
Cojocaru et al. Conformal anodic oxidation of aluminum thin films
Lin et al. Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range
US20080044775A1 (en) Method for Aligning or Assembling Nano-Structure on Solid Surface
Cho et al. Fabrication of microsensors using unmodified office inkjet printers
Bae et al. Contact area lithography (CAL): A new approach to direct formation of nanometric chemical patterns
Cai et al. Electro pen nanolithography
Fu et al. Nanochannel arrays for molecular sieving and electrochemical analysis by nanosphere lithography templated graphoepitaxy of block copolymers
KR100736361B1 (en) Method to align and assemble nano-structure on solid surface and the application thereof
Stewart et al. Unconventional methods for forming nanopatterns
Cha et al. Nanopatterns with a square symmetry from an orthogonal lamellar assembly of block copolymers
Shin et al. One-dimensional nanoassembly of block copolymers tailored by chemically patterned surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834148

Country of ref document: EP

Kind code of ref document: A1