WO2010113556A1 - 駆動装置の情報管理システム及び駆動装置の製造方法 - Google Patents

駆動装置の情報管理システム及び駆動装置の製造方法 Download PDF

Info

Publication number
WO2010113556A1
WO2010113556A1 PCT/JP2010/052418 JP2010052418W WO2010113556A1 WO 2010113556 A1 WO2010113556 A1 WO 2010113556A1 JP 2010052418 W JP2010052418 W JP 2010052418W WO 2010113556 A1 WO2010113556 A1 WO 2010113556A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
rotating electrical
electrical machine
rotation sensor
position error
Prior art date
Application number
PCT/JP2010/052418
Other languages
English (en)
French (fr)
Inventor
中川善也
新智夫
近藤竜哉
佐藤正一
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112010000429.3T priority Critical patent/DE112010000429B4/de
Priority to CN2010800058869A priority patent/CN102301569B/zh
Publication of WO2010113556A1 publication Critical patent/WO2010113556A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby

Definitions

  • the present invention relates to an information management system for a driving device provided with a rotating electrical machine and a rotation sensor for detecting the rotational position of a rotor of the rotating electrical machine, and a method for manufacturing such a driving device.
  • a drive device equipped with a rotating electrical machine (motor or generator) is provided with a rotation sensor for accurately detecting the rotational position of the rotor with respect to the stator in order to perform accurate speed control of the rotating electrical machine.
  • the reason why the rotational position of the rotor is precisely detected by the rotation sensor is to determine the current value and the current phase to be input to the rotating electrical machine based on the output signal from the rotation sensor.
  • phase difference between the rotating electrical machine and the rotation sensor corresponds to the rotational phase of the specific part and the specific part when attention is paid to the phase of the specific part in the circumferential direction of the rotor of the rotating electrical machine.
  • the present invention has been made in view of the above problems, and provides an information management system for a drive device and a drive device that can easily and inexpensively adjust the phase difference between the rotating electrical machine and the rotation sensor.
  • An object is to provide a manufacturing method.
  • a characteristic configuration of an information management system of a drive device including a rotating electrical machine and a rotation sensor that detects a rotational position of a rotor of the rotating electrical machine includes the rotating electrical machine and the rotation sensor. Position error of the rotation sensor obtained based on information on the counter electromotive force and output information from the rotation sensor in an inspection step of measuring the counter electromotive force by mechanically driving the rotating electrical machine after assembly with the rotation sensor.
  • a storage medium for storing information is provided, and the storage medium is provided so as to be readable via communication when the control device for controlling the rotating electrical machine is assembled to the rotating electrical machine.
  • position error information of the rotation sensor means the rotation electric machine caused by the assembly error when the rotation electric machine and the rotation sensor are assembled, the mechanical error of the rotation electric machine or the rotation sensor itself, or the like. Means information on the phase difference between the rotation sensor and the rotation sensor.
  • the operation check of the rotating electrical machine is performed from the information of the back electromotive force obtained by mechanically driving the rotating electrical machine in the inspection process performed after the assembly of the rotating electrical machine and the rotation sensor.
  • position error information about the combination of the rotating electrical machine and the rotation sensor is acquired. Therefore, information regarding the phase difference between the rotating electrical machine and the rotation sensor can be acquired without requiring a special process.
  • the acquired position error information is stored in a storage medium, and the storage medium is provided so as to be readable via communication when the control device is assembled to the rotating electrical machine. Therefore, the position error information of the driving device that is necessary for assembling the driving device and the control device can be easily acquired through communication.
  • the position error information regarding the drive device to which the control device is assembled can be appropriately written in the control device without error. Therefore, when the drive device and the control device are transported or stored, no special management work is required for making the drive device correspond to the position error information of the drive device and the control device storing the position error information on a one-to-one basis. There is no cost increase. Since the control device can electrically adjust the phase difference between the rotating electric machine and the rotation sensor based on the position error information written at the time of assembly to the rotating electric machine, the mounting position of the rotation sensor is determined mechanically. Therefore, the manufacturing time can be shortened and the adjustment mechanism is not required, so that the cost can be reduced. Therefore, the phase difference between the rotating electrical machine and the rotation sensor can be adjusted easily and at low cost.
  • the position error information is information on a difference between a reference point of a voltage waveform as information of the back electromotive force and a reference point of a pulse signal as output information from the rotation sensor.
  • the phase difference between the rotating electrical machine and the rotation sensor is determined based on the difference between the reference point of the voltage waveform as the information on the counter electromotive force and the reference point of the pulse signal as the output information from the rotation sensor. Position error information can be easily acquired.
  • characteristic information of the rotating electrical machine is acquired based on information on a counter electromotive force when the rotating electrical machine is mechanically driven, and the storage medium further stores the characteristic information. It is preferable to have a configuration.
  • the characteristic information of the rotating electrical machine acquired based on the information of the back electromotive force when the rotating electrical machine is mechanically driven in the inspection process is also stored in the storage medium. Therefore, this characteristic information can also be acquired through communication when the drive device and the control device are assembled, and can be appropriately written in the control device without error. As a result, it is possible to cause the control device to perform more precise control in consideration of the characteristics of the rotating electrical machine.
  • the inspection step includes a step of measuring an effective value of a voltage waveform as the information of the back electromotive force
  • the characteristic information of the rotating electrical machine includes: It is preferable to include information on the effective value of the voltage waveform.
  • the effective value is further measured based on the voltage waveform as the information of the back electromotive force obtained by mechanically driving the rotating electrical machine, and the information on the effective value is the characteristic of the rotating electrical machine. It is stored in a storage medium as a kind of information.
  • the effective value information can be used to further control the rotating electrical machine. It can be precise.
  • an information management server including the storage medium, wherein the information management server communicates with a control information writing device that writes the position error information to the control device when the control device is assembled to the rotating electrical machine. It is preferable that the storage medium is configured to be readable from the control information writing device via communication.
  • the information management server is configured to be able to communicate with an inspection apparatus that performs the inspection process, and the position error information acquired by the inspection apparatus can be written to the storage medium via communication. It is preferable to be in a state.
  • the position error information acquired by the inspection apparatus when the inspection process is executed can be easily and appropriately stored in the storage medium. Therefore, even in the inspection process, the operation of managing the position error information for the combination of the rotating electrical machine and the rotation sensor is simplified, and the cost can be further reduced.
  • a characteristic configuration of a method of manufacturing a drive device including a rotating electrical machine and a rotation sensor that detects a rotational position of a rotor of the rotating electrical machine is a first set in which the rotating electrical machine and the rotation sensor are assembled. And a step of measuring the counter electromotive force by mechanically driving the rotating electrical machine, and the position error information of the rotation sensor based on the information of the counter electromotive force and the output information from the rotation sensor.
  • An information acquisition step for acquiring the position error information a storage step for storing the position error information in a storage medium, a read step for reading the position error information from the storage medium via communication, and the read step It has the writing process which writes the position error information in the control device which controls the rotating electrical machine, and the second assembly process which assembles the control device to the rotating electrical machine.
  • the operation of the rotating electrical machine is confirmed from the information on the back electromotive force obtained by mechanically driving the rotating electrical machine, and at the same time, information is acquired.
  • the position error information about the combination of the rotating electrical machine and the rotation sensor is acquired. Therefore, the process for obtaining the phase difference can be calculated, and information on the phase difference between the rotating electrical machine and the rotation sensor can be acquired without requiring a special work process.
  • the acquired position error information is stored in a storage medium in a storage process.
  • the position error information stored in the storage medium is read from the storage medium via communication in the reading process and written to the control device in the writing process, and the control device is transferred to the drive device in the second assembling process. Assembled. Therefore, it is possible to obtain the position error information of the driving device required when assembling the driving device and the control device through communication, and write the information into the control device appropriately without error to manufacture the driving device. it can. Therefore, when the drive device and the control device are transported or stored, no special management work is required for making the drive device correspond to the position error information of the drive device and the control device storing the position error information on a one-to-one basis. There is no cost increase.
  • control device can electrically adjust the phase difference between the rotating electric machine and the rotation sensor based on the position error information written at the time of assembly to the rotating electric machine, the mounting position of the rotation sensor is determined mechanically. Therefore, the manufacturing time can be shortened and the adjustment mechanism is not required, so that the cost can be reduced. Therefore, the drive device can be manufactured by adjusting the phase difference between the rotating electrical machine and the rotation sensor easily and at low cost.
  • FIG. 1 It is a block diagram which shows schematic structure of the information management system of the drive device which concerns on embodiment of this invention. It is a fragmentary sectional view of the drive device provided with the rotary electric machine and the rotation sensor. It is a figure which shows the example of the information memorize
  • the drive device 2 is a drive device for a hybrid vehicle including the rotating electrical machine 10
  • the drive device 2 includes a rotating electrical machine 10 and a resolver 20 that detects the rotational position of the rotor 11 of the rotating electrical machine 10.
  • the rotating electrical machine 10 is controlled by the control device 3 and can output a driving force.
  • the inspection step S2 performed thereafter (see FIG. 5).
  • the phase difference is adjusted after being integrated with the control device 3 by using the position error information P acquired in (1).
  • the position error information P is stored in the storage medium 4 and is managed by the information management system 1 in which the storage medium 4 is readable via communication when the controller 3 is assembled to the rotating electrical machine 10. Is done.
  • the phase difference between the rotating electrical machine 10 and the resolver 20 can be adjusted easily and at low cost by using such an information management system 1. It is possible.
  • the configuration of the information management system 1 according to the present embodiment and the position error information P managed through the information management system 1 are described. The manufacturing method of the used drive device 2 will be described in detail.
  • the drive device 2 is disposed around an input shaft 32 that is integrally connected to an engine output shaft 31 such as a crankshaft that outputs rotation of an engine (not shown).
  • the rotary electric machine 10 and the resolver 20 are provided. These are accommodated in the drive unit case 41.
  • the drive device case 41 includes a rotating electrical machine housing case 42 and a main body case 43.
  • the rotating electrical machine housing case 42 houses the rotating electrical machine 10 and the resolver 20, and the body case 43 has a transmission (not shown). Is housed.
  • a control device 3 (see FIG.
  • the rotating electrical machine 10 includes a rotor 11 that is fixed to an input shaft 32 that is integrally connected to the engine output shaft 31 and that is rotatably disposed around the axis of the input shaft 32.
  • 11 is disposed coaxially with the rotor 11 on the radially outer side of the stator 11 and fixed to the rotating electrical machine housing case 42.
  • the rotor 11 includes a rotor core 12, permanent magnets 13 disposed at a plurality of locations in the circumferential direction of the rotor core 12, and a rotor support member 14 that fixes and supports these.
  • a bearing 33 is provided between the rotor support member 14 and the rotating electrical machine housing case 42.
  • the rotor 11 is supported by a bearing 33 so as to be rotatable with respect to the rotating electrical machine housing case 42.
  • the stator 15 includes a stator core 16 and a coil 17 wound around the stator core 16.
  • Such a rotating electrical machine 10 has a function as a motor (electric motor) that generates power by receiving power supply and a function as a generator (generator) that generates power by receiving power supply. It is possible.
  • the rotating electrical machine 10 functions as a motor that generates driving force for traveling of the vehicle when the vehicle starts or accelerates, and functions as a generator during regenerative braking for deceleration of the vehicle. To do.
  • a resolver 20 is disposed adjacent to the rotor 11 of the rotating electrical machine 10.
  • the resolver 20 is provided to accurately detect the rotational position and rotational speed of the rotor 11 with respect to the stator 15 of the rotating electrical machine 10.
  • the resolver 20 corresponds to a “rotation sensor” in the present invention.
  • the resolver 20 includes a sensor rotor 21 and a sensor stator 22.
  • the sensor rotor 21 is integrally attached to the rotor support member 14 and rotates integrally with the rotor 11 of the rotating electrical machine 10.
  • the sensor stator 22 is disposed coaxially with the sensor rotor 21 on the outer side in the radial direction of the sensor rotor 21, and is fixed to the rotating electrical machine housing case 42 with bolts 34.
  • the output signal from the resolver 20 is converted into a three-phase output signal, that is, an A-phase signal, a B-phase signal, and a Z-phase signal by an R / D converter (resolver / digital converter, not shown).
  • a Z-phase pulse waveform Wz in which a rectangular pulse signal is generated every time the sensor rotor 21 of the resolver 20 rotates is obtained.
  • an A-phase pulse waveform Wa and a B-phase pulse waveform Wb in which rectangular pulse signals are generated with an extremely short predetermined period and a predetermined phase difference from each other are obtained.
  • the electrical angle of the resolver 20 is set with the rising point of the Z-phase pulse waveform Wz as a reference (zero point). Specifically, the electrical angle is set such that the rising point of one pulse signal in the Z-phase signal is “0 °” and the rising point of the next pulse signal of the one pulse signal is “360 °”.
  • the A-phase signal and the B-phase signal are set so that a predetermined number of pulse signals are included. By measuring the number of A-phase and B-phase pulse signals appearing from (zero point) to each time point, the rotational position (electrical angle) can be obtained.
  • an A-phase signal and a B-phase signal for 1024 pulses are included in one cycle of the Z-phase signal.
  • the rotation position at that time is represented by the electrical angle “(360 ° / Rotation position (rotation phase) corresponding to 1024) ⁇ n ”. Since the A phase signal and the B phase signal have a predetermined phase difference, the rotation direction of the rotor 11 of the rotating electrical machine 10 can be determined based on the output order.
  • the information management system 1 includes an inspection device 6, an information management server 5, and a control information writing device 7. Information is exchanged between the inspection device 6 and the information management server 5 and between the information management server 5 and the control information writing device 7 through communication.
  • the information management system 1 includes the communication network 8 as a communication unit, and can read and write information from and to the storage medium 4 from the inspection device 6 and the control information writing device 7 via the communication network 8. It is configured.
  • the inspection apparatus 6 is an apparatus for executing the inspection process S2 (see FIG. 5). As will be described later, in the present embodiment, the position error of the resolver 20 is based on the back electromotive force information acquired by mechanically driving the rotating electrical machine 10 and the output information from the resolver 20 in the inspection step S2. Information P is acquired. Further, the characteristic information C of the rotating electrical machine 10 is acquired based on information on the counter electromotive force acquired by mechanically driving the rotating electrical machine 10. Accordingly, the inspection device 6 includes, for example, a measuring device for measuring the counter electromotive force, a detector for detecting an output signal from the resolver 20, and information on the counter electromotive force and an output signal from the resolver 20.
  • the inspection device 6 is connected to the information management server 5 via the communication network 8 so that the inspection device 6 and the information management server 5 can communicate with each other. Thereby, the position error information P and the characteristic information C acquired by the inspection device 6 are in a state that can be transmitted to the information management server 5 via the communication network 8.
  • the inspection device 6 further includes an arithmetic processing device that functions as a client computer, and is preferably configured to perform information communication with a host computer included in the information management server 5.
  • the information management server 5 is a device for storing and managing the position error information P and the characteristic information C, and transferring these information to and from the inspection device 6 and the control information writing device 7 as necessary. is there.
  • the information management server 5 includes a storage medium 4 that can store information, and an arithmetic processing device that functions as a host computer.
  • a storage medium 4 for information management a medium capable of storing and rewriting information, such as a hard disk drive and a flash memory, is preferably used.
  • the position error information P and the characteristic information C transmitted from the inspection device 6 via the communication network 8 can be written in the storage medium 4.
  • the storage medium 4 stores individual management information A relating to each of one or more drive devices 2 in a database.
  • each individual management information A includes management information I, position error information P, and characteristic information C.
  • Management information I is information including an identification code of the rotating electrical machine 10 provided in the driving device 2. Such management information I is information necessary for managing the manufacturing process of the rotating electrical machine 10.
  • the position error information P and the characteristic information C are acquired based on information on back electromotive force obtained by mechanically driving the rotating electrical machine 10 in an inspection step S2 (see FIG. 5) described later.
  • inspection process S2 is implemented after the assembly
  • the characteristic information C includes effective value information E regarding the effective value of the voltage waveform We as information of the back electromotive force. Details will be described later together with a description of a method of manufacturing the drive device 2.
  • the position error information P and the characteristic information C are stored in association with the identification code of the rotating electrical machine 10 included in each driving device 2 by the management information I.
  • the information management server 5 is connected to the control information writing device 7 via the communication network 8 so that the information management server 5 and the control information writing device 7 can communicate with each other. Thereby, the position error information P and the characteristic information C stored and managed in the storage medium 4 of the information management server 5 can be read from the control information writing device 7 via communication.
  • the control information writing device 7 is a device for executing the writing step S5 (see FIG. 5).
  • the control information writing device 7 writes position error information P and characteristic information C in the control device 3 when the control device 3 is assembled to the rotating electrical machine 10.
  • the control information writing device 7 includes, for example, an arithmetic processing device that functions as a client computer, a writer for writing information to the control device 3, and the like.
  • the client computer accesses the information management server 5 as necessary, and receives the management information I (including the identification code) related to the individual management information A and the identification code related to the rotating electrical machine 10 included in the desired drive device 2. Based on this, the individual management information A related to the drive device 2 is acquired.
  • the writer writes the position error information P and the characteristic information C included in the acquired individual management information A into a storage medium such as a RAM or a ROM provided in the control device 3.
  • information can be exchanged between the inspection device 6 and the information management server 5 and between the information management server 5 and the control information writing device 7 via the communication network 8.
  • a communication method by the communication network 8 either a wired communication method or a wireless communication method may be adopted.
  • a known wired communication network configured by, for example, a telephone line, a power line, an optical cable, or the like can be used.
  • a wireless communication method is employed, a known wireless communication network such as a cellular phone network or a wireless LAN (Local Area Network) can be used. Note that wired communication and wireless communication may be used in combination.
  • the inspection device 6, the information management server 5, and the control information writing device 7 can be installed in different places (separate work lines, separate factories, separate companies, etc.).
  • the driving device 2 includes a manufacturing process in the first manufacturing line L1 and a manufacturing process in the second manufacturing line L2 installed at a location different from the first manufacturing line L1. And is manufactured through.
  • a sensor assembly process S1 In the first production line L1, a sensor assembly process S1, an inspection process S2, and a storage process S3 are performed.
  • a reading step S4, a writing step S5, and a controller assembly step S6 are performed.
  • the sensor assembly step S1 corresponds to the “first assembly step” in the present invention
  • the control device assembly step S6 corresponds to the “second assembly step” in the present invention.
  • the information management system 1 is interposed between the production process in the first production line L1 and the production process in the second production line L2, and individually manages the individual management information A regarding one or more drive devices 2 respectively.
  • the individual management information A corresponding to the request is provided to the control information writing device 7.
  • the manufacturing process in the first manufacturing line L1 is a process in which the drive device 2 is mainly assembled.
  • the rotating electrical machine 10 and the resolver 20 are assembled.
  • the rotating electrical machine 10 and the resolver 20 use known methods so that their axes coincide with each other, and zero points (electrical angles are set as reference points) of the rotating electrical machine 10 and the resolver 20 described later. It is assembled so that the positions of the points at 0 ° are substantially equal.
  • the zero point positions of the rotating electrical machine 10 and the resolver 20 are substantially equal, they are not completely coincident with each other and have a predetermined assembly error.
  • the rotating electrical machine 10 and the resolver 20 have their own mechanical errors due to slightly non-uniformity in the arrangement of the permanent magnets 13 and the coils 17. Therefore, a phase difference is generated between the rotating electrical machine 10 and the resolver 20 due to the assembly error and mechanical error. Therefore, in order to accurately detect the rotational position of the rotor 11 with respect to the stator 15 of the rotating electrical machine 10 and to perform accurate rotational speed control of the rotating electrical machine 10, an operation of adjusting the phase difference is required. Become. In the present embodiment, mechanical adjustment work such as rotating the resolver 20 in the circumferential direction is not performed on the rotating electrical machine 10 while confirming the phase difference sequentially, but the phase difference is determined as described below. The method to adjust is adopted.
  • the position error information P of the resolver 20 is based on the back electromotive force information acquired by mechanically driving the rotating electrical machine 10 using the inspection device 6 and the output information from the resolver 20. Is acquired.
  • the measurement of the counter electromotive force is an inspection item that is usually performed to confirm that the rotating electric machine 10 and the resolver 20 are normally operated after the assembly of the rotating electric machine 10 and the resolver 20, and is added to obtain a phase difference. It is not a special process.
  • Inspection process S2 has measurement process S2a and information acquisition process S2b.
  • the counter electromotive force is measured by mechanically driving the rotating electrical machine 10, and information on the counter electromotive force is acquired.
  • a voltage waveform We having a sine wave shape as shown by a solid line in FIG. 4A is obtained.
  • the electrical angle of the rotating electrical machine 10 is set with the zero cross point as a reference point (zero point). Specifically, the electrical angle is set with one zero cross point being “0 °” and the zero cross point when one wavelength has elapsed from the zero cross point being “360 °”.
  • output information from the resolver 20 is further acquired.
  • output information from the resolver 20 at least the Z-phase pulse waveform Wz and the A-phase pulse waveform Wa as described above are acquired (see FIG. 4B).
  • the position error information P of the resolver 20 is acquired based on the back electromotive force information acquired in the inspection step S2 and the output information from the resolver 20.
  • the voltage waveform We obtained as back electromotive force information and the Z-phase pulse waveform Wz obtained as output information from the resolver 20 each have a reference point (zero point) at which the electrical angle is 0 °. ing.
  • a difference (difference) between these reference points (zero points) is used as an error
  • zero point error information Z relating to the error (difference) is acquired as position error information P.
  • the number of pulse signals of the A-phase pulse waveform Wa appearing between the zero point of the sinusoidal voltage waveform We from the rotating electrical machine 10 and the zero point of the Z-phase pulse waveform Wz from the resolver 20 is acquired as zero point error information Z, that is, position error information P.
  • the characteristic information C of the rotating electrical machine 10 is further acquired based on the voltage waveform We as information on the counter electromotive force when the rotating electrical machine 10 is mechanically driven.
  • the effective value is measured based on the voltage waveform We as information of the back electromotive force
  • the characteristic information C is acquired as including the effective value information E regarding the effective value of the voltage waveform We.
  • the voltage waveform We 'as information of the counter electromotive force when the other rotating electrical machine 10 is mechanically driven is indicated by a broken line.
  • the effective value corresponding to the voltage waveform We ' is smaller than the effective value corresponding to the voltage waveform We.
  • the position error information P and the characteristic information C acquired in the information acquisition step S2b are stored in the storage medium 4.
  • a client computer included in the inspection apparatus 6 accesses the information management server 5 via the communication network 8, and the position error information P and the characteristic information C together with the management information I are stored in the storage medium 4 via the host computer. Write. As a result, these pieces of information are stored in the storage medium 4.
  • the drive device 2 is completed, the phase difference between the rotating electrical machine 10 and the resolver 20 due to the assembly error as described above still remains. It is in a state as it is. The drive device 2 is transported to the second production line L2 in this state.
  • the manufacturing process in the second manufacturing line L2 is a process in which the drive device 2 and the control device 3 are mainly assembled.
  • the individual management information A including the position error information P and the characteristic information C is read from the storage medium 4 of the information management server 5 via the communication network 8.
  • a client computer included in the control information writing device 7 accesses the information management server 5 via the communication network 8 and designates the identification code of the rotating electrical machine 10 assembled in the drive device 2 to
  • the individual management information A stored in association with the identification code of the rotating electrical machine 10 is acquired via a computer.
  • the identification code of each rotating electrical machine 10 is stored in a state included in the management information I.
  • the position error information P and the characteristic information C read in the reading step S4 are written in the control device 3 that controls the rotating electrical machine 10 provided in the driving device 2.
  • the position error information P and the characteristic information C are written to a storage medium such as a RAM or a ROM provided in the control device 3 by the control information writing device 7.
  • the control apparatus 3 is assembled
  • the control device 3 corrects and uses the output signal of the resolver 20 based on the position error information P, so that the phase difference between the rotating electrical machine 10 and the resolver 20 is obtained. Adjustments are made. Specifically, in the control device 3, the zero point (reference point) position of the Z-phase pulse waveform Wz from the resolver 20 is offset by the amount of the zero point error information Z acquired in the information acquisition step S2b. As a result, the rotating electrical machine 10 and the resolver 20 are electrically in almost the same phase, so that the resolver 20 can detect the rotational position (rotation phase) of the rotor 11 of the rotating electrical machine 10 with high accuracy. It becomes.
  • the control device 3 can electrically adjust the phase difference between the rotating electrical machine 10 and the resolver 20 based on the received position error information P, the attachment position of the resolver 20 is mechanically adjusted.
  • the manufacturing time can be shortened.
  • an adjustment mechanism for performing such mechanical adjustment is not required, the manufacturing cost can be reduced.
  • the position error information P and the characteristic information C can be written from the inspection device 6 to the storage medium 4 included in the information management server 5 via the communication network 8, the inspection is performed when the inspection step S2 is executed.
  • the position error information P and the characteristic information C acquired by the device 6 can be stored in the storage medium 4 easily and appropriately. Therefore, the operation of managing the position error information P and the characteristic information C for the combination of the rotating electrical machine 10 and the resolver 20 in the inspection step S2 becomes simple, and the cost can be reduced.
  • the position error information P and the characteristic information C stored in the storage medium 4 in this manner can be read by the control information writing device 7 via the communication network 8 when the control device 3 is assembled to the rotating electrical machine 10. Therefore, the position error information P and the characteristic information C can be easily acquired as necessary.
  • the position error information P and the characteristic information C regarding the drive device 2 to which the control device 3 is assembled can be appropriately written in the control device 3 without error. Therefore, when the drive device 2 and the control device 3 are transported or stored, the drive device 2 and the control device 3 storing the position error information P of the drive device 2 and the position error information P are associated one-to-one. Therefore, no special management work is required and the cost is not increased. Therefore, the phase difference between the rotating electrical machine 10 and the resolver 20 can be adjusted easily and at low cost.
  • the individual management information A (including the position error information P) corresponding to the new drive device 2 is read from the storage medium 4 via the communication network 8.
  • the position error information P can be transferred to the control device 3 and overwritten.
  • the individual management information A (including the position error information P) corresponding to the drive device 2 that can be normally operated is transmitted via the communication network 8.
  • the position error information P can be transferred to and written in the new control device 3 by reading from the storage medium 4. Since the phase difference between the rotating electrical machine 10 and the resolver 20 can be adjusted in this way, repair work can be facilitated.
  • the individual management information A stored in the storage medium 4 includes zero point error information Z as the position error information P and effective value information E as the characteristic information C.
  • the case has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, it is also a preferred embodiment of the present invention that the individual management information A further includes information other than the position error information P and the characteristic information C, for example.
  • the individual management information A may further include information other than the zero point error information Z as the position error information P and information other than the effective value information E as the characteristic information C.
  • the individual management information A may include only the zero point error information Z as the position error information P and may not include the effective value information E as the characteristic information C.
  • the individual management information A may include only the zero point error information Z as the position error information P and may not include the effective value information E as the characteristic information C.
  • the embodiment of the present invention is not limited to this. That is, for example, when the combination of the rotating electrical machine 10 and the resolver 20 is only one set for one drive device 2, the management information I is stored in the drive device 2 including the set of the rotating electrical machine 10 and the resolver 20.
  • One of the preferred embodiments of the present invention is a configuration in which the control information writing device 7 acquires the necessary individual management information A based on the identification code of the driving device 2 as information including the identification code. It is.
  • both the inspection device 6 and the information management server 5 and the information management server 5 and the control information writing device 7 can communicate via the communication network 8.
  • the case where it is configured has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, one or both of the inspection apparatus 6 and the information management server 5 and between the information management server 5 and the control information writing apparatus 7 have communication means for performing one-to-one communication without forming a network. It is also one of preferred embodiments of the present invention to have a configuration in which communication is possible via the network. Communication means for performing such one-to-one communication includes both wired and wireless communication means.
  • the embodiment of the present invention is not limited to a configuration in which both the inspection device 6 and the information management server 5 and the information management server 5 and the control information writing device 7 are connected via communication. . That is, at least when the rotating electrical machine 10 and the control device 3 are assembled, it is sufficient that the individual management information A stored in the storage medium 4 can be read via communication.
  • the inspection device 6 and the information management server It is also one of the preferred embodiments of the present invention to be configured not to be connected to 5 by communication. In this case, the position error information P and the characteristic information C acquired by the inspection device 6 are recorded in a storage medium such as a hard disk, a flash memory, a DVD-ROM, and a CD-ROM in the information management server 5.
  • a transmission configuration is also one of the preferred embodiments of the present invention.
  • the drive device 2 is a drive device for a hybrid vehicle including the rotating electrical machine 10
  • the embodiment of the present invention is not limited to this. That is, if it is a drive device provided with the rotary electric machine 10 and a rotation sensor that detects the rotation position of the rotor 11 of the rotary electric machine 10, for example, a drive device for other vehicles such as an electric vehicle, and various types other than those for vehicles
  • the present invention can also be applied to the driving device.
  • the present invention can be suitably used in an information management system for a driving device including a rotating electrical machine and a rotation sensor that detects the rotational position of a rotor of the rotating electrical machine, and a method for manufacturing such a driving device.

Abstract

 回転電機と回転センサとの間の位相差を、簡易且つ低コストに調整することを可能とする駆動装置の情報管理システム及び駆動装置の製造方法を提供する。 回転電機10と当該回転電機10のロータの回転位置を検出する回転センサ20とを備えた駆動装置2の情報管理システム1であって、回転電機10と回転センサ20との組み付け後に回転電機10を機械的に駆動して逆起電力を測定する検査工程において、当該逆起電力の情報と回転センサ20からの出力情報とに基づいて得られる回転センサ20の位置誤差情報を記憶する記憶媒体4を備え、記憶媒体4が、回転電機10を制御する制御装置3の回転電機10への組み付けに際して通信を介して読み取り可能な状態で設けられている。

Description

駆動装置の情報管理システム及び駆動装置の製造方法
 本発明は、回転電機と当該回転電機のロータの回転位置を検出する回転センサとを備えた駆動装置の情報管理システム及びそのような駆動装置の製造方法に関する。
 回転電機(モータやジェネレータ)を備えた駆動装置には、回転電機の正確な速度制御を行うため、ステータに対するロータの回転位置を精密に検出するための回転センサが設けられている。このように回転センサによりロータの回転位置を精密に検出するのは、回転センサからの出力信号に基づいて回転電機に入力する電流値や電流位相を決定するためである。
 このような駆動装置を組み立てる場合、一度の組み付けで回転電機と回転センサとの組付誤差が全くない状態とすることは極めて稀であり、その組付誤差等に起因して回転電機と回転センサとの間に位相差が生じてしまう。ここで「回転電機と回転センサとの間の位相差」とは、回転電機のロータの周方向の特定部位の位相に注目した場合において、当該特定部位の回転位相と、前記特定部位に対応する回転センサの部位の回転位相との間の位相差を意味する(以下同様)。そのため、通常、これらの間の位相を揃えるために少なくとも一回は、その位相差を調整する必要がある。
 回転電機と回転センサとの間の位相差を調整する方法としては、これらを組み付けた後に回転電機の回転軸を回転させて逆起電力を発生させ、回転電機の電圧波形と回転センサの検出用の電圧波形とを比較し、これらの間の位相差が所定の範囲外の場合には回転電機に対して回転センサを周方向に手動で回転させる方法が、以下の特許文献1に記載されている。この方法にあっては、位相差が所定の範囲内に収まるまで上記の作業が繰り返されることになる。また、回転センサの誤差をあらかじめ測定して回転センサを制御する制御装置の記憶部に記憶し、記憶された誤差情報と回転センサから検出された検出値とに基づいて正確な位置を求める方法が、以下の特許文献2に記載されている。
特開2005-295639号公報 特開昭61-10715号公報
 しかし、特許文献1に記載されたような方法により駆動装置を製造する場合、位相の調整はあくまで手動によるものであるため、多くの時間と手間を要する。また、位相を調整するための調整機構を駆動装置に取り付ける必要があるため、コストが高くなってしまうという問題がある。一方、特許文献2に記載されたような方法により駆動装置を製造する場合には、そのような問題は生じないが、駆動装置の製造と制御装置の製造、更にこれらの車両等(駆動装置を利用する装置の一例)への組み付けが異なる場所、例えば、別工程、別工場、別会社等で行われる場合には、駆動装置及び制御装置の搬送や保管等に際して、駆動装置と当該駆動装置の誤差情報を記憶した制御装置とを一対一に対応させるための特別な管理作業が発生し、高コストとなってしまうという問題がある。
 本発明は、上記課題に鑑みてなされたものであり、回転電機と回転センサとの間の位相差を、簡易且つ低コストに調整することを可能とする駆動装置の情報管理システム及び駆動装置の製造方法を提供することを目的とする。
 上記目的を達成するための本発明に係る、回転電機と当該回転電機のロータの回転位置を検出する回転センサとを備えた駆動装置の情報管理システムの特徴構成は、前記回転電機と前記回転センサとの組み付け後に前記回転電機を機械的に駆動して逆起電力を測定する検査工程において、当該逆起電力の情報と前記回転センサからの出力情報とに基づいて得られる前記回転センサの位置誤差情報を記憶する記憶媒体を備え、前記記憶媒体が、前記回転電機を制御する制御装置の前記回転電機への組み付けに際して通信を介して読み取り可能な状態で設けられている点にある。
 ここで、「回転センサの位置誤差情報」とは、回転電機と回転センサとの組み付け時の組付誤差や、回転電機や回転センサ自体が有している機械的誤差等に起因する、回転電機と回転センサとの間の位相差に関する情報を意味する。
 この特徴構成によれば、回転電機と回転センサとの組み付け後に実施される検査工程において、回転電機を機械的に駆動して得られる逆起電力の情報から回転電機の動作確認を行うのと同時に、逆起電力の情報と回転センサからの出力情報とに基づいて、当該回転電機と回転センサとの組み合わせについての位置誤差情報を取得する。よって、特別な工程を要することなく回転電機と回転センサとの間の位相差に関する情報を取得することができる。取得された位置誤差情報は記憶媒体に記憶され、当該記憶媒体は、回転電機への制御装置の組み付けに際して通信を介して読み取り可能な状態で設けられている。従って、駆動装置と制御装置との組み付けに際して必要となる当該駆動装置の位置誤差情報を、通信を介して必要な時に容易に取得することができる。そして、制御装置が組み付けられる駆動装置に関する位置誤差情報を誤りなく適切に当該制御装置に書き込むことができる。よって、駆動装置及び制御装置の搬送や保管等に際して、駆動装置と当該駆動装置の位置誤差情報や当該位置誤差情報を記憶した制御装置とを一対一に対応させるための特別な管理作業が不要であり、高コスト化を招くこともない。制御装置は、回転電機への組み付けに際して書き込まれた位置誤差情報に基づいて、電気的に回転電機と回転センサとの間の位相差を調整することができるので、回転センサの取り付け位置を機械的に調整する必要がなく製造時間を短縮することができるとともに、調整機構も不要となりコストを低減することができる。したがって、回転電機と回転センサとの間の位相差を、簡易且つ低コストに調整することが可能となる。
 ここで、前記位置誤差情報は、前記逆起電力の情報としての電圧波形の基準点と、前記回転センサからの出力情報としてのパルス信号の基準点との差の情報であると好適である。
 この構成によれば、逆起電力の情報としての電圧波形の基準点と、回転センサからの出力情報としてのパルス信号の基準点との差から、回転電機と回転センサとの間の位相差に関する位置誤差情報を容易に取得することができる。
 また、前記検査工程では、更に、前記回転電機を機械的に駆動した際の逆起電力の情報に基づいて前記回転電機の特性情報が取得され、前記記憶媒体が、前記特性情報を更に記憶する構成とされていると好適である。
 この構成によれば、検査工程において回転電機を機械的に駆動した際の逆起電力の情報に基づいて取得される回転電機の特性情報も記憶媒体に記憶される。従って、この特性情報も、駆動装置と制御装置との組み付けに際して通信を介して取得することができ、誤りなく適切に制御装置に書き込むことができる。これにより、回転電機の特性をも考慮したより精密な制御を制御装置に行わせることが可能となる。
 また、上記のような特性情報を取得して記憶する構成において、前記検査工程は、前記逆起電力の情報としての電圧波形の実効値を測定する工程を含み、前記回転電機の特性情報は、当該電圧波形の実効値の情報を含むと好適である。
 この構成によれば、検査工程において、回転電機を機械的に駆動して得られる逆起電力の情報としての電圧波形に基づいて更に実効値が測定され、当該実効値の情報が回転電機の特性情報の一種として記憶媒体に記憶される。このように、特性情報として実効値の情報を取得しておけば、回転電機が個々に異なる特性を有していたとしても、当該実効値の情報を利用することにより、回転電機の制御をより精密なものとすることができる。
 また、前記記憶媒体を含む情報管理サーバを備え、前記情報管理サーバは、前記制御装置の前記回転電機への組み付けに際して前記位置誤差情報を前記制御装置に書き込む制御情報書込装置との間で通信可能に構成され、前記記憶媒体が通信を介して前記制御情報書込装置から読み取り可能な状態とされていると好適である。
 この構成によれば、記憶媒体に記憶される位置誤差情報等の情報を適切に管理することができると共に、回転電機への制御装置の組み付けに際して、制御情報書込装置が、必要に応じて容易に位置誤差情報等を取得することができる。従って、制御装置が組み付けられる駆動装置に関する位置誤差情報を誤りなく適切に当該制御装置に書き込むことができ、回転電機と回転センサとの間の位相差を、簡易且つ低コストに調整することが可能となる。
 また、前記情報管理サーバは、更に前記検査工程を実行する検査装置との間で通信可能に構成され、前記検査装置により取得された前記位置誤差情報が通信を介して前記記憶媒体に書き込み可能な状態とされていると好適である。
 この構成によれば、検査工程を実行した際に検査装置により取得された位置誤差情報を容易且つ適切に記憶媒体に記憶させることができる。従って、検査工程においても回転電機と回転センサとの組み合わせについての位置誤差情報を管理する作業が簡易なものとなり、より一層の低コスト化が可能となる。
 本発明に係る、回転電機と、前記回転電機のロータの回転位置を検出する回転センサと、を備えた駆動装置の製造方法の特徴構成は、前記回転電機と前記回転センサとを組み付ける第一組付工程と、前記回転電機を機械的に駆動して逆起電力を測定する測定工程と、当該逆起電力の情報と前記回転センサからの出力情報とに基づいて、前記回転センサの位置誤差情報を取得する情報取得工程と、前記位置誤差情報を、記憶媒体に記憶させる記憶工程と、前記位置誤差情報を、前記記憶媒体から通信を介して読み出す読出工程と、前記読出工程により読み出された前記位置誤差情報を、前記回転電機を制御する制御装置に書き込む書込工程と、前記制御装置を前記回転電機へ組み付ける第二組付工程と、を有する点にある。
 この特徴構成によれば、第一組付工程後に実施される検査工程において、回転電機を機械的に駆動して得られる逆起電力の情報から回転電機の動作確認を行うのと同時に、情報取得工程において逆起電力の情報と回転センサからの出力情報とに基づいて、当該回転電機と回転センサとの組み合わせについての位置誤差情報を取得する。よって、位相差を求めるための工程を演算によるものとすることができ、特別な作業工程を要することなく回転電機と回転センサとの間の位相差に関する情報を取得することができる。取得された位置誤差情報は記憶工程で記憶媒体に記憶される。そして、記憶媒体に記憶された位置誤差情報は、読出工程において通信を介して記憶媒体から読み出されて書込工程において制御装置に書き込まれ、当該制御装置が第二組付工程において駆動装置に組み付けられる。よって、駆動装置と制御装置との組み付けに際して必要となる当該駆動装置の位置誤差情報を、通信を介して必要な時に取得し、誤りなく適切に当該制御装置に書き込んで駆動装置を製造することができる。よって、駆動装置及び制御装置の搬送や保管等に際して、駆動装置と当該駆動装置の位置誤差情報や当該位置誤差情報を記憶した制御装置とを一対一に対応させるための特別な管理作業が不要であり、高コスト化を招くこともない。制御装置は、回転電機への組み付けに際して書き込まれた位置誤差情報に基づいて、電気的に回転電機と回転センサとの間の位相差を調整することができるので、回転センサの取り付け位置を機械的に調整する必要がなく製造時間を短縮することができるとともに、調整機構も不要となりコストを低減することができる。したがって、回転電機と回転センサとの間の位相差を、簡易且つ低コストに調整して駆動装置を製造することができる。
本発明の実施形態に係る駆動装置の情報管理システムの概略構成を示すブロック図である。 回転電機及び回転センサを備えた駆動装置の部分断面図である。 記憶媒体に記憶される情報の例を示す図である。 回転センサの位置誤差情報の取得方法を説明するための説明図である。 本発明の実施形態に係る駆動装置の製造方法の工程図である。
 以下に、本発明に係る駆動装置2の情報管理システム1の実施形態について、図面を参照して説明する。本実施形態では、一例として、駆動装置2が、回転電機10を備えたハイブリッド車両用の駆動装置である場合を例として説明する。この駆動装置2は、回転電機10と、当該回転電機10のロータ11の回転位置を検出するレゾルバ20とを備えている。回転電機10は制御装置3により制御されて駆動力を出力可能とされている。ここで、回転電機10とレゾルバ20とを組み付ける際には、これらの間に所定の位相差が生じるが、本実施形態に係る駆動装置2では、その後に行われる検査工程S2(図5を参照)で取得される位置誤差情報Pを利用して、制御装置3と一体化された後に当該位相差を調整する構成となっている。このとき、位置誤差情報Pは、記憶媒体4に記憶されるとともに、制御装置3の回転電機10への組み付けに際して記憶媒体4が通信を介して読み取り可能な状態とされた情報管理システム1により管理される。本実施形態に係る駆動装置2を製造する際には、このような情報管理システム1を用いることにより、回転電機10とレゾルバ20との間の位相差を、簡易且つ低コストに調整することが可能となっている。以下では、本実施形態に係る駆動装置2の構成について簡単に説明した後、本実施形態に係る情報管理システム1の構成、及び、当該情報管理システム1を介して管理された位置誤差情報Pを利用した駆動装置2の製造方法について、詳細に説明する。
1.駆動装置の構成
 まず、駆動装置2の構成について説明する。駆動装置2は、図2に示すように、エンジン(不図示)の回転を出力するクランクシャフト等のエンジン出力軸31と一体的に接続された入力軸32と、入力軸32の周囲に配設された回転電機10と、レゾルバ20とを備えている。これらは駆動装置ケース41内に収容されている。なお、駆動装置ケース41は、回転電機収容ケース42及び本体ケース43を備えており、回転電機収容ケース42には回転電機10及びレゾルバ20が収容され、本体ケース43には変速装置(不図示)が収容されている。駆動装置2には更にインバータを備えた制御装置3(図1を参照)が接続され、エンジンの回転駆動力と制御装置3により制御されて駆動される回転電機10の回転駆動力とが、図示しない変速機構、カウンタギヤ機構及び差動歯車機構等を介して駆動輪に伝達される。これにより、駆動装置2を備えたハイブリッド車両は走行することができる。
 図2に示すように、回転電機10は、エンジン出力軸31と一体的に接続された入力軸32に固定されて入力軸32の軸心周りに回転自在に配設されたロータ11と、ロータ11の径方向外側においてロータ11と同軸状に配置されて回転電機収容ケース42に固定されたステータ15とを備える。ロータ11は、ロータコア12と、当該ロータコア12の周方向における複数箇所に配設された永久磁石13と、これらを固定・支持するロータ支持部材14とを備える。ロータ支持部材14と回転電機収容ケース42との間にはベアリング33が設けられている。ロータ11は、ベアリング33により回転電機収容ケース42に対して回転可能に支持されている。ステータ15は、ステータコア16と、当該ステータコア16に巻装されたコイル17とを備える。このような回転電機10は、それぞれ電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。具体的には、回転電機10は、車両の発進時や加速時等には車両の走行用の駆動力を発生させるモータとして機能し、車両の減速のための回生制動時等にはジェネレータとして機能する。
 回転電機10のロータ11に隣接して、レゾルバ20が配設されている。レゾルバ20は、回転電機10のステータ15に対するロータ11の回転位置や回転速度を精密に検出するために設けられている。本実施形態においては、このレゾルバ20が本発明における「回転センサ」に相当する。レゾルバ20は、センサロータ21とセンサステータ22とを備えている。センサロータ21は、ロータ支持部材14に一体的に取り付けられて、回転電機10のロータ11と一体的に回転する。センサステータ22は、センサロータ21の径方向外側においてセンサロータ21と同軸状に配置され、ボルト34により回転電機収容ケース42に固定されている。
 レゾルバ20からの出力信号は、R/Dコンバータ(レゾルバ・ディジタル変換器、不図示)により三相の出力信号、すなわち、A相信号、B相信号及びZ相信号に変換される。図4(b)に示すように、Z相信号においては、レゾルバ20のセンサロータ21が一回転するごとに矩形形状のパルス信号が発生するZ相パルス波形Wzが得られる。また、A相信号及びB相信号においては、極めて短い所定の周期で、かつ、互いに所定の位相差で矩形形状のパルス信号が発生するA相パルス波形Wa及びB相パルス波形Wbが得られる。このようにして得られるパルス波形においては、Z相パルス波形Wzの立ち上がり点を基準(ゼロ点)としてレゾルバ20の電気角が設定されている。具体的には、Z相信号における一つのパルス信号の立ち上がり点を「0°」、当該一つのパルス信号の次のパルス信号の立ち上がり点を「360°」として電気角が設定される。Z相信号の一周期(電気角0°から360°)中においては、A相信号及びB相信号には所定数のパルス信号が含まれるように設定されているため、Z相信号の基準点(ゼロ点)から各時点までに現れたA相及びB相のパルス信号の個数を計測することにより、その回転位置(電気角)を求めることができる。本例では、一例として、Z相信号の一周期中に、1024パルス分のA相信号及びB相信号が含まれている。この例において、Z相信号の基準点(ゼロ点)からある時点までにA相信号及びB相信号がnパルス分だけ現れたとすれば、その時点における回転位置は、電気角「(360°/1024)×n」に相当する回転位置(回転位相)となる。なお、A相信号及びB相信号は所定の位相差を有することから、これらの出力順序に基づいて回転電機10のロータ11の回転方向を判別することができる。
2.情報管理システムの構成
 次に、本実施形態に係る情報管理システム1の構成について説明する。図1に示すように、本実施形態に係る情報管理システム1は、検査装置6と、情報管理サーバ5と、制御情報書込装置7と、を備えている。検査装置6と情報管理サーバ5との間、及び情報管理サーバ5と制御情報書込装置7との間は、それぞれ通信を介して互いに情報の受け渡しを行うことができるように構成されている。本実施形態においては、これらの間が通信ネットワーク8を介して通信可能に接続されている場合を例として説明する。すなわち、この情報管理システム1は、通信ネットワーク8を通信手段として備え、これを介して検査装置6及び制御情報書込装置7から記憶媒体4に対して情報の読み取り及び書き込みを行うことが可能に構成されている。
 検査装置6は、検査工程S2(図5を参照)を実行するための装置である。後述するように、本実施形態においては、検査工程S2では回転電機10を機械的に駆動して取得される逆起電力の情報とレゾルバ20からの出力情報とに基づいて、レゾルバ20の位置誤差情報Pが取得される。また、回転電機10を機械的に駆動して取得される逆起電力の情報に基づいて回転電機10の特性情報Cが取得される。したがって、検査装置6には、例えば、逆起電力を測定するための測定器、レゾルバ20からの出力信号を検出するための検出器、及び、逆起電力の情報とレゾルバ20からの出力信号とに基づいて演算を行って位置誤差情報Pを導出するための演算装置等が含まれる。本実施形態においては、検査装置6は通信ネットワーク8を介して情報管理サーバ5に接続され、検査装置6と情報管理サーバ5とが通信可能となっている。これにより、検査装置6により取得される位置誤差情報P及び特性情報Cは、通信ネットワーク8を介して情報管理サーバ5に伝達可能な状態となっている。なお、検査装置6は更にクライアントコンピュータとして機能する演算処理装置を含み、情報管理サーバ5が備えるホストコンピュータとの間で情報通信を行う構成とすると好適である。
 情報管理サーバ5は、位置誤差情報P及び特性情報Cを記憶して管理するとともに、検査装置6や制御情報書込装置7との間で必要に応じてこれらの情報を受け渡しするための装置である。本実施形態においては、情報管理サーバ5は、情報を記憶可能な記憶媒体4と、ホストコンピュータとして機能する演算処理装置と、を備えている。このような情報管理用の記憶媒体4としては、ハードディスクドライブ、フラッシュメモリ等のように、情報を記憶及び書き換え可能なものが好適に用いられる。そして、通信ネットワーク8を介して検査装置6から伝達される位置誤差情報P及び特性情報Cは、記憶媒体4に書込可能とされている。ここで、図3に概念的に示すように、記憶媒体4には、一又は二以上の駆動装置2のそれぞれに関する個体管理情報Aが、データベース化されて記憶されている。本実施形態においては、それぞれの個体管理情報Aには、管理情報I、位置誤差情報P、及び特性情報Cが含まれている。
 管理情報Iは駆動装置2に備えられた回転電機10の識別符号を含む情報とされている。このような管理情報Iは、回転電機10の製造工程を管理する上で必要な情報である。位置誤差情報P及び特性情報Cは、後述する検査工程S2(図5を参照)において、回転電機10を機械的に駆動することにより得られる逆起電力の情報等に基づいて取得される。なお、検査工程S2は、回転電機10とレゾルバ20との組み付け後に実施される。より具体的には、位置誤差情報Pは、逆起電力の情報としての電圧波形Weの基準点(ゼロ点)と、レゾルバ20からの出力情報としてのパルス信号の基準点(ゼロ点)との差の情報、すなわち電圧波形Weとパルス信号とのゼロ点誤差(図4参照)に関するゼロ点誤差情報Z(図3参照)である。また、特性情報Cは、逆起電力の情報としての電圧波形Weの実効値に関する実効値情報Eを含んだものとされる。詳細については、駆動装置2の製造方法の説明とともに後述する。これらの位置誤差情報P及び特性情報Cは、管理情報Iにより、それぞれの駆動装置2が備える回転電機10の識別符号と関連付けて記憶されている。
 また、本実施形態においては、情報管理サーバ5は通信ネットワーク8を介して制御情報書込装置7に接続され、情報管理サーバ5と制御情報書込装置7とが通信可能となっている。これにより、情報管理サーバ5の記憶媒体4に記憶して管理された位置誤差情報P及び特性情報Cは、通信を介して制御情報書込装置7から読み取り可能な状態とされている。
 制御情報書込装置7は、書込工程S5(図5を参照)を実行するための装置である。制御情報書込装置7は、制御装置3の回転電機10への組み付けに際して位置誤差情報P及び特性情報Cを制御装置3に書き込む。制御情報書込装置7には、例えば、クライアントコンピュータとして機能する演算処理装置や、制御装置3に情報を書き込むためのライタ等が含まれる。クライアントコンピュータは、必要に応じて情報管理サーバ5にアクセスし、各個体管理情報Aに係る管理情報I(識別符号を含む)と、所望の駆動装置2が備える回転電機10に係る識別符号とに基づいて、当該駆動装置2に関する個体管理情報Aを取得する。ライタは、取得された個体管理情報Aに含まれる位置誤差情報P及び特性情報Cを、制御装置3が備えるRAMやROM等の記憶媒体に書き込む。
 上記のとおり、検査装置6と情報管理サーバ5との間、及び情報管理サーバ5と制御情報書込装置7との間は、それぞれ通信ネットワーク8を介して互いに情報の受け渡しを行うことができるように構成されている。ここで、通信ネットワーク8による通信方式としては、有線通信及び無線通信のいずれの方式を採用しても良い。有線通信方法を採用する場合には、例えば電話線や電力線、光ケーブル等により構成された公知の有線通信網を用いることができる。また、無線通信方法を採用する場合には、例えば携帯電話網や無線LAN(Local Area Network)等の公知の無線通信網を用いることができる。なお、有線通信及び無線通信を組み合わせて利用しても良い。この情報管理システム1では、検査装置6、情報管理サーバ5、及び制御情報書込装置7は、それぞれ互いに異なる場所(別作業ライン、別工場、別会社等)に設置することができる。
3.駆動装置の製造方法
 次に、本実施形態に係る駆動装置2の製造方法の概要について説明する。図5に示すように、本実施形態に係る駆動装置2は、第一製造ラインL1での製造工程と、第一製造ラインL1とは異なる場所に設置された第二製造ラインL2での製造工程と、を経て製造される。第一製造ラインL1では、センサ組付工程S1と、検査工程S2と、記憶工程S3と、が行なわれる。一方、第二製造ラインL2では、読出工程S4と、書込工程S5と、制御装置組付工程S6と、が行なわれる。本実施形態においては、センサ組付工程S1が本発明における「第一組付工程」に相当し、制御装置組付工程S6が本発明における「第二組付工程」に相当する。情報管理システム1は、第一製造ラインL1での製造工程と第二製造ラインL2での製造工程との間に介在し、一又は二以上の駆動装置2に関する個体管理情報Aをそれぞれ個別に適切に管理するとともに、制御情報書込装置7からの要求に応じて、当該要求に対応する個体管理情報Aを制御情報書込装置7に提供する。
3-1.第一製造ラインでの製造工程
 第一製造ラインL1での製造工程は、主として駆動装置2の組み付けを行う工程である。センサ組付工程S1では、回転電機10とレゾルバ20とが組み付けられる。回転電機10とレゾルバ20とは、公知の方法を利用してこれらの軸心が一致するように、また、後述する、回転電機10及びレゾルバ20のそれぞれの基準点としてのゼロ点(電気角が0°となる点)の位置が略等しくなるように組み付けられる。この段階では、回転電機10とレゾルバ20のゼロ点位置は略等しいものの、完全には一致しておらず、所定の組付誤差を有する状態である。また、回転電機10やレゾルバ20は、永久磁石13やコイル17の配置に関して僅かに不均一であること等により、それぞれ固有の機械的誤差を有する。そのため、当該組付誤差や機械的誤差に起因して、回転電機10とレゾルバ20との間に位相差が生じてしまう。そこで、回転電機10のステータ15に対してロータ11の回転位置を精密に検出して回転電機10の正確な回転速度制御を行うことを可能とするため、上記位相差を調整する作業が必要となる。本実施形態においては、逐次位相差を確認しながら回転電機10に対してレゾルバ20を周方向に回転させる等の機械的な調整作業を行うのではなく、以下に説明するようにして位相差を調整する方法を採用している。
 検査工程S2では、検査装置6を用いて、回転電機10を機械的に駆動して取得される逆起電力の情報と、レゾルバ20からの出力情報とに基づいて、レゾルバ20の位置誤差情報Pが取得される。なお、逆起電力の測定は、回転電機10とレゾルバ20との組み付け後に、これらが正常に動作することを確認するために通常実施される検査項目であり、位相差を求めるために追加される特別な工程ではない。検査工程S2は、測定工程S2aと情報取得工程S2bとを有する。
 測定工程S2aでは、回転電機10を機械的に駆動することにより逆起電力が測定され、逆起電力の情報が取得される。ここで、逆起電力の情報としては、図4(a)に実線で示すような正弦波形状の電圧波形Weが得られる。このようにして得られる電圧波形Weにおいては、ゼロクロスポイントを基準点(ゼロ点)として回転電機10の電気角が設定される。具体的には、一つのゼロクロスポイントを「0°」、当該ゼロクロスポイントから1波長分経過した時点におけるゼロクロスポイントを「360°」として電気角が設定される。測定工程S2aでは更に、レゾルバ20からの出力情報が取得される。ここで、レゾルバ20からの出力情報としては、少なくとも上述したようなZ相パルス波形Wz及びA相パルス波形Waが取得される(図4(b)を参照)。
 情報取得工程S2bでは、検査工程S2で取得された逆起電力の情報とレゾルバ20からの出力情報とに基づいて、レゾルバ20の位置誤差情報Pが取得される。上述したように、逆起電力の情報として得られる電圧波形We及びレゾルバ20からの出力情報として得られるZ相パルス波形Wzは、それぞれ電気角が0°となる基準点(ゼロ点)を有している。本実施形態においては、これらの基準点(ゼロ点)間の差(差分)を誤差とし、当該誤差(差分)に関するゼロ点誤差情報Zが位置誤差情報Pとして取得される。具体的には、回転電機10からの正弦波形状の電圧波形Weのゼロ点と、レゾルバ20からのZ相パルス波形Wzのゼロ点と、の間に現れるA相パルス波形Waのパルス信号の個数(或いは、これに相当する電気角の大きさ)に対応する位相差の情報が、ゼロ点誤差情報Zすなわち位置誤差情報Pとして取得される。
 本実施形態においては、情報取得工程S2bでは更に、回転電機10を機械的に駆動した際の逆起電力の情報としての電圧波形Weに基づいて、回転電機10の特性情報Cが取得される。具体的には、逆起電力の情報としての電圧波形Weに基づいてその実効値が測定され、当該電圧波形Weの実効値に関する実効値情報Eを含むものとして特性情報Cが取得される。図4(a)には、他の回転電機10を機械的に駆動した際の逆起電力の情報としての電圧波形We’を破線で示した。この例の場合、電圧波形Weに対応する実効値に対して電圧波形We’に対応する実効値は小さいものとなる。そのため、これらの回転電機10がそれぞれ駆動装置2に組み付けられて動作する際には、同じ大きさの回転駆動力を出力するためには、後者の方がより大きな電流値に基づいて駆動される必要があることになる。このように、特性情報Cとして実効値情報Eを取得して記憶媒体4に記憶させておけば、回転電機10が個々に異なる特性を有していたとしても、特性情報Cとしての実効値情報Eを利用することにより、駆動装置2が動作する際の回転電機10の制御をより精密なものとすることができる。
 記憶工程S3では、情報取得工程S2bで取得された位置誤差情報P及び特性情報Cが記憶媒体4に記憶される。本実施形態においては、検査装置6が備えるクライアントコンピュータが通信ネットワーク8を介して情報管理サーバ5にアクセスし、ホストコンピュータを介して位置誤差情報P及び特性情報Cを管理情報Iとともに記憶媒体4に書き込む。これにより、これらの情報が記憶媒体4に記憶される。なお、記憶工程S3までが終了した時点では、駆動装置2としては完成しているものの、上述したような、組付誤差等に起因する回転電機10とレゾルバ20との間の位相差は依然として残ったままの状態である。駆動装置2は、この状態で第二製造ラインL2へ搬送される。
3-2.第二製造ラインでの製造工程
 第二製造ラインL2での製造工程は、主として駆動装置2と制御装置3との組み付けを行う工程である。読出工程S4では、位置誤差情報P及び特性情報Cを含む個体管理情報Aが、通信ネットワーク8を介して情報管理サーバ5の記憶媒体4から読み出される。本実施形態においては、制御情報書込装置7が備えるクライアントコンピュータが通信ネットワーク8を介して情報管理サーバ5にアクセスし、駆動装置2に組み付けられた回転電機10の識別符号を指定して、ホストコンピュータを介して当該回転電機10の識別符号と関連付けて記憶された個体管理情報Aを取得する。ここで、情報管理サーバ5の記憶媒体4内においては、各回転電機10の識別符号は、管理情報Iに含まれた状態で記憶されている。これにより、第二製造ラインL2に供される駆動装置2が備える回転電機10とレゾルバ20との組み合わせについての位置誤差情報P、及び当該回転電機10に関する特性情報Cが、誤りなく適切に読み出される。
 書込工程S5では、読出工程S4において読み出された位置誤差情報P及び特性情報Cが、駆動装置2が備える回転電機10を制御する制御装置3に書き込まれる。本実施形態においては、制御情報書込装置7により、位置誤差情報P及び特性情報Cが、制御装置3が備えるRAMやROM等の記憶媒体に書き込まれる。そして、制御装置3は、位置誤差情報P及び特性情報Cが書き込まれた状態で、制御装置組付工程S6において回転電機10へ組み付けられる。以上の工程を経ることで、組付誤差等に起因する回転電機10とレゾルバ20との間の位相差が、電気的に解消された状態の駆動装置2が完成する。
 すなわち、このようにして製造された駆動装置2では、制御装置3が位置誤差情報Pに基づいてレゾルバ20の出力信号を補正して用いることにより、回転電機10とレゾルバ20との間の位相差の調整が行われる。具体的には、制御装置3において、情報取得工程S2bで取得されたゼロ点誤差情報Zの分だけ、レゾルバ20からのZ相パルス波形Wzのゼロ点(基準点)位置がオフセットされる。これにより、電気的には回転電機10とレゾルバ20とは略完全に同位相となるので、レゾルバ20により、回転電機10のロータ11の回転位置(回転位相)を高い精度で検出することが可能となる。したがって、制御装置3による回転電機10の回転速度を高い精度で制御することが可能となる。このとき、制御装置3は、受け取った位置誤差情報Pに基づいて電気的に回転電機10とレゾルバ20との間の位相差を調整することができるので、レゾルバ20の取り付け位置を機械的に調整する必要がなく製造時間を短縮することができる。また、そのような機械的な調整を行うための調整機構も不要となるので、製造コストを低減することができる。
 ここで、位置誤差情報P及び特性情報Cは、通信ネットワーク8を介して検査装置6から情報管理サーバ5が備える記憶媒体4に書き込み可能とされているので、検査工程S2を実行した際に検査装置6により取得された位置誤差情報P及び特性情報Cを、容易且つ適切に記憶媒体4に記憶させることができる。従って、検査工程S2において回転電機10とレゾルバ20との組み合わせについての位置誤差情報P及び特性情報Cを管理する作業が簡易なものとなり、低コスト化が可能となっている。また、そのようにして記憶媒体4に記憶された位置誤差情報P及び特性情報Cは、制御装置3の回転電機10への組み付けに際して、制御情報書込装置7により通信ネットワーク8を介して読み取り可能とされているので、必要に応じて容易に位置誤差情報P及び特性情報Cを取得することができる。そして、制御装置3が組み付けられる駆動装置2に関する位置誤差情報P及び特性情報Cを誤りなく適切に当該制御装置3に書き込むことができる。よって、駆動装置2及び制御装置3の搬送や保管等に際して、駆動装置2と当該駆動装置2の位置誤差情報P等や当該位置誤差情報P等を記憶した制御装置3とを一対一に対応させるための特別な管理作業が不要であり、高コスト化を招くこともない。したがって、回転電機10とレゾルバ20との間の位相差を、簡易且つ低コストに調整することが可能となっている。
 また、例えば車両の出荷後において駆動装置2が故障した場合にも、新たな駆動装置2に対応する個体管理情報A(位置誤差情報Pを含む)を通信ネットワーク8を介して記憶媒体4から読み出し、制御装置3へ位置誤差情報Pを移行させて上書きすることができる。また例えば車両の出荷後において制御装置3が故障した場合にも、正常に動作可能なままの駆動装置2に対応する個体管理情報A(位置誤差情報Pを含む)を、通信ネットワーク8を介して記憶媒体4から読み出し、新たな制御装置3へ位置誤差情報Pを移行させて書き込むことができる。このようにして回転電機10とレゾルバ20との間の位相差を調整することができるので、補修作業を容易にすることもできる。
〔その他の実施形態〕
(1)上記の実施形態においては、記憶媒体4に記憶される個体管理情報Aには、位置誤差情報Pとしてのゼロ点誤差情報Zと、特性情報Cとしての実効値情報Eと、が含まれている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、個体管理情報Aが、例えば位置誤差情報Pや特性情報C以外の情報を更に含んだ構成とすることも、本発明の好適な実施形態の一つである。また、個体管理情報Aが、位置誤差情報Pとしてゼロ点誤差情報Z以外の情報や、特性情報Cとして実効値情報E以外の情報を更に含んだ構成とすることも、本発明の好適な実施形態の一つである。また、個体管理情報Aが、位置誤差情報Pとしてのゼロ点誤差情報Zのみを含み、特性情報Cとしての実効値情報Eを含まない構成とすることも、本発明の好適な実施形態の一つである。
(2)上記の実施形態においては、記憶媒体4に記憶される個体管理情報Aに含まれる管理情報Iが、駆動装置2に備えられた回転電機10の識別符号を含む情報とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば回転電機10とレゾルバ20との組み合わせが、一つの駆動装置2について一組しかない場合には、管理情報Iが、当該一組の回転電機10及びレゾルバ20を備えた駆動装置2の識別符号を含む情報とされ、当該駆動装置2の識別符号に基づいて制御情報書込装置7が必要な個体管理情報Aを取得する構成とすることも、本発明の好適な実施形態の一つである。
(3)上記の実施形態においては、検査装置6と情報管理サーバ5との間、及び情報管理サーバ5と制御情報書込装置7との間の双方が、通信ネットワーク8を介して通信可能に構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、検査装置6と情報管理サーバ5との間、及び情報管理サーバ5と制御情報書込装置7との間の一方又は双方が、ネットワークを構成せずに一対一の通信を行う通信手段を介して通信可能に接続された構成とすることも、本発明の好適な実施形態の一つである。このような一対一の通信を行う通信手段には有線によるものと無線によるものの双方が含まれる。また、本発明の実施形態は、検査装置6と情報管理サーバ5との間、及び情報管理サーバ5と制御情報書込装置7との間の双方が通信を介して接続されたものに限定されない。すなわち、少なくとも回転電機10と制御装置3との組み付けに際して、通信を介して記憶媒体4に記憶された個体管理情報Aが読み取り可能な状態となっていれば良く、例えば検査装置6と情報管理サーバ5との間は通信により接続されていない構成とすることも、本発明の好適な実施形態の一つである。この場合、検査装置6により取得される位置誤差情報P及び特性情報Cは、例えばハードディスク、フラッシュメモリ、DVD-ROM、及びCD-ROM等の記憶媒体に記録された状態で、情報管理サーバ5に伝達される構成とすることも、本発明の好適な実施形態の一つである。
(4)上記の実施形態においては、書込工程S5において位置誤差情報P及び特性情報Cが制御装置3に書き込まれた後で、当該位置誤差情報P及び特性情報Cが書き込まれた状態の制御装置3が、制御装置組付工程S6において回転電機10へ組み付けられる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、書込工程S5と制御装置組付工程S6との順序は任意であり、制御装置3を回転電機10へ組み付けた後に、当該制御装置3が備えるRAMやROM等の記憶媒体に位置誤差情報P及び特性情報Cを書き込む構成とすることも、本発明の好適な実施形態の一つである。
(5)上記の実施形態においては、駆動装置2が、回転電機10を備えたハイブリッド車両用の駆動装置である場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、回転電機10と当該回転電機10のロータ11の回転位置を検出する回転センサとを備えた駆動装置であれば、例えば電気自動車等のその他の車両用の駆動装置や、車両用以外の各種の駆動装置にも適用することができる。
 本発明は、回転電機と当該回転電機のロータの回転位置を検出する回転センサとを備えた駆動装置の情報管理システム及びそのような駆動装置の製造方法に好適に利用可能である。
1    情報管理システム
2    駆動装置
3    制御装置
4    記憶媒体
5    情報管理サーバ
6    検査装置
7    制御情報書込装置
8    通信ネットワーク(通信)
10   回転電機
11   ロータ
20   レゾルバ(回転センサ)
P    位置誤差情報
Z    ゼロ点誤差情報
C    特性情報
E    実効値情報
We   電圧波形
Wz   Z相パルス波形(パルス信号)
S1   センサ組付工程(第一組付工程)
S2   検査工程
S2a  測定工程
S2b  情報取得工程
S3   記憶工程
S4   読出工程
S5   書込工程
S6   制御装置組付工程(第二組付工程)

Claims (7)

  1.  回転電機と当該回転電機のロータの回転位置を検出する回転センサとを備えた駆動装置の情報管理システムであって、
     前記回転電機と前記回転センサとの組み付け後に前記回転電機を機械的に駆動して逆起電力を測定する検査工程において、当該逆起電力の情報と前記回転センサからの出力情報とに基づいて得られる前記回転センサの位置誤差情報を記憶する記憶媒体を備え、
     前記記憶媒体が、前記回転電機を制御する制御装置の前記回転電機への組み付けに際して通信を介して読み取り可能な状態で設けられている駆動装置の情報管理システム。
  2.  前記位置誤差情報は、前記逆起電力の情報としての電圧波形の基準点と、前記回転センサからの出力情報としてのパルス信号の基準点との差の情報である請求項1に記載の駆動装置の情報管理システム。
  3.  前記検査工程では、更に、前記回転電機を機械的に駆動した際の逆起電力の情報に基づいて前記回転電機の特性情報が取得され、
     前記記憶媒体が、前記特性情報を更に記憶する請求項1又は2に記載の駆動装置の情報管理システム。
  4.  前記検査工程は、前記逆起電力の情報としての電圧波形の実効値を測定する工程を含み、前記回転電機の特性情報は、当該電圧波形の実効値の情報を含む請求項3に記載の駆動装置の情報管理システム。
  5.  前記記憶媒体を含む情報管理サーバを備え、
     前記情報管理サーバは、前記制御装置の前記回転電機への組み付けに際して前記位置誤差情報を前記制御装置に書き込む制御情報書込装置との間で通信可能に構成され、
     前記記憶媒体が通信を介して前記制御情報書込装置から読み取り可能な状態とされている請求項1から4のいずれか一項に記載の駆動装置の情報管理システム。
  6.  前記情報管理サーバは、更に前記検査工程を実行する検査装置との間で通信可能に構成され、前記検査装置により取得された前記位置誤差情報が通信を介して前記記憶媒体に書き込み可能な状態とされている請求項5に記載の駆動装置の情報管理システム。
  7.  回転電機と、前記回転電機のロータの回転位置を検出する回転センサと、を備えた駆動装置の製造方法であって、
     前記回転電機と前記回転センサとを組み付ける第一組付工程と、
     前記回転電機を機械的に駆動して逆起電力を測定する測定工程と、
     当該逆起電力の情報と前記回転センサからの出力情報とに基づいて、前記回転センサの位置誤差情報を取得する情報取得工程と、
     前記位置誤差情報を、記憶媒体に記憶させる記憶工程と、
     前記位置誤差情報を、前記記憶媒体から通信を介して読み出す読出工程と、
     当該読出工程により読み出された前記位置誤差情報を、前記回転電機を制御する制御装置に書き込む書込工程と、
     前記制御装置を前記回転電機へ組み付ける第二組付工程と、
    を有する駆動装置の製造方法。
PCT/JP2010/052418 2009-03-31 2010-02-18 駆動装置の情報管理システム及び駆動装置の製造方法 WO2010113556A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112010000429.3T DE112010000429B4 (de) 2009-03-31 2010-02-18 Informationsmanagementsystem für eine Antriebsvorrichtung und Verfahren zur Herstellungder Antriebsvorrichtung
CN2010800058869A CN102301569B (zh) 2009-03-31 2010-02-18 驱动装置的信息管理系统及驱动装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-087926 2009-03-31
JP2009087926A JP5282960B2 (ja) 2009-03-31 2009-03-31 駆動装置の情報管理システム及び駆動装置の製造方法

Publications (1)

Publication Number Publication Date
WO2010113556A1 true WO2010113556A1 (ja) 2010-10-07

Family

ID=42785308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052418 WO2010113556A1 (ja) 2009-03-31 2010-02-18 駆動装置の情報管理システム及び駆動装置の製造方法

Country Status (5)

Country Link
US (1) US8326562B2 (ja)
JP (1) JP5282960B2 (ja)
CN (1) CN102301569B (ja)
DE (1) DE112010000429B4 (ja)
WO (1) WO2010113556A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219852A (ja) * 2012-04-05 2013-10-24 Mitsubishi Electric Corp トルク制御システム
JP5720644B2 (ja) * 2012-08-29 2015-05-20 トヨタ自動車株式会社 車両
CN104660120B (zh) * 2015-02-09 2017-12-05 长城汽车股份有限公司 一种电机零位检测方法及装置
DE102017223491A1 (de) 2017-12-21 2019-06-27 Audi Ag Elektromaschinenanordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340110A (ja) * 1998-04-27 1999-12-10 Samsung Electronics Co Ltd ファイルサ―バを利用した自動化システムとその制御方法
JP2002342704A (ja) * 2001-05-14 2002-11-29 Omron Corp 仮想id装置およびそのバーコード付加データ格納方法
JP2003264991A (ja) * 2002-03-08 2003-09-19 Es Toshiba Engineering Kk レゾルバ制御の方法とその装置
JP2006216981A (ja) * 2004-03-01 2006-08-17 Omron Corp 部品実装基板用の検査方法および検査システム、部品実装基板の製造方法
JP2007336707A (ja) * 2006-06-15 2007-12-27 Nissan Motor Co Ltd モータ制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110715A (ja) 1984-06-26 1986-01-18 Fanuc Ltd 絶対位置検出方式
JP2859270B2 (ja) 1987-06-11 1999-02-17 旭光学工業株式会社 カメラの視線方向検出装置
JP2702179B2 (ja) 1988-09-30 1998-01-21 株式会社芝浦製作所 基板整列装置
US5634448A (en) 1994-05-31 1997-06-03 Caterpillar Inc. Method and structure for controlling an apparatus, such as a fuel injector, using electronic trimming
DE19621901C2 (de) 1996-05-31 2001-12-06 Bosch Gmbh Robert Verfahren und Vorrichtung mit Datenträger
ATE353983T1 (de) * 2000-03-31 2007-03-15 Corus Aluminium Voerde Gmbh Druckgusserzeugnis aus aluminiumlegierung
JP2005033959A (ja) * 2003-07-10 2005-02-03 Fanuc Ltd モータ、及びモータの制御方法
DE102004008321B3 (de) * 2004-02-20 2005-11-17 Fette Gmbh Verfahren und Vorrichtung zur Qualitätsüberwachung bei der Herstellung von Tabletten
US20050209822A1 (en) 2004-03-01 2005-09-22 Masato Ishiba Inspection method and system and production method of mounted substrate
JP2005295639A (ja) 2004-03-31 2005-10-20 Nissan Motor Co Ltd レゾルバの取付方法及び取付装置
US7423396B2 (en) 2004-06-11 2008-09-09 International Rectifier Corporation Hall sensor alignment for BLDC motor
JP2009232551A (ja) * 2008-03-21 2009-10-08 Aisin Aw Co Ltd 駆動装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340110A (ja) * 1998-04-27 1999-12-10 Samsung Electronics Co Ltd ファイルサ―バを利用した自動化システムとその制御方法
JP2002342704A (ja) * 2001-05-14 2002-11-29 Omron Corp 仮想id装置およびそのバーコード付加データ格納方法
JP2003264991A (ja) * 2002-03-08 2003-09-19 Es Toshiba Engineering Kk レゾルバ制御の方法とその装置
JP2006216981A (ja) * 2004-03-01 2006-08-17 Omron Corp 部品実装基板用の検査方法および検査システム、部品実装基板の製造方法
JP2007336707A (ja) * 2006-06-15 2007-12-27 Nissan Motor Co Ltd モータ制御装置

Also Published As

Publication number Publication date
DE112010000429B4 (de) 2021-12-23
DE112010000429T5 (de) 2012-06-21
JP2010239842A (ja) 2010-10-21
CN102301569B (zh) 2013-12-25
CN102301569A (zh) 2011-12-28
US20100250181A1 (en) 2010-09-30
JP5282960B2 (ja) 2013-09-04
US8326562B2 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
WO2009116187A1 (ja) 駆動装置及びその製造方法
JP3228333U (ja) ロータリエンコーダ
CN102017391B (zh) 同步电机中偏置角的确定
CN104114980B (zh) 用于电机的角度测量系统的校准和监控
JP4783752B2 (ja) レゾルバ
US7462999B2 (en) Brushless servo motor tester
US9372481B2 (en) Encoder, motor with encoder, servo system, and signal processing method for encoder
CN108885125A (zh) 电机系统
CN103649686B (zh) 用于检验分解器输出信号可信度的方法
JP5282960B2 (ja) 駆動装置の情報管理システム及び駆動装置の製造方法
US8466646B2 (en) Apparatus and method for determining angular position
JP2005037389A (ja) 電気モータのトルク測定装置
US9413215B2 (en) Transmission assembly with integrated motor position sensor
KR101720358B1 (ko) 두 개의 고정자 및 두 개의 회전자를 구비한 전기식 구동 장치
CN111433568B (zh) 用于确定围绕至少一个旋转轴线旋转的旋转元件的至少一个旋转特性的传感器系统
CN114079411A (zh) 一种伺服电机的在线自动辨识的方法
US9114712B2 (en) Method and system for determining state variables of an electric motor for driving a motor vehicle
CN105576913A (zh) 伺服电机定转子间偏心量检测方法、装置和设备
CN212513104U (zh) 编码器校准系统
KR102342745B1 (ko) 자율 주행차량용 고정밀 휠속도 센서 장치
CN102332857A (zh) 基于磁环及霍尔传感器的pet-ct机轮毂电机位置检测方法
EP3794723A1 (en) Calibration and diagnosis device and method for electrical machines
CN101594107A (zh) 混合动力汽车电机转子定位系统及其定位方法
EP2430744B1 (en) Method and device for controlling a brushless motor
CN113659910A (zh) 一种伺服电机校准方法及应用其的伺服电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005886.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010000429

Country of ref document: DE

Ref document number: 1120100004293

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758333

Country of ref document: EP

Kind code of ref document: A1