WO2010126063A1 - 燃料電池用ガス拡散層 - Google Patents

燃料電池用ガス拡散層 Download PDF

Info

Publication number
WO2010126063A1
WO2010126063A1 PCT/JP2010/057502 JP2010057502W WO2010126063A1 WO 2010126063 A1 WO2010126063 A1 WO 2010126063A1 JP 2010057502 W JP2010057502 W JP 2010057502W WO 2010126063 A1 WO2010126063 A1 WO 2010126063A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
layer
water
diffusion layer
fuel cell
Prior art date
Application number
PCT/JP2010/057502
Other languages
English (en)
French (fr)
Inventor
陽三 奥山
杉野 学
屋 隆了
勲 江浜
一史 児玉
加藤 博
温雄 野見
隆文 難波
朋幸 高根
Original Assignee
日産自動車株式会社
ジャパンゴアテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ジャパンゴアテックス株式会社 filed Critical 日産自動車株式会社
Priority to EP10769761A priority Critical patent/EP2426762A4/en
Priority to JP2011511421A priority patent/JP4819981B2/ja
Priority to CA2760631A priority patent/CA2760631C/en
Priority to US13/265,088 priority patent/US20120034548A1/en
Priority to CN201080019534.9A priority patent/CN102422469B/zh
Publication of WO2010126063A1 publication Critical patent/WO2010126063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a single cell is stacked and connected to form a fuel cell stack.
  • the fuel cell stack can function as power generation means that can be used for various applications.
  • the separator exhibits a function of electrically connecting adjacent single cells as described above.
  • a gas flow path is usually provided on the surface of the separator facing the MEA. The gas flow path functions as gas supply means for supplying fuel gas and oxidant gas to the anode and the cathode, respectively.
  • water is generated at the cathode side of each cell constituting the fuel cell when generating power from the fuel cell.
  • the generated water is discharged outside the fuel cell without being consumed by the cathode reaction.
  • Patent Document 1 discloses a technique for improving the water absorption capacity of the hydrogen electrode reaction layer (anode side catalyst layer) by using a water absorbing material. As a result, surplus water remaining in the air electrode reaction layer (cathode side catalyst layer) can be moved to the anode side and absorbed, so that freezing in the gas passage of the air electrode reaction layer during low temperature operation can be prevented, and in a low temperature environment In this case, the fuel cell system can be easily started.
  • Patent Document 2 discloses a membrane in which an aqueous dispersion layer having a larger pore volume than an air electrode reaction layer is provided between an air electrode reaction layer (cathode side catalyst layer) and an air diffusion layer (gas diffusion layer).
  • An electrode assembly is disclosed. According to this disclosure, by dispersing the water in the gas passage of the air electrode reaction layer into the pores, freezing in the gas passage of the air electrode reaction layer during low temperature operation can be prevented, thereby reducing the low temperature environment. It is said that the fuel cell system can be started up easily even underneath. It is also described that the water-dispersed layer can adopt a form in which pores having a pore diameter of 1 nm to 1 ⁇ m are contained in an amount of 0.3 ⁇ l / cm 2 or more.
  • Patent Document 3 a polymer membrane electrode assembly in which activated carbon having the ability to suppress the generation of radicals in the intermediate layer arranged in the catalyst layer has been reported ( Patent Document 3).
  • the invention described in Patent Document 3 is characterized in that activated carbon having hydrogen peroxide production suppression / resolution is used for the intermediate layer. That is, hydrogen peroxide generated by the side reaction can be decomposed into water and oxygen by blending activated carbon, thereby enabling stable operation in long-term continuous operation (paragraphs “0055” to “0056”). ).
  • an object of the present invention is to provide means for further improving the startability (subzero startability) of a battery in a low temperature environment in a gas diffusion layer used for a fuel cell.
  • the present inventors have intensively studied to solve the above problems. As a result, the present inventors have found that the presence of micropores that prevent freezing of water even in a low temperature environment is important for preventing freezing of water in the gas passage. That is, it has been found that by increasing the pore volume of the micropores in the gas diffusion layer, freezing of water in the gas passage can be suppressed, and as a result, the sub-zero startability of the battery can be improved.
  • the pore volume of micropores is 2.0 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more.
  • 6 is a graph showing the relationship between the pore volume of micropores and the power generation duration ( ⁇ 20 ° C., 80 mA / cm 2 ) in the evaluation single cells produced in Examples 6 to 8.
  • 6 is a graph showing the relationship between the micropore pore volume and the power generation duration ( ⁇ 20 ° C., 100 mA / cm 2 ) in the evaluation single cells produced in Examples 6 to 8.
  • Gas diffusion layer is a gas diffusion layer for a fuel cell (hereinafter, also simply referred to as “gas diffusion layer”) having a pore volume of micropores of 2.0 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more. .
  • the gas diffusion layer of the present invention has a pore volume of micropores exceeding a specific value.
  • the pore volume of the micropores may be achieved by any method.
  • a desired pore volume is achieved by blending a sufficient amount of a water-absorbing material having micropores (pore diameter of 2 nm or less). For this reason, the number of pores that prevent freezing of water is increased even at a temperature below freezing point, particularly at ⁇ 20 ° C., and the power generation duration time can be extended even when starting below zero. Therefore, it is possible to start up independently from a lower temperature, and as a result, it is possible to start up in a short time.
  • the reason why the duration of power generation during starting below zero can be lengthened by the gas diffusion layer having the micropore pore volume as described above is not clear, but is presumed as follows.
  • this invention is not limited by the following guess. That is, in a fuel cell in a low temperature environment such as below freezing point, the water generated in the cathode catalyst layer is absorbed by the place where the electrolyte exists, that is, the cathode or anode catalyst layer, the electrolyte membrane or the like. However, when the capacity is exceeded, it overflows into the pores of the catalyst layer, freezes, and the reaction gas diffusion path is blocked, resulting in a decrease in the power generation performance of the fuel cell.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) according to an embodiment of the present invention.
  • the PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the adjacent catalyst layers (3a, 3c) and gas diffusion layers (4a, 4c) constitute gas diffusion electrodes (anode gas diffusion electrode 8a and cathode gas diffusion electrode 8c).
  • the solid polymer electrolyte membrane 2 and the pair of gas diffusion electrodes (8a, 8c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
  • a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • gas diffusion layers (4a, 4c) of the present embodiment will be described in detail.
  • the “micropore pore volume” means the sum of the pore volumes of the micropores present in all the layers constituting the gas diffusion layer.
  • the “micropore pore volume” refers to the pore volume of the micropores in the microporous layer and the micropores in the base material layer. It refers to the total pore volume with the pore volume.
  • the nitrogen adsorption method is used, and the pore volume of the micropores is calculated from the adsorption isotherm by the MP method.
  • the lower limit value of the micropore diameter is a lower limit value measurable by the nitrogen adsorption method, that is, 0.42 nm or more. Since the micropores in the water-absorbing material may be clogged in the gas diffusion layer production process, the pore volume of the micropores contained in the produced gas diffusion layer is measured by the above method. In addition, as a specific evaluation condition of the pore volume of the micropore, a sample sample of a gas diffusion layer having a size of 5 mm ⁇ 5 mm (a plurality of sheets) and a total mass of about 0.2 g, which is pretreated under a vacuum of 300 ° C.
  • the pore volume of the micropores of the gas diffusion layer By setting the pore volume of the micropores of the gas diffusion layer to 2.0 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more, water generated in the cathode catalyst layer during power generation can be absorbed into the micropores, and the cathode Excess water remaining in the vicinity of the catalyst layer can be efficiently removed.
  • the water in the micropores is prevented from freezing even at a temperature below freezing, particularly in an environment of ⁇ 20 ° C.
  • the power generation continuation time increases, and the fuel cell can be started up in a short time even in a low temperature environment.
  • the pore volume of the micropores is preferably 2.6 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more, more preferably 3.6 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more. More preferably, it is 5.1 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more.
  • the pore volume of the micropores in the gas diffusion layer is preferably as large as possible, and the upper limit is not particularly set, but preferably the pore volume of the micropores in the gas diffusion layer is 5.0 ⁇ 10 ⁇ 3 cm 3 / cm 2 or less, more preferably 4.0 ⁇ 10 ⁇ 3 cm 3 / cm 2 or less.
  • the pore volume of the micropores of the gas diffusion layer of 2.0 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more is blended with a water-absorbing material having micropores (pore diameter of 2 nm or less) in the gas diffusion layer.
  • a water-absorbing material having micropores pore diameter of 2 nm or less
  • the water-absorbing material that can be used is not particularly limited as long as it exhibits water absorption and can realize a desired pore volume of micropores, and examples thereof include activated carbon, zeolite, silica gel, and alumina. Among them, it is preferable to use activated carbon because it can be obtained relatively easily, the proportion of micropores is large, and since the desorption property of water vapor is good, the purge time when the vehicle is stopped can be shortened. .
  • the shape of the water-absorbing material is not particularly limited, but is preferably particulate or fibrous.
  • the shape of the particles is not particularly limited, and may take any structure such as powder, sphere, rod, needle, plate, column, indefinite shape, flake shape, spindle shape.
  • the particle diameter of the water-absorbing material is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 7 ⁇ m, and still more preferably 0.3 to 5 ⁇ m. If it is in such a range, the diffusion of gas and water in the gaps (holes) generated between the particles will be good, and the contact property with the catalyst layer can be improved.
  • the fiber diameter (thickness) is not particularly limited. What is necessary is just to select in consideration of the diffusibility and mechanical strength of the gas and water in the clearance gap (hole) produced between carbon fibers.
  • FIGS. 2A to 2D and FIGS. 3A and 3B are schematic views showing a gas diffusion layer using a particulate water-absorbing material according to various embodiments of the present invention.
  • 4A and 4B are schematic views showing a gas diffusion layer using a fibrous water-absorbing material, which is another embodiment of the present invention.
  • the configuration of the gas diffusion layer including various water-absorbing materials of the present invention will be described with reference to these drawings.
  • the gas diffusion layer further includes a conductive carrier, and a water absorbing material is supported on the conductive carrier.
  • a conductive carrier By including the conductive carrier, the contact resistance with the adjacent member can be significantly reduced, and the conductivity of the electrode is improved.
  • the shape of the conductive carrier is not particularly limited, but is preferably particulate or fibrous.
  • the gas diffusion layer has a fine structure in which the water absorbing material is supported on the particulate conductive carrier. It is more preferable to have a porous layer.
  • the gas diffusion layer is formed by laminating the microporous layer on a base material layer including a gas diffusion base material.
  • the gas diffusion layer includes a water absorbing material and a fibrous conductive carrier that supports the water absorbing material
  • the gas diffusion layer is formed on the gas diffusion base material composed of the fibrous conductive carrier. It is more preferable to have a base material layer on which is supported. More preferably, in the above embodiment, the gas diffusion layer is formed by laminating a microporous layer containing a particulate conductive carrier on the base material layer.
  • FIG. 2A is a schematic diagram showing a gas diffusion layer including a particulate water-absorbing material and a particulate conductive carrier, which is an embodiment of the present invention.
  • the gas diffusion layer 4 includes a water absorbing material 41, a binder 42, a particulate conductive carrier (hereinafter also referred to as “conductive carrier particles”) 43 a, and a microporous film 44.
  • conductive carrier particles hereinafter also referred to as “conductive carrier particles”
  • microporous film 44 form a microporous layer (microporous layer: MPL) 20. That is, the gas diffusion layer of the present embodiment has the microporous layer 20 including the water absorbing material 41 and the binder 42.
  • the water absorbing material 41 is supported on the conductive carrier particles 43a.
  • the water-absorbing material 41 and the conductive carrier particles 43 a are bound by a binder 42 and held by a sheet-like microporous skeleton formed by the microporous film 44.
  • a sheet-like microporous layer variation in the thickness of the layer is suppressed as compared to the microporous layer as shown in FIG. 2B or FIG. 2D manufactured by normal wet or dry coating, Mass production is possible.
  • the sheet-type microporous layer is excellent in flexibility, the gas diffusion layer attacks the fiber membrane in the gas diffusion base material in the form having the microporous layer and the base material layer as described later. (Puncture) can be alleviated.
  • the member which comprises a microporous layer is mentioned taking the microporous layer of this embodiment as an example, this invention is not necessarily restrict
  • the material, shape, and the like of the water absorbing material that can be included in the microporous layer are as described above.
  • the content of the water-absorbing material in the microporous layer may be appropriately adjusted so that the micropore pore volume of the gas diffusion layer is in a desired range and sufficient mechanical strength can be secured.
  • Micropore pore volume and strength depend on the type (material) and basis weight of the water-absorbing material, and have the desired micropore pore volume and mechanical strength by adjusting the type, weight and content of the water-absorbing material. A microporous layer is obtained.
  • the microporous pore volume of a 30 ⁇ m-thick microporous layer formed using a water absorbing material at a content of 10% by mass with respect to the total mass of the microporous layer is about 8.0 ⁇ .
  • the microporous pore volume is 2.0 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more by setting the thickness of the microporous layer having the same composition to 75 ⁇ m or more.
  • the microporous layer can be formed.
  • the content of the water absorbing material is preferably 10 to 80% by mass with respect to the total mass of the microporous layer.
  • a desired micropore pore volume can be realized as the gas diffusion layer (GDL) without increasing the thickness of the microporous layer (MPL). Thereby, the raise of the resistance of the thickness direction can be reduced and the fall of the performance in normal temperature can be suppressed.
  • GDL gas diffusion layer
  • MPL microporous layer
  • handling property is also favorable. If content of a water absorbing material is the said range, a desired micropore pore volume can be ensured easily and the zero-zero startability of a battery can be improved.
  • the particulate conductive carrier is not particularly limited as long as it has conductivity, but is preferably chemically stable at the positive electrode potential and the negative electrode potential, and includes those composed of a carbon material or a metal material.
  • carbon particles are preferably used as the particulate conductive carrier.
  • conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed.
  • carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • commercially available products can be used.
  • Black EC oil furnace black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation
  • acetylene black such as Denka Black manufactured by Denki Kagaku Kogyo.
  • artificial graphite or carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, and furan resin may be used.
  • the particle diameter of the conductive carrier particles is preferably 0.2 to 5 ⁇ m, more preferably 0.3 to 1 ⁇ m. If the particle diameter of the conductive carrier particles is 5 ⁇ m or less, the surface becomes smooth and an increase in contact resistance can be suppressed. When it is 0.2 ⁇ m or more, it is possible to prevent a decrease in gas diffusivity due to a decrease in the porosity of the microporous layer.
  • the shape of the particles of the conductive carrier is not particularly limited, and may have any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape.
  • the “particle diameter of the conductive carrier particles” is the average secondary particle diameter of the conductive carrier particles.
  • the average secondary particle diameter of the conductive carrier particles is measured using particles such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM), which are observed in several to several tens of fields. The value calculated as the average value of the particle diameters of the particles shall be adopted.
  • the average pore diameter in the microporous layer By setting the average pore diameter in the microporous layer to 10 ⁇ m or less, it becomes between the average pore diameter of the catalyst layer and the average pore diameter of the gas diffusion base material, making it easier to discharge liquid water and ensuring a more reliable gas diffusion path. Can be secured.
  • the content of the conductive carrier particles in the microporous layer may be appropriately adjusted so that the pore structure and mechanical strength of the microporous layer have desired characteristics.
  • the content of the conductive carrier particles in the microporous layer is preferably 0 to 60 mass with respect to the total mass of the microporous layer. %, More preferably 5 to 55% by mass.
  • the microporous layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, thermoplastic resins such as polyethylene and polypropylene.
  • the mixing ratio of the conductive carrier particles and the water repellent in the microporous layer is determined by considering the balance between water repellency and electronic conductivity.
  • the ratio is preferably about 95: 5 to 40:60 (conductive carrier particles: water repellent).
  • a binder having water repellency is used.
  • a fluorine-based polymer material is preferably used because of its excellent water repellency, corrosion resistance during electrode reaction, and the like, particularly considering the effect of suppressing the blocking of micropores in the adsorbent when producing a microporous layer.
  • Polytetrafluoroethylene (PTFE) is preferred.
  • PTFE polytetrafluoroethylene
  • water repellency is imparted to the pores (between the water-absorbing material and the conductive carrier particles) in the microporous layer, and the water discharging property can be improved.
  • these binders may be used individually by 1 type, or may be used together 2 or more types.
  • polymers other than these may be used.
  • the content of the binder in the microporous layer may be appropriately adjusted so that the void structure in the microporous layer has desired characteristics.
  • the binder content is preferably in the range of 5 to 60% by mass, more preferably 10 to 50% by mass, and still more preferably 12 to 40% by mass with respect to the total mass of the microporous layer. Is preferred. If the blending ratio of the binder is 5% by mass or more, the particles can be bonded well, and if it is 60% by mass or less, an increase in the electrical resistance of the microporous layer can be prevented.
  • any membrane having a sheet-like microporous skeleton may be used.
  • Specific examples include expanded polytetrafluoroethylene (ePTFE), and it is preferable to use expanded polytetrafluoroethylene (ePTFE).
  • ePTFE has a network structure (microporous skeleton) of PTFE fibers fibrillated by biaxial stretching of PTFE.
  • ePTFE is rich in toughness, flexibility, chemical stability, and thermal stability, and the pore structure, strength, and thickness can be adjusted to a desired range.
  • PTFE polytetrafluoroethylene
  • the interaction between the PTFE fiber and the fluoro chain in the PTFE is good.
  • ePTFE By using such ePTFE, a sheet-like microporous layer having excellent mechanical strength and flexibility can be obtained.
  • a method for producing ePTFE is described in U.S. Pat. No. 3,953,566, U.S. Pat. No. 6,613,203 or U.S. Pat. No. 5,814,405. What is necessary is just to use ePTFE manufactured by using.
  • the thickness of the microporous layer may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but is preferably 3 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, and further preferably 10 to 150 ⁇ m. Particularly preferred is 20 to 100 ⁇ m. Within such a range, the balance between mechanical strength and permeability such as gas and water can be appropriately controlled.
  • the microporous layer includes a particulate water-absorbing material, conductive carrier particles, a binder, and a microporous film.
  • the microporous layer does not include a microporous film.
  • a porous layer can also be preferably used.
  • FIG. 2B is a schematic view showing a gas diffusion layer including a particulate water-absorbing material and a particulate conductive carrier according to another embodiment of the present invention.
  • the gas diffusion layer 4 further includes conductive carrier particles 43a in addition to the water absorbing material 41, and the water absorbing material 41 is supported on the conductive carrier particles 43a.
  • the water absorbing material 41 and the conductive carrier particles 43a are bound by a binder 42 to form the microporous layer 20 including the water absorbing material 41, the binder 42, and the conductive carrier particles 43a.
  • the conductivity of the microporous layer is improved, and a fine pore structure serving as a diffusion path of the reaction gas and water is formed by the particulate water-absorbing material and the particulate electrically conductive carrier. And the diffusibility of water can be improved.
  • the microporous layer does not contain conductive carrier particles, and may be composed of a particulate water-absorbing material and a binder, and if necessary, a microporous film.
  • FIG. 2C is a schematic view showing a gas diffusion layer including a particulate water-absorbing material and a particulate conductive carrier, which is still another embodiment of the present invention.
  • the gas diffusion layer 4 has a microporous layer 20 that is in the form of a sheet.
  • the water absorbing material 41 and the binder 42 are held in a microporous film 44 having a fine continuous porous structure (skeleton).
  • FIG. 2D is a schematic view showing a gas diffusion layer containing a particulate water-absorbing material, which is still another embodiment of the present invention.
  • the gas diffusion layer 4 is formed by binding a particulate water absorbing material 41 with a binder 42.
  • the particulate water-absorbing material 41 and the binder 42 are aggregated to form the microporous layer 20. That is, the gas diffusion layer of the present embodiment has the microporous layer 20 including the water absorbing material 41 and the binder 42.
  • the pore volume of the micropores in the gas diffusion layer can be increased, water generated by power generation can be sufficiently absorbed and freezing can be prevented even in a low temperature environment.
  • the gas diffusion layer includes a binder.
  • the present invention is not limited to the form including the binder, and the mechanical strength of the gas diffusion layer is not limited. As long as the above can be ensured, the binder-free form may be used.
  • the microporous layer may be used as it is as a gas diffusion layer, or may be laminated on a base material layer including a gas diffusion base material to form a gas diffusion layer.
  • the form of the gas diffusion substrate is not particularly limited, and can be various forms such as a woven fabric, a paper-like paper body, a felt, and a nonwoven fabric. Among them, it is preferable to use a gas diffusion base material formed from carbon fibers such as carbon paper, carbon cloth, and carbon non-woven fabric.
  • the gas diffusion base material preferably contains a water repellent for the purpose of further improving water repellency and preventing a flooding phenomenon. It does not specifically limit as a water repellent,
  • the water repellent used in a microporous layer can be used preferably similarly.
  • the addition amount of the water repellent agent in the base material layer is not particularly limited, and may be appropriately adjusted so that the surface of the gas diffusion base material (conductive carrier fiber) is sufficiently covered.
  • a gas diffusion base material that is not subjected to water repellent treatment or a gas diffusion base material that is subjected to hydrophilic treatment can also be suitably used.
  • the thickness of the base material layer may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. When the thickness of the substrate is within such a range, the balance between mechanical strength and permeability such as gas and water can be appropriately controlled.
  • the gas diffusion layer further includes a fibrous conductive carrier, and the water absorbing material is carried on a fibrous conductive carrier (hereinafter also referred to as “conductive carrier fiber”).
  • FIG. 3A is a schematic diagram showing a gas diffusion layer including a particulate water-absorbing material and a fibrous conductive carrier, which is an embodiment of the present invention.
  • the gas diffusion layer 4 further includes a conductive carrier fiber 43b, and a water absorbing material 41 is supported on the conductive carrier fiber 43b.
  • the conductive carrier fibers 43 b form the gas diffusion base material 45, and the gas diffusion base material 45 and the water absorbing material 41 form the base material layer 30.
  • this embodiment has the base material layer 30 in which the water absorption material 41 is carry
  • the base material layer of this embodiment is mentioned as an example and the member which comprises a base material layer is demonstrated, this invention is not necessarily restrict
  • the material and shape of the water-absorbing material that can be included in the base material layer are as described above.
  • the content of the water-absorbing material is preferably 10 to 100% by mass with respect to the total mass of the base material layer. If it is such a range, a desired micropore pore volume can be ensured easily and the subzero starting property of a battery can be improved.
  • the content of the water-absorbing material is preferably 10 to 50% by mass with respect to the total mass of the base material layer. If it exists in such a range, it will become a base material layer with which the mechanical strength of the base material and the desired micropore pore volume were ensured.
  • the fibrous conductive carrier forms a gas diffusion base material, and this gas diffusion base material constitutes a base material layer.
  • a fibrous conductive carrier is not particularly limited, but it is preferable to use one type selected from the group consisting of carbon fibers, metal fibers, and organic fibers.
  • the carbon fiber include carbon fibers such as polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, phenol-based carbon fiber, and carbon fiber formed by vapor phase growth. Since carbon fibers are excellent in specific strength and specific elastic modulus, a gas diffusion base material excellent in flexibility and strength can be obtained. More preferably, PAN-based carbon fibers or pitch-based carbon fibers widely used in industry are preferable.
  • the PAN-based carbon fiber is a fiber made of synthetic fiber mainly composed of PAN
  • the pitch-based carbon fiber is a fiber made of petroleum, coal, synthetic pitch or the like as a raw material.
  • the fiber diameter of the carbon fiber is not particularly limited, but is preferably 5 to 20 ⁇ m.
  • metal fibers include iron, titanium, aluminum and copper and alloys thereof; stainless steel; and fibers of noble metals such as gold and silver.
  • Metal fibers are more excellent in conductivity. Of these, fibers of stainless steel, aluminum or aluminum alloy are preferable from the viewpoints of mechanical strength, versatility, cost, ease of processing, and high conductivity.
  • the form of the gas diffusion substrate formed from the conductive carrier fibers is not particularly limited, and various forms such as a woven fabric, a paper-like paper body, a felt, and a nonwoven fabric can be used. Among them, it is preferable to use a gas diffusion base material formed from carbon fibers such as carbon paper, carbon cloth, and carbon non-woven fabric. Commercially available products may be used as the gas diffusion substrate, and examples thereof include carbon paper TGP series manufactured by Toray Industries, Inc. and carbon cloth manufactured by E-TEK.
  • the amount of the water repellent added to the base material layer is not particularly limited, and may be appropriately adjusted so that the surface of the gas diffusion base material (conductive carrier fiber) is sufficiently covered.
  • the mixing ratio of the gas diffusion base material (conductive carrier fiber) and the water repellent is 99 in terms of mass ratio (conductive carrier fiber: water repellent) in consideration of the balance between water repellency and electronic conductivity. : 1 to 50:50, preferably about 95: 5 to 60:40.
  • a gas diffusion base material that is not subjected to water repellent treatment or a gas diffusion base material that is subjected to hydrophilic treatment can also be suitably used.
  • porous metal may be used as the base material layer.
  • a known material may be used as the material of the base material layer.
  • those made of noble metal materials such as iron, titanium, aluminum and copper and alloys thereof; stainless steel; Can be mentioned.
  • the pore diameter of the porous metal is not particularly limited.
  • the thickness of the base material layer may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. When the thickness of the substrate is within such a range, the balance between mechanical strength and permeability such as gas and water can be appropriately controlled.
  • FIG. 3B is a schematic view showing a gas diffusion layer including a particulate water-absorbing material, a fibrous conductive carrier, and a particulate conductive carrier, which is an embodiment of the present invention.
  • the gas diffusion layer 4 includes a water absorbing material 41 supported on conductive carrier particles 43 a and conductive carrier fibers 43 b, and the conductive carrier fibers 43 b form a gas diffusion base material 45. .
  • the water absorbing material 41, the conductive carrier particles 43a, and the gas diffusion base material 45 form the base material layer 30. According to such a form, a gas diffusion layer having further excellent mechanical strength and microporosity (water or gas diffusibility) can be obtained.
  • FIG. 4A is a schematic view showing a gas diffusion layer using a fibrous water-absorbing material, which is an embodiment of the present invention.
  • the gas diffusion layer 4 is composed of a fibrous water absorbing material 41.
  • the fibrous water-absorbing material 41 forms a gas diffusion base material 45, and the gas diffusion base material 45 constitutes the base material layer 30.
  • the content of the water absorbing material in the gas diffusion layer can be increased up to 100% by mass, the pore volume of the micropores in the gas diffusion layer can be increased. Thereby, water generated by power generation can be sufficiently absorbed and freezing in a low temperature environment is prevented. Furthermore, a gas diffusion layer having excellent mechanical strength can be obtained.
  • FIG. 4B is a schematic view showing a gas diffusion layer including a fibrous water-absorbing material and a particulate conductive carrier, which is another embodiment of the present invention.
  • the gas diffusion layer 4 includes a fibrous water absorbing material 41 and a particulate conductive carrier 43a.
  • the conductive carrier particles 43b are dispersed in the gas diffusion base material 45 formed from the fibrous water absorbing material 41.
  • the conductive carrier particles 43b and the gas diffusion base material 45 form the base material layer 30. It is composed. According to such a form, a gas diffusion layer having further excellent mechanical strength and microporosity (water or gas diffusibility) can be obtained.
  • the gas diffusion base material 45 is composed only of the fibrous water absorbing material 41, but the gas diffusion base material 45 is not limited to the fibrous water absorbing material 41, but other fibers. You may be comprised from the shape-like material.
  • the gas diffusion base material 45 may be composed of a fibrous water absorbing material 41 and conductive carrier fibers 43b.
  • the form described in the form of FIG. 3A can be preferably used as the member constituting the base material layer.
  • FIG. 5 is a schematic cross-sectional view showing a gas diffusion layer including a base material layer and a microporous material according to an embodiment of the present invention.
  • the gas diffusion layer 4 is formed by laminating a microporous layer 20 on a base material layer 30.
  • the microporous layer is composed of an aggregate of conductive carrier particles and a water absorbing material, and the microporous layer may or may not contain a water absorbing material.
  • a gas diffusion layer having an excellent balance of below-zero startability, mechanical strength, and gas and water diffusibility.
  • the gas diffusion layer of the present invention may further contain other layers in addition to the microporous layer and / or the base material layer.
  • the method for producing the gas diffusion layer is not particularly limited and a known method can be used. Preferred embodiments of the method for producing the gas diffusion layer of the present invention are described below. In addition, this invention is not limited to the following embodiment.
  • a gas diffusion substrate is prepared. What is necessary is just to perform using the general water-repellent processing method as a water-repellent processing method of a gas diffusion base material. Examples include a method in which a base material used for a gas diffusion layer is immersed in an aqueous dispersion solution or an alcohol dispersion solution of a water repellent, and then heated and dried in an oven or the like. In view of ease of exhaust gas treatment during drying, it is preferable to use an aqueous dispersion solution of a water repellent. In addition, also when using the gas diffusion base material formed from a fibrous water absorbing material, you may perform a water-repellent process like the above.
  • the water absorbing material 41 and / or the conductive carrier particles 43a are dispersed in the gas diffusion base material 45, first, the water absorbing material 41 and / or the conductive material is used.
  • the carrier solution 43a and the like are dispersed in a solvent to prepare a slurry solution.
  • water or an alcohol solvent such as perfluorobenzene, dichloropentafluoropropane, methanol, ethanol or the like is preferably used as the solvent.
  • the slurry solution is applied to the gas diffusion base material 45, or the gas diffusion base material 45 is immersed in the slurry solution, whereby the water-absorbing material 41 and / or the conductive material is contained in the gas diffusion base material 45.
  • the carrier particles 43a and the like may be impregnated.
  • the base material layer which contains the water absorption material 41 and / or the electroconductive support particle 43a in the gas diffusion base material 45 is manufactured by drying.
  • a slurry solution is prepared by dispersing the water-absorbing material 41 and / or the conductive carrier particles 43a, and the binder 42 and the water repellent as necessary.
  • water or an alcohol solvent such as perfluorobenzene, dichloropentafluoropropane, methanol, ethanol or the like is preferably used as the solvent.
  • a microporous layer is manufactured by drying this slurry solution.
  • the microporous film 44 the microporous film may be impregnated with the slurry solution by immersing the microporous film 44 in the slurry solution obtained above.
  • the microporous layer is formed by film-forming a water-absorbing material and a binder (such as PTFE) and, if necessary, a mixture (mixture, slurry, etc.) in which conductive carrier particles and other fluororesin are uniformly mixed. It can also be manufactured.
  • a binder such as PTFE
  • the dry method is a method of mixing a water absorbing material and, if necessary, fine powder of conductive carrier particles (conductive carbon wet powder, etc.) and fine powder of PTFE. That is, in the dry method, the fine powder is put into an appropriate mixer (for example, V blender), so as not to give a share to PTFE (for example, at a low stirring speed while maintaining a low temperature of 20 ° C. or lower).
  • An admixture can be prepared by mixing with stirring and further adding a suitable processing aid (eg, mineral spitz) and absorbing into the mixture.
  • the fine powder of the water-absorbing material and conductive carrier particles is a known pulverizer (for example, ball mill, pin mill, homogenizer, etc.) for the water-absorbing material and conductive carrier particles (such as conductive carbon wet powder).
  • a known pulverizer for example, ball mill, pin mill, homogenizer, etc.
  • conductive carrier particles such as conductive carbon wet powder.
  • it is recommended that the processing aid is added to the mixture and then appropriately humidified (for example, about 40 to 60 ° C., particularly preferably about 50 ° C.).
  • the wet method is a method in which a water-absorbing material, conductive carrier particles, and PTFE are mixed in water. That is, in the wet method, a slurry (ink) is prepared by mixing raw materials (water-absorbing material, conductive carrier particles, PTFE) that have been made fine enough to be dispersed in water in the presence of a surfactant. Can do. In addition, when the slurry (ink) is mechanically sheared or a precipitating agent (alcohol or the like) is added during the mixing, the water absorbing material, conductive carrier particles, and PTFE co-precipitate.
  • a slurry (ink) is prepared by mixing raw materials (water-absorbing material, conductive carrier particles, PTFE) that have been made fine enough to be dispersed in water in the presence of a surfactant. Can do.
  • a precipitating agent alcohol or the like
  • an admixture can be prepared by absorbing a suitable processing aid in the same manner as in the dry method.
  • the fine water-absorbing material and conductive carrier particles may be prepared in the same manner as in the dry method, but the liquid is added to the water together with the surfactant and pulverized by submerged pulverizing means (for example, a homogenizer). It is easy to disperse in. Moreover, as PTFE, it is easy to use a commercially available aqueous PTFE dispersion.
  • a water-absorbing material and a binder such as PTFE
  • a mixture mixture, slurry, etc.
  • conductive carrier particles and other fluororesin are uniformly mixed are formed into a film to form a microporous layer
  • the amount of water-absorbing material to be added (applied) may be such that the pore volume of the micropores in the gas diffusion layer is in a desired range and sufficient mechanical strength can be secured.
  • the pore volume and strength of the micropores depend on the type (material) and basis weight of the water-absorbing material, and the desired micropores can be adjusted by appropriately adjusting the type, basis weight, and addition amount of the water-absorbing material.
  • a microporous layer having a pore volume and mechanical strength is obtained.
  • the amount of addition (application) of the water-absorbing material is preferably 2.0 ⁇ 10 ⁇ 2 to 5.0 ⁇ 10 ⁇ 1 cm 3 / cm 2 of the pore volume calculated by the water-absorbing material. More preferably, the amount is 2.6 ⁇ 10 ⁇ 2 to 4.0 ⁇ 10 ⁇ 1 cm 3 / cm 2 . With such an amount, even when a part of the micropores of the water-absorbing material is blocked during the production of the microporous layer, the gas diffusion layer has a micropore pore volume in a desired range and sufficient mechanical capacity. Strength.
  • the “calculated pore volume of the micropores by the water-absorbing material” refers to the amount of water-absorbing material added per 1 cm 2 of the gas diffusion layer (g / cm 2 ) and the pore volume of the micro-pores of the water-absorbing material (cm 3 / g).
  • a temperature for example, about 150 to 300 ° C., particularly preferably about 200 ° C.
  • processing aids mineral spirits etc.
  • a temperature at which water can be volatilized for example, 100 to 300 ° C., particularly preferably 120 ° C.
  • organic impurities for example, surfactants used in the wet method.
  • organic impurities for example, surfactants used in the wet method.
  • the carbonization temperature is, for example, about 300 to 400 ° C. (preferably about 350 ° C.).
  • the removal method of an organic impurity is not limited to the said carbonization process, A various method is employable suitably according to the kind of impurity. For example, depending on the type of the surfactant, it can be volatilized and removed by heating to 250 ° C. or higher, or it can be extracted and removed using a solvent (for example, alcohols). Details are described in JP-A-57-030270 and JP-A-2006-252948.
  • a microporous layer on a base material layer when forming a microporous layer on a base material layer, apply the slurry solution prepared above or a microporous membrane impregnated with the slurry solution onto a gas diffusion base material and dry it. Good. Thereby, the gas diffusion layer formed by laminating the base material layer 30 and the microporous layer 20 is obtained.
  • the gas diffusion layer of the above embodiment can be used for various applications.
  • a typical example is the gas diffusion layer (4a, 4c) of PEFC 1 shown in FIG.
  • a gas diffusion electrode for a fuel cell (8a, 4c) including a gas diffusion layer (4a, 4c) and a catalyst layer (3a, 3c) laminated on the gas diffusion layer. 8c) is provided.
  • a gas diffusion electrode refers to a joined body of a gas diffusion layer and an electrode catalyst layer. Adhesion between the gas diffusion layer and the catalyst layer can be improved by forming a gas diffusion electrode in which the catalyst layer is laminated and integrated on the microporous layer side of the gas diffusion layer. Thereby, the production
  • the membrane electrode assembly for fuel cells containing the polymer electrolyte membrane 2, a pair of anode gas diffusion electrode 8a and the cathode gas diffusion electrode 8c which clamps this is provided.
  • at least one of the anode gas diffusion electrode 8a and the cathode gas diffusion electrode 8c is the gas diffusion electrode of the embodiment described above.
  • the anode gas diffusion electrode is the gas diffusion electrode of the embodiment described above.
  • the gas diffusion electrode of the anode that is, the gas diffusion layer of the anode preferably has 2.0 ⁇ 10 ⁇ 4 cm 3 / cm 2 or more micropores. During power generation, water is generated on the cathode side.
  • the hydrogen gas at the anode has a higher gas diffusibility than the oxygen gas at the cathode. Therefore, the anode inhibits diffusion by water or ice adsorbed compared to the cathode. It is hard to receive. Therefore, the surplus water staying on the cathode side is quickly moved to the anode side, so that the power generation duration time in a low temperature environment can be extended. As a result, it is possible to start up independently from a lower temperature and to start up in a short time.
  • both the anode gas diffusion electrode and the cathode gas diffusion electrode may be gas diffusion electrodes to which the gas diffusion layer of the above embodiment is applied.
  • the amount of water that can be absorbed increases, so that the power generation duration time can be increased as compared with the case where only one gas diffusion electrode is used.
  • only the cathode gas diffusion electrode may be a gas diffusion electrode to which the gas diffusion layer of the above embodiment is applied. Even in such a case, the power generation time can be increased, but the adsorbed water and ice are retained and the diffusion of the reaction gas (oxygen) is likely to be hindered. small.
  • the fuel cell is excellent in battery startability (subzero startability) in a low temperature environment.
  • the present invention is not limited to the above mechanism.
  • the gas diffusion layer of the above embodiment, or a gas diffusion electrode using the gas diffusion layer, or a membrane electrode assembly using these, and a pair of sandwiching the membrane electrode assembly A fuel cell having an anode separator and a cathode separator is provided.
  • the present invention is characterized by the gas diffusion layer. Therefore, the specific form of the members other than the gas diffusion layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
  • the solid polymer electrolyte membrane 2 is roughly classified into a fluorine-based polymer electrolyte membrane and a hydrocarbon-based polymer electrolyte membrane depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte membrane include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride- Examples include perfluorocarbon sulfonic acid polymers. From the viewpoint of improving power generation performance such as heat resistance and chemical stability, these fluorine-based polymer electrolyte membranes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. A membrane is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • the catalyst component used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst component used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, it can be selected from metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof. .
  • the shape and size of the catalyst component are not particularly limited, and the same shape and size as known catalyst components can be adopted.
  • the shape of the catalyst component is preferably granular.
  • the average particle diameter of the catalyst particles is preferably 1 to 30 nm.
  • the “average particle diameter of catalyst particles” in the present invention is the average of the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst component in X-ray diffraction or the average particle diameter of the catalyst component determined from a transmission electron microscope image. It can be measured as a value.
  • Example 1 Preparation of anode gas diffusion layer (a) Water repellency treatment of gas diffusion base material
  • the same carbon paper (thickness) as the gas diffusion base material in the cathode gas diffusion layer described later 200 ⁇ m) was used to perform the water-repellent treatment of the gas diffusion base material.
  • an aqueous dispersion of PTFE manufactured by Daikin Industries, Ltd., product name: D1-E
  • the PTFE content in the carbon paper after the water repellent treatment was 10% by mass.
  • a single cell for evaluation was produced by the same method as in Example 1 (2) except that this gas diffusion layer was used.
  • a single cell for evaluation was produced by the same method as in Example 1 (2) except that this gas diffusion layer was used.
  • a single cell for evaluation was produced by the same method as in Example 1 (2) except that this joined body and the gas diffusion layer produced above were used.
  • Example 1 The same method as in Example 1 except that the same CARBEL (registered trademark) CNW (manufactured by Japan Gore-Tex) (thickness 230 ⁇ m) as the cathode gas diffusion layer (with MPL) is used as the anode gas diffusion layer. A single cell for evaluation was produced. The pore volume and micropore pore volume of the gas diffusion layer obtained above were calculated in the same manner as in Example 1. The results are shown in Table 1.
  • FIG. 7A and FIG. 8 are graphs showing the relationship between the micropore pore volume and the power generation duration ( ⁇ 20 ° C., 40 mA / cm 2 ) in the evaluation single cells produced in the examples and comparative examples. From FIG. 7A and FIG. 8, in the cells of Examples 1 to 5 in which the pore volume of the micropores in the gas diffusion layer is in a predetermined range, compared with the cells of Comparative Examples 1 to 3 in which the pore volume of the micropores is small. It is confirmed that the power generation continuation time is four times longer.
  • a single cell for evaluation was produced by the same method as in Example 1 (2) except that this joined body and the gas diffusion layer produced above were used.
  • the evaluation single cell produced in this manner was subjected to a below-zero startability evaluation in the same manner as described above.
  • the evaluation result when the current density is 40 mA / cm 2 is shown in FIG. 13, the evaluation result when the current density is 80 mA / cm 2 is shown in FIG. 14, and the evaluation result when the current density is 100 mA / cm 2 is shown. This is shown in FIG.
  • the evaluation single cell produced in this manner was subjected to a below-zero startability evaluation in the same manner as described above.
  • the evaluation result when the current density is 40 mA / cm 2 is shown in FIG. 13, the evaluation result when the current density is 80 mA / cm 2 is shown in FIG. 14, and the evaluation result when the current density is 100 mA / cm 2 is shown. This is shown in FIG.
  • a single cell for evaluation was produced by the same method as in Example 1 (2) except that this joined body and the gas diffusion layer produced above were used.
  • Example 6 the longest power generation continuation time was observed in the evaluation single cell of Example 6 in which only the anode gas diffusion layer was used. Further, in the evaluation single cell of Example 7 in which only the cathode gas diffusion layer was used, the power generation duration was longer than that in the comparative example, but in Example 6 in which only the anode gas diffusion layer was used, the power generation duration time was longer. The extension of was confirmed. In addition, in the evaluation unit cell of Example 8 in which both the anode and cathode gas diffusion layers were used, although the power generation duration time was shorter than that in Example 6 in which only the anode gas diffusion layer was used, only the cathode gas diffusion layer was used. Compared to Example 7, it was confirmed that the power generation duration was extended.

Abstract

 燃料電池に使用するガス拡散層において、低温環境下における電池の起動性(零下起動性)を一層向上させうる手段を提供する。ミクロ孔の細孔容積が2.0×10-4cm/cm以上である、燃料電池用ガス拡散層である。

Description

燃料電池用ガス拡散層
 本発明は燃料電池用ガス拡散層ならびにこれを用いた燃料電池用の膜電極接合体および燃料電池に関する。
 固体高分子形燃料電池(PEFC)は、発電機能を発揮する複数の単セルが積層された構造を有する。当該単セルはそれぞれ、(1)高分子電解質膜(例えば、Nafion(登録商標)膜)、(2)これを挟持する一対(アノード、カソード)の触媒層(「電極触媒層」とも称される)、(3)さらにこれらを挟持する、供給ガスを分散させるための一対(アノード、カソード)のガス拡散層(GDL)、を含む膜電極接合体(MEA)を有する。そして、個々の単セルが有するMEAは、セパレータを介して隣接する単セルのMEAと電気的に接続される。このようにして単セルが積層・接続されることにより、燃料電池スタックが構成される。そして、この燃料電池スタックは、種々の用途に使用可能な発電手段として機能しうる。かような燃料電池スタックにおいて、セパレータは、上述したように、隣接する単セルどうしを電気的に接続する機能を発揮する。これに加えて、セパレータのMEAと対向する表面にはガス流路が設けられるのが通常である。当該ガス流路は、アノードおよびカソードに燃料ガスおよび酸化剤ガスをそれぞれ供給するためのガス供給手段として機能する。
 PEFCの発電メカニズムを簡単に説明すると、PEFCの運転時には、単セルのアノード側に燃料ガス(例えば水素ガス)が供給され、カソード側に酸化剤ガス(例えば大気、酸素)が供給される。その結果、アノードおよびカソードのそれぞれにおいて、下記反応式で表される電気化学反応が進行し、電気が生み出される。
Figure JPOXMLDOC01-appb-M000001
 上式のように、燃料電池の発電時には燃料電池を構成するそれぞれのセルのカソード側で水が生成する。生成した水は、カソード反応で消費されずに燃料電池セルの外部に排出される。
 冬季等の低温環境下において、燃料電池の温度は停止時に、適正運転温度に比べて著しく低下する。特に、氷点下のような低温環境にある燃料電池では、電極触媒層で生成した水が外部に排出される前に凍結してしまう場合がある。この生成水の凍結により、反応ガスの拡散路が閉塞され、その結果として燃料電池の発電性能が低下するといった問題が生じる。また、短時間で燃料電池を再起動させるためには燃料電池の温度を上昇させるのに大きなエネルギーが必要となるという問題がある。
 かような問題を解決すべく、特許文献1には、吸水材を使用することによって水素極反応層(アノード側触媒層)の吸水容量を向上させる技術が開示されている。これにより、空気極反応層(カソード側触媒層)に残留する余剰水をアノード側に移動させて吸収できるため、低温運転時の空気極反応層のガス通路内の凍結を防止でき、低温環境下にあっても燃料電池システムを容易に起動させることができる、としている。
 また、特許文献2には、空気極反応層(カソード側触媒層)と空気拡散層(ガス拡散層)との間に空気極反応層に比べて細孔容積が大きい水分散層を設けた膜電極接合体が開示されている。この開示によれば、空気極反応層のガス通路内の水を細孔に分散させることにより、低温運転時の空気極反応層のガス通路内の凍結を防止することができ、これにより低温環境下でも燃料電池システムを容易に起動させることができる、としている。また、該水分散層として、細孔径1nm~1μmの細孔が0.3μl/cm以上含まれる形態を採用しうることも記載されている。
 一方、活性炭をガス拡散層に使用する例としては、触媒層に配置される中間層にラジカルの生成を抑制する性能をもつ活性炭が配合されている高分子膜電極接合体が報告されている(特許文献3)。特許文献3に記載の発明は、過酸化水素生成抑制・分解能を有する活性炭を中間層に用いることに特徴がある。すなわち、活性炭の配合により、副反応により生じた過酸化水素を水と酸素に分解することができ、これにより長期の連続運転における安定作動を可能する、としている(段落「0055」~「0056」)。
特開2005-174765号公報 特開2005-174768号公報 特開2005-339962号公報
 しかしながら、特許文献1や特許文献2に記載の技術では、吸水材や水分散層内に存在する細孔の細孔径サイズが適切に制御されていないため、低温環境ではガス通路内の水の凍結防止が十分ではない。このため、このような吸水材や水分散層を用いた燃料電池では、低温環境下における起動性(零下起動性)の確保は依然として困難である。
 また、特許文献3に記載の技術は、主に空気極(カソード)側で生じる過酸化水素のダメージを考慮してなされたものであり、細孔径および細孔容積と零下起動性との関係についてはなんら検討がなされていない。また、特許文献3に記載の接合体では、活性炭を空気極側の中間層に配合している(段落「0061」)。
 そこで、本発明は、燃料電池に使用するガス拡散層において、低温環境下における電池の起動性(零下起動性)を一層向上させうる手段を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた。その結果、ガス通路内の水の凍結防止には、低温環境においても水の凍結が防止されるミクロ孔の存在が重要であることを見出した。すなわち、ガス拡散層内のミクロ孔の細孔容積を増加させることにより、ガス通路内の水の凍結を抑制でき、その結果、電池の零下起動性を向上させうることを見出した。
 かような本発明の燃料電池用ガス拡散層は、ミクロ孔の細孔容積が2.0×10-4cm/cm以上である。
 本発明によれば、所定の細孔容積以上のミクロ孔を有するガス拡散層を燃料電池に使用することにより、氷点下などの低温環境においてもミクロ孔内に吸収された水の凍結が防止されるため、電池の零下起動性を一層向上させることができる。
本発明の一実施形態に係る固体高分子形燃料電池(PEFC)の基本構成を示す概略図である。 本発明の一実施形態である、粒子状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。 本発明の他の実施形態である、粒子状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。 本発明のさらに他の実施形態である、粒子状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。 本発明のさらに他の実施形態である、粒子状の吸水材を含むガス拡散層を示す模式図である。 本発明の一実施形態である、粒子状の吸水材および繊維状の導電性担体を含むガス拡散層を示す模式図である。 本発明の一実施形態である、粒子状の吸水材、繊維状の導電性担体、および粒子状の導電性担体を含むガス拡散層を示す模式図である。 本発明の一実施形態である、繊維状の吸水材を使用したガス拡散層を示す模式図である。 本発明の他の実施形態である、繊維状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。 本発明の一実施形態である、基材層および微多孔質を含むガス拡散層を示す模式断面図である。 本発明の一実施形態の燃料電池スタックを搭載した車両の概念図である。 実施例1~4ならびに比較例1および2において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、40mA/cm)との関係を示すグラフである。 実施例1~4ならびに比較例1および2において作製した評価用単セルにおける、細孔容積と発電継続時間(-20℃、40mA/cm)との関係を示すグラフである。 実施例5および比較例3において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、40mA/cm)との関係を示すグラフである。 実施例1~3ならびに比較例1および2において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、80mA/cm)との関係を示すグラフである。 実施例5および比較例3において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、80mA/cm)との関係を示すグラフである。 実施例1~3ならびに比較例1および2において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、100mA/cm)との関係を示すグラフである。 実施例5および比較例3において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、100mA/cm)との関係を示すグラフである。 実施例6~8において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、40mA/cm)との関係を示すグラフである。 実施例6~8において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、80mA/cm)との関係を示すグラフである。 実施例6~8において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、100mA/cm)との関係を示すグラフである。
 (ガス拡散層)
 本発明の一形態は、ミクロ孔の細孔容積が2.0×10-4cm/cm以上である、燃料電池用ガス拡散層(以下、単に「ガス拡散層」ともいう)である。
 従来の燃料電池では、吸水材や水分散層を設けてガス拡散通路における水の凍結を防止することが試みられているが、いずれも吸水材や水分散層の細孔のサイズが制御されていなかった。一般に、細孔はミクロ孔(細孔径2nm以下)、メソ孔(細孔径2nmを超えて50nm以下)、マクロ孔(細孔径50nmを超える)に大別される。しかし、従来のガス拡散層に含まれる吸水材や水分散層には、ミクロ孔、メソ孔、マクロ孔などの様々なサイズの細孔が存在していた。本発明者らは吸水材の細孔径および細孔容積と零下起動性との関係を詳細に検討した結果、低温環境においても水の凍結が防止されるミクロ孔の存在が重要であることを見出した。例えば、特許文献2のように、水分散層内の細孔の細孔容積が大きい場合であっても、メソ孔やマクロ孔由来の細孔が多い場合、すなわち、ミクロ孔の細孔容積が小さい場合には、ガス通路における水の凍結を招くおそれがある。また、上記特許文献3では、中間層に活性炭を配合しているものの、当該活性炭により得られるミクロ孔の細孔容積と低温環境でのガス通路内の水の凍結防止との関係には着目がされていない。したがって、低温環境下における起動性(零下起動性)の確保は依然として困難であるという問題があった。
 これに対して、本発明のガス拡散層では、特定以上のミクロ孔の細孔容積を有する。当該ミクロ孔の細孔容積は、いずれの方法によって達成されてもよい。好ましくは、ミクロ孔(細孔径2nm以下)を有する吸水材を十分な量配合することによって、所望の細孔容積を達成する。このため、氷点下、特に-20℃においても水の凍結が防止される細孔が増加し、零下起動中でも発電継続時間を長くすることができる。したがって、より低い温度からの自立起動が可能となり、その結果、短時間での起動が可能となる。なお、上記したようなミクロ孔の細孔容積を有するガス拡散層によって、零下起動中の発電継続時間を長くできる理由は明らかではないが、以下のように推察される。なお、本発明は、下記推察によって限定されない。すなわち、氷点下のような低温環境にある燃料電池では、カソード触媒層で生成した水が電解質の存在する場所、即ち、カソードまたはアノード触媒層、電解質膜などに吸収される。しかし、その容量を超えると、触媒層の空孔にあふれ出て、凍結し、反応ガスの拡散路が閉塞され、その結果燃料電池の発電性能が低下していた。これに対して、本発明によるようにミクロ孔をガス拡散層に十分量配置することにより、ミクロ孔が運転時に生成した水を凍結することなく効率よく吸収する。このため、上記したような反応に寄与する場所での水の凍結が抑制・防止できるため、反応ガスは低温環境下であっても良好に触媒層中に拡散でき、十分な発電性能が確保でき、より低い温度からの自立起動が可能となり、その結果、短時間での起動が可能となる。
 上記利点に加えて、本発明によると、凍結防止装置を別途設置する必要がないため、燃料電池のコストの削減も可能である。
 以下、添付した図面を参照して本発明を適用した好ましい実施形態を説明する。なお、本発明は、以下の実施形態のみには制限されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。ここで、隣接する触媒層(3a、3c)およびガス拡散層(4a、4c)はガス拡散電極(アノードガス拡散電極8aおよびカソードガス拡散電極8c)を構成する。そして、固体高分子電解質膜2および一対のガス拡散電極(8a、8c)は、積層された状態で膜電極接合体(MEA)10を構成する。
 PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
 なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
 以下、本実施形態のガス拡散層(4a、4c)について詳説する。
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 本発明において、ガス拡散層は、ミクロ孔の細孔容積が2.0×10-4cm/cm以上であることを特徴とする。ここで、上記ミクロ孔の細孔容積は、いずれの方法によって達成されてもよい。好ましくは、ミクロ孔(細孔径2nm以下)を有する吸水材を配合することによって、所望のミクロ孔の細孔容積を達成する。すなわち、ガス拡散層は、好ましくはミクロ孔を有する吸水材を含む。本発明において、「ミクロ孔」とは細孔径が2nm以下である細孔を意味し、「ミクロ孔の細孔容積」はガス拡散層内に存在する2nm以下のミクロ孔の総容積を意味する。ガス拡散層が複数層から構成される場合、「ミクロ孔の細孔容積」はガス拡散層を構成する全ての層内に存在するミクロ孔の細孔容積の合計を意味するものとする。例えば、後述するような微多孔質層および基材層から構成される場合、「ミクロ孔の細孔容積」は微多孔質層内のミクロ孔の細孔容積と基材層内のミクロ孔の細孔容積との合計の細孔容積を指す。ここで、ミクロ孔の評価には、窒素吸着法を用い、MP法による吸着等温線からミクロ孔の細孔容積を算出する。したがって、ミクロ孔の細孔径の下限値は窒素吸着法により測定可能な下限値、すなわち、0.42nm以上である。なお、吸水材内のミクロ孔はガス拡散層の作製工程において閉塞されるおそれがあるため、作製されたガス拡散層中に含まれるミクロ孔の細孔容積を上記方法により測定するものとする。また、具体的なミクロ孔の細孔容積の評価条件としては、300℃の真空下で前処理した、5mm×5mmサイズ(複数枚)、総質量0.2g程度のガス拡散層のサンプル試料を使用し、液体窒素温度(吸着温度:-196℃、77K;相対圧範囲:0.99以下;吸着質:窒素)で、BELSORP-mini(日本ベル株式会社製)を用いて、測定するものとする。また、ガス拡散層の全細孔容積もまた、窒素吸着法により細孔分布を測定することにより算出され、具体的な評価条件は、上記MP法における条件と同様である。
 ガス拡散層のミクロ孔の細孔容積を2.0×10-4cm/cm以上とすることにより、発電時にカソード触媒層で生成した水をミクロ孔内に吸収することができ、カソード触媒層近傍に滞留する余剰な水を効率的に除去することができる。そして、ミクロ孔内の水は氷点下、特に-20℃の環境においても凍結が防止される。ガス拡散層のミクロ孔の細孔容積がかかる範囲にある場合には発電継続時間が増加し、低温環境においても短時間で燃料電池を起動することが可能となる。発電により生成する水の量は電流密度に比例して大きくなるため、これを処理するためのミクロ孔の細孔容積は大きいほどよい。かような観点から、ミクロ孔の細孔容積は、好ましくは2.6×10-4cm/cm以上であり、より好ましくは3.6×10-4cm/cm以上であり、さらに好ましくは5.1×10-4cm/cm以上である。ミクロ孔の細孔容積をかような範囲とすることにより、零下起動時により高い電流密度を使用した場合においても発電継続時間を長くすることができる。これにより、より低い温度から、より高い出力を取ることが可能となる。なお、発電により生成する水の量は電流密度に比例して大きくなる。このため、ガス拡散層のミクロ孔の細孔容積は大きいほどよく、特に上限は設定されないが、好ましくは、ガス拡散層のミクロ孔の細孔容積は5.0×10-3cm/cm以下であり、より好ましくは4.0×10-3cm/cm以下である。
 上述したように、零下起動性の向上にはミクロ孔の細孔容積が重要であるため、ミクロ孔の細孔容積が上記範囲にある限り、メソ孔やマクロ孔を含むガス拡散層の細孔容積は特に制限されない。
 上述したように、2.0×10-4cm/cm以上のガス拡散層のミクロ孔の細孔容積は、ミクロ孔(細孔径2nm以下)を有する吸水材をガス拡散層中に配合することによって、達成されることが好ましい。ここで、使用できる吸水材としては、吸水性を示し、所望のミクロ孔の細孔容積を実現できるものであれば特に制限されないが、例えば、活性炭、ゼオライト、シリカゲル、アルミナなどが挙げられる。中でも、比較的容易に入手できる点、ミクロ孔の割合が大きい点、水蒸気の脱着性が良好であるため車両停止時のパージ時間を短くすることが可能である点から活性炭を使用することが好ましい。本発明では、所望のミクロ孔の細孔容積を実現可能であれば、活性炭の原料や賦活方法は特に制限されない。例えば、活性炭は、通常、木材、のこくず、ヤシ殻、パルプ廃液等の植物系原料や、石炭、石油、石油コークス、石油ピッチ、フェノール樹脂等の鉱物系原料を炭化し、さらに水蒸気賦活や薬品賦活等を行うことにより得られる。
 吸水材の形状は特に制限されないが、粒子状または繊維状であることが好ましい。吸水材が粒子状である場合、粒子の形状は特に限定されず、粉末状、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうる。また、吸水材の粒子径は特に制限されないが、好ましくは0.1~10μm、より好ましくは0.2~7μm、さらに好ましくは0.3~5μmとするのがよい。かような範囲にあれば、粒子間に生じる隙間(空孔)内のガスや水の拡散が良好となり、また、触媒層との接触性も向上させることが可能となる。なお、本明細書における「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。また「平均粒子径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 また、吸水材が繊維状である場合、繊維径(太さ)は特に制限されない。カーボン繊維間に生じる隙間(空孔)内のガスや水の拡散性、機械的強度を考慮の上、選択すればよい。
 図2A~図2Dならびに図3Aおよび図3Bは、本発明の多様な実施形態による粒子状の吸水材を使用したガス拡散層を示す模式図である。また、図4Aおよび図4Bは本発明の他の一実施形態である、繊維状の吸水材を使用したガス拡散層を示す模式図である。以下、これらの図面を参照し、本発明の多様な吸水材を含むガス拡散層の構成について説明する。
 一部の実施形態において、ガス拡散層は導電性担体をさらに含み、吸水材が導電性担体に担持されてなる。導電性担体を含むことにより、隣接する部材との接触抵抗を有意に低減させることができ、電極の導電性が向上する。導電性担体の形状は特に制限されないが、粒子状または繊維状であることが好ましい。詳細には、ガス拡散層が吸水材および前記吸水材を担持する粒子状の導電性担体を含む場合には、ガス拡散層は、粒子状の導電性担体に前記吸水材が担持されてなる微多孔質層を有することがより好ましい。さらにより好ましくは、上記形態において、ガス拡散層は、ガス拡散基材を含む基材層上に前記微多孔質層を積層してなる。また、ガス拡散層が吸水材および前記吸水材を担持する繊維状の導電性担体を含む場合には、ガス拡散層は、繊維状の導電性担体から構成されるガス拡散基材に前記吸水材が担持されてなる基材層を有することがより好ましい。さらにより好ましくは、上記形態において、ガス拡散層は、前記基材層上に粒子状の導電性担体を含む微多孔質層を積層してなる。
 図2Aは本発明の一実施形態である、粒子状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。図2Aに示す実施形態において、ガス拡散層4は、吸水材41、バインダー42、粒子状の導電性担体(以下、「導電性担体粒子」とも称する)43a、および微多孔質膜44を有する。そして、これらの粒子状の吸水材41、バインダー42、導電性担体粒子43a、および微多孔質膜44は微多孔質層(マイクロポーラス層:MPL)20を形成している。すなわち、本実施形態のガス拡散層は吸水材41およびバインダー42を含む微多孔質層20を有する。より詳細には、吸水材41は導電性担体粒子43aに担持されている。そして、吸水材41および導電性担体粒子43aはバインダー42により結着されて、微多孔質膜44により形成されたシート状の微多孔質骨格に保持されている。かようなシート状の微多孔質層とすることで、通常の湿式または乾式塗布により製造される図2Bや図2Dのような微多孔質層に比べて、層の厚みのばらつきが抑制され、大量生産が可能となる。さらに、シートタイプの微多孔質層は柔軟性に優れるため、後述する形態のようにガス拡散層が微多孔質層および基材層を有する形態においてガス拡散基材中の繊維の膜への攻撃(突き刺し)を緩和することができる。以下、本実施形態の微多孔質層を例に挙げて、微多孔質層を構成する部材について説明するが、本発明は下記の形態に制限されるわけではない。
 微多孔質層に含まれうる吸水材の材料や形状等は上述した通りである。微多孔質層における吸水材の含有量はガス拡散層のミクロ孔細孔容積が所望の範囲となり、機械的強度が十分に確保できるように適宜調整すればよい。ミクロ孔細孔容積や強度は吸水材の種類(材質)や目付け量に依存し、吸水材の種類、目付け量、含有量を調整することで所望のミクロ孔細孔容積および機械的強度を有する微多孔質層が得られる。このため、例えば、微多孔質層の全質量に対して10質量%の含有量で吸水材を用いて形成された30μmの厚みの微多孔質層のミクロ孔細孔容積が約8.0×10-5cm/cmである場合には、同組成の微多孔質層の厚みを75μm以上とすることにより、ミクロ孔細孔容積が2.0×10-4cm/cm以上の微多孔質層が形成できる。具体的には、吸水材の含有量は、微多孔質層の全質量に対して、好ましくは10~80質量%である。吸水材の含有量が10質量%以上であると、微多孔質層(MPL)の厚みを増大させることなくガス拡散層(GDL)として所望のミクロ孔細孔容積を実現することができる。これにより、厚み方向の抵抗の上昇を低減でき、常温における性能の低下が抑制されうる。一方、80質量%以下であれば、微多孔質層(MPL)を形成しやすく、ハンドリング性も良好である。吸水材の含有量が上記範囲であれば、所望のミクロ孔細孔容積を容易に確保することができ、電池の零下起動性を向上させることができる。
 粒子状の導電性担体としては導電性を有するものであれば特に制限されないが、正極電位および負極電位において化学的に安定なものが好ましく、カーボン材料、金属材料から構成されるものが挙げられる。中でも、粒子状の導電性担体として、カーボン粒子が好ましく使用される。かようなカーボン粒子を構成するカーボンとしては、例えば、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。かようなカーボン粒子は、市販品を用いることができ、キャボット社製バルカンXC-72、バルカンP、ブラックパールズ880、ブラックパールズ1100、ブラックパールズ1300、ブラックパールズ2000、リーガル400、ライオン社製ケッチェンブラックEC、三菱化学社製#3150、#3250などのオイルファーネスブラック;電気化学工業社製デンカブラックなどのアセチレンブラック等が挙げられる。またカーボンブラックのほか、天然の黒鉛、ピッチ、コークス、ポリアクリロニトリル、フェノール樹脂、フラン樹脂などの有機化合物から得られる人工黒鉛や炭素などであってもよい。また、耐食性などを向上させるために、前記カーボン粒子に黒鉛化処理などの加工を行ってもよい。
 前記導電性担体粒子の粒子径は、好ましくは0.2~5μm、より好ましくは0.3~1μmとするのがよい。導電性担体粒子の粒子径が5μm以下であれば表面が滑らかとなり接触抵抗の増大を抑制できる。0.2μm以上であると微多孔質層の空隙率の低下によるガス拡散性の低下を防止することができる。なお、導電性担体の粒子の形状は特に限定されず、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうる。本明細書中、「導電性担体粒子の粒子径」は、導電性担体粒子の平均二次粒子径である。ここで、導電性担体粒子の平均二次粒子径の測定は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 また、微多孔質層における導電性担体粒子の配置は特に制限されないが、水やガスの拡散経路(空隙)が厚さ方向に向かって貫通して形成されているのが好ましい。これにより、水をガス拡散基材へとより確実に排出させることができる。また、微多孔質層において、水やガスの拡散経路(空隙)の形状は、厚さ方向に向かって貫通して形成されていれば特に制限されず、直線状、網目状、などのいずれであってもよい。微多孔質層内の導電性担体粒子間に形成された空孔の大きさ(平均空孔径)は、10μm以下とするのが好ましく、より好ましくは0.1~10μmとするのがよい。微多孔質層内の平均空孔径を10μm以下とすることで、触媒層の平均空孔径とガス拡散基材の平均空孔径の間となり、液水を排出しやすくし、ガス拡散経路をより確実に確保することが可能となる。
 微多孔質層における導電性担体粒子の含有量は微多孔質層の空孔構造や機械的強度が所望の特性となるように適宜調整すればよい。具体的には、微多孔質層に吸水材が含まれる場合には、微多孔質層における導電性担体粒子の含有量は、微多孔質層の全質量に対して、好ましくは0~60質量%であり、より好ましくは5~55質量%である。
 微多孔質層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂等が挙げられる。
 微多孔質層が導電性担体粒子および撥水剤を含む場合、微多孔質層における導電性担体粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、質量比で95:5~40:60(導電性担体粒子:撥水剤)程度とするのがよい。
 微多孔質層では、吸水材および/または導電性担体粒子がバインダーにより結着されていてもよい。本発明に用いられうるバインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、フェノール樹脂、メラミン樹脂、ポリアミド樹脂などの熱硬化性樹脂や、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂などが挙げられる。なお、上述した撥水剤とバインダーとは一部重複する。したがって、好ましくは、撥水性を有するバインダーを使用する。中でも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられ、特に、微多孔質層を作製する際の吸着材のミクロ孔の閉塞抑制効果を考慮すると、ポリテトラフルオロエチレン(PTFE)が好ましい。撥水性を有するバインダーを用いることにより、微多孔質層内の細孔(吸水材や導電性担体粒子間)に撥水性が付与され、水の排出性を向上させることができる。なお、これらのバインダーは1種類単独で用いてもよいし、または2種類以上併用してもよい。また、これら以外の高分子が用いられてもよい。
 微多孔質層におけるバインダーの含有量は、微多孔質層内の空隙構造が所望の特性となるように適宜調整すればよい。具体的には、バインダーの含有量は、微多孔質層の全質量に対して好ましくは5~60質量%、より好ましくは10~50質量%、さらに好ましくは12~40質量%の範囲であるのが好ましい。バインダーの配合割合が5質量%以上であれば粒子同士を良好に結合でき、60質量%以下であれば微多孔質層の電気抵抗の上昇を防止しうる。
 微多孔質膜としては、シート状の微多孔質骨格を有するものであればよい。具体的には延伸ポリテトラフルオロエチレン(ePTFE)が挙げられるが、延伸ポリテトラフルオロエチレン(ePTFE)を使用することが好ましい。ePTFEはPTFEの二軸延伸によりフィブリル化されたPTFE繊維のネットワーク構造(微多孔質骨格)を有する。ePTFEは強靭性、柔軟性、化学的安定性、熱的安定性に富み、空孔構造、強度、厚さを所望の範囲に調節することができる。さらに、バインダーとしてポリテトラフルオロエチレン(PTFE)を使用する場合には、PTFE繊維とPTFE中のフルオロ鎖との間の相互作用が良好となる。かようなePTFEを使用することで、機械的強度や柔軟性に優れたシート状の微多孔質層を得ることができる。かようなePTFEの製造方法は、米国特許第3,953,566号、米国特許第6,613,203号または米国特許第5,814,405号に記載されており、これらに記載の方法を使用して製造されたePTFEを使用すればよい。
 微多孔質層における微多孔質膜の含有量は特に制限されないが、微多孔質層の全質量に対して、好ましくは0.1~50質量%、より好ましくは1~40質量%である。かような範囲であれば、柔軟性および機械的強度に優れたシート状の微多孔質層が得られうる。
 微多孔質層の厚さは得られるガス拡散層の特性を考慮して適宜決定すればよいが、好ましく3~500μmであり、より好ましくは5~300μmであり、さらに好ましくは10~150μmであり、特に好ましくは20~100μmである。かような範囲にあれば、機械的強度とガスおよび水などの透過性とのバランスが適切に制御できる。
 上記の図2Aに示す実施形態においては、微多孔質層は粒子状の吸水材、導電性担体粒子、バインダー、および微多孔質膜を含むが、本発明において、微多孔質膜を含まない微多孔質層も好ましく使用されうる。図2Bは本発明の他の実施形態である粒子状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。図2Bに示す実施形態において、ガス拡散層4は、吸水材41に加えて導電性担体粒子43aをさらに含み、吸水材41が導電性担体粒子43aに担持されてなる。そして、吸水材41および導電性担体粒子43aはバインダー42により結着されて、吸水材41、バインダー42、および導電性担体粒子43aを含む微多孔質層20を形成している。かかる形態によれば、微多孔質層の導電性が向上する上、粒子状の吸水材および粒子状の導電性担体により反応ガスや水の拡散経路となる微細な空孔構造が形成され、ガスおよび水の拡散性を向上させることができる。
 また、微多孔質層は、導電性担体粒子を含まず、粒子状の吸水材およびバインダーと、必要に応じて微多孔質膜とから構成されていてもよい。図2Cは本発明のさらに他の実施形態である、粒子状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。図2Cに示す実施形態において、ガス拡散層4は、シート状である微多孔質層20を有する。本実施形態においては、微細な連続多孔質構造(骨格)を有する微多孔質膜44中に吸水材41およびバインダー42が保持されている。そして、吸水材41、バインダー42、および微多孔質膜44は微多孔質層20を形成している。かかる場合には、通常の湿式または乾式塗布により製造される図2Dのような微多孔質層に比べて、層の厚みのばらつきが抑制され、大量生産が可能となる。
 図2Dは本発明のさらに他の実施形態である、粒子状の吸水材を含むガス拡散層を示す模式図である。図2Dに示す実施形態において、ガス拡散層4は、粒子状の吸水材41がバインダー42により結着されてなる。本実施形態において、粒子状の吸水材41およびバインダー42は集合して微多孔質層20を形成している。すなわち、本実施形態のガス拡散層は吸水材41およびバインダー42を含む微多孔質層20を有する。かかる場合には、ガス拡散層内のミクロ孔の細孔容積を増大させることができるため、発電により生成した水を十分に吸収できるとともに低温環境下においてもその凍結が防止される。
 なお、図2B~図2Dに示す実施形態において、微多孔質層を構成する部材については既に上述した通りであるので、重複を避けるためここでの説明は省略する。また、図2A~図2Dに示される実施形態においては、ガス拡散層にバインダーが含まれているが、本発明はバインダーが含まれる形態に限定されるわけではなく、ガス拡散層の機械的強度が確保できる限り、バインダーを含まない形態であってもよい。
 また、上記微多孔質層は、そのままガス拡散層として使用されても、あるいはガス拡散基材を含む基材層上に積層されてガス拡散層を形成してもよい。ここで、ガス拡散基材の形態は特に制限されず、織物、紙状抄紙体、フェルト、不織布等の多様な形態とすることができる。中でも好ましくは、カ-ボンペーパー、カーボンクロス、カーボン不織布等のカーボン繊維から形成されたガス拡散基材を使用することが好ましい。
 前記ガス拡散基材は、市販品を用いることもでき、例えば、東レ株式会社製カーボンペーパーTGPシリーズ、E-TEK社製カーボンクロスなどが挙げられる。また、ガス拡散基材は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されず、微多孔質層において使用される撥水剤を同様に好ましく使用することができる。ここで、基材層における撥水剤の添加量は特に制限されずガス拡散基材(導電性担体繊維)の表面が十分に被覆されるように適宜調整すればよい。好ましくは、ガス拡散基材(導電性担体繊維)と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、質量比(導電性担体繊維:撥水剤)で99:1~50:50、好ましくは95:5~60:40程度とするのがよい。
 なお、膜電極接合体の排水特性、セパレータの表面性状によっては、撥水処理を行わないガス拡散基材や親水処理を施したガス拡散基材も好適に使用されうる。
 本形態では、基材層は、上記ガス拡散基材のみから構成されても、あるいはガス拡散基材と基材層としては、ポーラスメタルを使用してもよい。ポーラスメタルとしては、基材層の材料として公知のものを使用すればよく、例えば、鉄、チタン、アルミニウムおよび銅ならびにこれらの合金;ステンレス;金や銀などの貴金属の材料から構成されるものが挙げられる。また、ポーラスメタルの孔径等は特に制限されない。
 基材層の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがこのような範囲内の値であれば、機械的強度とガスおよび水などの透過性とのバランスが適切に制御できる。
 他の実施形態において、ガス拡散層は繊維状の導電性担体をさらに含み、吸水材が繊維状の導電性担体(以下、「導電性担体繊維」とも称する)に担持されてなる。図3Aは本発明の一実施形態である、粒子状の吸水材および繊維状の導電性担体を含むガス拡散層を示す模式図である。図3Aに示す実施形態において、ガス拡散層4は、導電性担体繊維43bをさらに含み、吸水材41が導電性担体繊維43bに担持されてなる。そして、導電性担体繊維43bはガス拡散基材45を形成し、ガス拡散基材45および吸水材41は基材層30を形成している。すなわち、本実施形態は、導電性担体繊維43bから構成されるガス拡散基材45に吸水材41が担持されてなる基材層30を有する。かかる形態によれば、導電性担体繊維から構成されることにより、ガス拡散層の機械的強度が向上する。以下、本実施形態の基材層を例に挙げて、基材層を構成する部材について説明するが、本発明は下記の形態に制限されるわけではない。
 基材層に含まれうる吸水材の材料や形状等は上述した通りである。吸水材が基材層に含まれる場合、繊維状の吸水材を使用する場合には、吸水材の含有量は基材層の全質量に対して、好ましくは10~100質量%である。かような範囲であれば、所望のミクロ孔細孔容積を容易に確保することができ、電池の零下起動性を向上させることができる。また、粒子状の吸水材を使用する場合には、吸水材の含有量は基材層の全質量に対して、好ましくは10~50質量%である。かような範囲にあれば、基材の機械的強度および所望のミクロ孔細孔容積が確保された基材層となる。
 繊維状の導電性担体はガス拡散基材を形成し、このガス拡散基材は基材層を構成する。かような繊維状の導電性担体としては、特に制限されないが、カーボン繊維、金属繊維及び有機繊維よりなる群から選択される1種を使用することが好ましい。カーボン繊維としては、ポリアクリロニトリル(PAN)系カーボン繊維、ピッチ系カーボン繊維、フェノール系カーボン繊維、及び気相成長によるカーボン繊維などのカーボン繊維が挙げられる。カーボン繊維は比強度・比弾性率に優れるため、柔軟性および強度に優れたガス拡散基材が得られる。より好ましくは、工業上広く利用されているPAN系カーボン繊維またはピッチ系カーボン繊維が好ましい。ここで、PAN系カーボン繊維とは、PANが主成分の合成繊維を原料とする繊維であり、ピッチ系カーボン繊維とは、石油・石炭・合成ピッチ等を原料とする繊維である。カーボン繊維の繊維径は特に制限されないが、好ましくは5~20μmである。金属繊維としては、鉄、チタン、アルミニウムおよび銅ならびにこれらの合金;ステンレス;金や銀などの貴金属の繊維が挙げられる。金属繊維は導電性に一層優れる。なかでも、機械的強度、汎用性、コスト面、加工容易性や高導電性の観点からいえば、ステンレス、アルミニウムまたはアルミニウム合金の繊維が好ましい。金属繊維の繊維径の範囲として、以下に限定されることはないが、好ましくは1~100μm、より好ましくは5~50μm、さらに好ましくは5~20μmである。有機繊維とは、導電化した樹脂繊維を意味し、例えば、フェノール系樹脂繊維、ポリアクリロニトリル繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維などが挙げられる。なかでも、一層確実に導電性を確保できるという観点より、多孔質材料層はフェノール系樹脂繊維を含むことが好ましい。有機繊維の繊維径の範囲として、以下に限定されることはないが、好ましくは5~50μm、より好ましくは10~30μmである。
 導電性担体繊維から形成されるガス拡散基材の形態は特に制限されず、織物、紙状抄紙体、フェルト、不織布等の多様な形態とすることができる。中でも好ましくは、カ-ボンペーパー、カーボンクロス、カーボン不織布等のカーボン繊維から形成されたガス拡散基材を使用することが好ましい。前記ガス拡散基材は、市販品を用いることもでき、例えば、東レ株式会社製カーボンペーパーTGPシリーズ、E-TEK社製カーボンクロスなどが挙げられる。
 ガス拡散基材は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されず、微多孔質層において使用される撥水剤を同様に好ましく使用することができる。
 基材層における撥水剤の添加量は特に制限されずガス拡散基材(導電性担体繊維)の表面が十分に被覆されるように適宜調整すればよい。好ましくは、ガス拡散基材(導電性担体繊維)と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、質量比(導電性担体繊維:撥水剤)で99:1~50:50、好ましくは95:5~60:40程度とするのがよい。
 なお、膜電極接合体の排水特性、セパレータの表面性状によっては、撥水処理を行わないガス拡散基材や親水処理を施したガス拡散基材も好適に使用されうる。
 また、基材層として、ポーラスメタルを使用してもよい。ポーラスメタルとしては、基材層の材料として公知のものを使用すればよく、例えば、鉄、チタン、アルミニウムおよび銅ならびにこれらの合金;ステンレス;金や銀などの貴金属の材料から構成されるものが挙げられる。また、ポーラスメタルの孔径等は特に制限されない。
 基材層の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがこのような範囲内の値であれば、機械的強度とガスおよび水などの透過性とのバランスが適切に制御できる。
 本発明のさらなる実施形態において、吸水材は導電性担体粒子および導電性担体繊維の両方に担持される。図3Bは本発明の一実施形態である、粒子状の吸水材、繊維状の導電性担体、および粒子状の導電性担体を含むガス拡散層を示す模式図である。図3Bに示す実施形態において、ガス拡散層4は吸水材41が導電性担体粒子43aおよび導電性担体繊維43bに担持されてなり、導電性担体繊維43bはガス拡散基材45を形成している。そして、吸水材41、導電性担体粒子43a、およびガス拡散基材45は基材層30を形成している。かような形態によれば、機械的強度および微多孔性(水やガスの拡散性)に一層優れたガス拡散層が得られる。
 図4Aは本発明の一実施形態である、繊維状の吸水材を使用したガス拡散層を示す模式図である。図4Aに示す実施形態において、ガス拡散層4は、繊維状の吸水材41から構成される。繊維状の吸水材41はガス拡散基材45を形成し、このガス拡散基材45は基材層30を構成する。かような形態によれば、ガス拡散層中の吸水材の含有量を最大で100質量%まで増大させることができるため、ガス拡散層内のミクロ孔の細孔容積を増加させることができる。これにより、発電により生成した水を十分に吸収できるとともに低温環境下での凍結が防止される。さらに、機械的強度にも優れたガス拡散層が得られる。
 図4Bは本発明の他の一実施形態である、繊維状の吸水材および粒子状の導電性担体を含むガス拡散層を示す模式図である。図4Bに示す実施形態において、ガス拡散層4は、繊維状の吸水材41および粒子状の導電性担体43aを含む。そして、導電性担体粒子43bは、繊維状の吸水材41から形成されたガス拡散基材45内に分散しており、これらの導電性担体粒子43bおよびガス拡散基材45は基材層30を構成している。かような形態によれば、機械的強度および微多孔性(水やガスの拡散性)に一層優れたガス拡散層が得られる。
 上記図4および図4Bに示す実施形態において、ガス拡散基材45は繊維状の吸水材41のみから構成されているが、ガス拡散基材45は繊維状の吸水材41に加えて他の繊維状材料から構成されていてもよい。例えば、ガス拡散基材45は繊維状の吸水材41および導電性担体繊維43bから構成されてもよい。また、図3B~図4Bに示す実施形態において、基材層を構成する部材については図3Aの形態において説明した形態を同様に好ましく使用することができる。
 なお、図2A~図2D、図3Aおよび図3B、ならびに図4Aおよび図4Bに示す実施形態において、ガス拡散層4は微多孔質層20(図2A~図2D)または基材層30(図3Aおよび図3Bならびに図4Aおよび図4B)の1層から構成されている。ただし、本発明は、かような単層構造を有するガス拡散層に限定されず、複数の層から構成されていてもよい。図5は本発明の一実施形態である、基材層および微多孔質を含むガス拡散層を示す模式断面図である。図5に示す実施形態において、ガス拡散層4は基材層30上に微多孔質層20を積層してなる。かような積層形態を有するガス拡散層では、微多孔質層または基材層の少なくとも一方にミクロ孔を有する吸水材が含まれていればよい。微多孔質層に吸水材が含まれる場合には、微多孔質層は例えば、上述した図2A~図2Dに示す微多孔質層20でありうる。そして、基材層は導電性担体繊維から構成されるガス拡散基材を含んで構成され、基材層は吸水材を含んでいても含んでいなくてもよい。また、基材層として、ポーラスメタルを使用してもよい。一方、基材層に吸水材が含まれる場合には、基材層は例えば、上述した図3A~図3Cならびに図4Aおよび図4Bに示す基材層30でありうる。また、微多孔質層は導電性担体粒子や吸水材の集合体から構成され、微多孔質層は吸水材を含んでいても含んでいなくてもよい。かような積層形態とすることにより、零下起動性、機械的強度、およびガスや水拡散性のバランスに優れたガス拡散層が得られる。なお、微多孔質層および基材層の積層形態とする場合には、微多孔質層を触媒層側に配置することが好ましい。かかる場合には、ガスおよび水の拡散性を一層向上することができる。なお、本発明のガス拡散層は、微多孔質層および/または基材層に加えてさらに他の層を含有していてもよい。
 ガス拡散層の製造方法としては、特に制限されず公知の方法を用いることができるが、以下に本発明のガス拡散層の製造方法の好ましい実施形態を記載する。なお、本発明は、下記実施形態に限定されない。
 基材層を有する場合には、まず、ガス拡散基材を準備する。ガス拡散基材の撥水処理方法としては、一般的な撥水処理方法を用いて行えばよい。撥水剤の水性ディスパージョン溶液またはアルコールディスパージョン溶液に、ガス拡散層に用いられる基材を浸漬した後、オーブン等で加熱乾燥させる方法などが挙げられる。乾燥時の排ガス処理の容易さからは、撥水剤の水性ディスパージョン溶液を用いるのが好ましい。なお、繊維状の吸水材から形成されるガス拡散基材を使用する場合も、上記と同様にして撥水処理を行ってもよい。
 図3Aおよび図3Bならびに図4Bのように、ガス拡散基材45内に吸水材41および/または導電性担体粒子43aが分散された形態とする場合には、まず、吸水材41および/または導電性担体粒子43a等を溶媒中に分散させてスラリー溶液を調製する。この際、溶媒としては、水または、パーフルオロベンゼン、ジクロロペンタフルオロプロパン、メタノール、エタノール等のアルコール系溶媒等が好適に使用される。続いて、このスラリー溶液をガス拡散基材45に塗布するか、または、このスラリー溶液中にガス拡散基材45を浸漬することにより、ガス拡散基材45内に吸水材41および/または導電性担体粒子43a等を含浸させればよい。その後、乾燥することにより、ガス拡散基材45内に吸水材41および/または導電性担体粒子43aを含む基材層が製造される。
 微多孔質層を有する場合には、吸水材41および/または導電性担体粒子43aと、必要に応じてバインダー42と、撥水剤とを溶媒中に分散させてスラリー溶液を調製する。この際、溶媒としては、水または、パーフルオロベンゼン、ジクロロペンタフルオロプロパン、メタノール、エタノール等のアルコール系溶媒等が好適に使用される。そして、このスラリー溶液を乾燥させることにより、微多孔質層が製造される。また、微多孔質膜44を有する場合には、微多孔質膜44を上記で得たスラリー溶液に浸漬させることにより微多孔質膜にスラリー溶液を含浸させればよい。
 また、微多孔質層は、吸水材およびバインダー(PTFEなど)、ならびに必要に応じて導電性担体粒子や他のフッ素樹脂を均一に混合した混合物(混和物、スラリーなど)をフィルム化することによって製造することもできる。
 混合法やフィルム化法の詳細は特に限定されず、当業者であれば適宜変更を加えて実施することも可能であるが、バインダーとしてPTFEを使用する場合を例に挙げて製造方法を例示すると例えば以下の通りである。すなわち、前記混合物(混和物、スラリーなど)は公知の方法に準じて調製することができる。例えば、混和物は乾式法または湿式法によって調製することができ、スラリーは湿式法によって調製することができる。
 乾式法は、吸水材および必要に応じて導電性担体粒子(導電性炭素湿粉末など)のファインパウダーとPTFEのファインパウダーとを混合する方法である。すなわち、乾式法では、適当な混合機(例えば、Vブレンダー)に前記ファインパウダーを投入し、PTFEにシェアーを与えないようにしながら(例えば、20℃以下の低温を維持しながら低攪拌速度で)攪拌して混合すると共に、さらに適当な加工助剤(例えば、ミネラルスピッツ)を加えて前記混合物に吸収させることによって、混和物を調製することができる。なお、吸水材および導電性担体粒子(導電性炭素湿粉末など)のファインパウダーは吸水材および導電性担体粒子(導電性炭素湿粉末など)を公知の粉砕器(例えば、ボールミル、ピンミル、ホモジナイザーなど)で粉砕することによって得ることができる。PTFEのファインパウダーは市販のものを使用するのが簡便である。また、加工助剤の吸収過程では、混合物に加工助剤を添加した後、適宜加湿する(例えば40~60℃程度、特に好ましくは50℃程度)ことが推奨される。
 一方、湿式法は、吸水材、導電性担体粒子、PTFEを水中で混合する方法である。すなわち、湿式法では、分散可能な程度に微細化した原料(吸水材、導電性担体粒子、PTFE)を、界面活性剤の存在下、水中で混合することにより、スラリー(インキ)を調製することができる。また、前記混合時に、スラリー(インキ)に機械的シェアーをかけたり、沈殿剤(アルコールなど)を添加したりすると、吸水材、導電性担体粒子、PTFEが共沈する。この共沈物を濾取し、乾燥した後、前記乾式法と同様にして、この乾燥物に適当な加工助剤を吸収させれば、混和物を調製することもできる。なお、微細な吸水材および導電性担体粒子は、前記乾式法と同様に調整してもよいが、界面活性剤と共に水中に添加し、液中粉砕手段(例えば、ホモジナイザーなど)によって粉砕しながら液中に分散させるのが簡便である。また、PTFEとしては、市販の水性PTFEディスパージョンを使用するのが簡便である。
 混和物をフィルム化するには、PTFEのペースト押し出し加工方法が適用できる。すなわち、混和物を予備成形によってペレット化し、ペレットをダイなどから押し出し成形し、乾燥する方法(押し出し成形法)、該ペレットを押し出し機により紐状に押し出し、その紐状物を2本のロール間で圧延し、乾燥する方法(ビード圧延法)などの種々の公知の方法を利用できる。
 吸水材およびバインダー(PTFEなど)、ならびに必要に応じて導電性担体粒子や他のフッ素樹脂を均一に混合した混合物(混和物、スラリーなど)をフィルム化して、微多孔質層にする際の、吸水材の添加(塗布)量は、ガス拡散層のミクロ孔の細孔容積が所望の範囲となり、機械的強度が十分に確保できるような量であればよい。上記したように、ミクロ孔の細孔容積や強度は、吸水材の種類(材質)や目付け量に依存し、吸水材の種類、目付け量、添加量を適宜調整することによって、所望のミクロ孔細孔容積および機械的強度を有する微多孔質層が得られる。具体的には、吸水材の添加(塗布)量は、吸水材による計算上のミクロ孔の細孔容積が好ましくは2.0×10-2~5.0×10-1cm/cm、より好ましくは2.6×10-2~4.0×10-1cm/cmとなるような量である。このような量であれば、微多孔質層を作製する際に吸水材のミクロ孔の一部が閉塞されても、ガス拡散層は、所望の範囲のミクロ孔の細孔容積および十分な機械的強度を有する。なお、上記「吸水材による計算上のミクロ孔の細孔容積」は、ガス拡散層1cm当たりの吸水材の添加量(g/cm)と、吸水材のミクロ孔の細孔容積(cm/g)との積により求められる。
 また、フィルムの厚さと透湿度は、前記フィルム化工程を適宜工夫することによって調整することができる。例えば、押し出し成形法やビード圧延法において一次成形フィルムが熱い場合には、フィルムが所定の厚さとなるまでロール圧延を繰り返してもよい。また、作製条件によっては密度が上がりすぎて透湿度が低下する場合があるが、そのような場合には延伸することによって透湿度を高めることができる。このように圧延と延伸とを適宜組み合わせることによって、フィルムの厚さと透湿度とを調整することができる。一方、コーティング法では、フィルムが所定の厚さになるまでコーティングおよび乾燥を繰り返してもよく、厚さと透湿度をさらに調整するために適宜圧延と延伸とを採用してもよい。なお、圧延および延伸によって、フィルムの厚み方向に対する電気抵抗を調整することもでき、通気性も調整することができる。
 また、押し出し成形法やビード圧延法の乾燥工程では、加工助剤(ミネラルスピリッツなど)の揮発除去が可能な温度(例えば150~300℃程度、特に好ましくは200℃程度)に加熱することが推奨され、コーティング法の乾燥工程では、水の揮発除去が可能な温度(例えば100~300℃、特に好ましくは120℃)に加熱することが推奨される。
 また、乾燥工程では、有機不純物(例えば、湿式法で使用した界面活性剤など)を炭化して無害化することも推奨される。界面活性剤が残留すると、フィルムの透湿性が著しく大きくなるが、界面活性剤を炭化することによって透湿性を適切なレベルに下げることができる。炭化温度は、例えば、300~400℃程度(好ましくは350℃程度)である。なお、有機不純物の除去方法は、前記炭化処理に限定されず、不純物の種類に応じて種々の方法が適宜採用できる。例えば、界面活性剤の種類によっては、250℃以上に加熱することによって揮発除去されることも可能であり、溶剤(例えば、アルコール類)を使用して抽出除去することも可能である。詳細は、特開昭57-030270号公報、特開2006-252948号公報に記載されている。
 なお、基材層上に微多孔質層を形成する場合には、ガス拡散基材上に上記で作製したスラリー溶液やスラリー溶液が含浸した微多孔質膜を塗布し、これを乾燥させればよい。これにより、基材層30と微多孔質層20とが積層されてなるガス拡散層が得られる。
 上記実施形態のガス拡散層は、種々の用途に用いられうる。その代表例が図1に示すPEFC1のガス拡散層(4a、4c)である。また、本発明の一実施形態によれば、ガス拡散層(4a、4c)と前記ガス拡散層上に積層された触媒層(3a、3c)と、を含む燃料電池用ガス拡散電極(8a、8c)が提供される。ガス拡散電極とは、ガス拡散層および電極触媒層の接合体をいう。ガス拡散層の微多孔質層側に触媒層が積層一体化されたガス拡散電極することにより、ガス拡散層と触媒層との密着性を向上させることができる。これにより、ガス拡散層と触媒層との界面における氷の生成が防止され、抵抗の上昇を抑制することができる。
 そして、本発明のさらなる実施形態によれば、高分子電解質膜2、これを挟持する一対のアノードガス拡散電極8aおよびカソードガス拡散電極8cを含む燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記アノードガス拡散電極8aまたは前記カソードガス拡散電極8cのうちの少なくとも一方が上記に記載した実施形態のガス拡散電極である。好ましくは、アノードガス拡散電極が上記に記載した実施形態のガス拡散電極である。アノードのガス拡散電極、すなわち、アノードのガス拡散層が2.0×10-4cm/cm以上のミクロ孔を有することが好ましい。発電時にはカソード側で水が生成する。アノードのガス拡散層にミクロ孔を有する吸水材を配置することにより、カソードで生成した水がアノードへ逆拡散するのを促進することができる。また、例えば、高分子電解質型燃料電池の場合では、アノードの水素ガスはカソードの酸素ガスに比べてガス拡散性が高いため、アノードではカソードに比べて吸着された水や氷により拡散の阻害を受けにくい。よって、カソード側に滞留した余剰水がアノード側に速やかに移動させることにより、低温環境下における発電継続時間を長くすることができる。これにより、より低い温度からの自立起動が可能となり、短時間での起動が可能となる。なお、アノードガス拡散電極およびカソードガス拡散電極の両方を、上記実施形態のガス拡散層を適用したガス拡散電極としてもよい。かような場合には、吸水可能量が増加するため、一方のガス拡散電極のみに使用した場合よりも発電継続時間が増加しうる。また、カソードガス拡散電極のみを上記実施形態のガス拡散層を適用したガス拡散電極としてももちろんよい。かような場合にも、発電可能時間は増加しうるが、吸着された水や氷が滞留し、反応ガス(酸素)の拡散が阻害されやすいため、アノード側に適用した場合に比べて効果は小さい。これらのうち、アノードガス拡散電極のみに2.0×10-4cm/cm以上のミクロ孔を有するガス拡散層を適用することが最も好ましい。このような形態によると、カソードガス拡散電極にはアノードガス拡散電極に比してミクロ孔が余り存在しないため、カソード側で生成した水はカソード側に滞留せずに、アノードガス拡散層のミクロ孔内に速やかに移動する。このため、氷点下のような低温環境下でのカソード触媒層中の水の凍結を抑制・防止でき、起動時に酸素ガスが速やかに触媒層中に拡散できる。一方、アノード触媒層では、アノードガス拡散層のミクロ孔内で水が凍結していても、水素ガスは、水や氷による阻害を受けにくいので、起動時にアノード触媒層中で十分拡散できる。したがって、このような形態によると、燃料電池は、低温環境下における電池の起動性(零下起動性)に優れる。なお、本発明は、上記メカニズムに限定されない。また、本発明の一実施形態によれば、上記実施形態のガス拡散層、もしくはこれを用いたガス拡散電極、またはこれらを用いた膜電極接合体と、前記膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池が提供される。
 以下、図1を参照しつつ、上記実施形態のガス拡散層を用いたPEFCの構成要素について説明する。ただし、本発明はガス拡散層に特徴を有するものである。よって、燃料電池を構成するガス拡散層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。
 [電解質層]
 電解質層は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 固体高分子電解質膜2は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質膜と炭化水素系高分子電解質膜とに大別される。フッ素系高分子電解質膜を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性などの発電性能を向上させるという観点からは、これらのフッ素系高分子電解質膜が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質膜が用いられる。
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質膜が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
 電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。
 [触媒層]
 触媒層(アノード触媒層3a、カソード触媒層3c)は、実際に電池反応が進行する層である。具体的には、アノード触媒層3aでは水素の酸化反応が進行し、カソード触媒層3cでは酸素の還元反応が進行する。
 触媒層は、触媒成分、触媒成分を担持する導電性の触媒担体、および電解質を含む。以下、触媒担体に触媒成分が担持されてなる複合体を「電極触媒」とも称する。
 アノード触媒層に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒成分もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。
 これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒成分およびカソード触媒層に用いられる触媒成分は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒成分についての説明は、両者について同様の定義である。よって、一括して「触媒成分」と称する。しかしながら、アノード触媒層およびカソード触媒層の触媒成分は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。
 触媒成分の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。ただし、触媒成分の形状は、粒状であることが好ましい。この際、触媒粒子の平均粒子径は、好ましくは1~30nmである。触媒粒子の平均粒子径がかような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスが適切に制御されうる。なお、本発明における「触媒粒子の平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅より求められる結晶子径や、透過形電子顕微鏡像より調べられる触媒成分の粒子径の平均値として測定されうる。
 触媒担体は、上述した触媒成分を担持するための担体、および触媒成分と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。
 触媒担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンであることが好ましい。具体的には、カーボンブラック(オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、「実質的に炭素原子からなる」とは、2~3質量%程度以下の不純物の混入が許容されうることを意味する。
 触媒担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよいが、好ましくは20~1600m/g、より好ましくは80~1200m/gである。触媒担体の比表面積がかような範囲内の値であると、触媒担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御されうる。
 触媒担体のサイズについても特に限定されないが、担持の簡便さ、触媒利用率、触媒層の厚みを適切な範囲で制御するなどの観点からは、平均粒子径を5~200nm程度、好ましくは10~100nm程度とするとよい。
 触媒担体に触媒成分が担持されてなる電極触媒において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10~80質量%、より好ましくは30~70質量%である。触媒成分の担持量がかような範囲内の値であると、触媒担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。なお、電極触媒における触媒成分の担持量は、誘導結合プラズマ発光分光法(ICP)によって測定されうる。
 触媒層には、電極触媒に加えて、イオン伝導性の高分子電解質が含まれる。当該高分子電解質は特に限定されず従来公知の知見が適宜参照されうる。例えば、上述した電解質層を構成するイオン交換樹脂が、高分子電解質として触媒層に添加されうる。
 触媒層には、必要に応じて、撥水剤、分散剤、増粘剤、造孔剤等の添加剤が含まれていても構わない。また、これらの添加剤は、当業者にとって従来公知のものが使用可能であり、その他の具体的な構成については、特に限定されない。
 膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、電解質膜や触媒層内の電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
 (セパレータ)
 セパレータは、固体高分子型燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
 前記燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質型燃料電池(PEFC)を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質型燃料電池が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用であるが、特にシステムの起動/停止や出力変動が頻繁に発生する自動車用途で特に好適に使用できる。
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
 上述したPEFC1や燃料電池スタックは、零下起動性に優れるガス拡散層またはガス拡散層から構成されるガス拡散電極を用いている。したがって、当該PEFC1や燃料電池スタックは零下起動性に優れる。
 [車両]
 本実施形態のPEFC1やこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
 図6は、上述した実施形態の燃料電池スタックを搭載した車両の概念図である。図3に示すように、燃料電池スタック101を燃料電池車100のような車両に搭載するには、例えば、燃料電池車100の車体中央部の座席下に搭載すればよい。座席下に搭載すれば、車内空間およびトランクルームを広く取ることができる。場合によっては、燃料電池スタック101を搭載する場所は、座席下に限らず、後部トランクルームの下部でもよいし、車両前方のエンジンルームであってもよい。このように、上述した形態のPEFC1や燃料電池スタック101を搭載した車両もまた、本発明の技術的範囲に包含される。上述したPEFC1や燃料電池スタック101は零下起動性に優れる。したがって、零下起動性の向上した燃料電池搭載車両が提供されうる。
 以下、本発明による効果を、実施例および比較例を用いて説明するが、本発明の技術的範囲はこれらの実施例に限定されない。
 [実施例1]
 (1)アノードのガス拡散層の作製
 (a)ガス拡散基材の撥水処理
 アノードのガス拡散基材として、後述するカソードのガス拡散層中のガス拡散基材と同一のカーボンペーパー(厚さ200μm)を使用し、ガス拡散基材の撥水処理を行った。撥水処理には、PTFEの水性ディスパージョン溶液(ダイキン工業株式会社製、製品名:D1-E)を使用した。撥水処理後のカーボンペーパー中のPTFE含有量は10質量%であった。
 (b)微多孔質層(MPL)の作製
 吸水材としての粉末活性炭(平均粒子径3μm;ヤシ殻原料;ミクロ孔の細孔容積=0.85cm/g)と、導電性担体粒子としてのカーボンブラック(平均粒子径1μm(二次粒子径))と、バインダーとしての上記撥水処理に使用したものと同じPTFEの水性ディスパージョン溶液(ダイキン工業株式会社製、製品名:D1-E)とを、粉末活性炭:カーボンブラック:PTFEの質量比が7:4:2となるように混合し、スラリー化した。このスラリーを先に撥水処理したガス拡散基材上にバーコーターを用いて塗布して自然乾燥した後、80℃で、15分間乾燥させた。さらに、その後330℃で、30分間焼成した。これにより、ガス拡散基材上に吸水材を含有する微多孔質層(厚さ30μm、目付量17g/m)が形成されたガス拡散層を得た。
 上記で得たガス拡散層の細孔分布を窒素吸着法により測定し細孔容積を算出した。さらに、直径2nm以下のミクロ孔のミクロ孔細孔容積をMP法により算出した。結果を表1に示す。
 (2)電極膜接合体(MEA)および単セルの組立て
 高分子電解質膜が一対の触媒層で挟持された接合体(電解質膜に触媒層が塗布された状態のもの)としてPRIMEA(登録商標)5580(ジャパンゴアテックス社製)を準備した。カソードのガス拡散層(MPL付)として、CARBEL(登録商標)CNW(ジャパンゴアテックス社製)(厚み230μm)を準備した。
 この接合体を、先に作製したアノードのガス拡散層と、上記のカソードのガス拡散層とで、基材層が外側となるようにして挟んで重ねた状態とすることにより、電解質膜がアノードガス拡散電極およびカソードガス拡散電極で挟持された電極膜接合体を得た。これをグラファイト製セパレータで挟持し、さらに金メッキしたステンレス製集電板で挟持することにより、評価用単セル(アクティブエリア:5cm×5cm)を作製した。
 [実施例2]
 微多孔質層における粉末活性炭:カーボンブラック:PTFEの質量比を5:6:2としたこと以外は、実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ30μm、目付量17g/m)が形成されたアノードのガス拡散層を作製した。上記で得たガス拡散層の細孔容積及びミクロ孔細孔容積を実施例1と同様に算出した。結果を表1に示す。
 このガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 [実施例3]
 微多孔質層における粉末活性炭:カーボンブラック:PTFEの質量比を4:7:2としたこと以外は、実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ30μm、目付量17g/m)が形成されたアノードのガス拡散層を作製した。上記で得たガス拡散層の細孔容積及びミクロ孔細孔容積を実施例1と同様に算出した。結果を表1に示す。
 このガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 [実施例4]
 微多孔質層に含有させる吸水材として異なる種類の粉末活性炭(平均粒子径5μm;石油原料;ミクロ孔の細孔容積=0.25cm/g)を使用し、微多孔質層における粉末活性炭:カーボンブラック:PTFEの質量比を7:3:4とした。このこと以外は、実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ25μm、目付量16g/m)が形成されたアノードのガス拡散層を作製した。上記で得たガス拡散層の細孔容積及びミクロ孔細孔容積を実施例1と同様に算出した。結果を表1に示す。
 このガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 [実施例5]
 (1)アノードのガス拡散層の作製
 微多孔質層における粉末活性炭(平均粒子径3μm;ヤシ殻原料;ミクロ孔の細孔容積=0.85cm/g):カーボンブラック:PTFEの質量比を8:0:2とした。このこと以外は、実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ30μm、目付量17g/m)が形成されたアノードのガス拡散層を作製した。上記で得たガス拡散層の細孔容積及びミクロ孔細孔容積を実施例1と同様に算出した。結果を表1に示す。
 (2)電極膜接合体(MEA)および単セルの組立て
 高分子電解質膜が一対の触媒層で挟持された接合体(電解質膜に触媒層が塗布された状態のもの)として、PRIMEA(登録商標)5580(ジャパンゴアテックス社製)を準備した。カソードのガス拡散層(MPL付)として、CARBEL(登録商標)CNW(ジャパンゴアテックス社製)(厚み230μm)を準備した。
 この接合体と上記で作製したガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 [比較例1]
 アノードのガス拡散層としてカソードのガス拡散層(MPL付)と同一のCARBEL(登録商標)CNW(ジャパンゴアテックス社製)(厚み230μm)を使用すること以外は、実施例1と同様の方法により評価用単セルを作製した。上記で得たガス拡散層の細孔容積及びミクロ孔細孔容積を実施例1と同様に算出した。結果を表1に示す。
 [比較例2]
 微多孔質層に含有させる吸水材の代わりに、細孔容積は大きいが、ミクロ孔の細孔容積の小さいカーボン(キャボット社製、製品名:ブラックパールズ2000)を使用し、微多孔質層における粉末活性炭:カーボンブラック:PTFEの質量比を0:8:2とした。この吸水材を使用したこと以外は実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ30μm、目付量17g/m)が形成されたアノードのガス拡散層を作製した。上記で得たガス拡散層の細孔容積及びミクロ孔細孔容積を実施例1と同様に算出した。結果を表1に示す。
 このガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 [比較例3]
 アノードのガス拡散層としてカソードのガス拡散層(MPL付)と同一のCARBEL(登録商標)CNW(ジャパンゴアテックス社製)(厚み230μm)を使用すること以外は、実施例5と同様の方法により評価用単セルを作製した。上記で得たガス拡散層の細孔容積及びミクロ孔細孔容積を実施例1と同様に算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 (零下起動性評価)
 実施例および比較例で作製した各評価用単セルのアノードに水素、カソードに空気を用いて、ガス流量アノード/カソードS.R.=18.6/21.7、セル温度-20℃、で発電を行った。なお、「S.R.」(Stoichiometric Ratio)は所定量の電流を流すために必要な水素または酸素の量の比率を意味し、「アノードS.R.=18.6」は所定量の電流を流すために必要な水素量の18.6倍の流量で水素を流すことを意味する。この時の単セルの電流密度に対する出力電圧を測定した。
 電流密度を40mA/cmとした場合の実施例1~5および比較例1~3で作製した各評価用単セルの評価結果を図7~8に示す。
 電流密度を80mA/cmとした場合の実施例1~3および比較例1~2で作製した各評価用単セルの評価結果を図9~10に示す。
 電流密度を100mA/cmとした場合の実施例1~3および実施例5ならびに比較例1~3)で作製した各評価用単セルの評価結果を図11~12に示す。
 図7Aおよび図8は実施例および比較例において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、40mA/cm)との関係を示すグラフである。図7Aおよび図8から、ガス拡散層内のミクロ孔の細孔容積が所定範囲にある実施例1~5のセルでは、ミクロ孔の細孔容積の小さい比較例1~3のセルに比べて、発電継続時間が4倍以上長くなることが確認される。
 図7Bは実施例および比較例において作製した評価用単セルにおける、細孔容積と発電継続時間(-20℃、40mA/cm)との関係を示すグラフである。図7Bから、細孔容積の値が最も大きいガス拡散層を使用した比較例2のセルは、細孔容積の値がより小さい実施例1~4のセルに比べて発電継続時間が短く、吸水材を含有しない比較例1のセルに比べても発電継続時間の延長はほとんど見られない。これらの結果から、電池の零下起動性は、ガス拡散層の細孔容積の大きさにはほとんど依存せず、ミクロ孔の細孔容積の大きさが重要であることがわかった。
 図9~図10は実施例および比較例において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、80mA/cm)との関係を示すグラフである。また、図11~図12は実施例および比較例において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、100mA/cm)との関係を示すグラフである。
 図9~図12に示すように、電流密度が80mA/cmの場合(図9~10)、電流密度が100mA/cmの場合(図11~図12)は、電流密度が40mA/cmの場合(図7~図8)に比べて生成水量が増加するため、発電継続時間は短くなる。ミクロ細孔容積が3.6×10-4cm/cm以上である実施例1、2および5のセルは、吸水材を含まない比較例1や比較例3のセルに比べて、より一層の発電継続時間の延長が確認された。すなわち、電流密度が80mA/cmの場合には2.5倍以上、電流密度が100mA/cmの場合には1.3倍以上の発電継続時間の延長が確認された。
 [実施例6]
 (1)アノードのガス拡散層の作製
 微多孔質層における粉末活性炭(平均粒子径3μm;ヤシ殻原料;ミクロ孔の細孔容積=0.85cm/g):カーボンブラック:PTFEの質量比を8:0:2とした。このこと以外は、実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ37μm、目付量18g/m)が形成されたアノードのガス拡散層を作製した。上記で得たガス拡散層のミクロ孔細孔容積を実施例1と同様に算出したところ、ミクロ孔細孔容積は、6.3×10-4cm/cmであった。
 (2)電極膜接合体(MEA)および単セルの組立て
 高分子電解質膜が一対の触媒層で挟持された接合体(電解質膜に触媒層が塗布された状態のもの)として、PRIMEA(登録商標)5580(ジャパンゴアテックス社製)を準備した。カソードのガス拡散層(MPL付)として、CARBEL(登録商標)CNW(ジャパンゴアテックス社製)(厚み230μm)を準備した。
 この接合体と上記で作製したガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 また、このようにして作製された評価用単セルについて、上記と同様にして零下起動性評価を行った。電流密度を40mA/cmとした場合の評価結果を図13に、電流密度を80mA/cmとした場合の評価結果を図14に、電流密度を100mA/cmとした場合の評価結果を図15に、示す。
 [実施例7]
 (1)カソードのガス拡散層の作製
 微多孔質層における粉末活性炭(平均粒子径3μm;ヤシ殻原料;ミクロ孔の細孔容積=0.85cm/g):カーボンブラック:PTFEの質量比を8:0:2とした。このこと以外は、実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ46μm、目付量19g/m)が形成されたカソードのガス拡散層を作製した。上記で得たガス拡散層のミクロ孔細孔容積を実施例1と同様に算出したところ、ミクロ孔細孔容積は、6.3×10-4cm/cmであった。
 (2)電極膜接合体(MEA)および単セルの組立て
 高分子電解質膜が一対の触媒層で挟持された接合体(電解質膜に触媒層が塗布された状態のもの)として、PRIMEA(登録商標)5580(ジャパンゴアテックス社製)を準備した。アノードのガス拡散層(MPL付)として、CARBEL(登録商標)CNW(ジャパンゴアテックス社製)(厚み230μm)を準備した。
 この接合体と上記で作製したガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 また、このようにして作製された評価用単セルについて、上記と同様にして零下起動性評価を行った。電流密度を40mA/cmとした場合の評価結果を図13に、電流密度を80mA/cmとした場合の評価結果を図14に、電流密度を100mA/cmとした場合の評価結果を図15に、示す。
 [実施例8]
 (1)アノードおよびカソードのガス拡散層の作製
 微多孔質層における粉末活性炭(平均粒子径3μm;ヤシ殻原料;ミクロ孔の細孔容積=0.85cm/g):カーボンブラック:PTFEの質量比を8:0:2とした。このこと以外は、実施例1(1)と同様の方法によりガス拡散基材上に吸水材を含有する微多孔質層(厚さ43μm、目付量18g/m)が形成されたアノードおよびカソードのガス拡散層を、それぞれ、作製した。上記で得たガス拡散層のミクロ孔細孔容積を実施例1と同様に算出したところ、ミクロ孔細孔容積は、6.3×10-4cm/cmであった。
 (2)電極膜接合体(MEA)および単セルの組立て
 高分子電解質膜が一対の触媒層で挟持された接合体(電解質膜に触媒層が塗布された状態のもの)として、PRIMEA(登録商標)5580(ジャパンゴアテックス社製)を準備した。
 この接合体と上記で作製したガス拡散層を使用すること以外は、実施例1(2)と同様の方法により評価用単セルを作製した。
 また、このようにして作製された評価用単セルについて、上記と同様にして零下起動性評価を行った。電流密度を40mA/cmとした場合の評価結果を図13に、電流密度を80mA/cmとした場合の評価結果を図14に、電流密度を100mA/cmとした場合の評価結果を図15に、示す。
 図13は実施例において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、40mA/cm)との関係を示すグラフである。図14は実施例において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、80mA/cm)との関係を示すグラフである。図15は実施例において作製した評価用単セルにおける、ミクロ孔の細孔容積と発電継続時間(-20℃、100mA/cm)との関係を示すグラフである。
 図13~15に示されるように、電流密度が80mA/cmの場合(図14)、電流密度が100mA/cmの場合(図15)は、電流密度が40mA/cmの場合(図13)に比べて生成水量が増加するため、発電継続時間は短くなる。また、図13~15において、ミクロ細孔容積が6.3×10-4cm/cmであるガス拡散層を、アノードガス拡散層のみとした場合(実施例6)、カソードガス拡散層のみとした場合(実施例7)、アノード及びカソードガス拡散層双方とした場合(実施例8)での発電継続時間を比較してみる。その結果、アノードガス拡散層のみとした実施例6の評価用単セルで最も長い発電継続時間が観察された。また、カソードガス拡散層のみとした実施例7の評価用単セルでは、比較例のものと比べると、発電継続時間は長いものの、アノードガス拡散層のみとした実施例6の方が発電継続時間の延長が確認された。また、アノード及びカソードガス拡散層双方とした実施例8の評価用単セルでは、アノードガス拡散層のみとした実施例6に比べると、発電継続時間が短いものの、カソードガス拡散層のみとした実施例7に比べると、発電継続時間の延長が確認された。
 
 さらに、本出願は、2009年5月1日に出願された日本特許出願番号2009-112320号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
  1  固体高分子形燃料電池(PEFC)、
  2  固体高分子電解質膜、
  3a  アノード触媒層、
  3c  カソード触媒層、
  4、  ガス拡散層、
  4a  アノードガス拡散層、
  4c  カソードガス拡散層、
  5、200  セパレータ、
  5a  アノードセパレータ、
  5c  カソードセパレータ、
  6a  アノードガス流路、
  6c  カソードガス流路、
  7  冷媒流路、
  8a  アノードガス拡散電極、
  8c  カソードガス拡散電極、
  10  膜電極接合体(MEA)、
  20  微多孔質層、
  30  基材層、
  41  吸水材、
  42  バインダー、
  43a  粒子状の導電性担体(導電性担体粒子)、
  43b  繊維状の導電性担体(導電性担体繊維)、
  44  微多孔質膜、
  45  ガス拡散基材、
  50  微多孔質層、
  100  燃料電池車、
  101  燃料電池スタック、
  210  ガス拡散基材、
  220  触媒層。

Claims (15)

  1.  前記ミクロ孔の細孔容積が2.0×10-4cm/cm以上である、燃料電池用ガス拡散層。
  2.  導電性担体および吸水材をさらに含み、前記吸水材が前記導電性担体に担持されてなる、請求項1に記載の燃料電池用ガス拡散層。
  3.  粒子状の導電性担体に前記吸水材が担持されてなる微多孔質層を有する、請求項2に記載の燃料電池用ガス拡散層。
  4.  ガス拡散基材を含む基材層上に前記微多孔質層を積層してなる、請求項3に記載の燃料電池用ガス拡散層。
  5.  繊維状の導電性担体から構成されるガス拡散基材に前記吸水材が担持されてなる基材層を有する、請求項2に記載の燃料電池用ガス拡散層。
  6.  前記基材層上に粒子状の導電性担体を含む微多孔質層を積層してなる、請求項5に記載の燃料電池用ガス拡散層。
  7.  前記吸水材の含有量は前記微多孔質層の総質量を基準として10~80質量%の範囲である、請求項3、4または6に記載の燃料電池用ガス拡散層。
  8.  前記微多孔質層はシート状である、請求項3、4、6または7に記載の燃料電池用ガス拡散層。
  9.  前記ミクロ孔の細孔容積が3.6×10-4cm/cm以上である、請求項1~8のいずれか1項に記載の燃料電池用ガス拡散層。
  10.  前記吸水材が活性炭である、請求項2~9のいずれか1項に記載の燃料電池用ガス拡散層。
  11.  請求項1~10のいずれか1項に記載のガス拡散層と
     前記ガス拡散層上に積層された触媒層と、を含む燃料電池用ガス拡散電極。
  12.  高分子電解質膜、これを挟持する一対のアノードガス拡散電極およびカソードガス拡散電極を含み、
     前記アノードガス拡散電極が、請求項11に記載のガス拡散電極である、燃料電池用膜電極接合体。
  13.  高分子電解質膜、これを挟持する一対のアノードガス拡散電極およびカソードガス拡散電極を含み、
     前記アノードガス拡散電極または前記カソードガス拡散電極の少なくとも一方が、請求項11に記載のガス拡散電極である、燃料電池用膜電極接合体。
  14.  請求項1~10のいずれかに記載のガス拡散層、請求項11に記載のガス拡散電極、または、請求項12もしくは13に記載の膜電極接合体を用いた燃料電池。
  15.  請求項14に記載の燃料電池を搭載した車両。
PCT/JP2010/057502 2009-05-01 2010-04-27 燃料電池用ガス拡散層 WO2010126063A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10769761A EP2426762A4 (en) 2009-05-01 2010-04-27 GAS DIFFUSION LAYER FOR A FUEL CELL
JP2011511421A JP4819981B2 (ja) 2009-05-01 2010-04-27 燃料電池用ガス拡散層
CA2760631A CA2760631C (en) 2009-05-01 2010-04-27 Gas diffusion layer for fuel cell
US13/265,088 US20120034548A1 (en) 2009-05-01 2010-04-27 Gas diffusion layer for fuel cell
CN201080019534.9A CN102422469B (zh) 2009-05-01 2010-04-27 燃料电池用气体扩散层

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009112320 2009-05-01
JP2009-112320 2009-05-01

Publications (1)

Publication Number Publication Date
WO2010126063A1 true WO2010126063A1 (ja) 2010-11-04

Family

ID=43032207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057502 WO2010126063A1 (ja) 2009-05-01 2010-04-27 燃料電池用ガス拡散層

Country Status (6)

Country Link
US (1) US20120034548A1 (ja)
EP (1) EP2426762A4 (ja)
JP (1) JP4819981B2 (ja)
CN (1) CN102422469B (ja)
CA (1) CA2760631C (ja)
WO (1) WO2010126063A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260277A1 (en) * 2012-03-28 2013-10-03 Honda Motor Co., Ltd. Diffusion layer structure of fuel cell
CN103534852A (zh) * 2011-06-17 2014-01-22 日产自动车株式会社 燃料电池用气体扩散层及其制造方法
JP2017525105A (ja) * 2014-07-11 2017-08-31 エスジーエル・カーボン・エスイー 膜電極アセンブリ
JP2018125163A (ja) * 2017-02-01 2018-08-09 トヨタ自動車株式会社 燃料電池
JP2021180152A (ja) * 2020-05-15 2021-11-18 トヨタ自動車株式会社 燃料電池用の積層体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673655B2 (ja) * 2012-11-19 2015-02-18 トヨタ自動車株式会社 多孔質層部材の製造方法、及び多孔質層部材を含む膜電極ガス拡散層接合体の製造方法
US9461311B2 (en) 2013-03-15 2016-10-04 Ford Global Technologies, Llc Microporous layer for a fuel cell
EP2860288A1 (en) * 2013-10-11 2015-04-15 Solvay SA Improved electrolytic cell
CN106794441B (zh) * 2014-10-17 2022-06-21 香港科技大学 用于从空气中湿气去除和水富集的材料
CN106602180A (zh) * 2016-12-13 2017-04-26 华中科技大学 一种铅空气电池
WO2018135381A1 (ja) 2017-01-19 2018-07-26 東レ株式会社 ガス拡散電極、および、燃料電池
EP3610527B1 (en) * 2017-04-13 2023-11-22 NV Bekaert SA Gas diffusion layer
CN110061256A (zh) * 2019-03-16 2019-07-26 洛阳师范学院 一种燃料电池的扩散层结构
CN112952124B (zh) * 2021-02-25 2022-10-14 中国科学院重庆绿色智能技术研究院 一种基于多粒径碳材料的微生物燃料电池阳极及其制备方法和微生物燃料电池

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953566A (en) 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
JPS5730270A (en) 1980-07-30 1982-02-18 Junkosha Co Ltd Material for gas diffusion electrode
US5814405A (en) 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
WO2000011688A1 (en) * 1998-08-25 2000-03-02 Kanebo, Limited Electrode material and method for producing the same
JP2001164430A (ja) * 2000-10-11 2001-06-19 Osaka Gas Co Ltd 活性炭繊維
US6613203B1 (en) 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
JP2004214072A (ja) * 2003-01-07 2004-07-29 Toho Tenax Co Ltd 炭素繊維シート及びその製造方法
JP2004255336A (ja) * 2003-02-27 2004-09-16 Toho Kako Kensetsu Kk 有機溶剤の吸着除去方法
WO2005028719A1 (ja) * 2003-09-19 2005-03-31 Teijin Limited 繊維状活性炭およびこれよりなる不織布
JP2005174768A (ja) 2003-12-11 2005-06-30 Equos Research Co Ltd 膜電極接合体、その製造方法及びその使用方法
JP2005174765A (ja) 2003-12-11 2005-06-30 Equos Research Co Ltd 膜電極接合体、その製造方法及びその使用方法
JP2005302434A (ja) * 2004-04-08 2005-10-27 Nissan Motor Co Ltd 燃料電池用電極、燃料電池用電極の製造方法および燃料電池
JP2005339962A (ja) 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd 高分子膜電極接合体、高分子電解質型燃料電池、および高分子膜電極接合体の製造方法
JP2006252948A (ja) 2005-03-10 2006-09-21 Japan Gore Tex Inc 湿度調整フィルム
JP2009112320A (ja) 2005-03-18 2009-05-28 Microbia Precision Engineering Inc 含油性酵母および真菌におけるカロテノイドの産生

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783325A (en) * 1996-08-27 1998-07-21 The Research Foundation Of State Of New York Gas diffusion electrodes based on poly(vinylidene fluoride) carbon blends
AU5731400A (en) * 1999-06-09 2000-12-28 Moltech Corporation Methods of preparing electrochemical cells
EP1280215A1 (fr) * 2001-07-26 2003-01-29 University of Liege Matériau carboné poreux
JP2004221332A (ja) * 2003-01-15 2004-08-05 Gun Ei Chem Ind Co Ltd 電気二重層キャパシタの電極用活性炭組成物及びその製造方法
CN100466345C (zh) * 2004-04-22 2009-03-04 新日本制铁株式会社 燃料电池和燃料电池用气体扩散电极
JP4844865B2 (ja) * 2004-08-31 2011-12-28 株式会社豊田中央研究所 カーボンゲル複合材料
JP4915900B2 (ja) * 2005-08-31 2012-04-11 独立行政法人産業技術総合研究所 制御されたメソ細孔を有する多孔質炭素膜とその製造方法
CN100423338C (zh) * 2005-10-10 2008-10-01 新源动力股份有限公司 一种低温燃料电池用气体扩散层及其制备方法
KR101202331B1 (ko) * 2006-02-20 2012-11-16 삼성에스디아이 주식회사 다중 블럭 공중합체, 그 제조방법, 상기 다중 블럭공중합체로부터 제조된 고분자 전해질막, 그 제조방법 및상기 고분자 전해질막을 포함하는 연료전지
KR101000429B1 (ko) * 2008-11-25 2010-12-13 기아자동차주식회사 운전 안정성이 우수한 연료전지 자동차용 기체확산층

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953566A (en) 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
JPS5730270A (en) 1980-07-30 1982-02-18 Junkosha Co Ltd Material for gas diffusion electrode
US5814405A (en) 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
WO2000011688A1 (en) * 1998-08-25 2000-03-02 Kanebo, Limited Electrode material and method for producing the same
JP2001164430A (ja) * 2000-10-11 2001-06-19 Osaka Gas Co Ltd 活性炭繊維
US6613203B1 (en) 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
JP2004214072A (ja) * 2003-01-07 2004-07-29 Toho Tenax Co Ltd 炭素繊維シート及びその製造方法
JP2004255336A (ja) * 2003-02-27 2004-09-16 Toho Kako Kensetsu Kk 有機溶剤の吸着除去方法
WO2005028719A1 (ja) * 2003-09-19 2005-03-31 Teijin Limited 繊維状活性炭およびこれよりなる不織布
JP2005174768A (ja) 2003-12-11 2005-06-30 Equos Research Co Ltd 膜電極接合体、その製造方法及びその使用方法
JP2005174765A (ja) 2003-12-11 2005-06-30 Equos Research Co Ltd 膜電極接合体、その製造方法及びその使用方法
JP2005302434A (ja) * 2004-04-08 2005-10-27 Nissan Motor Co Ltd 燃料電池用電極、燃料電池用電極の製造方法および燃料電池
JP2005339962A (ja) 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd 高分子膜電極接合体、高分子電解質型燃料電池、および高分子膜電極接合体の製造方法
JP2006252948A (ja) 2005-03-10 2006-09-21 Japan Gore Tex Inc 湿度調整フィルム
JP2009112320A (ja) 2005-03-18 2009-05-28 Microbia Precision Engineering Inc 含油性酵母および真菌におけるカロテノイドの産生

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2426762A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534852A (zh) * 2011-06-17 2014-01-22 日产自动车株式会社 燃料电池用气体扩散层及其制造方法
EP2722917A1 (en) * 2011-06-17 2014-04-23 Nissan Motor Co., Ltd Gas diffusion layer for fuel cell and method for producing same
EP2722917A4 (en) * 2011-06-17 2015-01-07 Nissan Motor GAS DIFFUSION LAYER FOR A FUEL CELL AND METHOD OF MANUFACTURING THEREOF
US9325022B2 (en) 2011-06-17 2016-04-26 Nissan Motor Co., Ltd. Gas diffusion layer for fuel cell and method for manufacturing the same
US20130260277A1 (en) * 2012-03-28 2013-10-03 Honda Motor Co., Ltd. Diffusion layer structure of fuel cell
JP2017525105A (ja) * 2014-07-11 2017-08-31 エスジーエル・カーボン・エスイー 膜電極アセンブリ
JP2018125163A (ja) * 2017-02-01 2018-08-09 トヨタ自動車株式会社 燃料電池
JP2021180152A (ja) * 2020-05-15 2021-11-18 トヨタ自動車株式会社 燃料電池用の積層体
JP7272318B2 (ja) 2020-05-15 2023-05-12 トヨタ自動車株式会社 燃料電池用の積層体

Also Published As

Publication number Publication date
US20120034548A1 (en) 2012-02-09
JP4819981B2 (ja) 2011-11-24
CA2760631A1 (en) 2010-11-04
CN102422469A (zh) 2012-04-18
EP2426762A1 (en) 2012-03-07
EP2426762A4 (en) 2012-10-17
CA2760631C (en) 2015-02-17
CN102422469B (zh) 2015-04-08
JPWO2010126063A1 (ja) 2012-11-01

Similar Documents

Publication Publication Date Title
JP4819981B2 (ja) 燃料電池用ガス拡散層
CN104094460B (zh) 燃料电池用电极催化剂层
JP5182338B2 (ja) 燃料電池用膜−電極接合体、および、これを用いた燃料電池
JP5556434B2 (ja) ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法
JP5488254B2 (ja) 燃料電池用親水性多孔質層、ガス拡散電極およびその製造方法、ならびに膜電極接合体
JP6053251B2 (ja) 固体高分子形燃料電池ガス拡散層
JP5928013B2 (ja) 電解質膜−電極接合体
JP2006012476A (ja) 燃料電池用膜−電極接合体
WO2012172993A1 (ja) 燃料電池用ガス拡散層及びその製造方法
JP2007141588A (ja) 燃料電池用膜電極接合体およびこれを用いた固体高分子形燃料電池
JP2006339018A (ja) 燃料電池用ガス拡散層、およびこの製造方法
JP2014216232A (ja) ガス拡散層、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池
JP2007165025A (ja) 膜電極接合体
JP6142963B2 (ja) ガス拡散層、その製造方法ならびにこれを用いる膜電極接合体および燃料電池
WO2016152506A1 (ja) 燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP6205822B2 (ja) 燃料電池
JP5884550B2 (ja) アノードガス拡散層
JP2008047472A (ja) 電極触媒
JP2005243295A (ja) ガス拡散層、およびこれを用いた燃料電池用mea
JP2007165188A (ja) 高分子型燃料電池の膜−電極接合体
JP2006294267A (ja) 燃料電池電極形成用触媒インク
WO2014174973A1 (ja) ガス拡散電極体、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池
JP2016054066A (ja) 非焼成ガス拡散層の製造方法
JP2011070925A (ja) 電解質膜−電極接合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019534.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769761

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011511421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13265088

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2760631

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010769761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010769761

Country of ref document: EP