WO2010137722A1 - Method for screening of regenerative medicine - Google Patents

Method for screening of regenerative medicine Download PDF

Info

Publication number
WO2010137722A1
WO2010137722A1 PCT/JP2010/059169 JP2010059169W WO2010137722A1 WO 2010137722 A1 WO2010137722 A1 WO 2010137722A1 JP 2010059169 W JP2010059169 W JP 2010059169W WO 2010137722 A1 WO2010137722 A1 WO 2010137722A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
differentiation
seq
base sequence
regeneration
Prior art date
Application number
PCT/JP2010/059169
Other languages
French (fr)
Japanese (ja)
Inventor
細谷昌樹
國貞祐哉
庄司昌伸
Original Assignee
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武田薬品工業株式会社 filed Critical 武田薬品工業株式会社
Priority to EP10780676.2A priority Critical patent/EP2436775A4/en
Priority to JP2011516084A priority patent/JPWO2010137722A1/en
Priority to US13/322,176 priority patent/US20120142005A1/en
Publication of WO2010137722A1 publication Critical patent/WO2010137722A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns

Definitions

  • the present invention relates to a screening method for regenerative medicine.
  • Regeneration is a phenomenon in which cells / tissues lacking in a living body are repaired by proliferation and differentiation of stem cells and the like.
  • Regeneration is an indispensable phenomenon for multicellular organisms to survive. However, in higher animals such as humans, there is a limit to the natural regenerative power, resulting in severe or extensive damage beyond this. Organs and tissues that do not heal will cause a life-sustaining crisis for the whole individual.
  • organ failure such as kidney, liver, and heart
  • problems such as securing donors and immunocompatibility.
  • Regenerative medicine has recently attracted attention as a means of overcoming such problems of organ transplantation. This is to develop a technology for controlling the ability of a living body with respect to the generation and regeneration of tissues, and to reconstruct tissues and regenerate organs using cells collected from themselves or others.
  • bone marrow transplantation skin transplantation for burns
  • islet transplantation in diabetes which are performed in many diseases such as leukemia.
  • neural stem cell transplantation for Parkinson's disease bone marrow cell transplantation for myocardial infarction, and Schwann cell transplantation for spinal cord injury are also expected to be clinically applied.
  • wound healing promotion using fibroblast growth factor (FGF) treatment of anemia with erythropoietin has already been used in the clinical field, and it depends on hepatocyte growth factor (HGF) or its gene.
  • FGF fibroblast growth factor
  • HGF hepatocyte growth factor
  • Revascularization is also expected to be put into practical use as a medicine.
  • the following techniques are known as techniques related to screening for regenerative medicine.
  • Patent Document 1 a gene involved in cell regeneration, proliferation or differentiation is analyzed by collectively analyzing the expression levels of a plurality of genes in cells having regeneration / differentiation / proliferation ability.
  • a screening method for a gene involved in cell regeneration / proliferation / differentiation which includes a specifying step, is disclosed.
  • Desbordes et al. Reported an example of screening a wide range of compounds involved in differentiation and self-replication (screening for compounds that fluctuate the expression of undifferentiation marker Oct4 in hES cells and identifying 14 compounds from 2880 compounds) ( Non-patent document 1).
  • Hahn et al. Have reported a screening method for a therapeutic agent for brain tumor focusing on HDAC inhibitors and the like (Non-patent Document 2).
  • stem cells embryonic stem cells, somatic stem cells, etc.
  • progenitor cells are limited, and there are many things such as pancreatic ⁇ cells, kidneys, and digestive tract Has not been able to produce cells and tissues that can be clinically applied. Even if the cells are useful to some extent in regenerative medicine, there are many cells that have not reached a level sufficient to completely compensate for the lost function.
  • Technology to control cell differentiation more efficiently than before in order to be able to provide regenerative medicine to cells and tissues that cannot be prepared or have low efficiency despite the high clinical demand. is required.
  • the stem cells that can be used are limited to bone marrow and adipose-derived mesenchymal stem cells and fetal-derived neural stem cells.
  • the living body has an endogenous mechanism that regulates regenerative differentiation, and it is possible to artificially regulate cell differentiation and proliferation using this mechanism.
  • regulatory mechanisms of actual regenerative differentiation there has been a limit to the methods of allowing differentiation / growth factors to act on cells as conventionally known.
  • the invention since there are a wide variety of mechanisms related to regenerative differentiation, in order to find candidate substances for regenerative differentiation regulators or tools that efficiently regulate regenerative differentiation, the invention of a method for investigating its action widely and quantitatively has been invented. It was necessary.
  • the present inventors induced differentiation in multiple directions by forming embryoid bodies from Embryonic Stem (ES) cells, and dispersed embryoid bodies into single cells by trypsin treatment. Then, the compound to be evaluated was added and adhesion culture was performed, and a screening method for a regenerative medicine comprising a process for examining expression variation of two or more genes was found.
  • ES Embryonic Stem
  • the present invention provides the following screening method (hereinafter sometimes referred to as “the screening method of the present invention”).
  • steps (1) to (5) (1) a step of forming an embryoid body from cells having regeneration, proliferation or differentiation ability; (2) A step of treating the embryoid body obtained in step (1) with a digestive enzyme to form a single cell state, (3) A step of seeding the cells obtained in step (2) on an adhesive plate, adding a candidate substance to the plate, and subjecting the cells to adhesion culture, (4) After the adhesion culture in step (3), a step of collectively analyzing the expression levels of two or more types of genes involved in cell regeneration, proliferation or differentiation, and (5) quantitative analysis in step (4) A method for screening a substance that regulates the regeneration, proliferation or differentiation of cells or organs, comprising the step of evaluating the influence of a candidate substance on the regeneration, proliferation or differentiation of cells based on the results of.
  • [4] Cells obtained by inducing differentiation of human and warm-blooded animal embryonic stem cells, iPS (induced pluripotent stem) cells and those cells, which are targets of substances that regulate regeneration, proliferation or differentiation, and Tissue stem cells (mesenchymal stem cells, hematopoietic stem cells, myoblasts, neural stem cells, osteoblasts, chondroblasts, hemangioblasts, progenitor cells or stem cells present in the body) existing in living tissue or in The method according to any one of [1] to [3] above, which is selected from the group consisting of cells cultured in vitro.
  • iPS induced pluripotent stem
  • Substances that regulate regeneration, proliferation or differentiation are receptor agonists and antagonists, biosynthetic pathway inhibitors, protein-protein interaction inhibitors, enzyme inhibitors and substrates, coenzymes, signal transduction system inhibitors and Activators, channel inhibitors and modulators, vitamins, antioxidants, apoptosis inhibitors and promoters, antiviral agents, surfactants, antisense oligonucleotides, siRNA, antibiotics, compounds synthesized by combinatorial chemistry methods, And the method according to any one of [1] to [4] above, which is selected from the group consisting of synthetic intermediates thereof.
  • Cells or organs targeted by substances that regulate regeneration, proliferation or differentiation are splenocytes, neurons, glial cells, pancreatic ⁇ cells, bone marrow cells, mesangial cells, Langerhans cells, epidermal cells, epithelial cells, endothelium Cells, fibroblasts, fiber cells, muscle cells, fat cells, immune cells (macrophages, T cells, B cells, natural killer cells, mast cells, neutrophils, basophils, eosinophils, monocytes, megakaryocytes ), Synovial cells, chondrocytes, bone cells, osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursor cells of these cells, stem cells, blood cells, brain, brain parts (Olfactory bulb, cephalic nucleus, basal ganglia, hippocampus, thalamus, hypothalamus, hypothalamic nucleus, cerebral cortex, medulla, cerebellum, o
  • Substances that regulate regeneration, proliferation or differentiation are central diseases (Alzheimer's disease, Parkinson's disease, ischemic neuropathy), inflammatory diseases (allergic diseases, asthma, rheumatism, osteoarthritis), circulatory organs Disease (heart failure, cardiac hypertrophy, angina, arteriosclerosis), cancer (non-small cell lung cancer, ovarian cancer, prostate cancer, stomach cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, rectal cancer), diabetes, Immune system disease (autoimmune disease, atopic dermatitis, allergic disease, immunodeficiency, asthma, rheumatoid arthritis, psoriasis, arteriosclerosis, diabetes, Alzheimer's disease), liver / gallbladder disease (cirrhosis, hepatitis, liver failure) , Cholestasis), digestive disorders (ulcers, enteritis, dyspepsia, irritable colitis, ulcerative colitis, diarrhea, ileus), burns, fractures, and alopecia It
  • a gene involved in cell regeneration, proliferation or differentiation in the step (4) is: (A) Nanog, Oct3 / 4, Sox2, Klf4, Akp2, which are undifferentiated markers (B) Fgf5, a primitive ectoderm marker, (C) Brachyury, Snail1, which are primitive streak markers, (D) Cdx2, Bmp4, which are trophectoderm marker (E) Neural markers Tubb3, Nefh, Nestin, p75NTR, (F) Actc1, a myocardial marker, (G) Acta2, Cnn1, which are smooth muscle markers, (H) Tie2, which is an endothelial cell marker, (I) Flk1, which is a mesoderm marker, (J) Cxcr4 which is a mesoderm and endoderm marker, (K) Gata4, Laminin B1, which are extraembryonic endoderm markers, (L) Acta1, Tpm1, which are skeletal muscle markers (M) Opn
  • (A) It is a table
  • the values in the table indicate relative expression levels based on DMSO addition control. The case where it rose 1.3 times or more compared with the control which added DMSO is colored in blue, and the case where it falls below 0.5 times is colored in red.
  • (B) It is a table
  • FIG. 1 It is a figure which shows the expression level of an early differentiation marker in each stage of an undifferentiated ES cell (ES), an embryoid body (the suspension culture 4th day, EB), and adhesion culture
  • the value in the figure shows the relative expression level based on the expression level in undifferentiated ES cells on day 0 of culture.
  • the expression of each differentiation marker is carried out by forming a embryoid body by culturing in suspension culture for 4 days, making it into a single cell state with a trypsin-EDTA solution, adding a compound, and further performing adhesion culture for 4 days. The procedure is to check the amount.
  • the values in the figure show relative values based on DMSO addition control. It is a figure of the result of having clustered the expression profile data of 28 genes based on correlation distance about 32 compounds among the compounds selected by screening.
  • Compound 1-3 is a dopamine receptor antagonist
  • compounds 4 and 5 are p38 MAPK inhibitors
  • compound 6-9 is a corticosteroid
  • compound 10-13 is a retinoic acid receptor agonist.
  • A It is a figure which shows the expression level of Adiponectin and PPAR (gamma) when the compound in a figure is added simultaneously from the induction
  • the value in the figure shows the relative expression level based on the control of DMSO addition.
  • B It is a figure which shows the result of having dye
  • C It is a figure which shows the result of having measured the amount of adiponectin contained in a culture solution, after inducing fat differentiation from a human mesenchymal stem cell, adding the compound in a figure, and carrying out adhesion culture for 8 days.
  • (A) It is a figure which shows the expression level of Alpl, Runx2, Col1a1, and PTHR when the compound in a figure is added simultaneously with induction
  • the value in the figure shows the relative expression level based on the control of DMSO addition.
  • (B) It is a figure which shows the result of having performed the alkaline phosphatase dyeing
  • (C) It is a figure which shows the result of having measured the amount of calcium accumulate
  • the values in the figure show relative values based on DMSO addition control.
  • a screening method for a substance that regulates the regeneration, proliferation, or differentiation of a cell or organ (hereinafter referred to as “the present invention”). Is sometimes referred to as a screening method.).
  • This method typically includes the following steps: (1) A step of forming an embryoid body from cells having regeneration, proliferation or differentiation ability; (2) A step of treating the embryoid body obtained in step (1) with a digestive enzyme to form a single cell; (3) A step of seeding the cells obtained in step (2) on an adhesive plate, adding a candidate substance to the plate, and subjecting the cells to adhesion culture; (4) After the adhesion culture in step (3), a step of collectively analyzing the expression levels of two or more types of genes involved in cell regeneration, proliferation or differentiation; and (5) quantitative analysis in step (4) The process of evaluating the influence of a candidate substance on cell regeneration, proliferation or differentiation based on the results of.
  • an embryoid body is formed from cells having regenerative, proliferative, or differentiation ability (eg, ES cells), so that it can be applied in multiple directions. Induces differentiation.
  • ES cells regenerative, proliferative, or differentiation ability
  • embryonic body is used in the meaning commonly used in the art, and refers to an embryonic form formed when pluripotent stem cells such as ES cells and iPS cells are differentiated in suspension culture. It means a cell cluster composed of stem cells or progenitor cells of various tissues.
  • preferred examples of cells having the ability to regenerate, proliferate or differentiate used in the formation of the embryoid body in step (1) include embryonic properties of humans and other warm-blooded animals (eg, mice). Examples include stem cells (ES cells) and iPS (induced pluripotent stem) cells. In order to form an embryoid body, typically, ES cells such as mice are suspended in a medium containing serum or a serum replacement, and suspended in culture at 37 ° C. under 5% CO 2 for 1 to 10 days. Particularly preferred examples of cells having the ability to regenerate, proliferate or differentiate used when forming the embryoid body in the step (1) include embryonic stem cells (ES cells) of humans and other warm-blooded animals (eg, mice).
  • ES cells embryonic stem cells
  • mice warm-blooded animals
  • the cell culture methods can be classified into adhesion culture and suspension culture according to the form of cells in the cell culture.
  • Adhesive culture is a method of growing cultured cells by attaching them to a culture vessel
  • suspension culture is a method of growing cultured cells in a floating state in a medium.
  • cell culture performed to form embryoid bodies is typically performed in suspension culture.
  • the culture period is not particularly limited as long as it is a period until an embryoid body is formed, but it is typically 1 to 6 days.
  • the culture period is preferably 3 to 6 days.
  • the culture period is more preferably 4 days.
  • a homogeneous embryoid body can be formed by using a non-adhesive multi-well plate, and a stable result can be obtained.
  • a digestive enzyme is added to the embryoid body obtained in the step (1) to separate the cells into a single cell state.
  • digestive enzymes include trypsin, collagenase, papain, dispase, and accutase (trade name).
  • trypsin is preferable, and typically a trypsin-EDTA solution (eg, 0.25% trypsin-1 mM EDTA) added with EDTA to chelate Ca 2+ or Mg 2+ , which is an inhibitor of the action of digestive enzymes. ).
  • a trypsin-EDTA solution eg, 0.25% trypsin-1 mM EDTA
  • EDTA EDTA
  • the cells obtained in the step (2) are seeded on an adhesive plate, and a candidate substance is added to the plate for adhesion culture.
  • the “adhesive plate” refers to a plate that can be used for adhesion culture, and a cell adhesion promoting substance, such as fibronectin, on the surface so that cells can adhere, spread, and proliferate on the plate.
  • a preferable example of the adhesive plate used in the screening method of the present invention is a plate having a plurality of holes coated with gelatin (eg, 96-well plate).
  • candidate substance refers to a candidate substance for a substance that regulates the regeneration, proliferation, or differentiation of cells or organs, that is, a substance to be screened by the screening method of the present invention.
  • candidate substances include receptor agonists and antagonists, biosynthetic pathway inhibitors, protein-protein interaction inhibitors, enzyme inhibitors and substrates, coenzymes, signal transduction system inhibitors and activators, channel inhibition.
  • the screening method of the present invention does not perform embryoid body formation in that the compound (candidate substance) is evaluated after the embryoid body containing cells differentiated in multiple directions is dispersed by digestion with a digestive enzyme such as trypsin. It is clearly distinguished from the conventional screening system using ES cells in which compound evaluation is performed by monolayer culture in an undifferentiated state.
  • the “gene involved in cell regeneration, proliferation or differentiation” is a gene already known to play a certain role in cell regeneration, proliferation or differentiation, or cell regeneration, A gene whose expression is known to vary greatly in the process of proliferation or differentiation.
  • the expression of “genes involved in cell regeneration, proliferation or differentiation” used in the screening method of the present invention is (i) expression is increased or decreased during the differentiation process, and (ii) significant value even without compound treatment (control). (Iii) It is preferable that the gene is confirmed to vary in expression in a pilot test using existing growth / differentiation factors.
  • genes involved in cell regeneration, proliferation or differentiation include: (A) Nanog, Oct3 / 4, Sox2, Klf4, Akp2, which are undifferentiated markers (B) Fgf5, a primitive ectoderm marker, (C) Brachyury, Snail1, which are primitive streak markers, (D) Cdx2, Bmp4, which are trophectoderm marker (E) Neural markers Tubb3, Nefh, Nestin, p75NTR, (F) Actc1, a myocardial marker, (G) Acta2, Cnn1, which are smooth muscle markers, (H) Tie2, which is an endothelial cell marker, (I) Flk1, which is a mesoderm marker, (J) Cxcr4 which is a mesoderm and endoderm marker, (K) Gata4, Laminin B1, which are extraembryonic endoderm markers, (L) Acta1, Tpm1, which are skeletal
  • “quantitative analysis of the expression levels of two or more genes among genes” is not performed sequentially one by one when performing quantitative analysis of the expression levels of two or more genes. It means that two or more kinds of genes are quantitatively analyzed together by one treatment.
  • the expression levels of two or more types of genes can be measured simultaneously using, for example, Multiplex RT-PCR that can simultaneously measure the expression levels of a plurality of genes.
  • Multiplex RT-PCR is an existing technique, but the setting of the measurement system is complicated, and there are very few examples used for high-throughput screening. In the screening method of the present invention, it is preferable to use Multiplex RT-PCR in order to increase the system throughput in gene expression analysis.
  • a wide group of compounds involved in differentiation can be obtained, and the obtained candidate compound group can be used for induction of differentiation from other adult stem cells or embryonic stem cells.
  • an index reflecting the number of living cells as an internal control.
  • indices reflecting the number of living cells include Gapdh expression level, ATP content, protein content, and DNA content.
  • Gapdh expression level is preferable.
  • the same solvent as that used for dissolving the compound such as DMSO, DMF, methanol, ethanol, physiological saline, and buffer solution, is used.
  • the gene expression level is 1.2 times or more, preferably 1.4 times or more, more preferably 1.6 times or more, even more preferably compared to the case where a control for monitoring the change in gene expression level is added.
  • a substance that can be changed (decreased or increased) by 1.8 times or more, most preferably 2 times or more can be selected as a substance that regulates cell, organ regeneration, proliferation, or differentiation.
  • a target cell can be efficiently differentiated by causing a substance that regulates the regeneration, proliferation, or differentiation of cells or organs found by the screening method of the present invention to act on a stem cell alone or in combination. 2.
  • the compound obtained by the screening method of the present invention can be used to act on cells or organs to regulate regeneration, proliferation or differentiation.
  • target cells include, for example, human and warm-blooded animal embryonic stem cells, iPS (induced pluripotent stem) cells, cells obtained by inducing differentiation of these cells, tissue stem cells (bone marrow and fat, etc.) Mesenchymal stem cells, hematopoietic stem cells, myoblasts, neural stem cells, osteoblasts, chondroblasts, hemangioblasts, and other progenitor cells or stem cells existing in the living body) or in vitro Examples include cultured cells.
  • iPS induced pluripotent stem
  • tissue stem cells bone marrow and fat, etc.
  • Mesenchymal stem cells hematopoietic stem cells
  • myoblasts myoblasts
  • neural stem cells hematopoietic stem cells
  • osteoblasts chondroblasts
  • hemangioblasts hemangioblasts
  • progenitor cells or stem cells existing in the living body include cultured cells.
  • Examples of cells or organs to be regenerated, proliferated, or differentiated by the action of the compound obtained by the screening method of the present invention include spleen cells, nerve cells, glial cells, pancreatic ⁇ cells, bone marrow cells, mesangial cells, and Langerhans cells.
  • Epidermal cells Epidermal cells, epithelial cells, endothelial cells, fibroblasts, fiber cells, muscle cells, fat cells, immune cells (eg, macrophages, T cells, B cells, natural killer cells, mast cells, neutrophils, basophils Eosinophils, monocytes, megakaryocytes), synovial cells, chondrocytes, bone cells, osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursor cells of these cells, stem cells, etc.
  • immune cells eg, macrophages, T cells, B cells, natural killer cells, mast cells, neutrophils, basophils Eosinophils, monocytes, megakaryocytes
  • synovial cells chondrocytes, bone cells, osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursor cells of these cells, stem cells, etc.
  • Hematopoietic cells or any tissue in which these cells are present, such as the brain, brain regions (eg, olfactory bulb, buccal nucleus, basal basal sphere, hippocampus, thalamus, hypothalamus, subthalamic nucleus, cerebral cortex, Total , Cerebellum, occipital lobe, frontal lobe, temporal lobe, putamen, caudate nucleus, brain stain, substantia nigra), spinal cord, pituitary gland, stomach, pancreas, kidney, liver, gonad, thyroid, gall bladder, bone marrow, adrenal gland, skin , Muscle, lung, gastrointestinal tract (eg, large intestine, small intestine), blood vessel, heart, thymus, spleen, submandibular gland, peripheral blood, peripheral blood cell, prostate, testis, testis, ovary, placenta, uterus, bone, joint and skeleton There are streaks.
  • Preferable examples of cells or organs to be regenerated, proliferated, or differentiated by the action of the compound obtained by the screening method of the present invention include bone cells and adipocytes.
  • the compound obtained by the screening method of the present invention that is, a substance that regulates the regeneration, proliferation or differentiation of cells or organs can be used for treatment of diseases.
  • target diseases include central diseases (eg, Alzheimer's disease, Parkinson's disease, ischemic neuropathy), inflammatory diseases (eg, allergic diseases, asthma, rheumatism, osteoarthritis), cardiovascular diseases (eg, , Heart failure, cardiac hypertrophy, angina, arteriosclerosis), cancer (eg, non-small cell lung cancer, ovarian cancer, prostate cancer, stomach cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, rectal cancer), diabetes , Immune system diseases (eg autoimmune disease, atopic dermatitis, allergic disease, immunodeficiency, asthma, rheumatoid arthritis, psoriasis, arteriosclerosis, diabetes, Alzheimer's disease), liver / gallbladder disease (eg cirrhosis, Hepatitis, liver failure, cholestasis, stones), digestive disorders (eg, ulcers, enteritis, digestive failure, irritable colitis, ulcerative colitis, diarrhea, ileus), burns, fractures, alopecia, etc
  • the compound obtained by the screening method of the present invention has low toxicity and, if necessary, is formulated according to a method known per se, and is orally or parenterally administered to a mammal (eg, human). be able to.
  • the dose and frequency of administration of the compound may be appropriately selected according to the administration subject, target disease and the like.
  • the relationship between the sequence numbers and sequences shown in the sequence listing of the present application is as follows. [SEQ ID NO: 1] The base sequence of the primer used in Example 1 is shown. [SEQ ID NO: 2] The base sequence of the primer used in Example 1 is shown. [SEQ ID NO: 3] The base sequence of the probe used in Example 1 is shown.
  • [SEQ ID NO: 18] The base sequence of the probe used in Example 1 is shown.
  • [SEQ ID NO: 36] The base sequence of the probe used in Example 5 is shown.
  • [SEQ ID NO: 90] The base sequence of the probe used in Example 5 is shown.
  • [SEQ ID NO: 91] The base sequence of the primer used in Example 5 is shown.
  • [SEQ ID NO: 92] The base sequence of the primer used in Example 5 is shown.
  • [SEQ ID NO: 93] The base sequence of the probe used in Example 5 is shown.
  • [SEQ ID NO: 94] The base sequence of the primer used in Example 6 is shown.
  • [SEQ ID NO: 95] The base sequence of the primer used in Example 6 is shown.
  • [SEQ ID NO: 96] The base sequence of the probe used in Example 6 is shown.
  • [SEQ ID NO: 97] The base sequence of the primer used in Example 6 is shown.
  • [SEQ ID NO: 130] The base sequence of the primer used in Example 3 is shown.
  • [SEQ ID NO: 131] The base sequence of the primer used in Example 3 is shown.
  • [SEQ ID NO: 132] The base sequence of the probe used in Example 3 is shown.
  • [SEQ ID NO: 133] The base sequence of the primer used in Example 3 is shown.
  • [SEQ ID NO: 134] The base sequence of the primer used in Example 3 is shown.
  • [SEQ ID NO: 135] The base sequence of the probe used in Example 3 is shown.
  • [SEQ ID NO: 136] The base sequence of the primer used in Example 3 is shown.
  • [SEQ ID NO: 137] The base sequence of the primer used in Example 3 is shown.
  • Example 1 Construction of a compound evaluation system (embryoid body formation) D3 strain (American Type Culture Collection, CRL-1934) was used as ES cells.
  • D3 strain American Type Culture Collection, CRL-1934
  • mouse fibroblasts (MEF) purchased from Millipore
  • mitomycin C treatment were seeded on gelatin-coated plates and used as feeders.
  • trypsin-EDTA solution a 0.25% trypsin-1 mM EDTA solution
  • trypsin-EDTA solution a large amount of undifferentiated cells from which feeder cells had been removed were stored frozen.
  • the cells were made into a single cell state using a trypsin-EDTA solution, transferred to a gelatin-coated culture dish, and cultured at 37 ° C. for 90 minutes.
  • the cells that did not adhere were recovered to remove mouse fibroblasts (MEF) as a feeder, and then cultured for another 3 days in another gelatin-coated culture dish.
  • MEF mouse fibroblasts
  • a 96-well spheroid plate (Sumitomo Bakelite) at 1000 cells per well.
  • Suspension culture was performed for 1 to 6 days using a culture solution supplemented with M monothioglycerol (Sigma), 1 ⁇ MEM non-essential amino acid solution (Invitrogen), and 1 ⁇ penicillin-streptomycin (Sigma).
  • FIG. 5 shows the results of analyzing the expression levels of Brachyury, Flk1, Sox17, Sox1, Oct3 / 4, and Nanog genes. From the 4th day to the 5th day of suspension culture, a transient increase in expression of Brachyury, a primitive streak marker, was observed.
  • Example 2 Construction of a compound evaluation system (transfer from embryoid body to adhesion culture)
  • embryoid bodies were dispersed and adhesion culture was performed by the following method. According to the method described in Example 1, suspension culture was performed for 4 days to prepare embryoid bodies, and then treated with a trypsin-EDTA solution to obtain a single cell state. Cells in a single cell state were seeded in a gelatin-coated 96-well plate (Asahi Techno Glass) at 1000 cells per well, and adhesion culture was performed for 1 to 4 days. The culture solution used was the same as that used during embryoid body formation.
  • the expression level of the initial differentiation marker in the adhesion culture for 1 to 4 days was measured by using the same method as in Example 1.
  • the primer and probe sequences used for measuring each gene are shown in FIG. FIG. 6 shows the results of analyzing the expression level of the early differentiation marker in the adhesion culture for 1 to 4 days.
  • the expression levels of Flk1 and Brachyury expressed in mesoderm were significantly increased by adhesion culture.
  • Sox1 as an ectoderm marker was decreased by adhesion culture
  • the expression level of Nestin as a neural progenitor cell marker was gradually increased.
  • expression of Cdx2, which is a trophectoderm marker was also significantly induced by adhesion culture.
  • each differentiation marker at the end of culture It consists of the procedure of evaluating the effect of a compound on differentiation by measuring the amount.
  • differentiation markers to be measured Nanog as an undifferentiated marker, Tub3 and Nefh as neuronal markers, Actc1 as a cardiac muscle marker, Acta2 as a smooth muscle marker, Tie2 as an endothelial cell marker, Flk1 as a mesodermal marker 7 A gene was selected. Furthermore, the Gapdh expression level was also measured as an internal control reflecting the number of living cells.
  • Example 3 Verification of a compound evaluation system using compounds involved in differentiation In order to verify whether the screening method of the present invention is effective in detecting compounds involved in differentiation, the expression variation of differentiation markers when various compounds reported to be involved in differentiation were added was examined. . According to the protocol shown in Example 2, the compounds involved in differentiation were evaluated.
  • Example 4 Compound evaluation using LOPAC library LOPAC, a commercially available compound library, using the screening method of the present invention 1280 Screening of compounds involved in differentiation was carried out from (1280 compounds, Sigma). According to the protocol shown in Example 2, each compound was added so that the final concentration was 3 ⁇ M and the DMSO concentration as a solvent was 0.15%, and the compound evaluation was performed.
  • a Multiplex RT-PCR system capable of simultaneously measuring the expression levels of a plurality of genes was set in order to measure the expression levels of the eight types of genes shown above with high throughput.
  • Eight types of gene expression are set 1 (Gapdh (fluorescent probe BODIPY), Acta2 (fluorescent probe VIC), set 2 (Actc1 (fluorescent probe BODIPY), Tubb3 (fluorescent probe VIC), Nanog (fluorescent probe FAM)), set 3 (Flk1 (fluorescent probe BODIPY), Nefh (fluorescent probe VIC), and Tie2 (fluorescent probe FAM)) were measured by multiple multiplex RT-PCR.
  • the hit rate for each gene is 2.7% for Flk1, 0.2% for Actc1, 1.6% for Acta2, 0.6% for Tie2, 0.5% for Nefh, and 0.4% for Tubb3 , Nanog was 0.0% and Gapdh was 1.1%. From these results, it became clear that the activity of more compounds can be detected by measuring the expression of 8 types of genes simultaneously than when measuring the expression of only 1 type of gene. Further, the compounds selected as hit compounds are known to be involved in differentiation in other reports, and BIO, PD169316, retinoic acid, which were also recognized in the compound evaluation system described in this example. These compounds were included. These results indicate that the compound involved in differentiation was correctly selected in this screening method. The hit compounds contained 14 compounds that increase the Gapdh expression level.
  • Example 5 Effect of compounds selected from screening on expression of other differentiation markers In order to analyze the effect of the selected compound on differentiation of ES cells in more detail, the expression level of differentiation markers other than the 8 genes used in the screening was also measured by the same method as described above.
  • undifferentiation markers Oct3 / 4, Sox2, Klf4, Akp2, primitive ectoderm marker Fgf5, primitive streak markers Brachyury, Snail1, trophectoderm markers Cdx2, Bmp4, mesoderm and Cxcr4 which is an endoderm marker, Gata4 which is an extraembryonic endoderm marker, Laminin B1, Nestin which is a neuronal marker, p75NTR, Acta1 and Tpm1 which are skeletal muscle markers, Cnn1 which is a smooth muscle marker, Opn which is an osteoblast marker
  • the expression levels of c-kit, a hematopoietic stem cell marker, and Sox9, a chondrocyte marker were measured.
  • the primer and probe sequences used for measuring each gene are shown in FIG.
  • 32 compounds were found to have an activity of increasing the expression of two or more types of genes more than twice (FIG. 2).
  • clustering based on correlation distance was performed for each expression data.
  • the result is shown in FIG.
  • compounds having the same pharmacological action and similar in compound structure show similar gene expression profiles.
  • thiothixene hydrochloride, perphenazine, cis- (Z) -fluxendix dihydrochloride which are similar in structure to dopamine receptor antagonists, were classified into the same group.
  • PD 169316 and SB 202190 both of which are p38 MAPK inhibitors and similar in structure, were also classified into the same group. Furthermore, corticosteroids hydrocortisone 21-hemisuccinate sodium, hydrocortisone, betamethasone, beclomethasone, retinoic acid receptor agonists TTNPB, 13-cis-retinoic acid, It was. As described above, by analyzing the expression levels of a plurality of differentiation markers using the compound evaluation system of this example, it was revealed that the compounds can be classified based on the effect on differentiation.
  • Example 6 Effect of compounds selected by screening on adipose differentiation from human mesenchymal stem cells It was considered that the selected compound could control differentiation from adult stem cells as well as ES cells.
  • Human mesenchymal stem cells were purchased from Lonza and medium supplemented with 10% calf fetal serum, 2 mM GlutaMAX-1, 1x penicillin-streptomucin (Sigma) (hereinafter “growth medium”) in low glucose DMEM (Invitrogen). The culture was performed using an adhesive culture. At the time of induction of adipose differentiation, cells were seeded in a 96-well plate so that the number of cells was 3000 per well, and then cultured overnight in a growth medium.
  • the growth medium was added to a fat differentiation induction medium (high Golcose DMEM (Invitrogen)), 10% calf fetal serum, 2 mM GlutaMAX-1, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX, Wako Pure Chemical Industries), 10 ⁇ g / ml.
  • Adipose differentiation was induced by exchanging with insulin (Wako Pure Chemicals), 1 ⁇ M dexamethasone (Wako Pure Chemicals), 200 ⁇ M indomethacin (Wako Pure Chemicals), and 1xpenicillin-streptomucin (Sigma)).
  • each selected compound was added to a final concentration of 3 ⁇ M and cultured for 5 days.
  • the expression level of Adiponectin which is an adipocyte marker, was measured using the same method as shown in Example 1.
  • the primer and probe sequences used for measuring each gene are shown in FIG.
  • ROCK inhibitor Y-27632, kinase inhibitor HA-100, and vanilloid receptor antagonist capsazepine were found as compounds that increase the expression level of Adiponectin (FIG. 12a).
  • the action of these compounds to increase Adiponectin expression was equivalent to or better than that of PPAR ⁇ agonist Troglitazone (10 ⁇ M).
  • the expression level of PPAR ⁇ which is a master regulator of adipose differentiation when these three compounds (Y-27632, HA-100, and capsazepine) were added, was also measured by the same method. As shown in FIG. 12a, it was confirmed that Y-27632 and HA-100 have an effect of increasing the PPAR ⁇ expression level in a concentration-dependent manner. Next, the effect of these three compounds on lipid droplet formation was examined. 10 ⁇ M Y-27632, 10 ⁇ M HA-100, or 3 ⁇ M capsazepine was added to the adipose differentiation-inducing medium at the same time as induction of adipose differentiation, followed by adhesion culture for 5 days.
  • each cell was fixed with 4% paraformaldehyde (Wako Pure Chemical Industries) for 30 minutes and then washed with PBS three times. Furthermore, after staining with 0.36% Oil Red 0 (Chemicon) for 50 minutes at room temperature, the cells were washed three times with distilled water to observe and photograph the cells. As a result, it was observed that the addition of Y-27632 and HA-100 increased the amount of lipid droplets compared to the DMSO addition control (FIG. 12b). On the other hand, capsazepine did not show significant activity to increase lipid droplet formation. Furthermore, when these three compounds were added, the amount of adiponectin contained in each culture solution was measured.
  • Example 7 Effect of compounds selected from screening on bone differentiation from human mesenchymal stem cells Next, the influence of selected compounds on bone differentiation from human mesenchymal stem cells was examined. Human mesenchymal stem cells were maintained and cultured by the same method as in Example 6. Cells were seeded in a 96-well plate at 1000 cells per well and then cultured overnight in growth medium.
  • Bone differentiation was induced by replacing the medium with a medium supplemented with 1x penicillin-streptomycin (Sigma). At the same time as inducing bone differentiation, each of the selected compounds was added so that the final concentration was 3 ⁇ M, and adhesion culture was performed for 8 days.
  • Alkaline phosphatase which is an early osteoblast marker
  • the primer and probe sequences used for measuring each gene are shown in FIG.
  • GSK3 ⁇ inhibitor 6-bromodirubin-3′oxime BIO
  • thymidine analog 5-Bromo-2′-deoxyuridine BrdU
  • BIO and 10 ⁇ M BrdU were added, followed by adhesion culture for 8 days. After culturing, the cells were fixed with 4% paraformaldehyde (Wako Pure Chemical Industries) for 30 minutes and then washed 3 times with PBS. Alkaline phosphatase kit III (Vector Laboratories) was used for alkaline phosphatase staining according to the attached protocol. As a result, it was revealed that the addition of BIO and BrdU increases the staining property of alkaline phosphatase, and these compounds increase the alkaline phosphatase activity (FIG. 13b). Furthermore, the amount of calcium accumulated in the cells was examined.
  • BIO and 10 ⁇ M BrdU were added, followed by adhesion culture for 15 days. After culturing, the cells were washed with PBS and then lysed in a lysate consisting of 10 mM Tris-HCl and 0.2% Triton X-100. The protein concentration was measured using BCA protein assay kit (Pierce) using a part of the lysate. Hydrochloric acid was added to the remaining lysate so that the final concentration was 0.5 N, and the mixture was shaken overnight. The amount of calcium dissolved in the solution containing 0.5N hydrochloric acid was measured using Calcium E-test Kit Wako (Wako Pure Chemical Industries).
  • BIO and BrdU have the activity of promoting bone differentiation from human mesenchymal stem cells.
  • Example 8 Correlation between Gapdh expression level and ATP level in the screening method of the present invention It was examined whether the Gapdh expression level measured in the screening method of the present invention correlated with the number of living cells in the well.
  • Example 2 1 ⁇ M 6-bromodirubin-3′oxime (BIO), 10 ⁇ M PD169316, 10 ⁇ M forskolin, 50 nM retinoic acid, 5 ⁇ M myoseverin, 3 ⁇ M dexamethasone, which is a compound known to be involved in differentiation, 0
  • the expression level of Gapdh was measured in the same manner as in Example 1.
  • the amount of ATP in the wells was also measured using CellTiter-Glo luminescent cell viability kit (Promega). The result is shown in FIG.
  • Example 9 Compound evaluation using compounds involved in differentiation
  • Example 3 it was shown that when a compound known to be involved in differentiation was added, eight types of gene expression patterns fluctuated. The results of these experiments are shown in FIG. As shown in Example 3, it was found that when each compound was added, the expression level of one or more kinds of genes increased more than twice as compared with the case of adding DMSO. Moreover, the pattern of increase / decrease in the expression of the eight types of genes by compound addition was different for each compound, and it was estimated that each compound had different effects on differentiation.
  • Example 10 Effect of Compound with Increased Gapdh Expression on Viable Cell Count
  • 14 types of compounds that increase the expression level of Gapdh were found. After adding these 14 compounds, the result of having measured the amount of ATP in a well using CellTiter-Glo Luminescent cell viability kit (Promega) is shown in FIG. As described in Example 4, when these 14 compounds were added, an increase in the amount of ATP in the well was observed in all cases. These 14 compounds were found to have the effect of increasing the number of living cells under the conditions of the screening method of the present invention.
  • Example 11 Effect of compounds selected from screening on differentiation from human mesenchymal stem cells Based on the technique shown in Example 6 and Example 7, the effect of the selected compound on fat differentiation or bone differentiation from human mesenchymal stem cells was examined.
  • FIG. 4 summarizes the influence of the selected compound on the expression level of Adiponectin when inducing fat differentiation and on the expression level of Alpl in inducing bone differentiation.
  • Y-27632, HA-100, and capsazepine were found as compounds that increase the expression level of Adiponectin 1.3 times or more as compared with the control when added during induction of adipogenesis.
  • BIO and BrdU were found as compounds that increase the Alpl expression level by a factor of 2 or more as compared to the control when added during the induction of bone differentiation.
  • the screening method of the present invention is useful for screening drug candidates that activate stem cells and the like existing in a living body and promote regeneration.
  • the pharmaceutical obtained by the screening method of the present invention can be used to eliminate the burden on patients such as surgery and use of immunosuppressive agents.
  • the screening method of the present invention can be used to efficiently and in large quantities prepare all cells and tissues of humans or higher animals, screening of drug candidates and drug efficacy in conventional drug discovery processes are possible. It can be applied to evaluation and safety testing.

Abstract

A method for screening a substance capable of regulating the regeneration, proliferation or differentiation of a cell or organ, which comprises the steps of: (1) forming an embryonoid body from a cell having a regenerative, proliferative or differentiative capability; (2) treating the embryonoid body produced in step (1) with a digestive enzyme to prepare single cells of the embryonoid body; (3) seeding the cells prepared in step (2) onto an adhesive plate, adding a candidate substance to the plate, and carrying out the adhesive culture of the cells on the plate; (4) quantitatively analyzing the expression amounts of at least two of genes involved in the regeneration, proliferation or differentiation of cells simultaneously after the adhesive culture of step (3); and (5) evaluating the influence of the candidate substance on the regeneration, proliferation or differentiation of cells based on the results of the quantitative analysis obtained in step (4).

Description

再生医薬のスクリーニング方法Regenerative medicine screening method
 本発明は、再生医薬のスクリーニング方法に関する。 The present invention relates to a screening method for regenerative medicine.
 再生とは、生体の欠失した細胞・組織が幹細胞などの増殖や分化によって修復される現象である。皮膚や消化管上皮のように寿命の尽きた細胞の代わりに新しい細胞を供給する恒常的な細胞の更新は生理的再生と呼ばれ、損傷や疾病によって急速に失われた細胞・組織を補充し回復させるものを病理的再生と呼ぶ。再生は多細胞生物が生存してゆくために必須の現象であるが、ヒトなどの高等動物においては自然に備わった再生力に限界があり、これを超えた重篤あるいは広範囲に及ぶ損傷を受けた臓器や組織は治癒することなく個体全体の生命維持の危機を引き起こす。腎臓や肝臓、心臓のような生体の維持にとって重要ないくつかの臓器の不全に対しては、既に臓器移植による治療法が確立しているが、ドナーの確保や免疫適合性などの問題点のために治療の恩恵を受けることができる患者数には限界があった。そのような臓器移植の問題点を克服するものとして最近注目されているのが再生医療である。これは組織の発生や再生に関して生体に備わった能力を制御する技術を開発し、自己あるいは他人から採取した細胞を材料として組織の再構築や臓器の再生を行なうものである。既に臨床で用いられているものとしては、白血病など多くの疾患で行なわれている骨髄移植や熱傷に対する皮膚移植、糖尿病における膵島移植などがある。そのほか、パーキンソン病に対する神経幹細胞移植、心筋梗塞に対する骨髄細胞移植、脊髄損傷に対するシュワン細胞の移植なども臨床への応用が期待されている。また、増殖分化因子を利用したものとしては繊維芽細胞増殖因子(FGF)を利用した創傷治癒促進、エリスロポエチンによる貧血治療などは既に臨床現場で利用され、肝細胞増殖因子(HGF)あるいはその遺伝子による血管再生なども医薬としての実用化が期待されている。
 再生医薬のスクリーニングに関連する技術としては以下のものが知られている。
 WO2006−6722(特許文献1)には、再生・分化・増殖能力を有する細胞における複数の遺伝子の発現量をまとめて定量解析することにより、細胞の再生、増殖または分化に関与している遺伝子を特定する工程を含む、細胞の再生・増殖・分化関与遺伝子のスクリーニング方法が開示されている。
 Desbordesらは、分化や自己複製に関与する化合物を幅広くスクリーニングした例(hES細胞において未分化マーカーOct4の発現を変動させる化合物をスクリーニングして、2880化合物より14化合物を同定)を報告している(非特許文献1)。
 Hahnらは、HDAC inhibitor等に着眼した脳腫瘍治療薬のスクリーニング方法等を報告している(非特許文献2)。
 Stegmaierらは、Multiplex RT−PCR(384穴プレート)を用いたスクリーニング方法等を報告している(非特許文献3)。
Regeneration is a phenomenon in which cells / tissues lacking in a living body are repaired by proliferation and differentiation of stem cells and the like. The constant renewal of cells that supply new cells in place of cells that have reached the end of their lives, such as skin and gastrointestinal epithelium, is called physiologic regeneration and replenishes cells and tissues that are rapidly lost due to damage or disease. What is restored is called pathological regeneration. Regeneration is an indispensable phenomenon for multicellular organisms to survive. However, in higher animals such as humans, there is a limit to the natural regenerative power, resulting in severe or extensive damage beyond this. Organs and tissues that do not heal will cause a life-sustaining crisis for the whole individual. Treatment of organ failure such as kidney, liver, and heart is already established for organ failure, but there are problems such as securing donors and immunocompatibility. There was a limit to the number of patients who could benefit from treatment. Regenerative medicine has recently attracted attention as a means of overcoming such problems of organ transplantation. This is to develop a technology for controlling the ability of a living body with respect to the generation and regeneration of tissues, and to reconstruct tissues and regenerate organs using cells collected from themselves or others. Already used in clinical practice are bone marrow transplantation, skin transplantation for burns, and islet transplantation in diabetes, which are performed in many diseases such as leukemia. In addition, neural stem cell transplantation for Parkinson's disease, bone marrow cell transplantation for myocardial infarction, and Schwann cell transplantation for spinal cord injury are also expected to be clinically applied. In addition, as for those utilizing growth differentiation factors, wound healing promotion using fibroblast growth factor (FGF), treatment of anemia with erythropoietin has already been used in the clinical field, and it depends on hepatocyte growth factor (HGF) or its gene. Revascularization is also expected to be put into practical use as a medicine.
The following techniques are known as techniques related to screening for regenerative medicine.
In WO2006-6722 (Patent Document 1), a gene involved in cell regeneration, proliferation or differentiation is analyzed by collectively analyzing the expression levels of a plurality of genes in cells having regeneration / differentiation / proliferation ability. A screening method for a gene involved in cell regeneration / proliferation / differentiation, which includes a specifying step, is disclosed.
Desbordes et al. Reported an example of screening a wide range of compounds involved in differentiation and self-replication (screening for compounds that fluctuate the expression of undifferentiation marker Oct4 in hES cells and identifying 14 compounds from 2880 compounds) ( Non-patent document 1).
Hahn et al. Have reported a screening method for a therapeutic agent for brain tumor focusing on HDAC inhibitors and the like (Non-patent Document 2).
Have reported a screening method using Multiplex RT-PCR (384-well plate), etc. (Non-patent Document 3).
WO2006−6722WO2006-6722
 従前、幹細胞(胚性幹細胞や体性幹細胞など)や前駆細胞などを用いて人為的に調製が可能な細胞、臓器の種類は限定されており、膵臓β細胞や腎臓、消化管など多くのものについては、臨床応用が可能な細胞、組織の作出には至っていない。また、再生医療にある程度有用な細胞であったとしても、喪失した機能を完全に補填するほど充分なレベルに達していないものも多い。臨床面での需要は非常に高いにも関わらず調製が不可能あるいは効率が低い細胞、組織を再生医療に提供できるようにするためには、従来よりも細胞の分化をより効率良く制御する技術が必要である。また、技術開発の過程で明らかになってくる細胞分化を調節する新たなメカニズムを応用することによって、生体内外で組織の再構築や臓器の再生を促すような医薬候補物質の新規スクリーニング系の構築が可能となる。特に、生体中に存在する幹細胞を活性化し、再生を促す医薬品を開発することが出来れば、手術や免疫抑制剤の使用といった患者の負担を解消することができる。さらに、ヒトあるいは高等動物のあらゆる細胞、組織を効率的にかつ大量に調製することができれば、従来からの創薬プロセスにおける医薬候補物質のスクリーニングや薬効評価、安全性試験などに応用可能となる。
 細胞の分化調節プロセスには現在も不明な点が多く残されており、既知の増殖分化因子、サイトカイン、シグナル伝達系の阻害剤および活性化剤などを使用した再生分化調節には限界がある。実際、既存の分化調節物質を利用してin vitroあるいはin vivoでこれまでに再生させることが出来た細胞、組織、器官の種類は非常に限られている。また、特定の細胞系譜にコミットした幹細胞を用いたスクリーニングでは、特定の細胞への分化プロセスを調節する物質が得られるが、そのようなスクリーニングで得られた物質が他の細胞に対しても作用を有する可能性について検証するためには別の分化系での検証が必要となる。さらに、ヒトの細胞の再生分化を調節する物質をスクリーニングするためにはヒト組織から得られた幹細胞を使用することが望ましいが、材料の入手やスクリーニングのための細胞の大量調製などの面での制約があり、使用できる幹細胞は骨髄や脂肪由来の間葉系幹細胞や胎児由来の神経幹細胞などに限定されている。
 このように、生体には再生分化を調節する内在性のメカニズムが存在し、それを利用して細胞の分化・増殖を人為的に調節することができる。しかし、実際の再生分化の調節メカニズムは未解明な部分も多く残されているために、従来から知られているような分化・増殖因子を細胞に作用させるような方法には限界があった。また、再生分化に関連するメカニズムは多岐にわたるため、再生分化調節薬あるいは再生分化を効率よく調整するツールの候補となる物質を見出すためには、その作用を幅広くかつ定量的に調べる方法の発明が必要であった。
Conventionally, the types of cells and organs that can be artificially prepared using stem cells (embryonic stem cells, somatic stem cells, etc.) and progenitor cells are limited, and there are many things such as pancreatic β cells, kidneys, and digestive tract Has not been able to produce cells and tissues that can be clinically applied. Even if the cells are useful to some extent in regenerative medicine, there are many cells that have not reached a level sufficient to completely compensate for the lost function. Technology to control cell differentiation more efficiently than before in order to be able to provide regenerative medicine to cells and tissues that cannot be prepared or have low efficiency despite the high clinical demand. is required. In addition, by applying a new mechanism that regulates cell differentiation that will become apparent in the course of technological development, a new screening system for drug candidate substances that promotes tissue reorganization and organ regeneration in vivo and externally will be established. Is possible. In particular, if a drug that activates and promotes regeneration of stem cells present in the living body can be developed, the burden on patients such as surgery and use of immunosuppressants can be eliminated. Furthermore, if all cells and tissues of humans or higher animals can be prepared efficiently and in large quantities, they can be applied to screening of drug candidate substances, evaluation of drug efficacy, safety tests, etc. in conventional drug discovery processes.
There are still many unclear points in the differentiation control process of cells, and there is a limit to regenerative differentiation control using known growth differentiation factors, cytokines, signal transduction system inhibitors and activators. In fact, the types of cells, tissues, and organs that can be regenerated in vitro or in vivo using existing differentiation regulators are very limited. In addition, screening using stem cells committed to a specific cell lineage yields substances that regulate the differentiation process into specific cells, but the substances obtained by such screening also act on other cells. In order to verify the possibility of having a difference, verification in another differentiation system is required. Furthermore, it is desirable to use stem cells obtained from human tissues to screen for substances that regulate the regenerative differentiation of human cells, but in terms of obtaining materials and preparing large numbers of cells for screening, etc. The stem cells that can be used are limited to bone marrow and adipose-derived mesenchymal stem cells and fetal-derived neural stem cells.
In this way, the living body has an endogenous mechanism that regulates regenerative differentiation, and it is possible to artificially regulate cell differentiation and proliferation using this mechanism. However, since there are still many unexplained regulatory mechanisms of actual regenerative differentiation, there has been a limit to the methods of allowing differentiation / growth factors to act on cells as conventionally known. In addition, since there are a wide variety of mechanisms related to regenerative differentiation, in order to find candidate substances for regenerative differentiation regulators or tools that efficiently regulate regenerative differentiation, the invention of a method for investigating its action widely and quantitatively has been invented. It was necessary.
 本発明者らは、鋭意研究を重ねた結果、Embryonic Stem(ES)細胞から胚様体を形成させることによって多方向への分化を誘導し、トリプシン処理により胚様体をシングルセルに分散させた後、評価する化合物を添加して接着培養を行い、2種類以上の遺伝子の発現変動を調べるプロセスから構成される再生医薬のスクリーニング方法を見出した。さらに、候補化合物による遺伝子の発現変動を評価する際に使用する遺伝子の選択基準として、(i)分化過程で増減し、(ii)化合物無処理(コントロール)でも有意な値として発現が検出でき、(iii)既存の増殖・分化因子を用いたパイロット試験で発現が変動することが確認された遺伝子(公知)であることを指標として選択することが有用であることを見出した。一般に再生分化には脊椎動物では共通のメカニズムが存在することから、調製の容易なマウスES細胞のような多分化能を有する細胞を用いて得られた知見がヒト組織幹細胞の再生分化調節にも広く応用可能であること、また、各種の幹細胞間にも共通の再生分化のメカニズムが存在し、ある種の幹細胞に作用する物質は他の幹細胞にも作用し得ることなどを見出した。本発明者らは、これらの知見に基づいて、さらに研究を重ねた結果、本発明を完成するに至った。
 すなわち、本発明は、以下のスクリーニング方法(以下、「本発明のスクリーニング方法」と称する場合がある。)を提供する。
[1]以下の工程(1)~(5):
(1)再生、増殖又は分化能力を有する細胞から胚様体を形成させる工程、
(2)工程(1)で得られた胚様体を消化酵素で処理することによって単一細胞状態にする工程、
(3)工程(2)で得られた細胞を接着性プレートに播種するとともに、該プレートに候補物質を添加して接着培養する工程、
(4)工程(3)における接着培養後に、細胞の再生、増殖または分化に関与する遺伝子のうち2種類以上の発現量をまとめて定量解析する工程、および
(5)工程(4)における定量解析の結果をもとに、候補物質が細胞の再生、増殖または分化に与える影響を評価する工程、を含む、細胞または臓器の再生、増殖又は分化を調節する物質のスクリーニング方法。
[2]前記工程(1)における細胞が、ヒトおよび温血動物の胚性幹細胞およびiPS(induced pluripotent stem)細胞から選択される上記[1]記載の方法。
[3]前記工程(1)における胚様体を形成させるために行う細胞培養の期間が3ないし6日間である上記[1]または[2]記載の方法。
[4]再生、増殖又は分化を調節する物質の標的となる細胞が、ヒトおよび温血動物の胚性幹細胞、iPS(induced pluripotent stem)細胞およびそれらの細胞を分化誘導して得られる細胞、ならびに組織幹細胞(間葉系幹細胞、造血幹細胞、筋芽細胞、神経幹細胞、骨芽細胞、軟骨芽細胞、血管芽細胞、生体中に存在する前駆細胞もしくは幹細胞)で生体組織内に存在した状態あるいはin vitroで培養した状態の細胞からなる群より選択される、上記[1]ないし[3]のいずれかに記載の方法。
[5]再生、増殖又は分化を調節する物質が、合成化合物、天然物、タンパク質、ペプチド、脂質、アミン、アミノ酸、糖、核酸、またはイオンである、上記[1]ないし[4]のいずれかに記載の方法。
[6]再生、増殖又は分化を調節する物質が、受容体アゴニストおよびアンタゴニスト、生合成経路阻害剤、タンパク質間相互作用の阻害剤、酵素阻害剤および基質、補酵素、シグナル伝達系の阻害剤および活性化剤、チャンネル阻害剤およびモジュレーター、ビタミン、抗酸化剤、アポトーシス阻害剤および促進剤、抗ウイルス剤、界面活性剤、アンチセンスオリゴヌクレオチド、siRNA、抗生物質、コンビナトリアルケミストリー法で合成された化合物、ならびにそれらの合成中間体からなる群より選択される、上記[1]ないし[4]のいずれかに記載の方法。
[7]再生、増殖又は分化を調節する物質の標的となる細胞または臓器が、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球、巨核球)、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞、血球系の細胞、脳、脳の各部位(嗅球、扁頭核、大脳基底球、海馬、視床、視床下部、視床下核、大脳皮質、延髄、小脳、後頭葉、前頭葉、側頭葉、被殻、尾状核、脳染、黒質)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(大腸、小腸)、血管、心臓、胸腺、脾臓、顎下腺、末梢血、末梢血球、前立腺、睾丸、精巣、卵巣、胎盤、子宮、骨、関節、および骨格筋からなる群より選択される、上記[1]ないし[6]のいずれかに記載の方法。
[8]再生、増殖又は分化を調節する物質が、中枢性疾患(アルツハイマー病、パーキンソン病、虚血性神経障害)、炎症性疾患(アレルギー性疾患、喘息、リュウマチ、変形性関節症)、循環器疾患(心不全、心肥大、狭心症、動脈硬化症)、癌(非小細胞肺癌、卵巣癌、前立腺癌、胃癌、膀胱癌、乳癌、子宮頸部癌、結腸癌、直腸癌)、糖尿病、免疫系疾患(自己免疫疾患、アトピー性皮膚炎、アレルギー性疾患、免疫不全、喘息、リュウマチ性関節炎、乾癬、動脈硬化症、糖尿病、アルツハイマー病)、肝臓・胆のう疾患(硬変、肝炎、肝不全、胆汁うっ滞症)、消化器系疾患(潰瘍、腸炎、消化不全、過敏性大腸炎、潰瘍性大腸炎、下痢、イレウス)、熱傷、骨折、および脱毛症からなる群より選択される疾患の予防・治療薬である、上記[1]ないし[7]のいずれかに記載の方法。
[9]前記工程(2)における消化酵素が、トリプシンである上記[1]ないし[8]のいずれかに記載の方法。
[10]前記工程(3)における接着性プレートが、ゼラチンコートした複数の穴を有するプレートである上記[1]ないし[9]のいずれかに記載の方法。
[11]前記工程(4)において2種類以上の遺伝子の発現量をまとめて定量解析する際、Multiplex RT−PCRを用いる上記[1]ないし[10]のいずれかに記載の方法。
[12]前記工程(4)における細胞の再生、増殖または分化に関与する遺伝子が、
(A)未分化マーカーであるNanog、Oct3/4、Sox2、Klf4、Akp2、
(B)原始外胚葉マーカーであるFgf5、
(C)原始線条マーカーであるBrachyury、Snail1、
(D)栄養外胚葉マーカーであるCdx2、Bmp4、
(E)神経マーカーであるTubb3、Nefh、Nestin、p75NTR、
(F)心筋マーカーであるActc1、
(G)平滑筋マーカーであるActa2、Cnn1、
(H)内皮細胞マーカーであるTie2、
(I)中胚葉マーカーであるFlk1、
(J)中胚葉と内胚葉マーカーであるCxcr4、
(K)胚体外内胚葉マーカーであるGata4、Laminin B1、
(L)骨格筋マーカーであるActa1、Tpm1、
(M)骨芽細胞マーカーであるOpn、
(N)造血幹細胞マーカーであるc−kit、および
(O)軟骨細胞マーカーであるSox9からなる群より選択される上記[1]ないし[11]のいずれかに記載の方法。
As a result of intensive studies, the present inventors induced differentiation in multiple directions by forming embryoid bodies from Embryonic Stem (ES) cells, and dispersed embryoid bodies into single cells by trypsin treatment. Then, the compound to be evaluated was added and adhesion culture was performed, and a screening method for a regenerative medicine comprising a process for examining expression variation of two or more genes was found. Furthermore, as a selection criterion for genes used in evaluating gene expression variation due to candidate compounds, (i) increase or decrease in the differentiation process, (ii) expression can be detected as a significant value even without compound treatment (control), (Iii) The present inventors have found that it is useful to select as an index a gene (known) whose expression has been confirmed to vary in a pilot test using existing growth / differentiation factors. In general, there is a common mechanism in vertebrates for regenerative differentiation. Therefore, the knowledge obtained by using multipotent cells such as mouse ES cells, which are easy to prepare, can be used to regulate regenerative differentiation of human tissue stem cells. It has been found that it can be widely applied, and that there is a common regeneration differentiation mechanism among various stem cells, and that a substance that acts on certain stem cells can also act on other stem cells. As a result of further studies based on these findings, the present inventors have completed the present invention.
That is, the present invention provides the following screening method (hereinafter sometimes referred to as “the screening method of the present invention”).
[1] The following steps (1) to (5):
(1) a step of forming an embryoid body from cells having regeneration, proliferation or differentiation ability;
(2) A step of treating the embryoid body obtained in step (1) with a digestive enzyme to form a single cell state,
(3) A step of seeding the cells obtained in step (2) on an adhesive plate, adding a candidate substance to the plate, and subjecting the cells to adhesion culture,
(4) After the adhesion culture in step (3), a step of collectively analyzing the expression levels of two or more types of genes involved in cell regeneration, proliferation or differentiation, and (5) quantitative analysis in step (4) A method for screening a substance that regulates the regeneration, proliferation or differentiation of cells or organs, comprising the step of evaluating the influence of a candidate substance on the regeneration, proliferation or differentiation of cells based on the results of.
[2] The method of the above-mentioned [1], wherein the cells in the step (1) are selected from human and warm-blooded animal embryonic stem cells and iPS (Induced Pluripotent stem) cells.
[3] The method according to [1] or [2] above, wherein the period of cell culture performed to form embryoid bodies in the step (1) is 3 to 6 days.
[4] Cells obtained by inducing differentiation of human and warm-blooded animal embryonic stem cells, iPS (induced pluripotent stem) cells and those cells, which are targets of substances that regulate regeneration, proliferation or differentiation, and Tissue stem cells (mesenchymal stem cells, hematopoietic stem cells, myoblasts, neural stem cells, osteoblasts, chondroblasts, hemangioblasts, progenitor cells or stem cells present in the body) existing in living tissue or in The method according to any one of [1] to [3] above, which is selected from the group consisting of cells cultured in vitro.
[5] Any of the above [1] to [4], wherein the substance that regulates regeneration, growth or differentiation is a synthetic compound, natural product, protein, peptide, lipid, amine, amino acid, sugar, nucleic acid, or ion The method described in 1.
[6] Substances that regulate regeneration, proliferation or differentiation are receptor agonists and antagonists, biosynthetic pathway inhibitors, protein-protein interaction inhibitors, enzyme inhibitors and substrates, coenzymes, signal transduction system inhibitors and Activators, channel inhibitors and modulators, vitamins, antioxidants, apoptosis inhibitors and promoters, antiviral agents, surfactants, antisense oligonucleotides, siRNA, antibiotics, compounds synthesized by combinatorial chemistry methods, And the method according to any one of [1] to [4] above, which is selected from the group consisting of synthetic intermediates thereof.
[7] Cells or organs targeted by substances that regulate regeneration, proliferation or differentiation are splenocytes, neurons, glial cells, pancreatic β cells, bone marrow cells, mesangial cells, Langerhans cells, epidermal cells, epithelial cells, endothelium Cells, fibroblasts, fiber cells, muscle cells, fat cells, immune cells (macrophages, T cells, B cells, natural killer cells, mast cells, neutrophils, basophils, eosinophils, monocytes, megakaryocytes ), Synovial cells, chondrocytes, bone cells, osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursor cells of these cells, stem cells, blood cells, brain, brain parts (Olfactory bulb, cephalic nucleus, basal ganglia, hippocampus, thalamus, hypothalamus, hypothalamic nucleus, cerebral cortex, medulla, cerebellum, occipital lobe, frontal lobe, temporal lobe, putamen, caudate nucleus, brain stain, substantia nigra ), Spinal cord, pituitary, stomach, pancreas, kidney, liver, gonad Thyroid, gall bladder, bone marrow, adrenal gland, skin, muscle, lung, gastrointestinal tract (large and small intestine), blood vessel, heart, thymus, spleen, submandibular gland, peripheral blood, peripheral blood cell, prostate, testicle, testis, ovary, placenta, The method according to any one of [1] to [6] above, which is selected from the group consisting of uterus, bone, joint, and skeletal muscle.
[8] Substances that regulate regeneration, proliferation or differentiation are central diseases (Alzheimer's disease, Parkinson's disease, ischemic neuropathy), inflammatory diseases (allergic diseases, asthma, rheumatism, osteoarthritis), circulatory organs Disease (heart failure, cardiac hypertrophy, angina, arteriosclerosis), cancer (non-small cell lung cancer, ovarian cancer, prostate cancer, stomach cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, rectal cancer), diabetes, Immune system disease (autoimmune disease, atopic dermatitis, allergic disease, immunodeficiency, asthma, rheumatoid arthritis, psoriasis, arteriosclerosis, diabetes, Alzheimer's disease), liver / gallbladder disease (cirrhosis, hepatitis, liver failure) , Cholestasis), digestive disorders (ulcers, enteritis, dyspepsia, irritable colitis, ulcerative colitis, diarrhea, ileus), burns, fractures, and alopecia It is a preventive / therapeutic The method according to any one of [1] to [7].
[9] The method according to any one of [1] to [8], wherein the digestive enzyme in the step (2) is trypsin.
[10] The method according to any one of [1] to [9], wherein the adhesive plate in the step (3) is a plate having a plurality of holes coated with gelatin.
[11] The method according to any one of [1] to [10] above, wherein Multiplex RT-PCR is used when quantitatively analyzing the expression levels of two or more genes in the step (4).
[12] A gene involved in cell regeneration, proliferation or differentiation in the step (4) is:
(A) Nanog, Oct3 / 4, Sox2, Klf4, Akp2, which are undifferentiated markers
(B) Fgf5, a primitive ectoderm marker,
(C) Brachyury, Snail1, which are primitive streak markers,
(D) Cdx2, Bmp4, which are trophectoderm marker
(E) Neural markers Tubb3, Nefh, Nestin, p75NTR,
(F) Actc1, a myocardial marker,
(G) Acta2, Cnn1, which are smooth muscle markers,
(H) Tie2, which is an endothelial cell marker,
(I) Flk1, which is a mesoderm marker,
(J) Cxcr4 which is a mesoderm and endoderm marker,
(K) Gata4, Laminin B1, which are extraembryonic endoderm markers,
(L) Acta1, Tpm1, which are skeletal muscle markers
(M) Opn which is an osteoblast marker,
The method according to any one of [1] to [11] above, which is selected from the group consisting of (N) c-kit which is a hematopoietic stem cell marker and (O) Sox9 which is a chondrocyte marker.
各遺伝子の発現量の測定に用いたプライマーとプローブの配列を示した表である。It is the table | surface which showed the arrangement | sequence of the primer and probe which were used for the measurement of the expression level of each gene. LOPAC1280(Sigma社)を用いたスクリーニングの結果、1つ以上の遺伝子発現量をDMSO添加のコントロールと比較して2倍以上に上昇させた52化合物を示した表である。それぞれの化合物を添加した場合の各遺伝子の相対発現量を示している。*で記した遺伝子はスクリーニングで測定した8遺伝子を示している。DMSOを添加したコントロールと比較して2倍以上に上昇した場合を青色で、0.5倍以下に低下した場合を赤色で着色している。It is the table | surface which showed 52 compounds which raised the expression level of 1 or more gene more than 2 times compared with the control of DMSO addition as a result of the screening using LOPAC 1280 (Sigma). The relative expression level of each gene when each compound is added is shown. The genes marked with * indicate 8 genes measured by screening. When it rises 2 times or more compared to the control to which DMSO was added, it is colored blue, and when it falls to 0.5 times or less, it is colored red. スクリーニングにより選択された52化合物を薬理作用に基づいて分類した表である。It is the table | surface which classified 52 compounds selected by the screening based on the pharmacological action. (a)ヒト間葉系幹細胞から脂肪分化を誘導すると同時に図2で示した52化合物をそれぞれ添加し、5日間接着培養した時のAdiponectinの発現量を示す表である。表中の値は、DMSO添加のコントロールを基準とした相対発現量を示している。DMSOを添加したコントロールと比較して1.3倍以上に上昇した場合を青色で、0.5倍以下に低下した場合を赤色で着色している。(b)ヒト間葉系幹細胞から骨分化を誘導すると同時に図2で示した52化合物をそれぞれ添加し、8日間培養した時のAlplの発現量を示す表である。表中の値は、DMSO添加のコントロールを基準とした相対発現量を示している。DMSOを添加したコントロールと比較して2倍以上に上昇した場合を青色で、0.5倍以下に低下した場合を赤色で着色している。(A) It is a table | surface which shows the expression level of Adiponectin when 52 compounds shown in FIG. 2 were respectively added and the adhesion | cultivation culture | cultivation was carried out for 5 days simultaneously with induction | guidance | derivation of fat differentiation from a human mesenchymal stem cell. The values in the table indicate relative expression levels based on DMSO addition control. The case where it rose 1.3 times or more compared with the control which added DMSO is colored in blue, and the case where it falls below 0.5 times is colored in red. (B) It is a table | surface which shows the expression level of Alpl when each of the 52 compounds shown in FIG. 2 was added at the same time it induced | guided | derived bone differentiation from a human mesenchymal stem cell, and it culture | cultivated for 8 days. The values in the table indicate relative expression levels based on DMSO addition control. When it rises 2 times or more compared to the control to which DMSO was added, it is colored blue, and when it falls to 0.5 times or less, it is colored red. 96穴スフェロイド用プレートを用いて浮遊培養を行うことで胚様体を形成させた時の、初期分化マーカーの発現量を示す図である。図中の値は、培養0日目の未分化ES細胞における発現量を基準とした相対発現量を示している。It is a figure which shows the expression level of an early differentiation marker when an embryoid body is formed by carrying out suspension culture using a 96-well spheroid plate. The value in the figure shows the relative expression level based on the expression level in undifferentiated ES cells on day 0 of culture. 未分化ES細胞(ES)、胚様体(浮遊培養4日目、EB)、接着培養1~4日目のそれぞれの時期における初期分化マーカーの発現量を示す図である。図中の値は、培養0日目の未分化ES細胞における発現量を基準とした相対発現量を示している。It is a figure which shows the expression level of an early differentiation marker in each stage of an undifferentiated ES cell (ES), an embryoid body (the suspension culture 4th day, EB), and adhesion culture | cultivation 1st-4th day. The value in the figure shows the relative expression level based on the expression level in undifferentiated ES cells on day 0 of culture. 本発明のスクリーニング方法の概略を示した図である。本発明のスクリーニング方法は、浮遊培養で4日間培養し胚様体を形成させる、トリプシン−EDTA溶液で単一細胞状態とする、化合物を添加してさらに4日間接着培養する、各分化マーカーの発現量を調べるという手順で行う。It is the figure which showed the outline of the screening method of this invention. In the screening method of the present invention, the expression of each differentiation marker is carried out by forming a embryoid body by culturing in suspension culture for 4 days, making it into a single cell state with a trypsin-EDTA solution, adding a compound, and further performing adhesion culture for 4 days. The procedure is to check the amount. 図7で示す方法に従って図中の化合物を添加し、4日間接着培養した時のGAPDH発現量とATP量を測定した結果を示す図である。図中の値は、DMSO添加のコントロールを基準とした相対値を示している。It is a figure which shows the result of having added the compound in a figure according to the method shown in FIG. 7, and having measured the GAPDH expression level and the amount of ATP when carrying out adhesion culture for 4 days. The values in the figure show relative values based on DMSO addition control. 図7で示す方法に従って図中の化合物を添加し、4日間接着培養した時の各種遺伝子の発現量を示す図である。図中の値は、DMSO添加のコントロールを基準とした相対発現量を示している。It is a figure which shows the expression level of various genes when the compound in a figure is added according to the method shown in FIG. 7, and adhesion culture is carried out for 4 days. The value in the figure shows the relative expression level based on the control of DMSO addition. 図7で示す方法に従って図中の化合物を添加し、4日間接着培養した時のATP量を測定した結果を示す図である。図中の値は、DMSO添加のコントロールを基準とした相対値を示している。It is a figure which shows the result of having measured the amount of ATP when adding the compound in a figure according to the method shown in FIG. 7, and carrying out adhesion culture for 4 days. The values in the figure show relative values based on DMSO addition control. スクリーニングで選択された化合物の中の32化合物について、28遺伝子の発現プロファイルデータを相関距離に基づいてクラスタリングした結果の図である。化合物1−3はドーパミン受容体拮抗薬、化合物4と5はp38MAPK阻害剤、化合物6−9はコルチコステロイド、化合物10−13はレチノイン酸受容体作動薬である。It is a figure of the result of having clustered the expression profile data of 28 genes based on correlation distance about 32 compounds among the compounds selected by screening. Compound 1-3 is a dopamine receptor antagonist, compounds 4 and 5 are p38 MAPK inhibitors, compound 6-9 is a corticosteroid, and compound 10-13 is a retinoic acid receptor agonist. (a)ヒト間葉系幹細胞から脂肪分化を誘導すると同時に図中の化合物を添加し、5日間接着培養した時のAdiponectinとPPARγの発現量を示す図である。図中の値は、DMSO添加のコントロールを基準とした相対発現量を示している。(b)ヒト間葉系幹細胞から脂肪分化を誘導すると同時に図中の化合物を添加し、5日間接着培養した後、オイルレッド0溶液を用いて脂肪滴を染色した結果を示す図である。(c)ヒト間葉系幹細胞から脂肪分化を誘導すると同時に図中の化合物を添加して8日間接着培養した後、培養液中に含まれるアディポネクチン量を測定した結果を示す図である。(A) It is a figure which shows the expression level of Adiponectin and PPAR (gamma) when the compound in a figure is added simultaneously from the induction | guidance | derivation of fat differentiation from a human mesenchymal stem cell, and adhesion culture is carried out for 5 days. The value in the figure shows the relative expression level based on the control of DMSO addition. (B) It is a figure which shows the result of having dye | stained the lipid droplet using the oil red 0 solution, after adding the compound in a figure simultaneously with inducing | guiding | deriving fat differentiation from a human mesenchymal stem cell, and carrying out adhesion culture for 5 days. (C) It is a figure which shows the result of having measured the amount of adiponectin contained in a culture solution, after inducing fat differentiation from a human mesenchymal stem cell, adding the compound in a figure, and carrying out adhesion culture for 8 days. (a)ヒト間葉系幹細胞から骨分化を誘導すると同時に図中の化合物を添加し、8日間接着培養した時のAlpl、Runx2、Col1a1、PTHRの発現量を示す図である。図中の値は、DMSO添加のコントロールを基準とした相対発現量を示している。(b)ヒト間葉系幹細胞から骨分化を誘導すると同時に図中の化合物を添加し、8日間接着培養した後にアルカリホスファターゼ染色を行った結果を示す図である。(c)ヒト間葉系幹細胞から骨分化を誘導すると同時に図中の化合物を添加し、15日間接着培養した後に細胞内に蓄積されたカルシウム量を測定した結果を示す図である。図中の値は、DMSO添加のコントロールを基準とした相対値を示している。(A) It is a figure which shows the expression level of Alpl, Runx2, Col1a1, and PTHR when the compound in a figure is added simultaneously with induction | guidance | derivation of bone differentiation from a human mesenchymal stem cell, and adhesion culture is carried out for 8 days. The value in the figure shows the relative expression level based on the control of DMSO addition. (B) It is a figure which shows the result of having performed the alkaline phosphatase dyeing | staining after adding the compound in a figure and inducing | adhering culture | cultivation for 8 days simultaneously with inducing | generating bone differentiation from a human mesenchymal stem cell. (C) It is a figure which shows the result of having measured the amount of calcium accumulate | stored in the cell after adding the compound in a figure at the same time it induces bone differentiation from a human mesenchymal stem cell, and carrying out adhesion culture for 15 days. The values in the figure show relative values based on DMSO addition control.
1.細胞または臓器の再生、増殖、または分化を調節する物質のスクリーニング方法
 本発明の一実施形態によれば、細胞または臓器の再生、増殖、または分化を調節する物質のスクリーニング方法(以下、「本発明のスクリーニング方法」と称する場合がある。)が提供される。この方法は、典型的には、以下の工程を含む:
(1)再生、増殖又は分化能力を有する細胞から胚様体を形成させる工程;
(2)工程(1)で得られた胚様体を消化酵素で処理することによって単一細胞状態にする工程;
(3)工程(2)で得られた細胞を接着性プレートに播種するとともに、該プレートに候補物質を添加して接着培養する工程;
(4)工程(3)における接着培養後に、細胞の再生、増殖または分化に関与する遺伝子のうち2種類以上の発現量をまとめて定量解析する工程;および
(5)工程(4)における定量解析の結果をもとに、候補物質が細胞の再生、増殖または分化に与える影響を評価する工程。
 本発明のスクリーニング方法では、まず、工程(1)で、再生、増殖または分化能力を有する細胞(例:ES細胞)から胚様体(Embryoid body,EB)を形成させることによって、多方向への分化を誘導する。
 本明細書中、「胚様体」は当該分野で通常用いられる意味で用いられ、ES細胞、iPS細胞などの多能性幹細胞を浮遊培養で分化させた際に形成される胚様の形態をした様々な組織の幹細胞あるいは前駆細胞からなる細胞塊を意味する。
 本発明のスクリーニング方法において、工程(1)で胚葉体を形成する際に用いる再生、増殖または分化能力を有する細胞の好ましい例としては、ヒトおよびその他の温血動物(例、マウス)の胚性幹細胞(ES細胞)およびiPS(induced pluripotent stem)細胞等が挙げられる。胚様体を形成させるには、典型的には、マウスなどのES細胞を血清または血清代替品を含む培地に懸濁し、37℃の5%CO条件下において1ないし10日間浮遊培養する。工程(1)で胚葉体を形成する際に用いる再生、増殖または分化能力を有する細胞の特に好ましい例としては、ヒトおよびその他の温血動物(例、マウス)の胚性幹細胞(ES細胞)が挙げられる。
 細胞培養における細胞の存在形態により細胞培養の方法は接着培養と浮遊培養に分類することができる。接着培養は培養細胞を培養容器に付着させて増殖させる方法であり、浮遊培養は培養細胞を培地内において浮遊状態で増殖させる方法である。
 本発明のスクリーニング方法において、胚様体を形成させるために行う細胞培養は、典型的には浮遊培養で行う。培養期間は、胚様体が形成されるまでの期間であれば特に限定されないが、典型的には1ないし6日間である。培養期間は、好ましくは3ないし6日間である。培養期間は、さらに好ましくは4日間である。
 例えば、胚様体を形成させる際に非接着性のマルチウェルプレートを利用することで均質な胚様体を形成させ、安定的な結果を得ることができる。
 次いで、上記工程(2)では、工程(1)で得られた胚様体に消化酵素を添加して、細胞同士を分離させ単一細胞状態にする。消化酵素としては、トリプシン、コラゲナーゼ、パパイン、ディスパーゼ、アキュターゼ(商品名)等を用いることができる。なかでも、トリプシンが好ましく、典型的には、消化酵素の作用の阻害剤であるCa2+やMg2+をキレートするためにEDTAを加えたトリプシン−EDTA溶液(例:0.25%トリプシン−1mM EDTA)の様な形態で用いられる。
 工程(1)および(2)で、胚様体に由来する均質な細胞集団を調製することにより、スクリーニングにおいて安定的な結果を得ることが可能となる。
 工程(3)では、工程(2)で得られた細胞を接着性プレートに播種するとともに、該プレートに候補物質を添加して接着培養する。本明細書中、「接着性プレート」とは、接着培養に用いることができるプレートのことをいい、プレート上に細胞が付着し、伸展および増殖できるように表面を細胞接着促進物質、例えばファイブロネクチン、I型あるいはIV型コラーゲン、ラミニン、ビトロネクチン、ゼラチン、マトリゲル(商品名)、ポリリジン、ポリオルニチンでコーティングされたプレートを意味する。本発明のスクリーニング方法で用いる接着性プレートの好ましい例として、ゼラチンコートした複数の穴を有するプレート(例:96穴プレート)が挙げられる。
 本明細書中、「候補物質」とは、細胞または臓器の再生、増殖、または分化を調節する物質の候補物質、すなわち、本発明のスクリーニング方法によるスクリーニング対象の物質をいい、合成化合物、天然物、タンパク質、ペプチド、脂質、アミン、アミノ酸、糖、核酸、イオン等が含まれる。また、「候補物質」には受容体アゴニストおよびアンタゴニスト、生合成経路阻害剤、タンパク質間相互作用の阻害剤、酵素阻害剤および基質、補酵素、シグナル伝達系の阻害剤および活性化剤、チャンネル阻害剤およびモジュレーター、ビタミン、抗酸化剤、アポトーシス阻害剤および促進剤、界面活性剤、アンチセンスオリゴヌクレオチド、siRNA、抗生物質、抗ウイルス剤、コンビナトリアルケミストリー法で合成された化合物等を含み、さらにそれらの合成中間体も含まれる。
 本発明のスクリーニング方法は、多方向へ分化した細胞を含む胚様体をトリプシン等の消化酵素による消化で分散させた後に化合物(候補物質)の評価を行う点で、胚様体形成を行わずに未分化状態で単層培養することで化合物評価を実施している従来のES細胞を用いたスクリーニング系とは明確に区別される。
 工程(4)では、工程(3)における接着培養後に、細胞の再生、増殖または分化に関与する遺伝子のうち2種類以上の発現量をまとめて定量解析する。
 本明細書中、「細胞の再生、増殖または分化に関与する遺伝子」とは、細胞の再生、増殖または分化に一定の役割を担っていることが既に知られている遺伝子、または細胞の再生、増殖または分化過程において発現が大きく変動することが知られている遺伝子のことをいう。
 特に、本発明のスクリーニング方法において使用する「細胞の再生、増殖または分化に関与する遺伝子」は、(i)分化過程でその発現が増減し、(ii)化合物無処理(コントロール)でも有意な値として発現が検出でき、(iii)既存の増殖・分化因子を用いたパイロット試験で発現が変動することが確認されている遺伝子であることが好ましい。
 本発明のスクリーニング方法において用いられ得る細胞の再生、増殖または分化に関与する遺伝子の好ましい例としては、
(A)未分化マーカーであるNanog、Oct3/4、Sox2、Klf4、Akp2、
(B)原始外胚葉マーカーであるFgf5、
(C)原始線条マーカーであるBrachyury、Snail1、
(D)栄養外胚葉マーカーであるCdx2、Bmp4、
(E)神経マーカーであるTubb3、Nefh、Nestin、p75NTR、
(F)心筋マーカーであるActc1、
(G)平滑筋マーカーであるActa2、Cnn1、
(H)内皮細胞マーカーであるTie2、
(I)中胚葉マーカーであるFlk1、
(J)中胚葉と内胚葉マーカーであるCxcr4、
(K)胚体外内胚葉マーカーであるGata4、Laminin B1、
(L)骨格筋マーカーであるActa1、Tpm1、
(M)骨芽細胞マーカーであるOpn、
(N)造血幹細胞マーカーであるc−kit、および
(O)軟骨細胞マーカーであるSox9が挙げられる。
 本明細書中、「遺伝子のうち2種類以上の発現量をまとめて定量解析する」とは、2種類以上の遺伝子の発現量の定量解析を行う際に、1種類ずつ順次行うのではなく、2種類以上の遺伝子を一緒に一度の処理で定量解析することを意味する。具体的には、例えば、複数の遺伝子の発現量を同時に測定することができるMultiplex RT−PCRなどを用いて、2種類以上の遺伝子の発現量を同時に測定することができる。なお、Multiplex RT−PCRは既存の手法であるが、測定系の設定が煩雑でありハイスループットスクリーニングに使用されている例は非常に少ない。本発明のスクリーニング方法では、遺伝子発現解析において系のスループットを上昇させるためにMultiplex RT−PCRを用いることが好ましい。本発明のスクリーニング方法によれば、分化に関与する幅広い化合物群を取得することができ、得られた候補化合物群を他の成体幹細胞や胚性幹細胞からの分化誘導に利用することができる。
 遺伝子のうち2種類以上の発現量をまとめて定量解析する際に、生細胞数を反映する指標を内部コントロールとして測定することが好ましい。内部コントロールで各遺伝子の発現量を補正することにより、化合物が細胞数の増減に与える影響を排除することができる。生細胞数を反映する指標の例としては、Gapdh発現量、ATP含量、タンパク含量、DNA含量が挙げられる。生細胞数を反映する指標としては、Gapdh発現量が好ましい。また、遺伝子の発現量の変化を見るためのコントロールとしては、DMSO、DMF、メタノール、エタノール、生理食塩水、緩衝液など、化合物を溶解した際と同じ溶媒を用いる。遺伝子の発現量の変化を見るためのコントロールを添加した時と比較して遺伝子の発現量を1.2倍以上、好ましくは1.4倍以上、さらに好ましくは1.6倍以上、なおさらに好ましくは1.8倍以上、最も好ましくは2倍以上変化(減少または増加)させることができる物質を、細胞または臓器の再生、増殖、または分化を調節する物質として選択することができる。
 本発明のスクリーニング方法によって見出される細胞または臓器の再生、増殖、または分化を調節する物質を幹細胞に単一あるいは組み合わせて作用させることにより、効率良く目的とする細胞を分化させることができる。
2.本発明のスクリーニング方法により得られた化合物の用途
 本発明のスクリーニング方法で得られた化合物は、細胞または臓器に作用させて再生、増殖、または分化を調節するために用いることができる。そのような標的細胞としては、例えば、ヒトおよび温血動物の胚性幹細胞、iPS(induced pluripotent stem)細胞およびそれらの細胞を分化誘導して得られる細胞、組織幹細胞(骨髄および脂肪などに存在する間葉系幹細胞、造血幹細胞、筋芽細胞、神経幹細胞、骨芽細胞、軟骨芽細胞、血管芽細胞など、生体中に存在する前駆細胞もしくは幹細胞)で生体組織内に存在した状態あるいはin vitroで培養した状態の細胞が挙げられる。
 本発明のスクリーニング方法で得られた化合物を作用させて再生、増殖、または分化させる細胞または臓器の例としては、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球、巨核球)、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞などや血球系の細胞、またはそれらの細胞が存在するあらゆる組織、例えば、脳、脳の各部位(例、嗅球、扁頭核、大脳基底球、海馬、視床、視床下部、視床下核、大脳皮質、延髄、小脳、後頭葉、前頭葉、側頭葉、被殻、尾状核、脳染、黒質)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、顎下腺、末梢血、末梢血球、前立腺、睾丸、精巣、卵巣、胎盤、子宮、骨、関節及び骨格筋が挙げられる。
 本発明のスクリーニング方法で得られた化合物を作用させて再生、増殖、または分化させる細胞または臓器の好ましい例として、骨細胞および脂肪細胞が挙げられる。
 本発明のスクリーニング方法により得られた化合物、すなわち、細胞または臓器の再生、増殖又は分化を調節する物質は、疾患の治療に用いることができる。対象疾患の例としては、中枢性疾患(例えば、アルツハイマー病、パーキンソン病、虚血性神経障害)、炎症性疾患(例えば、アレルギー性疾患、喘息、リュウマチ、変形性関節症)、循環器疾患(例えば、心不全、心肥大、狭心症、動脈硬化症)、癌(例えば、非小細胞肺癌、卵巣癌、前立腺癌、胃癌、膀胱癌、乳癌、子宮頸部癌、結腸癌、直腸癌)、糖尿病、免疫系疾患(例えば、自己免疫疾患、アトピー性皮膚炎、アレルギー性疾患、免疫不全、喘息、リュウマチ性関節炎、乾癬、動脈硬化症、糖尿病、アルツハイマー病)、肝臓・胆のう疾患(例えば、肝硬変、肝炎、肝不全、胆汁うっ滞症、結石)、消化器系疾患(例えば、潰瘍、腸炎、消化不全、過敏性大腸炎、潰瘍性大腸炎、下痢、イレウス)、熱傷、骨折、脱毛症などの疾患や傷害が挙げられる。
 本発明のスクリーニング方法により得られた化合物は、低毒性であり、必要により自体公知の方法にしたがって製剤化した後に、哺乳動物(例、ヒト)に対して、経口的または非経口的に投与することができる。ここで、前記化合物の投与量および投与回数は、投与対象、対象疾患等に応じて適宜選択すればよい。
 本願の配列表に示す配列番号と配列との関係は、以下の通りである。
[配列番号:1]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:2]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:3]
 実施例1で使用したプローブの塩基配列を示す。
[配列番号:4]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:5]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:6]
 実施例1で使用したプローブの塩基配列を示す。
[配列番号:7]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:8]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:9]
 実施例1で使用したプローブの塩基配列を示す。
[配列番号:10]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:11]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:12]
 実施例1で使用したプローブの塩基配列を示す。
[配列番号:13]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:14]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:15]
 実施例1で使用したプローブの塩基配列を示す。
[配列番号:16]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:17]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:18]
 実施例1で使用したプローブの塩基配列を示す。
[配列番号:19]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:20]
 実施例1で使用したプライマーの塩基配列を示す。
[配列番号:21]
 実施例1で使用したプローブの塩基配列を示す。
[配列番号:22]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:23]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:24]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:25]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:26]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:27]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:28]
 実施例2で使用したプライマーの塩基配列を示す。
[配列番号:29]
 実施例2で使用したプライマーの塩基配列を示す。
[配列番号:30]
 実施例2で使用したプローブの塩基配列を示す。
[配列番号:31]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:32]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:33]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:34]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:35]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:36]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:37]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:38]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:39]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:40]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:41]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:42]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:43]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:44]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:45]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:46]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:47]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:48]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:49]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:50]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:51]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:52]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:53]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:54]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:55]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:56]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:57]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:58]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:59]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:60]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:61]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:62]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:63]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:64]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:65]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:66]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:67]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:68]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:69]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:70]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:71]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:72]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:73]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:74]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:75]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:76]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:77]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:78]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:79]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:80]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:81]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:82]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:83]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:84]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:85]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:86]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:87]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:88]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:89]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:90]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:91]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:92]
 実施例5で使用したプライマーの塩基配列を示す。
[配列番号:93]
 実施例5で使用したプローブの塩基配列を示す。
[配列番号:94]
 実施例6で使用したプライマーの塩基配列を示す。
[配列番号:95]
 実施例6で使用したプライマーの塩基配列を示す。
[配列番号:96]
 実施例6で使用したプローブの塩基配列を示す。
[配列番号:97]
 実施例6で使用したプライマーの塩基配列を示す。
[配列番号:98]
 実施例6で使用したプライマーの塩基配列を示す。
[配列番号:99]
 実施例6で使用したプローブの塩基配列を示す。
[配列番号:100]
 実施例6で使用したプライマーの塩基配列を示す。
[配列番号:101]
 実施例6で使用したプライマーの塩基配列を示す。
[配列番号:102]
 実施例6で使用したプローブの塩基配列を示す。
[配列番号:103]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:104]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:105]
 実施例7で使用したプローブの塩基配列を示す。
[配列番号:106]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:107]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:108]
 実施例7で使用したプローブの塩基配列を示す。
[配列番号:109]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:110]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:111]
 実施例7で使用したプローブの塩基配列を示す。
[配列番号:112]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:113]
 実施例7で使用したプライマーの塩基配列を示す。
[配列番号:114]
 実施例7で使用したプローブの塩基配列を示す。
[配列番号:115]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:116]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:117]
 実施例3で使用したプローブの塩基配列を示す。
[配列番号:118]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:119]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:120]
 実施例3で使用したプローブの塩基配列を示す。
[配列番号:121]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:122]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:123]
 実施例3で使用したプローブの塩基配列を示す。
[配列番号:124]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:125]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:126]
 実施例3で使用したプローブの塩基配列を示す。
[配列番号:127]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:128]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:129]
 実施例3で使用したプローブの塩基配列を示す。
[配列番号:130]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:131]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:132]
 実施例3で使用したプローブの塩基配列を示す。
[配列番号:133]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:134]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:135]
 実施例3で使用したプローブの塩基配列を示す。
[配列番号:136]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:137]
 実施例3で使用したプライマーの塩基配列を示す。
[配列番号:138]
 実施例3で使用したプローブの塩基配列を示す。
 本明細書中で使用される以下の略号は、本技術分野で現在通常用いられている用例に従うものであり、それぞれの意味は次の通りである。
 DMEM  :Dulbecco’s Modified Eagle Medium
 MEM   :Minimum Essential Medium
 RT−PCR:Reverse Transcription Polymerase Chain Reaction
 ATP   :アデノシン三リン酸
 DMSO  :Dimethyl Sulfoxide
 EDTA  :エチレンジアミン四酢酸
 BrdU  :5−bromo−2’−deoxyuridine
 PBS   :Phosphate buffered saline
 ELISA :Enzyme−Linked Immunosorbent Assay
 以下、実施例を用いて本発明をより具体的に説明するが、本発明の範囲はこのような実施例に限定されるものではない。
1. According to one embodiment of the present invention, a screening method for a substance that regulates the regeneration, proliferation, or differentiation of a cell or organ (hereinafter referred to as “the present invention”). Is sometimes referred to as a screening method.). This method typically includes the following steps:
(1) A step of forming an embryoid body from cells having regeneration, proliferation or differentiation ability;
(2) A step of treating the embryoid body obtained in step (1) with a digestive enzyme to form a single cell;
(3) A step of seeding the cells obtained in step (2) on an adhesive plate, adding a candidate substance to the plate, and subjecting the cells to adhesion culture;
(4) After the adhesion culture in step (3), a step of collectively analyzing the expression levels of two or more types of genes involved in cell regeneration, proliferation or differentiation; and (5) quantitative analysis in step (4) The process of evaluating the influence of a candidate substance on cell regeneration, proliferation or differentiation based on the results of.
In the screening method of the present invention, first, in step (1), an embryoid body (EB) is formed from cells having regenerative, proliferative, or differentiation ability (eg, ES cells), so that it can be applied in multiple directions. Induces differentiation.
In the present specification, “embryoid body” is used in the meaning commonly used in the art, and refers to an embryonic form formed when pluripotent stem cells such as ES cells and iPS cells are differentiated in suspension culture. It means a cell cluster composed of stem cells or progenitor cells of various tissues.
In the screening method of the present invention, preferred examples of cells having the ability to regenerate, proliferate or differentiate used in the formation of the embryoid body in step (1) include embryonic properties of humans and other warm-blooded animals (eg, mice). Examples include stem cells (ES cells) and iPS (induced pluripotent stem) cells. In order to form an embryoid body, typically, ES cells such as mice are suspended in a medium containing serum or a serum replacement, and suspended in culture at 37 ° C. under 5% CO 2 for 1 to 10 days. Particularly preferred examples of cells having the ability to regenerate, proliferate or differentiate used when forming the embryoid body in the step (1) include embryonic stem cells (ES cells) of humans and other warm-blooded animals (eg, mice). Can be mentioned.
The cell culture methods can be classified into adhesion culture and suspension culture according to the form of cells in the cell culture. Adhesive culture is a method of growing cultured cells by attaching them to a culture vessel, and suspension culture is a method of growing cultured cells in a floating state in a medium.
In the screening method of the present invention, cell culture performed to form embryoid bodies is typically performed in suspension culture. The culture period is not particularly limited as long as it is a period until an embryoid body is formed, but it is typically 1 to 6 days. The culture period is preferably 3 to 6 days. The culture period is more preferably 4 days.
For example, when an embryoid body is formed, a homogeneous embryoid body can be formed by using a non-adhesive multi-well plate, and a stable result can be obtained.
Next, in the step (2), a digestive enzyme is added to the embryoid body obtained in the step (1) to separate the cells into a single cell state. Examples of digestive enzymes that can be used include trypsin, collagenase, papain, dispase, and accutase (trade name). Of these, trypsin is preferable, and typically a trypsin-EDTA solution (eg, 0.25% trypsin-1 mM EDTA) added with EDTA to chelate Ca 2+ or Mg 2+ , which is an inhibitor of the action of digestive enzymes. ).
By preparing a homogeneous cell population derived from embryoid bodies in steps (1) and (2), it becomes possible to obtain stable results in screening.
In the step (3), the cells obtained in the step (2) are seeded on an adhesive plate, and a candidate substance is added to the plate for adhesion culture. In the present specification, the “adhesive plate” refers to a plate that can be used for adhesion culture, and a cell adhesion promoting substance, such as fibronectin, on the surface so that cells can adhere, spread, and proliferate on the plate. , A plate coated with type I or type IV collagen, laminin, vitronectin, gelatin, matrigel (trade name), polylysine, polyornithine. A preferable example of the adhesive plate used in the screening method of the present invention is a plate having a plurality of holes coated with gelatin (eg, 96-well plate).
In this specification, “candidate substance” refers to a candidate substance for a substance that regulates the regeneration, proliferation, or differentiation of cells or organs, that is, a substance to be screened by the screening method of the present invention. , Proteins, peptides, lipids, amines, amino acids, sugars, nucleic acids, ions, and the like. “Candidate substances” include receptor agonists and antagonists, biosynthetic pathway inhibitors, protein-protein interaction inhibitors, enzyme inhibitors and substrates, coenzymes, signal transduction system inhibitors and activators, channel inhibition. Agents and modulators, vitamins, antioxidants, apoptosis inhibitors and promoters, surfactants, antisense oligonucleotides, siRNA, antibiotics, antiviral agents, compounds synthesized by combinatorial chemistry methods, etc. Synthetic intermediates are also included.
The screening method of the present invention does not perform embryoid body formation in that the compound (candidate substance) is evaluated after the embryoid body containing cells differentiated in multiple directions is dispersed by digestion with a digestive enzyme such as trypsin. It is clearly distinguished from the conventional screening system using ES cells in which compound evaluation is performed by monolayer culture in an undifferentiated state.
In the step (4), after the adhesion culture in the step (3), two or more types of expression levels among genes involved in cell regeneration, proliferation or differentiation are collectively analyzed quantitatively.
In the present specification, the “gene involved in cell regeneration, proliferation or differentiation” is a gene already known to play a certain role in cell regeneration, proliferation or differentiation, or cell regeneration, A gene whose expression is known to vary greatly in the process of proliferation or differentiation.
In particular, the expression of “genes involved in cell regeneration, proliferation or differentiation” used in the screening method of the present invention is (i) expression is increased or decreased during the differentiation process, and (ii) significant value even without compound treatment (control). (Iii) It is preferable that the gene is confirmed to vary in expression in a pilot test using existing growth / differentiation factors.
Preferred examples of genes involved in cell regeneration, proliferation or differentiation that can be used in the screening method of the present invention include:
(A) Nanog, Oct3 / 4, Sox2, Klf4, Akp2, which are undifferentiated markers
(B) Fgf5, a primitive ectoderm marker,
(C) Brachyury, Snail1, which are primitive streak markers,
(D) Cdx2, Bmp4, which are trophectoderm marker
(E) Neural markers Tubb3, Nefh, Nestin, p75NTR,
(F) Actc1, a myocardial marker,
(G) Acta2, Cnn1, which are smooth muscle markers,
(H) Tie2, which is an endothelial cell marker,
(I) Flk1, which is a mesoderm marker,
(J) Cxcr4 which is a mesoderm and endoderm marker,
(K) Gata4, Laminin B1, which are extraembryonic endoderm markers,
(L) Acta1, Tpm1, which are skeletal muscle markers
(M) Opn which is an osteoblast marker,
(N) c-kit, which is a hematopoietic stem cell marker, and (O) Sox9, which is a chondrocyte marker.
In the present specification, “quantitative analysis of the expression levels of two or more genes among genes” is not performed sequentially one by one when performing quantitative analysis of the expression levels of two or more genes. It means that two or more kinds of genes are quantitatively analyzed together by one treatment. Specifically, for example, the expression levels of two or more types of genes can be measured simultaneously using, for example, Multiplex RT-PCR that can simultaneously measure the expression levels of a plurality of genes. Note that Multiplex RT-PCR is an existing technique, but the setting of the measurement system is complicated, and there are very few examples used for high-throughput screening. In the screening method of the present invention, it is preferable to use Multiplex RT-PCR in order to increase the system throughput in gene expression analysis. According to the screening method of the present invention, a wide group of compounds involved in differentiation can be obtained, and the obtained candidate compound group can be used for induction of differentiation from other adult stem cells or embryonic stem cells.
When performing quantitative analysis of two or more expression levels in a gene, it is preferable to measure an index reflecting the number of living cells as an internal control. By correcting the expression level of each gene with the internal control, the influence of the compound on the increase or decrease in the number of cells can be eliminated. Examples of indices reflecting the number of living cells include Gapdh expression level, ATP content, protein content, and DNA content. As an index reflecting the number of living cells, Gapdh expression level is preferable. In addition, as a control for observing changes in the expression level of the gene, the same solvent as that used for dissolving the compound, such as DMSO, DMF, methanol, ethanol, physiological saline, and buffer solution, is used. The gene expression level is 1.2 times or more, preferably 1.4 times or more, more preferably 1.6 times or more, even more preferably compared to the case where a control for monitoring the change in gene expression level is added. A substance that can be changed (decreased or increased) by 1.8 times or more, most preferably 2 times or more can be selected as a substance that regulates cell, organ regeneration, proliferation, or differentiation.
A target cell can be efficiently differentiated by causing a substance that regulates the regeneration, proliferation, or differentiation of cells or organs found by the screening method of the present invention to act on a stem cell alone or in combination.
2. Use of the compound obtained by the screening method of the present invention The compound obtained by the screening method of the present invention can be used to act on cells or organs to regulate regeneration, proliferation or differentiation. Such target cells include, for example, human and warm-blooded animal embryonic stem cells, iPS (induced pluripotent stem) cells, cells obtained by inducing differentiation of these cells, tissue stem cells (bone marrow and fat, etc.) Mesenchymal stem cells, hematopoietic stem cells, myoblasts, neural stem cells, osteoblasts, chondroblasts, hemangioblasts, and other progenitor cells or stem cells existing in the living body) or in vitro Examples include cultured cells.
Examples of cells or organs to be regenerated, proliferated, or differentiated by the action of the compound obtained by the screening method of the present invention include spleen cells, nerve cells, glial cells, pancreatic β cells, bone marrow cells, mesangial cells, and Langerhans cells. , Epidermal cells, epithelial cells, endothelial cells, fibroblasts, fiber cells, muscle cells, fat cells, immune cells (eg, macrophages, T cells, B cells, natural killer cells, mast cells, neutrophils, basophils Eosinophils, monocytes, megakaryocytes), synovial cells, chondrocytes, bone cells, osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursor cells of these cells, stem cells, etc. Hematopoietic cells, or any tissue in which these cells are present, such as the brain, brain regions (eg, olfactory bulb, buccal nucleus, basal basal sphere, hippocampus, thalamus, hypothalamus, subthalamic nucleus, cerebral cortex, Total , Cerebellum, occipital lobe, frontal lobe, temporal lobe, putamen, caudate nucleus, brain stain, substantia nigra), spinal cord, pituitary gland, stomach, pancreas, kidney, liver, gonad, thyroid, gall bladder, bone marrow, adrenal gland, skin , Muscle, lung, gastrointestinal tract (eg, large intestine, small intestine), blood vessel, heart, thymus, spleen, submandibular gland, peripheral blood, peripheral blood cell, prostate, testis, testis, ovary, placenta, uterus, bone, joint and skeleton There are streaks.
Preferable examples of cells or organs to be regenerated, proliferated, or differentiated by the action of the compound obtained by the screening method of the present invention include bone cells and adipocytes.
The compound obtained by the screening method of the present invention, that is, a substance that regulates the regeneration, proliferation or differentiation of cells or organs can be used for treatment of diseases. Examples of target diseases include central diseases (eg, Alzheimer's disease, Parkinson's disease, ischemic neuropathy), inflammatory diseases (eg, allergic diseases, asthma, rheumatism, osteoarthritis), cardiovascular diseases (eg, , Heart failure, cardiac hypertrophy, angina, arteriosclerosis), cancer (eg, non-small cell lung cancer, ovarian cancer, prostate cancer, stomach cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, rectal cancer), diabetes , Immune system diseases (eg autoimmune disease, atopic dermatitis, allergic disease, immunodeficiency, asthma, rheumatoid arthritis, psoriasis, arteriosclerosis, diabetes, Alzheimer's disease), liver / gallbladder disease (eg cirrhosis, Hepatitis, liver failure, cholestasis, stones), digestive disorders (eg, ulcers, enteritis, digestive failure, irritable colitis, ulcerative colitis, diarrhea, ileus), burns, fractures, alopecia, etc. disease Injury, and the like.
The compound obtained by the screening method of the present invention has low toxicity and, if necessary, is formulated according to a method known per se, and is orally or parenterally administered to a mammal (eg, human). be able to. Here, the dose and frequency of administration of the compound may be appropriately selected according to the administration subject, target disease and the like.
The relationship between the sequence numbers and sequences shown in the sequence listing of the present application is as follows.
[SEQ ID NO: 1]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 2]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 3]
The base sequence of the probe used in Example 1 is shown.
[SEQ ID NO: 4]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 5]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 6]
The base sequence of the probe used in Example 1 is shown.
[SEQ ID NO: 7]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 8]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 9]
The base sequence of the probe used in Example 1 is shown.
[SEQ ID NO: 10]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 11]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 12]
The base sequence of the probe used in Example 1 is shown.
[SEQ ID NO: 13]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 14]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 15]
The base sequence of the probe used in Example 1 is shown.
[SEQ ID NO: 16]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 17]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 18]
The base sequence of the probe used in Example 1 is shown.
[SEQ ID NO: 19]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 20]
The base sequence of the primer used in Example 1 is shown.
[SEQ ID NO: 21]
The base sequence of the probe used in Example 1 is shown.
[SEQ ID NO: 22]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 23]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 24]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 25]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 26]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 27]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 28]
The base sequence of the primer used in Example 2 is shown.
[SEQ ID NO: 29]
The base sequence of the primer used in Example 2 is shown.
[SEQ ID NO: 30]
The base sequence of the probe used in Example 2 is shown.
[SEQ ID NO: 31]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 32]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 33]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 34]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 35]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 36]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 37]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 38]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 39]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 40]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 41]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 42]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 43]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 44]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 45]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 46]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 47]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 48]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 49]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 50]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 51]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 52]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 53]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 54]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 55]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 56]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 57]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 58]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 59]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 60]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 61]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 62]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 63]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 64]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 65]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 66]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 67]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 68]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 69]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 70]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 71]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 72]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 73]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 74]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 75]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 76]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 77]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 78]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 79]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 80]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 81]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 82]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 83]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 84]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 85]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 86]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 87]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 88]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 89]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 90]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 91]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 92]
The base sequence of the primer used in Example 5 is shown.
[SEQ ID NO: 93]
The base sequence of the probe used in Example 5 is shown.
[SEQ ID NO: 94]
The base sequence of the primer used in Example 6 is shown.
[SEQ ID NO: 95]
The base sequence of the primer used in Example 6 is shown.
[SEQ ID NO: 96]
The base sequence of the probe used in Example 6 is shown.
[SEQ ID NO: 97]
The base sequence of the primer used in Example 6 is shown.
[SEQ ID NO: 98]
The base sequence of the primer used in Example 6 is shown.
[SEQ ID NO: 99]
The base sequence of the probe used in Example 6 is shown.
[SEQ ID NO: 100]
The base sequence of the primer used in Example 6 is shown.
[SEQ ID NO: 101]
The base sequence of the primer used in Example 6 is shown.
[SEQ ID NO: 102]
The base sequence of the probe used in Example 6 is shown.
[SEQ ID NO: 103]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 104]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 105]
The base sequence of the probe used in Example 7 is shown.
[SEQ ID NO: 106]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 107]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 108]
The base sequence of the probe used in Example 7 is shown.
[SEQ ID NO: 109]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 110]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 111]
The base sequence of the probe used in Example 7 is shown.
[SEQ ID NO: 112]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 113]
The base sequence of the primer used in Example 7 is shown.
[SEQ ID NO: 114]
The base sequence of the probe used in Example 7 is shown.
[SEQ ID NO: 115]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 116]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 117]
The base sequence of the probe used in Example 3 is shown.
[SEQ ID NO: 118]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 119]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 120]
The base sequence of the probe used in Example 3 is shown.
[SEQ ID NO: 121]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 122]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 123]
The base sequence of the probe used in Example 3 is shown.
[SEQ ID NO: 124]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 125]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 126]
The base sequence of the probe used in Example 3 is shown.
[SEQ ID NO: 127]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 128]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 129]
The base sequence of the probe used in Example 3 is shown.
[SEQ ID NO: 130]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 131]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 132]
The base sequence of the probe used in Example 3 is shown.
[SEQ ID NO: 133]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 134]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 135]
The base sequence of the probe used in Example 3 is shown.
[SEQ ID NO: 136]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 137]
The base sequence of the primer used in Example 3 is shown.
[SEQ ID NO: 138]
The base sequence of the probe used in Example 3 is shown.
The following abbreviations used in the present specification are according to the examples currently commonly used in this technical field, and their meanings are as follows.
DMEM: Dulbecco's Modified Eagle Medium
MEM: Minimum Essential Medium
RT-PCR: Reverse Transcript Polymerase Chain Reaction
ATP: Adenosine triphosphate DMSO: Dimethyl Sulfoxide
EDTA: ethylenediaminetetraacetic acid BrdU: 5-bromo-2′-deoxyuridine
PBS: Phosphorate buffered sale
ELISA: Enzyme-Linked Immunosorbent Assay
EXAMPLES Hereinafter, although this invention is demonstrated more concretely using an Example, the scope of the present invention is not limited to such an example.
実施例1:化合物評価系の構築(胚様体形成)
 ES細胞としてD3株(American Type Culture Collection、CRL−1934)を使用した。ES細胞の維持のため、マイトマイシンC処理によって細胞増殖を停止させたマウス繊維芽細胞(MEF)(Millipore社より購入)をゼラチンコートしたプレート上に播種してフィーダーとして使用した。ES細胞をフィーダー上に播種した後、DMEM(Invitrogen社)培地に20%仔牛胎児血清(FBS、ES cell−qualified、Invitogen社)、100μM2−メルカプトエタノール(Invitrogen社)、1x MEM非必須アミノ酸液(Invitrogen社)、1x antimyobic−antimycotic(Invitrogen社)、1000U/ml白血病抑制因子(LIF、Chemicon社)を添加した培養液を用いて、37℃、5%CO下で培養した。培地交換は毎日行い、0.25%トリプシン−1mM EDTA溶液(Invitrogen社、以下「トリプシン−EDTA溶液」と称する)を用いて3日ごとに継代することで未分化状態を維持した。
 化合物評価系の安定化と簡便化のため、フィーダー細胞を除去した未分化細胞を以下に示す方法で大量に凍結保存した。まず、トリプシン−EDTA溶液を用いて細胞を単一細胞状態とした後、ゼラチンコートした培養皿に移して37℃で90分間培養した。接着しなかった細胞を回収することによりフィーダーであるマウス繊維芽細胞(MEF)を除去した後、別のゼラチンコートした培養皿においてさらに3日間培養した。その後、再びトリプシン−EDTA溶液を用いて単一細胞状態とした細胞を、ゼラチンコートした培養皿に1x10cells/cmの細胞濃度となるように播種してさらに24時間培養した。それらの細胞をトリプシン−EDTA溶液によって剥離させたのち、2x10cells/mlの濃度でセルバンカー(日本全薬工業)に懸濁して−80℃で凍結保存した。これ以降の実験は、この凍結保存した細胞を用いて実施した。
 胚様体を形成させるために、凍結保存した細胞を37℃の恒温槽で溶解させた後、96穴スフェロイド用プレート(住友ベークライト社)に1ウェルあたり1000細胞となるように播種した。DMEM培地に10%仔牛胎児血清(FBS、ES cell−qualified、Invitogen社)、2mM GlutaMAX−1(Invitrogen社)、3x10−4Mモノチオグリセロール(Sigma社)、1x MEM非必須アミノ酸液(Invitrogen社)、1x penicillin−streptomycin(Sigma社)を添加した培養液を用いて、1~6日間浮遊培養した。本手法のとおり、96穴スフェロイド用プレートを用いて1ウェルに1つの胚様体を形成させることで、非接着性の培養皿上で浮遊培養を行って不均一な胚様体を形成させる従来の方法と比較して大きさが均一な胚様体が形成された。
 本手法で胚様体を形成させる過程における、初期分化マーカーの発現変動を調べた。胚様体を経時的に回収し、RNeasy96またはRNeasy mini kit(Qiagen社)を用いて全RNAを精製した。PrimeScript RT reagent kit(タカラバイオ社)を用いてcDNAを合成した後、定量RT−PCRを実施することで、Brachyury、Flk1、Sox17、Sox1、Oct3/4、Nanogの各遺伝子の発現量を測定した。各遺伝子の測定に利用したプライマーとプローブの配列は図1に示す。
 Brachyury、Flk1、Sox17、Sox1、Oct3/4、Nanogの各遺伝子の発現量を解析した結果を図5に示す。浮遊培養4日日から5日目の間に、原始線条マーカーであるBrachyuryの一過的な発現上昇がみとめられた。さらに、中胚葉マーカーであるFlk1と内胚葉マーカーであるSox17の発現も浮遊培養4日目から5日目にかけて顕著に上昇していた。また、外胚葉マーカーであるSox1の発現も培養期間中、徐々に上昇していた。一方、未分化マーカーであるOct3/4、Nanogの発現は、浮遊培養期間が長くなるにつれて徐々に低下していた。これらの結果より、本実施例に記載の方法を用いることで大きさの均一な胚様体が形成されること、ES細胞を4日間以上の浮遊培養することによって該ES細胞が3胚葉方向へ分化誘導されることが明らかとなった。
実施例2:化合物評価系の構築(胚様体から接着培養への移行)
 スループットの高い化合物評価を可能とするために、以下に示す方法により胚様体を分散させて接着培養を行った。実施例1に記載した手法に従って4日間の浮遊培養を行い胚様体を作製した後、トリプシン−EDTA溶液で処理することで単一細胞状態にした。単一細胞状態の細胞を、ゼラチンコートされた96穴プレート(旭テクノグラス社)に1ウェルあたり1000細胞となるように播種して、1~4日間の接着培養を行った。培養液は胚様体形成時と同じものを使用した。1~4日間の接着培養における初期分化マーカーの発現量について、実施例1と同様の手法を用いることで測定した。各遺伝子の測定に利用したプライマーとプローブの配列は図1に示す。
 1~4日間の接着培養における初期分化マーカーの発現量を解析した結果を図6に示す。中胚葉で発現しているFlk1とBrachyuryの発現量は、接着培養によって顕著に上昇していた。また、外胚葉マーカーであるSox1の発現量は接着培養によって低下した一方で、神経前駆細胞マーカーであるNestinの発現量は徐々に上昇していた。また、栄養外胚葉マーカーであるCdx2の発現も接着培養によって顕著に誘導されていた。一方で、内胚葉マーカーであるFoxa2の発現は接着培養によって低下していた。これらの結果より、胚様体から接着培養に移行した後でも、中胚葉系、神経系、栄養外胚葉への分化が誘導されていることが明らかとなった。
 以上の結果をもとに、ES細胞を用いた化合物評価系を設定した。本評価系の概略を図7に示す。本評価系は、(1)96穴スフェロイド用プレートを用いて4日間の浮遊培養を行うことで胚様体を形成させる、(2)胚様体をトリプシン−EDTA溶液で処理することで単一細胞状態とした後に、ゼラチンコートした96穴プレートに播種する、(3)細胞の播種と同時に評価したい化合物を添加して4日間の接着培養を行う、(4)培養終了時に各分化マーカーの発現量を測定することで化合物が分化に与える影響を評価する、という手順からなる。測定する分化マーカーとしては、未分化マーカーであるNanog、神経マーカーであるTubb3とNefh、心筋マーカーであるActc1、平滑筋マーカーであるActa2、内皮細胞マーカーであるTie2、中胚葉マーカーであるFlk1の7遺伝子を選択した。さらに、生細胞数を反映する内部コントロールとしてGapdh発現量も測定した。化合物が生細胞数に与える影響についても評価するため、Gapdh発現量についても評価の1項目とした。その他の分化マーカーの発現量は細胞数の増減の影響を避けるため、Gapdh発現量で補正した値を化合物の評価に用いた。
実施例3:分化に関与する化合物を用いた化合物評価系の検証
 本発明のスクリーニング方法が分化に関与する化合物を検出するのに有効であるかを検証するため、分化に関与することが報告されている各種化合物を添加した場合の分化マーカーの発現変動について調べた。実施例2で示したプロトコールに従い、分化に関与する化合物の評価を実施した。
 その結果、1μM 6−bromoindirubin−3’oxime(BIO、GSK3β阻害剤)、10μM PD169316(p38 MAPK阻害剤)、50nMレチノイン酸、3μMデキサメタゾン、0.5μM BIX−01294(G9aヒストンメチルトランスフェラーゼ阻害剤)、1μM SB 431542(ALK5阻害剤)、1μM suberoylanilidehydroxamic acid(SAHA、HDAC阻害剤)を添加した場合に、1種類以上の遺伝子発現量がDMSO添加時と比べて2倍以上に上昇することがわかった。また、化合物添加による8種類の遺伝子発現の増減のパターンは、それぞれの化合物ごとに違っており、それぞれの化合物が分化に対して異なった影響を与えることが推定された。本発明のスクリーニング方法によって分化に関与する様々な化合物の活性が検出できたことから、本発明のスクリーニング方法は新たな分化調節薬を探索する上で非常に有益であることが確認された。
実施例4:LOPACライブラリーを用いた化合物評価
 本発明のスクリーニング方法を用いて、市販されている化合物ライブラリーであるLOPAC1280(1280化合物、Sigma社)の中から分化に関与する化合物のスクリーニングを実施した。実施例2で示したプロトコールに従い、個々の化合物を最終濃度が3μM、溶媒であるDMSO濃度が0.15%となるように添加して化合物評価を実施した。スクリーニングにおいては、上記で示した8種類の遺伝子の発現量をハイスループットで測定するため、複数遺伝子の発現量を同時に測定できるMultiplex RT−PCR系を設定した。8種類の遺伝子発現は、セット1(Gapdh(蛍光プローブBODIPY)、Acta2(蛍光プローブVIC)、セット2(Actc1(蛍光プローブBODIPY)、Tubb3(蛍光プローブVIC)、Nanog(蛍光プローブFAM))、セット3(Flk1(蛍光プローブBODIPY)、Nefh(蛍光プローブVIC)、Tie2(蛍光プローブFAM))の3種類のMultiplex RT−PCRによって測定した。各遺伝子の測定に利用したプライマーとプローブの配列は図1に示す。
 スクリーニングの結果、56化合物についてはGapdhの発現量がDMSO添加のコントロールに対して5%以下に低下しており、これらの化合物には細胞毒性があることが示唆された。これら56化合物については、それ以降の解析から除外した。それ以外の化合物の中から、少なくとも1つ以上の遺伝子においてDMSO添加のコントロールと比較して2倍以上に発現量を上昇させた化合物を選択した。さらに、活性のあった化合物についてはもう一度同様の実験を行って再現性を調べ、最終的に再現性が確認された52化合物(全化合物中の4.1%)をヒット化合物(以下、「選択化合物」と称することがある。)として選択した(図2)。ヒット化合物の薬理作用については、図3に示す。それぞれの遺伝子ごとのヒット率は、Flk1で2.7%、Actc1で0.2%、Acta2で1.6%、Tie2で0.6%、Nefhで0.5%、Tubb3で0.4%、Nanogで0.0%、Gapdhで1.1%であった。これらの結果より、8種類の遺伝子発現を同時に測定することによって1種類の遺伝子発現のみを測定した場合よりも多くの化合物の活性を検出できることが明らかとなった。さらに、ヒット化合物として選択された化合物には、他の報告で分化に関与することが知られており、本実施例に記載の化合物評価系においても活性が認められていたBIO、PD169316、レチノイン酸といった化合物が含まれていた。これらの結果は、本スクリーニング方法において、分化に関与する化合物が正しく選択されたことを示している。また、ヒット化合物の中にはGapdh発現量を上昇させる化合物が14個含まれていた。これらの化合物が生細胞数に与える影響を調べるため、ウェル内のATP量をCellTiter−Glo luminescent cell viability kit(Promega社)を用いて測定した。その結果、各14化合物の添加によってウェル内のATP量の増加がみとめられた。これらの結果より、これらの14化合物は、少なくとも本分化条件においては生細胞数を増加させる作用があることが明らかとなった。
実施例5:スクリーニングから選択された化合物が他の分化マーカー発現に与える影響
 選択化合物がES細胞の分化に与える影響をさらに詳細に解析するため、スクリーニングで用いた8遺伝子以外の分化マーカーの発現量についても上記と同様の手法で測定した。分化マーカーとして、未分化マーカーであるOct3/4、Sox2、Klf4、Akp2、原始外胚葉マーカーであるFgf5、原始線条マーカーであるBrachyury、Snail1、栄養外胚葉マーカーであるCdx2、Bmp4、中胚葉と内胚葉マーカーであるCxcr4、胚体外内胚葉マーカーであるGata4、Laminin B1、神経マーカーであるNestin、p75NTR、骨格筋マーカーであるActa1、Tpm1、平滑筋マーカーであるCnn1、骨芽細胞マーカーであるOpn、造血幹細胞マーカーであるc−kit、軟骨細胞マーカーであるSox9の発現量について測定した。各遺伝子の測定に利用したプライマーとプローブの配列は図1に示す。
 選択化合物のうち、32化合物において2種類以上の遺伝子発現を2倍以上に上昇させる活性がみとめられた(図2)。これら32種類の化合物の遺伝子発現パターンを比較するため、それぞれの発現データについて相関距離に基づくクラスタリングを実施した。
 その結果を図11に示す。その結果、薬理作用が同じで化合物の構造が類似した化合物は同様の遺伝子発現プロファイルを示すこと明らかとなった。例えば、ドーパミン受容体拮抗薬で構造が似通っているthiothixene hydrochloride、perphenazine、cis−(Z)−flupenthixol dihydrochlorideは同じグループに分類された。また、ともにp38 MAPK阻害剤であり、構造が類似したPD 169316とSB 202190についても同じグループに分類された。さらに、コルチコステロイドであるhydrocortisone 21−hemisuccinate sodium、 hydrocortisone、betamethasone、beclomethasone、レチノイン酸受容体アゴニストであるTTNPB、13−cis−retinoic acid、 retinoic acid、 retinoic acidp−hydroxanilideもそれぞれ同一のグループに分類された。このように本実施例の化合物評価系を用いて複数の分化マーカーの発現量を解析することで、化合物を分化に与える作用に基づき分類できることが明らかとなった。
実施例6:スクリーニングにより選択された化合物がヒト間葉系幹細胞からの脂肪分化に与える影響
 選択化合物は、ES細胞だけでなく成体幹細胞からの分化も制御する可能性が考えられた。そこで、これらの選択化合物がヒト間葉系幹細胞からの脂肪分化に与える影響について調べた。ヒト間葉系幹細胞はLonza社より購入し、低グルコースDMEM(Invitrogen社)に10%仔牛胎児血清、2mM GlutaMAX−1、1x penicillin−streptomucin(Sigma社)を添加した培地(以下、「増殖培地」と称する)を用いて接着培養した。脂肪分化誘導時には、細胞を1ウェルあたり3000細胞となるように96穴プレートへ播種した後、増殖培地で1晩培養した。その後、増殖培地を脂肪分化誘導培地(高ゴルコースDMEM(Invitrogen社)に10%仔牛胎児血清、2mM GlutaMAX−1、0.5mM 3−isobutyl−1−methylxanthine(IBMX,和光純薬)、10μg/mlインスリン(和光純薬)、1μMデキサメタゾン(和光純薬)、200μMインドメタシン(和光純薬)、1xpenicillin−streptomucin(Sigma社)を添加した培地)へと交換することで脂肪分化を誘導した。脂肪分化を誘導すると同時に、最終濃度が3μMとなるように選択化合物をそれぞれ添加して、5日間培養した。5日後に脂肪細胞マーカーであるAdiponectinの発現量を、実施例1で示したのと同様の手法を用いて測定した。各遺伝子の測定に利用したプライマーとプローブの配列は図1に示す。
 選択化合物のうち、ROCK阻害剤Y−27632、キナーゼ阻害剤HA−100、バニロイド受容体アンタゴニストcapsazepineがAdiponectinの発現量を増加させる化合物として見出された(図12a)。これらの化合物がAdiponectin発現を上昇させる作用は、PPARγアゴニストであるTroglitazone(10μM)と同等以上であった。
 さらに、これら3化合物(Y−27632、HA−100およびcapsazepine)をそれぞれ添加した場合の脂肪分化のマスターレギュレーターであるPPARγ発現量についても同様の手法により測定した。図12aに示すとおり、Y−27632とHA−100に関してはPPARγ発現量も濃度依存的に増加させる作用があることが確認された。
 次に、これら3化合物が脂肪滴形成に与える影響について調べた。10μMのY−27632、10μMのHA−100、または3μMのcapsazepineを脂肪分化を誘導すると同時に脂肪分化誘導培地に添加して5日間接着培養した。その後、それぞれの細胞を4%パラホルムアルデヒド(和光純薬)で30分間固定した後、PBSで3回洗浄した。さらに、0.36%オイルレッド0(Chemicon社)を用いて50分間室温で染色した後、蒸留水で3回洗浄して細胞の観察・撮影を行った。その結果、Y−27632とHA−100を添加することによって、DMSO添加コントロールと比較して脂肪滴の量が増加する様子が観察された(図12b)。一方、capsazepineには脂肪滴形成を増加させる顕著な活性はみとめられなかった。
 さらに、これら3化合物を添加した場合に、それぞれの培養液中に含まれるアディポネクチン量を測定した。10μMのY−27632、10μMのHA−100、3μMのcapsazepineを脂肪分化誘導と同時に添加して8日間接着培養した。培養後、培養液中に含まれるアディポネクチン量をhuman adiponectin ELISA kit(R&D systems社)を用いて測定した。その結果、Y−27632とHA−100を添加することによって培養液中に含まれるアディポネクチン量が顕著に上昇することが明らかとなった(図12c)。一方、capsazepineにはアディポネクチン量を上昇させる作用はみとめられなかった。以上の結果より、少なくともY−27632とHA−100にはヒト間葉系幹細胞からの脂肪分化を促進する活性があることが明らかとなった。一方、選択化合物の中にはAdiponectin発現量を半分以下に低下させる化合物も10化合物存在しており、選択化合物の中には脂肪分化を抑制する化合物も含まれていることが示唆された。
実施例7:スクリーニングから選択された化合物がヒト間葉系幹細胞からの骨分化に与える影響
 次に、選択化合物が、ヒト間葉系幹細胞からの骨分化に与える影響について調べた。ヒト間葉系幹細胞は、実施例6と同様の手法によって維持、培養した。細胞を1ウェルあたり1000細胞となるように96ウェルプレートへ播種した後、増殖培地で1晩培養した。その後、低ゴルコースDMEMに10%仔牛胎児血清、2mM GlutaMAX−1、10mM β−glycerophosphate(和光純薬)、0.05mM ascorbic acid−2−phosphate(和光純薬)、0.1μMデキサメタゾン(和光純薬)、1x penicillin−streptomycin(Sigma社)を添加した培地へと培地を交換することで骨分化を誘導した。骨分化を誘導すると同時に、最終濃度が3μMとなるように選択化合物をそれぞれ添加し、8日間接着培養した。培養終了後、初期骨芽細胞マーカーであるAlkaline phosphatase(Alpl)の発現量を実施例1と同様の手法により測定した。各遺伝子の測定に利用したプライマーとプローブの配列は図1に示す。
 その結果、選択化合物のうち、GSK3β阻害剤である6−bromoindirubin−3’oxime(BIO)とチミジンアナログである5−Bromo−2’−deoxyuridine(BrdU)がAlpl発現量を顕著に増加させる化合物として見出された(図13a)。
 BIOとBrdUを添加した時の他の骨分化マーカー発現についても調べた。BIO、BrdUを添加して8日間接着培養した後、実施例1と同様の手法によりrunt−related transcription factor 2(Runx2)、collagen typeI alpha 1(Col1a1)、parathyroid hormone receptor(PTHR)の発現量を測定した。各遺伝子の測定に利用したプライマーとプローブの配列は図1に示す。その結果、3μMのBIOと10μMのBrdUによってRunx2、Col1a1、PTHRの発現量も顕著に増加することが明らかとなった(図13a)。
 化合物が骨分化に与える影響についてさらに検証するため、アルカリホスファターゼ染色を行った。骨分化を誘導すると同時に3μMのBIO、10μMのBrdUを添加して、8日間接着培養した。培養後、細胞を4%パラホルムアルデヒド(和光純薬)で30分間固定した後、PBSで3回洗浄した。alkaline phosphatase kit III(Vector Laboratories社)を添付プロトコールに従って使用してアルカリホスファターゼ染色を行った。その結果、BIOとBrdUを添加することでアルカリホスファターゼの染色性が高まっており、これらの化合物によってアルカリホスファターゼ活性が上昇することが明らかとなった(図13b)。
 さらに、細胞内に蓄積されたカルシウム量を調べた。骨分化を誘導すると同時に3μMのBIO、10μMのBrdUを添加して、15日間接着培養した。培養後、細胞をPBSで洗浄した後に10mM Tris−HClと0.2% TritonX−100からなる溶解液に細胞を溶解させた。一部の溶解液を用いてタンパク濃度をBCA protein assay kit(Pierce社)を用いて測定した。残りの溶解液に塩酸を最終濃度が0.5Nとなるように加え、1晩振盪させた。0.5N塩酸を含む溶解液にとけだしたカルシウム量をCalcium E−test Kit Wako(和光純薬)を用いて測定した。カルシウム量は、タンパク量で補正した値を解析に用いた。その結果、BIOとBrdU添加によって細胞内のカルシウム量が増加していた(図13c)。これらの結果より、BIOとBrdUはヒト間葉系幹細胞からの骨分化を促進する活性を持っていることが明らかとなった。一方、選択化合物の中にはAlpl発現量を半分以下に低下させる化合物も2化合物存在しており、選択化合物の中には骨分化を抑制する化合物も含まれていることが示唆された。
実施例8:本発明のスクリーニング方法におけるGapdh発現量とATP量との相関
本発明のスクリーニング方法において測定したGapdh発現量がウェル内の生細胞数と相関するかどうかを調べた。実施例2に示した方法に従って、分化に関与することが知られている化合物である1μM6−bromoindirubin−3’oxime(BIO)、10μM PD169316、10μM forskolin、50nMレチノイン酸、5μM myoseverin、3μMデキサメタゾン、0.5μM BIX−01294をそれぞれ添加して4日間接着培養した後、Gapdh発現量を実施例1と同様の手法で測定した。上記測定と同時に、ウェル内のATP量についてもCellTiter−Glo luminescent cell viability kit(Promega社)を用いて測定した。その結果を図8に示す。いずれの化合物を添加した場合にもGapdh発現量はウェル内のATP量と非常によく相関していた。これらの結果より、Gapdh発現量はウェル内の生細胞数を示す指標として有用であることが確認された。
実施例9:分化に関与する化合物を用いた化合物評価
実施例3において、分化に関与することが知られている化合物を添加した場合に8種類の遺伝子発現パターンが変動することを示した。これらの実験の結果を図9に示す。実施例3で示したとおり、各化合物を添加した場合に、1種類以上の遺伝子発現量がDMSO添加時と比べて2倍以上に上昇することがわかった。また、化合物添加による8種類の遺伝子発現の増減のパターンは、それぞれの化合物ごとに違っており、それぞれの化合物が分化に対して異なった影響を与えることが推定された。本発明のスクリーニング方法によって分化に関与する様々な化合物の活性が検出できたことから、本発明のスクリーニング方法は新たな分化調節薬を探索する上で非常に有益であることが確認された。
実施例10:Gapdh発現量を増加させた化合物が生細胞数に与える影響
 実施例4においてGapdh発現量を上昇させる化合物が14種類見出された。これらの14化合物を添加した後、ウェル内のATP量をCellTiter−Glo Luminescent cell viability kit(Promega社)を用いて測定した結果を図10に示す。実施例4で記載したとおり、これらの14化合物を添加した場合にはいずれもウェル内のATP量の増加が認められた。これらの14化合物は、本発明のスクリーニング方法の条件下において生細胞数を増加させる作用があることが明らかとなった。
実施例11:スクリーニングから選択された化合物がヒト間葉系幹細胞からの分化に与える影響
実施例6と実施例7に示した手法に基づいて、選択化合物がヒト間葉系幹細胞から脂肪分化あるいは骨分化に与える影響について調べた。選択化合物が、脂肪分化誘導時のAdiponectin発現量に与える影響および骨分化誘導時のAlpl発現量に与える影響について図4にまとめて示す。脂肪分化誘導時に添加することでAdiponectin発現量をコントロールと比較して1.3倍以上に増加させる化合物として、Y−27632、HA−100、capsazepineが見出された。また、骨分化誘導時に添加することでAlpl発現量をコントロールと比較して2倍以上に増加させる化合物として、BIOとBrdUが見出された。
Example 1: Construction of a compound evaluation system (embryoid body formation)
D3 strain (American Type Culture Collection, CRL-1934) was used as ES cells. In order to maintain ES cells, mouse fibroblasts (MEF) (purchased from Millipore) whose cell growth was stopped by mitomycin C treatment were seeded on gelatin-coated plates and used as feeders. After seeding the ES cells on a feeder, 20% calf fetal serum (FBS, ES cell-qualified, Invitrogen), 100 μM 2-mercaptoethanol (Invitrogen), 1 × MEM non-essential amino acid solution (DMEM (Invitrogen)) Invitrogen), 1x antibiotic-anticolytic (Invitrogen), 1000 U / ml leukemia inhibitory factor (LIF, Chemicon) was added to the culture solution at 37 ° C, 5% CO 2 Cultured under. The medium was changed every day, and the undifferentiated state was maintained by subculture every 3 days using a 0.25% trypsin-1 mM EDTA solution (Invitrogen, hereinafter referred to as “trypsin-EDTA solution”).
In order to stabilize and simplify the compound evaluation system, a large amount of undifferentiated cells from which feeder cells had been removed were stored frozen. First, the cells were made into a single cell state using a trypsin-EDTA solution, transferred to a gelatin-coated culture dish, and cultured at 37 ° C. for 90 minutes. The cells that did not adhere were recovered to remove mouse fibroblasts (MEF) as a feeder, and then cultured for another 3 days in another gelatin-coated culture dish. Thereafter, cells made into a single cell state again using trypsin-EDTA solution were placed in a gelatin-coated culture dish at 1 × 10 5. 5 cells / cm 2 And the cells were further cultured for 24 hours. After detaching the cells with trypsin-EDTA solution, 2 × 10 6 The suspension was suspended in a cell banker (Nippon Zenyaku Kogyo Co., Ltd.) at a concentration of cells / ml and stored frozen at -80 ° C. Subsequent experiments were performed using the cryopreserved cells.
In order to form embryoid bodies, the cryopreserved cells were lysed in a 37 ° C. constant temperature bath, and then seeded on a 96-well spheroid plate (Sumitomo Bakelite) at 1000 cells per well. 10% calf fetal serum (FBS, ES cell-qualified, Invitrogen), 2 mM GlutaMAX-1 (Invitrogen), 3 × 10 in DMEM medium -4 Suspension culture was performed for 1 to 6 days using a culture solution supplemented with M monothioglycerol (Sigma), 1 × MEM non-essential amino acid solution (Invitrogen), and 1 × penicillin-streptomycin (Sigma). Conventionally, by using a 96-well spheroid plate to form one embryoid body per well, floating culture is performed on a non-adhesive culture dish to form a heterogeneous embryoid body. Compared with this method, embryoid bodies with a uniform size were formed.
Changes in the expression of early differentiation markers during the process of embryoid body formation using this technique were examined. Embryoid bodies were collected over time, and total RNA was purified using RNeasy 96 or RNeasy mini kit (Qiagen). After synthesizing cDNA using PrimeScript RT reagent kit (Takara Bio Inc.), quantitative RT-PCR was performed to measure the expression levels of Brachyury, Flk1, Sox17, Sox1, Oct3 / 4, and Nanog genes. . The primer and probe sequences used for measuring each gene are shown in FIG.
FIG. 5 shows the results of analyzing the expression levels of Brachyury, Flk1, Sox17, Sox1, Oct3 / 4, and Nanog genes. From the 4th day to the 5th day of suspension culture, a transient increase in expression of Brachyury, a primitive streak marker, was observed. Furthermore, the expression of Flk1, which is a mesoderm marker, and Sox17, which is an endoderm marker, were also significantly increased from the 4th day to the 5th day of suspension culture. In addition, the expression of Sox1, which is an ectoderm marker, gradually increased during the culture period. On the other hand, the expression of Oct3 / 4 and Nanog, which are undifferentiated markers, gradually decreased as the suspension culture period became longer. From these results, it was confirmed that the embryoid body having a uniform size was formed by using the method described in this example, and that ES cells were cultured in suspension culture for 4 days or more to move the ES cells in the direction of 3 germ layers. It became clear that differentiation was induced.
Example 2: Construction of a compound evaluation system (transfer from embryoid body to adhesion culture)
In order to enable high-throughput compound evaluation, embryoid bodies were dispersed and adhesion culture was performed by the following method. According to the method described in Example 1, suspension culture was performed for 4 days to prepare embryoid bodies, and then treated with a trypsin-EDTA solution to obtain a single cell state. Cells in a single cell state were seeded in a gelatin-coated 96-well plate (Asahi Techno Glass) at 1000 cells per well, and adhesion culture was performed for 1 to 4 days. The culture solution used was the same as that used during embryoid body formation. The expression level of the initial differentiation marker in the adhesion culture for 1 to 4 days was measured by using the same method as in Example 1. The primer and probe sequences used for measuring each gene are shown in FIG.
FIG. 6 shows the results of analyzing the expression level of the early differentiation marker in the adhesion culture for 1 to 4 days. The expression levels of Flk1 and Brachyury expressed in mesoderm were significantly increased by adhesion culture. In addition, while the expression level of Sox1 as an ectoderm marker was decreased by adhesion culture, the expression level of Nestin as a neural progenitor cell marker was gradually increased. In addition, expression of Cdx2, which is a trophectoderm marker, was also significantly induced by adhesion culture. On the other hand, the expression of Foxa2 which is an endoderm marker was decreased by adhesion culture. From these results, it was clarified that differentiation into the mesodermal system, nervous system, and trophectoderm was induced even after the transfer from embryoid bodies to adhesion culture.
Based on the above results, a compound evaluation system using ES cells was set up. The outline of this evaluation system is shown in FIG. In this evaluation system, (1) embryoid bodies are formed by carrying out suspension culture for 4 days using a 96-well spheroid plate. (2) The embryoid bodies are treated with a trypsin-EDTA solution. After cell state, seed in gelatin-coated 96-well plate, (3) Add compound to be evaluated at the same time as seeding of cell, and perform adhesion culture for 4 days, (4) Expression of each differentiation marker at the end of culture It consists of the procedure of evaluating the effect of a compound on differentiation by measuring the amount. As differentiation markers to be measured, Nanog as an undifferentiated marker, Tub3 and Nefh as neuronal markers, Actc1 as a cardiac muscle marker, Acta2 as a smooth muscle marker, Tie2 as an endothelial cell marker, Flk1 as a mesodermal marker 7 A gene was selected. Furthermore, the Gapdh expression level was also measured as an internal control reflecting the number of living cells. In order to evaluate the influence of the compound on the number of living cells, the Gapdh expression level was also set as one item for evaluation. In order to avoid the influence of increase / decrease in the number of cells, the expression level of the other differentiation marker was used for the evaluation of the compound.
Example 3: Verification of a compound evaluation system using compounds involved in differentiation
In order to verify whether the screening method of the present invention is effective in detecting compounds involved in differentiation, the expression variation of differentiation markers when various compounds reported to be involved in differentiation were added was examined. . According to the protocol shown in Example 2, the compounds involved in differentiation were evaluated.
As a result, 1 μM 6-bromodirubin-3′oxime (BIO, GSK3β inhibitor), 10 μM PD169316 (p38 MAPK inhibitor), 50 nM retinoic acid, 3 μM dexamethasone, 0.5 μM BIX-01294 (G9a histone methyltransferase inhibitor), It was found that when 1 μM SB 431542 (ALK5 inhibitor) and 1 μM subheroylilidehydroacid (SAHA, HDAC inhibitor) were added, the expression level of one or more kinds of genes was increased more than twice compared with the addition of DMSO. Moreover, the pattern of increase / decrease in the expression of the eight types of genes by compound addition was different for each compound, and it was estimated that each compound had different effects on differentiation. Since the activities of various compounds involved in differentiation could be detected by the screening method of the present invention, it was confirmed that the screening method of the present invention is very useful in searching for a new differentiation regulator.
Example 4: Compound evaluation using LOPAC library
LOPAC, a commercially available compound library, using the screening method of the present invention 1280 Screening of compounds involved in differentiation was carried out from (1280 compounds, Sigma). According to the protocol shown in Example 2, each compound was added so that the final concentration was 3 μM and the DMSO concentration as a solvent was 0.15%, and the compound evaluation was performed. In the screening, a Multiplex RT-PCR system capable of simultaneously measuring the expression levels of a plurality of genes was set in order to measure the expression levels of the eight types of genes shown above with high throughput. Eight types of gene expression are set 1 (Gapdh (fluorescent probe BODIPY), Acta2 (fluorescent probe VIC), set 2 (Actc1 (fluorescent probe BODIPY), Tubb3 (fluorescent probe VIC), Nanog (fluorescent probe FAM)), set 3 (Flk1 (fluorescent probe BODIPY), Nefh (fluorescent probe VIC), and Tie2 (fluorescent probe FAM)) were measured by multiple multiplex RT-PCR. Shown in
As a result of screening, the expression level of Gapdh was reduced to 5% or less for 56 compounds with respect to the control with DMSO addition, suggesting that these compounds are cytotoxic. These 56 compounds were excluded from the subsequent analysis. Among the other compounds, a compound having an expression level increased by a factor of 2 or more was selected in at least one gene as compared with the DMSO-added control. Furthermore, for the active compounds, the same experiment was conducted once again to examine reproducibility, and 52 compounds (4.1% of all compounds) whose reproducibility was finally confirmed were hit compounds (hereinafter referred to as “selection”). (Sometimes referred to as “compounds”) (FIG. 2). The pharmacological action of the hit compound is shown in FIG. The hit rate for each gene is 2.7% for Flk1, 0.2% for Actc1, 1.6% for Acta2, 0.6% for Tie2, 0.5% for Nefh, and 0.4% for Tubb3 , Nanog was 0.0% and Gapdh was 1.1%. From these results, it became clear that the activity of more compounds can be detected by measuring the expression of 8 types of genes simultaneously than when measuring the expression of only 1 type of gene. Further, the compounds selected as hit compounds are known to be involved in differentiation in other reports, and BIO, PD169316, retinoic acid, which were also recognized in the compound evaluation system described in this example. These compounds were included. These results indicate that the compound involved in differentiation was correctly selected in this screening method. The hit compounds contained 14 compounds that increase the Gapdh expression level. In order to examine the effect of these compounds on the number of viable cells, the amount of ATP in the well was measured using CellTiter-Glo luminescent cell viability kit (Promega). As a result, the amount of ATP in the well was increased by the addition of each 14 compounds. From these results, it was revealed that these 14 compounds have an action of increasing the number of living cells at least under the differentiation conditions.
Example 5: Effect of compounds selected from screening on expression of other differentiation markers
In order to analyze the effect of the selected compound on differentiation of ES cells in more detail, the expression level of differentiation markers other than the 8 genes used in the screening was also measured by the same method as described above. As differentiation markers, undifferentiation markers Oct3 / 4, Sox2, Klf4, Akp2, primitive ectoderm marker Fgf5, primitive streak markers Brachyury, Snail1, trophectoderm markers Cdx2, Bmp4, mesoderm and Cxcr4 which is an endoderm marker, Gata4 which is an extraembryonic endoderm marker, Laminin B1, Nestin which is a neuronal marker, p75NTR, Acta1 and Tpm1 which are skeletal muscle markers, Cnn1 which is a smooth muscle marker, Opn which is an osteoblast marker The expression levels of c-kit, a hematopoietic stem cell marker, and Sox9, a chondrocyte marker were measured. The primer and probe sequences used for measuring each gene are shown in FIG.
Of the selected compounds, 32 compounds were found to have an activity of increasing the expression of two or more types of genes more than twice (FIG. 2). In order to compare the gene expression patterns of these 32 kinds of compounds, clustering based on correlation distance was performed for each expression data.
The result is shown in FIG. As a result, it was clarified that compounds having the same pharmacological action and similar in compound structure show similar gene expression profiles. For example, thiothixene hydrochloride, perphenazine, cis- (Z) -fluxendix dihydrochloride, which are similar in structure to dopamine receptor antagonists, were classified into the same group. PD 169316 and SB 202190, both of which are p38 MAPK inhibitors and similar in structure, were also classified into the same group. Furthermore, corticosteroids hydrocortisone 21-hemisuccinate sodium, hydrocortisone, betamethasone, beclomethasone, retinoic acid receptor agonists TTNPB, 13-cis-retinoic acid, It was. As described above, by analyzing the expression levels of a plurality of differentiation markers using the compound evaluation system of this example, it was revealed that the compounds can be classified based on the effect on differentiation.
Example 6: Effect of compounds selected by screening on adipose differentiation from human mesenchymal stem cells
It was considered that the selected compound could control differentiation from adult stem cells as well as ES cells. Therefore, the effect of these selected compounds on adipogenesis from human mesenchymal stem cells was examined. Human mesenchymal stem cells were purchased from Lonza and medium supplemented with 10% calf fetal serum, 2 mM GlutaMAX-1, 1x penicillin-streptomucin (Sigma) (hereinafter “growth medium”) in low glucose DMEM (Invitrogen). The culture was performed using an adhesive culture. At the time of induction of adipose differentiation, cells were seeded in a 96-well plate so that the number of cells was 3000 per well, and then cultured overnight in a growth medium. Thereafter, the growth medium was added to a fat differentiation induction medium (high Golcose DMEM (Invitrogen)), 10% calf fetal serum, 2 mM GlutaMAX-1, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX, Wako Pure Chemical Industries), 10 μg / ml. Adipose differentiation was induced by exchanging with insulin (Wako Pure Chemicals), 1 μM dexamethasone (Wako Pure Chemicals), 200 μM indomethacin (Wako Pure Chemicals), and 1xpenicillin-streptomucin (Sigma)). At the same time as induction of adipose differentiation, each selected compound was added to a final concentration of 3 μM and cultured for 5 days. Five days later, the expression level of Adiponectin, which is an adipocyte marker, was measured using the same method as shown in Example 1. The primer and probe sequences used for measuring each gene are shown in FIG.
Among the selected compounds, ROCK inhibitor Y-27632, kinase inhibitor HA-100, and vanilloid receptor antagonist capsazepine were found as compounds that increase the expression level of Adiponectin (FIG. 12a). The action of these compounds to increase Adiponectin expression was equivalent to or better than that of PPARγ agonist Troglitazone (10 μM).
Furthermore, the expression level of PPARγ, which is a master regulator of adipose differentiation when these three compounds (Y-27632, HA-100, and capsazepine) were added, was also measured by the same method. As shown in FIG. 12a, it was confirmed that Y-27632 and HA-100 have an effect of increasing the PPARγ expression level in a concentration-dependent manner.
Next, the effect of these three compounds on lipid droplet formation was examined. 10 μM Y-27632, 10 μM HA-100, or 3 μM capsazepine was added to the adipose differentiation-inducing medium at the same time as induction of adipose differentiation, followed by adhesion culture for 5 days. Thereafter, each cell was fixed with 4% paraformaldehyde (Wako Pure Chemical Industries) for 30 minutes and then washed with PBS three times. Furthermore, after staining with 0.36% Oil Red 0 (Chemicon) for 50 minutes at room temperature, the cells were washed three times with distilled water to observe and photograph the cells. As a result, it was observed that the addition of Y-27632 and HA-100 increased the amount of lipid droplets compared to the DMSO addition control (FIG. 12b). On the other hand, capsazepine did not show significant activity to increase lipid droplet formation.
Furthermore, when these three compounds were added, the amount of adiponectin contained in each culture solution was measured. 10 μM Y-27632, 10 μM HA-100, 3 μM capsazepine were added simultaneously with the induction of adipogenesis, and adhesion culture was performed for 8 days. After culturing, the amount of adiponectin contained in the culture solution was measured using a human adipectin ELISA kit (R & D systems). As a result, it was revealed that the amount of adiponectin contained in the culture broth was significantly increased by adding Y-27632 and HA-100 (FIG. 12c). On the other hand, capsazepine did not have an effect of increasing the amount of adiponectin. From the above results, it was revealed that at least Y-27632 and HA-100 have an activity of promoting fat differentiation from human mesenchymal stem cells. On the other hand, among the selected compounds, there are 10 compounds that reduce the expression level of Adiponectin to half or less, suggesting that the selected compounds include compounds that suppress fat differentiation.
Example 7: Effect of compounds selected from screening on bone differentiation from human mesenchymal stem cells
Next, the influence of selected compounds on bone differentiation from human mesenchymal stem cells was examined. Human mesenchymal stem cells were maintained and cultured by the same method as in Example 6. Cells were seeded in a 96-well plate at 1000 cells per well and then cultured overnight in growth medium. Then, 10% calf fetal serum, 2 mM GlutaMAX-1, 10 mM β-glycerophosphate (Wako Pure Chemical), 0.05 mM ascorbic acid-2-phosphate (Wako Pure Chemical), 0.1 μM dexamethasone (Wako Pure Chemical) ) Bone differentiation was induced by replacing the medium with a medium supplemented with 1x penicillin-streptomycin (Sigma). At the same time as inducing bone differentiation, each of the selected compounds was added so that the final concentration was 3 μM, and adhesion culture was performed for 8 days. After completion of the culture, the expression level of Alkaline phosphatase (Alpl), which is an early osteoblast marker, was measured by the same method as in Example 1. The primer and probe sequences used for measuring each gene are shown in FIG.
As a result, among the selected compounds, GSK3β inhibitor 6-bromodirubin-3′oxime (BIO) and thymidine analog 5-Bromo-2′-deoxyuridine (BrdU) are compounds that significantly increase the expression level of Alpl. Found (Figure 13a).
The expression of other bone differentiation markers when BIO and BrdU were added was also examined. After BIO and BrdU were added and adherent culture was carried out for 8 days, runt-related transcription factor 2 (Runx2), collagen type I alpha 1 (Col1a1), and parathyroid hormone PT content amount were expressed in the same manner as in Example 1. It was measured. The primer and probe sequences used for measuring each gene are shown in FIG. As a result, it was revealed that the expression levels of Runx2, Col1a1, and PTHR were significantly increased by 3 μM BIO and 10 μM BrdU (FIG. 13a).
To further verify the effect of the compound on bone differentiation, alkaline phosphatase staining was performed. At the same time as inducing bone differentiation, 3 μM BIO and 10 μM BrdU were added, followed by adhesion culture for 8 days. After culturing, the cells were fixed with 4% paraformaldehyde (Wako Pure Chemical Industries) for 30 minutes and then washed 3 times with PBS. Alkaline phosphatase kit III (Vector Laboratories) was used for alkaline phosphatase staining according to the attached protocol. As a result, it was revealed that the addition of BIO and BrdU increases the staining property of alkaline phosphatase, and these compounds increase the alkaline phosphatase activity (FIG. 13b).
Furthermore, the amount of calcium accumulated in the cells was examined. At the same time as inducing bone differentiation, 3 μM BIO and 10 μM BrdU were added, followed by adhesion culture for 15 days. After culturing, the cells were washed with PBS and then lysed in a lysate consisting of 10 mM Tris-HCl and 0.2% Triton X-100. The protein concentration was measured using BCA protein assay kit (Pierce) using a part of the lysate. Hydrochloric acid was added to the remaining lysate so that the final concentration was 0.5 N, and the mixture was shaken overnight. The amount of calcium dissolved in the solution containing 0.5N hydrochloric acid was measured using Calcium E-test Kit Wako (Wako Pure Chemical Industries). The amount of calcium corrected for the amount of protein was used for analysis. As a result, the amount of intracellular calcium was increased by the addition of BIO and BrdU (FIG. 13c). From these results, it became clear that BIO and BrdU have the activity of promoting bone differentiation from human mesenchymal stem cells. On the other hand, there are two compounds that reduce the Alpl expression level by half or less among the selected compounds, suggesting that the selected compounds include compounds that suppress bone differentiation.
Example 8: Correlation between Gapdh expression level and ATP level in the screening method of the present invention
It was examined whether the Gapdh expression level measured in the screening method of the present invention correlated with the number of living cells in the well. According to the method shown in Example 2, 1 μM 6-bromodirubin-3′oxime (BIO), 10 μM PD169316, 10 μM forskolin, 50 nM retinoic acid, 5 μM myoseverin, 3 μM dexamethasone, which is a compound known to be involved in differentiation, 0 After adding 5 μM BIX-01294 and adhesion culture for 4 days, the expression level of Gapdh was measured in the same manner as in Example 1. Simultaneously with the above measurement, the amount of ATP in the wells was also measured using CellTiter-Glo luminescent cell viability kit (Promega). The result is shown in FIG. When any compound was added, the Gapdh expression level correlated very well with the ATP level in the well. From these results, it was confirmed that the Gapdh expression level is useful as an index indicating the number of living cells in the well.
Example 9: Compound evaluation using compounds involved in differentiation
In Example 3, it was shown that when a compound known to be involved in differentiation was added, eight types of gene expression patterns fluctuated. The results of these experiments are shown in FIG. As shown in Example 3, it was found that when each compound was added, the expression level of one or more kinds of genes increased more than twice as compared with the case of adding DMSO. Moreover, the pattern of increase / decrease in the expression of the eight types of genes by compound addition was different for each compound, and it was estimated that each compound had different effects on differentiation. Since the activities of various compounds involved in differentiation could be detected by the screening method of the present invention, it was confirmed that the screening method of the present invention is very useful in searching for a new differentiation regulator.
Example 10: Effect of Compound with Increased Gapdh Expression on Viable Cell Count
In Example 4, 14 types of compounds that increase the expression level of Gapdh were found. After adding these 14 compounds, the result of having measured the amount of ATP in a well using CellTiter-Glo Luminescent cell viability kit (Promega) is shown in FIG. As described in Example 4, when these 14 compounds were added, an increase in the amount of ATP in the well was observed in all cases. These 14 compounds were found to have the effect of increasing the number of living cells under the conditions of the screening method of the present invention.
Example 11: Effect of compounds selected from screening on differentiation from human mesenchymal stem cells
Based on the technique shown in Example 6 and Example 7, the effect of the selected compound on fat differentiation or bone differentiation from human mesenchymal stem cells was examined. FIG. 4 summarizes the influence of the selected compound on the expression level of Adiponectin when inducing fat differentiation and on the expression level of Alpl in inducing bone differentiation. Y-27632, HA-100, and capsazepine were found as compounds that increase the expression level of Adiponectin 1.3 times or more as compared with the control when added during induction of adipogenesis. In addition, BIO and BrdU were found as compounds that increase the Alpl expression level by a factor of 2 or more as compared to the control when added during the induction of bone differentiation.
 本発明のスクリーニング方法は、生体中に存在する幹細胞等を活性化し、再生を促す医薬品候補をスクリーニングするため等に有用である。本発明のスクリーニング方法により得られた医薬品は、手術や免疫抑制剤の使用といった患者の負担を解消すること等に利用することができる。さらに、本発明のスクリーニング方法は、ヒトあるいは高等動物のあらゆる細胞、組織を効率的にかつ大量に調製するために利用することができるため、従来からの創薬プロセスにおける医薬候補物質のスクリーニングや薬効評価、安全性試験などに応用可能である。
The screening method of the present invention is useful for screening drug candidates that activate stem cells and the like existing in a living body and promote regeneration. The pharmaceutical obtained by the screening method of the present invention can be used to eliminate the burden on patients such as surgery and use of immunosuppressive agents. Furthermore, since the screening method of the present invention can be used to efficiently and in large quantities prepare all cells and tissues of humans or higher animals, screening of drug candidates and drug efficacy in conventional drug discovery processes are possible. It can be applied to evaluation and safety testing.

Claims (12)

  1. 以下の工程(1)~(5):
    (1)再生、増殖又は分化能力を有する細胞から胚様体を形成させる工程、
    (2)工程(1)で得られた胚様体を消化酵素で処理することによって単一細胞状態にする工程、
    (3)工程(2)で得られた細胞を接着性プレートに播種するとともに、該プレートに候補物質を添加して接着培養する工程、
    (4)工程(3)における接着培養後に、細胞の再生、増殖または分化に関与する遺伝子のうち2種類以上の発現量をまとめて定量解析する工程、および
    (5)工程(4)における定量解析の結果をもとに、候補物質が細胞の再生、増殖または分化に与える影響を評価する工程、を含む、細胞または臓器の再生、増殖又は分化を調節する物質のスクリーニング方法。
    The following steps (1) to (5):
    (1) a step of forming an embryoid body from cells having regeneration, proliferation or differentiation ability;
    (2) A step of treating the embryoid body obtained in step (1) with a digestive enzyme to form a single cell state,
    (3) A step of seeding the cells obtained in step (2) on an adhesive plate, adding a candidate substance to the plate, and subjecting the cells to adhesion culture,
    (4) After the adhesion culture in step (3), a step of collectively analyzing the expression levels of two or more types of genes involved in cell regeneration, proliferation or differentiation, and (5) quantitative analysis in step (4) A method for screening a substance that regulates the regeneration, proliferation or differentiation of cells or organs, comprising the step of evaluating the influence of a candidate substance on the regeneration, proliferation or differentiation of cells based on the results of.
  2. 前記工程(1)における細胞が、ヒトおよび温血動物の胚性幹細胞およびiPS(induced pluripotent stem)細胞から選択される請求項1記載の方法。 The method according to claim 1, wherein the cells in the step (1) are selected from human and warm-blooded animal embryonic stem cells and iPS (induced primipotent stem) cells.
  3. 前記工程(1)における胚様体を形成させるために行う細胞培養の期間が3ないし6日間である請求項1記載の方法。 The method according to claim 1, wherein the period of cell culture performed to form embryoid bodies in the step (1) is 3 to 6 days.
  4. 再生、増殖又は分化を調節する物質の標的となる細胞が、ヒトおよび温血動物の胚性幹細胞、iPS(induced pluripotent stem)細胞およびそれらの細胞を分化誘導して得られる細胞、ならびに組織幹細胞で生体組織内に存在した状態あるいはin vitroで培養した状態の細胞からなる群より選択される、請求項1記載の方法。 Cells that are targets of substances that regulate regeneration, proliferation or differentiation are embryonic stem cells, iPS (induced primepotent stem) cells of humans and warm-blooded animals, cells obtained by inducing differentiation of these cells, and tissue stem cells. The method according to claim 1, wherein the method is selected from the group consisting of cells existing in a living tissue or cultured in vitro.
  5. 再生、増殖又は分化を調節する物質が、合成化合物、天然物、タンパク質、ペプチド、脂質、アミン、アミノ酸、糖、核酸、またはイオンである、請求項1記載の方法。 The method according to claim 1, wherein the substance that regulates regeneration, growth or differentiation is a synthetic compound, natural product, protein, peptide, lipid, amine, amino acid, sugar, nucleic acid, or ion.
  6. 再生、増殖又は分化を調節する物質が、受容体アゴニストおよびアンタゴニスト、生合成経路阻害剤、タンパク質間相互作用の阻害剤、酵素阻害剤および基質、補酵素、シグナル伝達系の阻害剤および活性化剤、チャンネル阻害剤およびモジュレーター、ビタミン、抗酸化剤、アポトーシス阻害剤および促進剤、抗ウイルス剤、界面活性剤、アンチセンスオリゴヌクレオチド、siRNA、抗生物質、コンビナトリアルケミストリー法で合成された化合物、ならびにそれらの合成中間体からなる群より選択される、請求項1記載の方法。 Substances that regulate regeneration, proliferation or differentiation are receptor agonists and antagonists, biosynthetic pathway inhibitors, protein-protein interaction inhibitors, enzyme inhibitors and substrates, coenzymes, signal transduction system inhibitors and activators , Channel inhibitors and modulators, vitamins, antioxidants, apoptosis inhibitors and promoters, antiviral agents, surfactants, antisense oligonucleotides, siRNA, antibiotics, compounds synthesized by combinatorial chemistry methods, and their 2. The method of claim 1, wherein the method is selected from the group consisting of synthetic intermediates.
  7. 再生、増殖又は分化を調節する物質の標的となる細胞または臓器が、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、血球系の細胞、脳、脳の各部位、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管、血管、心臓、胸腺、脾臓、顎下腺、末梢血、末梢血球、前立腺、睾丸、精巣、卵巣、胎盤、子宮、骨、関節、および骨格筋からなる群より選択される、請求項1記載の方法。 Cells or organs targeted by substances that regulate regeneration, proliferation or differentiation are spleen cells, neurons, glial cells, pancreatic β cells, bone marrow cells, mesangial cells, Langerhans cells, epidermal cells, epithelial cells, endothelial cells, fibers Blast cells, fiber cells, muscle cells, adipocytes, immune cells, synoviocytes, chondrocytes, bone cells, osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursor cells of these cells, Blood cells, brain, brain parts, spinal cord, pituitary gland, stomach, pancreas, kidney, liver, gonad, thyroid, gall bladder, bone marrow, adrenal gland, skin, muscle, lung, gastrointestinal tract, blood vessel, heart, thymus, The method of claim 1, wherein the method is selected from the group consisting of spleen, submandibular gland, peripheral blood, peripheral blood cells, prostate, testis, testis, ovary, placenta, uterus, bone, joint, and skeletal muscle.
  8. 再生、増殖又は分化を調節する物質が、中枢性疾患、炎症性疾患、循環器疾患、癌、糖尿病、免疫系疾患、肝臓・胆のう疾患、消化器系疾患、熱傷、骨折、および脱毛症からなる群より選択される疾患の予防・治療薬である、請求項1記載の方法。 Substances that regulate regeneration, proliferation or differentiation consist of central diseases, inflammatory diseases, cardiovascular diseases, cancer, diabetes, immune system diseases, liver / gallbladder diseases, digestive system diseases, burns, fractures, and alopecia The method according to claim 1, which is a prophylactic / therapeutic agent for a disease selected from the group.
  9. 前記工程(2)における消化酵素が、トリプシンである請求項1記載の方法。 The method according to claim 1, wherein the digestive enzyme in the step (2) is trypsin.
  10. 前記工程(3)における接着性プレートが、ゼラチンコートした複数の穴を有するプレートである請求項1記載の方法。 The method according to claim 1, wherein the adhesive plate in the step (3) is a plate having a plurality of holes coated with gelatin.
  11. 前記工程(4)において2種類以上の遺伝子の発現量をまとめて定量解析する際、Multiplex RT−PCRを用いる請求項1記載の方法。 The method according to claim 1, wherein when the expression levels of two or more genes are collectively analyzed in the step (4), Multiplex RT-PCR is used.
  12. 前記工程(4)における細胞の再生、増殖または分化に関与する遺伝子が、
    (A)未分化マーカーであるNanog、Oct3/4、Sox2、Klf4、Akp2、
    (B)原始外胚葉マーカーであるFgf5、
    (C)原始線条マーカーであるBrachyury、Snail1、
    (D)栄養外胚葉マーカーであるCdx2、Bmp4、
    (E)神経マーカーであるTubb3、Nefh、Nestin、p75NTR、
    (F)心筋マーカーであるActc1、
    (G)平滑筋マーカーであるActa2、Cnn1、
    (H)内皮細胞マーカーであるTie2、
    (I)中胚葉マーカーであるFlk1、
    (J)中胚葉と内胚葉マーカーであるCxcr4、
    (K)胚体外内胚葉マーカーであるGata4、Laminin B1、
    (L)骨格筋マーカーであるActa1、Tpm1、
    (M)骨芽細胞マーカーであるOpn、
    (N)造血幹細胞マーカーであるc−kit、および
    (O)軟骨細胞マーカーであるSox9からなる群より選択される請求項1記載の方法。
    Genes involved in cell regeneration, proliferation or differentiation in the step (4) are:
    (A) Nanog, Oct3 / 4, Sox2, Klf4, Akp2, which are undifferentiated markers
    (B) Fgf5, a primitive ectoderm marker,
    (C) Brachyury, Snail1, which are primitive streak markers,
    (D) Cdx2, Bmp4, which are trophectoderm marker
    (E) Neural markers Tubb3, Nefh, Nestin, p75NTR,
    (F) Actc1, a myocardial marker,
    (G) Acta2, Cnn1, which are smooth muscle markers,
    (H) Tie2, which is an endothelial cell marker,
    (I) Flk1, which is a mesoderm marker,
    (J) Cxcr4 which is a mesoderm and endoderm marker,
    (K) Gata4, Laminin B1, which are extraembryonic endoderm markers,
    (L) Acta1, Tpm1, which are skeletal muscle markers
    (M) Opn which is an osteoblast marker,
    The method according to claim 1, wherein the method is selected from the group consisting of (N) hematopoietic stem cell marker c-kit and (O) a chondrocyte marker Sox9.
PCT/JP2010/059169 2009-05-26 2010-05-25 Method for screening of regenerative medicine WO2010137722A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10780676.2A EP2436775A4 (en) 2009-05-26 2010-05-25 Method for screening of regenerative medicine
JP2011516084A JPWO2010137722A1 (en) 2009-05-26 2010-05-25 Regenerative medicine screening method
US13/322,176 US20120142005A1 (en) 2009-05-26 2010-05-25 Method for screening of regenerative medicine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-126635 2009-05-26
JP2009126635 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010137722A1 true WO2010137722A1 (en) 2010-12-02

Family

ID=43222824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059169 WO2010137722A1 (en) 2009-05-26 2010-05-25 Method for screening of regenerative medicine

Country Status (4)

Country Link
US (1) US20120142005A1 (en)
EP (1) EP2436775A4 (en)
JP (1) JPWO2010137722A1 (en)
WO (1) WO2010137722A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704022B2 (en) 2015-09-29 2020-07-07 Fujifilm Corporation Cell evaluation apparatus and cell evaluation method
US10731134B2 (en) 2011-05-27 2020-08-04 Public University Corporation Yokohama City University Production method for artificial cancer stem cell and induced differentiation method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143445B (en) * 2012-11-29 2020-07-07 宝生物欧洲公司 Maturation of hepatocyte-like cells derived from human pluripotent stem cells
JP6783446B2 (en) * 2014-12-11 2020-11-11 学校法人慶應義塾 Method for producing therapeutic corneal endothelium substitute cell sphere

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511010A (en) * 1997-02-06 2001-08-07 ジェネティックス・インスチチュート・インコーポレーテッド Human SDF-5 protein and composition
JP2002511246A (en) * 1998-04-14 2002-04-16 ユニヴァーシティー オブ エディンバラ Lineage-specific and progenitor cells
WO2006006722A1 (en) 2004-07-13 2006-01-19 Takeda Pharmaceutical Company Limited Method of controlling cell functions
WO2007027157A1 (en) * 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving progenitor cell line
WO2007058982A2 (en) * 2005-11-10 2007-05-24 Genervon Biopharmaceuticals Llc Mntf differentiation and growth of stem cells
WO2008020815A1 (en) * 2006-08-15 2008-02-21 Agency For Science, Technology And Research Mesenchymal stem cell conditioned medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039966A1 (en) * 2002-10-31 2004-05-13 Pfizer Products Inc. Suspension method for producing embryoid bodies, and compositions and methods related thereto
EP1856248A4 (en) * 2005-02-09 2010-01-20 Burnham Inst Medical Research Homogeneous neural precursor cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511010A (en) * 1997-02-06 2001-08-07 ジェネティックス・インスチチュート・インコーポレーテッド Human SDF-5 protein and composition
JP2002511246A (en) * 1998-04-14 2002-04-16 ユニヴァーシティー オブ エディンバラ Lineage-specific and progenitor cells
WO2006006722A1 (en) 2004-07-13 2006-01-19 Takeda Pharmaceutical Company Limited Method of controlling cell functions
WO2007027157A1 (en) * 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving progenitor cell line
WO2007058982A2 (en) * 2005-11-10 2007-05-24 Genervon Biopharmaceuticals Llc Mntf differentiation and growth of stem cells
WO2008020815A1 (en) * 2006-08-15 2008-02-21 Agency For Science, Technology And Research Mesenchymal stem cell conditioned medium

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CELL STEM CELL, vol. 2, 2008, pages 602 - 612
NATURE GENETICS, vol. 36, 2004, pages 257 - 263
PNAS, vol. 105, 2008, pages 9751 - 9756
See also references of EP2436775A4
YAMAMOTO M. ET AL.: "Monitoring of gene expressions in embryoid body differentiation derived from Cynomolgus monkey embryonic stem cells in the presence of bisphenol A.", J. TOXICOL. SCI., vol. 32, no. 3, 2007, pages 301 - 310, XP009139539 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731134B2 (en) 2011-05-27 2020-08-04 Public University Corporation Yokohama City University Production method for artificial cancer stem cell and induced differentiation method therefor
US10704022B2 (en) 2015-09-29 2020-07-07 Fujifilm Corporation Cell evaluation apparatus and cell evaluation method

Also Published As

Publication number Publication date
EP2436775A1 (en) 2012-04-04
EP2436775A4 (en) 2013-11-13
JPWO2010137722A1 (en) 2012-11-15
US20120142005A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP7003095B2 (en) Methods and Uses for Nociceptor Differentiation of Human Embryonic Stem Cells
Kempf et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture
Pouton et al. Embryonic stem cells as a source of models for drug discovery
US20210062153A1 (en) Methods and compositions for generating epicardium cells
Su et al. A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome
WO2013063305A2 (en) Directed cardiomyocyte differentiation of stem cells
US20210139849A1 (en) Methods for efficient derivation of human motor neurons from diverse spinal regions
US20230233617A1 (en) Methods for differentiating stem cells into dopaminergic progenitor cells
US11001803B2 (en) Method for generating neuronal and muscular cells
KR20120109461A (en) Methods for predicting the toxicity of a chemical
WO2010137722A1 (en) Method for screening of regenerative medicine
WO2016104614A1 (en) Novel mature cardiac muscle cell marker
Radaszkiewicz et al. The acceleration of cardiomyogenesis in embryonic stem cells in vitro by serum depletion does not increase the number of developed cardiomyocytes
US20200216803A1 (en) Method of human periferic sensory neurons differenciation from human stem cells and uses thereof
EP4305154A1 (en) Methods of generating oligodendrocyte progenitor cells and use thereof
WO2020090836A1 (en) Cell production method
Guddati Derivation of cardiomyocytes from embryonic stem cells and development of techniques to study cardiac lineage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010780676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011516084

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13322176

Country of ref document: US