WO2011013815A1 - Urethane foam for use in automobile seats and method for producing same - Google Patents

Urethane foam for use in automobile seats and method for producing same Download PDF

Info

Publication number
WO2011013815A1
WO2011013815A1 PCT/JP2010/062930 JP2010062930W WO2011013815A1 WO 2011013815 A1 WO2011013815 A1 WO 2011013815A1 JP 2010062930 W JP2010062930 W JP 2010062930W WO 2011013815 A1 WO2011013815 A1 WO 2011013815A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
derived
urethane foam
plant
polyol
Prior art date
Application number
PCT/JP2010/062930
Other languages
French (fr)
Japanese (ja)
Inventor
憲幸 松本
大輔 鎌倉
勝司 小野
隆司 浜口
Original Assignee
株式会社東洋クオリティワン
伊藤製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東洋クオリティワン, 伊藤製油株式会社 filed Critical 株式会社東洋クオリティワン
Priority to JP2011524863A priority Critical patent/JP5675615B2/en
Priority to IN881DEN2012 priority patent/IN2012DN00881A/en
Priority to CN201080033318.XA priority patent/CN102471443B/en
Publication of WO2011013815A1 publication Critical patent/WO2011013815A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4288Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Definitions

  • the present invention relates to a urethane foam for automobile seats using plant-derived fats and oils as a urethane foam raw material component. More specifically, the present invention not only improves the content of plant-derived components in the total weight of urethane foam for automobile seats, but also improves industrial productivity by greatly reducing the raw material viscosity, and The present invention relates to a urethane foam for automobile seats capable of stably supplying raw materials and a method for producing the same.
  • Carbon dioxide is one of the greenhouse gases that contribute to global warming, and there is a need to reduce its emissions.
  • urethane foam for automobile seats currently produced industrially is manufactured from petroleum-derived raw materials (Patent Document 1).
  • Patent Document 1 petroleum-derived raw materials
  • this urethane foam for automobile seats is incinerated after being subjected to a shredder process at the time of scrap car processing. Therefore, if the petroleum-derived raw material urethane foam as in Patent Document 1 is incinerated, carbon dioxide, which is a greenhouse gas that contributes to global warming, increases.
  • Plant-derived raw materials are attracting attention as alternative raw materials for these petroleum-derived raw materials. Plant-derived materials are renewable resources that plants produce by taking in carbon dioxide in the atmosphere. Therefore, even if carbon dioxide is generated by incineration, the carbon dioxide balance on the global scale is zero because it is originally made from carbon dioxide by photosynthesis, and it is thought that global warming can be prevented. For this reason, there is a movement to use plant-derived materials instead of petroleum-derived materials.
  • various methods have been studied as a method for producing a polyurethane foam material from plant-derived materials (Patent Documents 2, 3, and 4, Non-Patent Document 1).
  • Patent Document 2 discloses a polyurethane foam using aerated soybean oil as a polyether material as a plant-derived raw material.
  • Patent Documents 3 and 4 disclose a polyurethane prepolymer using an alcohol ring-opened product of epoxidized soybean oil as a polyether material.
  • Non-patent Document 1 65% sulfuric acid and 30% hydrogen peroxide water are mixed and heated from raw soybean oil to purify the polyol by introducing a hydroxyl group into the double bond part of soybean oil.
  • a method for producing urethane foam by mixing and stirring (PMDI), water, an amine catalyst, and a silicone foam stabilizer is disclosed.
  • the polyurethane foams described in Patent Documents 2 to 4 are derived from plants and are expected to reduce carbon dioxide emissions by incineration.
  • the polyurethane foam of Patent Document 2 has insufficient rebound resilience due to the low molecular weight of soybean oil and cannot be used as a cushion for an automobile seat.
  • the polyurethane prepolymers of Patent Documents 3 and 4 are mainly used for forming moisture-curing one-component polyurethane foams, and are not used for urethane foams for automobile seats.
  • the resilience modulus (JIS K6400) of the urethane foam of Non-Patent Document 1 is 1%, which is far from the target value of 40% or more for automobile use.
  • the rebound resilience is the most important characteristic value of the urethane foam material for automobile seats. If the rebound resilience is low, the urethane foam needs to be thickened to eliminate the feeling of bottoming out when the urethane foam is used for the automobile seat. However, increasing the thickness of the foam is not preferable because it leads to narrowing the space of a limited automobile. In addition, if the foam is hardened to eliminate the feeling of bottoming, the sitting comfort is deteriorated. Furthermore, the permanent compression strain (50% compression of JIS K6400) of the urethane foam of Non-Patent Document 1 is 47%, which is far from the target value of 20% or less for automobile use.
  • Patent Document 5 the present applicants were able to increase the plant-derived component content by using a urethane prepolymer obtained by crosslinking castor oil with an isocyanate in advance.
  • the chemical bond generated by crosslinking is a urethane bond
  • it is derived from a hydrogen bond between the bonds, and the viscosity of the prepolymer becomes very high.
  • the plant-derived component content cannot be increased.
  • due to the increase in viscosity it is difficult to increase the molecular weight of plant-derived components, and there has been a problem that the resilience of the seat for automobile seats is lowered.
  • Patent Document 6 includes a description in a method for producing a polyurethane foam sealant, “as castor oil derivative polyol, for example, castor oil polyester; obtained from a mixed polycarboxylic acid of castor oil and other acids such as adipic acid. Although there is a description of “polyester”, it does not describe at all the rebound resilience that is most important for urethane foam use for automobile seats.
  • the polyurethane foam of Patent Document 6 is used as a waterproof sealing material and is not used as a urethane foam material for automobile seats. Moreover, it is not described regarding the plant-derived component content.
  • Patent Document 7 the present applicants succeeded in reducing the viscosity of the raw material while crosslinking the castor oil with an aldehyde compound to improve the plant-derived component content.
  • the aldehyde compound used as a crosslinking agent is expensive, and the production method of the modified castor oil obtained by the crosslinking reaction and the crosslinking reaction has not yet been established, it cannot be industrially produced. .
  • the present invention has been made in consideration of the above circumstances, and a urethane foam for automobile seats that can be industrially produced while increasing the rebound resilience while increasing the plant-derived component content and a method for producing the same.
  • the purpose is to provide.
  • the urethane foam for automobile seats according to the present invention (first invention) is obtained by reacting at least a polyol component and an isocyanate component, and the polyol component is obtained by crosslinking plant-derived fats and oils using a dibasic acid.
  • the plant-derived component content is 14.7 to 45% and the rebound resilience is 43 to 70%.
  • a method for producing urethane foam for automobile seats according to the present invention is a method for producing urethane foam for automobile seats comprising a flexible polyurethane foam obtained by reacting at least a polyol component and an isocyanate component,
  • a polyol component modified plant-derived fats and oils obtained by crosslinking plant-derived fats and oils using dibasic acids and petroleum-derived polyols are used.
  • a urethane foam for an automobile seat that exhibits a high plant-derived component content that has not been obtained in the prior art and has an improved rebound resilience, and a method for producing the same.
  • a urethane foam for automobile seats and a method for producing the same can be provided.
  • the urethane foam for automobile seats and the manufacturing method thereof according to the present invention will be described in more detail.
  • the first invention it is preferable to use at least one of sebacic acid, azelaic acid, adipic acid, and dimer acid as the dibasic acid.
  • castor oil it is preferable to use castor oil as the plant-derived oil.
  • the petroleum-derived polyol preferably has a number average molecular weight of 5,000 to 10,000.
  • the molecular weight of the petroleum-derived polyol is less than 5000, the rebound resilience of the produced urethane foam is lowered and the seating comfort is deteriorated, so that it is not suitable as a urethane foam for an automobile seat.
  • the modified plant-derived oil or fat out of 100 parts by weight of the polyol component.
  • the modified plant-derived fat / oil is less than 20 parts by weight, since the plant-derived component content is low, the environmental contribution is small.
  • the modified plant-derived oil and fat exceeds 60 parts by weight, the resilience is reduced, and the comfort of the intended automobile seat is lowered.
  • the plant-derived component content in the weight of urethane foam for automobile seats is high in the present invention, the amount of carbon dioxide emitted during incineration can be reduced, which can greatly contribute to the environment. .
  • the plant-derived component content is 14.7 to 45%. If the plant-derived component content is too high, the comfort of the automobile seat is lost, and if it is too low, the contribution to the environment is low.
  • a more preferable plant-derived component content is 20 to 40%. This makes it possible to provide a urethane foam for automobile seats that has a high contribution to the environment and is inferior to that of automobile foam urethane foams made from petroleum-based raw materials.
  • urethane foam weight is the difference between the total weight of the raw material components constituting the urethane foam and the weight of gas loss released into the atmosphere.
  • the raw material component include polyols, isocyanates, foaming agents, foam stabilizers, and catalysts described later.
  • the gas loss weight is an amount of water used as a foaming agent that becomes carbon dioxide gas due to a chemical reaction with isocyanate and is released into the atmosphere.
  • Carbon dioxide gas is released into the atmosphere by the reaction between isocyanate and water and does not remain in the urethane foam, so the loss is called “gas loss”.
  • the weight of this gas loss (weight of CO 2 released) is defined as the following formula (1), assuming that all water in the raw material is released as carbon dioxide.
  • Released CO 2 weight (CO 2 molecular weight ⁇ water molecular weight) ⁇ water weight (1)
  • plant-derived component content rate (%) is defined like following Formula (2).
  • Plant-derived component content (%) (plant-derived component weight / urethane foam weight) ⁇ 100 ... (2)
  • the plant-derived component content (%) can be quantified using an analytical instrument such as FT-IR or GC-MS.
  • plant-derived component content rate (%) can be calculated
  • Plant-derived component content (%) ⁇ plant-derived component weight ⁇ (total of each raw material component weight ⁇ gas loss weight) ⁇ ⁇ 100 (3)
  • crosslinking is a plant-derived dibasic acid, not only the weight of a plant-derived fat and oil but the weight of a dibasic acid is included in a plant-derived synthetic weight.
  • the “polyol component” refers to a mixture of petroleum-derived polyols and modified plant-derived fats and oils.
  • “polyol” is a generic term for compounds having two or more hydroxyl groups.
  • Examples of petroleum-derived polyols include polyether polyols, polyester polyols, polyether ester polyols, and polymer polyols.
  • a foaming agent, a catalyst, a foam stabilizer, and other additives may be mixed.
  • it is not necessary to mix all these components and you may select 1 or more of the said foaming agents etc. according to a manufacturing method.
  • the “plant-derived fat / oil” refers to an oil / fat obtained by mainly squeezing plant seeds or extracting them with a solvent, followed by purification, decolorization and deodorization.
  • oils and fats include fats and oils containing hydroxy fatty acids such as castor oil and rescrela oil, and transesterification of these oils and fats by reactions such as oxidative polymerization and polyhydric alcohols (including compounds such as polyalkylene glycols).
  • a hydroxy fatty acid-containing derivative obtained by a general known method such as, for example, may be used.
  • castor oil and rescrela oil originally containing hydroxy fatty acid are preferable in that they do not require processing and can be used directly, and it is further preferable to use castor oil having the highest content of hydroxy fatty acid. More preferred.
  • a hydrogenated product of castor oil or castor oil derivative such as hydrogenated castor oil can also be used.
  • the “modified plant-derived fat / oil” is a mixture obtained by mixing a dibasic acid and a plant-derived fat / oil so as to have a desired property and subjecting it to a dehydration condensation reaction.
  • a well-known method can be used for the synthesis
  • dibasic acid is added after dissolving plant-derived fats and oils in arbitrary solvents. This reaction solution is refluxed by a Dean-Stark trap, and water generated by the reaction is removed out of the system while performing a dehydration condensation reaction. After the reaction is completed, the target compound can be obtained by removing the solvent under reduced pressure.
  • Modified plant-derived fats and oils obtained by crosslinking plant-derived fats and oils using dibasic acids can be made to have a high molecular weight up to an arbitrary molecular weight depending on the charging ratio of each component. For this reason, the urethane foam for automobile seats which can prevent a decrease in the resilience elastic modulus and has a rebound resilience enough to be used for automobiles even though the plant-derived component content is high. Can be obtained.
  • dibasic acid examples include aliphatic dibasic acids, alicyclic dibasic acids, aromatic dibasic acids, and mixtures thereof.
  • aliphatic dibasic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, tetradecanediic acid.
  • Acid pentadecanedioic acid, tapsinic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, docosanedioic acid, tetracosanedioic acid, hexacosanedioic acid, octacosanedioic acid, maleic acid, fumaric acid, citraconic acid, Itaconic acid, mesaconic acid, muconic acid, or mixtures thereof.
  • alicyclic dibasic acid examples include cyclopentane dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, tetrahydrophthalic acid, highmic acid, and mixtures thereof.
  • aromatic dibasic acid examples include terephthalic acid, isophthalic acid, phthalic acid, bibenzoic acid, tolylene dicarboxylic acid, xylose carboxylic acid, naphthalene dicarboxylic acid, biphenylene dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, di Phenoxyethane dicarboxylic acid, diphenyl ketone dicarboxylic acid, phenyl indane dicarboxylic acid, or mixtures thereof.
  • a hydroxy dibasic acid having a hydroxyl group in the molecule can also be used.
  • the hydroxy dibasic acid include tartronic acid, isomalic acid, hydroxymethylmalonic acid, dihydroxymalonic acid, malic acid, itamaric acid, citramalic acid, methylmalic acid, ethylmalic acid, dimethylmalic acid, trimethylmalic acid, and tartaric acid.
  • 2,2-dihydroxysuccinic acid methyl tartaric acid, dimethyl tartaric acid, hydroxy glutaric acid, dihydroxy glutaric acid, trihydroxy glutaric acid, hydroxy adipic acid, dihydroxy adipic acid, hydroxy pimelic acid, dihydroxy pimelic acid, hydroxy suberic acid, Hydroxy azelaic acid, dihydroxy azelaic acid, hydroxy sebacic acid, dihydroxy sebacic acid, hydroxy dodecanedioic acid, dihydroxy dodecanedioic acid, hydroxybrassic acid, hydroxytetradecanedioic acid Dihydroxyhexadecanedioic acid, hydroxyoctadecanedioic acid, dihydroxyoctadecanedioic acid, furoic acid, hydroxyeicosanedioic acid, dihydroxyeicosanedioic acid, dihydroxyfumaric acid, dihydroxymaleic acid, hydroxycitraconic acid
  • dibasic acids it is preferable to use at least one of sebacic acid, azelaic acid, adipic acid, and dimer acid.
  • Sebacic acid, azelaic acid, and dimer acid are plant-derived dibasic acids
  • adipic acid is petroleum-derived Dibasic acid.
  • Dimer acid is a polymer containing dibasic acid as a main component, and refers to a polymerized fatty acid obtained by heating a fatty acid such as linoleic acid or oleic acid. Therefore, compounds of tribasic acid or higher such as trimer acid are usually included.
  • the “isocyanate component” refers to an isocyanate compound alone or a mixture of isocyanate compounds used for urethane foam foaming. In addition, you may mix the component which does not react with an isocyanate compound previously. Specific examples of the isocyanate component include aliphatic diisocyanates, alicyclic diisocyanates, aromatic isocyanates, polyisocyanates, or mixtures thereof.
  • the “isocyanate compound” refers to an aromatic polyisocyanate and an aliphatic polyisocyanate containing two or more isocyanate groups in the molecule, or modified products thereof. Specifically, aliphatic diisocyanates, aliphatic cyclic diisocyanates, aliphatic-aromatic diisocyanates, aromatic diisocyanates, aromatic triisocyanates, aromatic tetraisocyanates, polyisocyanates, or mixtures thereof Is mentioned.
  • aliphatic diisocyanates examples include trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3- Examples include butylene diisocyanate, ethylidene diisocyanate, and butylidene diisocyanate.
  • aliphatic cyclic diisocyanates examples include 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,2-cyclohexane diisocyanate, isophorone diisocyanate, and norbornane diisocyanate.
  • Examples of the aliphatic-aromatic diisocyanates include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-biphenyl diisocyanate, 1,5-naphthalene diisocyanate, 1,4-naphthalene diisocyanate, and 4,4′-diphenylmethane.
  • Examples thereof include diisocyanate, 2,4- or 2,6-toluene diisocyanate, polydiphenylnitryl diisocyanate or a mixture thereof, 4,4′-toluidine diisocyanate, and 1,4-xylene diisocyanate.
  • aromatic diisocyanates examples include dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, and chlorodiphenyl diisocyanate.
  • aromatic triisocyanates examples include triphenylmethane-4,4 ′, 4 ′′ -triisocyanate, 1,3,5-triisocyanatebenzene, and 2,4,6-triisocyanate toluene.
  • Examples of the group tetraisocyanates include 4,4′-diphenyl-dimethylmethane-2,2 ′, 5,5′-tetraisocyanate, and examples of the polyisocyanates include toluene diisocyanate dimer and toluene diisocyanate trimer. Can be mentioned.
  • the influence of the viscosity of the polyol component on production is very large.
  • the viscosity of the polyol component must be 3000 cP or less. If the modified plant-derived oil has a viscosity exceeding 3000 cP, it must be mixed with another polyol and diluted to 3000 cP or less. This leads to a decrease in the content of plant-derived components in the urethane foam for automobile seats, and an increase in the amount of carbon dioxide that is released into the atmosphere.
  • the modified plant-derived fat according to the present invention has a low viscosity of 3000 cP or less, any plant-derived component content can be selected according to the purpose. Moreover, there is no restriction
  • the “urethane foam for automobile seats” is manufactured by a known manufacturing method such as a slab method, a one-shot method, a semi-premer method and a prepolymer method.
  • the foaming agent for example, water, an organic foaming agent, an inorganic foaming agent, air, or carbon dioxide can be used.
  • the organic foaming agent include acetone, dichloromethane, nitroalkane, nitrourea, aldoxime, active methylene compound, acid amide, tertiary alcohol, and oxalic acid hydrate.
  • the inorganic foaming agent include boric acid, solid carbonic acid, and aluminum hydroxide.
  • water is the most preferred blowing agent.
  • examples of the catalyst for adjusting the reaction rate of the polyol and the isocyanate include catalysts usually used for the production of polyurethane, such as tertiary amines and reactive amines.
  • tertiary amine for example, triethylamine, tripropylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, dimethylbenzylamine, N, N, N ′, N′-tetramethylhexamethylenediamine N, N, N ′, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, bis- (2-dimethylaminoethyl) ether, triethylenediamine, 1,8-diaza-bicyclo (5,4,0) undecene -7,1,2-dimethylimidazole, 1-butyl-2-methylimidazole.
  • Examples of the reactive amine include dimethylethanolamine, N-trioxyethylene-N, N-dimethylamine, and N, N-dimethyl-N-hexanolamine.
  • These organic acid salts carboxylic acid metal salts such as stannous octoate, dibutyltin dilaurate, potassium acetate, potassium 2-ethylhexanoate, organic metal compounds such as dibutyltin dilaurate, stannous octoate (in addition to aluminum, tin ) Etc. may be used.
  • the addition amount of the catalyst is preferably 0.01 to 10 parts by weight, and more preferably 0.3 to 2 parts by weight.
  • foam stabilizer examples include foam stabilizers usually used in the production of polyurethane, such as silicone foam stabilizers and fluorine foam stabilizers, and it is preferable to use silicone foam stabilizers.
  • foam stabilizers usually used in the production of polyurethane such as silicone foam stabilizers and fluorine foam stabilizers
  • silicone foam stabilizers it is preferable to use silicone foam stabilizers.
  • an active hydrogen compound, a crosslinking agent, a light stabilizer, a plasticizer, an antioxidant, a heat stabilizer, a filler, an anti-coloring agent, a pigment, and other additives are added as necessary. be able to.
  • the rebound elastic modulus of the obtained urethane foam was measured according to JIS K6400. The obtained results are shown in Table 1 below. Table 1 shows the blending ratio of the raw materials of urethane foams according to Examples 1, 2, 3, 4 and Comparative Examples 1, 2 and the number of parts by weight of isocyanate component, isocyanate (index), plant-derived component content and rebound resilience. .
  • a polyol (trade name: Exenol 3040, manufactured by Asahi Glass Co., Ltd.) was used as the communicating agent.
  • As the isocyanate component a mixture of toluene diisocyanate and polydiphenylmethyl diisocyanate (trade name: Cosmonate TM-20 manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) was used.
  • Table 2 shows the blending ratio of the raw materials of urethane foam according to Examples 5 to 10, the number of parts by weight of the isocyanate component, the isocyanate (index), the plant-derived component content, and the rebound resilience.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • the types of polyol components, catalysts, foam stabilizers and the like are not limited to those described above, and other polyol components, catalysts, foam stabilizers, and the like can be used, and their blending ratio is also limited to the above-described numerical values. It is not a thing.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, you may delete all the components shown by embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is urethane foam for use in automobile seats, which is obtained by reacting at least a polyol component with an isocyanate component, wherein the polyol component contains a modified vegetable-derived oil or fat obtained by crosslinking a vegetable-derived oil or fat using a dibasic acid and a petroleum-derived polyol, the content of vegetable-derived components in the urethane foam is from 14.7 to 45%, and the modulus of repulsion elasticity of the urethane foam is from 43 to 70%.

Description

自動車座席用ウレタンフォーム及びその製造方法Urethane foam for automobile seats and manufacturing method thereof
 本発明は、ウレタンフォーム原料成分に植物由来油脂を使用した自動車座席用ウレタンフォームに関する。更に詳しくは、本発明は、自動車座席用ウレタンフォームの全重量のうちの植物由来成分の含有率を向上させるのみならず、原料粘度を大幅に減少することによる工業的生産性の向上、及び、原料を安定的に供給できる自動車座席用ウレタンフォーム及びその製造方法に関する。 The present invention relates to a urethane foam for automobile seats using plant-derived fats and oils as a urethane foam raw material component. More specifically, the present invention not only improves the content of plant-derived components in the total weight of urethane foam for automobile seats, but also improves industrial productivity by greatly reducing the raw material viscosity, and The present invention relates to a urethane foam for automobile seats capable of stably supplying raw materials and a method for producing the same.
 周知の如く、地球温暖化防止、循環型社会の構築をめざし、技術開発の取り組みが世界規模で行われている。二酸化炭素は地球温暖化の一因とされている温室効果ガスの一つであり、その排出量の削減が求められている。 As is well known, technological development efforts are being carried out on a global scale with the aim of preventing global warming and building a recycling-oriented society. Carbon dioxide is one of the greenhouse gases that contribute to global warming, and there is a need to reduce its emissions.
 ここで、現在工業的に生産されている自動車座席用ウレタンフォームは石油由来原料から製造されている(特許文献1)。ところで、この自動車座席用ウレタンフォームは廃車処理の際、シュレッダー処理された後、焼却処理される。従って、特許文献1のような石油由来原料のウレタンフォームを焼却すると、地球温暖化の一因とされている温室効果ガスである二酸化炭素が増加してしまう。 Here, urethane foam for automobile seats currently produced industrially is manufactured from petroleum-derived raw materials (Patent Document 1). By the way, this urethane foam for automobile seats is incinerated after being subjected to a shredder process at the time of scrap car processing. Therefore, if the petroleum-derived raw material urethane foam as in Patent Document 1 is incinerated, carbon dioxide, which is a greenhouse gas that contributes to global warming, increases.
 また、石油や石炭は有限で再生が不可能な資源であり、資源枯渇を防止するためにもその使用量削減が求められている。この石油由来原料の代替原料として注目されているのが植物由来原料である。植物由来原料は植物が大気中の二酸化炭素を取り込んで生産する、再生可能な資源である。従って、焼却によって二酸化炭素が発生しても、元々が二酸化炭素から光合成により作られているので、地球規模での二酸化炭素の収支はゼロであり地球温暖化を防止できると考えられている。このようなことから石油由来原料に代わって、植物由来原料を使用する動きがある。従来、植物由来原料からポリウレタンフォームの原料を製造する方法として、様々な方法が検討されている(特許文献2,3,4、非特許文献1)。 Also, oil and coal are limited and non-recyclable resources, and reduction of their usage is required to prevent resource depletion. Plant-derived raw materials are attracting attention as alternative raw materials for these petroleum-derived raw materials. Plant-derived materials are renewable resources that plants produce by taking in carbon dioxide in the atmosphere. Therefore, even if carbon dioxide is generated by incineration, the carbon dioxide balance on the global scale is zero because it is originally made from carbon dioxide by photosynthesis, and it is thought that global warming can be prevented. For this reason, there is a movement to use plant-derived materials instead of petroleum-derived materials. Conventionally, various methods have been studied as a method for producing a polyurethane foam material from plant-derived materials (Patent Documents 2, 3, and 4, Non-Patent Document 1).
 特許文献2には、植物由来の原料として、曝気大豆油をポリエーテル物質として使用したポリウレタンフォームが開示されている。特許文献3,4には、エポキシ化大豆油のアルコール開環物をポリエーテル物質として使用したポリウレタンプレポリマーが開示されている。非特許文献1には、廃大豆油を原料に65%硫酸と30%過酸化水素水を混合加熱し大豆油の持つ2重結合部分に水酸基を導入してポリオールを精製し、これとポリメリックジイソシアネート(PMDI)、水、アミン系触媒、シリコーン系整泡剤を混合攪拌することでウレタンフォームを製造する方法が開示されている。 Patent Document 2 discloses a polyurethane foam using aerated soybean oil as a polyether material as a plant-derived raw material. Patent Documents 3 and 4 disclose a polyurethane prepolymer using an alcohol ring-opened product of epoxidized soybean oil as a polyether material. In Non-patent Document 1, 65% sulfuric acid and 30% hydrogen peroxide water are mixed and heated from raw soybean oil to purify the polyol by introducing a hydroxyl group into the double bond part of soybean oil. A method for producing urethane foam by mixing and stirring (PMDI), water, an amine catalyst, and a silicone foam stabilizer is disclosed.
 上記特許文献2~4に記載のポリウレタンフォームは植物由来であり、焼却による二酸化炭素の排出量の削減が期待されている。しかしながら、特許文献2のポリウレタンフォームは大豆油の低分子量に起因して、反発弾性が不十分であり自動車座席用クッションとしては使用できない。また、特許文献3,4のポリウレタンプレポリマーは、主として湿気硬化型1成分系ポリウレタンフォームの形成に用いられるものであり、自動車座席用ウレタンフォームに用いられるものではない。 The polyurethane foams described in Patent Documents 2 to 4 are derived from plants and are expected to reduce carbon dioxide emissions by incineration. However, the polyurethane foam of Patent Document 2 has insufficient rebound resilience due to the low molecular weight of soybean oil and cannot be used as a cushion for an automobile seat. Moreover, the polyurethane prepolymers of Patent Documents 3 and 4 are mainly used for forming moisture-curing one-component polyurethane foams, and are not used for urethane foams for automobile seats.
 また、非特許文献1のウレタンフォームの反発弾性率(JIS K6400)は1%であり自動車用途の目標値40%以上には程遠い。この反発弾性率は自動車座席用ウレタンフォーム材の特性値としては最も重要であり、反発弾性率が低いとウレタンフォームを自動車座席に用いる場合には、厚くして底づき感をなくす必要がある。しかし、フォームを厚くすることは限られた自動車の空間を狭めることにつながり好ましくない。また、底づき感をなくすためにフォームを硬くすると、座り心地が悪化してしまう。更に、非特許文献1のウレタンフォームの永久圧縮歪み(JIS K6400の50%圧縮)は47%であり、自動車用途の目標値20%以下には程遠い。 Also, the resilience modulus (JIS K6400) of the urethane foam of Non-Patent Document 1 is 1%, which is far from the target value of 40% or more for automobile use. The rebound resilience is the most important characteristic value of the urethane foam material for automobile seats. If the rebound resilience is low, the urethane foam needs to be thickened to eliminate the feeling of bottoming out when the urethane foam is used for the automobile seat. However, increasing the thickness of the foam is not preferable because it leads to narrowing the space of a limited automobile. In addition, if the foam is hardened to eliminate the feeling of bottoming, the sitting comfort is deteriorated. Furthermore, the permanent compression strain (50% compression of JIS K6400) of the urethane foam of Non-Patent Document 1 is 47%, which is far from the target value of 20% or less for automobile use.
 特許文献5において、本出願人らは、ヒマシ油を予めイソシアネートで架橋したウレタンプレポリマーを用いることにより植物由来成分含有率を高めることができた。しかしながら、プレポリマーは架橋により生成される化学結合がウレタン結合であるため、結合間の水素結合に由来し、プレポリマーの粘度が非常に高くなってしまう。このことにより、汎用の発泡機を用いるためには石油由来ポリオールにより希釈する必要性が生じてしまい、その結果、植物由来成分含有率を高くすることができない。また、粘度の増加により、植物由来成分の高分子量化が困難であり、自動車座席用シートの反発弾性が低下してしまう問題があった。 In Patent Document 5, the present applicants were able to increase the plant-derived component content by using a urethane prepolymer obtained by crosslinking castor oil with an isocyanate in advance. However, in the prepolymer, since the chemical bond generated by crosslinking is a urethane bond, it is derived from a hydrogen bond between the bonds, and the viscosity of the prepolymer becomes very high. For this reason, in order to use a general-purpose foaming machine, it becomes necessary to dilute with a petroleum-derived polyol, and as a result, the plant-derived component content cannot be increased. In addition, due to the increase in viscosity, it is difficult to increase the molecular weight of plant-derived components, and there has been a problem that the resilience of the seat for automobile seats is lowered.
 特許文献6には、ポリウレタンフォームシーリング材の製造方法の中の記述に、「ヒマシ油誘導体ポリオールとして、例えば、ヒマシ油ポリエステル;ヒマシ油とアジピン酸等の他酸との混合ポリカルボン酸より得られるポリエステル」との記載があるものの、自動車座席用ウレタンフォーム用途として最も重要である反発弾性について全く記載されていない。特許文献6のポリウレタンフォームは、用途が防水性シーリング材であり、自動車座席用ウレタンフォーム材として用いられるものではない。また、植物由来成分含有率に関しても記載されていない。 Patent Document 6 includes a description in a method for producing a polyurethane foam sealant, “as castor oil derivative polyol, for example, castor oil polyester; obtained from a mixed polycarboxylic acid of castor oil and other acids such as adipic acid. Although there is a description of “polyester”, it does not describe at all the rebound resilience that is most important for urethane foam use for automobile seats. The polyurethane foam of Patent Document 6 is used as a waterproof sealing material and is not used as a urethane foam material for automobile seats. Moreover, it is not described regarding the plant-derived component content.
 また、特許文献7において、本出願人らは、ヒマシ油をアルデヒド化合物により架橋し、植物由来成分含有率を向上させつつも、原料粘度を減少させることに成功した。しかしながら、架橋剤として用いるアルデヒド化合物が高価であり、且つ、架橋反応、及び架橋反応によって得られる変性ヒマシ油の製造法が未だ確立されていないことから、工業的に生産することが不可能である。 In Patent Document 7, the present applicants succeeded in reducing the viscosity of the raw material while crosslinking the castor oil with an aldehyde compound to improve the plant-derived component content. However, since the aldehyde compound used as a crosslinking agent is expensive, and the production method of the modified castor oil obtained by the crosslinking reaction and the crosslinking reaction has not yet been established, it cannot be industrially produced. .
特開平7-206961号公報Japanese Patent Laid-Open No. 7-206961 特表2002-524627号公報JP-T-2002-524627 特開昭59-207914号公報JP 59-207914 A 特開昭63-415123号公報JP 63-415123 A 特開2008-56779号公報JP 2008-56779 A 特開平3-68677号公報Japanese Patent Laid-Open No. 3-68677 特開2009-84321号公報JP 2009-84321 A
 本発明は上記事情を考慮してなされたもので、植物由来成分含有率を高めつつ、より反発弾性率が向上しつつ、且つ、工業的に生産可能な自動車座席用ウレタンフォーム及びその製造方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and a urethane foam for automobile seats that can be industrially produced while increasing the rebound resilience while increasing the plant-derived component content and a method for producing the same. The purpose is to provide.
 本発明に係る自動車座席用ウレタンフォーム(第1の発明)は、少なくともポリオール成分とイソシアネート成分とを反応させて得られ、前記ポリオール成分は、二塩基酸を用いて植物由来油脂を架橋して得られる変性植物由来油脂、及び石油由来ポリオールを含み、植物由来成分含有率14.7~45%、且つ、反発弾性率43~70%であることを特徴とする。 The urethane foam for automobile seats according to the present invention (first invention) is obtained by reacting at least a polyol component and an isocyanate component, and the polyol component is obtained by crosslinking plant-derived fats and oils using a dibasic acid. The plant-derived component content is 14.7 to 45% and the rebound resilience is 43 to 70%.
 本発明に係る自動車座席用ウレタンフォームの製造方法(第2の発明)は、少なくともポリオール成分とイソシアネート成分とを反応させて得られる軟質ポリウレタンフォームからなる自動車座席用ウレタンフォームの製造方法であって、前記ポリオール成分として、二塩基酸を用いて植物由来油脂を架橋して得られる変性植物由来油脂、及び石油由来ポリオールを用いることを特徴とする。 A method for producing urethane foam for automobile seats according to the present invention (second invention) is a method for producing urethane foam for automobile seats comprising a flexible polyurethane foam obtained by reacting at least a polyol component and an isocyanate component, As the polyol component, modified plant-derived fats and oils obtained by crosslinking plant-derived fats and oils using dibasic acids and petroleum-derived polyols are used.
 本発明によれば、従来技術では得られなかった高い植物由来成分含有率を示し、且つ反発弾性率が向上された座り心地の良い自動車座席用ウレタンフォーム及びその製造方法を提供できる。具体的には、本発明により、目的とする自動車座席の快適性や性能値、あるいは環境貢献の必要性に応じて植物由来成分含有率の異なる自動車座席用ウレタンフォームを任意に選択することのできる自動車座席用ウレタンフォーム及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a urethane foam for an automobile seat that exhibits a high plant-derived component content that has not been obtained in the prior art and has an improved rebound resilience, and a method for producing the same. Specifically, according to the present invention, it is possible to arbitrarily select urethane foam for automobile seats having different plant-derived component contents depending on the comfort and performance value of the target automobile seat or the necessity for environmental contribution. A urethane foam for automobile seats and a method for producing the same can be provided.
 以下、この発明に係る自動車座席用ウレタンフォーム及びその製造方法について、更に詳しく説明する。 
 第1の発明において、前記二塩基酸としてセバシン酸,アゼライン酸,アジピン酸,ダイマー酸のうち少なくともいずれか一つを用いることが好ましい。また、前記植物由来油脂としてヒマシ油を用いることが好ましい。更に、前記石油由来ポリオールの数平均分子量が5000~10000であることが好ましい。ここで、石油由来ポリオールの分子量が5000未満の場合、製造されたウレタンフォームの反発弾性が低下して座り心地が悪化するため、自動車座席用ウレタンフォームとして適さない。また、分子量が10000を超える場合、ポリオールの粘度が高くなってしまい、自動車用クッションの製造に汎用的に用いられる高圧発泡機を用いた自動車座席用ウレタンフォームの製造に適さない。
Hereinafter, the urethane foam for automobile seats and the manufacturing method thereof according to the present invention will be described in more detail.
In the first invention, it is preferable to use at least one of sebacic acid, azelaic acid, adipic acid, and dimer acid as the dibasic acid. Moreover, it is preferable to use castor oil as the plant-derived oil. Further, the petroleum-derived polyol preferably has a number average molecular weight of 5,000 to 10,000. Here, when the molecular weight of the petroleum-derived polyol is less than 5000, the rebound resilience of the produced urethane foam is lowered and the seating comfort is deteriorated, so that it is not suitable as a urethane foam for an automobile seat. On the other hand, when the molecular weight exceeds 10,000, the viscosity of the polyol becomes high, which is not suitable for the production of urethane foam for automobile seats using a high-pressure foaming machine that is generally used for the production of automobile cushions.
 第2の発明において、前記ポリオール成分100重量部のうち、前記変性植物由来油脂を20~60重量部用いることが好ましい。ここで、変性植物由来油脂が20重量部未満の場合、植物由来成分含有率が少ないため、環境貢献度が小さい。また、変性植物由来油脂が60重量部を超える場合、反発弾性が小さくなり、目的とする自動車座席の快適性が低下する。 In the second invention, it is preferable to use 20 to 60 parts by weight of the modified plant-derived oil or fat out of 100 parts by weight of the polyol component. Here, when the modified plant-derived fat / oil is less than 20 parts by weight, since the plant-derived component content is low, the environmental contribution is small. Moreover, when the modified plant-derived oil and fat exceeds 60 parts by weight, the resilience is reduced, and the comfort of the intended automobile seat is lowered.
 本発明により、本発明において自動車座席用ウレタンフォーム重量に占める植物由来成分含有率が高ければ、焼却処理時の二酸化炭素排出量を減少させることができ、環境に大幅に貢献することが可能となる。植物由来成分含有率は14.7~45%である。植物由来成分含有率が高すぎると自動車座席の快適性が失われ、低すぎると環境への貢献度が低くなる。より好ましい植物由来成分含有率は20~40%である。これにより環境への貢献度も高く、石油系由来原料により製造された自動車座席用ウレタンフォームと比較して遜色のない自動車座席用ウレタンフォームを提供することが可能となる。 According to the present invention, if the plant-derived component content in the weight of urethane foam for automobile seats is high in the present invention, the amount of carbon dioxide emitted during incineration can be reduced, which can greatly contribute to the environment. . The plant-derived component content is 14.7 to 45%. If the plant-derived component content is too high, the comfort of the automobile seat is lost, and if it is too low, the contribution to the environment is low. A more preferable plant-derived component content is 20 to 40%. This makes it possible to provide a urethane foam for automobile seats that has a high contribution to the environment and is inferior to that of automobile foam urethane foams made from petroleum-based raw materials.
 ここで、「ウレタンフォーム重量」とは、ウレタンフォームを構成する原料成分の重量の総和と大気中に放出されるガスロス重量の差である。原料成分とは、例えば後述するポリオール、イソシアネート、発泡剤、整泡剤、及び触媒を挙げることができる。また、ガスロス重量とは、発泡剤として用いている水がイソシアネートとの化学反応により二酸化炭素ガスとなり、大気中へ放出される量である。 Here, “urethane foam weight” is the difference between the total weight of the raw material components constituting the urethane foam and the weight of gas loss released into the atmosphere. Examples of the raw material component include polyols, isocyanates, foaming agents, foam stabilizers, and catalysts described later. Further, the gas loss weight is an amount of water used as a foaming agent that becomes carbon dioxide gas due to a chemical reaction with isocyanate and is released into the atmosphere.
 イソシアネートと水との反応により二酸化炭酸ガスは大気中に放出され、ウレタンフォーム中には残らないため、その損失分を「ガスロス」という。このガスロスの重量(放出されるCO重量)は、原料中の水が全て二酸化炭素として放出されると仮定して、次式(1)のように定義される。 
 放出されるCO重量=(CO分子量÷水分子量)×水重量   …(1)
 ここで、植物由来成分含有率(%)は、次式(2)のように定義される。 
植物由来成分含有率(%)=(植物由来成分重量÷ウレタンフォーム重量)×100 
                                  …(2) 
 前記植物由来成分含有率(%)は、FT-IRやGC-MS等の分析機器を用いて定量することができる。
Carbon dioxide gas is released into the atmosphere by the reaction between isocyanate and water and does not remain in the urethane foam, so the loss is called “gas loss”. The weight of this gas loss (weight of CO 2 released) is defined as the following formula (1), assuming that all water in the raw material is released as carbon dioxide.
Released CO 2 weight = (CO 2 molecular weight ÷ water molecular weight) × water weight (1)
Here, plant-derived component content rate (%) is defined like following Formula (2).
Plant-derived component content (%) = (plant-derived component weight / urethane foam weight) × 100
... (2)
The plant-derived component content (%) can be quantified using an analytical instrument such as FT-IR or GC-MS.
 なお、植物由来成分含有率(%)は、配合処方が分かっている場合には、次式(3)のようにして求めることができる。 
 植物由来成分含有率(%)={植物由来成分重量÷(各原料成分重量の総和-ガスロス重量)}×100    …(3) 
 ここで、植物由来成重量は、架橋に用いる二塩基酸が植物由来二塩基酸であれば、植物由来油脂の重量だけでなく、二塩基酸の重量も含む。
In addition, plant-derived component content rate (%) can be calculated | required like following Formula (3), when mixing | blending prescription is known.
Plant-derived component content (%) = {plant-derived component weight ÷ (total of each raw material component weight−gas loss weight)} × 100 (3)
Here, if the dibasic acid used for bridge | crosslinking is a plant-derived dibasic acid, not only the weight of a plant-derived fat and oil but the weight of a dibasic acid is included in a plant-derived synthetic weight.
 本発明において、「ポリオール成分」とは、石油由来ポリオールと変性植物由来油脂の混合物をいう。一般に、「ポリオール」とは2つ以上の水酸基を有する化合物の総称を示す。石油由来ポリオールとしては、例えばポリエーテルポリオール,ポリエステルポリオール,ポリエーテルエステルポリオール,ポリマーポリオールが挙げられる。また、本発明において、前記石油由来ポリオールと変性植物由来油脂の混合物に、更にウレタンフォーム発泡に必要なイソシアネート化合物以外の成分を予め混合してもよい。具体的には、発泡剤、触媒、整泡剤及びその他の添加剤を混合してもよい。なお、これらの成分全てを混合する必要は無く、製造方法に応じて前記発泡剤等のうち1つ以上を選択してもよい。 In the present invention, the “polyol component” refers to a mixture of petroleum-derived polyols and modified plant-derived fats and oils. In general, “polyol” is a generic term for compounds having two or more hydroxyl groups. Examples of petroleum-derived polyols include polyether polyols, polyester polyols, polyether ester polyols, and polymer polyols. Moreover, in this invention, you may mix previously components other than the isocyanate compound required for urethane foam foaming into the mixture of the said petroleum-derived polyol and modified plant-derived fats and oils. Specifically, a foaming agent, a catalyst, a foam stabilizer, and other additives may be mixed. In addition, it is not necessary to mix all these components, and you may select 1 or more of the said foaming agents etc. according to a manufacturing method.
 本発明において、「植物由来油脂」とは、主に植物種子を圧搾するか又は溶剤で抽出し、精製、脱色及び脱臭して得られる油脂をいう。この油脂の例としては、ヒマシ油、レスクレラ油等のヒドロキシ脂肪酸を構成成分とする油脂や、これらの油脂を酸化重合や多価アルコール(ポリアルキレングリコール等の化合物を含む)等の反応によるエステル交換等、一般的な公知の方法により得られるヒドロキシ脂肪酸含有の誘導体を用いても良い。しかしながら、元来ヒドロキシ脂肪酸を含有しているヒマシ油、レスクレラ油が、加工を要せず、直接用いることができるという点で好ましく、更にはヒドロキシ脂肪酸の含有量がもっとも多いヒマシ油を用いることがより好ましい。また、水添ヒマシ油のような、ヒマシ油またはヒマシ油誘導体の水素添加物も用いることができる。 In the present invention, the “plant-derived fat / oil” refers to an oil / fat obtained by mainly squeezing plant seeds or extracting them with a solvent, followed by purification, decolorization and deodorization. Examples of these oils and fats include fats and oils containing hydroxy fatty acids such as castor oil and rescrela oil, and transesterification of these oils and fats by reactions such as oxidative polymerization and polyhydric alcohols (including compounds such as polyalkylene glycols). A hydroxy fatty acid-containing derivative obtained by a general known method such as, for example, may be used. However, castor oil and rescrela oil originally containing hydroxy fatty acid are preferable in that they do not require processing and can be used directly, and it is further preferable to use castor oil having the highest content of hydroxy fatty acid. More preferred. A hydrogenated product of castor oil or castor oil derivative such as hydrogenated castor oil can also be used.
 ここで、「変性植物由来油脂」とは、目的とする性状となるよう二塩基酸と植物由来油脂を混合し、脱水縮合反応させたものである。この変性植物由来油脂の合成には、公知の方法を用いることができる。例えば、植物由来油脂を任意の溶媒に溶解させた後、二塩基酸を添加する。この反応液をディーン・スタークトラップにより還流を行い、脱水縮合反応を行ないつつ、系外へと反応により生じる水を除去する。反応が完結した後に、溶媒を減圧除去することにより目的とする化合物を得ることができる。 Here, the “modified plant-derived fat / oil” is a mixture obtained by mixing a dibasic acid and a plant-derived fat / oil so as to have a desired property and subjecting it to a dehydration condensation reaction. A well-known method can be used for the synthesis | combination of this modified plant origin fats and oils. For example, dibasic acid is added after dissolving plant-derived fats and oils in arbitrary solvents. This reaction solution is refluxed by a Dean-Stark trap, and water generated by the reaction is removed out of the system while performing a dehydration condensation reaction. After the reaction is completed, the target compound can be obtained by removing the solvent under reduced pressure.
 二塩基酸を用いて植物由来油脂を架橋して得られる変性植物由来油脂を、夫々の成分の仕込み比により任意の分子量まで高分子量化することができる。このため、反発弾性率の低下を防止することができ、植物由来成分含有率が高含有率であるにも関わらず、自動車用途に用いることができるほどの反発弾性率を有する自動車座席用ウレタンフォームを得ることが可能となる。 Modified plant-derived fats and oils obtained by crosslinking plant-derived fats and oils using dibasic acids can be made to have a high molecular weight up to an arbitrary molecular weight depending on the charging ratio of each component. For this reason, the urethane foam for automobile seats which can prevent a decrease in the resilience elastic modulus and has a rebound resilience enough to be used for automobiles even though the plant-derived component content is high. Can be obtained.
 二塩基酸としては、例えば脂肪族二塩基酸、脂環族二塩基酸、芳香族二塩基酸、またはこれらの混合物が挙げられる。前記脂肪族二塩基酸としては、例えばシュウ酸、マロン酸、琥珀酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、テトラデカン二酸、ペンタデカン二酸、タプシン酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ドコサン二酸、テトラコサン二酸、ヘキサコサン二酸、オクタコサン二酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、メサコン酸、ムコン酸、またはこれらの混合物が挙げられる。 Examples of the dibasic acid include aliphatic dibasic acids, alicyclic dibasic acids, aromatic dibasic acids, and mixtures thereof. Examples of the aliphatic dibasic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, tetradecanediic acid. Acid, pentadecanedioic acid, tapsinic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, docosanedioic acid, tetracosanedioic acid, hexacosanedioic acid, octacosanedioic acid, maleic acid, fumaric acid, citraconic acid, Itaconic acid, mesaconic acid, muconic acid, or mixtures thereof.
 脂環族二塩基酸としては、例えばシクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、テトラヒドロフタル酸、ハイミック酸、またはこれらの混合物が挙げられる。芳香族二塩基酸としては、例えばテレフタル酸、イソフタル酸、フタル酸、ビ安息香酸、トリレンジカルボン酸、キシリンジカルボン酸、ナフタレンジカルボン酸、ビフェニレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸、またはこれらの混合物が挙げられる。 Examples of the alicyclic dibasic acid include cyclopentane dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, tetrahydrophthalic acid, highmic acid, and mixtures thereof. Examples of the aromatic dibasic acid include terephthalic acid, isophthalic acid, phthalic acid, bibenzoic acid, tolylene dicarboxylic acid, xylose carboxylic acid, naphthalene dicarboxylic acid, biphenylene dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, di Phenoxyethane dicarboxylic acid, diphenyl ketone dicarboxylic acid, phenyl indane dicarboxylic acid, or mixtures thereof.
 また、二塩基酸としては、分子中に水酸基を含むヒドロキシ二塩基酸を用いることもできる。前記ヒドロキシ二塩基酸としては、例えばタルトロン酸、イソリンゴ酸、ヒドロキシメチルマロン酸、ジヒドロキシマロン酸、リンゴ酸、イタマル酸、シトラマル酸、メチルリンゴ酸、エチルリンゴ酸、ジメチルリンゴ酸、トリメチルリンゴ酸、酒石酸、2,2-ジヒドロキシ琥珀酸、メチル酒石酸、ジメチル酒石酸、ヒドロキシグルタル酸、ジヒドロキシグルタル酸、トリヒドロキシグルタル酸、ヒドロキシアジピン酸、ジヒドロキシアジピン酸、ヒドロキシピメリン酸、ジヒドロキシピメリン酸、ヒドロキシスベリン酸、ヒドロキシアゼライン酸、ジヒドロキシアゼライン酸、ヒドロキシセバシン酸、ジヒドロキシセバシン酸、ヒドロキシドデカン二酸、ジヒドロキシドデカン二酸、ヒドロキシブラシル酸、ヒドロキシテトラデカン二酸、ジヒドロキシヘキサデカン二酸、ヒドロキシオクタデカン二酸、ジヒドロキシオクタデカン二酸、フロイオン酸、ヒドロキシエイコサン二酸、ジヒドロキシエイコサン二酸、ジヒドロキシフマル酸、ジヒドロキシマレイン酸、ヒドロキシシトラコン酸、ヒドロキシムコン酸、ヒドロキシンクロペンタンジカルボン酸、ヒドロキシシクロヘキサンジカルボン酸、ヒドロキシテトラヒドロフタル酸、ヒドロキシテレフタル酸、ジヒドロキシテレフタル酸、ヒドロキシイソフタル酸、ジヒドロキシイソフタル酸、ヒドロキフタル酸、ジヒドロキシフタル酸、コクシン酸、ヒドロキシナフタレンジカルボン酸、ジヒドロキシナフタレンジカルボン酸、ヒドロキシジフェニルスルホンジカルボン酸、メコン酸またはこれらの混合物が挙げられる。 As the dibasic acid, a hydroxy dibasic acid having a hydroxyl group in the molecule can also be used. Examples of the hydroxy dibasic acid include tartronic acid, isomalic acid, hydroxymethylmalonic acid, dihydroxymalonic acid, malic acid, itamaric acid, citramalic acid, methylmalic acid, ethylmalic acid, dimethylmalic acid, trimethylmalic acid, and tartaric acid. 2,2-dihydroxysuccinic acid, methyl tartaric acid, dimethyl tartaric acid, hydroxy glutaric acid, dihydroxy glutaric acid, trihydroxy glutaric acid, hydroxy adipic acid, dihydroxy adipic acid, hydroxy pimelic acid, dihydroxy pimelic acid, hydroxy suberic acid, Hydroxy azelaic acid, dihydroxy azelaic acid, hydroxy sebacic acid, dihydroxy sebacic acid, hydroxy dodecanedioic acid, dihydroxy dodecanedioic acid, hydroxybrassic acid, hydroxytetradecanedioic acid Dihydroxyhexadecanedioic acid, hydroxyoctadecanedioic acid, dihydroxyoctadecanedioic acid, furoic acid, hydroxyeicosanedioic acid, dihydroxyeicosanedioic acid, dihydroxyfumaric acid, dihydroxymaleic acid, hydroxycitraconic acid, hydroxymuconic acid, hydroxyncropentanedicarboxylic Acid, hydroxycyclohexanedicarboxylic acid, hydroxytetrahydrophthalic acid, hydroxyterephthalic acid, dihydroxyterephthalic acid, hydroxyisophthalic acid, dihydroxyisophthalic acid, hydroxyphthalic acid, dihydroxyphthalic acid, cocsinic acid, hydroxynaphthalenedicarboxylic acid, dihydroxynaphthalenedicarboxylic acid, hydroxy Diphenylsulfone dicarboxylic acid, meconic acid or mixtures thereof are mentioned.
 二塩基酸のうち、セバシン酸、アゼライン酸、アジピン酸、ダイマー酸のうち少なくともいずれか一つを用いることが好ましく、セバシン酸、アゼライン酸、ダイマー酸は植物由来二塩基酸、アジピン酸は石油由来二塩基酸である。なお、ダイマー酸は二塩基酸が主成分である重合物であり、リノール酸、オレイン酸などの脂肪酸を加熱することにより得られる重合脂肪酸のことをいう。そのためトリマー酸などの三塩基酸以上の化合物も通常含まれている。 Among dibasic acids, it is preferable to use at least one of sebacic acid, azelaic acid, adipic acid, and dimer acid. Sebacic acid, azelaic acid, and dimer acid are plant-derived dibasic acids, and adipic acid is petroleum-derived Dibasic acid. Dimer acid is a polymer containing dibasic acid as a main component, and refers to a polymerized fatty acid obtained by heating a fatty acid such as linoleic acid or oleic acid. Therefore, compounds of tribasic acid or higher such as trimer acid are usually included.
 本発明において、「イソシアネート成分」とはウレタンフォーム発泡に用いるイソシアネート化合物単体、又はイソシアネート化合物の混合物をいう。なお、イソシアネート化合物と反応しない成分を予め混合させてもよい。 
 イソシアネート成分の具体的な例としては、例えば脂肪族ジイソシアネート類、脂環式ジイソシアネート類、芳香族イソシアネート類、ポリイソシアネート類、またはこれらの混合物が挙げられる。
In the present invention, the “isocyanate component” refers to an isocyanate compound alone or a mixture of isocyanate compounds used for urethane foam foaming. In addition, you may mix the component which does not react with an isocyanate compound previously.
Specific examples of the isocyanate component include aliphatic diisocyanates, alicyclic diisocyanates, aromatic isocyanates, polyisocyanates, or mixtures thereof.
 ここで、本発明に係る「イソシアネート化合物」とは、分子中にイソシアネート基を2個以上含有する芳香族ポリイソシアネート及び脂肪族ポリイソシアネート、あるいはそれらの変性物をいう。具体的には、脂肪族ジイソシアネート類、脂肪族環式ジイソシアネート類、脂肪族-芳香族ジイソシアネート類、芳香族ジイソシアネート類、芳香族トリイソシアネート類、芳香族テトライソシアネート類、ポリイソシアネート類、又はこれらの混合物が挙げられる。 Here, the “isocyanate compound” according to the present invention refers to an aromatic polyisocyanate and an aliphatic polyisocyanate containing two or more isocyanate groups in the molecule, or modified products thereof. Specifically, aliphatic diisocyanates, aliphatic cyclic diisocyanates, aliphatic-aromatic diisocyanates, aromatic diisocyanates, aromatic triisocyanates, aromatic tetraisocyanates, polyisocyanates, or mixtures thereof Is mentioned.
 前記脂肪族ジイソシアネート類には、例えばトリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、エチリデンジイソシアネート、ブチリデンジイソシアネートが挙げられる。 Examples of the aliphatic diisocyanates include trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3- Examples include butylene diisocyanate, ethylidene diisocyanate, and butylidene diisocyanate.
 前記脂肪族環式ジイソシアネート類には、例えば1,3-シクロペンタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,2-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネートが挙げられる。 Examples of the aliphatic cyclic diisocyanates include 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,2-cyclohexane diisocyanate, isophorone diisocyanate, and norbornane diisocyanate.
 前記脂肪族-芳香族ジイソシアネート類には、例えばm-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ビフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、1,4-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-又は2,6-トルエンジイソシアネート、ポリジフェニルニチルジイソシアネート又はそれらの混合物、4,4’-トルイジンジイソシアネート、1,4-キシレンジイソシアネートが挙げられる。 Examples of the aliphatic-aromatic diisocyanates include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-biphenyl diisocyanate, 1,5-naphthalene diisocyanate, 1,4-naphthalene diisocyanate, and 4,4′-diphenylmethane. Examples thereof include diisocyanate, 2,4- or 2,6-toluene diisocyanate, polydiphenylnitryl diisocyanate or a mixture thereof, 4,4′-toluidine diisocyanate, and 1,4-xylene diisocyanate.
 前記芳香族ジイソシアネート類には、例えばジアニシジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、クロロジフェニルジイソシアネートが挙げられる。前記芳香族トリイソシアネート類には、例えばトリフェニルメタン-4,4’,4”-トリイソシアネート、1,3,5-トリイソシアネートベンゼン、2,4,6-トリイソシアネートトルエンが挙げられる。前記芳香族テトライソシアネート類には、例えば4,4’-ジフェニル-ジメチルメタン-2,2’,5,5’-テトライソシアネートが挙げられる。前記ポリイソシアネート類には、例えばトルエンジイソシアネートダイマー、トルエンジイソシアネートトリマーが挙げられる。 Examples of the aromatic diisocyanates include dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, and chlorodiphenyl diisocyanate. Examples of the aromatic triisocyanates include triphenylmethane-4,4 ′, 4 ″ -triisocyanate, 1,3,5-triisocyanatebenzene, and 2,4,6-triisocyanate toluene. Examples of the group tetraisocyanates include 4,4′-diphenyl-dimethylmethane-2,2 ′, 5,5′-tetraisocyanate, and examples of the polyisocyanates include toluene diisocyanate dimer and toluene diisocyanate trimer. Can be mentioned.
 本発明において、変性植物由来油脂を用いることにより、目的とする自動車座席用ウレタンフォームの物性、あるいは製造設備に合わせて、植物由来成分含有率の高い自動車座席用ウレタンフォームを自由に設計することが可能となる。 In the present invention, by using a modified plant-derived oil and fat, it is possible to freely design a urethane foam for automobile seats having a high plant-derived component content in accordance with the physical properties of the intended automobile seat urethane foam or manufacturing equipment. It becomes possible.
 ここで、本出願人が既に特許文献5において開示したウレタンプレポリマーと本発明との違いを述べる。植物由来油脂と二塩基酸はエステル結合を生成する。このエステル結合は、双極子モーメントがウレタン結合よりも低く、異なる分子の結合間での水素結合力が低い。その結果、得られる変性植物由来油脂の粘度はウレタンプレポリマーと比較すると格段に低くなる。一方、上記結合様式の差異により、得られるフォームの反発弾性率も向上している。このことにより、高い植物由来成分含有率、かつ好適な座り心地を実現する自動車座席用ウレタンフォームを提供することが可能となる。 Here, the difference between the urethane prepolymer previously disclosed by the present applicant in Patent Document 5 and the present invention will be described. Plant-derived oils and dibasic acids form ester bonds. This ester bond has a dipole moment lower than that of a urethane bond, and a hydrogen bonding force between bonds of different molecules is low. As a result, the viscosity of the resulting modified plant-derived oil is significantly lower than that of the urethane prepolymer. On the other hand, the resilience modulus of the foam obtained is also improved due to the difference in the bonding mode. This makes it possible to provide a urethane foam for automobile seats that realizes a high plant-derived component content and a suitable sitting comfort.
 ポリオール成分の粘度が生産へ与える影響は非常に大きい。例えば、自動車用クッションの製造に汎用的に用いられる高圧発泡機ではポリオール成分の粘度が3000cP以下とならなければならない。もし、変性植物由来油脂の粘度が3000cPを超える場合、他のポリオールを混合し、3000cP以下となるよう希釈しなければならない。このことは、自動車座席用ウレタンフォーム中の植物由来成分含有率の減少、ひいては大気中へ放出されてしまう二酸化炭素量の増加につながる。 The influence of the viscosity of the polyol component on production is very large. For example, in a high-pressure foaming machine that is generally used for manufacturing automobile cushions, the viscosity of the polyol component must be 3000 cP or less. If the modified plant-derived oil has a viscosity exceeding 3000 cP, it must be mixed with another polyol and diluted to 3000 cP or less. This leads to a decrease in the content of plant-derived components in the urethane foam for automobile seats, and an increase in the amount of carbon dioxide that is released into the atmosphere.
 この点において、本発明による変性植物由来油脂は3000cP以下の低粘度であるので、目的に応じて任意の植物由来成分含有率を選択できる。また、混合する石油由来ポリオール種に制限がない。このことにより、目的とするウレタンフォーム物性に応じて設計を行なうことが可能となる。 In this respect, since the modified plant-derived fat according to the present invention has a low viscosity of 3000 cP or less, any plant-derived component content can be selected according to the purpose. Moreover, there is no restriction | limiting in the petroleum origin polyol kind to mix. This makes it possible to design in accordance with the intended physical properties of the urethane foam.
 本発明に係る「自動車座席用ウレタンフォーム」は、スラブ法、ワンショット法、セミプレマー法及びプレポリマー法等の公知の製造方法によって製造される。発泡剤としては、例えば水、有機系発泡剤、無機系発泡剤、空気、二酸化炭素を使用することができる。有機系発泡剤としては、例えばアセトン、ジクロロメタン、ニトロアルカン、ニトロ尿素、アルドオキシム、活性メチレン化合物、酸アミド、三級アルコール、シュウ酸水和物が挙げられる。無機系発泡剤としては、例えばホウ酸、固体炭酸、水酸化アルミニウムが挙げられる。しかし、水がもっとも好ましい発泡剤である。 The “urethane foam for automobile seats” according to the present invention is manufactured by a known manufacturing method such as a slab method, a one-shot method, a semi-premer method and a prepolymer method. As the foaming agent, for example, water, an organic foaming agent, an inorganic foaming agent, air, or carbon dioxide can be used. Examples of the organic foaming agent include acetone, dichloromethane, nitroalkane, nitrourea, aldoxime, active methylene compound, acid amide, tertiary alcohol, and oxalic acid hydrate. Examples of the inorganic foaming agent include boric acid, solid carbonic acid, and aluminum hydroxide. However, water is the most preferred blowing agent.
 本発明において、ポリオールとイソシアネートの反応速度を調整するための触媒としては、ポリウレタンの製造に通常用いられる触媒、例えば三級アミンや反応性アミンが挙げられる。具体的には、三級アミンとしては、例えばトリエチルアミン、トリプロピルアミン、トリブチルアミン、N-メチルモルホリン、N-エチルモルホリン、ジメチルベンジルアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’,N”,N”-ペンタメチルジエチレントリアミン、ビス-(2-ジメチルアミノエチル)エーテル、トリエチレンジアミン、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,2-ジメチルイミダゾール、1-ブチル-2-メチルイミダゾールが挙げられる。反応性アミンとしては、例えばジメチルエタノールアミン、N-トリオキシエチレン-N,N-ジメチルアミン、N,N-ジメチル-N-ヘキサノールアミンが挙げられる。これらの有機酸塩、スタナスオクトエート、ジブチルチンジラウレート、酢酸カリウム、2-エチルヘキサン酸カリウム等のカルボン酸金属塩、ジブチルチンジラウレート、スタナスオクトエート等の有機金属化合物(他にアルミニウム、スズ)等を用いても良い。触媒の添加量は、0.01~10重量部であることが好ましく、0.3~2重量部であることが更に好ましい。 In the present invention, examples of the catalyst for adjusting the reaction rate of the polyol and the isocyanate include catalysts usually used for the production of polyurethane, such as tertiary amines and reactive amines. Specifically, as the tertiary amine, for example, triethylamine, tripropylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, dimethylbenzylamine, N, N, N ′, N′-tetramethylhexamethylenediamine N, N, N ′, N ′, N ″, N ″ -pentamethyldiethylenetriamine, bis- (2-dimethylaminoethyl) ether, triethylenediamine, 1,8-diaza-bicyclo (5,4,0) undecene -7,1,2-dimethylimidazole, 1-butyl-2-methylimidazole. Examples of the reactive amine include dimethylethanolamine, N-trioxyethylene-N, N-dimethylamine, and N, N-dimethyl-N-hexanolamine. These organic acid salts, carboxylic acid metal salts such as stannous octoate, dibutyltin dilaurate, potassium acetate, potassium 2-ethylhexanoate, organic metal compounds such as dibutyltin dilaurate, stannous octoate (in addition to aluminum, tin ) Etc. may be used. The addition amount of the catalyst is preferably 0.01 to 10 parts by weight, and more preferably 0.3 to 2 parts by weight.
 整泡剤としては、ポリウレタンの製造に通常用いられる整泡剤、例えばシリコーン系整泡剤、フッ素系整泡剤等が挙げられるが、シリコーン系整泡剤を用いることが好ましい。上記の他に、必要に応じて活性水素化合物、架橋剤、光安定化剤、可塑剤、酸化防止剤、熱安定化剤、充填剤、着色防止剤、顔料、その他の添加剤等を添加することができる。 Examples of the foam stabilizer include foam stabilizers usually used in the production of polyurethane, such as silicone foam stabilizers and fluorine foam stabilizers, and it is preferable to use silicone foam stabilizers. In addition to the above, an active hydrogen compound, a crosslinking agent, a light stabilizer, a plasticizer, an antioxidant, a heat stabilizer, a filler, an anti-coloring agent, a pigment, and other additives are added as necessary. be able to.
 以下、本発明の具体的な実施例及び比較例について説明するが、本発明はこれらの実施例に限定されない。なお、試料1~3の合成において、ヒマシ油としては、伊藤製油株式会社製の商品名:精製ヒマシ油LAVを使用した。 
 実施例 
 [試料1:変性植物由来油脂の合成] (ヒマシ油/セバシン酸=2/1モル) 
 まず、攪拌機、還流冷却器、加熱装置、温度計などを装備したガラス製反応器に、ヒマシ油100重量部とセバシン酸10.9重量部を仕込み反応を開始する。次に、加熱攪拌しながら窒素気流下200~250℃で15~20時間反応させた。この間、エステル化反応により生成する水は系外に留去させ、水酸基価86mgKOH/gの変性植物由来油脂(試料1)を得た。
Hereinafter, specific examples and comparative examples of the present invention will be described, but the present invention is not limited to these examples. In the synthesis of Samples 1 to 3, as castor oil, trade name: refined castor oil LAV manufactured by Ito Oil Co., Ltd. was used.
Example
[Sample 1: Synthesis of modified plant-derived oil and fat] (castor oil / sebacic acid = 2/1 mol)
First, 100 parts by weight of castor oil and 10.9 parts by weight of sebacic acid are charged into a glass reactor equipped with a stirrer, a reflux condenser, a heating device, a thermometer, and the like to start the reaction. Next, the mixture was reacted at 200 to 250 ° C. for 15 to 20 hours under a nitrogen stream while heating and stirring. During this time, water produced by the esterification reaction was distilled out of the system to obtain a modified plant-derived oil and fat (sample 1) having a hydroxyl value of 86 mgKOH / g.
 [試料2:変性植物由来油脂の合成] (ヒマシ油/アジピン酸=2/1モル) 
 まず、攪拌機、還流冷却器、加熱装置、温度計などを装備したガラス製反応器に、ヒマシ油100重量部とアジピン酸7.8重量部を仕込み、試料1と同様な方法でエステル化反応させ、水酸基価90mgKOH/gの変性植物由来油脂(試料2)を得た。
[Sample 2: Synthesis of modified plant-derived oil and fat] (castor oil / adipic acid = 2/1 mol)
First, 100 parts by weight of castor oil and 7.8 parts by weight of adipic acid were charged into a glass reactor equipped with a stirrer, a reflux condenser, a heating device, a thermometer, etc., and subjected to an esterification reaction in the same manner as in Sample 1. A modified plant-derived oil (sample 2) having a hydroxyl value of 90 mgKOH / g was obtained.
 [試料3:変性植物由来油脂の合成] (ヒマシ油/ダイマー酸=2/1モル) 
 まず、攪拌機、還流冷却器、加熱装置、温度計などを装備したガラス製反応器に、ヒマシ油100重量部とダイマー酸20.9重量部を仕込み、試料1と同様な方法でエステル化反応させ、水酸基価91mgKOH/gの変性植物由来油脂(試料3)を得た。
[Sample 3: Synthesis of modified plant-derived oil and fat] (castor oil / dimer acid = 2/1 mol)
First, 100 parts by weight of castor oil and 20.9 parts by weight of dimer acid were charged into a glass reactor equipped with a stirrer, a reflux condenser, a heating device, a thermometer, etc., and subjected to an esterification reaction in the same manner as in Sample 1. A modified plant-derived oil (sample 3) having a hydroxyl value of 91 mgKOH / g was obtained.
 上記の合成法により、変性植物由来油脂を合成することが可能であった。この反応は一般的に広く知られ、その反応制御、工業化は公知の技術により容易に成しえる。このため、変性植物由来油脂の安定供給が可能となり、本発明を広く工業的に実施することができる。 It was possible to synthesize modified plant-derived fats and oils by the above synthesis method. This reaction is generally widely known, and the reaction control and industrialization can be easily performed by known techniques. For this reason, it becomes possible to stably supply the modified plant-derived fats and oils, and the present invention can be widely industrially implemented.
 [自動車座席用ウレタンフォームの作成] 
 まず、ポリオール成分として変性植物由来油脂またはヒマシ油プレポリマーと、石油由来ポリオール、触媒、シリコーン系整泡剤、水、連通化剤を室温で攪拌混合した。次に、イソシアネート成分を加え、ホモミキサーで攪拌混合した後、上金型及び下金型からなる70×350×350mmの金型に注入した。つづいて、上金型を閉め、下金型温度60℃で6.5分間発泡させ、自動車座席用ウレタンフォームを得た。
[Create urethane foam for automobile seats]
First, a modified plant-derived oil or castor oil prepolymer as a polyol component, a petroleum-derived polyol, a catalyst, a silicone-based foam stabilizer, water, and a communicating agent were mixed with stirring at room temperature. Next, after adding an isocyanate component and stirring and mixing with a homomixer, the mixture was poured into a 70 × 350 × 350 mm mold composed of an upper mold and a lower mold. Subsequently, the upper mold was closed and foamed for 6.5 minutes at a lower mold temperature of 60 ° C. to obtain an automobile seat urethane foam.
 得られたウレタンフォームをJIS K6400により反発弾性率を測定した。得られた結果を下記表1に示す。表1は、実施例1,2,3,4及び比較例1,2に係るウレタンフォームの原料の配合割合とイソシアネート成分重量部数、イソシアネート(インデックス)、植物由来成分含有率及び反発弾性率を示す。
Figure JPOXMLDOC01-appb-T000001
The rebound elastic modulus of the obtained urethane foam was measured according to JIS K6400. The obtained results are shown in Table 1 below. Table 1 shows the blending ratio of the raw materials of urethane foams according to Examples 1, 2, 3, 4 and Comparative Examples 1, 2 and the number of parts by weight of isocyanate component, isocyanate (index), plant-derived component content and rebound resilience. .
Figure JPOXMLDOC01-appb-T000001
 表1中、石油由来ポリオールとしては、三井化学ポリウレタン株式会社製の商品名:アクトコールEP-901(分子量7000)を使用した。触媒aとしてはアミン系触媒(東ソー株式会社製の商品名:TEDA L-33)を、触媒bとしてはアミン系触媒(活材ケミカル株式会社製の商品名:MINICO HR-20)を使用した。整泡剤1としては、シリコーン系整泡剤(東レ・ダウコーニング株式会社製の商品名:SF-2962)を使用した。整泡剤2としては、シリコーン系整泡剤(東レ・ダウコーニング株式会社製の商品名:SF-2969)を使用した。連通化剤としては、ポリオール(旭硝子株式会社製の商品名:エクセノール3040)を使用した。イソシアネート成分としては、トルエンジイソシアネートとポリジフェニルメチルジイソシアネートの混合物(三井化学ポリウレタン株式会社製の商品名:コスモネートTM-20)を使用した。 In Table 1, as petroleum-derived polyol, trade name: Actcol EP-901 (molecular weight 7000) manufactured by Mitsui Chemicals Polyurethane Co., Ltd. was used. As the catalyst a, an amine catalyst (trade name: TEDATE L-33 manufactured by Tosoh Corporation) was used, and as the catalyst b, an amine catalyst (trade name: MINICO HR-20, manufactured by Active Materials Chemical Co., Ltd.) was used. As the foam stabilizer 1, a silicone foam stabilizer (trade name: SF-2962 manufactured by Toray Dow Corning Co., Ltd.) was used. As the foam stabilizer 2, a silicone foam stabilizer (trade name: SF-2969, manufactured by Toray Dow Corning Co., Ltd.) was used. A polyol (trade name: Exenol 3040, manufactured by Asahi Glass Co., Ltd.) was used as the communicating agent. As the isocyanate component, a mixture of toluene diisocyanate and polydiphenylmethyl diisocyanate (trade name: Cosmonate TM-20 manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) was used.
 また、下記表2は、実施例5~10に係るウレタンフォームの原料の配合割合とイソシアネート成分重量部数、イソシアネート(インデックス)、植物由来成分含有率及び反発弾性率を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 below shows the blending ratio of the raw materials of urethane foam according to Examples 5 to 10, the number of parts by weight of the isocyanate component, the isocyanate (index), the plant-derived component content, and the rebound resilience.
Figure JPOXMLDOC01-appb-T000002
 表2中、石油由来ポリオール、触媒a,b、整泡剤1,2、連通化剤及びイソシアネート成分は表1の場合と同様なものを用いた。 In Table 2, petroleum-derived polyols, catalysts a and b, foam stabilizers 1 and 2, a communicating agent and an isocyanate component were the same as those in Table 1.
 上記表1,2より、植物由来成分含有率が14.7~45%であるウレタンフォームにおいて実用に耐えうる反発弾性率を保持することが可能となった。また、変性植物由来油脂が低粘度であるため、自動車座席用ウレタンフォーム製造において一般的に用いられている設備で生産可能となる。よって、高い植物由来成分含有率、且つ、座り心地の良好な自動車座席用ウレタンフォームを得ることが可能となった。 From Tables 1 and 2 above, it was possible to maintain a rebound resilience that could withstand practical use in urethane foam having a plant-derived component content of 14.7 to 45%. Moreover, since the modified plant-derived fats and oils have a low viscosity, they can be produced by equipment generally used in the production of urethane foam for automobile seats. Therefore, it became possible to obtain a urethane foam for automobile seats having a high plant-derived component content and good sitting comfort.
 なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、ポリオール成分や触媒、整泡剤等の種類は上述したものに限らず、他のポリオール成分や触媒、整泡剤等を用いることができ、それらの配合割合も上述した数値に限定されるものではない。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. For example, the types of polyol components, catalysts, foam stabilizers and the like are not limited to those described above, and other polyol components, catalysts, foam stabilizers, and the like can be used, and their blending ratio is also limited to the above-described numerical values. It is not a thing. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, you may delete all the components shown by embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Claims (6)

  1.  少なくともポリオール成分とイソシアネート成分とを反応させて得られ、前記ポリオール成分は、二塩基酸を用いて植物由来油脂を架橋して得られる変性植物由来油脂、及び石油由来ポリオールを含み、
     植物由来成分含有率14.7~45%、且つ、反発弾性率43~70%であることを特徴とする自動車座席用ウレタンフォーム。
    It is obtained by reacting at least a polyol component and an isocyanate component, and the polyol component includes a modified plant-derived oil and fat obtained by crosslinking a plant-derived oil and fat using a dibasic acid, and a petroleum-derived polyol,
    A urethane foam for automobile seats, characterized in that it has a plant-derived component content of 14.7 to 45% and a rebound resilience of 43 to 70%.
  2.  前記二塩基酸がセバシン酸,アゼライン酸,アジピン酸,ダイマー酸のうち少なくともいずれか一つであることを特徴とする請求項1記載の自動車座席用ウレタンフォーム。 The automobile seat urethane foam according to claim 1, wherein the dibasic acid is at least one of sebacic acid, azelaic acid, adipic acid and dimer acid.
  3.  前記植物由来油脂がヒマシ油であることを特徴とする請求項1記載の自動車座席用ウレタンフォーム。 2. The urethane foam for automobile seats according to claim 1, wherein the plant-derived fat is castor oil.
  4.  前記石油由来ポリオールの数平均分子量が5000~10000であることを特徴とする請求項1記載の自動車座席用ウレタンフォーム。 2. The urethane foam for automobile seats according to claim 1, wherein the petroleum-derived polyol has a number average molecular weight of 5,000 to 10,000.
  5.  少なくともポリオール成分とイソシアネート成分とを反応させて得られる軟質ポリウレタンフォームからなる自動車座席用ウレタンフォームの製造方法であって、前記ポリオール成分として、二塩基酸を用いて植物由来油脂を架橋して得られる変性植物由来油脂、及び石油由来ポリオールを用いることを特徴とする自動車座席用ウレタンフォームの製造方法。 A method for producing a urethane foam for automobile seats comprising a flexible polyurethane foam obtained by reacting at least a polyol component and an isocyanate component, which is obtained by crosslinking plant-derived fats and oils using a dibasic acid as the polyol component. The manufacturing method of the urethane foam for motor vehicle seats using modified plant origin fats and oils, and petroleum origin polyol.
  6.  前記ポリオール成分100重量部のうち、前記変性植物由来油脂を20~60重量部用いることを特徴とする請求項5記載の自動車座席用ウレタンフォームの製造方法。 6. The method for producing urethane foam for automobile seats according to claim 5, wherein 20 to 60 parts by weight of the modified plant-derived oil or fat is used out of 100 parts by weight of the polyol component.
PCT/JP2010/062930 2009-07-31 2010-07-30 Urethane foam for use in automobile seats and method for producing same WO2011013815A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011524863A JP5675615B2 (en) 2009-07-31 2010-07-30 Urethane foam for automobile seats and manufacturing method thereof
IN881DEN2012 IN2012DN00881A (en) 2009-07-31 2010-07-30
CN201080033318.XA CN102471443B (en) 2009-07-31 2010-07-30 Urethane foam for use in automobile seats and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009179659 2009-07-31
JP2009-179659 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013815A1 true WO2011013815A1 (en) 2011-02-03

Family

ID=43529465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062930 WO2011013815A1 (en) 2009-07-31 2010-07-30 Urethane foam for use in automobile seats and method for producing same

Country Status (4)

Country Link
JP (1) JP5675615B2 (en)
CN (1) CN102471443B (en)
IN (1) IN2012DN00881A (en)
WO (1) WO2011013815A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236910A (en) * 2011-05-11 2012-12-06 Inoac Corp Polyurethane foam for flame lamination
US9475972B2 (en) 2012-12-21 2016-10-25 Dow Global Technologies Llc Adhesive useful for installing vehicle windows
JP7320158B1 (en) 2021-10-18 2023-08-02 株式会社イノアックコーポレーション polyurethane foam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298749A (en) * 2017-05-25 2017-10-27 德清舒华泡沫座椅有限公司 A kind of urethane foam for use in automobile seats material and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787601A (en) * 1953-03-03 1957-04-02 Du Pont Cellular plastic materials which are condensation products of hydroxy containing fatty acid glycerides and arylene dhsocyanates
GB810839A (en) * 1956-01-06 1959-03-25 Napier & Son Ltd Solid foam products produced from polyester resins and polyisocyanates
GB825869A (en) * 1956-12-07 1959-12-23 Baxenden Chem Improvements in or relating to foamed resin materials
GB837339A (en) * 1957-10-21 1960-06-09 Napier & Son Ltd Solid foamed resins
JPH0559144A (en) * 1991-08-28 1993-03-09 Asahi Glass Co Ltd Production of flexible polyurethane foam
JPH10330470A (en) * 1997-06-03 1998-12-15 Toho Rika Kogyo Kk Fatty acid-modified polyester polyol composition
JP2002105182A (en) * 2000-08-01 2002-04-10 Sika Ag Polyhydroxy compound comprising castor oil that has increased reactivity and is suitable for synthesizing polyurethane
JP2005320437A (en) * 2004-05-10 2005-11-17 Honda Motor Co Ltd Urethane foam for automobile seat
JP2008019353A (en) * 2006-07-13 2008-01-31 Dai Ichi Kogyo Seiyaku Co Ltd Method of manufacturing polyurethane foam
JP2008056779A (en) * 2006-08-30 2008-03-13 Toyo Quality One Corp Urethane foam for automotive seat and its manufacturing method
JP2009035617A (en) * 2007-08-01 2009-02-19 Inoac Corp Flexible polyurethane foam
JP2009084321A (en) * 2007-09-27 2009-04-23 Toyo Quality One Corp Urethane foam for car seat and method for manufacturing the same
WO2010023885A1 (en) * 2008-08-26 2010-03-04 日本ポリウレタン工業株式会社 Method of manufacturing flexible polyurethane foam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062997B (en) * 2006-04-30 2011-01-12 王爱华 Vegetable oil polyether polyatomic alcohol duromer polyurethane foam plastic pouring material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787601A (en) * 1953-03-03 1957-04-02 Du Pont Cellular plastic materials which are condensation products of hydroxy containing fatty acid glycerides and arylene dhsocyanates
GB810839A (en) * 1956-01-06 1959-03-25 Napier & Son Ltd Solid foam products produced from polyester resins and polyisocyanates
GB825869A (en) * 1956-12-07 1959-12-23 Baxenden Chem Improvements in or relating to foamed resin materials
GB837339A (en) * 1957-10-21 1960-06-09 Napier & Son Ltd Solid foamed resins
JPH0559144A (en) * 1991-08-28 1993-03-09 Asahi Glass Co Ltd Production of flexible polyurethane foam
JPH10330470A (en) * 1997-06-03 1998-12-15 Toho Rika Kogyo Kk Fatty acid-modified polyester polyol composition
JP2002105182A (en) * 2000-08-01 2002-04-10 Sika Ag Polyhydroxy compound comprising castor oil that has increased reactivity and is suitable for synthesizing polyurethane
JP2005320437A (en) * 2004-05-10 2005-11-17 Honda Motor Co Ltd Urethane foam for automobile seat
JP2008019353A (en) * 2006-07-13 2008-01-31 Dai Ichi Kogyo Seiyaku Co Ltd Method of manufacturing polyurethane foam
JP2008056779A (en) * 2006-08-30 2008-03-13 Toyo Quality One Corp Urethane foam for automotive seat and its manufacturing method
JP2009035617A (en) * 2007-08-01 2009-02-19 Inoac Corp Flexible polyurethane foam
JP2009084321A (en) * 2007-09-27 2009-04-23 Toyo Quality One Corp Urethane foam for car seat and method for manufacturing the same
WO2010023885A1 (en) * 2008-08-26 2010-03-04 日本ポリウレタン工業株式会社 Method of manufacturing flexible polyurethane foam

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236910A (en) * 2011-05-11 2012-12-06 Inoac Corp Polyurethane foam for flame lamination
US9475972B2 (en) 2012-12-21 2016-10-25 Dow Global Technologies Llc Adhesive useful for installing vehicle windows
JP7320158B1 (en) 2021-10-18 2023-08-02 株式会社イノアックコーポレーション polyurethane foam
JP7439319B2 (en) 2021-10-18 2024-02-27 株式会社イノアックコーポレーション polyurethane foam
JP7439320B2 (en) 2021-10-18 2024-02-27 株式会社イノアックコーポレーション polyurethane foam
JP7439318B2 (en) 2021-10-18 2024-02-27 株式会社イノアックコーポレーション polyurethane foam

Also Published As

Publication number Publication date
CN102471443B (en) 2014-04-09
JP5675615B2 (en) 2015-02-25
CN102471443A (en) 2012-05-23
JPWO2011013815A1 (en) 2013-01-10
IN2012DN00881A (en) 2015-07-10

Similar Documents

Publication Publication Date Title
EP2268692B1 (en) Polyurethane elastomers from renewable resources
JP4783696B2 (en) Urethane foam for automobile seats
AU766760B2 (en) Improved cellular or elastomeric plastic material
JP5398715B2 (en) Polyester polyol, polyurethane composition, polyurethane foam composition, polyurethane resin and polyurethane foam
JP5425101B2 (en) Natural oil-based copolymer polyols and polyurethane products made from natural oil-based copolymer polyols
EP2024410B1 (en) Polyurethane elastomer with enhanced hydrolysis resistance
JP5346228B2 (en) Polyol composition and use thereof
WO2013037179A1 (en) Auto-crusting microporous elastomer composition for use in polyurethane foam-filled tire
TW200906879A (en) Polyurethane elastomer with enhanced hydrolysis resistance
JPWO2007020904A1 (en) Composition for polyurethane foam, polyurethane foam obtained from the composition and use thereof
JP2007056269A5 (en)
RU2770806C2 (en) Isocyanate functional polymer components and polyurethane products made of recycled polyurethane products, and corresponding manufacturing methods
JP5675615B2 (en) Urethane foam for automobile seats and manufacturing method thereof
KR20170125938A (en) Polybutadiene for the production of glassy polyurethane
JP2006342305A (en) Method for producing rigid polyurethane foam
JP2008019353A (en) Method of manufacturing polyurethane foam
JP2009084321A (en) Urethane foam for car seat and method for manufacturing the same
JP2006348156A (en) Method for producing rigid polyurethane foam
JP2010202761A (en) Polyol composition and application of the same
JP2017197773A (en) Soft polyurethane resin, and soft polyurethane resin member having excellent vibration resistance, damping property and impact absorption property using the same
CN112703216B (en) Polyurethane foam
CN116925313A (en) Foam stabilizer and polyurethane composition microcellular elastomer containing the same
JPH11322889A (en) Polyisocyanate for rigid polyurethane foam, and production of rigid polyurethane foam using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033318.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524863

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 881/DELNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10804561

Country of ref document: EP

Kind code of ref document: A1