WO2011021437A1 - Rubber composition, crosslinked rubber composition, and pneumatic tire - Google Patents

Rubber composition, crosslinked rubber composition, and pneumatic tire Download PDF

Info

Publication number
WO2011021437A1
WO2011021437A1 PCT/JP2010/060876 JP2010060876W WO2011021437A1 WO 2011021437 A1 WO2011021437 A1 WO 2011021437A1 JP 2010060876 W JP2010060876 W JP 2010060876W WO 2011021437 A1 WO2011021437 A1 WO 2011021437A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber composition
isobutylene
composition according
crosslinked
Prior art date
Application number
PCT/JP2010/060876
Other languages
French (fr)
Japanese (ja)
Inventor
務 高嶋
彬 椎橋
毅 山口
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Priority to JP2011527608A priority Critical patent/JP5543467B2/en
Publication of WO2011021437A1 publication Critical patent/WO2011021437A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/02Crosslinking with dienes

Definitions

  • the present invention relates to a rubber composition, a crosslinked rubber composition, and a pneumatic tire.
  • Patent Document 1 discloses a rubber composition containing a diene raw material rubber, a reinforcing agent, and a specific acid anhydride-modified polybutene in a specific ratio. .
  • Patent Document 2 discloses a studless tire obtained by blending carbon black and / or silica and a polyisobutylene compound having at least one alkoxysilyl group at a specific ratio with rubber such as natural rubber.
  • a tread rubber composition is disclosed.
  • Patent Document 3 discloses that alkoxysilane and at least one hydrogen-bondable site selected from the group of carboxylic acid, amide, ester, hydroxyl group and amino group are contained in the molecule, and isobutylene is used as a monomer.
  • a rubber composition comprising at least one polymer is disclosed.
  • Patent Document 4 has in its molecule at least one free radical selected from the group consisting of a nitroxide radical, a hydrazyl radical, an allyloxy radical, and a trityl radical that exist stably at room temperature and in the presence of oxygen.
  • a rubber composition comprising a polymer comprising isobutylene repeating units is disclosed.
  • Patent Document 5 discloses a rubber composition containing a block copolymer of a diene compound homopolymer or copolymer and polybutene.
  • Patent Document 6 discloses a rubber composition containing a block copolymer of polybutene and polybutadiene.
  • Patent Document 7 discloses a pre-kneaded product obtained by pre-kneading a bromide of a polyisobutylene / p-methylstyrene copolymer with an oxide of a divalent metal atom and a nitrogen atom-containing organic compound.
  • a rubber composition for a tire tread obtained by kneading a rubber component with other rubber components is disclosed.
  • Patent Document 8 discloses a rubber composition comprising a polymer obtained by cationic copolymerization using a Lewis acid catalyst as an initiator and a rubber component, and the polymer Describes that an isobutylene homopolymer or a copolymer of isobutylene and an aromatic vinyl compound is preferable.
  • Patent Document 9 discloses a rubber composition comprising a rubber elastomer, a triblock elastomer and a reinforcing agent in a specific ratio.
  • the triblock elastomer it is described that at least one triblock elastomer having a general configuration of ABA composed of a terminal polystyrene hard segment A and an internal isobutene elastomer / soft segment B is used. Has been.
  • Patent Document 10 discloses a vulcanizable rubber composition obtained by adding a mercaptopolybutenyl derivative having a specific structure or an acylthio-polybutenyl derivative having a specific structure to a sulfur curable rubber. Yes.
  • Patent Document 11 describes a functional polyisobutylene characterized by having a disulfide bond in at least a part of the polymer molecular chain of polyisobutylene.
  • JP 11-35735 A Japanese Patent Laid-Open No. 11-91310 JP 2000-169523 A JP 2000-143732 A Japanese Patent Laid-Open No. 11-80364 JP 2001-131289 A Japanese Patent Laid-Open No. 11-80433 Japanese Patent Laid-Open No. 11-315171 JP 2001-247722 A Japanese Patent Laid-Open No. 10-251221 JP 2005-54016 A
  • An object of the present invention is to provide a novel crosslinked rubber composition useful as a rubber material for tires and a novel rubber composition for obtaining the crosslinked rubber composition. Moreover, an object of this invention is to provide a pneumatic tire provided with the site
  • the present invention comprises a rubber component (A) containing an olefinic double bond and the following formula (1): And a structural unit represented by the following formula (2): [In formula (2), X represents a divalent group, Y represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring, and n represents 0 or 1. ]
  • a novel crosslinked rubber composition having a structure in which the rubber component (A) and the isobutylene polymer (B) are crosslinked is obtained.
  • Such a novel crosslinked rubber composition has a small loss coefficient (tan ⁇ ) at a high temperature (eg, 60 ° C.) and a large loss coefficient (tan ⁇ ) at a low temperature (eg, 0 ° C.) in the dynamic viscoelasticity test. It will be a thing.
  • such a novel crosslinked rubber composition has excellent wear resistance. Therefore, the crosslinked rubber composition obtained from the rubber composition according to the present invention has excellent rolling resistance characteristics, brake braking properties (wet grip properties), and wear resistance when used in, for example, a tread portion of a pneumatic tire. Sex can be expressed.
  • the loss coefficient (tan ⁇ ) at a high temperature for example, 60 ° C.
  • the loss coefficient (tan ⁇ ) at a low temperature for example, 0 ° C.
  • excellent in dynamic viscoelastic properties means that the loss factor at high temperature is smaller and / or the loss factor at low temperature is larger.
  • the novel crosslinked rubber composition described above has good water vapor barrier properties and oxygen barrier properties. Therefore, the crosslinked rubber composition obtained from the rubber composition according to the present invention can be suitably used for, for example, an inner liner part of a pneumatic tire.
  • the isobutylene polymer (B) is represented by the following formula (3) as a structural unit represented by the above formula (2): [In the formula (3), n represents 0 or 1. ] And / or the following formula (4): [In Formula (4), n shows 0 or 1. ] It may have a structural unit represented by
  • the isobutylene polymer (B) containing the structural unit represented by the formula (3) and / or the structural unit represented by the formula (4) is excellent in crosslinkability with the rubber component (A). Therefore, the crosslinked rubber composition obtained from the rubber composition containing such an isobutylene polymer (B) is more excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties. Become.
  • the content of the isobutylene polymer (B) can be 0.5 to 70 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • a crosslinked rubber composition obtained from such a rubber composition is further excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties.
  • the weight average molecular weight of the isobutylene polymer (B) can be 500 to 500,000.
  • the crosslinked rubber composition obtained from such a rubber composition has good processability and further excellent wear resistance.
  • the isobutylene polymer (B) can be substantially free of unsaturated bonds in the main chain.
  • “substantially having no unsaturated bond in the main chain” is based on the total amount of the structural unit represented by the formula (1) and the structural unit represented by the formula (2). It indicates that the content of unsaturated bonds in the main chain is 0.1 mol% or less.
  • the isobutylene polymer (B) may have a random copolymer chain of a structural unit represented by the formula (1) and a structural unit represented by the formula (2). According to such a rubber composition, a cross-linking reaction between the rubber component (A) and the isobutylene polymer (B) proceeds uniformly, and a cross-linked rubber composition that is further excellent in the above effects can be obtained.
  • the rubber composition according to the present invention may further contain a crosslinking agent.
  • the method for crosslinking the rubber component (A) and the isobutylene polymer (B) is not particularly limited, but the rubber composition preferably contains a crosslinking agent and is crosslinked by the crosslinking agent. By performing crosslinking in this manner, a crosslinked rubber composition having excellent moldability and excellent effects can be easily obtained.
  • the rubber component (A) includes natural rubber, butadiene rubber, nitrile rubber, silicone rubber, isoprene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, styrene-isoprene-butadiene rubber, ethylene-propylene-diene rubber, halogen. It can contain at least one selected from the group consisting of halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber and halogenated isobutylene-p-methylstyrene rubber. According to the rubber composition containing such a rubber component (A), it is possible to obtain a crosslinked rubber composition that is further excellent in dynamic viscoelastic properties and wear resistance.
  • the rubber component (A) can be substantially styrene-butadiene rubber.
  • a crosslinked rubber composition obtained from the rubber composition is more suitable for the tread portion of a pneumatic tire. That is, by using styrene-butadiene rubber as the rubber component (A), a crosslinked rubber composition having further excellent dynamic viscoelastic properties and wear resistance can be obtained. And the pneumatic tire which has the said crosslinked rubber composition in a tread part becomes further excellent in rolling resistance tolerance, abrasion resistance, and brake braking property.
  • “Substantially styrene-butadiene rubber” means that 95% by mass or more of the rubber component (A) is styrene-butadiene rubber based on the total amount.
  • the rubber component (A) may contain butyl rubber.
  • the crosslinked rubber composition obtained from the rubber composition is more excellent in water vapor barrier properties and oxygen barrier properties, and is more suitable as a rubber material used for the inner liner portion of the pneumatic tire.
  • the present invention also provides a crosslinked rubber composition obtained by using the rubber composition, wherein the rubber component (A) and the isobutylene polymer (B) are crosslinked.
  • a crosslinked rubber composition is useful as a rubber material for tires because it has excellent dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties.
  • the crosslinked rubber composition according to the present invention can be suitably used not only for tires but also for industrial rubber members such as industrial belts and industrial rubber hoses.
  • the present invention also provides a pneumatic tire containing the crosslinked rubber composition in a tread portion.
  • the crosslinked rubber composition is excellent in dynamic viscoelastic characteristics and wear resistance, it is excellent in rolling resistance characteristics, wear resistance and brake braking performance.
  • the present invention further provides a pneumatic tire containing a crosslinked rubber composition in the inner liner portion.
  • a pneumatic tire since the crosslinked rubber composition is excellent in water vapor barrier property and oxygen barrier property, air leakage is reduced.
  • this invention it is possible to provide a novel crosslinked rubber composition useful as a rubber material for tires and a novel rubber composition for obtaining the crosslinked rubber composition. Moreover, this invention can provide a pneumatic tire provided with the site
  • FIG. 1 is a diagram showing a 13 C-NMR spectrum before a copolymerization reaction in Example 1.
  • FIG. 1 is a diagram showing a 13 C-NMR spectrum of an isobutylene polymer obtained in Example 1.
  • FIG. 1 is a diagram showing a 13 C-NMR spectrum of an isobutylene polymer obtained in Example 1.
  • the basic required characteristics for rubber materials used for tires, particularly for tire treads, include the following. (1) Excellent fracture resistance and wear resistance against repeated stresses such as bending and elongation. (2) The rolling resistance is small (the rolling resistance characteristic is good). (3) Excellent braking performance (wet grip performance) on wet road surfaces.
  • (2) and (3) are both properties related to hysteresis loss of the rubber material.
  • the grip force is increased and the braking performance is improved, but the rolling resistance (rolling resistance) is also increased, resulting in an increase in fuel consumption.
  • the grip performance and the rolling resistance characteristic are in a contradictory relationship, it is difficult to satisfy both the characteristics (2) and (3) at the same time. In fact, it is difficult for conventional rubber materials to satisfy both of these characteristics at the same time, and there is a problem in that wear resistance decreases even if both characteristics are improved.
  • the present inventors have described a rubber composition in which a novel isobutylene polymer having an unsaturated group in the side chain is blended in a rubber component, and a crosslinked rubber composition obtained using the rubber composition. investigated.
  • a crosslinked rubber composition excellent in dynamic viscoelasticity and wear resistance is obtained. It has been found that when a crosslinked rubber composition is used in the tread portion, a tire having both good rolling resistance characteristics and brake braking performance (wet grip properties) and excellent wear resistance can be obtained.
  • the rubber composition according to this embodiment includes a rubber component (A) containing an olefinic double bond, a structural unit represented by the following formula (1), and a structural unit represented by the following formula (2). And an isobutylene polymer (B) having
  • X represents a divalent group
  • Y represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring
  • n represents 0 or 1.
  • a novel crosslinked rubber composition having a structure in which the rubber component (A) and the isobutylene polymer (B) are crosslinked is obtained.
  • the crosslinked rubber composition has a small loss coefficient (tan ⁇ ) at a high temperature (for example, 60 ° C.) in a dynamic viscoelasticity test and a large loss coefficient (tan ⁇ ) at a low temperature (for example, 0 ° C.) ( That is, it has excellent dynamic viscoelastic properties).
  • the crosslinked rubber composition is also excellent in wear resistance.
  • crosslinked rubber composition for example, when used in a tread portion of a pneumatic tire, it has both rolling resistance characteristics and brake braking characteristics, which have been in conflict with each other, and has wear resistance. Can be obtained.
  • the crosslinked rubber composition has good water vapor barrier properties and oxygen barrier properties. Therefore, the said crosslinked rubber composition can be used suitably for the inner liner part of a pneumatic tire, for example.
  • the rolling resistance characteristic is indicated by a loss coefficient (tan ⁇ ) measured at a frequency of 10 to 100 Hz and around 60 ° C. by a dynamic viscoelasticity test of the crosslinked rubber composition.
  • the braking performance (wet grip performance) is indicated by a loss coefficient (tan ⁇ ) measured at a frequency of 10 to 100 Hz and around 0 ° C. by a dynamic viscoelasticity test of the crosslinked rubber composition.
  • Excellent braking performance. “excellent in rolling resistance characteristics” means that the loss coefficient (tan ⁇ ) of the crosslinked rubber composition measured at a frequency of 10 to 100 Hz and around 60 ° C. by a dynamic viscoelasticity test is small.
  • Excellent braking performance (wet grip performance) means that the crosslinked rubber composition has a large loss coefficient (tan ⁇ ) measured by a dynamic viscoelasticity test at a frequency of 10 to 100 Hz and near 0 ° C.
  • the rubber component (A) is not particularly limited as long as it contains an olefinic double bond, and may be any of natural rubber, synthetic rubber and a mixture thereof, and maintains rubber physical properties even by crosslinking. Is preferred. Moreover, the thing whose mechanical physical property (mechanical physical property) increases by bridge
  • the rubber component (A) includes natural rubber (NR), butadiene rubber (BR), nitrile rubber, silicone rubber, isoprene rubber (IR), styrene-butadiene rubber (SBR), isoprene-butadiene rubber, styrene-isoprene-butadiene.
  • NR natural rubber
  • BR butadiene rubber
  • IR isoprene rubber
  • SBR styrene-butadiene rubber
  • isoprene-butadiene rubber styrene-isoprene-butadiene.
  • the rubber component (A) those containing a diene monomer such as butadiene or isoprene as a monomer unit are preferably used from the viewpoint of easy availability.
  • Such rubber component (A) includes natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), styrene-isoprene-butadiene rubber, acrylonitrile-butadiene rubber (NBR). ), Chloroprene rubber (CR), butyl rubber and the like. These may be used alone or in combination of two or more.
  • the dynamic viscoelastic properties and wear resistance of the crosslinked rubber composition are further improved.
  • the content of the styrene-butadiene rubber is preferably 90% by mass or more, and more preferably 95% by mass or more based on the total amount of the rubber component (A).
  • styrene-butadiene rubber alone or a mixture of at least one selected from the group consisting of natural rubber, isoprene rubber and butadiene rubber in styrene-butadiene rubber is preferably used. It is done.
  • a crosslinked rubber composition particularly suitable as a rubber material used for a tread portion of a pneumatic tire is obtained.
  • rolling is achieved.
  • a pneumatic tire having further excellent resistance characteristics, wear resistance, and braking performance can be obtained.
  • the rubber component (A) contains at least one butyl rubber rubber component selected from butyl rubber and halogenated butyl rubber
  • the content of the butyl rubber-based rubber component is preferably 10 to 100% by mass, more preferably 50 to 100% by mass, based on the total amount of the rubber component (A).
  • a crosslinked rubber composition particularly suitable as a rubber material used for the inner liner part of a pneumatic tire is obtained.
  • the crosslinked rubber composition A pneumatic tire with sufficiently reduced air leakage is obtained.
  • the weight average molecular weight of the rubber component (A) is not particularly limited as long as it is larger than the weight average molecular weight of the isobutylene polymer (B), and examples thereof include those exceeding 500,000 and not more than 2,000,000. be able to.
  • the content of the rubber component (A) is preferably 20 to 90% by mass, and preferably 30 to 80% by mass based on the total solid content in the rubber composition. Is more preferable. Further, it may be 20 to 80% by mass, or 30 to 70% by mass. According to such a rubber composition, the above-mentioned crosslinked rubber composition can be obtained efficiently, and the obtained crosslinked rubber composition becomes more excellent in wear resistance.
  • the isobutylene polymer (B) is a polymer containing a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2) (in addition, “polymer” refers to a copolymer. Used as an inclusive term).
  • the divalent group represented by X bears a function as a linking group between ether oxygen (O) and Y in the formula.
  • the divalent group represented by X is preferably an alkylene group, an alkyleneoxy group or an alkyleneoxyalkyl group.
  • n represents 0 or 1, and when n is 0, ether oxygen (O) and Y are directly bonded.
  • Y in the above formula (2) represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring.
  • the alicyclic group Y may be monocyclic, condensed polycyclic or bridged polycyclic as long as it has an unsaturated bond in the ring.
  • the isobutylene polymer (B) preferably has substantially no unsaturated bond in the main chain, but in the side chain, other than the unsaturated bond in the ring of the alicyclic group Y. Further, it may further have an unsaturated bond.
  • alicyclic group Y examples include a norbornenyl group, a tricyclodecenyl group, a tetracyclodecenyl group, a tetracyclododecenyl group, a pentacyclopentadecenyl group, and the like.
  • examples of the cyclic alicyclic group include a cyclohexenyl group, a cyclooctenyl group, and a cyclododecenyl group.
  • the carbon number of the alicyclic group Y is preferably 6 to 15, and more preferably 7 to 10. When the number of carbon atoms of the alicyclic group Y is less than 6, formation of the cyclic compound tends to be difficult, and when it exceeds 15, the raw material of the cyclic compound tends to be difficult to obtain.
  • Examples of the alicyclic group Y include dicyclopentadienyl, methyldicyclopentadienyl, dihydrodicyclopentadienyl (also referred to as tricyclo [5.2.1.0 2,6 ] dec-8-enyl).
  • dodec-4-enyl 9-cyclohexyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-cyclopentyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-methylenetetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-ethylidenetetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-vinyltetracyclo [6.2.1.1 3,6 .
  • dodec-4-enyl 9-propenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-cyclohexenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-cyclopentenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-phenyltetracyclo [6.2.1.1 3,6 .
  • tetracyclododecenyl alicyclic groups such as dodec-4-enyl; 2-norbornenyl, 5-methyl-2-norbornenyl, 5-ethyl-2-norbornenyl, 5-butyl-2-norbornenyl, 5-hexyl-2-norbornenyl, 5-decyl-2-norbornenyl, 5-cyclohexyl-2- Norbornenyl, 5-cyclopentyl-2-norbornenyl, 5-ethylidene-2-norbornenyl, 5-vinyl-2-norbornenyl, 5-propenyl-2-norbornenyl, 5-cyclohexenyl-2-norbornenyl, 5-cyclopentenyl-2- norbornenyl, 5-phenyl-2-norbornenyl, tetracyclo [9.2.1.0 2,10.
  • pentadeca-4,10-dienyl pentacyclo [9.2.1.1 4,7. 0 2,10 . 0 3,8 ] pentadeca-5,12-dienyl, hexacyclo [6.6.1.1 3,6 . 1 10,13 . 0 2,7 . 0 9,14] heptadec-4-cycloolefin alicyclic group or pentacyclic body such enyl; and the like.
  • substituted or unsubstituted alicyclic group means that the alicyclic group may have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, a vinyl group, an allyl group, and an aryl group.
  • aryl group include a phenyl group, a naphthyl group, and a benzyl group.
  • the structural unit represented by the above formula (2) is particularly preferably a structural unit represented by the following formula (3) and / or a structural unit represented by the following formula (4).
  • n 0 or 1.
  • n 0 or 1.
  • the copolymerization ratio of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) is not particularly limited. Based on the amount, the structural unit represented by the above formula (2) is preferably 0.1 to 99 mol%, more preferably 1 to 90 mol%, and more preferably 2 to 80 mol%. Is more preferable.
  • the copolymerization ratio here is the average value of the copolymerization ratio per molecule, and the intensity of the resonance signal of protons belonging to each structure is measured and compared by the 13 C-NMR (500 MHz) method. It can ask for.
  • the polymerization form of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) is either block copolymerization or random copolymerization. Also good.
  • a conventional isobutylene polymer it has been difficult to randomly copolymerize monomers having different reactivities.
  • the structural unit represented by the above formula (1) and the above formula (2) A random copolymer can be obtained effectively.
  • the weight average molecular weight of the isobutylene polymer (B) is preferably not more than the weight average molecular weight of the rubber component (A). Specifically, the weight average molecular weight of the isobutylene polymer (B) is preferably 500 to 500,000, more preferably 700 to 300,000, and still more preferably 1,000 to 200,000.
  • the weight average molecular weight here means the weight average molecular weight (Mw) measured by GPC method.
  • the processability of the resulting rubber composition and the crosslinked rubber composition may be inferior, and when the weight average molecular weight is extremely low, although the processability of the resulting rubber composition and crosslinked rubber composition is improved, the co-crosslinking property with the rubber component (A) may be reduced, and the mechanical properties of the crosslinked rubber composition may be reduced.
  • the content of the isobutylene polymer (B) is preferably 0.5 to 70 parts by mass with respect to 100 parts by mass of the rubber component (A). More preferably, it is part by mass. It can also be 3 to 30 parts by mass. According to such a rubber composition, it is possible to obtain a crosslinked rubber composition that is further excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties, and oxygen barrier properties.
  • the crosslinked rubber composition according to the use can be obtained by appropriately adjusting the content of the isobutylene polymer (B).
  • the content of the isobutylene polymer (B) is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component (A). It is preferable.
  • the content of the isobutylene polymer (B) is 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component (A). Preferably there is.
  • the production method of the isobutylene polymer (B) is not particularly limited.
  • X represents a divalent group
  • Y represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring
  • n represents 0 or 1.
  • the vinyl ether represented by the above formula (5) is preferably a norbornene-based monomer that does not contain a polar group, that is, is composed of only carbon atoms and hydrogen atoms, and the alicyclic group Y is an aliphatic group represented by the above formula (2). The thing similar to the cyclic group Y can be illustrated.
  • the vinyl ether added to the polymerization system is preferably 0.01 to 100 times the mole of the isobutylene monomer used. Prior to the copolymerization reaction of the cationic polymerizable monomer, it is preferable to stir the raw material mixture containing the cationic polymerizable monomer so as to be uniform.
  • a Lewis acid is used as a polymerization catalyst.
  • a Lewis acid it can use widely from well-known things which can be used for cationic polymerization.
  • boron halide compounds such as boron trichloride, boron trifluoride, diethyl ether complex of boron trifluoride, methanol complex of boron trifluoride (BF 3 .MeOH); titanium tetrachloride, titanium tetrabromide, four Titanium halide compounds such as titanium iodide; tin halide compounds such as tin tetrachloride, tin tetrabromide, tin tetraiodide; aluminum halide compounds such as aluminum trichloride, alkyldichloroaluminum, dialkylchloroaluminum; pentachloride Antimony halide compounds such as anti
  • Lewis acids boron trifluoride, boron trifluoride methanol complex, aluminum trichloride, ethyldichloroaluminum, tin tetrachloride, titanium tetrachloride and the like are preferable.
  • the amount of the Lewis acid used can be 0.01 to 1000 mmol equivalent, preferably 0.05 to 500 mmol equivalent, per 1 mol of the raw material monomer.
  • an electron donor component can be allowed to coexist when living cationic polymerization is performed.
  • This electron donor component is considered to have an effect of stabilizing the growing carbon cation and / or an effect of trapping protons in the system during cationic polymerization, and a structure having a narrow molecular weight distribution by addition of the electron donor. Is produced.
  • the electron donor component that can be used is not particularly limited, and any conventionally known electron donor component can be used as long as it has 15 to 60 donors.
  • pyridines such as ⁇ -picoline and di-t-butylpyridine
  • amines such as triethylamine
  • amides such as dimethylacetamide
  • sulfoxides such as dimethylsulfoxide
  • esters phosphorus compounds or tetraisopropoxytitanium
  • bonded with the metal atom can be mentioned.
  • reaction solvent can be used in the copolymerization reaction.
  • the reaction solvent include at least one solvent selected from the group consisting of halogenated hydrocarbons, aliphatic hydrocarbons, and aromatic hydrocarbons. These solvents can be used alone or in combination.
  • halogenated hydrocarbons include chloroform, methylene chloride, 1,1-dichloroethane, 1,2-dichloroethane, n-propyl chloride, n-butyl chloride, 1-chloropropane, 1-chloro-2-methylpropane, 1-chlorobutane.
  • aliphatic hydrocarbon propane, butane, pentane, neopentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, and ethylcyclohexane are preferable. Even if the solvent selected from these is used alone, two or more components are used. It may consist of.
  • aromatic hydrocarbon benzene, toluene, xylene and ethylbenzene are preferable, and the solvent selected from these may be used alone or may be composed of two or more components.
  • the polymer concentration is 0.1 to 80 in consideration of the solubility of the resulting polymer, the viscosity of the solution, and the ease of heat removal. It is preferable to use a solvent so that it becomes mass%, and it is more preferable to use it from 1 to 50 mass% from the viewpoint of production efficiency and operability.
  • the monomer concentration during polymerization is preferably about 0.1 to 8 mol / liter, more preferably about 0.5 to 5 mol / liter.
  • the amount of the organic solvent used in the polymerization is preferably 0.5 to 100 times the amount of the monomer to be used from the viewpoint of controlling appropriate viscosity and heat generation.
  • Various raw materials that can be obtained industrially or experimentally can be used for the various raw materials used in the copolymerization reaction of the cationic polymerizable monomer, but substances having active hydrogen such as water, alcohol, hydrochloric acid, and initiators can be used. If a compound having a chlorine atom bonded to a tertiary carbon other than the above is contained in the raw material, it causes a side reaction as an impurity, so that it is necessary to purify it as low as possible in advance. Moreover, it is necessary to prevent these impurities from entering from the outside during the reaction operation. In order to efficiently obtain the desired polymer, the total number of moles of impurities is preferably suppressed to 1 times or less, more preferably 0.5 times or less based on the total number of polymerization initiation points of the initiator. preferable.
  • the above copolymerization reaction is preferably performed in an atmosphere of an inert gas such as nitrogen, argon or helium.
  • an inert gas such as nitrogen, argon or helium.
  • any conditions such as normal pressure and pressurization can be adopted in consideration of the type of monomer, the type of organic solvent, the polymerization temperature, and the like.
  • the above copolymerization reaction is, for example, a batch type in which a polymerization solvent, isobutylene, a vinyl ether represented by the formula (5), a catalyst, an initiator / chain transfer agent and the like are sequentially charged in one reaction vessel, or Semi-batch can be performed.
  • it may be a continuous method in which a polymerization solvent, a monomer, a catalyst, and, if necessary, an initiator / chain transfer agent and the like are continuously charged in a system and reacted, and then taken out.
  • the batch method is preferred because it is easy to control the polymerization start point and the concentration of the polymerization catalyst during the polymerization.
  • the polymerization temperature to be employed may be appropriately selected according to the target average molecular weight, but the polymerization temperature is about ⁇ 80 to 20 ° C. More preferably, it is about ⁇ 70 to 0 ° C., and the polymerization time is usually about 0.5 to 180 minutes, preferably about 20 to 150 minutes.
  • the polymerization reaction it is preferable to stop the polymerization reaction by adding alcohols such as methanol for ease of handling later.
  • alcohols such as methanol
  • the polymerization reaction is not particularly limited, and any conventional means can be applied. Also, there is no need to perform a stop reaction again.
  • the form of the reactor used in the above copolymerization reaction is not particularly limited, but a stirred tank reactor is preferable.
  • the structure is not particularly limited. For example, it has a structure that can be cooled at the jacket portion, and can uniformly mix and react the monomer, the sequentially supplied catalyst, and the electron donor.
  • a structure is preferred.
  • a structure in which an auxiliary facility such as an internal cooling coil or a reflux condenser is provided to improve the cooling capacity, or a baffle plate is provided to improve the mixing state.
  • the stirring blade used in the stirred tank reactor is not particularly limited, but it is preferable to circulate the reaction liquid in the vertical direction and have high mixing performance, and the polymerization / reaction liquid viscosity is relatively several centipoise.
  • the isobutylene polymer (B) contains the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), it has sufficient crosslinking curability. Therefore, according to the isobutylene polymer (B), the polyisobutylene skeleton can be easily and reliably introduced into the rubber component (A).
  • the isobutylene polymer (B) may be composed only of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2). May further have different structural units.
  • the isobutylene polymer obtained by the above method can be reacted with a cationic polymerizable monomer other than isobutylene for block copolymerization.
  • a block copolymer is produced, a block having a structural unit represented by the formula (1) and a structural unit represented by the formula (2), and a block containing an aromatic vinyl compound as a main component (that is, aromatic And a block containing 50% by mass or more of a vinyl compound).
  • styrene is preferable as the aromatic vinyl compound.
  • the rubber composition according to this embodiment may further contain various reinforcing agents, fillers, rubber extending oils, softening agents and the like used in the field of rubber industry.
  • Reinforcing agents include carbon black and silica.
  • Carbon black is suitably used as a reinforcing agent from the viewpoints of improving wear resistance, rolling resistance characteristics, preventing cracks and cracks caused by ultraviolet rays (preventing ultraviolet degradation), and the like.
  • the type of carbon black is not particularly limited, and conventionally known carbon blacks such as furnace black, acetylene black, thermal black, channel black, and graphite can be used.
  • the physical characteristics such as particle size, pore volume and specific surface area of carbon black are not particularly limited, and various carbon blacks conventionally used in the rubber industry, for example, SAF, ISAF, HAF, FEF, GPF, SRF (all are abbreviations for carbon black classified according to the American ASTM standard D-1765-82a), etc. can be used as appropriate.
  • the blending amount is preferably 5 to 80 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the rubber component (A). Further, it can be 30 to 80 parts by mass, or 40 to 60 parts by mass. In such a blending amount, the effect as a reinforcing agent can be favorably obtained in the rubber composition and the crosslinked rubber composition according to the present embodiment.
  • silica those conventionally used as rubber reinforcing agents can be used without particular limitation, such as dry method white carbon, wet method white carbon, synthetic silicate white carbon, colloidal silica, precipitated silica and the like. It is done.
  • the specific surface area of silica is not particularly limited, but usually a silica having a surface area of 40 to 600 m 2 / g, preferably 70 to 300 m 2 / g, and a primary particle diameter of 10 to 1000 nm should be used. Can do. These may be used alone or in combination of two or more.
  • the amount of silica used is preferably 0.1 to 150 parts by weight, more preferably 10 to 100 parts by weight, and more preferably 30 to 100 parts by weight with respect to 100 parts by weight of the rubber component (A). Is more preferable.
  • a silane coupling agent may be blended with the rubber composition for the purpose of blending silica.
  • the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and 3-chloropropyltrimethoxy.
  • the addition amount of the silane coupling agent can be appropriately changed depending on the desired blending amount of silica, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • mineral powders such as clay and talc
  • carbonates such as magnesium carbonate and calcium carbonate
  • alumina hydrate such as aluminum hydroxide, and the like can be used.
  • the rubber extending oil conventionally used aromatic oil, naphthenic oil, paraffinic oil, etc. can be used.
  • the blending amount of the rubber extending oil is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • Softeners include plant oil softeners such as tall oil, linoleic acid, oleic acid, and abithenoic acid, pine tar, rapeseed oil, cottonseed oil, peanut oil, castor oil, palm oil, and fuctis, paraffinic oil, and naphthenic oil. , Aromatic oils, phthalic acid derivatives such as dibutyl phthalate, and the like.
  • the blending amount of the softening agent is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition according to this embodiment also includes various additives used in the rubber industry, such as anti-aging agents, sulfur, cross-linking agents, vulcanization accelerators, vulcanization retarders, chelating agents, You may contain 1 type, or 2 or more types, such as process oil and a plasticizer, as needed.
  • the amount of these additives is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition according to this embodiment is obtained by crosslinking the rubber component (A) and the isobutylene polymer (B).
  • the crosslinking method is not particularly limited, but is preferably crosslinked with a crosslinking agent.
  • the rubber composition according to this embodiment further contains a crosslinking agent.
  • a crosslinking agent those usually used for crosslinking of rubber can be used without particular limitation, and can be appropriately selected depending on the rubber component (A) and the isobutylene polymer.
  • crosslinking agent examples include sulfur crosslinking agents such as sulfur, morpholine disulfide, and alkylphenol disulfide; cyclohexanone peroxide, methyl acetoacetate peroxide, tert-butyl peroxyisobutyrate, tert-butyl peroxybenzoate, benzoyl peroxide, And organic peroxide crosslinking agents such as lauroyl peroxide, dicumyl peroxide, ditert-butyl peroxide, and 1,3-bis (tert-butylperoxyisopropyl) benzene.
  • the content thereof is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, with respect to 100 parts by mass of the rubber component (A). More preferably.
  • the rubber composition according to the present embodiment may contain a vulcanization accelerator and a vulcanization aid as necessary.
  • the vulcanization accelerator and the vulcanization aid are not particularly limited, and may be appropriately selected and used depending on the rubber component (A), the isobutylene polymer (B) and the crosslinking agent contained in the rubber composition. it can. “Vulcanization” refers to crosslinking via at least one sulfur atom.
  • vulcanization accelerator examples include thiuram accelerators such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide and tetraethylthiuram disulfide; thiazole accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl Sulfenamide accelerators such as -2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; guanidine accelerators such as diphenylguanidine and diortolylguanidine; n-butyraldehyde -Aldehyde-amine accelerators such as aniline condensates and butyraldehyde-monobutylamine condensates; aldehyde-ammonia accelerators such as hexamethylenetetramine; thioureas such as thiocarbanilide
  • Vulcanization aids include metal oxides such as zinc oxide (zinc white) and magnesium oxide; metal hydroxides such as calcium hydroxide; metal carbonates such as zinc carbonate and basic zinc carbonate; stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate; amines such as di-n-butylamine and dicyclohexylamine; ethylene dimethacrylate, diallyl phthalate, N, Nm-phenylene dimaleimide, triallyl isocyanurate And trimethylolpropane trimethacrylate. When blending these vulcanization aids, one type may be used alone, or two or more types may be used in combination.
  • the content of the vulcanization aid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition according to the present embodiment can be manufactured by applying a method generally used as a method for manufacturing a rubber composition. For example, it can manufacture by mixing each component mentioned above using kneading machines, such as a Brabender, a Banbury mixer, and a roll mixer.
  • kneading machines such as a Brabender, a Banbury mixer, and a roll mixer.
  • the crosslinked rubber composition according to this embodiment has a structure in which the rubber component (A) and the isobutylene polymer (B) are crosslinked.
  • a crosslinked rubber composition is excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties. Therefore, the crosslinked rubber composition according to this embodiment is useful as a rubber material for tires. Specifically, for example, when the crosslinked rubber composition according to the present embodiment is used in a tread portion of a tire, brake braking performance (wet grip performance) is compared with a case where no isobutylene polymer (B) is blended. And good rolling resistance characteristics and wear resistance are maintained.
  • the crosslinked rubber composition according to the present embodiment can be produced by a method usually used as a rubber crosslinking method, using the rubber composition.
  • the rubber composition contains a crosslinking agent
  • the rubber composition is molded into a desired shape by heat compression molding, and the rubber component (A) and the isobutylene polymer (B) are crosslinked.
  • a crosslinked rubber composition having the above structure is obtained.
  • the crosslinked rubber composition according to this embodiment is excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties, and oxygen barrier properties, and therefore can be used in various applications that require these properties.
  • it can be suitably used for industrial rubber member applications such as industrial belts and industrial rubber hoses.
  • crosslinked rubber composition according to the present embodiment can be particularly suitably used for tire applications.
  • tire applications for example, automobile tires and tubes, inner liners, bead fillers, plies, belts, tread rubbers, side rubbers, various sealing materials. It can be used for applications such as sealants, aircraft tires and tubes, bicycle tires and tubes, solid tires, and corrected tires.
  • the crosslinked rubber composition according to the present embodiment can be used as a material constituting a tread portion (and a cap portion including the tread portion) in contact with a road surface. Since the pneumatic tire in which the tread portion is formed using the crosslinked rubber composition is excellent in wet grip performance, it is excellent in running stability and brake braking performance. In addition, since the rolling resistance characteristics are excellent and the rolling resistance is small, fuel efficiency can be reduced. Furthermore, since it is excellent in wear resistance, it can withstand long-term use.
  • the crosslinked rubber composition according to the present embodiment can be used as a material constituting the inner liner portion. Since the pneumatic tire in which the inner liner portion is configured using the crosslinked rubber composition can sufficiently reduce air leakage, it can sufficiently prevent deterioration of rolling resistance characteristics due to air leakage. it can.
  • the pneumatic tire according to the present embodiment has, for example, a structure of two or more layers including a cap portion in which a tread portion is in contact with a road surface and a base portion inside the tread portion. It consists of things.
  • a pneumatic tire can be appropriately manufactured according to a method for manufacturing a pneumatic tire using a conventionally known rubber composition.
  • a part or the whole of the inner liner portion is composed of the crosslinked rubber composition.
  • Such a pneumatic tire can be appropriately manufactured according to a method for manufacturing a pneumatic tire using a conventionally known rubber composition.
  • the present invention improves wet grip properties by blending and crosslinking an isobutylene polymer (B) with a rubber material used in a pneumatic tire (for example, rubber exemplified as the rubber component (A)).
  • a method of improving the wet grip property of the tire by forming a tread portion using a crosslinked rubber material having a structure in which the rubber material and the isobutylene polymer (B) are crosslinked.
  • the rolling resistance characteristic and / or the wear resistance is reduced with the improvement of wet grip properties.
  • the rubber material is originally provided. Wet grip properties can be improved while maintaining the rolling resistance characteristics and wear resistance.
  • the present invention also provides water vapor barrier properties and oxygen by blending and crosslinking an isobutylene polymer (B) with a rubber material (eg, rubber exemplified as the rubber component (A)) used in a pneumatic tire. It may be a method for improving the barrier property. That is, it may be a method of improving tire air leakage by forming the inner liner portion using a crosslinked rubber material having a structure in which the rubber material and the isobutylene polymer (B) are crosslinked.
  • a rubber material eg, rubber exemplified as the rubber component (A)
  • Tricyclodecene vinyl ether was synthesized according to the following scheme.
  • tricyclodecene monool (mixture of isomers (6-a) and (6-b)) 186.47 g (1.24 mol) and potassium hydroxide 7.56 g (10 mol%) were placed in a glass flask.
  • 1,3-dimethylimidazolidinone (DMI) (454.35 g) was introduced, and the mixture was reacted at 120 ° C. under reduced pressure (40 mmHg).
  • This reaction solution was introduced into a stainless steel autoclave and reacted at 140 ° C. for 5 hours in an acetylene atmosphere of 0.02 MPa.
  • the flask was immersed in a low temperature bath at a predetermined temperature, and after confirming that the liquid temperature in the system reached the predetermined temperature shown in Table 1, 51.2 mmol of isobutylene was transferred to the reaction system.
  • a prepared catalyst solution (1.14 mmol as ethylaluminum dichloride) obtained by diluting a 1.06 mol / L ethylaluminum dichloride (EADC) / n-hexane solution 10 times with purified hexane was weighed with a syringe, and the reactor Injected into. Two hours after the injection of the catalyst solution, the cryostat was removed from the flask and allowed to stand at room temperature.
  • the reaction mixture was extracted with a 1N aqueous sodium hydroxide solution (twice), and the resulting oil phase was extracted with pure water. After confirming that the pH on the water phase side became neutral, the solvent in the oil phase was distilled off with an evaporator, and the residue was dried with a vacuum dryer at 1 mmHg for 12 hours at 60 ° C. 2.41 g of an isobutylene copolymer was obtained.
  • 13 C-NMR measurement 13 C-NMR measurement was performed on the isobutylene polymers of Production Examples 1 to 6. Specifically, an isobutylene polymer was dissolved in deuterated chloroform and measured with VNMRS-500 manufactured by Varian. The internal standard substance tetramethylsilane was used for chemical shift calibration. The copolymerization ratios determined by 13 C-NMR measurement are shown in Table 1. Further, 13 C-NMR spectrum of the previous copolymerization reaction in Production Example 1 in FIG. 1, the 13 C-NMR spectrum of the resulting isobutylene-based polymer 2, respectively. For reference, FIG. 1 shows the relationship between the peak in the 13 C-NMR spectrum and carbon in the formulas (7-a) and (7-b), and FIG.
  • Formulas (9-a) and (9-b) are copolymers of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (8-a) or (8-b). These copolymer chains may exist in one molecule of the isobutylene polymer.
  • GPC measurement was carried out on the isobutylene polymers of Production Examples 1 to 6 and the isobutylene homopolymer of Production Example 7. Specifically, the compound was dissolved in tetrahydrofuran, and TPC-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 were connected in series with an 8020 GPC system manufactured by Tosoh Corporation, and GPC measurement was performed using tetrahydrofuran as an eluent. Polystyrene standards were used for molecular weight calibration. Table 1 shows the weight average molecular weight of each isobutylene polymer and isobutylene homopolymer determined by GPC measurement.
  • the shear viscosity was applied under conditions of a frequency of 1 Hz and a strain of 10%.
  • a phenomenon in which the viscosity suddenly increased at a predetermined temperature was observed.
  • Table 1 shows the viscosity increase start temperature of each isobutylene polymer.
  • isobutylene homopolymer no increase in viscosity was observed in the measurement temperature range.
  • Example 1 Styrene-butadiene copolymer rubber (JSR SL552, manufactured by JSR Corporation, abbreviated as SBR in Table 2), isobutylene copolymer 6 synthesized in Production Example 6, filler, plasticizer, vulcanizing agent, vulcanized Accelerator, vulcanization aid and anti-aging agent were blended in the amounts shown in Table 2 and kneaded.
  • Silica AQ manufactured by Tosoh Silica
  • process oil N-100, manufactured by Idemitsu Kosan Co., Ltd.
  • sulfur manufactured by Kawagoe Chemical Co., Ltd.
  • the rubber composition obtained by this kneading was compression molded under a vulcanization condition of 160 ° C. ⁇ 20 minutes to produce a sheet.
  • the moldability at this time was extremely good.
  • dynamic viscoelasticity and abrasion resistance were evaluated by the method described later.
  • Example 1 A sheet was prepared and evaluated in the same manner as in Example 1 except that the isobutylene polymer 6 was not used.
  • the apparatus used is a dynamic viscoelasticity measuring apparatus RSA-3 (manufactured by TA INSTRUMENTS). Table 3 shows the measurement results. At this time, the frequency is 10 Hz. This is because the wet grip property correlates with the tan ⁇ value at 10 Hz-0 ° C. by using the viscoelastic time-temperature conversion rule. It is known that the wet grip property is good. Similarly, the rolling resistance correlates with the tan ⁇ value at 10 Hz-60 ° C., and it is known that the smaller the value, the better the rolling resistance.
  • the abrasion resistance test was carried out in accordance with JIS K-6264-2 (vulcanized rubber and thermoplastic rubber-how to determine abrasion resistance-Part 2 test method). Specifically, in an Akron abrasion tester, the abrasion volume (mm 3 ) was measured when 1000 rotations were performed at a rotation speed of 75 rpm under the conditions of a load of 27 N and an inclination angle of 15 degrees, and the abrasion resistance was evaluated. In addition, the test was performed 3 times and these average values were made into the measured value.
  • the reaction mixture was poured into methanol, a white adhesive compound was precipitated.
  • the adhesive compound was isolated and dried at 1 ° HHg for 12 hours at 60 ° C. in a vacuum dryer to obtain a slightly yellow transparent adhesive substance.
  • the obtained transparent adhesive substance is subjected to 13 C-NMR measurement, and it is confirmed that the obtained transparent adhesive substance is the target isobutylene polymer (copolymer of isobutylene and tricyclodecene vinyl ether). did.
  • the isobutylene polymer 8 was evaluated by the same evaluation method as in Production Example 1. The evaluation results are shown in Table 4.
  • Example 2 To the styrene-butadiene copolymer rubber (JSR SL552, manufactured by JSR, abbreviated as SBR in Table 5), the isobutylene polymer 8 synthesized in Production Example 8, a filler, a silane coupling agent, a plasticizer, an additive, A vulcanizing agent, a vulcanization accelerator, a vulcanization aid, and an anti-aging agent were blended in amounts shown in Table 5 and kneaded.
  • JSR SL552 manufactured by JSR, abbreviated as SBR in Table 5
  • SBR styrene-butadiene copolymer rubber
  • Silica AQ (manufactured by Tosoh Silica) is used as the filler, and Si69 (manufactured by Degussa, (EtO) 3 Si—C 3 H 6 —S 4 —C 3 H 6 —Si (as the silane coupling agent). OEt) 3 ), process oil (NS-100, manufactured by Idemitsu Kosan Co., Ltd.) as a plasticizer, sulfur (manufactured by Kawagoe Chemical Co., Ltd.) as a vulcanizing agent, and zinc oxide No.
  • This kneading was performed using a roll machine (6 inches ⁇ ⁇ 16 inches) under the conditions of a rotation speed of 30 rpm and a front / rear roll rotation ratio of 1: 1.22.
  • the rubber composition obtained by this kneading was compression molded under a vulcanization condition of 160 ° C. ⁇ 20 minutes to produce a sheet. The moldability at this time was extremely good. Subsequently, using this sheet
  • Examples 3 to 5 Except having changed the compounding quantity of the isobutylene-type polymer 8 as shown in Table 5, it carried out similarly to Example 2, and produced the sheet
  • Example 3 A sheet was prepared in the same manner as in Example 2 except that 10 parts by mass of the isobutylene homopolymer synthesized in Production Example 7 was used instead of the isobutylene polymer 8, and dynamic viscoelasticity and abrasion resistance were obtained. Evaluated. The evaluation results are shown in Table 6.
  • Example 6 Styrene-butadiene copolymer rubber (SBR 1500, manufactured by JSR, abbreviated as SBR in Table 7), natural rubber (NR, RSS # 1) and halogenated butyl rubber (chlorobutyl 1068, manufactured by JSR)
  • SBR 1500 manufactured by JSR
  • NR natural rubber
  • RSS # 1 natural rubber
  • chlorobutyl 1068 halogenated butyl rubber
  • the isobutylene polymer 6 synthesized in Step 6 carbon black, a softening agent, a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator were blended in the amounts shown in Table 7 and kneaded.
  • FEF manufactured by Tokai Carbon Co., Ltd.
  • softener pine tar (Pinterl MT2-3, manufactured by Tokyo Resin Co., Ltd.), as a vulcanizing agent
  • sulfur manufactured by Kawagoe Chemical Co., Ltd.
  • Zinc oxide No. 2 manufactured by Hakusuitec Co., Ltd.
  • stearic acid manufactured by Nippon Seika Co., Ltd.
  • Noxeller CZ N-cyclohexyl-2-benzoate
  • Thiazylsulfenamide manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • This kneading was performed using a roll machine (6 inches ⁇ ⁇ 16 inches) under the conditions of a rotation speed of 30 rpm and a front / rear roll rotation ratio of 1: 1.22.
  • the rubber composition obtained by this kneading was compression molded under a vulcanization condition of 160 ° C. ⁇ 20 minutes to produce a sheet. The moldability at this time was extremely good.
  • Example 4 A sheet was produced in the same manner as in Example 6 except that the isobutylene polymer 6 was not blended. Using the prepared sheet, the water vapor transmission rate and the oxygen transmission rate were evaluated by the same method as in Example 6. The evaluation results are shown in Table 8.
  • the sheet of Example 6 has lower water vapor permeability and oxygen permeability than the sheet of Comparative Example 4, and has excellent water vapor barrier properties and oxygen barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a rubber composition which contains a rubber component that has an olefinic double bond and an isobutylene polymer that has a structural unit represented by formula (1) and a structural unit represented by formula (2). (In formula (2), X represents a divalent group; Y represents a substituted or unsubstituted alicyclic group that has an unsaturated bond in the ring; and n represents 0 or 1.)

Description

ゴム組成物、架橋ゴム組成物及び空気入りタイヤRubber composition, crosslinked rubber composition, and pneumatic tire
 本発明は、ゴム組成物、架橋ゴム組成物及び空気入りタイヤに関する。 The present invention relates to a rubber composition, a crosslinked rubber composition, and a pneumatic tire.
 従来からタイヤ用のゴム材料としては様々なものが知られている。例えば、タイヤのトレッド部に用いられるゴム材料として、特許文献1には、ジエン系原料ゴム、補強剤及び特定の酸無水物変性ポリブテンを特定の割合で含んでなるゴム組成物が開示されている。 Conventionally, various rubber materials for tires are known. For example, as a rubber material used for a tread portion of a tire, Patent Document 1 discloses a rubber composition containing a diene raw material rubber, a reinforcing agent, and a specific acid anhydride-modified polybutene in a specific ratio. .
 また、特許文献2には、天然ゴム等のゴムに対して、カーボンブラック及び/又はシリカと、アルコキシシリル基を少なくとも一つ有するポリイソブチレン系の化合物とを特定の割合で配合してなるスタッドレスタイヤ用トレッドゴム組成物が開示されている。 Patent Document 2 discloses a studless tire obtained by blending carbon black and / or silica and a polyisobutylene compound having at least one alkoxysilyl group at a specific ratio with rubber such as natural rubber. A tread rubber composition is disclosed.
 また、特許文献3には、アルコキシシランと、カルボン酸、アミド、エステル、水酸基及びアミノ基の群より選ばれる少なくとも1種の水素結合可能な部位とを分子内に有し、かつイソブチレンをモノマーとして少なくとも1種有する重合体を含むゴム組成物が開示されている。 Patent Document 3 discloses that alkoxysilane and at least one hydrogen-bondable site selected from the group of carboxylic acid, amide, ester, hydroxyl group and amino group are contained in the molecule, and isobutylene is used as a monomer. A rubber composition comprising at least one polymer is disclosed.
 また、特許文献4には、常温及び酸素存在下において安定に存在するニトロキシドラジカル、ヒドラジルラジカル、アリロキシラジカル及びトリチルラジカルからなる群から選ばれた少なくとも1種のフリーラジカルを分子中に有し、イソブチレン繰り返し単位を含んでなる重合体を含むゴム組成物が開示されている。 Patent Document 4 has in its molecule at least one free radical selected from the group consisting of a nitroxide radical, a hydrazyl radical, an allyloxy radical, and a trityl radical that exist stably at room temperature and in the presence of oxygen. A rubber composition comprising a polymer comprising isobutylene repeating units is disclosed.
 また、特許文献5には、ジエン系化合物の単独重合体又は共重合体とポリブテンとのブロック共重合体を含むゴム組成物が開示されている。 Patent Document 5 discloses a rubber composition containing a block copolymer of a diene compound homopolymer or copolymer and polybutene.
 また、特許文献6には、ポリブテンとポリブタジエンのブロック共重合体を含むゴム組成物が開示されている。 Patent Document 6 discloses a rubber composition containing a block copolymer of polybutene and polybutadiene.
 また、特許文献7には、ポリイソブチレン/p-メチルスチレン共重合体の臭素化物と二価の金属原子の酸化物及びチッ素原子含有有機化合物とを予備混練りし、ついでえられる予備混練物と他のゴム成分とを混練りすることによりえられるタイヤトレッド用ゴム組成物が開示されている。 Patent Document 7 discloses a pre-kneaded product obtained by pre-kneading a bromide of a polyisobutylene / p-methylstyrene copolymer with an oxide of a divalent metal atom and a nitrogen atom-containing organic compound. A rubber composition for a tire tread obtained by kneading a rubber component with other rubber components is disclosed.
 また、特許文献8には、ルイス酸触媒を開始剤としたカチオン共重合により得られた重合体とゴム成分とを含有することを特徴とするゴム組成物が開示されており、上記重合体としては、イソブチレン単独重合体、又は、イソブチレンと芳香族ビニル化合物との共重合体が好ましい旨記載されている。 Patent Document 8 discloses a rubber composition comprising a polymer obtained by cationic copolymerization using a Lewis acid catalyst as an initiator and a rubber component, and the polymer Describes that an isobutylene homopolymer or a copolymer of isobutylene and an aromatic vinyl compound is preferable.
 また、特許文献9には、ゴムエラストマー、トリブロックエラストマー及び補強剤を、特定の割合で含んでなるゴム組成物が開示されている。そして、上記トリブロックエラストマーとしては、末端ポリスチレンハードセグメントAと内部イソブテン系エラストマー・ソフトセグメントBより構成される、A-B-Aの一般配置を有する少なくとも1種のトリブロックエラストマーを用いることが記載されている。 Further, Patent Document 9 discloses a rubber composition comprising a rubber elastomer, a triblock elastomer and a reinforcing agent in a specific ratio. As the triblock elastomer, it is described that at least one triblock elastomer having a general configuration of ABA composed of a terminal polystyrene hard segment A and an internal isobutene elastomer / soft segment B is used. Has been.
 また、特許文献10には、硫黄硬化性のゴムに対し、特定の構造を有するメルカプトポリブテニル誘導体又は特定の構造を有するアシルチオ-ポリブテニル誘導体を加えてなる加硫性ゴム組成物が開示されている。 Patent Document 10 discloses a vulcanizable rubber composition obtained by adding a mercaptopolybutenyl derivative having a specific structure or an acylthio-polybutenyl derivative having a specific structure to a sulfur curable rubber. Yes.
 さらに、特許文献11には、ポリイソブチレンの少なくとも一部のポリマー分子鎖中にジスルフィド結合を有することを特徴とする機能性ポリイソブチレンが記載されている。 Furthermore, Patent Document 11 describes a functional polyisobutylene characterized by having a disulfide bond in at least a part of the polymer molecular chain of polyisobutylene.
特開平11-35735号公報JP 11-35735 A 特開平11-91310号公報Japanese Patent Laid-Open No. 11-91310 特開2000-169523号公報JP 2000-169523 A 特開2000-143732号公報JP 2000-143732 A 特開平11-80364号公報Japanese Patent Laid-Open No. 11-80364 特開2001-131289号公報JP 2001-131289 A 特開平11-80433号公報Japanese Patent Laid-Open No. 11-80433 特開平11-315171号公報Japanese Patent Laid-Open No. 11-315171 特開2001-247722号公報JP 2001-247722 A 特開平10-251221号公報Japanese Patent Laid-Open No. 10-251221 特開2005-54016号公報JP 2005-54016 A
 本発明は、タイヤ用のゴム材料として有用な新規架橋ゴム組成物及び該架橋ゴム組成物を得るための新規ゴム組成物を提供することを目的とする。また、本発明は、新規架橋ゴム組成物を有する部位を備える空気入りタイヤを提供することを目的とする。 An object of the present invention is to provide a novel crosslinked rubber composition useful as a rubber material for tires and a novel rubber composition for obtaining the crosslinked rubber composition. Moreover, an object of this invention is to provide a pneumatic tire provided with the site | part which has a novel crosslinked rubber composition.
 すなわち本発明は、オレフィン性二重結合を含有するゴム成分(A)と、下記式(1):
Figure JPOXMLDOC01-appb-C000005
で表される構造単位及び下記式(2):
Figure JPOXMLDOC01-appb-C000006
[式(2)中、Xは2価の基を示し、Yは環内に不飽和結合を有する置換又は未置換の脂環基を示し、nは0又は1を示す。]
で表される構造単位を有するイソブチレン系重合体(B)、を含有するゴム組成物を提供する。
That is, the present invention comprises a rubber component (A) containing an olefinic double bond and the following formula (1):
Figure JPOXMLDOC01-appb-C000005
And a structural unit represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000006
[In formula (2), X represents a divalent group, Y represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring, and n represents 0 or 1. ]
A rubber composition containing an isobutylene polymer (B) having a structural unit represented by:
 このようなゴム組成物によれば、ゴム成分(A)とイソブチレン系重合体(B)とが架橋した構造を有する新規な架橋ゴム組成物が得られる。そして、このような新規な架橋ゴム組成物は、動的粘弾性試験における高温(例えば60℃)での損失係数(tanδ)が小さく、低温(例えば0℃)での損失係数(tanδ)が大きいものとなる。また、このような新規な架橋ゴム組成物は、耐磨耗性に優れたものとなる。そのため、本発明に係るゴム組成物から得られる架橋ゴム組成物は、例えば、空気入りタイヤのトレッド部に用いた場合に、優れた転がり抵抗特性、ブレーキ制動性(ウェットグリップ性)及び耐磨耗性を発現することができる。 According to such a rubber composition, a novel crosslinked rubber composition having a structure in which the rubber component (A) and the isobutylene polymer (B) are crosslinked is obtained. Such a novel crosslinked rubber composition has a small loss coefficient (tan δ) at a high temperature (eg, 60 ° C.) and a large loss coefficient (tan δ) at a low temperature (eg, 0 ° C.) in the dynamic viscoelasticity test. It will be a thing. In addition, such a novel crosslinked rubber composition has excellent wear resistance. Therefore, the crosslinked rubber composition obtained from the rubber composition according to the present invention has excellent rolling resistance characteristics, brake braking properties (wet grip properties), and wear resistance when used in, for example, a tread portion of a pneumatic tire. Sex can be expressed.
 以下、動的粘弾性試験における高温(例えば60℃)での損失係数(tanδ)が小さく、低温(例えば0℃)での損失係数(tanδ)が大きいことを、「動的粘弾特性に優れる」という。また、「動的粘弾特性に一層優れる」とは、高温での損失係数がより小さいこと及び/又は低温での損失係数がより大きいこと、をいう。 Hereinafter, in the dynamic viscoelasticity test, the loss coefficient (tan δ) at a high temperature (for example, 60 ° C.) is small and the loss coefficient (tan δ) at a low temperature (for example, 0 ° C.) is large. " Further, “excellent in dynamic viscoelastic properties” means that the loss factor at high temperature is smaller and / or the loss factor at low temperature is larger.
 また、上記の新規な架橋ゴム組成物は、水蒸気バリア性及び酸素バリア性も良好である。そのため、本発明に係るゴム組成物から得られる架橋ゴム組成物は、例えば、空気入りタイヤのインナーライナー部に好適に用いることができる。 In addition, the novel crosslinked rubber composition described above has good water vapor barrier properties and oxygen barrier properties. Therefore, the crosslinked rubber composition obtained from the rubber composition according to the present invention can be suitably used for, for example, an inner liner part of a pneumatic tire.
 本発明に係るゴム組成物により、上記のような架橋ゴム組成物が得られる理由は、必ずしも明らかではないが、ゴム成分(A)のオレフィン性二重結合とイソブチレン系重合体(B)の不飽和結合とが架橋することにより、イソブチレン系重合体(B)由来の構造が強固な化学結合でゴム成分(A)に結合されるためと考えられる。 The reason why such a crosslinked rubber composition as described above can be obtained by the rubber composition according to the present invention is not necessarily clear, but the olefinic double bond of the rubber component (A) and the isobutylene polymer (B) are not. It is considered that the structure derived from the isobutylene polymer (B) is bonded to the rubber component (A) with a strong chemical bond by crosslinking with the saturated bond.
 本発明において、イソブチレン系重合体(B)は、上記式(2)で表される構造単位として下記式(3):
Figure JPOXMLDOC01-appb-C000007
[式(3)中、nは0又は1を示す。]
で表される構造単位及び/又は下記式(4):
Figure JPOXMLDOC01-appb-C000008
[式(4)中、nは0又は1を示す。]
で表される構造単位を有するものとすることができる。
In the present invention, the isobutylene polymer (B) is represented by the following formula (3) as a structural unit represented by the above formula (2):
Figure JPOXMLDOC01-appb-C000007
[In the formula (3), n represents 0 or 1. ]
And / or the following formula (4):
Figure JPOXMLDOC01-appb-C000008
[In Formula (4), n shows 0 or 1. ]
It may have a structural unit represented by
 式(3)で表される構造単位及び/又は式(4)で表される構造単位を含有するイソブチレン系重合体(B)は、ゴム成分(A)との架橋性に優れる。そのため、このようなイソブチレン系重合体(B)を含有するゴム組成物から得られる架橋ゴム組成物は、動的粘弾特性、耐磨耗性、水蒸気バリア性及び酸素バリア性に一層優れるものとなる。 The isobutylene polymer (B) containing the structural unit represented by the formula (3) and / or the structural unit represented by the formula (4) is excellent in crosslinkability with the rubber component (A). Therefore, the crosslinked rubber composition obtained from the rubber composition containing such an isobutylene polymer (B) is more excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties. Become.
 本発明において、イソブチレン系重合体(B)の含有量は、ゴム成分(A)100質量部に対して、0.5~70質量部とすることができる。このようなゴム組成物から得られる架橋ゴム組成物は、動的粘弾特性、耐磨耗性、水蒸気バリア性及び酸素バリア性に一層優れるものとなる。 In the present invention, the content of the isobutylene polymer (B) can be 0.5 to 70 parts by mass with respect to 100 parts by mass of the rubber component (A). A crosslinked rubber composition obtained from such a rubber composition is further excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties.
 本発明において、イソブチレン系重合体(B)の重量平均分子量は、500~500000とすることができる。このようなゴム組成物から得られる架橋ゴム組成物は、加工性が良好となり、且つ耐摩耗性に一層優れたものとなる。 In the present invention, the weight average molecular weight of the isobutylene polymer (B) can be 500 to 500,000. The crosslinked rubber composition obtained from such a rubber composition has good processability and further excellent wear resistance.
 本発明において、イソブチレン系重合体(B)は、主鎖中に不飽和結合を実質的に有しないものとすることができる。なお、ここで「主鎖中に不飽和結合を実質的に有しない」とは、式(1)で表される構造単位及び式(2)で表される構造単位の合計量を基準として、主鎖中の不飽和結合の含有量が0.1モル%以下であることを示す。 In the present invention, the isobutylene polymer (B) can be substantially free of unsaturated bonds in the main chain. Here, “substantially having no unsaturated bond in the main chain” is based on the total amount of the structural unit represented by the formula (1) and the structural unit represented by the formula (2). It indicates that the content of unsaturated bonds in the main chain is 0.1 mol% or less.
 本発明において、イソブチレン系重合体(B)は、式(1)で表される構造単位と式(2)で表される構造単位とのランダム共重合鎖を有するものとすることができる。このようなゴム組成物によれば、ゴム成分(A)とイソブチレン系重合体(B)との架橋反応が均一に進行し、上記効果に一層優れる架橋ゴム組成物を得ることができる。 In the present invention, the isobutylene polymer (B) may have a random copolymer chain of a structural unit represented by the formula (1) and a structural unit represented by the formula (2). According to such a rubber composition, a cross-linking reaction between the rubber component (A) and the isobutylene polymer (B) proceeds uniformly, and a cross-linked rubber composition that is further excellent in the above effects can be obtained.
 本発明に係るゴム組成物は、架橋剤をさらに含有していてもよい。ゴム成分(A)とイソブチレン系重合体(B)との架橋方法は特に制限されるものではないが、ゴム組成物が架橋剤を含有し、当該架橋剤により架橋されることが好ましい。このように架橋を行うことにより、成形性良く、容易に、上記効果に一層優れる架橋ゴム組成物を得ることができる。 The rubber composition according to the present invention may further contain a crosslinking agent. The method for crosslinking the rubber component (A) and the isobutylene polymer (B) is not particularly limited, but the rubber composition preferably contains a crosslinking agent and is crosslinked by the crosslinking agent. By performing crosslinking in this manner, a crosslinked rubber composition having excellent moldability and excellent effects can be easily obtained.
 本発明において、ゴム成分(A)は、天然ゴム、ブタジエンゴム、ニトリルゴム、シリコーンゴム、イソプレンゴム、スチレン-ブタジエンゴム、イソプレン-ブタジエンゴム、スチレン-イソプレン-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、ハロゲン化ブチルゴム、ハロゲン化イソプレンゴム、ハロゲン化イソブチレンコポリマー、クロロプレンゴム、ブチルゴム及びハロゲン化イソブチレン-p-メチルスチレンゴムからなる群より選ばれる少なくとも1種を含有することができる。このようなゴム成分(A)を含有するゴム組成物によれば、動的粘弾特性及び耐磨耗性に一層優れる架橋ゴム組成物を得ることができる。 In the present invention, the rubber component (A) includes natural rubber, butadiene rubber, nitrile rubber, silicone rubber, isoprene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, styrene-isoprene-butadiene rubber, ethylene-propylene-diene rubber, halogen. It can contain at least one selected from the group consisting of halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber and halogenated isobutylene-p-methylstyrene rubber. According to the rubber composition containing such a rubber component (A), it is possible to obtain a crosslinked rubber composition that is further excellent in dynamic viscoelastic properties and wear resistance.
 本発明において、ゴム成分(A)は、実質的にスチレン-ブタジエンゴムとすることができる。ゴム成分(A)が実質的にスチレン-ブタジエンゴムである場合、ゴム組成物から得られる架橋ゴム組成物が、空気入りタイヤのトレッド部に一層好適なものとなる。すなわち、ゴム成分(A)としてスチレン-ブタジエンゴムを採用することにより、動的粘弾特性及び耐磨耗性に一層優れる架橋ゴム組成物が得られる。そして、当該架橋ゴム組成物をトレッド部に有する空気入りタイヤは、転がり抵抗耐性、耐磨耗性及びブレーキ制動性に一層優れるものとなる。なお、「実質的にスチレン-ブタジエンゴムである」とは、ゴム成分(A)の全量基準で95質量%以上がスチレン-ブタジエンゴムであることを示す。 In the present invention, the rubber component (A) can be substantially styrene-butadiene rubber. When the rubber component (A) is substantially styrene-butadiene rubber, a crosslinked rubber composition obtained from the rubber composition is more suitable for the tread portion of a pneumatic tire. That is, by using styrene-butadiene rubber as the rubber component (A), a crosslinked rubber composition having further excellent dynamic viscoelastic properties and wear resistance can be obtained. And the pneumatic tire which has the said crosslinked rubber composition in a tread part becomes further excellent in rolling resistance tolerance, abrasion resistance, and brake braking property. “Substantially styrene-butadiene rubber” means that 95% by mass or more of the rubber component (A) is styrene-butadiene rubber based on the total amount.
 本発明において、ゴム成分(A)は、ブチルゴムを含有するものとすることができる。この場合には、ゴム組成物から得られる架橋ゴム組成物が、水蒸気バリア性及び酸素バリア性に一層優れるものとなり、空気入りタイヤのインナーライナー部に用いるゴム材料として一層好適なものとなる。 In the present invention, the rubber component (A) may contain butyl rubber. In this case, the crosslinked rubber composition obtained from the rubber composition is more excellent in water vapor barrier properties and oxygen barrier properties, and is more suitable as a rubber material used for the inner liner portion of the pneumatic tire.
 本発明はまた、上記ゴム組成物を用いて得られる架橋ゴム組成物であって、ゴム成分(A)と前記イソブチレン系重合体(B)とが架橋した構造を有する、架橋ゴム組成物を提供する。このような架橋ゴム組成物は、動的粘弾特性、耐磨耗性、水蒸気バリア性及び酸素バリア性に優れるため、タイヤ用のゴム材料として有用である。また、本発明に係る架橋ゴム組成物は、タイヤ用途のみならず、工業用ベルト、工業用ゴムホース等の工業用ゴム部材用途等としても好適に使用することができる。 The present invention also provides a crosslinked rubber composition obtained by using the rubber composition, wherein the rubber component (A) and the isobutylene polymer (B) are crosslinked. To do. Such a crosslinked rubber composition is useful as a rubber material for tires because it has excellent dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties. Moreover, the crosslinked rubber composition according to the present invention can be suitably used not only for tires but also for industrial rubber members such as industrial belts and industrial rubber hoses.
 本発明はまた、トレッド部に上記架橋ゴム組成物を含有する、空気入りタイヤを提供する。このような空気入りタイヤは、架橋ゴム組成物が動的粘弾特性及び耐磨耗性に優れるため、転がり抵抗特性、耐磨耗性及びブレーキ制動性に優れる。 The present invention also provides a pneumatic tire containing the crosslinked rubber composition in a tread portion. In such a pneumatic tire, since the crosslinked rubber composition is excellent in dynamic viscoelastic characteristics and wear resistance, it is excellent in rolling resistance characteristics, wear resistance and brake braking performance.
 本発明はさらに、インナーライナー部に架橋ゴム組成物を含有する、空気入りタイヤを提供する。このような空気入りタイヤは、架橋ゴム組成物が水蒸気バリア性及び酸素バリア性に優れるため、空気もれが低減される。 The present invention further provides a pneumatic tire containing a crosslinked rubber composition in the inner liner portion. In such a pneumatic tire, since the crosslinked rubber composition is excellent in water vapor barrier property and oxygen barrier property, air leakage is reduced.
 本発明によれば、タイヤ用のゴム材料として有用な新規架橋ゴム組成物及び該架橋ゴム組成物を得るための新規ゴム組成物を提供することが可能となる。また、本発明は、新規架橋ゴム組成物を有する部位を備える空気入りタイヤを提供することが可能となる。 According to the present invention, it is possible to provide a novel crosslinked rubber composition useful as a rubber material for tires and a novel rubber composition for obtaining the crosslinked rubber composition. Moreover, this invention can provide a pneumatic tire provided with the site | part which has a novel crosslinked rubber composition.
実施例1における共重合反応前の13C-NMRスペクトルを示す図である。1 is a diagram showing a 13 C-NMR spectrum before a copolymerization reaction in Example 1. FIG. 実施例1で得られたイソブチレン系重合体の13C-NMRスペクトルを示す図である。1 is a diagram showing a 13 C-NMR spectrum of an isobutylene polymer obtained in Example 1. FIG.
 以下、本発明の好適な実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described.
 近年、自動車分野においては、低燃費化や走行安定性といった課題に加え、湿潤路面、雪上、氷結路面等におけるブレーキ制動性が重要な課題となっている。そして、それに伴い、タイヤ用のゴム材料に対する要求は一段と厳しいものになっている。 In recent years, in the automobile field, in addition to problems such as low fuel consumption and running stability, braking performance on wet road surfaces, snowy surfaces, icy road surfaces, and the like has become an important issue. Along with this, the demand for rubber materials for tires has become more severe.
 タイヤ用、特にタイヤのトレッド部に用いるゴム材料に対する基本的な要求特性としては、以下のようなものが挙げられる。
(1)屈曲や伸長などの繰返し応力に対する耐破壊性及び耐摩耗性に優れること。
(2)転動抵抗が小さいこと(転がり抵抗特性が良好であること)。
(3)湿潤路面におけるブレーキ制動性(ウェットグリップ性)に優れること。
The basic required characteristics for rubber materials used for tires, particularly for tire treads, include the following.
(1) Excellent fracture resistance and wear resistance against repeated stresses such as bending and elongation.
(2) The rolling resistance is small (the rolling resistance characteristic is good).
(3) Excellent braking performance (wet grip performance) on wet road surfaces.
 (2)に関して、ゴム材料の動的粘弾性試験により周波数10~100Hz、60℃付近で測定される損失係数(tanδ)が小さいほど転動抵抗に優れることが知られている。一方、(3)に関しては、ゴム材料の動的粘弾性試験により周波数10~100Hz、0℃付近で測定される損失係数(tanδ)が大きいほどブレーキ制動性に優れることが知られている。 Regarding (2), it is known that the smaller the loss factor (tan δ) measured at a frequency of 10 to 100 Hz and around 60 ° C. in the dynamic viscoelasticity test of a rubber material, the better the rolling resistance. On the other hand, with regard to (3), it is known that the greater the loss factor (tan δ) measured at a frequency of 10 to 100 Hz and around 0 ° C. in the dynamic viscoelasticity test of rubber material, the better the braking performance.
 これらの性能のうち、(2)と(3)は、いずれもゴム材料のヒステリシスロスに関する特性である。一般に、ヒステリシスロスを大きくすると、グリップ力は高くなり制動性能が向上するが、転動抵抗(転がり抵抗)も大きくなり燃費の増大をもたらす。このように、グリップ性能と転がり抵抗特性は相反する関係にあるため、(2)及び(3)の両特性を同時に満足することは難しい。実際、従来のゴム材料では、この両特性を同時に満足することが困難であり、仮に両特性が良好になったとしても耐摩耗性が低下するという問題があった。 Of these performances, (2) and (3) are both properties related to hysteresis loss of the rubber material. In general, when the hysteresis loss is increased, the grip force is increased and the braking performance is improved, but the rolling resistance (rolling resistance) is also increased, resulting in an increase in fuel consumption. As described above, since the grip performance and the rolling resistance characteristic are in a contradictory relationship, it is difficult to satisfy both the characteristics (2) and (3) at the same time. In fact, it is difficult for conventional rubber materials to satisfy both of these characteristics at the same time, and there is a problem in that wear resistance decreases even if both characteristics are improved.
 これに対して本発明者らは、不飽和基を側鎖に有する新規なイソブチレン系重合体をゴム成分に配合したゴム組成物、及び、当該ゴム組成物を用いて得られる架橋ゴム組成物について検討した。その結果、環内に不飽和結合を有する脂環基を側鎖に有するイソブチレン系重合体を用いた場合に、動的粘弾特性及び耐磨耗性に優れる架橋ゴム組成物が得られ、当該架橋ゴム組成物をトレッド部に用いた場合に、良好な転がり抵抗特性とブレーキ制動性(ウェットグリップ性)とが両立され、且つ耐磨耗性にも優れるタイヤが得られることを見出した。 On the other hand, the present inventors have described a rubber composition in which a novel isobutylene polymer having an unsaturated group in the side chain is blended in a rubber component, and a crosslinked rubber composition obtained using the rubber composition. investigated. As a result, when an isobutylene polymer having an alicyclic group having an unsaturated bond in the ring in the side chain is used, a crosslinked rubber composition excellent in dynamic viscoelasticity and wear resistance is obtained. It has been found that when a crosslinked rubber composition is used in the tread portion, a tire having both good rolling resistance characteristics and brake braking performance (wet grip properties) and excellent wear resistance can be obtained.
 すなわち、本実施形態に係るゴム組成物は、オレフィン性二重結合を含有するゴム成分(A)と、下記式(1)で表される構造単位及び下記式(2)で表される構造単位を有するイソブチレン系重合体(B)と、を含有する。 That is, the rubber composition according to this embodiment includes a rubber component (A) containing an olefinic double bond, a structural unit represented by the following formula (1), and a structural unit represented by the following formula (2). And an isobutylene polymer (B) having
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、Xは2価の基を示し、Yは環内に不飽和結合を有する置換又は未置換の脂環基を示し、nは0又は1を示す。 In the formula, X represents a divalent group, Y represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring, and n represents 0 or 1.
 このようなゴム組成物によれば、ゴム成分(A)とイソブチレン系重合体(B)とが架橋した構造を有する新規な架橋ゴム組成物が得られる。そして、この架橋ゴム組成物は、動的粘弾性試験における高温(例えば60℃)での損失係数(tanδ)が小さく、低温(例えば0℃)での損失係数(tanδ)が大きいものとなる(すなわち、動的粘弾特性に優れる、)。また、架橋ゴム組成物は、耐磨耗性にも優れる。 According to such a rubber composition, a novel crosslinked rubber composition having a structure in which the rubber component (A) and the isobutylene polymer (B) are crosslinked is obtained. The crosslinked rubber composition has a small loss coefficient (tan δ) at a high temperature (for example, 60 ° C.) in a dynamic viscoelasticity test and a large loss coefficient (tan δ) at a low temperature (for example, 0 ° C.) ( That is, it has excellent dynamic viscoelastic properties). The crosslinked rubber composition is also excellent in wear resistance.
 そのため、上記架橋ゴム組成物によれば、例えば、空気入りタイヤのトレッド部に用いた場合に、従来相反する関係であった転がり抵抗特性とブレーキ制動性の両特性を備え、且つ耐磨耗性に優れる空気入りタイヤを得ることができる。 Therefore, according to the above-mentioned crosslinked rubber composition, for example, when used in a tread portion of a pneumatic tire, it has both rolling resistance characteristics and brake braking characteristics, which have been in conflict with each other, and has wear resistance. Can be obtained.
 さらに、上記架橋ゴム組成物は、水蒸気バリア性及び酸素バリア性も良好である。そのため、上記架橋ゴム組成物は、例えば、空気入りタイヤのインナーライナー部に好適に用いることができる。 Furthermore, the crosslinked rubber composition has good water vapor barrier properties and oxygen barrier properties. Therefore, the said crosslinked rubber composition can be used suitably for the inner liner part of a pneumatic tire, for example.
 本実施形態に係るゴム組成物により、上記のような架橋ゴム組成物が得られる理由は、必ずしも明らかではないが、ゴム成分(A)のオレフィン性二重結合とイソブチレン系重合体(B)の不飽和結合とが架橋することにより、イソブチレン系重合体(B)由来の構造が強固な化学結合でゴム成分(A)に結合されるためと考えられる。 The reason why such a crosslinked rubber composition as described above is obtained by the rubber composition according to this embodiment is not necessarily clear, but the olefinic double bond of the rubber component (A) and the isobutylene polymer (B). It is considered that the structure derived from the isobutylene polymer (B) is bonded to the rubber component (A) with a strong chemical bond by crosslinking with the unsaturated bond.
 なお、上述のとおり、転がり抵抗特性は、架橋ゴム組成物の動的粘弾性試験により周波数10~100Hz、60℃付近で測定される損失係数(tanδ)により示され、当該損失係数が小さいほど転がり抵抗特性に優れる。また、ブレーキ制動性(ウェットグリップ性)は、架橋ゴム組成物の動的粘弾性試験により周波数10~100Hz、0℃付近で測定される損失係数(tanδ)により示され、当該損失係数が大きいほどブレーキ制動性に優れる。したがって、「転がり抵抗特性に優れる」とは、架橋ゴム組成物の、動的粘弾性試験により周波数10~100Hz、60℃付近で測定される損失係数(tanδ)が小さいことを意味し、「ブレーキ制動性(ウェットグリップ性)に優れる」とは、架橋ゴム組成物の、動的粘弾性試験により周波数10~100Hz、0℃付近で測定される損失係数(tanδ)が大きいことを意味する。 As described above, the rolling resistance characteristic is indicated by a loss coefficient (tan δ) measured at a frequency of 10 to 100 Hz and around 60 ° C. by a dynamic viscoelasticity test of the crosslinked rubber composition. Excellent resistance characteristics. The braking performance (wet grip performance) is indicated by a loss coefficient (tan δ) measured at a frequency of 10 to 100 Hz and around 0 ° C. by a dynamic viscoelasticity test of the crosslinked rubber composition. Excellent braking performance. Therefore, “excellent in rolling resistance characteristics” means that the loss coefficient (tan δ) of the crosslinked rubber composition measured at a frequency of 10 to 100 Hz and around 60 ° C. by a dynamic viscoelasticity test is small. “Excellent braking performance (wet grip performance)” means that the crosslinked rubber composition has a large loss coefficient (tan δ) measured by a dynamic viscoelasticity test at a frequency of 10 to 100 Hz and near 0 ° C.
 以下、本実施形態に係るゴム組成物に含まれる、ゴム成分(A)、イソブチレン系重合体(B)及びその他の成分について詳述する。 Hereinafter, the rubber component (A), the isobutylene polymer (B) and other components contained in the rubber composition according to this embodiment will be described in detail.
(ゴム成分(A))
 ゴム成分(A)は、オレフィン性二重結合を含有するものであれば特に制限はなく、天然ゴム、合成ゴム及びこれらの混合物のいずれであっても良く、架橋によってもゴム物性を維持するものが好ましい。また、架橋により力学物性(機械物性)が増大するものが好ましい。
(Rubber component (A))
The rubber component (A) is not particularly limited as long as it contains an olefinic double bond, and may be any of natural rubber, synthetic rubber and a mixture thereof, and maintains rubber physical properties even by crosslinking. Is preferred. Moreover, the thing whose mechanical physical property (mechanical physical property) increases by bridge | crosslinking is preferable.
 ゴム成分(A)としては、天然ゴム(NR)、ブタジエンゴム(BR)、ニトリルゴム、シリコーンゴム、イソプレンゴム(IR)、スチレン-ブタジエンゴム(SBR)、イソプレン-ブタジエンゴム、スチレン-イソプレン-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、ハロゲン化ブチルゴム、ハロゲン化イソプレンゴム、ハロゲン化イソブチレンコポリマー、クロロプレンゴム(CR)、ブチルゴム及びハロゲン化イソブチレン-p-メチルスチレンゴムからなる群より選ばれる少なくとも1種を含有することが好ましい。このようなゴム成分(A)を含有するゴム組成物によれば、動的粘弾特性及び耐磨耗性が一層良好な架橋ゴム組成物を得ることができる。また、当該架橋ゴム組成物は、水蒸気バリア性及び酸素バリア性にも一層優れる。 The rubber component (A) includes natural rubber (NR), butadiene rubber (BR), nitrile rubber, silicone rubber, isoprene rubber (IR), styrene-butadiene rubber (SBR), isoprene-butadiene rubber, styrene-isoprene-butadiene. Contains at least one selected from the group consisting of rubber, ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber (CR), butyl rubber and halogenated isobutylene-p-methylstyrene rubber It is preferable to do. According to the rubber composition containing such a rubber component (A), a crosslinked rubber composition having better dynamic viscoelastic properties and wear resistance can be obtained. The crosslinked rubber composition is further excellent in water vapor barrier properties and oxygen barrier properties.
 また、ゴム成分(A)としては、入手が容易であるという観点からは、ブタジエン、イソプレン等のジエン系モノマーをモノマー単位として含むものが好適に用いられる。このようなゴム成分(A)としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、スチレン-イソプレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム等が挙げられる。これらは単独で用いても、二種以上を組み合わせて用いてもよい。 Further, as the rubber component (A), those containing a diene monomer such as butadiene or isoprene as a monomer unit are preferably used from the viewpoint of easy availability. Such rubber component (A) includes natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), styrene-isoprene-butadiene rubber, acrylonitrile-butadiene rubber (NBR). ), Chloroprene rubber (CR), butyl rubber and the like. These may be used alone or in combination of two or more.
 ゴム成分(A)がスチレン-ブタジエンゴムを含有すると、架橋ゴム組成物の動的粘弾特性及び耐磨耗性が一層優れる。このとき、スチレン-ブタジエンゴムの含有量は、ゴム成分(A)の全量基準で、90質量%以上とすることが好ましく、95質量%以上とすることがより好ましい。このようなゴム成分(A)としては、スチレン-ブタジエンゴム単独、あるいは、スチレン-ブタジエンゴムに、天然ゴム、イソプレンゴム及びブタジエンゴムからなる群より選ばれる少なくとも1種を混合したものが好適に用いられる。このようなゴム成分(A)を含有するゴム組成物によれば、空気入りタイヤのトレッド部に用いるゴム材料として特に好適な架橋ゴム組成物が得られ、当該架橋ゴム組成物によれば、転がり抵抗特性、耐磨耗性及びブレーキ制動性に一層優れる空気入りタイヤが得られる。 When the rubber component (A) contains styrene-butadiene rubber, the dynamic viscoelastic properties and wear resistance of the crosslinked rubber composition are further improved. At this time, the content of the styrene-butadiene rubber is preferably 90% by mass or more, and more preferably 95% by mass or more based on the total amount of the rubber component (A). As such a rubber component (A), styrene-butadiene rubber alone or a mixture of at least one selected from the group consisting of natural rubber, isoprene rubber and butadiene rubber in styrene-butadiene rubber is preferably used. It is done. According to the rubber composition containing such a rubber component (A), a crosslinked rubber composition particularly suitable as a rubber material used for a tread portion of a pneumatic tire is obtained. According to the crosslinked rubber composition, rolling is achieved. A pneumatic tire having further excellent resistance characteristics, wear resistance, and braking performance can be obtained.
 また、ゴム成分(A)がブチルゴム及びハロゲン化ブチルゴムから選ばれる少なくとも1種のブチルゴム系ゴム成分を含有すると、架橋ゴム組成物の水蒸気バリア性及び酸素バリア性が一層優れる。このとき、ブチルゴム系ゴム成分の含有量は、ゴム成分(A)の全量基準で、10~100質量%とすることが好ましく、50~100質量%とすることがより好ましい。このようなゴム成分(A)を含有するゴム組成物によれば、空気入りタイヤのインナーライナー部に用いるゴム材料として特に好適な架橋ゴム組成物が得られ、当該架橋ゴム組成物によれば、空気もれが十分に低減された空気入りタイヤが得られる。 Further, when the rubber component (A) contains at least one butyl rubber rubber component selected from butyl rubber and halogenated butyl rubber, the water vapor barrier property and oxygen barrier property of the crosslinked rubber composition are further improved. At this time, the content of the butyl rubber-based rubber component is preferably 10 to 100% by mass, more preferably 50 to 100% by mass, based on the total amount of the rubber component (A). According to the rubber composition containing such a rubber component (A), a crosslinked rubber composition particularly suitable as a rubber material used for the inner liner part of a pneumatic tire is obtained. According to the crosslinked rubber composition, A pneumatic tire with sufficiently reduced air leakage is obtained.
 ゴム成分(A)の重量平均分子量は、イソブチレン系重合体(B)の重量平均分子量よりも大きければ特に制限されず、例えば500,000を超え2,000,000以下の範囲内のものを挙げることができる。 The weight average molecular weight of the rubber component (A) is not particularly limited as long as it is larger than the weight average molecular weight of the isobutylene polymer (B), and examples thereof include those exceeding 500,000 and not more than 2,000,000. be able to.
 本実施形態に係るゴム組成物中、ゴム成分(A)の含有量は、ゴム組成物中の固形分全量基準で、20~90質量%であることが好ましく、30~80質量%であることがより好ましい。また、20~80質量%とすることもでき、30~70質量%とすることもできる。このようなゴム組成物によれば、上記架橋ゴム組成物が効率よく得られるとともに、得られた架橋ゴム組成物が耐磨耗性に一層優れたものとなる。 In the rubber composition according to this embodiment, the content of the rubber component (A) is preferably 20 to 90% by mass, and preferably 30 to 80% by mass based on the total solid content in the rubber composition. Is more preferable. Further, it may be 20 to 80% by mass, or 30 to 70% by mass. According to such a rubber composition, the above-mentioned crosslinked rubber composition can be obtained efficiently, and the obtained crosslinked rubber composition becomes more excellent in wear resistance.
(イソブチレン系重合体(B))
 イソブチレン系重合体(B)は、上記式(1)で表される構造単位及び上記式(2)で表される構造単位を含有する重合体(なお、「重合体」は、共重合体を包含する用語として用いられる。)である。
(Isobutylene polymer (B))
The isobutylene polymer (B) is a polymer containing a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2) (in addition, “polymer” refers to a copolymer. Used as an inclusive term).
 上記式(2)中、Xで示される2価の基は、同式中のエーテル酸素(O)とYとの連結基としての機能を担うものである。Xで表される2価の基としては、アルキレン基、アルキレンオキシ基又はアルキレンオキシアルキル基が好ましい。また、nは0又は1を示し、nが0の場合はエーテル酸素(O)とYが直接結合した構造となる。 In the above formula (2), the divalent group represented by X bears a function as a linking group between ether oxygen (O) and Y in the formula. The divalent group represented by X is preferably an alkylene group, an alkyleneoxy group or an alkyleneoxyalkyl group. In addition, n represents 0 or 1, and when n is 0, ether oxygen (O) and Y are directly bonded.
 また、上記式(2)中のYは、環内に不飽和結合を有する置換又は未置換の脂環基を示す。脂環基Yは、環内に不飽和結合を有するものであれば、単環式、縮合多環式又は架橋多環式のいずれであってもよい。なお、イソブチレン系重合体(B)は、その主鎖中に不飽和結合を実質的に有さないことが好ましいが、一方、側鎖においては、脂環基Yの環内の不飽和結合以外に、不飽和結合をさらに有していてもよい。 Y in the above formula (2) represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring. The alicyclic group Y may be monocyclic, condensed polycyclic or bridged polycyclic as long as it has an unsaturated bond in the ring. The isobutylene polymer (B) preferably has substantially no unsaturated bond in the main chain, but in the side chain, other than the unsaturated bond in the ring of the alicyclic group Y. Further, it may further have an unsaturated bond.
 脂環基Yとしては、具体的には、ノルボルネニル基、トリシクロデセニル基、テトラシクロデセニル基、テトラシクロドデセニル基、ペンタシクロペンタデセニル基等が挙げられ、単環式の脂環基としては、シクロへキセニル基、シクロオクテニル基、シクロドデセニル基等が挙げられる。これらは、炭素原子で形成される環構造を有し、該環中に炭素-炭素二重結合(オレフィン性二重結合)を有する化合物であり、これらの中でも、極性基を含まない、すなわち炭素原子と水素原子のみで構成されるものが好ましい。また、脂環基Yの炭素数は、6~15が好ましく、7~10がより好ましい。脂環基Yの炭素数が6未満であると、環状化合物の形成が困難となる傾向にあり、また、15を超えると環状化合物の原料自体の入手が困難となる傾向にある。 Specific examples of the alicyclic group Y include a norbornenyl group, a tricyclodecenyl group, a tetracyclodecenyl group, a tetracyclododecenyl group, a pentacyclopentadecenyl group, and the like. Examples of the cyclic alicyclic group include a cyclohexenyl group, a cyclooctenyl group, and a cyclododecenyl group. These are compounds having a ring structure formed of carbon atoms and having a carbon-carbon double bond (olefinic double bond) in the ring, and among these, no polar group is contained, that is, carbon Those composed only of atoms and hydrogen atoms are preferred. Further, the carbon number of the alicyclic group Y is preferably 6 to 15, and more preferably 7 to 10. When the number of carbon atoms of the alicyclic group Y is less than 6, formation of the cyclic compound tends to be difficult, and when it exceeds 15, the raw material of the cyclic compound tends to be difficult to obtain.
 脂環基Yとしては、ジシクロペンタジエニル、メチルジシクロペンタジエニル、ジヒドロジシクロペンタジエニル(トリシクロ[5.2.1.02,6]デカ-8-エニルとも言う。)などのジシクロペンタジエニル系脂環基;
 テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-エチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-シクロヘキシルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-シクロペンチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-メチレンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-ビニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-プロペニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-シクロヘキセニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-シクロペンテニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニル、9-フェニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エニルなどのテトラシクロドデセニル系脂環基;
 2-ノルボルネニル、5-メチル-2-ノルボルネニル、5-エチル-2-ノルボルネニル、5-ブチル-2-ノルボルネニル、5-ヘキシル-2-ノルボルネニル、5-デシル-2-ノルボルネニル、5-シクロヘキシル-2-ノルボルネニル、5-シクロペンチル-2-ノルボルネニル、5-エチリデン-2-ノルボルネニル、5-ビニル-2-ノルボルネニル、5-プロペニル-2-ノルボルネニル、5-シクロヘキセニル-2-ノルボルネニル、5-シクロペンテニル-2-ノルボルネニル、5-フェニル-2-ノルボルネニル、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエニル(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレニルとも言う。)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエニル(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセニルとも言う。)などのノルボルネニル系脂環基;
 ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカ-4,10-ジエニル、ペンタシクロ[9.2.1.14,7.02,10.03,8]ペンタデカ-5,12-ジエニル、ヘキサシクロ[6.6.1.13,6.110,13.02,7.09,14]ヘプタデカ-4-エニルなどの五環体以上の環状オレフィン系脂環基;などが挙げられる。
Examples of the alicyclic group Y include dicyclopentadienyl, methyldicyclopentadienyl, dihydrodicyclopentadienyl (also referred to as tricyclo [5.2.1.0 2,6 ] dec-8-enyl). Dicyclopentadienyl alicyclic group of
Tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-methyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-ethyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-cyclohexyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-cyclopentyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-methylenetetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-ethylidenetetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-vinyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-propenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-cyclohexenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-cyclopentenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-enyl, 9-phenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] tetracyclododecenyl alicyclic groups such as dodec-4-enyl;
2-norbornenyl, 5-methyl-2-norbornenyl, 5-ethyl-2-norbornenyl, 5-butyl-2-norbornenyl, 5-hexyl-2-norbornenyl, 5-decyl-2-norbornenyl, 5-cyclohexyl-2- Norbornenyl, 5-cyclopentyl-2-norbornenyl, 5-ethylidene-2-norbornenyl, 5-vinyl-2-norbornenyl, 5-propenyl-2-norbornenyl, 5-cyclohexenyl-2-norbornenyl, 5-cyclopentenyl-2- norbornenyl, 5-phenyl-2-norbornenyl, tetracyclo [9.2.1.0 2,10. 0 3,8 ] tetradeca-3,5,7,12-tetraenyl (also referred to as 1,4-methano-1,4,4a, 9a-tetrahydro-9H-fluorenyl), tetracyclo [10.2.1.0 2,11 . 0 4,9] pentadeca -4,6,8,13- tetraenyl (1,4-methano -1,4,4a, 9, 9a, also referred to as 10-hexa hydro anthracenyl.) Norbornenyl systems alicyclic such as Group;
Pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] pentadeca-4,10-dienyl, pentacyclo [9.2.1.1 4,7. 0 2,10 . 0 3,8 ] pentadeca-5,12-dienyl, hexacyclo [6.6.1.1 3,6 . 1 10,13 . 0 2,7 . 0 9,14] heptadec-4-cycloolefin alicyclic group or pentacyclic body such enyl; and the like.
 なお、「置換又は未置換の脂環基」とは、上記の脂環基が、置換基を有していてもよいことを示す。置換基としては、アルキル基、シクロアルキル基、ビニル基、アリル基、アリール基等が挙げられる。なお、アリール基としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。 In addition, the “substituted or unsubstituted alicyclic group” means that the alicyclic group may have a substituent. Examples of the substituent include an alkyl group, a cycloalkyl group, a vinyl group, an allyl group, and an aryl group. In addition, examples of the aryl group include a phenyl group, a naphthyl group, and a benzyl group.
 上記式(2)で表される構造単位としては、下記式(3)で示される構造単位及び/又は下記式(4)で示される構造単位が特に好ましい。 The structural unit represented by the above formula (2) is particularly preferably a structural unit represented by the following formula (3) and / or a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(3)中、nは0又は1を示す。また、式(4)中、nは0又は1を示す。 In the formula (3), n represents 0 or 1. In the formula (4), n represents 0 or 1.
 イソブチレン系重合体(B)において、上記式(1)で表される構造単位と上記式(2)で表される構造単位との共重合比は特に制限されないが、モル比で、両者の合計量を基準として、上記式(2)で表される構造単位が0.1~99モル%であることが好ましく、1~90モル%であることがより好ましく、2~80モル%であることがさらに好ましい。なお、ここでいう共重合比とは、1分子当たりの共重合比の平均値であり、13C-NMR(500MHz)法により各構造に帰属するプロトンの共鳴信号の強度を測定、比較することにより求めることができる。 In the isobutylene polymer (B), the copolymerization ratio of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) is not particularly limited. Based on the amount, the structural unit represented by the above formula (2) is preferably 0.1 to 99 mol%, more preferably 1 to 90 mol%, and more preferably 2 to 80 mol%. Is more preferable. The copolymerization ratio here is the average value of the copolymerization ratio per molecule, and the intensity of the resonance signal of protons belonging to each structure is measured and compared by the 13 C-NMR (500 MHz) method. It can ask for.
 イソブチレン系重合体(B)において、上記式(1)で表される構造単位と上記式(2)で表される構造単位との重合形態は、ブロック共重合又はランダム共重合のいずれであってもよい。なお、従来のイソブチレン系重合体の場合、反応性の異なるモノマーをランダム共重合させることは困難であったが、本発明においては、上記式(1)で表される構造単位と上記式(2)で表される構造単位との組合せを採用しているため、ランダム共重合体であっても有効に得ることができる。 In the isobutylene polymer (B), the polymerization form of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) is either block copolymerization or random copolymerization. Also good. In the case of a conventional isobutylene polymer, it has been difficult to randomly copolymerize monomers having different reactivities. However, in the present invention, the structural unit represented by the above formula (1) and the above formula (2) ), A random copolymer can be obtained effectively.
 イソブチレン系重合体(B)の重量平均分子量は、ゴム成分(A)の重量平均分子量以下であることが好ましい。イソブチレン系重合体(B)の重量平均分子量は、具体的には、500~500000であることが好ましく、700~300000であることがより好ましく、1000~200000であることがさらに好ましい。ここでいう重量平均分子量とは、GPC法により測定される重量平均分子量(Mw)を意味する。イソブチレン系重合体(B)の重量平均分子量が上記上限値より大きい場合、得られるゴム組成物及び架橋ゴム組成物の加工性が劣る場合があり、極端に重量平均分子量が低い場合には、得られるゴム組成物及び架橋ゴム組成物の加工性は良好となるものの、ゴム成分(A)との共架橋性が低下し、架橋ゴム組成物の力学物性が低下してしまう場合がある。 The weight average molecular weight of the isobutylene polymer (B) is preferably not more than the weight average molecular weight of the rubber component (A). Specifically, the weight average molecular weight of the isobutylene polymer (B) is preferably 500 to 500,000, more preferably 700 to 300,000, and still more preferably 1,000 to 200,000. The weight average molecular weight here means the weight average molecular weight (Mw) measured by GPC method. When the weight average molecular weight of the isobutylene polymer (B) is larger than the above upper limit, the processability of the resulting rubber composition and the crosslinked rubber composition may be inferior, and when the weight average molecular weight is extremely low, Although the processability of the resulting rubber composition and crosslinked rubber composition is improved, the co-crosslinking property with the rubber component (A) may be reduced, and the mechanical properties of the crosslinked rubber composition may be reduced.
 本実施形態に係るゴム組成物中、イソブチレン系重合体(B)の含有量は、ゴム成分(A)100質量部に対して、0.5~70質量部であることが好ましく、1~60質量部であることがより好ましい。また、3~30質量部とすることもできる。このようなゴム組成物によれば、動的粘弾特性、耐磨耗性、水蒸気バリア性及び酸素バリア性に一層優れる架橋ゴム組成物を得ることができる。 In the rubber composition according to this embodiment, the content of the isobutylene polymer (B) is preferably 0.5 to 70 parts by mass with respect to 100 parts by mass of the rubber component (A). More preferably, it is part by mass. It can also be 3 to 30 parts by mass. According to such a rubber composition, it is possible to obtain a crosslinked rubber composition that is further excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties, and oxygen barrier properties.
 なお、イソブチレン系重合体(B)の含有量を、少なくすると動的粘弾特性に特に優れるようになり、多くすると耐磨耗性に特に優れるようになる。そのため、イソブチレン系重合体(B)の含有量を適宜調整することにより、用途に応じた架橋ゴム組成物が得られる。例えば、特に耐磨耗性に優れる架橋ゴム組成物を得るという観点からは、イソブチレン系重合体(B)の含有量は、ゴム成分(A)100質量部に対して5~60質量部であることが好ましい。また、特に動的粘弾特性に優れる架橋ゴム組成物を得るという観点からは、イソブチレン系重合体(B)の含有量は、ゴム成分(A)100質量部に対して1~30質量部であることが好ましい。 In addition, when the content of the isobutylene polymer (B) is decreased, the dynamic viscoelastic property is particularly excellent, and when the content is increased, the abrasion resistance is particularly excellent. Therefore, the crosslinked rubber composition according to the use can be obtained by appropriately adjusting the content of the isobutylene polymer (B). For example, from the viewpoint of obtaining a crosslinked rubber composition having particularly excellent wear resistance, the content of the isobutylene polymer (B) is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component (A). It is preferable. Further, from the viewpoint of obtaining a crosslinked rubber composition having particularly excellent dynamic viscoelastic properties, the content of the isobutylene polymer (B) is 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component (A). Preferably there is.
 イソブチレン系重合体(B)の製造方法は、特に制限されないが、例えば、ルイス酸の存在下、イソブチレン及び下記式(5)で表されるビニルエーテルを含有するカチオン重合性モノマーを共重合させる方法が好適である。
CH=CH-O-(X)―Y    (5)
The production method of the isobutylene polymer (B) is not particularly limited. For example, there is a method of copolymerizing a cationic polymerizable monomer containing isobutylene and a vinyl ether represented by the following formula (5) in the presence of a Lewis acid. Is preferred.
CH 2 ═CH—O— (X) n —Y (5)
 式(5)中、Xは2価の基を示し、Yは環内に不飽和結合を有する置換又は未置換の脂環基を示し、nは0又は1を示す。 In the formula (5), X represents a divalent group, Y represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring, and n represents 0 or 1.
 上記式(5)で表されるビニルエーテルとしては、極性基を含まない、すなわち炭素原子と水素原子のみで構成されるノルボルネン系モノマーが好ましく、脂環基Yとしては上述した式(2)における脂環基Yと同様のものが例示できる。 The vinyl ether represented by the above formula (5) is preferably a norbornene-based monomer that does not contain a polar group, that is, is composed of only carbon atoms and hydrogen atoms, and the alicyclic group Y is an aliphatic group represented by the above formula (2). The thing similar to the cyclic group Y can be illustrated.
 重合系中に加えるビニルエーテルは、用いるイソブチレンモノマーのモル数に対して0.01~100倍モルであることが好ましい。上記カチオン重合性モノマーの共重合反応の前には、カチオン重合性モノマーを含む原料混合物を均一になるように撹拌することが好ましい。 The vinyl ether added to the polymerization system is preferably 0.01 to 100 times the mole of the isobutylene monomer used. Prior to the copolymerization reaction of the cationic polymerizable monomer, it is preferable to stir the raw material mixture containing the cationic polymerizable monomer so as to be uniform.
 上記カチオン重合性モノマーの共重合反応では、重合触媒としてルイス酸を使用する。ルイス酸としては、カチオン重合に使用可能な公知のものの中から幅広く使用できる。例えば、三塩化ホウ素、三フッ化ホウ素、三フッ化ホウ素のジエチルエーテル錯体、三フッ化ホウ素のメタノール錯体(BF・MeOH)等のハロゲン化ホウ素化合物;四塩化チタン、四臭化チタン、四ヨウ化チタン等のハロゲン化チタン化合物;四塩化スズ、四臭化スズ、四ヨウ化スズ等のハロゲン化スズ化合物;三塩化アルミニウム、アルキルジクロロアルミニウム、ジアルキルクロロアルミニウム等のハロゲン化アルミニウム化合物;五塩化アンチモン、五フッ化アンチモン等のハロゲン化アンチモン化合物;五塩化タングステン等のハロゲン化タングステン化合物;五塩化モリブデン等のハロゲン化モリブデン化合物;五塩化タンタル等のハロゲン化タンタル化合物;テトラアルコキシチタン等の金属アルコキシドなどが挙げられるが、それらに限定されるものではない。これらのルイス酸のうち、三フッ化ホウ素、三フッ化ホウ素のメタノール錯体、三塩化アルミニウム、エチルジクロロアルミニウム、四塩化スズ、四塩化チタンなどが好ましい。ルイス酸の使用量は、原料モノマー1モルに対して、0.01~1000ミリモル当量使用することができ、好ましくは0.05~500ミリモル当量の範囲である。 In the copolymerization reaction of the cationic polymerizable monomer, a Lewis acid is used as a polymerization catalyst. As a Lewis acid, it can use widely from well-known things which can be used for cationic polymerization. For example, boron halide compounds such as boron trichloride, boron trifluoride, diethyl ether complex of boron trifluoride, methanol complex of boron trifluoride (BF 3 .MeOH); titanium tetrachloride, titanium tetrabromide, four Titanium halide compounds such as titanium iodide; tin halide compounds such as tin tetrachloride, tin tetrabromide, tin tetraiodide; aluminum halide compounds such as aluminum trichloride, alkyldichloroaluminum, dialkylchloroaluminum; pentachloride Antimony halide compounds such as antimony and antimony pentafluoride; Tungsten halide compounds such as tungsten pentachloride; Molybdenum halide compounds such as molybdenum pentachloride; Tantalum halide compounds such as tantalum pentachloride; Metal alkoxides such as tetraalkoxytitanium Etc. However, it is not limited to them. Of these Lewis acids, boron trifluoride, boron trifluoride methanol complex, aluminum trichloride, ethyldichloroaluminum, tin tetrachloride, titanium tetrachloride and the like are preferable. The amount of the Lewis acid used can be 0.01 to 1000 mmol equivalent, preferably 0.05 to 500 mmol equivalent, per 1 mol of the raw material monomer.
 さらに必要に応じて、リビングカチオン重合させる場合には電子供与体成分を共存させることもできる。この電子供与体成分は、カチオン重合に際して、成長炭素カチオンを安定化させる効果及び/又は系中のプロトンをトラップする効果があるものと考えられており、電子供与体の添加によって分子量分布の狭い構造が制御された重合体が生成する。使用可能な電子供与体成分としては特に限定されず、そのドナー数が15~60のものであれば、従来公知のものを広く利用できる。例えば、α-ピコリン、ジ-t-ブチルピリジンなどのピリジン類、トリエチルアミンなどのアミン類、ジメチルアセトアミドなどのアミド類、ジメチルスルホキシドなどのスルホキシド類、エステル類、リン系化合物又はテトライソプロポキシチタンなどの金属原子に結合した酸素原子を有する金属化合物等を挙げることができる。 Further, if necessary, an electron donor component can be allowed to coexist when living cationic polymerization is performed. This electron donor component is considered to have an effect of stabilizing the growing carbon cation and / or an effect of trapping protons in the system during cationic polymerization, and a structure having a narrow molecular weight distribution by addition of the electron donor. Is produced. The electron donor component that can be used is not particularly limited, and any conventionally known electron donor component can be used as long as it has 15 to 60 donors. For example, pyridines such as α-picoline and di-t-butylpyridine, amines such as triethylamine, amides such as dimethylacetamide, sulfoxides such as dimethylsulfoxide, esters, phosphorus compounds or tetraisopropoxytitanium The metal compound etc. which have the oxygen atom couple | bonded with the metal atom can be mentioned.
 また、上記の共重合反応に際し、反応溶媒を用いることができる。反応溶媒としては、ハロゲン化炭化水素、脂肪族炭化水素及び芳香族炭化水素からなる群から選ばれる少なくとも1種の溶媒が挙げられる。これらの溶媒は、単独で又は複数を混合して用いることができる。 Further, a reaction solvent can be used in the copolymerization reaction. Examples of the reaction solvent include at least one solvent selected from the group consisting of halogenated hydrocarbons, aliphatic hydrocarbons, and aromatic hydrocarbons. These solvents can be used alone or in combination.
 ハロゲン化炭化水素としては、クロロホルム、塩化メチレン、1,1-ジクロロエタン、1,2-ジクロロエタン、n-プロピルクロライド、n-ブチルクロライド、1-クロロプロパン、1-クロロ-2-メチルプロパン、1-クロロブタン、1-クロロ-2-メチルブタン、1-クロロ-3-メチルブタン、1-クロロ-2,2-ジメチルブタン、1-クロロ-3,3-ジメチルブタン、1-クロロ-2,3-ジメチルブタン、1-クロロペンタン、1-クロロ-2-メチルペンタン、1-クロロ-3-メチルペンタン、1-クロロ-4-メチルペンタン、1-クロロヘキサン、1-クロロ-2-メチルヘキサン、1-クロロ-3-メチルヘキサン、1-クロロ-4-メチルヘキサン、1-クロロ-5-メチルヘキサン、1-クロロヘプタン、1-クロロオクタン、2-クロロプロパン、2-クロロブタン、2-クロロペンタン、2-クロロヘキサン、2-クロロヘプタン、2-クロロオクタン、クロロベンゼン等が使用でき、これらの中から選ばれる溶剤は単独であっても、2種以上の成分からなるものであってもよい。 Examples of halogenated hydrocarbons include chloroform, methylene chloride, 1,1-dichloroethane, 1,2-dichloroethane, n-propyl chloride, n-butyl chloride, 1-chloropropane, 1-chloro-2-methylpropane, 1-chlorobutane. 1-chloro-2-methylbutane, 1-chloro-3-methylbutane, 1-chloro-2,2-dimethylbutane, 1-chloro-3,3-dimethylbutane, 1-chloro-2,3-dimethylbutane, 1-chloropentane, 1-chloro-2-methylpentane, 1-chloro-3-methylpentane, 1-chloro-4-methylpentane, 1-chlorohexane, 1-chloro-2-methylhexane, 1-chloro- 3-methylhexane, 1-chloro-4-methylhexane, 1-chloro-5-methylhexane, 1-chlorohe Tan, 1-chlorooctane, 2-chloropropane, 2-chlorobutane, 2-chloropentane, 2-chlorohexane, 2-chloroheptane, 2-chlorooctane, chlorobenzene, etc. can be used. Or it may consist of two or more components.
 脂肪族炭化水素としては、プロパン、ブタン、ペンタン、ネオペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンが好ましく、これらの中から選ばれる溶剤は単独であっても、2種以上の成分からなるものであってもよい。 As the aliphatic hydrocarbon, propane, butane, pentane, neopentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, and ethylcyclohexane are preferable. Even if the solvent selected from these is used alone, two or more components are used. It may consist of.
 芳香族炭化水素としてはベンゼン、トルエン、キシレン、エチルベンゼンが好ましく、これらの中から選ばれる溶剤は単独であっても、2種以上の成分からなるものであってもよい。 As the aromatic hydrocarbon, benzene, toluene, xylene and ethylbenzene are preferable, and the solvent selected from these may be used alone or may be composed of two or more components.
 上記カチオン重合性モノマーの共重合反応において、反応溶媒を使用する場合には、得られる重合体の溶解度、溶液の粘度や除熱の容易さを考慮し、重合体の濃度が0.1~80質量%となるよう溶媒を使用することが好ましく、生産効率及び操作性の観点からは1~50質量%となるよう使用することがより好ましい。また重合時のモノマー濃度としては、0.1~8モル/リットル程度が好ましく、0.5~5モル/リットル程度がより好ましい。また、重合時の有機溶媒の使用量は、使用するモノマーに対して0.5~100倍量であることが、適当な粘度、発熱のコントロールの点で好ましい。 When a reaction solvent is used in the copolymerization reaction of the cationic polymerizable monomer, the polymer concentration is 0.1 to 80 in consideration of the solubility of the resulting polymer, the viscosity of the solution, and the ease of heat removal. It is preferable to use a solvent so that it becomes mass%, and it is more preferable to use it from 1 to 50 mass% from the viewpoint of production efficiency and operability. The monomer concentration during polymerization is preferably about 0.1 to 8 mol / liter, more preferably about 0.5 to 5 mol / liter. In addition, the amount of the organic solvent used in the polymerization is preferably 0.5 to 100 times the amount of the monomer to be used from the viewpoint of controlling appropriate viscosity and heat generation.
 上記カチオン重合性モノマーの共重合反応で用いられる各種原料には、工業的もしくは実験的に入手できるものを使用することができるが、水やアルコール、塩酸など活性な水素を有する物質や、開始剤以外の3級炭素に結合した塩素原子を有する化合物が原料中に含まれているとこれらは不純物として副反応を発生させる原因となるため、あらかじめ極力低濃度に精製する必要がある。また、反応操作中に外部からこれらの不純物が進入するのを防ぐ必要がある。目的とする重合体を効率よく得るためには不純物の総モル数を開始剤の重合開始点総数を基準にして1倍以下に抑制することが好ましく、0.5倍以下に抑制することがより好ましい。 Various raw materials that can be obtained industrially or experimentally can be used for the various raw materials used in the copolymerization reaction of the cationic polymerizable monomer, but substances having active hydrogen such as water, alcohol, hydrochloric acid, and initiators can be used. If a compound having a chlorine atom bonded to a tertiary carbon other than the above is contained in the raw material, it causes a side reaction as an impurity, so that it is necessary to purify it as low as possible in advance. Moreover, it is necessary to prevent these impurities from entering from the outside during the reaction operation. In order to efficiently obtain the desired polymer, the total number of moles of impurities is preferably suppressed to 1 times or less, more preferably 0.5 times or less based on the total number of polymerization initiation points of the initiator. preferable.
 上記の共重合反応は、窒素、アルゴン、ヘリウムなどの不活性ガスの雰囲気下で行うことが好ましい。共重合時の圧力については、モノマーの種類、有機溶媒の種類、重合温度等を考慮して、常圧、加圧等の任意の条件を採用することができる。また、重合系が均一になるように十分な攪拌条件下に共重合を行うことが好ましい。上記の共重合反応は、例えば、1つの反応容器に重合溶媒、イソブチレン、式(5)で表されるビニルエーテル、触媒、必要に応じて開始剤兼連鎖移動剤等を順次仕込んでいくバッチ式又は半バッチ式で行うことができる。あるいは、重合溶媒、モノマー、触媒、必要に応じて開始剤兼連鎖移動剤等をある系内に連続的に仕込みながら反応させ、更に取出される連続法でもよい。重合開始時点及び重合中の重合触媒の濃度を制御し易い点などからバッチ式が好ましい。 The above copolymerization reaction is preferably performed in an atmosphere of an inert gas such as nitrogen, argon or helium. Regarding the pressure at the time of copolymerization, any conditions such as normal pressure and pressurization can be adopted in consideration of the type of monomer, the type of organic solvent, the polymerization temperature, and the like. Moreover, it is preferable to perform copolymerization under sufficient stirring conditions so that the polymerization system becomes uniform. The above copolymerization reaction is, for example, a batch type in which a polymerization solvent, isobutylene, a vinyl ether represented by the formula (5), a catalyst, an initiator / chain transfer agent and the like are sequentially charged in one reaction vessel, or Semi-batch can be performed. Alternatively, it may be a continuous method in which a polymerization solvent, a monomer, a catalyst, and, if necessary, an initiator / chain transfer agent and the like are continuously charged in a system and reacted, and then taken out. The batch method is preferred because it is easy to control the polymerization start point and the concentration of the polymerization catalyst during the polymerization.
 重合温度は、得られるイソブチレン系重合体の平均分子量に影響するので、目的とする平均分子量に応じて、採用する重合温度を適宜選択すればよいが、重合温度としては-80~20℃程度が好ましく、更に好ましくは-70~0℃程度とするのがよく、重合時間は、通常0.5~180分程度、好ましくは20~150分程度である。 Since the polymerization temperature affects the average molecular weight of the resulting isobutylene polymer, the polymerization temperature to be employed may be appropriately selected according to the target average molecular weight, but the polymerization temperature is about −80 to 20 ° C. More preferably, it is about −70 to 0 ° C., and the polymerization time is usually about 0.5 to 180 minutes, preferably about 20 to 150 minutes.
 上記の共重合反応において、後の取り扱い易さからメタノール等のアルコール類の添加により重合反応を停止させるのが好ましいが、特にこれに限定されるものではなく、従来の慣用手段のいずれも適用でき、また、特に停止反応を改めて行なう必要もない。 In the above copolymerization reaction, it is preferable to stop the polymerization reaction by adding alcohols such as methanol for ease of handling later. However, the polymerization reaction is not particularly limited, and any conventional means can be applied. Also, there is no need to perform a stop reaction again.
 上記の共重合反応で用いられる反応器の形態は特に限定しないが、攪拌槽型反応器が好ましい。その構造については特に制限を受けるものではないが、たとえばジャケット部での冷却が可能な構造を有し、モノマー及び逐次的に供給される触媒、電子供与剤を均一に混合・反応させることのできる構造であることが好ましい。内部冷却コイルやリフラックスコンデンサー等の付帯設備を設けて冷却能力を向上させたり、邪魔板を設けて混合状態を良好にできる構造であっても良い。攪拌槽型反応器に用いられる攪拌翼としては、特に制限を受けるものではないが、反応液の上下方向の循環、混合性能が高いものが好ましく、重合・反応液粘度が数センチポイズ程度の比較的低粘度領域においては(多段)傾斜パドル翼、タービン翼などの攪拌翼、数10センチポイズから数100ポイズの中粘性領域ではマックスブレンド翼、フルゾーン翼、サンメラー翼、Hi-Fミキサー翼、特開平10-24230に記載されているものなど大型のボトムパドルを有する大型翼、数100ポイズ以上の高粘性領域では、アンカー翼、(ダブル)ヘリカルリボン翼、ログボーン翼などが好適に使用される。 The form of the reactor used in the above copolymerization reaction is not particularly limited, but a stirred tank reactor is preferable. The structure is not particularly limited. For example, it has a structure that can be cooled at the jacket portion, and can uniformly mix and react the monomer, the sequentially supplied catalyst, and the electron donor. A structure is preferred. A structure in which an auxiliary facility such as an internal cooling coil or a reflux condenser is provided to improve the cooling capacity, or a baffle plate is provided to improve the mixing state. The stirring blade used in the stirred tank reactor is not particularly limited, but it is preferable to circulate the reaction liquid in the vertical direction and have high mixing performance, and the polymerization / reaction liquid viscosity is relatively several centipoise. In the low-viscosity region, (multi-stage) inclined paddle blades, stirring blades such as turbine blades, and in the medium-viscosity region of several tens of centipoises to several hundreds of poises, Max blend blades, full zone blades, sun meller blades, Hi-F mixer blades, In a large wing having a large bottom paddle such as those described in -24230, and in a high viscosity region of several hundred poise or more, an anchor wing, a (double) helical ribbon wing, a log bone wing, etc. are preferably used.
 イソブチレン系重合体(B)は、上記式(1)で表される構造単位及び上記式(2)で表される構造単位を含有するものであるため、十分な架橋硬化性を有する。したがって、イソブチレン系重合体(B)によれば、ゴム成分(A)に容易且つ確実にポリイソブチレン骨格を導入することができる。 Since the isobutylene polymer (B) contains the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), it has sufficient crosslinking curability. Therefore, according to the isobutylene polymer (B), the polyisobutylene skeleton can be easily and reliably introduced into the rubber component (A).
 イソブチレン系重合体(B)は、上記式(1)で表される構造単位と上記式(2)で表される構造単位とのみからなるものであってもよいが、これら2つの構造単位とは異なる構造単位をさらに有していてもよい。たとえば、上記の方法によって得られるイソブチレン系重合体に引き続きイソブチレン以外のカチオン重合性モノマーを反応させてブロック共重合させることが可能である。ブロック共重合体を製造する場合は、式(1)で表される構造単位及び式(2)で表される構造単位を有するブロックと、芳香族ビニル化合物を主成分とするブロック(すなわち芳香族ビニル化合物を50質量%以上含有するブロック)と、を有するものであることが好ましい。ここで芳香族ビニル化合物としては、スチレンが好ましい。 The isobutylene polymer (B) may be composed only of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2). May further have different structural units. For example, the isobutylene polymer obtained by the above method can be reacted with a cationic polymerizable monomer other than isobutylene for block copolymerization. When a block copolymer is produced, a block having a structural unit represented by the formula (1) and a structural unit represented by the formula (2), and a block containing an aromatic vinyl compound as a main component (that is, aromatic And a block containing 50% by mass or more of a vinyl compound). Here, styrene is preferable as the aromatic vinyl compound.
(その他の成分)
 本実施形態に係るゴム組成物はさらに、ゴム工業の分野で使用される種々の補強剤、充填剤、ゴム伸展油、軟化剤等を含有してもよい。
(Other ingredients)
The rubber composition according to this embodiment may further contain various reinforcing agents, fillers, rubber extending oils, softening agents and the like used in the field of rubber industry.
 補強剤としては、カーボンブラック、シリカ等が挙げられる。 Reinforcing agents include carbon black and silica.
 カーボンブラックは、耐磨耗性の向上、転がり抵抗特性の向上、紫外線による亀裂やひび割れの防止(紫外線劣化防止)等の効果が得られる観点から、補強剤として好適に用いられる。カーボンブラックの種類は特に限定されるものではなく、従来公知のカーボンブラック、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等のカーボンブラックを使用することができる。また、カーボンブラックの粒径、細孔容積、比表面積等の物理的特性についても特に限定されるものではなく、従来ゴム工業で使用されている各種のカーボンブラック、例えば、SAF、ISAF、HAF、FEF、GPF、SRF(いずれも、米国のASTM規格D-1765-82aで分類されたカーボンブラックの略称)等を適宜使用することができる。カーボンブラックを用いる場合、その配合量は、ゴム成分(A)100質量部に対して、5~80質量部であることが好ましく、10~60質量部であることがより好ましい。また、30~80質量部とすることもでき、40~60質量部とすることもできる。このような配合量であると、本実施形態に係るゴム組成物及び架橋ゴム組成物において、補強剤としての効果を良好に得ることができる。 Carbon black is suitably used as a reinforcing agent from the viewpoints of improving wear resistance, rolling resistance characteristics, preventing cracks and cracks caused by ultraviolet rays (preventing ultraviolet degradation), and the like. The type of carbon black is not particularly limited, and conventionally known carbon blacks such as furnace black, acetylene black, thermal black, channel black, and graphite can be used. Further, the physical characteristics such as particle size, pore volume and specific surface area of carbon black are not particularly limited, and various carbon blacks conventionally used in the rubber industry, for example, SAF, ISAF, HAF, FEF, GPF, SRF (all are abbreviations for carbon black classified according to the American ASTM standard D-1765-82a), etc. can be used as appropriate. When carbon black is used, the blending amount is preferably 5 to 80 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the rubber component (A). Further, it can be 30 to 80 parts by mass, or 40 to 60 parts by mass. In such a blending amount, the effect as a reinforcing agent can be favorably obtained in the rubber composition and the crosslinked rubber composition according to the present embodiment.
 シリカとしては、従来よりゴム用補強剤として使用されているものを特に制限なく使用でき、例えば乾式法ホワイトカーボン、湿式法ホワイトカーボン、合成ケイ酸塩系ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。シリカの比表面積は特に制限はないが、通常、40~600m/gの範囲、好ましくは70~300m/gのものを用いることができ、一次粒子径は10~1000nmのものを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。シリカの使用量は、ゴム成分(A)100質量部に対して0.1~150質量部であることが好ましく、10~100質量部であることがより好ましく、30~100質量部であることがさらに好ましい。 As silica, those conventionally used as rubber reinforcing agents can be used without particular limitation, such as dry method white carbon, wet method white carbon, synthetic silicate white carbon, colloidal silica, precipitated silica and the like. It is done. The specific surface area of silica is not particularly limited, but usually a silica having a surface area of 40 to 600 m 2 / g, preferably 70 to 300 m 2 / g, and a primary particle diameter of 10 to 1000 nm should be used. Can do. These may be used alone or in combination of two or more. The amount of silica used is preferably 0.1 to 150 parts by weight, more preferably 10 to 100 parts by weight, and more preferably 30 to 100 parts by weight with respect to 100 parts by weight of the rubber component (A). Is more preferable.
 また、シリカを配合させる目的で、ゴム組成物にシランカップリング剤を配合してもよい。シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビス(3-(トリエトキシシリル)プロピル)ジスルフィドなどが挙げられる。これらは単独でも用いても、2種以上を組み合わせて用いてもよい。シランカップリング剤の添加量は、所望するシリカの配合量によって適宜変更できるが、ゴム成分(A)100質量部に対して、0.1~20質量部であることが好ましい。 Also, a silane coupling agent may be blended with the rubber composition for the purpose of blending silica. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and 3-chloropropyltrimethoxy. Silane, 3-chloropropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl ) Disulfide and the like. These may be used alone or in combination of two or more. The addition amount of the silane coupling agent can be appropriately changed depending on the desired blending amount of silica, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component (A).
 充填剤としては、クレー、タルク等の鉱物の粉末類、炭酸マグネシウム、炭酸カルシウムなどの炭酸塩類、水酸化アルミニウムなどのアルミナ水和物などを用いることができる。 As the filler, mineral powders such as clay and talc, carbonates such as magnesium carbonate and calcium carbonate, alumina hydrate such as aluminum hydroxide, and the like can be used.
 ゴム伸展油としては、従来から使用されているアロマ系オイル、ナフテン系オイル、パラフィン系オイルなどを用いることができる。ゴム伸展油の配合量は、ゴム成分(A)100質量部に対して、0~100質量部であることが好ましい。 As the rubber extending oil, conventionally used aromatic oil, naphthenic oil, paraffinic oil, etc. can be used. The blending amount of the rubber extending oil is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A).
 軟化剤としては、リノール酸、オレイン酸、アビチエン酸を主とするトール油、パインタール、菜種油、綿実油、落花生油、ひまし油、パーム油、フアクチス等の植物系軟化剤、パラフィン系油、ナフテン系油、芳香族系油、ジブチルフタレート等のフタル酸誘導体、等が挙げられる。軟化剤の配合量は、ゴム成分(A)100質量部に対して、0~50質量部であることが好ましい。 Softeners include plant oil softeners such as tall oil, linoleic acid, oleic acid, and abithenoic acid, pine tar, rapeseed oil, cottonseed oil, peanut oil, castor oil, palm oil, and fuctis, paraffinic oil, and naphthenic oil. , Aromatic oils, phthalic acid derivatives such as dibutyl phthalate, and the like. The blending amount of the softening agent is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the rubber component (A).
 本実施形態に係るゴム組成物はまた、ゴム工業の分野で使用される種々の添加剤、例えば、老化防止剤、イオウ、架橋剤、加硫促進剤、加硫遅延剤、しゃっ解剤、プロセス油、可塑剤等の1種又は2種以上を、必要に応じて含有していてもよい。これらの添加剤の配合量は、ゴム成分(A)100質量部に対して、0.1~10質量部であることが好ましい。 The rubber composition according to this embodiment also includes various additives used in the rubber industry, such as anti-aging agents, sulfur, cross-linking agents, vulcanization accelerators, vulcanization retarders, chelating agents, You may contain 1 type, or 2 or more types, such as process oil and a plasticizer, as needed. The amount of these additives is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
 本実施形態に係るゴム組成物は、ゴム成分(A)とイソブチレン系重合体(B)とを架橋することで架橋ゴム組成物が得られる。ここで架橋方法は特に制限されないが、架橋剤により架橋することが好ましい。 The rubber composition according to this embodiment is obtained by crosslinking the rubber component (A) and the isobutylene polymer (B). Here, the crosslinking method is not particularly limited, but is preferably crosslinked with a crosslinking agent.
 すなわち、本実施形態に係るゴム組成物は、架橋剤をさらに含有することが好ましい。架橋剤としては、ゴムの架橋に通常用いられるものを特に制限なく使用することができ、ゴム成分(A)及びイソブチレン系重合体に応じて適宜選択することができる。架橋剤としては、例えば、硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド等の硫黄架橋剤;シクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジクミルパーオキサイド、ジtert-ブチルパーオキサイド、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン等の有機過酸化物架橋剤、等が挙げられる。これらの含有量は、ゴム成分(A)100質量部に対して、0.1~5質量部であることが好ましく、0.5~3質量部であることがより好ましく、1~2質量部であることがさらに好ましい。 That is, it is preferable that the rubber composition according to this embodiment further contains a crosslinking agent. As the crosslinking agent, those usually used for crosslinking of rubber can be used without particular limitation, and can be appropriately selected depending on the rubber component (A) and the isobutylene polymer. Examples of the crosslinking agent include sulfur crosslinking agents such as sulfur, morpholine disulfide, and alkylphenol disulfide; cyclohexanone peroxide, methyl acetoacetate peroxide, tert-butyl peroxyisobutyrate, tert-butyl peroxybenzoate, benzoyl peroxide, And organic peroxide crosslinking agents such as lauroyl peroxide, dicumyl peroxide, ditert-butyl peroxide, and 1,3-bis (tert-butylperoxyisopropyl) benzene. The content thereof is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, with respect to 100 parts by mass of the rubber component (A). More preferably.
 また、本実施形態に係るゴム組成物は、必要に応じて、加硫促進剤や加硫助剤を含有していてもよい。加硫促進剤や加硫助剤としては特に限定されず、ゴム組成物が含有するゴム成分(A)、イソブチレン系重合体(B)、架橋剤に応じて、適宜選択して使用することができる。なお、「加硫」とは硫黄原子を少なくとも一つ介する架橋を示す。 Moreover, the rubber composition according to the present embodiment may contain a vulcanization accelerator and a vulcanization aid as necessary. The vulcanization accelerator and the vulcanization aid are not particularly limited, and may be appropriately selected and used depending on the rubber component (A), the isobutylene polymer (B) and the crosslinking agent contained in the rubber composition. it can. “Vulcanization” refers to crosslinking via at least one sulfur atom.
 加硫促進剤としては、例えば、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィドなどのチウラム系促進剤;2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィドなどのチアゾール系促進剤;N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミドなどのスルフェンアミド系促進剤;ジフェニルグアニジン、ジオルトトリルグアニジンなどのグアニジン系促進剤;n-ブチルアルデヒド-アニリン縮合品、ブチルアルデヒド-モノブチルアミン縮合品などのアルデヒド-アミン系促進剤;ヘキサメチレンテトラミンなどのアルデヒド-アンモニア系促進剤;チオカルバニリドなどのチオ尿素系促進剤、などが挙げられる。これらの加硫促進剤を配合する場合は、1種類を単独で使用してもよく、2種以上を組み合わせて使用してもよい。加硫促進剤の含有量は、ゴム成分(A)100質量部に対して0.1~10質量部であることが好ましい。 Examples of the vulcanization accelerator include thiuram accelerators such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide and tetraethylthiuram disulfide; thiazole accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl Sulfenamide accelerators such as -2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; guanidine accelerators such as diphenylguanidine and diortolylguanidine; n-butyraldehyde -Aldehyde-amine accelerators such as aniline condensates and butyraldehyde-monobutylamine condensates; aldehyde-ammonia accelerators such as hexamethylenetetramine; thioureas such as thiocarbanilide Susumuzai, and the like. When blending these vulcanization accelerators, one type may be used alone, or two or more types may be used in combination. The content of the vulcanization accelerator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
 加硫助剤としては酸化亜鉛(亜鉛華)、酸化マグネシウムなどの金属酸化物;水酸化カルシウムなどの金属水酸化物;炭酸亜鉛、塩基性炭酸亜鉛などの金属炭酸塩;ステアリン酸、オレイン酸などの脂肪酸;ステアリン酸亜鉛、ステアリン酸マグネシウムなどの脂肪族金属塩;ジn-ブチルアミン、ジシクロヘキシルアミンなどのアミン類;エチレンジメタクリレート、ジアリルフタレート、N,N-m-フェニレンジマレイミド、トリアリルイソシアヌレート、トリメチロールプロパントリメタクリレートなどが挙げられる。これらの加硫助剤を配合する場合は、1種類を単独で使用してもよく、2種以上を組み合わせて使用してもよい。加硫助剤の含有量は、ゴム成分(A)100質量部に対して、0.1~10質量部であることが好ましい。 Vulcanization aids include metal oxides such as zinc oxide (zinc white) and magnesium oxide; metal hydroxides such as calcium hydroxide; metal carbonates such as zinc carbonate and basic zinc carbonate; stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate; amines such as di-n-butylamine and dicyclohexylamine; ethylene dimethacrylate, diallyl phthalate, N, Nm-phenylene dimaleimide, triallyl isocyanurate And trimethylolpropane trimethacrylate. When blending these vulcanization aids, one type may be used alone, or two or more types may be used in combination. The content of the vulcanization aid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A).
 本実施形態に係るゴム組成物は、一般にゴム組成物の製造方法として用いられる方法を適用することにより製造することができる。例えば、上述した各成分を、ブラベンダー、バンバリーミキサー、ロールミキサー等の混練機を用いて混合すること等により製造できる。 The rubber composition according to the present embodiment can be manufactured by applying a method generally used as a method for manufacturing a rubber composition. For example, it can manufacture by mixing each component mentioned above using kneading machines, such as a Brabender, a Banbury mixer, and a roll mixer.
 本実施形態に係る架橋ゴム組成物は、上記ゴム成分(A)と上記イソブチレン系重合体(B)とが架橋した構造を有する。このような架橋ゴム組成物は、動的粘弾特性、耐磨耗性、水蒸気バリア性及び酸素バリア性に優れる。そのため、本実施形態に係る架橋ゴム組成物は、タイヤ用ゴム材料として有用である。具体的には、例えば、本実施形態に係る架橋ゴム組成物を、タイヤのトレッド部に用いると、イソブチレン系重合体(B)を配合しない場合と比較して、ブレーキ制動性(ウェットグリップ性)が向上し、且つ良好な転がり抵抗特性及び耐磨耗性が維持される。 The crosslinked rubber composition according to this embodiment has a structure in which the rubber component (A) and the isobutylene polymer (B) are crosslinked. Such a crosslinked rubber composition is excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties and oxygen barrier properties. Therefore, the crosslinked rubber composition according to this embodiment is useful as a rubber material for tires. Specifically, for example, when the crosslinked rubber composition according to the present embodiment is used in a tread portion of a tire, brake braking performance (wet grip performance) is compared with a case where no isobutylene polymer (B) is blended. And good rolling resistance characteristics and wear resistance are maintained.
 本実施形態に係る架橋ゴム組成物は、上記ゴム組成物を用いて、通常ゴムの架橋方法として用いられる方法により製造することができる。例えば、上記ゴム組成物が架橋剤を含有する場合、上記ゴム組成物を加熱圧縮成形することにより、所望の形状に成形され、且つゴム成分(A)とイソブチレン系重合体(B)とが架橋した構造を有する架橋ゴム組成物が得られる。 The crosslinked rubber composition according to the present embodiment can be produced by a method usually used as a rubber crosslinking method, using the rubber composition. For example, when the rubber composition contains a crosslinking agent, the rubber composition is molded into a desired shape by heat compression molding, and the rubber component (A) and the isobutylene polymer (B) are crosslinked. A crosslinked rubber composition having the above structure is obtained.
 本実施形態に係る架橋ゴム組成物は、動的粘弾特性、耐磨耗性、水蒸気バリア性及び酸素バリア性に優れることから、これらの特性が要求される種々の用途に用いることができる。例えば、工業用ベルト、工業用ゴムホースなどの工業用ゴム部材用途として好適に使用することができる。また、ゴムベルト、ゴムホース、ゴムロール、もみすりロール、型加硫製品、防振ゴム、防げん材、エボナイト、ライニング、磁性ゴム、スポンジゴム、分出製品、押出製品、テープ製品、ゴム系接着剤、ゴムはきもの、ゴム引布、角糸ゴム、カットシート製品、消ゴム、医療用ゴム製品、電線、導電性ゴム、微孔ゴム隔離板、防毒マスク、水中運道具、ボーリングボール、おもちゃ、ボール類、ゴルフボール、ラテックス浸せき製品、ラテックスキャスト製品、ラテックスゴム糸、フォームラバー、ウレタンホーム、その他のラテックス製品、紙サイジング、カーペットバッキング、合成皮革、シーリング材、シート防水材(合成高分子ルーフィング)、塗膜防水材、ポリマーセメントモルタル(ラテックスセメントモルタル)、ゴムアスファルト、ラテックスペイント等の用途にも使用することができる。 The crosslinked rubber composition according to this embodiment is excellent in dynamic viscoelastic properties, abrasion resistance, water vapor barrier properties, and oxygen barrier properties, and therefore can be used in various applications that require these properties. For example, it can be suitably used for industrial rubber member applications such as industrial belts and industrial rubber hoses. Also, rubber belts, rubber hoses, rubber rolls, rice bran rolls, mold vulcanized products, anti-vibration rubbers, anti-fouling materials, ebonite, lining, magnetic rubber, sponge rubber, dispensed products, extruded products, tape products, rubber adhesives, rubber Footwear, rubberized cloth, square thread rubber, cut sheet products, erasers, medical rubber products, electric wires, conductive rubber, microporous rubber separators, gas masks, underwater equipment, bowling balls, toys, balls, golf Ball, Latex soaked product, Latex cast product, Latex rubber yarn, Foam rubber, Urethane home, Other latex products, Paper sizing, Carpet backing, Synthetic leather, Sealing material, Seat waterproofing material (Synthetic polymer roofing), Waterproof coating film Materials, polymer cement mortar (latex cement mortar), rubber assembly Aruto can also be used in applications latex paints or the like.
 また、本実施形態に係る架橋ゴム組成物は、タイヤ用途に特に好適に用いることができ、例えば、自動車タイヤ・チューブ、インナーライナー、ビードフィラー、プライ、ベルト、トレッドゴム、サイドゴム、各種封止材、シーラント、航空機用タイヤ・チューブ、自転車タイヤ・チューブ、ソリッドタイヤ、更正タイヤ等の用途に用いることができる。 In addition, the crosslinked rubber composition according to the present embodiment can be particularly suitably used for tire applications. For example, automobile tires and tubes, inner liners, bead fillers, plies, belts, tread rubbers, side rubbers, various sealing materials. It can be used for applications such as sealants, aircraft tires and tubes, bicycle tires and tubes, solid tires, and corrected tires.
 具体例を挙げると、本実施形態に係る架橋ゴム組成物は、路面と接するトレッド部(及びトレッド部を含むキャップ部)を構成する材料として使用することができる。架橋ゴム組成物を用いてトレッド部が構成された空気入りタイヤは、ウェットグリップ性に優れるため、走行安定性及びブレーキ制動性に優れる。また、転がり抵抗特性に優れ、且つ転動抵抗が小さいため、低燃費化が実現できる。さらに、耐磨耗性に優れるため、長期の使用に耐えうるものとなる。 As a specific example, the crosslinked rubber composition according to the present embodiment can be used as a material constituting a tread portion (and a cap portion including the tread portion) in contact with a road surface. Since the pneumatic tire in which the tread portion is formed using the crosslinked rubber composition is excellent in wet grip performance, it is excellent in running stability and brake braking performance. In addition, since the rolling resistance characteristics are excellent and the rolling resistance is small, fuel efficiency can be reduced. Furthermore, since it is excellent in wear resistance, it can withstand long-term use.
 また、本実施形態に係る架橋ゴム組成物は、インナーライナー部を構成する材料として使用することができる。架橋ゴム組成物を用いてインナーライナー部が構成された空気入りタイヤは、空気もれを十分に低減することができるため、空気もれに起因する転がり抵抗特性の悪化を十分に防止することができる。 Moreover, the crosslinked rubber composition according to the present embodiment can be used as a material constituting the inner liner portion. Since the pneumatic tire in which the inner liner portion is configured using the crosslinked rubber composition can sufficiently reduce air leakage, it can sufficiently prevent deterioration of rolling resistance characteristics due to air leakage. it can.
 本実施形態に係る空気入りタイヤは、例えば、トレッド部が路面と接するキャップ部とその内側のベース部とからなる2層以上の構造を有し、キャップ部の一部又は全部が上記架橋ゴム組成物で構成されている。このような空気入りタイヤは、従来公知のゴム組成物を用いた空気入りタイヤの製造方法に従って、適宜製造することができる。 The pneumatic tire according to the present embodiment has, for example, a structure of two or more layers including a cap portion in which a tread portion is in contact with a road surface and a base portion inside the tread portion. It consists of things. Such a pneumatic tire can be appropriately manufactured according to a method for manufacturing a pneumatic tire using a conventionally known rubber composition.
 また、本実施形態に係る空気入りタイヤは、例えば、インナーライナー部の一部又は全部が上記架橋ゴム組成物で構成されている。このような空気入りタイヤは、従来公知のゴム組成物を用いた空気入りタイヤの製造方法に従って、適宜製造することができる。 Further, in the pneumatic tire according to the present embodiment, for example, a part or the whole of the inner liner portion is composed of the crosslinked rubber composition. Such a pneumatic tire can be appropriately manufactured according to a method for manufacturing a pneumatic tire using a conventionally known rubber composition.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明は、空気入りタイヤに使用されるゴム材料(例えば上記ゴム成分(A)として例示されるゴム)に、イソブチレン系重合体(B)を配合し架橋することによりウェットグリップ性を向上させる方法、すなわち、ゴム材料とイソブチレン系重合体(B)とが架橋した構造を有する架橋ゴム材料を用いてトレッド部を構成する、タイヤのウェットグリップ性を向上させる方法であってもよい。この場合、従来のゴム材料の改良方法では、ウェットグリップ性の向上に伴って転がり抵抗特性及び/又は耐磨耗性が低下していたところ、本発明の方法によれば、ゴム材料が元来有する転がり抵抗特性及び耐磨耗性を維持しつつ、ウェットグリップ性を向上させることができる。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the present invention improves wet grip properties by blending and crosslinking an isobutylene polymer (B) with a rubber material used in a pneumatic tire (for example, rubber exemplified as the rubber component (A)). A method of improving the wet grip property of the tire by forming a tread portion using a crosslinked rubber material having a structure in which the rubber material and the isobutylene polymer (B) are crosslinked. In this case, in the conventional method for improving a rubber material, the rolling resistance characteristic and / or the wear resistance is reduced with the improvement of wet grip properties. However, according to the method of the present invention, the rubber material is originally provided. Wet grip properties can be improved while maintaining the rolling resistance characteristics and wear resistance.
 また、本発明は、空気入りタイヤに使用されるゴム材料(例えば上記ゴム成分(A)として例示されるゴム)に、イソブチレン系重合体(B)を配合し架橋することにより水蒸気バリア性及び酸素バリア性を向上させる方法であってもよい。すなわち、ゴム材料とイソブチレン系重合体(B)とが架橋した構造を有する架橋ゴム材料を用いてインナーライナー部を構成する、タイヤの空気もれを改善する方法であってもよい。 The present invention also provides water vapor barrier properties and oxygen by blending and crosslinking an isobutylene polymer (B) with a rubber material (eg, rubber exemplified as the rubber component (A)) used in a pneumatic tire. It may be a method for improving the barrier property. That is, it may be a method of improving tire air leakage by forming the inner liner portion using a crosslinked rubber material having a structure in which the rubber material and the isobutylene polymer (B) are crosslinked.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
[製造例A:トリシクロデセンビニルエーテル化合物の合成]
 下記スキームに従い、トリシクロデセンビニルエーテルを合成した。
Figure JPOXMLDOC01-appb-C000013
[Production Example A: Synthesis of tricyclodecene vinyl ether compound]
Tricyclodecene vinyl ether was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000013
 具体的には、ガラス製フラスコにトリシクロデセンモノオール(異性体(6-a)、(6-b)の混合物)186.47g(1.24mol)、水酸化カリウム7.56g(10mol%)、1,3-ジメチルイミダゾリジノン(DMI)454.35gを導入し、減圧下(40mmHg)、120℃で反応させた。この反応液をステンレス製オートクレーブに導入し、0.02MPaのアセチレン雰囲気下、140℃で5時間反応させた。反応液を回収、溶媒を留去した後、残渣をヘキサン/メタノール/水で抽出し、ヘキサン相を回収した。ヘキサン相を無水硫酸ナトリウムで乾燥、濾別し、減圧乾燥することにより、粗トリシクロデセンビニルエーテル192.32gを得た。更に、蒸留精製をすることにより、目的のトリシクロデセンビニルエーテル(異性体(7-a)、(7-b)の混合物)155.17gを得た。 Specifically, tricyclodecene monool (mixture of isomers (6-a) and (6-b)) 186.47 g (1.24 mol) and potassium hydroxide 7.56 g (10 mol%) were placed in a glass flask. 1,3-dimethylimidazolidinone (DMI) (454.35 g) was introduced, and the mixture was reacted at 120 ° C. under reduced pressure (40 mmHg). This reaction solution was introduced into a stainless steel autoclave and reacted at 140 ° C. for 5 hours in an acetylene atmosphere of 0.02 MPa. After the reaction solution was recovered and the solvent was distilled off, the residue was extracted with hexane / methanol / water to recover the hexane phase. The hexane phase was dried over anhydrous sodium sulfate, filtered, and dried under reduced pressure to obtain 192.32 g of crude tricyclodecene vinyl ether. Furthermore, by distillation purification, 155.17 g of the desired tricyclodecene vinyl ether (mixture of isomers (7-a) and (7-b)) was obtained.
[製造例1:イソブチレン系重合体1の合成]
 以下の手順に従って、下記式(1):
Figure JPOXMLDOC01-appb-C000014
で表される構造単位と、下記式(8-a):
Figure JPOXMLDOC01-appb-C000015
で表される構造単位と、下記式(8-b):
Figure JPOXMLDOC01-appb-C000016
で表される構造単位とを含有するイソブチレン系重合体を合成した。
[Production Example 1: Synthesis of isobutylene polymer 1]
According to the following procedure, the following formula (1):
Figure JPOXMLDOC01-appb-C000014
A structural unit represented by the following formula (8-a):
Figure JPOXMLDOC01-appb-C000015
A structural unit represented by the following formula (8-b):
Figure JPOXMLDOC01-appb-C000016
An isobutylene polymer containing a structural unit represented by the following formula was synthesized.
 300mLの3口フラスコにセプタムキャップ、真空ラインを繋げた還流管、温度管を取り付け、スターラーバーを入れ、真空ライン(シュレンク管付き)を用いて、系内の脱気-窒素置換を2回繰り返し、常圧窒素雰囲気下とした。そのフラスコ内に、水素化カルシウムにて乾燥-蒸留した34.8gのトルエン溶媒を、シリンジを用いてセプタムキャップから注入した。
 次にシリンジを用いて、5.68mmolのトリシクロデセンビニルエーテルを注入した。フラスコを所定温度の低温槽に浸漬させ、系内の液温が表1記載の所定温度になったことを確認した後、イソブチレン51.2mmolを反応系に移した。次いで、1.06mol/Lのエチルアルミニウムジクロライド(EADC)/n-ヘキサン溶液を精製ヘキサンにて10倍希釈した調製触媒液(エチルアルミニウムジクロライドとして、1.14mmol)をシリンジにて秤量し、反応器に注入した。
 触媒液の注入から2時間後、フラスコから低温槽をはずし、室温まで放置させた。反応混合液を1N水酸化ナトリウム水溶液にて抽出操作を行い(2回)、得られた油相を純水にて抽出操作を行った。水相側のpHが中性になったことを確認した後、油相中の溶媒をエバポレータにて留去させ、残渣を減圧乾燥機にて1mmHg、12時間、60℃にて乾燥させ、目的のイソブチレン共重合体を2.41g得た。
Attach a septum cap, a reflux tube connected to a vacuum line, and a temperature tube to a 300 mL 3-neck flask, put a stirrer bar, and repeat degassing-nitrogen replacement in the system twice using a vacuum line (with a Schlenk tube). And under a normal pressure nitrogen atmosphere. Into the flask, 34.8 g of toluene solvent dried and distilled with calcium hydride was injected from the septum cap using a syringe.
Next, 5.68 mmol of tricyclodecene vinyl ether was injected using a syringe. The flask was immersed in a low temperature bath at a predetermined temperature, and after confirming that the liquid temperature in the system reached the predetermined temperature shown in Table 1, 51.2 mmol of isobutylene was transferred to the reaction system. Next, a prepared catalyst solution (1.14 mmol as ethylaluminum dichloride) obtained by diluting a 1.06 mol / L ethylaluminum dichloride (EADC) / n-hexane solution 10 times with purified hexane was weighed with a syringe, and the reactor Injected into.
Two hours after the injection of the catalyst solution, the cryostat was removed from the flask and allowed to stand at room temperature. The reaction mixture was extracted with a 1N aqueous sodium hydroxide solution (twice), and the resulting oil phase was extracted with pure water. After confirming that the pH on the water phase side became neutral, the solvent in the oil phase was distilled off with an evaporator, and the residue was dried with a vacuum dryer at 1 mmHg for 12 hours at 60 ° C. 2.41 g of an isobutylene copolymer was obtained.
[製造例2~6:イソブチレン系重合体2~6の合成]
 イソブチレンとトリシクロデセンビニルエーテルの仕込み比、EADC触媒量、反応温度を表1に示すように変更した以外は、製造例1と同様にしてイソブチレン系重合体を製造して評価した。
[Production Examples 2 to 6: Synthesis of isobutylene polymers 2 to 6]
An isobutylene polymer was produced and evaluated in the same manner as in Production Example 1 except that the charging ratio of isobutylene and tricyclodecene vinyl ether, the amount of EADC catalyst, and the reaction temperature were changed as shown in Table 1.
[製造例7:イソブチレンホモ重合体の合成]
 トリシクロデセンビニルエーテルを使用せず、EADC触媒量、反応温度を表1に示すように変更した以外は、製造例1と同様にしてイソブチレンホモ重合体を製造して評価した。
[Production Example 7: Synthesis of isobutylene homopolymer]
An isobutylene homopolymer was produced and evaluated in the same manner as in Production Example 1 except that tricyclodecene vinyl ether was not used and the amount of EADC catalyst and the reaction temperature were changed as shown in Table 1.
13C-NMR測定]
 製造例1~6のイソブチレン系重合体について13C-NMR測定を実施した。具体的には、イソブチレン系重合体を重水素化クロロホルムに溶解し、Varian社製VNMRS-500で測定した。化学シフトの較正には内標物質テトラメチルシランを用いた。 13C-NMR測定により求められた共重合比を表1に示す。また、製造例1における共重合反応前の13C-NMRスペクトルを図1に、得られたイソブチレン系重合体の13C-NMRスペクトルを図2に、それぞれ示す。なお、参考のため、図1には、13C-NMRスペクトルにおけるピークと式(7-a)、(7-b)中の炭素との関係を、図2には、13C-NMRスペクトルにおけるピークと式(9-a)、(9-b)中の炭素との関係を、それぞれ示す。式(9-a)、(9-b)は、上記式(1)で表される構造単位と、上記式(8-a)又は(8-b)で表される構造単位との共重合鎖であり、これらの共重合鎖はイソブチレン系重合体の一分子中に存在し得る。
[ 13 C-NMR measurement]
13 C-NMR measurement was performed on the isobutylene polymers of Production Examples 1 to 6. Specifically, an isobutylene polymer was dissolved in deuterated chloroform and measured with VNMRS-500 manufactured by Varian. The internal standard substance tetramethylsilane was used for chemical shift calibration. The copolymerization ratios determined by 13 C-NMR measurement are shown in Table 1. Further, 13 C-NMR spectrum of the previous copolymerization reaction in Production Example 1 in FIG. 1, the 13 C-NMR spectrum of the resulting isobutylene-based polymer 2, respectively. For reference, FIG. 1 shows the relationship between the peak in the 13 C-NMR spectrum and carbon in the formulas (7-a) and (7-b), and FIG. 2 shows the relationship in the 13 C-NMR spectrum. The relationship between the peak and carbon in the formulas (9-a) and (9-b) is shown respectively. Formulas (9-a) and (9-b) are copolymers of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (8-a) or (8-b). These copolymer chains may exist in one molecule of the isobutylene polymer.
[GPC測定]
 製造例1~6のイソブチレン系重合体及び製造例7のイソブチレンホモ重合体についてGPC測定を実施した。具体的には、化合物をテトラヒドロフランに溶解し、東ソー社製8020GPCシステムで、TSK-GEL SuperH1000、SuperH2000、SuperH3000、SuperH4000を直列につなぎ、溶出液としてテトラヒドロフランを用いてGPC測定を実施した。分子量の較正にはポリスチレンスタンダードを用いた。GPC測定により求められた各イソブチレン系重合体及びイソブチレンホモ重合体の重量平均分子量を表1に示す。
[GPC measurement]
GPC measurement was carried out on the isobutylene polymers of Production Examples 1 to 6 and the isobutylene homopolymer of Production Example 7. Specifically, the compound was dissolved in tetrahydrofuran, and TPC-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 were connected in series with an 8020 GPC system manufactured by Tosoh Corporation, and GPC measurement was performed using tetrahydrofuran as an eluent. Polystyrene standards were used for molecular weight calibration. Table 1 shows the weight average molecular weight of each isobutylene polymer and isobutylene homopolymer determined by GPC measurement.
[硫黄架橋性試験]
 製造例1~6のイソブチレン系重合体及び製造例7のイソブチレンホモ重合体について、一定温度における動的粘弾性測定による粘度変化に基づき、硫黄架橋性を評価した。動的粘弾性測定は、REOLOGICA INSTRUMENTS AB社製のDAR-50装置を用いた。当該測定機に、イソブチレン系重合体又はイソブチレンホモ重合体と架橋剤との混合物を設置し、その混合物について100℃から160℃まで2℃/分で昇温し、160℃に到達した後に30分間保持しながら、各温度でのずり粘度挙動を追跡した。
 なお、ずり粘度は周波数1Hz、歪み10%の条件で付与させた。
 製造例1~6のイソブチレン系重合体の場合、所定温度で粘度が急に上昇する現象がみられた。各イソブチレン系重合体の粘度上昇開始温度を表1に示す。一方、イソブチレンホモ重合体の場合は、測定温度域で粘度上昇がみられなかった。
[Sulfur crosslinkability test]
The sulfur crosslinkability of the isobutylene polymers of Production Examples 1 to 6 and the isobutylene homopolymer of Production Example 7 was evaluated based on changes in viscosity by dynamic viscoelasticity measurement at a constant temperature. The dynamic viscoelasticity measurement was performed using a DAR-50 apparatus manufactured by REOLOGICA INSTRUMENTS AB. A mixture of an isobutylene polymer or isobutylene homopolymer and a crosslinking agent is installed in the measuring device, and the mixture is heated from 100 ° C. to 160 ° C. at 2 ° C./min, and after reaching 160 ° C., for 30 minutes. While holding, the shear viscosity behavior at each temperature was followed.
The shear viscosity was applied under conditions of a frequency of 1 Hz and a strain of 10%.
In the case of the isobutylene polymers of Production Examples 1 to 6, a phenomenon in which the viscosity suddenly increased at a predetermined temperature was observed. Table 1 shows the viscosity increase start temperature of each isobutylene polymer. On the other hand, in the case of isobutylene homopolymer, no increase in viscosity was observed in the measurement temperature range.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[実施例1]
 スチレン-ブタジエン共重合体ゴム(JSR SL552、JSR社製、表2中でSBRと略す。)に、製造例6で合成したイソブチレン共重合体6、充填剤、可塑剤、加硫剤、加硫促進剤、加硫助剤及び老化防止剤を、それぞれ表2に示す量で配合して、混練した。なお、充填剤としてはシリカAQ(東ソー・シリカ社製)を、可塑剤としてはプロセスオイル(NS-100、出光興産社製)を、加硫剤としては硫黄(川越化学社製)を、加硫助剤としては酸化亜鉛3号(ハクスイテック社製)及びステアリン酸(日本精化社製)を、加硫促進剤としてはスルフェンアミド系促進剤のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、大内新興化学社製)及びグアニジン系促進剤のノクセラーD(1,3-ジフェニルグアニジン、大内新興化学社製)を、老化防止剤としては老化防止剤224(大内新興化学社製)を、それぞれ用いた。
 この混練はロール機(6インチφ×16インチ)を用い、回転数30rpm、前後ロール回転比1:1.22の条件で行った。この混練で得られたゴム組成物を160℃×20分の加硫条件で圧縮成形し、シートを作製した。この際の成形性は極めて良好であった。次いで、この作製シートを用いて、後述の方法により動的粘弾性及び耐摩耗性を評価した。これらの結果を表3に示す。
[Example 1]
Styrene-butadiene copolymer rubber (JSR SL552, manufactured by JSR Corporation, abbreviated as SBR in Table 2), isobutylene copolymer 6 synthesized in Production Example 6, filler, plasticizer, vulcanizing agent, vulcanized Accelerator, vulcanization aid and anti-aging agent were blended in the amounts shown in Table 2 and kneaded. Silica AQ (manufactured by Tosoh Silica) is used as the filler, process oil (NS-100, manufactured by Idemitsu Kosan Co., Ltd.) as the plasticizer, and sulfur (manufactured by Kawagoe Chemical Co., Ltd.) as the vulcanizing agent. Zinc oxide No. 3 (manufactured by Hakusuitec Co., Ltd.) and stearic acid (manufactured by Nippon Seika Co., Ltd.) are used as sulfur assistants. Dilsulfenamide (manufactured by Ouchi Shinsei Chemical Co., Ltd.) and guanidine accelerator Noxeller D (1,3-diphenylguanidine, manufactured by Ouchi Shinsei Chemical Co., Ltd.) are used as anti-aging agents. Chemical Co., Ltd.) were used.
This kneading was performed using a roll machine (6 inches φ × 16 inches) under the conditions of a rotation speed of 30 rpm and a front / rear roll rotation ratio of 1: 1.22. The rubber composition obtained by this kneading was compression molded under a vulcanization condition of 160 ° C. × 20 minutes to produce a sheet. The moldability at this time was extremely good. Subsequently, using this produced sheet, dynamic viscoelasticity and abrasion resistance were evaluated by the method described later. These results are shown in Table 3.
[比較例1]
 イソブチレン系重合体6を使用しなかったこと以外は、実施例1と同様にしてシートを作製し評価した。
[Comparative Example 1]
A sheet was prepared and evaluated in the same manner as in Example 1 except that the isobutylene polymer 6 was not used.
[比較例2]
 イソブチレン系重合体6にかえて製造例7で合成したイソブチレンホモ重合体10質量部を使用した以外は、実施例1と同様にしてシートを作製し評価した。
[Comparative Example 2]
A sheet was prepared and evaluated in the same manner as in Example 1 except that 10 parts by mass of the isobutylene homopolymer synthesized in Production Example 7 was used instead of the isobutylene polymer 6.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
[動的粘弾性の測定]
 動的粘弾性の測定は、JIS K-7244-4(プラスチック-動的機械特性の試験方法-第4部:引張振動―非共振法)に準じて実施した。具体的には、実施例1、比較例1~2で得られたシートから、厚さ1mm×幅5mm×長さ40mmの試験片を1枚切り出して用い、周波数10Hz、歪み  0.1%の条件で、-50~100℃の範囲を2℃/分で昇温させながら、引張モードで測定した。用いた装置は動的粘弾性測定装置RSA-3(TA INSTRUMENTS製)である。測定結果を表3に示す。
 このとき、周波数は10Hzであるが、これはウェットグリップ性が、粘弾性の時間温度換算則を利用すると、10Hz-0℃におけるtanδ値と相関しているためであり、その数値が大きいほど、ウェットグリップ性が良好であることが知られている。また、転がり抵抗は、同様にして、10Hz-60℃におけるtanδ値と相関しており、その数値が小さいほど、転がり抵抗が良好であることが知られている。
[Measurement of dynamic viscoelasticity]
The measurement of dynamic viscoelasticity was carried out according to JIS K-7244-4 (Plastics—Test method for dynamic mechanical properties—Part 4: Tensile vibration—Non-resonance method). Specifically, a test piece having a thickness of 1 mm, a width of 5 mm, and a length of 40 mm was cut out from the sheets obtained in Example 1 and Comparative Examples 1 and 2 and used at a frequency of 10 Hz and a strain of 0.1%. Under the condition, the measurement was performed in the tensile mode while raising the temperature in the range of −50 to 100 ° C. at 2 ° C./min. The apparatus used is a dynamic viscoelasticity measuring apparatus RSA-3 (manufactured by TA INSTRUMENTS). Table 3 shows the measurement results.
At this time, the frequency is 10 Hz. This is because the wet grip property correlates with the tan δ value at 10 Hz-0 ° C. by using the viscoelastic time-temperature conversion rule. It is known that the wet grip property is good. Similarly, the rolling resistance correlates with the tan δ value at 10 Hz-60 ° C., and it is known that the smaller the value, the better the rolling resistance.
[耐摩耗性試験]
 耐摩耗性試験は、JIS K-6264-2(加硫ゴム及び熱可塑性ゴム-耐摩耗性の求め方-第2部試験方法)に準じて実施した。具体的にはアクロン摩耗試験機において、荷重27N、傾角15度の条件で、75rpmの回転速度で1000回転させた際の磨耗体積(mm)を測定し、耐摩耗性を評価した。なお、試験は3回行い、これらの平均値を測定値とした。
[Abrasion resistance test]
The abrasion resistance test was carried out in accordance with JIS K-6264-2 (vulcanized rubber and thermoplastic rubber-how to determine abrasion resistance-Part 2 test method). Specifically, in an Akron abrasion tester, the abrasion volume (mm 3 ) was measured when 1000 rotations were performed at a rotation speed of 75 rpm under the conditions of a load of 27 N and an inclination angle of 15 degrees, and the abrasion resistance was evaluated. In addition, the test was performed 3 times and these average values were made into the measured value.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例1のゴム組成物では、比較例1と比べて0℃でのtanδが高く、ウェットグリップ性が改善された。また、60℃でのtanδは同等であり、転がり抵抗特性が損なわれていないことが示された。さらに、比較例2のイソブチレンホモ重合体を含むゴム組成物では、0℃でのtanδは改善されているものの、耐摩耗性が悪化した。 In the rubber composition of Example 1, tan δ at 0 ° C. was higher than that of Comparative Example 1, and wet grip properties were improved. In addition, tan δ at 60 ° C. is equivalent, indicating that the rolling resistance characteristics are not impaired. Furthermore, in the rubber composition containing the isobutylene homopolymer of Comparative Example 2, the tan δ at 0 ° C. was improved, but the wear resistance was deteriorated.
[製造例8:イソブチレン系重合体8の合成]
 以下の手順に従って、上記式(1)で表される構造単位と、上記式(8-a)で表される構造単位と、上記式(8-b)で表される構造単位とを含有するイソブチレン系重合体を合成した。
[Production Example 8: Synthesis of isobutylene polymer 8]
According to the following procedure, the structural unit represented by the above formula (1), the structural unit represented by the above formula (8-a), and the structural unit represented by the above formula (8-b) are contained. An isobutylene polymer was synthesized.
 触媒として、三フッ化ホウ素のメタノール錯体(BF・MeOH錯体、BFの含有量が67質量%)を用い、トリシクロデセンビニルエーテル0.1mol/hr、イソブチレン2.7mol/hr(イソブチレン/ビニルエーテル=95/5(モル比))、反応圧力0.3MPa、反応温度-30℃の条件で、連続的に流通させながら、5時間反応を実施した。 As a catalyst, a methanol complex of boron trifluoride (BF 3 · MeOH complex, BF 3 content is 67% by mass), tricyclodecene vinyl ether 0.1 mol / hr, isobutylene 2.7 mol / hr (isobutylene / vinyl ether) = 95/5 (molar ratio)), reaction pressure 0.3 MPa, reaction temperature −30 ° C., and the reaction was carried out for 5 hours while continuously flowing.
 反応混合物をメタノールに注ぎ込んだところ、白色の粘着性化合物が析出した。デカンテーションによってメタノールを除去することで、粘着性化合物を単離し、減圧乾燥機にて1mmHg、12時間、60℃にて乾燥させたところ、微黄色の透明性粘着性物質が得られた。得られた透明性粘着性物質について13C-NMR測定を行い、得られた透明性粘着性物質が目的のイソブチレン系重合体(イソブチレンとトリシクロデセンビニルエーテルとの共重合体)であることを確認した。イソブチレン系重合体8について、製造例1と同様の評価方法により評価した。評価結果を表4に示す。 When the reaction mixture was poured into methanol, a white adhesive compound was precipitated. By removing methanol by decantation, the adhesive compound was isolated and dried at 1 ° HHg for 12 hours at 60 ° C. in a vacuum dryer to obtain a slightly yellow transparent adhesive substance. The obtained transparent adhesive substance is subjected to 13 C-NMR measurement, and it is confirmed that the obtained transparent adhesive substance is the target isobutylene polymer (copolymer of isobutylene and tricyclodecene vinyl ether). did. The isobutylene polymer 8 was evaluated by the same evaluation method as in Production Example 1. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
[実施例2]
 スチレン-ブタジエン共重合体ゴム(JSR SL552、JSR社製、表5中でSBRと略す。)に、製造例8で合成したイソブチレン系重合体8、充填剤、シランカップリング剤、可塑剤、加硫剤、加硫促進剤、加硫助剤及び老化防止剤を、それぞれ表5に示す量で配合して、混練した。なお、充填剤としてはシリカAQ(東ソー・シリカ社製)を、シランカップリング剤としてはSi69(デグサ社製、(EtO)Si-C-S-C-Si(OEt))を、可塑剤としてはプロセスオイル(NS-100、出光興産社製)を、加硫剤としては硫黄(川越化学社製)を、加硫助剤としては酸化亜鉛3号(ハクスイテック社製)及びステアリン酸(日本精化社製)を、加硫促進剤としてはスルフェンアミド系促進剤のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、大内新興化学社製)及びグアニジン系促進剤のノクセラーD(1,3-ジフェニルグアニジン、大内新興化学社製)を、老化防止剤としては老化防止剤224(大内新興化学社製)を、それぞれ用いた。
 この混練はロール機(6インチφ×16インチ)を用い、回転数30rpm、前後ロール回転比1:1.22の条件で行った。この混練で得られたゴム組成物を160℃×20分の加硫条件で圧縮成形し、シートを作製した。この際の成形性は極めて良好であった。次いで、このシートを用いて、上記の方法により動的粘弾性及び耐摩耗性を評価した。これらの結果を表6に示す。
[Example 2]
To the styrene-butadiene copolymer rubber (JSR SL552, manufactured by JSR, abbreviated as SBR in Table 5), the isobutylene polymer 8 synthesized in Production Example 8, a filler, a silane coupling agent, a plasticizer, an additive, A vulcanizing agent, a vulcanization accelerator, a vulcanization aid, and an anti-aging agent were blended in amounts shown in Table 5 and kneaded. Silica AQ (manufactured by Tosoh Silica) is used as the filler, and Si69 (manufactured by Degussa, (EtO) 3 Si—C 3 H 6 —S 4 —C 3 H 6 —Si (as the silane coupling agent). OEt) 3 ), process oil (NS-100, manufactured by Idemitsu Kosan Co., Ltd.) as a plasticizer, sulfur (manufactured by Kawagoe Chemical Co., Ltd.) as a vulcanizing agent, and zinc oxide No. 3 (Hakusuitech) as a vulcanizing aid ) And stearic acid (manufactured by Nippon Seika Co., Ltd.), as the vulcanization accelerator Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide, manufactured by Ouchi Shinsei Chemical Co., Ltd.) ) And Noxeller D (1,3-diphenylguanidine, manufactured by Ouchi Shinsei Chemical Co., Ltd.), and an aging inhibitor 224 (manufactured by Ouchi Shinsei Chemical Co., Ltd.) were used as the anti-aging agent.
This kneading was performed using a roll machine (6 inches φ × 16 inches) under the conditions of a rotation speed of 30 rpm and a front / rear roll rotation ratio of 1: 1.22. The rubber composition obtained by this kneading was compression molded under a vulcanization condition of 160 ° C. × 20 minutes to produce a sheet. The moldability at this time was extremely good. Subsequently, using this sheet | seat, dynamic viscoelasticity and abrasion resistance were evaluated by said method. These results are shown in Table 6.
[実施例3~5]
 イソブチレン系重合体8の配合量を表5に示すように変更したこと以外は、実施例2と同様にして、シートを作製し、動的粘弾性及び耐摩耗性を評価した。評価結果を表6に示す。
[Examples 3 to 5]
Except having changed the compounding quantity of the isobutylene-type polymer 8 as shown in Table 5, it carried out similarly to Example 2, and produced the sheet | seat and evaluated dynamic viscoelasticity and abrasion resistance. The evaluation results are shown in Table 6.
[比較例3]
 イソブチレン系重合体8にかえて、製造例7で合成したイソブチレンホモ重合体10質量部を使用したこと以外は、実施例2と同様にして、シートを作製し、動的粘弾性及び耐摩耗性を評価した。評価結果を表6に示す。
[Comparative Example 3]
A sheet was prepared in the same manner as in Example 2 except that 10 parts by mass of the isobutylene homopolymer synthesized in Production Example 7 was used instead of the isobutylene polymer 8, and dynamic viscoelasticity and abrasion resistance were obtained. Evaluated. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
[実施例6]
 スチレン-ブタジエン共重合体ゴム(SBR 1500、JSR社製、表7中でSBRと略す。)、天然ゴム(NR、RSS♯1)及びハロゲン化ブチルゴム(クロロブチル1068、JSR社製)に、製造例6で合成したイソブチレン系重合体6、カーボンブラック、軟化剤、加硫剤、加硫助剤及び加硫促進剤を、それぞれ表7に示す量で配合して、混練した。なお、カーボンブラックとしてはFEF(東海カーボン社製)を、軟化剤としてはパインタール(パインタールMT2-3、東京樹脂工業社製)を、加硫剤としては硫黄(川越化学社製)を、加硫助剤としては酸化亜鉛2号(ハクスイテック社製)及びステアリン酸(日本精化社製)を、加硫促進剤としてはスルフェンアミド系促進剤のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、大内新興化学社製)を、それぞれ用いた。
 この混練はロール機(6インチφ×16インチ)を用い、回転数30rpm、前後ロール回転比1:1.22の条件で行った。この混練で得られたゴム組成物を160℃×20分の加硫条件で圧縮成形し、シートを作製した。この際の成形性は極めて良好であった。
[Example 6]
Styrene-butadiene copolymer rubber (SBR 1500, manufactured by JSR, abbreviated as SBR in Table 7), natural rubber (NR, RSS # 1) and halogenated butyl rubber (chlorobutyl 1068, manufactured by JSR) The isobutylene polymer 6 synthesized in Step 6, carbon black, a softening agent, a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator were blended in the amounts shown in Table 7 and kneaded. As carbon black, FEF (manufactured by Tokai Carbon Co., Ltd.), as softener, pine tar (Pinterl MT2-3, manufactured by Tokyo Resin Co., Ltd.), as a vulcanizing agent, sulfur (manufactured by Kawagoe Chemical Co., Ltd.), Zinc oxide No. 2 (manufactured by Hakusuitec Co., Ltd.) and stearic acid (manufactured by Nippon Seika Co., Ltd.) are used as vulcanization aids, and Noxeller CZ (N-cyclohexyl-2-benzoate) is used as the vulcanization accelerator. Thiazylsulfenamide, manufactured by Ouchi Shinsei Chemical Co., Ltd.) was used.
This kneading was performed using a roll machine (6 inches φ × 16 inches) under the conditions of a rotation speed of 30 rpm and a front / rear roll rotation ratio of 1: 1.22. The rubber composition obtained by this kneading was compression molded under a vulcanization condition of 160 ° C. × 20 minutes to produce a sheet. The moldability at this time was extremely good.
 次いで、このシートを用いて、下記の方法により水蒸気透過度及び酸素透過度を評価した。評価結果を表8に示す。 Next, using this sheet, the water vapor permeability and the oxygen permeability were evaluated by the following methods. The evaluation results are shown in Table 8.
[水蒸気透過度]
 水蒸気透過度の測定は、JIS Z 0208(1976年)「防湿包装材料の透湿度試験方法(カップ法)」に準拠した。測定時の温度は40±1℃、湿度は90±5%とした。試験は3回行い、これらの平均値を測定値とした。なお、本測定方法における測定下限値は0.4g/(m・day)であるため、測定下限値を下回る場合(水蒸気透過度が0.4g/(m・day)以下である場合)は、「≦0.4」と表した。
[Water vapor permeability]
The water vapor permeability was measured in accordance with JIS Z 0208 (1976) “Method of testing moisture permeability of moisture-proof packaging material (cup method)”. The temperature during measurement was 40 ± 1 ° C., and the humidity was 90 ± 5%. The test was performed three times, and the average value of these was taken as the measured value. In addition, since the measurement lower limit value in this measurement method is 0.4 g / (m 2 · day), it is below the measurement lower limit value (when the water vapor permeability is 0.4 g / (m 2 · day) or less). Is represented as “≦ 0.4”.
[酸素透過度]
 酸素透過度の測定は、JIS K 7126-1(2006年)「プラスチック-フィルム及びシート-ガス透過度試験方法-第1部:差圧法」付属書1(圧力センサ法)に準拠した。測定時の温度は23±1℃とした。試験は3回行い、これらの平均値を測定値とした。
[Oxygen permeability]
The oxygen permeability was measured in accordance with JIS K 7126-1 (2006) “Plastics—Films and Sheets—Gas Permeability Test Method—Part 1: Differential Pressure Method” Appendix 1 (Pressure Sensor Method). The temperature during measurement was 23 ± 1 ° C. The test was performed three times, and the average value of these was taken as the measured value.
[比較例4]
 イソブチレン系重合体6を配合しなかったこと以外は、実施例6と同様にして、シートを作製した。作製したシートを用いて、実施例6と同様の方法により水蒸気透過度及び酸素透過度を評価した。評価結果を表8に示す。
[Comparative Example 4]
A sheet was produced in the same manner as in Example 6 except that the isobutylene polymer 6 was not blended. Using the prepared sheet, the water vapor transmission rate and the oxygen transmission rate were evaluated by the same method as in Example 6. The evaluation results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表8に示すとおり、実施例6のシートは、比較例4のシートと比較して水蒸気透過度及び酸素透過度が低く、優れた水蒸気バリア性及び酸素バリア性を有する。 As shown in Table 8, the sheet of Example 6 has lower water vapor permeability and oxygen permeability than the sheet of Comparative Example 4, and has excellent water vapor barrier properties and oxygen barrier properties.

Claims (13)

  1.  オレフィン性二重結合を含有するゴム成分と、
     下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表される構造単位及び下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Xは2価の基を示し、Yは環内に不飽和結合を有する置換又は未置換の脂環基を示し、nは0又は1を示す。]
    で表される構造単位を有するイソブチレン系重合体と、
    を含有するゴム組成物。
    A rubber component containing an olefinic double bond;
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    And a structural unit represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), X represents a divalent group, Y represents a substituted or unsubstituted alicyclic group having an unsaturated bond in the ring, and n represents 0 or 1. ]
    An isobutylene polymer having a structural unit represented by:
    Containing a rubber composition.
  2.  前記イソブチレン系重合体は、前記式(2)で表される構造単位として、下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、nは0又は1を示す。]
    で表される構造単位及び/又は下記式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、nは0又は1を示す。]
    で表される構造単位を有する、請求項1に記載のゴム組成物。
    The isobutylene-based polymer has the following formula (3) as a structural unit represented by the formula (2):
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3), n represents 0 or 1. ]
    And / or the following formula (4):
    Figure JPOXMLDOC01-appb-C000004
    [In Formula (4), n shows 0 or 1. ]
    The rubber composition of Claim 1 which has a structural unit represented by these.
  3.  前記イソブチレン系重合体の含有量は、前記ゴム成分100質量部に対して、0.5~70質量部である、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the content of the isobutylene polymer is 0.5 to 70 parts by mass with respect to 100 parts by mass of the rubber component.
  4.  前記イソブチレン系重合体の重量平均分子量は、500~500000である、請求項1~3のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the isobutylene polymer has a weight average molecular weight of 500 to 500,000.
  5.  前記イソブチレン系重合体は、主鎖中に不飽和結合を実質的に有しない、請求項1~4のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, wherein the isobutylene polymer has substantially no unsaturated bond in the main chain.
  6.  前記イソブチレン系重合体は、前記式(1)で表される構造単位と前記式(2)で表される構造単位とのランダム共重合鎖を有する、請求項1~5のいずれか一項に記載のゴム組成物。 The isobutylene polymer according to any one of claims 1 to 5, wherein the isobutylene polymer has a random copolymer chain of the structural unit represented by the formula (1) and the structural unit represented by the formula (2). The rubber composition as described.
  7.  架橋剤をさらに含有する、請求項1~6のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, further comprising a crosslinking agent.
  8.  前記ゴム成分は、天然ゴム、ブタジエンゴム、ニトリルゴム、シリコーンゴム、イソプレンゴム、スチレン-ブタジエンゴム、イソプレン-ブタジエンゴム、スチレン-イソプレン-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、ハロゲン化ブチルゴム、ハロゲン化イソプレンゴム、ハロゲン化イソブチレンコポリマー、クロロプレンゴム、ブチルゴム及びハロゲン化イソブチレン-p-メチルスチレンゴムからなる群より選ばれる少なくとも1種を含有する、請求項1~7のいずれか一項に記載のゴム組成物。 The rubber component is natural rubber, butadiene rubber, nitrile rubber, silicone rubber, isoprene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, styrene-isoprene-butadiene rubber, ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene. The rubber composition according to any one of claims 1 to 7, comprising at least one selected from the group consisting of rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber and halogenated isobutylene-p-methylstyrene rubber. .
  9.  前記ゴム成分は、実質的にスチレン-ブタジエンゴムである、請求項1~8のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 8, wherein the rubber component is substantially styrene-butadiene rubber.
  10.  前記ゴム成分は、ブチルゴムを含有する、請求項1~9のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 9, wherein the rubber component contains butyl rubber.
  11.  請求項1~10のいずれか一項に記載のゴム組成物を用いて得られる架橋ゴム組成物であって、前記ゴム成分と前記イソブチレン系重合体とが架橋した構造を有する、架橋ゴム組成物。 A crosslinked rubber composition obtained by using the rubber composition according to any one of claims 1 to 10, wherein the rubber component and the isobutylene polymer have a crosslinked structure. .
  12.  トレッド部に請求項11に記載の架橋ゴム組成物を含有する、空気入りタイヤ。 A pneumatic tire containing the crosslinked rubber composition according to claim 11 in a tread portion.
  13.  インナーライナー部に請求項11に記載の架橋ゴム組成物を含有する、空気入りタイヤ。 A pneumatic tire containing the crosslinked rubber composition according to claim 11 in an inner liner part.
PCT/JP2010/060876 2009-08-21 2010-06-25 Rubber composition, crosslinked rubber composition, and pneumatic tire WO2011021437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011527608A JP5543467B2 (en) 2009-08-21 2010-06-25 Rubber composition, crosslinked rubber composition, and pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009192060 2009-08-21
JP2009-192060 2009-08-21

Publications (1)

Publication Number Publication Date
WO2011021437A1 true WO2011021437A1 (en) 2011-02-24

Family

ID=43606895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060876 WO2011021437A1 (en) 2009-08-21 2010-06-25 Rubber composition, crosslinked rubber composition, and pneumatic tire

Country Status (2)

Country Link
JP (1) JP5543467B2 (en)
WO (1) WO2011021437A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172022A (en) * 2011-02-18 2012-09-10 Jx Nippon Oil & Energy Corp Rubber composition, crosslinked rubber composition, and pneumatic tire
WO2014104381A1 (en) * 2012-12-28 2014-07-03 Jx日鉱日石エネルギー株式会社 Rubber composition
JP5543447B2 (en) * 2009-05-29 2014-07-09 Jx日鉱日石エネルギー株式会社 Isobutylene polymer and method for producing the same
JP2018177169A (en) * 2017-04-21 2018-11-15 株式会社ブリヂストン Tire
WO2020230393A1 (en) * 2019-05-10 2020-11-19 株式会社ブリヂストン High damping rubber composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755502A (en) * 1971-02-19 1973-08-28 Mobil Oil Corp Blends of polyolefins with isobutene dipentene copolymer and films therefrom
JPH0333111A (en) * 1989-04-04 1991-02-13 Exxon Chem Patents Inc Antiozone butyl elastomer
JPH04288309A (en) * 1990-04-16 1992-10-13 Kanegafuchi Chem Ind Co Ltd Unsaturated isobutylene polymer and production thereof
JP2005113049A (en) * 2003-10-09 2005-04-28 Maruzen Petrochem Co Ltd New alicyclic vinyl ether polymer
JP2008260915A (en) * 2007-03-20 2008-10-30 Nippon Carbide Ind Co Inc Novel alicyclic vinyl ether polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755502A (en) * 1971-02-19 1973-08-28 Mobil Oil Corp Blends of polyolefins with isobutene dipentene copolymer and films therefrom
JPH0333111A (en) * 1989-04-04 1991-02-13 Exxon Chem Patents Inc Antiozone butyl elastomer
JPH04288309A (en) * 1990-04-16 1992-10-13 Kanegafuchi Chem Ind Co Ltd Unsaturated isobutylene polymer and production thereof
JP2005113049A (en) * 2003-10-09 2005-04-28 Maruzen Petrochem Co Ltd New alicyclic vinyl ether polymer
JP2008260915A (en) * 2007-03-20 2008-10-30 Nippon Carbide Ind Co Inc Novel alicyclic vinyl ether polymers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543447B2 (en) * 2009-05-29 2014-07-09 Jx日鉱日石エネルギー株式会社 Isobutylene polymer and method for producing the same
JP2012172022A (en) * 2011-02-18 2012-09-10 Jx Nippon Oil & Energy Corp Rubber composition, crosslinked rubber composition, and pneumatic tire
WO2014104381A1 (en) * 2012-12-28 2014-07-03 Jx日鉱日石エネルギー株式会社 Rubber composition
JP2018177169A (en) * 2017-04-21 2018-11-15 株式会社ブリヂストン Tire
WO2020230393A1 (en) * 2019-05-10 2020-11-19 株式会社ブリヂストン High damping rubber composition

Also Published As

Publication number Publication date
JP5543467B2 (en) 2014-07-09
JPWO2011021437A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2013011820A1 (en) Rubber composition, crosslinked rubber composition, pneumatic tire, and method for producing isobutylene polymer
JP4670639B2 (en) Conjugated diene rubber composition, method for producing the same, and rubber cross-linked product
JP3606860B2 (en) Rubber composition and rubber cross-linked product
US20070270538A1 (en) Elastomeric compositions comprising butyl rubber and propylene polymers
WO2017051819A1 (en) Cyclopentene ring-opened copolymer
JP5543467B2 (en) Rubber composition, crosslinked rubber composition, and pneumatic tire
TW201945425A (en) Additive for rubbers, uncrosslinked rubber composition, crosslinked rubber and tire
JP5469111B2 (en) Rubber composition, crosslinked rubber composition, and pneumatic tire
JP4387088B2 (en) Rubber composition with improved wet grip
WO2014104381A1 (en) Rubber composition
JP2013040234A (en) Block copolymer, production method for the same, and rubber composition, crosslinkable rubber composition, and pneumatic tire containing the same
JP2015143310A (en) Rubber composition and pneumatic tire using the same
KR20190024827A (en) Rubber composition
JPH05202150A (en) Chlorinated isobutylene-isoprene rubber graft copolymer
WO2014112654A1 (en) Rubber composition
CN110997797B (en) Hydrocarbon resins for butyl-based compositions and methods of making the same
WO2019036085A1 (en) Hydrocarbon resins for butyl based compositions and methods of making the same
JP2016011350A (en) Isobutylene copolymer and manufacturing method therefor, rubber composition containing the same and crosslinked rubber composition
JP2013237733A (en) Rubber composite material
US9657157B2 (en) Halogenated diene rubber for tires
JP6461613B2 (en) Isobutylene copolymer, rubber composition comprising the same, and crosslinked rubber composition thereof
JP6518068B2 (en) Isobutylene-based copolymer, rubber composition comprising the same, and crosslinked rubber composition
EP4349904A1 (en) Rubber composition for tire, tread rubber, and tire
KR20240008376A (en) Petroleum resins, additives for rubber, uncrosslinked rubber compositions and crosslinked rubber
WO2022249765A1 (en) Rubber composition for tires, tread rubber, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527608

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809783

Country of ref document: EP

Kind code of ref document: A1