WO2011022081A1 - A novel blended hydrous kaolin clay product - Google Patents

A novel blended hydrous kaolin clay product Download PDF

Info

Publication number
WO2011022081A1
WO2011022081A1 PCT/US2010/024530 US2010024530W WO2011022081A1 WO 2011022081 A1 WO2011022081 A1 WO 2011022081A1 US 2010024530 W US2010024530 W US 2010024530W WO 2011022081 A1 WO2011022081 A1 WO 2011022081A1
Authority
WO
WIPO (PCT)
Prior art keywords
clay
product
kaolin
less
component
Prior art date
Application number
PCT/US2010/024530
Other languages
French (fr)
Inventor
Sharad Mathur
Michael B Sigman
Original Assignee
Basf Catalysts Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Catalysts Llc filed Critical Basf Catalysts Llc
Publication of WO2011022081A1 publication Critical patent/WO2011022081A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content

Definitions

  • This invention is related to a kaolin product as a raw product for use in specialized applications.
  • this invention is related to a blended hydrous kaolin clay product for use as a raw material component in the formation and sintering of cordierite ceramic honeycombs with enhanced thermal properties.
  • Cordierite (Mg2[Al 4 Si 5 0i 8 ) ceramics are the preferred materials for use in automotive catalytic substrates, diesel particulate filter applications, and other high temperature articles, such as NO x adsorber substrates, catalyst substrates, and honeycomb articles due to the combination of their low cost of production and physical properties such as low coefficient of thermal expansion (CTE) and resistance to thermal shock.
  • Cordierite substrates are typically produced from naturally occurring minerals such as talc and kaolin due to their lower cost and high purity.
  • Cordierite materials are typically manufactured by mixing a raw batch that includes talc, alumina, aluminum hydroxide, kaolin and silica. The batch is then blended with a binder (such as methylcellulose) and a lubricant (such as sodium stearate) to form a plastic mixture. This plastic mixture is then formed into a green body and sintered.
  • a binder such as methylcellulose
  • a lubricant such as sodium stearate
  • the cordierite crystal structure consists of a hexagonal ring of tetrahedra that are joined at each intersection of the hexagonal ring by five silicon and one aluminum atom.
  • the hexagonal rings are connected together by additional aluminum tetrahedral and magnesium octhedra resulting in two interstitial vacancies per unit cell that are oriented along the c-axis of the crystal structure. See, B.P. Saha, R. Johnson, I. Ganesh, G.V.N. Rao, S. Bhattacharjee, T.R. Mahajan; Materials Chemistry and Physics, 67 (2001), 140- 145.
  • the interstitial vacancies result in a contraction along the c-axis of the crystal structure and an expansion along the a- and b-axes with increasing temperature. See, R.J. Beals, R.L. Cook, J. Am. Ceram. Soc, 35(2), (1 52), 53-57.
  • the anisotropic CTE resulting from the cordierite crystal structure offers the opportunity to engineer improved cordierite honeycombs by orienting the c-axis of the individual crystals within the ceramic in the direction of extrusion. Cordierite crystal orientation has been observed to cause a significant net decrease in the overall CTE of the ceramic honeycomb. See, I.M. Lachman, R.M. Lewis, U.S. Patent No. 3,885,977, May 27, 1975; and R. Johnson, I. Ganesh, B.P. Saha, G.V. Narasimha Rao, Y.R. Mahajan, J. Mater. Sci. ⁇ 38 (2003), 2953- 61.
  • talc and kaolin have platy crystal structures that may be preferentially oriented parallel to the direction of extrusion when passed through an extrusion die at high pressure. Delamination of hydrous kaolin may be utilized to increase the platyness of the clay increasing alignment during extrusion. Subsequent sintering of the green body results in the formation of a ceramic with preferential orientation of cordierite crystals within the honeycomb structure oriented along the c-axis relative to the extrusion direction. See, I.M, Lachman et al., U.S. Patent No. 4,772,580, Sept. 20, 1988.
  • kaolin is considered to be the most significant contributor because it provides the only source of ordered aluminum within the green body. Since silicon comes from both talc and kaolin raw material sources and magnesium (talc as the source) makes up a smaller atomic and weight percent of the final cordierite crystal, aluminum (derived from kaolin) is expected to have the greatest contribution to the final cordierite crystal structure. See, Saha et al.
  • calcined clay is typically added in combination with delaminated hydrous clay to moderate particule alignment within the green body and subsequent cordierite crystal alignment within the sintered ceramic. Calcination produces a coarser particle that is less platy in nature particularly compared to delaminated hydrous clay.
  • This invention is directed to a blended hydrous kaolin clay product comprising a platy kaolin clay with a mean particle size of less than about 2 um in diameter, and a fine hydrous kaolin clay with a mean particle size less than about 1 um in diameter.
  • the platy kaolin clay is a delaminated kaolin clay.
  • the resulting clay product can be used as a raw material component in the formation and sintering of cordierite substrates, for example, ceramic honeycombs.
  • the particle size of the kaolin clay may be measured by a Micromeritics Sedigraph Model 5100 instrument.
  • This invention is also directed to a method of forming a blended hydrous kaolin clay product, the method comprises blending clay mined from tertiary crude deposits as the fine component; and Cretaceous or secondary clay.
  • the blended kaolin clay product comprises tertiary kaolin where about 75% or more of the total particle mass is less than about 2 um and more than about 55% of the total particle mass is less than about 1 um and would be suitable for improved cordierite production. It comprises mixing a coarse component containing less than 85% of the total particle mass less than about 2 um with a tertiary fine component where 95% or more of the mass of the sample is less than about 1 um and more than 85% of the sample is less than about 0,5 um in particle size.
  • This invention is related to a blended hydrous kaolin clay product that can be used as a raw material component in the sintering of cordierite ceramic honeycombs with enhanced thermal properties.
  • the blended product is composed of a coarse, platy, hydrous kaolin clay and a fine hydrous kaolin clay. The combination of these two materials is expected to enhance the thermomechanical properties of cordierite honeycombs by creating a mechanism to manipulate the degree of cordierite crystal orientation in the final product.
  • the use of fine clay in combination with a larger delaminated clay would have several advantages.
  • the fine clay could be used to moderate orientation of the delaminated kaolin and talc during extrusion resulting in a cordierite crystal structure that is oriented to maintain a low coefficient of thermal expansion while minimizing the degree of anisotropic thermal expansion in the axial and transverse directions of the ceramic honeycomb. This would reduce the degree of microcracking associated with temperature variations typically observed during normal catalytic converter or filtering operations.
  • the fine particle size clay also enables improved particle packing within the green body.
  • the finer hydrous clay would fill voids between other larger raw material crystals that calcined clay could not.
  • the improved particle packing within the green body would increase the green strength eliminating product deformation prior to drying and firing of the substrate.
  • One embodiment of this invention is the use of a platy (but not necessarily delaminated) coarse, hydrous kaolin component in combination with a fine, hydrous kaolin component.
  • the fine kaolin would serve the same function of moderating platelet orientation during extrusion of the cord i elite-forming blend, but if a non-delaminated coarse component is used, then the ratio of the fine component relative to the coarse component would be reduced to compensate for using a non-delaminated (less platy) coarse component.
  • a blended hydrous kaolin clay product consists of a blend of (1) a delaminated hydrous kaolin clay with a mean particle diameter of less than about 2 um (the coarse kaolin component), and (2) a fine hydrous kaolin clay with a mean particle diameter of less than about 1 um (the fine kaolin component).
  • the particle sizes have been measured using a Microme itics Sedigraph Model 5100 instrument.
  • the weight ratio of the coarse kaolin component to the fine kaolin component can be in the range of from about 10:90 to about 90:10 or,
  • the weight ratio of the coarse kaolin component to the fine kaolin component will depend on the composition sought in the final product (i.e., the precise ratio of the kaolin blend will depend on the other raw materials and the precise amounts which comprise the batch used in making the cordierite), and the desired properties of the final product (e.g., improved coefficient of thermal expansion, improved dimensional accuracy, reduced tendency toward cracking, overall porosity, and pore size).
  • the ratio of the coarse to fine kaolin components needed depending on the other raw materials used in making the cordierite.
  • the blending of the coarse and fine kaolin components could take place at any point during the mining and processing of the clay. This includes mixing the individual crude components during initial makedown, prior to spray drying, after spray drying, or as a product in slurry form.
  • the coarse and fine kaolin components could also be added to the cordierite raw materials batch as individual components as long as the net result is the addition of two kaolin components that would form a blend with the properties outlined in this document.
  • Another embodiment of the invention is the use of clay mined from tertiary crude deposits as the fine component of the blend in combination with a Cretaceous or secondary clay.
  • Kaolin crudes have physical properties that reflect the time period in which they were formed.
  • Tertiary crudes are typically finer in size, have different trace elemental profiles such as higher Fe 2 0 3 content, and have higher densities than clays deposited at other time periods.
  • Tertiary clay consists of Cretaceous clay (originally deposited 65 to 136 million years ago) that was eroded and redeposited 37 to 53 million years ago.
  • Blends consisting of coarse and tertiary kaolin that are finer than 75% at 2 um and 55% at 1 um, respectively, as measured by a Sedigraph 5100 would be suitable for improved cordierite production. Blended samples meeting these criteria have been produced by mixing a deiaminated, coarse component, in which less than 85% of the total particle mass is less than about 2 um, with a tertiary fine component, in which 95% or more of the mass of the sample is less than about 1 um and more than 85% of the fine component sample is less than about 0.5 um in particle size.
  • Impurity profiles for the blended kaolin samples containing ⁇ about 0.1% Na 2 0, ⁇ about 0.25% K 2 0, ⁇ about 1.75% Ti0 2 , ⁇ about 0.6% Fe 2 0 3 , ⁇ about 0.1 % CaO, and ⁇ about 0.1% P 2 0 5 should be met in order to produce high performance cordierite.
  • Example 1 contains several samples produced from blends of fine particle size kaolin and coarse, deiaminated kaolin streams obtained from BASF's kaolin
  • Coarse #1 and #2 The coarse deiaminated streams are derived from two different sources of coarse, white clays in the Middle Georgia area. These samples are labeled Coarse #1 and #2. Coarse sample #1 ( ⁇ 56% solids) was deiaminated, flocked with acid and alum, filtered and redispersed with a polyacrylate dispersant. Coarse sample #2 (-54% solids) was deiaminated and did not require further processing other than addition of polyacrylate because of high solids processing.
  • the fine clays consisted of a tertiary kaolin (Tl) mined from the Middle Georgia area and a tertiary kaolin (T2) mined from the East Georgia area, Both of the tertiary kaolins were flocked with acid and alum, filtered, and redispersed with a polyacrylate dispersant.
  • the individual samples were produced by blending the deiaminated and fine particle size kaolin streams.
  • Sample #1 contains a 90% by weight blend of Coarse #1 and 10 wt% of Tl .
  • Sample #2 contains a 90 wt% of Coarse #2 and 10 wt% of T 1.
  • Sample #3 contains 90 wt% of
  • Sample #4 contains 90 wt% of Coarse #2 and 10 wt% of T2.
  • Table 1-1 contains elemental analysis of the four blended samples produced.
  • Table 1-2 contains the particle size distributions of each of the blends as well as the coarse, delaminated and fine, hydrous kaolin components used.
  • Example 2 contains another embodiment of the described invention.
  • the blend was produced with a fine, hydrous and a coarse, delaminated kaolin with the blend ratio adjusted to increase the fine component.
  • the sample was produced using coarse, white kaolin that was delaminated prior to blending.
  • the fine kaolin was derived from a tertiary kaolin crude mined from the Middle Georgia area that was flocked with acid and
  • Sample #5 contains a 70% by weight blend of the coarse, delaminated clay and 30 wt% of a Middle Georgia Tertiary kaolin.
  • Table 2-1 contains the elemental analysis obtained from this sample and Table 2- 2 shows the resulting particle size distribution. Table 2-1
  • cordierite pieces were extruded and fired using the proposed blend (Sample 6) as 0 compared to a coarse kaolin (Sample 7) and a delaminated kaolin (Sample 8).
  • Table 3-1 contains physical property data and Table 3-2 contains elemental analysis for the three kaolin samples examined. The particle size for each sample was measured via Sedigraph and the surface area was determined by BET, Elemental analysis on the kaolin samples was obtained using X F.
  • the cordierite pieces were formed by mixing raw materials consisting of each individual hydrous kaolin sample, alumina (AI2O3), and talc (Mg 3 Si 4 0[o(OH) 2 ) in a method known to the skilled person.
  • Samples of commercially available high purity talc (Sample 13) and alumina (Sample 12) for cordierite applications were used and the typical properties are listed in Tables 3-3 and 3-4. No organic additives were used to form the raw batch.
  • the water content of the batch ranged from about 32 to about 36% in order to provide the plasticity necessary to extrude the material.
  • the kaolin, alumina and talc precursors were blended in a ratio to form stoichiometric cordierite with Sample 9 being formed from Sample 6, Sample 10 from Sample 7, and Sample 11 from Sample 8.
  • the raw material batches were extruded using a piston extruder to form solid rods.
  • the samples were dried initially at 1 10°C in a drying oven. Samples were then fired in a high temperature furnace using a ramp rate of 5°C / min to 1280°C with a hold time of 1 hour to produce stoichiometric cordierite.
  • the coefficient of thermal expansion (CTE) for the three cordierite samples was measured using an Orton Model 1600 dilatometer (Table 3-5).
  • Sample 9 produced using the novel kaolin blend of a fine, hydrous and a coarse, delaminated kaolin resulted in a CTE of 2.7 xlO '6 as compared to the control cordierite Samples 10 and 1 1 produced using Kaolin Samples 7 and Sample 8. This was a reduction in CTE of 60% demonstrating the ability to improve thermal performance in cordierite ceramic bodies and substrates through the use of the novel kaolin blend.

Abstract

The disclosed invention relates to a blended hydrous kaolin clay product comprising a platy coarse kaolin clay and a fine, hydrous kaolin clay. The blended kaolin clay product is suitable for use as a raw material component in the formation of cordierite products.

Description

A NOVEL BLENDED HYDROUS KAOLIN CLAY PRODUCT
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. application No. 12/543,228, filed August 18, 2009, which in turn claims benefit under 35 U.S.C. § 119(e) of U.S.
provisional application U.S. Serial No. 61/090,024, filed August 19, 2008, each of whose contents are incorporated herein by reference in their entireties.
FIELD OF THE INVENTION
This invention is related to a kaolin product as a raw product for use in specialized applications. In particular, this invention is related to a blended hydrous kaolin clay product for use as a raw material component in the formation and sintering of cordierite ceramic honeycombs with enhanced thermal properties. BACKGROUND OF THE INVENTION
Cordierite (Mg2[Al4Si50i8 ) ceramics are the preferred materials for use in automotive catalytic substrates, diesel particulate filter applications, and other high temperature articles, such as NOx adsorber substrates, catalyst substrates, and honeycomb articles due to the combination of their low cost of production and physical properties such as low coefficient of thermal expansion (CTE) and resistance to thermal shock. Cordierite substrates are typically produced from naturally occurring minerals such as talc and kaolin due to their lower cost and high purity. Cordierite materials are typically manufactured by mixing a raw batch that includes talc, alumina, aluminum hydroxide, kaolin and silica. The batch is then blended with a binder (such as methylcellulose) and a lubricant (such as sodium stearate) to form a plastic mixture. This plastic mixture is then formed into a green body and sintered.
The cordierite crystal structure consists of a hexagonal ring of tetrahedra that are joined at each intersection of the hexagonal ring by five silicon and one aluminum atom. The hexagonal rings are connected together by additional aluminum tetrahedral and magnesium octhedra resulting in two interstitial vacancies per unit cell that are oriented along the c-axis of the crystal structure. See, B.P. Saha, R. Johnson, I. Ganesh, G.V.N. Rao, S. Bhattacharjee, T.R. Mahajan; Materials Chemistry and Physics, 67 (2001), 140- 145. The interstitial vacancies result in a contraction along the c-axis of the crystal structure and an expansion along the a- and b-axes with increasing temperature. See, R.J. Beals, R.L. Cook, J. Am. Ceram. Soc, 35(2), (1 52), 53-57. The anisotropic CTE resulting from the cordierite crystal structure offers the opportunity to engineer improved cordierite honeycombs by orienting the c-axis of the individual crystals within the ceramic in the direction of extrusion. Cordierite crystal orientation has been observed to cause a significant net decrease in the overall CTE of the ceramic honeycomb. See, I.M. Lachman, R.M. Lewis, U.S. Patent No. 3,885,977, May 27, 1975; and R. Johnson, I. Ganesh, B.P. Saha, G.V. Narasimha Rao, Y.R. Mahajan, J. Mater. Sci.} 38 (2003), 2953- 61.
In order to orient the cordierite crystals within the ceramic, platy raw materials are used. In particular, talc and kaolin have platy crystal structures that may be preferentially oriented parallel to the direction of extrusion when passed through an extrusion die at high pressure. Delamination of hydrous kaolin may be utilized to increase the platyness of the clay increasing alignment during extrusion. Subsequent sintering of the green body results in the formation of a ceramic with preferential orientation of cordierite crystals within the honeycomb structure oriented along the c-axis relative to the extrusion direction. See, I.M, Lachman et al., U.S. Patent No. 4,772,580, Sept. 20, 1988. Although talc and kaolin both play a role in orienting the sintered cordierite crystal structure, kaolin is considered to be the most significant contributor because it provides the only source of ordered aluminum within the green body. Since silicon comes from both talc and kaolin raw material sources and magnesium (talc as the source) makes up a smaller atomic and weight percent of the final cordierite crystal, aluminum (derived from kaolin) is expected to have the greatest contribution to the final cordierite crystal structure. See, Saha et al.
One drawback with producing a highly ordered cordierite substrate is that the difference in thermal expansion along the axial and transverse directions in the honeycomb becomes so large that cracking occurs resulting in reduced thermal shock resistance. See, Saha et al. Although this is a concern for catalyst substrates, it is of particular significance to honeycombs produced for diesel particulate filter applications where increased porosity lowers the shock resistance of the resulting ceramic. In addition, the extrusion of highly oriented raw materials parallel to the axial direction of the substrate lowers the strength of the green body resulting in sagging of the body, particularly in thin wall applications. To alleviate these problems, calcined clay is typically added in combination with delaminated hydrous clay to moderate particule alignment within the green body and subsequent cordierite crystal alignment within the sintered ceramic. Calcination produces a coarser particle that is less platy in nature particularly compared to delaminated hydrous clay.
SUMMARY OF THE INVENTION
This invention is directed to a blended hydrous kaolin clay product comprising a platy kaolin clay with a mean particle size of less than about 2 um in diameter, and a fine hydrous kaolin clay with a mean particle size less than about 1 um in diameter. In an embodiment, the platy kaolin clay is a delaminated kaolin clay. The resulting clay product can be used as a raw material component in the formation and sintering of cordierite substrates, for example, ceramic honeycombs. The particle size of the kaolin clay may be measured by a Micromeritics Sedigraph Model 5100 instrument.
This invention is also directed to a method of forming a blended hydrous kaolin clay product, the method comprises blending clay mined from tertiary crude deposits as the fine component; and Cretaceous or secondary clay. The blended kaolin clay product comprises tertiary kaolin where about 75% or more of the total particle mass is less than about 2 um and more than about 55% of the total particle mass is less than about 1 um and would be suitable for improved cordierite production. It comprises mixing a coarse component containing less than 85% of the total particle mass less than about 2 um with a tertiary fine component where 95% or more of the mass of the sample is less than about 1 um and more than 85% of the sample is less than about 0,5 um in particle size. DETAILED DESCRITPION OF THE INVENTION
This invention is related to a blended hydrous kaolin clay product that can be used as a raw material component in the sintering of cordierite ceramic honeycombs with enhanced thermal properties. The blended product is composed of a coarse, platy, hydrous kaolin clay and a fine hydrous kaolin clay. The combination of these two materials is expected to enhance the thermomechanical properties of cordierite honeycombs by creating a mechanism to manipulate the degree of cordierite crystal orientation in the final product.
The use of fine clay in combination with a larger delaminated clay would have several advantages. The fine clay could be used to moderate orientation of the delaminated kaolin and talc during extrusion resulting in a cordierite crystal structure that is oriented to maintain a low coefficient of thermal expansion while minimizing the degree of anisotropic thermal expansion in the axial and transverse directions of the ceramic honeycomb. This would reduce the degree of microcracking associated with temperature variations typically observed during normal catalytic converter or filtering operations. The fine particle size clay also enables improved particle packing within the green body. The finer hydrous clay would fill voids between other larger raw material crystals that calcined clay could not. The improved particle packing within the green body would increase the green strength eliminating product deformation prior to drying and firing of the substrate.
It is desirable to have a more homogenous distribution of cordierite precursors within the green body which would potentially be enabled by the addition of a fine hydrous kaolin component. Increased homogeneity would enable improved conversion of the precursors into cordierite and limit the formation of impurity phases within the crystal structure that would increase the coefficient of thermal expansion of the overall ceramic. The increased surface area and reduced crystallinity associated with a finer, hydrous clay would also have a lower reaction temperature that would enable reduced temperature or firing time of the substrate without impacting the overall conversion to cordierite. This would reduce the energy costs associated with product manufacture.
One embodiment of this invention is the use of a platy (but not necessarily delaminated) coarse, hydrous kaolin component in combination with a fine, hydrous kaolin component. In this embodiment, the fine kaolin would serve the same function of moderating platelet orientation during extrusion of the cord i elite-forming blend, but if a non-delaminated coarse component is used, then the ratio of the fine component relative to the coarse component would be reduced to compensate for using a non-delaminated (less platy) coarse component.
In another embodiment of the invention, a blended hydrous kaolin clay product consists of a blend of (1) a delaminated hydrous kaolin clay with a mean particle diameter of less than about 2 um (the coarse kaolin component), and (2) a fine hydrous kaolin clay with a mean particle diameter of less than about 1 um (the fine kaolin component). The particle sizes have been measured using a Microme itics Sedigraph Model 5100 instrument. The weight ratio of the coarse kaolin component to the fine kaolin component can be in the range of from about 10:90 to about 90:10 or,
alternatively, in the range of about 50:50 to about 90: 10 or, alternatively, in the range of about 70:30 to about 90:10. The precise selection of the weight ratio of the coarse kaolin component to the fine kaolin component will depend on the composition sought in the final product (i.e., the precise ratio of the kaolin blend will depend on the other raw materials and the precise amounts which comprise the batch used in making the cordierite), and the desired properties of the final product (e.g., improved coefficient of thermal expansion, improved dimensional accuracy, reduced tendency toward cracking, overall porosity, and pore size). A person skilled in the art would know, without undue experimentation, the ratio of the coarse to fine kaolin components needed depending on the other raw materials used in making the cordierite. The blending of the coarse and fine kaolin components could take place at any point during the mining and processing of the clay. This includes mixing the individual crude components during initial makedown, prior to spray drying, after spray drying, or as a product in slurry form. The coarse and fine kaolin components could also be added to the cordierite raw materials batch as individual components as long as the net result is the addition of two kaolin components that would form a blend with the properties outlined in this document.
Another embodiment of the invention is the use of clay mined from tertiary crude deposits as the fine component of the blend in combination with a Cretaceous or secondary clay. Kaolin crudes have physical properties that reflect the time period in which they were formed. Tertiary crudes are typically finer in size, have different trace elemental profiles such as higher Fe203 content, and have higher densities than clays deposited at other time periods. Tertiary clay consists of Cretaceous clay (originally deposited 65 to 136 million years ago) that was eroded and redeposited 37 to 53 million years ago. Blends consisting of coarse and tertiary kaolin that are finer than 75% at 2 um and 55% at 1 um, respectively, as measured by a Sedigraph 5100 would be suitable for improved cordierite production. Blended samples meeting these criteria have been produced by mixing a deiaminated, coarse component, in which less than 85% of the total particle mass is less than about 2 um, with a tertiary fine component, in which 95% or more of the mass of the sample is less than about 1 um and more than 85% of the fine component sample is less than about 0.5 um in particle size. Impurity profiles for the blended kaolin samples containing < about 0.1% Na20, < about 0.25% K20, < about 1.75% Ti02, < about 0.6% Fe203, < about 0.1 % CaO, and < about 0.1% P205 should be met in order to produce high performance cordierite.
EXAMPLE 1
Example 1 contains several samples produced from blends of fine particle size kaolin and coarse, deiaminated kaolin streams obtained from BASF's kaolin
manufacturing operations. The coarse deiaminated streams are derived from two different sources of coarse, white clays in the Middle Georgia area. These samples are labeled Coarse #1 and #2. Coarse sample #1 (~56% solids) was deiaminated, flocked with acid and alum, filtered and redispersed with a polyacrylate dispersant. Coarse sample #2 (-54% solids) was deiaminated and did not require further processing other than addition of polyacrylate because of high solids processing. The fine clays consisted of a tertiary kaolin (Tl) mined from the Middle Georgia area and a tertiary kaolin (T2) mined from the East Georgia area, Both of the tertiary kaolins were flocked with acid and alum, filtered, and redispersed with a polyacrylate dispersant. The individual samples were produced by blending the deiaminated and fine particle size kaolin streams. Sample #1 contains a 90% by weight blend of Coarse #1 and 10 wt% of Tl . Sample #2 contains a 90 wt% of Coarse #2 and 10 wt% of T 1. Sample #3 contains 90 wt% of
Coarse #1 and 10 wt% of T2. Sample #4 contains 90 wt% of Coarse #2 and 10 wt% of T2. Table 1-1 contains elemental analysis of the four blended samples produced. Table 1-2 contains the particle size distributions of each of the blends as well as the coarse, delaminated and fine, hydrous kaolin components used.
Table 1-1
Figure imgf000008_0001
Table 1 -2
Figure imgf000008_0002
EXAMPLE 2
10 Example 2 contains another embodiment of the described invention. The blend was produced with a fine, hydrous and a coarse, delaminated kaolin with the blend ratio adjusted to increase the fine component. The sample was produced using coarse, white kaolin that was delaminated prior to blending. The fine kaolin was derived from a tertiary kaolin crude mined from the Middle Georgia area that was flocked with acid and
15 alum, filtered, and redispersed with a polyacrylate dispersant. Sample #5 contains a 70% by weight blend of the coarse, delaminated clay and 30 wt% of a Middle Georgia Tertiary kaolin. Table 2-1 contains the elemental analysis obtained from this sample and Table 2- 2 shows the resulting particle size distribution. Table 2-1
Figure imgf000009_0001
Table 2-2
Figure imgf000009_0002
5
EXAMPLE 3.
In order to demonstrate the benefits of the invention to cordierite formation, cordierite pieces were extruded and fired using the proposed blend (Sample 6) as 0 compared to a coarse kaolin (Sample 7) and a delaminated kaolin (Sample 8). Table 3-1 contains physical property data and Table 3-2 contains elemental analysis for the three kaolin samples examined. The particle size for each sample was measured via Sedigraph and the surface area was determined by BET, Elemental analysis on the kaolin samples was obtained using X F.
5
Table 3-1
Figure imgf000010_0001
Table 3-2
Figure imgf000010_0002
The cordierite pieces were formed by mixing raw materials consisting of each individual hydrous kaolin sample, alumina (AI2O3), and talc (Mg3Si40[o(OH)2) in a method known to the skilled person. Samples of commercially available high purity talc (Sample 13) and alumina (Sample 12) for cordierite applications were used and the typical properties are listed in Tables 3-3 and 3-4. No organic additives were used to form the raw batch. The water content of the batch ranged from about 32 to about 36% in order to provide the plasticity necessary to extrude the material. The kaolin, alumina and talc precursors were blended in a ratio to form stoichiometric cordierite with Sample 9 being formed from Sample 6, Sample 10 from Sample 7, and Sample 11 from Sample 8. Table 3-3
Figure imgf000011_0001
Table 3-4
Figure imgf000011_0002
The raw material batches were extruded using a piston extruder to form solid rods. The samples were dried initially at 1 10°C in a drying oven. Samples were then fired in a high temperature furnace using a ramp rate of 5°C / min to 1280°C with a hold time of 1 hour to produce stoichiometric cordierite. The coefficient of thermal expansion (CTE) for the three cordierite samples was measured using an Orton Model 1600 dilatometer (Table 3-5). Sample 9 produced using the novel kaolin blend of a fine, hydrous and a coarse, delaminated kaolin (Sample 6) resulted in a CTE of 2.7 xlO'6 as compared to the control cordierite Samples 10 and 1 1 produced using Kaolin Samples 7 and Sample 8. This was a reduction in CTE of 60% demonstrating the ability to improve thermal performance in cordierite ceramic bodies and substrates through the use of the novel kaolin blend.
Table 3-5
Figure imgf000012_0001
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description, It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.

Claims

IN THE CLAIMS
1. A blended hydrous kaolin clay product for use as a raw material in the synthesis of cordierite substrates comprising
a) a platy coarse kaolin clay; and
b) a fine, hydrous kaolin clay.
2. The clay product of claim 1 wherein the platy coarse kaolin clay has a mean particle size of less than about 2 urn in diameter and the fine, Iiydrous kaolin has a mean particle size of less than about 1 um in diameter.
3. The clay product of claim 2 wherein the platy coarse kaolin clay is a delaminated kaolin clay.
4. The clay product of claim 2 wherein the weight ratio between the coarse kaolin clay component and the fine kaolin clay component is between about 10:90 and about 90:10.
5. The clay product of claim 2 wherein the weight ratio between the coarse kaolin clay component and the fine kaolin clay component is between about 50:50 and about
90:10.
6. The clay product of claim 2 wherein the weight ratio between the coarse kaolin clay component and the fine kaolin clay component is between about 70:30 and about 90:10.
7. The clay product of claim 1 wherein the coarse kaolin clay component is a Cretaceous or secondary clay and the fine kaolin clay component is a clay mined from tertiary crude deposits.
8. The clay product of claim 7, wherein the clay mined from tertiary crude deposits has a total particle mass such that more than about 75% of the particles are less than 2 urn and more than about 55% of the particles are less than about 1 urn.
9. The clay product of claim 8, which the particle mass is measured by a
Micromeritics Sedigraph Model 5100 instrument.
10. The clay product of claim 7, wherein the impurity profile for the blended clay product is less than about 0.1% Na20, less than about 0.25%K2O, less than about 1.75% Ti02) less than about 0.6% Fe203, less than about 0.1 % CaO, and less than about 0.1% P205 by weight.
11. The clay product of claim 10 wherein the weight ratio between the tertiary crude deposits clay component and the Cretaceous or secondary clay component is between about 90:10 and about 10:90.
12. The clay product of claim 10 wherein the weight ratio between the tertiary crude deposits clay component and the Cretaceous or secondary clay component is between about 50:50 and about 10:90.
13. The clay product of claim 10 wherein the weight ratio between the tertiary crude deposits clay component and the Cretaceous or secondary clay component is between about 30:70 and about 10:90.
14. The clay product of claim 3 wherein
a) the delaminated coarse kaolin clay contains less than about 85% of the total particle mass less than about 2 um; and
b) the fine kaolin clay contains about 95% or more of the mass less than 1 um and more than 85% of the mass less than about 0.5 um in particle size.
15. The clay product of claim 14 wherein the fine clay is mined from tertiary crude deposits.
16. The clay product of claim 13 wherein said tertiary clay has a total particle mass of more than about 75% less than 2 um and more than about 55% less than 1 urn.
17. The clay product of claim 1 wherein the product is used in the formation of cordierite.
18. The clay product of claim 1 wherein said product is used in the formation of cordierite to reduce the coefficient of thermal expansion of the substrate.
19. The clay product of claim 18 wherein the formation of cordierite improves the thermal properties of the substrate.
20. A method of forming a blended hydrous kaolin clay product, the method comprises blending clay mined from tertiary crude deposits as the fine component with a Cretaceous or secondary clay.
PCT/US2010/024530 2009-08-18 2010-02-18 A novel blended hydrous kaolin clay product WO2011022081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/543,228 2009-08-18
US12/543,228 US8129302B2 (en) 2008-08-19 2009-08-18 Blended hydrous kaolin clay product

Publications (1)

Publication Number Publication Date
WO2011022081A1 true WO2011022081A1 (en) 2011-02-24

Family

ID=43607617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/024530 WO2011022081A1 (en) 2009-08-18 2010-02-18 A novel blended hydrous kaolin clay product

Country Status (2)

Country Link
US (1) US8129302B2 (en)
WO (1) WO2011022081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181169A1 (en) * 2016-04-15 2017-10-19 Basf Corporation Methods of making hydrous kaolin clay and products made thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990014252A (en) * 1997-07-28 1999-02-25 알프레드 엘. 미첼슨 A method of manufacturing a cordierite body using substantially reduced firing time
US6319870B1 (en) * 1998-11-20 2001-11-20 Corning Incorporated Fabrication of low thermal expansion, high strength cordierite structures
US6506336B1 (en) * 1999-09-01 2003-01-14 Corning Incorporated Fabrication of ultra-thinwall cordierite structures
KR100643441B1 (en) * 1999-06-11 2006-11-10 코닝 인코포레이티드 Low expansion, high porosity, high strength cordierite body and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296423A (en) 1992-01-03 1994-03-22 Corning Incorporated Cordierite substrates
US6006920A (en) 1997-05-09 1999-12-28 Dry Branch Kaolin Company Brightness, reduced impurity clays and methods of making same
WO2001004070A1 (en) 1999-07-07 2001-01-18 Corning Incorporated Low cte cordierite bodies with narrow pore size distribution and method of making same
US6656347B2 (en) * 2000-09-22 2003-12-02 Engelhard Corporation Structurally enhanced cracking catalysts
CN1867641A (en) 2003-08-11 2006-11-22 英默里斯高岭土公司 High whiteness metakaolin and high whiteness fully calcined kaolin
US8460540B2 (en) * 2006-03-02 2013-06-11 Basf Corporation Hydrocracking catalyst and process using insitu produced Y-fauajasite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990014252A (en) * 1997-07-28 1999-02-25 알프레드 엘. 미첼슨 A method of manufacturing a cordierite body using substantially reduced firing time
US6319870B1 (en) * 1998-11-20 2001-11-20 Corning Incorporated Fabrication of low thermal expansion, high strength cordierite structures
KR100643441B1 (en) * 1999-06-11 2006-11-10 코닝 인코포레이티드 Low expansion, high porosity, high strength cordierite body and method
US6506336B1 (en) * 1999-09-01 2003-01-14 Corning Incorporated Fabrication of ultra-thinwall cordierite structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181169A1 (en) * 2016-04-15 2017-10-19 Basf Corporation Methods of making hydrous kaolin clay and products made thereof
CN109071964A (en) * 2016-04-15 2018-12-21 巴斯夫公司 Prepare hydrous kaolin clay method and obtained product

Also Published As

Publication number Publication date
US8129302B2 (en) 2012-03-06
US20100048386A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4549449B2 (en) Method for producing cordierite body with quick firing time
Rashad Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview
JPH11100259A (en) Production of cordierite body substantially reduced in firing time
Sadik et al. Composition and refractory properties of mixtures of Moroccan silica-alumina geomaterials and alumina
Valášková Clays, clay minerals and cordierite ceramics-A review
Ganesh et al. Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates
JP2001524452A (en) Low expansion cordierite honeycomb body and method of manufacturing the same
Mohapatra et al. Preparation of MgO–MgAl2O4 composite for refractory application
Saha et al. Thermal anisotropy in sintered cordierite monoliths
EP2349947B1 (en) A blended hydrous kaolin product, a method for making cordierite by sintering the blend and the obtained cordierite
El Haddar et al. Elaboration of a high mechanical performance refractory from halloysite and recycled alumina
Oluseyi et al. Evaluation of Nigerian source of kaolin as a raw material for mullite synthesis
US8530368B2 (en) Blended hydrous kaolin clay product
Albhilil et al. Thermal and microstructure stability of cordierite–mullite ceramics prepared from natural raw materials
US8129302B2 (en) Blended hydrous kaolin clay product
CN108033798B (en) Cordierite-spinel hollow sphere sagger, preparation method and application thereof
Katayama et al. Effect of particle size of tabular talc powders on crystal orientation and sintering of cordierite ceramics
WO2016160641A1 (en) Ceramic batch mixtures having decreased wall drag
Rundans et al. Effect of sintering process and additives on the properties of cordierite based ceramics
US20180127316A1 (en) Composite ceramic materials, articles, and method of manufacture
KR0169573B1 (en) Aluminum titanate ceramic sintered body and its manufacturing
Shukur et al. Preparation of cordierite ceramic from Iraqi raw materials
Johnson et al. Solid state reactions of cordierite precursor oxides and effect of CaO doping on the thermal expansion behaviour of cordierite honeycomb structures
WO2015183552A1 (en) Isolated pseudobrookite phase composites and methods of making
US10301222B2 (en) Ceramic powders with controlled size distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810297

Country of ref document: EP

Kind code of ref document: A1