WO2011029294A1 - Laser display light source and laser display system - Google Patents

Laser display light source and laser display system Download PDF

Info

Publication number
WO2011029294A1
WO2011029294A1 PCT/CN2010/070706 CN2010070706W WO2011029294A1 WO 2011029294 A1 WO2011029294 A1 WO 2011029294A1 CN 2010070706 W CN2010070706 W CN 2010070706W WO 2011029294 A1 WO2011029294 A1 WO 2011029294A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
crystal
laser display
light source
Prior art date
Application number
PCT/CN2010/070706
Other languages
French (fr)
Chinese (zh)
Inventor
陈昱
郭大勃
张海翔
刘卫东
Original Assignee
青岛海信电器股份有限公司
青岛海信信芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司, 青岛海信信芯科技有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2011029294A1 publication Critical patent/WO2011029294A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A laser display light source and a laser display system are provided by the present invention. Said laser display light source includes a pump source for emitting pump light; a laser crystal and a group of periodically-poled crystals both in a resonator. Said group of periodically-poled crystals includes at least one periodically-poled crystal; said laser crystal receives the pump light emitted from the pump source and emits laser; said group of periodically-poled crystals receives the laser emitted by the laser crystal as the fundamental frequency light, and emits high-order harmonic light; the periodically-poled duty cycle and the crystal length of said poled crystals are determined according to the light intensity of the high-order harmonic light; the poled period of the periodically-poled crystals is determined according to the wavelength of the high-order harmonic light. Said laser display system includes said laser display light source, an optical engine and an imaging unit. The present invention provides the laser display light source and the laser display system, which are compact and energy saving, thus convenient for industrilization.

Description

一种激光显示光源和激光显示系统 本申请要求于 2009 年 9 月 11 日提交中国专利局、 申请号为 200910170877.4、 发明名称为 "一种激光显示光源和激光显示系统"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。  A laser display light source and a laser display system The present application claims priority to Chinese Patent Application No. 200910170877.4, entitled "A Laser Display Light Source and Laser Display System", filed on September 11, 2009, by the Chinese Patent Office. The entire contents of which are incorporated herein by reference.
技术领域 本发明属于激光显示领域, 尤其涉及一种激光显示光源和激光显示系统。 背景技术 激光显示技术具有大色域、低能耗等特点,被认为是下一代主流显示技术。 为了推广激光显示技术, 结构紧凑的激光光源的研发尤为重要。 激光显示用的激光光源需要提供三基色光输出, 目前, 三基色中的红光由 半导体激光器输出光组束而成,绿光和蓝光是由红外半导体激光泵浦固体激光 晶体再经非线性光学晶体倍频得到。这样结构的激光光源模块本身由分离的三 基色模组组成, 体积大, 耗能高, 不便于显示系统设计, 限制激光显示技术在 许多领域的应用。 为解决上述问题,人们应用不同的原理和方法使得一个激光模组能够输出 双色或多色光。 例如, 2008年 7月 30日公开的公开号为 CN101232149、 名称 为"基于间歇振荡双波长激光和级联超晶格激光器的设置方法"的中国发明专 利申请公布说明书中公开了一种输出三色光的装置。该装置中的三基色产生于 三个分离的谐振单元, 结构仍然不够紧凑。 2003年 12月 30日公开的美国专利号 US6,671,305B2、 名称为 "Solid state laser (固态激光器) "的专利文件中公开了一种固态激光器, 该激光器利用倍 频、和频和光学参量过程的混合产生三基色光输出。但该激光器中光频率变化 步骤多, 激光器内部结构过于复杂。 TECHNICAL FIELD The present invention relates to the field of laser display, and more particularly to a laser display light source and a laser display system. BACKGROUND OF THE INVENTION Laser display technology has the characteristics of large color gamut and low energy consumption, and is considered to be the next generation mainstream display technology. In order to promote laser display technology, the development of compact laser sources is particularly important. The laser light source for laser display needs to provide three primary color light output. At present, the red light in the three primary colors is formed by the semiconductor laser output light beam, and the green light and blue light are filtered by the infrared semiconductor laser to the solid laser crystal through nonlinear optics. The crystal is multiplied. The laser light source module of such a structure is composed of separate three-primary color modules, which is large in volume and high in energy consumption, and is inconvenient for display system design, and limits the application of laser display technology in many fields. In order to solve the above problems, different principles and methods are applied to enable a laser module to output two-color or multi-color light. For example, an output of a three-color light is disclosed in the Chinese Patent Application Publication No. CN101232149, the disclosure of which is incorporated herein by reference. s installation. The three primary colors in the device are generated in three separate resonant units, and the structure is still not compact enough. A solid state laser is disclosed in U.S. Patent No. 6,671,305 B2, issued on Dec. 30, 2003, entitled "Solid State Laser", which utilizes frequency doubling, sum frequency and optical parametric processes. The mixing produces a three primary color light output. However, there are many steps in the variation of the optical frequency in the laser, and the internal structure of the laser is too complicated.
发明内容 有鉴于此, 本发明的目的在于提供一种激光显示光源和激光显示系统, 可 以有效节约激光光源模块体积, 降低能耗。 Summary of the invention In view of this, an object of the present invention is to provide a laser display light source and a laser display system, which can effectively save the volume of the laser light source module and reduce energy consumption.
为实现上述目的, 本发明提供一种激光显示光源, 包括: 用于输出泵浦光 的泵浦源, 以及位于谐振腔内的激光晶体和和周期性极化晶体组合, 所述周期 性极化晶体组合包括至少一个周期性极化晶体,所述激光晶体用于接收所述泵 浦源输出的泵浦光并输出激光,所述周期性极化晶体组合用于接收所述激光晶 体输出的激光作为基频光, 并输出多阶倍频光, 所述周期性极化晶体的周期性 极化占空比和晶体长度是根据所述多阶倍频光的光强确定的,所述周期性极化 晶体的极化周期是根据所述多阶倍频光的波长确定的。  To achieve the above object, the present invention provides a laser display light source, comprising: a pump source for outputting pump light, and a laser crystal located in the resonant cavity and combined with a periodically polarized crystal, the periodic polarization The crystal combination includes at least one periodically polarized crystal for receiving pump light output by the pump source and outputting a laser, the periodically polarized crystal combination for receiving laser light output from the laser crystal As the fundamental light, and outputting multi-order frequency doubling light, the periodic polarization duty ratio and the crystal length of the periodically polarized crystal are determined according to the light intensity of the multi-order frequency doubling light, the periodicity The polarization period of the polarized crystal is determined according to the wavelength of the multi-order frequency doubling light.
优选地, 所述多阶倍频光包括一阶倍频光、二阶倍频光和三阶倍频光中的 任意组合。  Preferably, the multi-order frequency doubling light comprises any combination of first order frequency doubling light, second order frequency doubling light and third order frequency doubling light.
优选地,所述多个周期性极化晶体在光传播方向上彼此无间隔的固定在一 起。 这样可以进一步地减小光源模块的体积。  Preferably, the plurality of periodically polarized crystals are fixed together without being spaced apart from each other in the direction of light propagation. This can further reduce the volume of the light source module.
优选地,在所述激光显示光源的谐振腔的激光输出端外设置用于滤掉不需 要的倍频光的滤波器。 这样可以滤掉不需要的倍频光。  Preferably, a filter for filtering out unwanted multiplier light is provided outside the laser output end of the cavity of the laser display source. This will filter out unwanted multiplier light.
优选地,所述周期性极化晶体为周期性极化铌酸锂晶体或周期性极化磷酸 氧钛钾。  Preferably, the periodically polarized crystal is a periodically poled lithium niobate crystal or periodically poled potassium titanyl phosphate.
优选地, 所述泵浦光源采用输出光波长为 808纳米的激光二极管。  Preferably, the pumping source uses a laser diode having an output light wavelength of 808 nm.
优选地, 所述激光晶体为 Nb:YV04、 Nb:YAG或 Nb:GaV04晶体。  Preferably, the laser crystal is a Nb:YV04, Nb:YAG or Nb:GaV04 crystal.
优选地, 所述谐振腔为直形腔、 L形腔、 Z形腔或环形腔。  Preferably, the resonant cavity is a straight cavity, an L-shaped cavity, a Z-shaped cavity or an annular cavity.
优选地, 所述周期性极化晶体的形态为块状结构或波导结构。  Preferably, the form of the periodically polarized crystal is a block structure or a waveguide structure.
另外, 本发明还提供一种激光显示系统, 包括上述激光显示光源, 光学引 擎和成像单元。  Further, the present invention provides a laser display system comprising the above laser display light source, an optical engine and an imaging unit.
优选地,所述激光显示光源中的泵浦光源采用输出光波长为 808纳米的激 光二极管, 所述激光晶体为 Nb:YV04、 Nb:YAG或 Nb:GaV04晶体。 本实施例提供的激光显示光源中只需要利用单一的周期性极化晶体器件 即可实现输出多阶倍频光, 相对于现有技术, 整个光源模块的结构紧凑, 能够 有效地节约光源模块的体积, 降低能耗, 使得激光显示光源更利于产业化。 同 时应用该光源模块的激光显示系统的体积和能耗也相应减小。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1是本发明实施例一提供的一种激光显示光源的示意图; 图 2是本发明实施例一提供的采用 L形谐振腔的一种激光显示光源的示意 图; 图 3是本发明实施例二提供的一种激光显示光源的示意图; 图 4是本发明实施例三提供的一种激光显示光源的示意图; 图 5是本发明实施例五提供的一种激光显示系统的示意图。 具体实施方式 为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。 实施例一 图 1 示出了本发明实施例一提供的一种激光显示光源的示意图, 如图 1 所示, 该激光显示光源包括一泵浦源 1和由腔镜 4和 5共同限定的谐振腔 7, 在谐振腔 7 内设置激光晶体和包括至少一个周期性极化晶体的周期性极化晶 体组合 3。 Preferably, the pumping source in the laser display source uses a laser diode having an output light wavelength of 808 nm, and the laser crystal is a Nb:YV04, Nb:YAG or Nb:GaV04 crystal. The laser display light source provided in this embodiment only needs to utilize a single periodically polarized crystal device. Compared with the prior art, the entire light source module has a compact structure, can effectively save the volume of the light source module, and reduce energy consumption, so that the laser display light source is more favorable for industrialization. At the same time, the volume and power consumption of the laser display system using the light source module are also reduced accordingly. BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, in the following description The drawings are some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work. 1 is a schematic diagram of a laser display light source according to a first embodiment of the present invention; FIG. 2 is a schematic diagram of a laser display light source using an L-shaped resonant cavity according to Embodiment 1 of the present invention; FIG. 4 is a schematic diagram of a laser display light source according to Embodiment 3 of the present invention; and FIG. 5 is a schematic diagram of a laser display system according to Embodiment 5 of the present invention. The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. The embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention. Embodiment 1 FIG. 1 is a schematic view showing a laser display light source according to Embodiment 1 of the present invention. As shown in FIG. 1, the laser display light source includes a pump source 1 and a resonance defined by the mirrors 4 and 5 together. a cavity 7, a laser crystal and a periodic polarization crystal comprising at least one periodically polarized crystal are disposed in the cavity 7 Body combination 3.
其中, 泵浦源 1产生的泵浦光输入到激光晶体 4中作为激励, 激光晶体 4 在泵浦光的激励下输出激光。在图 1中特别的以泵浦源 1产生的泵浦光从腔镜 4入射到激光晶体 2中为例, 本领域技术人员应该能够理解, 对激光晶体 4进 行泵浦可以采用中小功率端面泵浦或大功率侧面泵浦,例如图 1中特别地以端 面泵浦为例进行说明。 泵浦源 1可以采用激光二极管(LD ), 也可以采用其他 类型的泵浦源。 本实施例中优选的采用输出光波长为 808纳米的激光二极管。 为了能够提高泵浦源 1输出的泵浦光能够充分的入射到激光晶体 2中,优选地, 在泵浦源 1与激光晶体 2之间还设置聚焦组件 6, 用于将泵浦光进行聚焦后再 输入到激光晶体 2中。 聚焦组件 6可以是常见的透镜组合。  Among them, the pump light generated by the pump source 1 is input to the laser crystal 4 as an excitation, and the laser crystal 4 outputs a laser light under the excitation of the pump light. In Fig. 1, in particular, the pump light generated by the pump source 1 is incident on the laser crystal 2 from the cavity mirror 4. It will be understood by those skilled in the art that the laser crystal 4 can be pumped with a medium and small power end face pump. Pu or high power side pumping, for example, in Fig. 1, in particular, end pumping is taken as an example. The pump source 1 can be either a laser diode (LD) or another type of pump source. A laser diode having an output light wavelength of 808 nm is preferably used in this embodiment. In order to enable the pump light output from the pump source 1 to be sufficiently incident into the laser crystal 2, preferably, a focusing assembly 6 is provided between the pump source 1 and the laser crystal 2 for focusing the pump light. Then input it into the laser crystal 2. Focusing assembly 6 can be a common combination of lenses.
激光晶体 2 输出的激光输入到由至少一个周期性极化晶体的周期性极化 晶体组合 3中, 所有周期性极化晶体均串联排列在光传播方向上。在周期性极 化晶体组合 3中, 激光晶体 2的输出激光作为基频光, 激光在周期性极化晶体 中受到非线性效应作用, 实现准相位匹配, 产生多阶倍频光。 具体地, 在激光 晶体 2的输出激光沿着光传播方向依次穿过周期性极化晶体组合 3中的每个周 期性极化晶体时, 都会产生与该周期性极化晶体相应的多阶倍频光, 并且经过 每个周期性极化晶体的产生的各阶倍频光的波长与该周期性极化晶体的极化 周期 Λ有关 (或者可以表述为: 当基频光波长已知时, 周期性极化晶体的极 化周期 Λ决定了各阶倍频光的波长), 经过每个周期性极化晶体产生的各阶倍 频光的光强与该周期性极化晶体的周期性极化占空比 ξ和晶体长度有关。激光 晶体 2优选可以是 Nb:YV04、 Nb:YAG或 Nb:GaV04晶体等固体激光晶体。 周期性极化晶体优选为 PPLN (周期性极化铌酸锂 )晶体或 PPKTP (周期性极 化磷酸氧钛钾) 晶体。  The laser output from the laser crystal 2 is input to a periodically polarized crystal combination 3 of at least one periodically polarized crystal, and all of the periodically polarized crystals are arranged in series in the direction of light propagation. In the periodic polarization crystal combination 3, the output laser of the laser crystal 2 is used as the fundamental light, and the laser is subjected to a nonlinear effect in the periodically polarized crystal to realize quasi-phase matching and generate multi-order frequency doubled light. Specifically, when the output laser of the laser crystal 2 sequentially passes through each of the periodically polarized crystals in the periodically polarized crystal combination 3 along the light propagation direction, a multi-order multiple corresponding to the periodically polarized crystal is generated. Frequency light, and the wavelength of each order multiplied light generated by each periodically polarized crystal is related to the polarization period Λ of the periodically polarized crystal (or can be expressed as: when the fundamental wavelength of the light is known, The polarization period of the periodically polarized crystal determines the wavelength of each order frequency doubling light, and the intensity of each order multiplied light generated by each periodically polarized crystal and the periodic pole of the periodically polarized crystal The duty cycle ξ is related to the crystal length. The laser crystal 2 may preferably be a solid laser crystal such as Nb:YV04, Nb:YAG or Nb:GaV04 crystal. The periodically polarized crystal is preferably a PPLN (periodicly poled lithium niobate) crystal or a PPKTP (periodic polar potassium titanyl phosphate) crystal.
下面详细说明周期性极化晶体的极化周期 Λ和周期性极化占空比 ξ如何 影响输出的各阶倍频光的波长及光强的。 当输入到周期性极化晶体的两束基频激光的波长分别为 λ2时, 从周 期性极化晶体输出的第 m阶倍频光的波长 λ3与基频激光的波长 和 λ2之间满 足如下等式: The following explains in detail how the polarization period Λ and the periodic polarization duty ratio 周期性 of the periodically polarized crystal affect the wavelength and intensity of the output octave light. When the wavelengths of the two fundamental lasers input to the periodically polarized crystal are respectively λ 2 , from the week M-th frequency wavelength of polarized light output from the crystal satisfies the following equation [lambda] between the fundamental frequency of the laser 23 and the wavelength λ:
(戈子 1 )
Figure imgf000007_0001
当两束基频光的波长相同 (均为 λ ) 时, 上述式子 1可以改写为:
(Gezi 1)
Figure imgf000007_0001
When the wavelengths of the two fundamental lights are the same (both λ), the above formula 1 can be rewritten as:
n 2n、 m  n 2n, m
t = + (式子 2 ) 其中 是波长为 的光在周期性极化晶体中的折射率, n2是波长为 λ2的 光在周期性极化晶体中的折射率, η3为波长为 λ3的光在周期性极化晶体中的 折射率, 并且, 本领域技术人员结合公知常识应该能够理解, 由于折射率是波 长的函数(可以通过周期性极化晶体材料的色散关系推出), 在给定周期性极 化晶体的材料以及极化周期 Λ后, 根据式子 1可以唯一的确定各阶倍频光的 波长。 与双折射相位匹配不同, 利用周期性极化晶体的准相位匹配技术, 倍频 后的激光波长不必须是基频光波长的二分之一,这样可以扩展晶体和光波长的 选择范围, 有利于实现全波长的覆盖。 t = + (Formula 2) where is the refractive index of the light of the wavelength in the periodically polarized crystal, n 2 is the refractive index of the light of the wavelength λ 2 in the periodically polarized crystal, and η 3 is the wavelength The refractive index of λ 3 in periodically polarized crystals, and it should be understood by those skilled in the art in conjunction with common general knowledge that since the refractive index is a function of wavelength (which can be derived by the dispersion relationship of periodically polarized crystalline materials), Given the material of the periodically polarized crystal and the period of polarization, the wavelength of each order of frequency doubling light can be uniquely determined according to Equation 1. Unlike birefringence phase matching, the quasi-phase matching technique of periodically polarized crystals does not have to be one-half the wavelength of the fundamental light, which can extend the choice of crystal and optical wavelengths. Achieve full wavelength coverage.
例如, 在图 1中的激光晶体 2采用 Nb:YV04晶体时, 而泵浦源 1采用输 出光波长为 808纳米的激光二极管, 此时从激光晶体 2输出的激光为波长为 1064nm或 1342nm的红外激光。 这样, 周期性极化晶体组合 3中的各个周期 性极化晶体的基频光就是波长为 1064nm或 1342nm的红外激光。 例如, 在周 期性极化晶体采用 PPLN (周期性极化铌酸 4里) 晶体时, 如果激光晶体 2的输 出激光波长为 1064nm, 则对于 PPLN晶体的基频光波长就是 1064nm, 该基频 光经过极化周期为 4.277微米的 PPLN晶体后, 一阶倍频光的波长为 525nm, 二阶倍频光的波长为 495nm, 三阶倍频光的波长为 470nm。 如果激光晶体 2 的输出激光波长为 1342nm, 则采用极化周期为 2.137微米的 PPLN晶体作为 周期性极化晶体时,产生的一阶倍频光的波长为 610nm,二阶倍频光的波长为 525nm, 三阶倍频光的波长为 470nm。 当然, 也可以让激光晶体 2同时输出两 种波长的激光作为两个基频光,但并不是每个波长的激光输入到具有任意一个 极化周期的周期性极化晶体都能够实现准相位匹配,因为对于一个具有特定的 极化周期值的周期性极化晶体,只有很窄的一个波长范围内基频光能够在该周 期性极化晶体中达到准相位匹配, 输出各阶倍频光。 例如, 对于极化周期为 4.277微米的 PPLN晶体中, 只有波长在 1064nm附近范围内的基频光输入到 该晶体中后可以输出倍频光; 而对于极化周期为 2.137微米的 PPLN晶体, 只 有波长在 1342nm附近范围内的基频光输入到该晶体中后可以输出倍频光。 综上, 通过选择周期性极化晶体的材料以及极化周期 Λ可以对各阶倍频 光的波长进行选择,在实际中可以根据最终所要求的各阶光的波长决定采用的 周期性极化晶体的材料、个数以及极化周期。例如,在实际的激光显示装置中, 需要提供光源装置能够输出三种基色的输出光, 因此在基频光的波长为 1342nm时通常可以利用一阶倍频光、 二阶倍频光和三阶倍频光作为三基色输 出。 另一方面,周期性极化晶体的周期性极化占空比 ξ决定了从周期性极化晶 体输出的各阶倍频光的光强。 各阶倍频光的光强与各自的电矢量大小的平方成正比,而电矢量的大小又 与准相位匹配( QPM )有效非线性系数 D成正比。 各阶倍频光的 QPM有效系 数的表达式如下: For example, when the laser crystal 2 in FIG. 1 is a Nb:YV04 crystal, and the pump source 1 is a laser diode having an output light wavelength of 808 nm, the laser output from the laser crystal 2 is an infrared having a wavelength of 1064 nm or 1342 nm. laser. Thus, the fundamental frequency light of each periodically polarized crystal in the periodically polarized crystal combination 3 is an infrared laser having a wavelength of 1064 nm or 1342 nm. For example, when a periodically polarized crystal is a PPLN (periodicly polarized tantalum 4) crystal, if the output laser wavelength of the laser crystal 2 is 1064 nm, the fundamental wavelength of the PPLN crystal is 1064 nm, and the fundamental light is After passing through a PPLN crystal having a polarization period of 4.277 μm, the wavelength of the first-order frequency doubling light is 525 nm, the wavelength of the second-order frequency doubling light is 495 nm, and the wavelength of the third-order frequency doubling light is 470 nm. If the laser wavelength of the laser crystal 2 is 1342 nm, a PPLN crystal with a polarization period of 2.137 μm is used. When the crystal is periodically polarized, the first-order frequency-doubled light has a wavelength of 610 nm, the second-order frequency-doubled light has a wavelength of 525 nm, and the third-order frequency-doubled light has a wavelength of 470 nm. Of course, it is also possible to have the laser crystal 2 simultaneously output two wavelengths of laser light as two fundamental frequency lights, but not every laser input of a wavelength to a periodically polarized crystal having any one polarization period can achieve quasi-phase matching. Because, for a periodically polarized crystal with a specific polarization period value, only a very narrow wavelength range of fundamental light can achieve quasi-phase matching in the periodically polarized crystal, and output each order of frequency doubling light. For example, in a PPLN crystal with a polarization period of 4.277 μm, only the fundamental light having a wavelength in the vicinity of 1064 nm can be input to the crystal to output a frequency-doubled light; and for a PPLN crystal having a polarization period of 2.137 μm, only The fundamental frequency light having a wavelength in the vicinity of 1342 nm is input to the crystal, and the frequency doubled light can be output. In summary, the wavelength of each order frequency doubling light can be selected by selecting the material of the periodically polarized crystal and the polarization period ,. In practice, the periodic polarization used can be determined according to the wavelength of each order light required. The material, number and period of polarization of the crystal. For example, in an actual laser display device, it is necessary to provide a light source device capable of outputting output light of three primary colors. Therefore, when the wavelength of the fundamental light is 1342 nm, first-order frequency doubling light, second-order frequency doubling light, and third order can be generally used. The frequency doubled light is output as three primary colors. On the other hand, the periodic polarization duty cycle 周期性 of the periodically polarized crystal determines the intensity of each order multiplied light output from the periodically polarized crystal. The intensity of each order octave light is proportional to the square of the respective electrical vector magnitude, and the magnitude of the electrical vector is proportional to the quasi-phase matching (QPM) effective nonlinear coefficient D. The expression of the QPM effective coefficient of each order of frequency doubling light is as follows:
(式子 3 )
Figure imgf000008_0001
式子 3中 m为倍频阶数, ξ为周期性极化占空比, deff为由晶体特性决定 的有效非线性系数, 对于每一块周期性极化晶体晶体, deff为常数。 结合式子 3可以看出, 在周期性极化晶体材料和极化周期 Λ已知的前提 下, 各阶倍频光的光强与该周期性极化晶体的周期性极化占空比 ξ有关。 例如, 对于极化周期为 4.277微米的 PPLN晶体, 如果周期性极化占空比 为 50%,则输出的波长为 495nm的二阶倍频光的强度为 0,输出的波长为 525nm 的一阶倍频光与波长为 470nm的三阶倍频光的光强比为 9:1。对于极化周期为 2.137微米的 PPLN 晶体, 如果周期性极化占空比为 25%, 则输出的波长为 61 Onm的一阶倍频光与波长为 525nm的二阶倍频光的光强比为 2: 1。
(Expression 3)
Figure imgf000008_0001
In equation 3, m is the frequency multiplication order, ξ is the periodic polarization duty cycle, and d eff is the effective nonlinear coefficient determined by the crystal characteristics. For each periodically polarized crystal, d eff is constant. It can be seen that the intensity of each order frequency doubling light and the periodic polarization duty ratio of the periodically polarized crystal are known under the premise that the periodically polarized crystal material and the polarization period Λ are known. related. For example, for a PPLN crystal with a polarization period of 4.277 μm, if the periodic polarization duty is 50%, the intensity of the second-order frequency doubling light with a wavelength of 495 nm is 0, and the output wavelength is 525 nm. The light intensity ratio of the frequency doubling light to the third order frequency doubling light having a wavelength of 470 nm is 9:1. For a PPLN crystal with a polarization period of 2.137 μm, if the periodic polarization duty ratio is 25%, the intensity ratio of the first-order frequency doubling light with a wavelength of 61 Onm and the second-order frequency doubling light with a wavelength of 525 nm is output. For 2: 1.
综上, 当周期性极化晶体的材料以及极化周期 Λ 已知后, 可以通过选择 不同的周期性极化占空比 ξ, 实现对各阶倍频光输出光强的选择。  In summary, when the material of the periodically polarized crystal and the polarization period Λ are known, the selection of the intensity of the output of the multiplied light can be achieved by selecting different periodic polarization duty cycles ξ.
另外, 各阶倍频光的输出光强还与周期性极化晶体的长度的平方成正比。 当周期性极化晶体组合 3中的周期性极化晶体为多个时,所有周期性极化 晶体可以彼此间隔一定距离依次沿着光路排列,当然也可以彼此无间隔的在沿 着光路的方向固定在一起。本实施例中,优选的将多个周期性极化晶体无间隔 的固定在一起,这样可以进一步提高整个光源模块的紧凑型,进一步缩小体积。  In addition, the output light intensity of each order doubled light is also proportional to the square of the length of the periodically polarized crystal. When there are a plurality of periodically polarized crystals in the periodically polarized crystal combination 3, all of the periodically polarized crystals may be arranged along the optical path at a certain distance from each other, and of course, may be spaced apart from each other in the direction along the optical path. Fixed together. In this embodiment, it is preferable to fix a plurality of periodically polarized crystals without spaces, which can further improve the compactness of the entire light source module and further reduce the volume.
为了防止激光晶体产生的部分基频光从谐振腔中输出,导致对后续的光源 输出光性能造成过大影响,在实际中限制谐振腔的两个腔镜在本实施例中可以 设计成对基频光全反或高反, 这样不仅能够减少基频光的外漏,还可以使基频 光在谐振腔内充分振荡, 提高整个光源的倍频光的输出强度。  In order to prevent part of the fundamental frequency light generated by the laser crystal from being output from the resonant cavity, the output light performance of the subsequent light source is excessively affected. In practice, the two cavity mirrors that limit the resonant cavity can be designed as a pair in the present embodiment. The frequency light is all reversed or high reversed, so that not only the external leakage of the fundamental light can be reduced, but also the fundamental frequency light can be fully oscillated in the resonant cavity, and the output intensity of the frequency-doubled light of the entire light source is improved.
本实施例中优选的在谐振腔 7的激光输出端(在图 1中为腔镜 5—侧的输 出端)外的光路中设置用于滤掉不需要的倍频光的滤波器。 例如, 通过设置相 应的滤波器, 滤掉波长没有落在红、 绿和蓝三色波长范围内的倍频光。 另外, 需要指出的是: 三基色光源的红绿蓝三色光的波长通常取如下优选的范围: 红 光波长为 605 ± 5nm, 绿光波长为 530 ± 10 nm, 蓝光波长优选为 470± 10nm。 在上 述范围的约束下, 虽然某些光的波长从频谱角度划分属于三色光中的一种,但 波长并没有落在上述范围内, 例如 1064nm的基频光入射到极化周期为 4.277 微米的 PPLN晶体后, 产生的波长为 495nm的二阶倍频光从频谱的角度看属 于绿光, 但由于波长不在 530 ± 10 nm范围内, 所以通常不被用于充当三基色光 源的绿光光源,所以在实际中需要通过设计 PPLN晶体的周期性极化占空比或 者设置能够滤掉该波长光的滤波器, 使波长为 495nm的倍频光输出功率成为 零。 但在色域更广的四基色甚至五基色等更多基色的光源中, 上述 495nm的 绿光仍然可以保留。 In the present embodiment, it is preferable to provide a filter for filtering out unnecessary frequency-doubled light in an optical path outside the laser output end of the resonant cavity 7 (the output end of the cavity mirror 5 side in Fig. 1). For example, by setting a corresponding filter, the multiplier light whose wavelength does not fall within the wavelength range of red, green, and blue is filtered out. In addition, it should be noted that the wavelengths of the red, green and blue light of the three primary light sources generally take the following preferred ranges: red light wavelength is 605 ± 5 nm, green light wavelength is 530 ± 10 nm, and blue light wavelength is preferably 470 ± 10 nm. Under the constraints of the above range, although the wavelength of some light is divided into one of the three colors of light from the spectral angle, the wavelength does not fall within the above range. For example, the fundamental frequency of 1064 nm is incident on the polarization period of 4.277 μm. After the PPLN crystal, the second-order frequency doubling light with a wavelength of 495 nm is green light from the perspective of the spectrum, but since the wavelength is not in the range of 530 ± 10 nm, it is usually not used as a green light source for the three primary color light sources. Therefore, in practice, it is necessary to design the periodic polarization duty cycle of the PPLN crystal or A filter capable of filtering out the light of the wavelength is provided to make the output of the frequency doubled light having a wavelength of 495 nm zero. However, in a light source having a wider color gamut of four primary colors or even five primary colors, the above-mentioned 495 nm green light can still be retained.
另外, 图 1中所示的谐振腔的形状为直形腔, 实际上谐振腔的形状还可是 L形腔、 Z形腔或环形腔。 例如采用如图 3中所示的 L形谐振腔。 在图 3中未 示出泵浦源,采用 L形谐振腔的激光显示光源光路不再是一条直线,并且在激 光晶体 2和周期性极化晶体 3之间增加了一个改变光路方向的反射镜 8。 相对 于图 1所示的直形腔, L形谐振腔和其他形式的谐振腔便于激光晶体的光束大 'J、和倍频晶体的光束大小的分别优化。 在实际中, 上述周期性极化晶体的形态可以是块状结构也可以是波导结 构。 由于本实施例提供的激光显示光源中只需要利用单一的周期性极化晶体 器件即可实现输出多阶倍频光, 例如红绿蓝三色激光, 当然也可以是更多基色 的激光。并且通过对周期性极化晶体的周期性极化占空比的选择可以实现对各 阶倍频光的输出光强的选择。 相对于现有技术, 整个光源模块的结构紧凑, 能 够有效地节约光源模块的体积, 降低能耗, 使得激光显示光源更利于产业化。 在激光显示中, 为了达到所需的白平衡,对光源的红绿蓝三色输出光的光 强比有特定的要求, 例如要求红绿蓝三色光的光强比为 1 :6:3。 在已知所需的 红绿蓝三色光的光强比时, 可以通过灵活选择周期性极化晶体的材料、 个数、 极化周期 Λ以及周期性极化占空比 ξ, 使得输出的红、 绿和蓝光的光强比满足 所需的要求。 所需白平衡不同, 激光显示光源的设置也相应进行调整, 以下以 几个具体的实施例举例说明。 实施例二 在本实施例中, 所需白平衡要求红绿蓝三色光的光强比为 3:6: 1。 如图 3 所示, 本实施例中的激光显示光源中的泵浦源 1采用输出光波长为 808nm的 激光二极管, 激光晶体 2采用 Nb:YV04晶体, 周期性极化晶体组合 3中包含 两个周期性极化晶体, 均采用 PPLN晶体, 这两个 PPLN晶体的极化周期分别 为 4.277微米和 2.137微米。 在激光显示光源工作过程中, 激光晶体 2产生波 长分别为 1064nm和 1342nm的红外激光, 在这两种波长的红外激光经过周期 性极化晶体组合 3 的过程中, 波长为 1064nm的红外激光在经过极化周期为 4.277微米的 PPLN晶体时实现准相位匹配,产生的一阶倍频光波长为 525nm, 二阶倍频光的波长为 495nm, 三阶倍频光的波长为 470nm; 波长为 1342nm的 红外激光在经过极化周期为 2.137微米的 PPLN晶体时实现准相配匹配, 产生 的一阶倍频光的波长为 610nm,二阶倍频光的波长为 525nm,三阶倍频光的波 长为 470 如前所述, 在本实施例中 组成周期性极化晶体组合的两个 PPLN晶体的 极化周期不同, 但周期性极化的占空比均为 50% 通过理论计算可以得出: 在波长为 1064nm的红外激光输入到极化周期为 4.277微米、周期性极化占空比为 50%的 PPLN晶体时,产生的一阶倍频光(波 长为 525nm, 属于绿光范围)、 二阶倍频光(波长为 495nm, 属于绿光范围) 和三阶倍频光(波长为 470nm, 属于蓝光范围)之间的光强之比为 9:0: 1 , 这 样从极化周期为 4.277微米、周期性极化占空比为 50%的 PPLN晶体输出的绿 光和蓝光的光强之比为 9:1。 在实际中, 由于作为三基色光源中绿光的优选波 长为 530 ± 10 nm, 上述二阶倍频光的波长虽然从频谱的角度看属于绿光范围, 但在实际中通常不作为三基色光源的绿光光源使用,所以本实施例中通过选择 特定的 PPLN晶体的周期性极化占空比, 使得该波长的倍频光输出光强为零。 但在色域更广的四基色甚至五基色等更多基色的光源中, 上述 495nm的绿光 仍然可以保留。 在波长为 1342nm的红外激光输入到极化周期为 2.137微米、 周期性极化 占空比为 50%的 PPLN晶体时, 产生的一阶倍频光(波长为 610nm, 属于红光 范围)、 二阶倍频光(波长为 525nm, 属于绿光范围)、 三阶倍频光(波长为 470nm, 属于蓝光范围)之间的光强之比为 9:0:1 , 这样从极化周期为 2.137微 米、 周期性极化占空比为 50%的 PPLN 晶体输出的红光和蓝光的光强之比为 9: 1。 由于输出倍频光的光强与周期性极化晶体的长度平方成正比,在两种基频 光(即波长分别为 1064nm和 1342nm的红外激光 ) 的光强相同时, 只需要使 上述极化周期为 4.277微米、周期性极化占空比为 50%的 PPLN晶体与极化周 期为 2.137微米、 周期性极化占空比为 50%的 PPLN晶体的长度之比等于 7Ϊ , 即可实现最终从激光显示光源输出的红、 绿和蓝光之间的光强比为 3:6:1。 In addition, the shape of the cavity shown in FIG. 1 is a straight cavity, and in fact, the shape of the cavity may be an L-shaped cavity, a Z-shaped cavity or an annular cavity. For example, an L-shaped resonant cavity as shown in FIG. 3 is employed. The pump source is not shown in Fig. 3. The laser light source using the L-shaped resonator shows that the light source is no longer a straight line, and a mirror for changing the direction of the light path is added between the laser crystal 2 and the periodically polarized crystal 3. 8. Compared to the straight cavity shown in Figure 1, the L-shaped cavity and other forms of cavity facilitate the optimization of the beam size of the laser crystal and the beam size of the frequency doubling crystal. In practice, the form of the periodically polarized crystal may be a block structure or a waveguide structure. Since the laser display source provided by the embodiment only needs to use a single periodically polarized crystal device to output multi-order frequency doubling light, for example, a red, green, and blue color laser, and of course, a laser of more primary colors. And by selecting the periodic polarization duty cycle of the periodically polarized crystal, the selection of the output light intensity of each order of frequency doubling light can be achieved. Compared with the prior art, the entire light source module has a compact structure, can effectively save the volume of the light source module, and reduce energy consumption, so that the laser display light source is more favorable for industrialization. In the laser display, in order to achieve the desired white balance, there is a specific requirement for the light intensity ratio of the red, green and blue color output light of the light source, for example, the light intensity ratio of the red, green and blue light is 1:6:3. When the desired intensity ratio of red, green and blue light is known, the material of the periodically polarized crystal can be flexibly selected, the number, the period of polarization, and the periodic polarization duty cycle ξ, so that the output is red. The light intensity ratio of green and blue light meets the required requirements. The required white balance is different, and the setting of the laser display light source is also adjusted accordingly. The following is exemplified by several specific embodiments. Embodiment 2 In this embodiment, the required white balance requires that the light intensity ratio of the red, green and blue light is 3:6:1. As shown in FIG. 3, the pump source 1 in the laser display light source in this embodiment uses a laser diode having an output light wavelength of 808 nm, and the laser crystal 2 is a Nb:YV04 crystal, and the periodically polarized crystal combination 3 includes Two periodically polarized crystals, each using a PPLN crystal, have polarization periods of 4.277 micrometers and 2.137 micrometers, respectively. During the operation of the laser display source, the laser crystal 2 generates infrared lasers having wavelengths of 1064 nm and 1342 nm, respectively. In the process of the two wavelengths of infrared laser passing through the periodically polarized crystal combination 3, the infrared laser having a wavelength of 1064 nm passes through. Quasi-phase matching is achieved when the PPLN crystal with a polarization period of 4.277 μm is generated, the first-order frequency doubling light wavelength is 525 nm, the second-order frequency doubling light wavelength is 495 nm, the third-order frequency doubling light wavelength is 470 nm, and the wavelength is 1342 nm. The infrared laser achieves quasi-matching matching when passing through a PPLN crystal with a polarization period of 2.137 microns. The first-order frequency doubling light has a wavelength of 610 nm, the second-order frequency doubling light has a wavelength of 525 nm, and the third-order frequency doubled light has a wavelength of 470. As described above, in the present embodiment, the polarization periods of the two PPLN crystals constituting the periodic polarization crystal combination are different, but the duty ratio of the periodic polarization is 50%. Theoretical calculation can be made: When a 1064 nm infrared laser is input to a PPLN crystal having a polarization period of 4.277 μm and a periodic polarization duty ratio of 50%, the first-order frequency doubling light (wavelength is 525 nm, belonging to the green light range) and second-order magnification are generated. The ratio of light intensity between light (wavelength 495 nm, belonging to the green range) and third-order frequency doubling (wavelength 470 nm, belonging to the blue range) is 9:0:1, so that the period from the polarization period is 4.277 μm. The ratio of the intensity of green light to blue light output from a PPLN crystal with a 50% duty cycle is 9:1. In practice, since the preferred wavelength of green light in the three primary color light source is 530 ± 10 nm, the wavelength of the second-order frequency doubled light is in the green light range from the perspective of the spectrum, but is not normally used as a three primary color light source in practice. The green light source is used, so in this embodiment, by selecting the periodic polarization duty ratio of the specific PPLN crystal, the output light intensity of the wavelength of the wavelength is zero. However, in a light source having a wider color gamut of four primary colors or even five primary colors, the above-mentioned 495 nm green light can still be retained. When an infrared laser with a wavelength of 1342 nm is input to a PPLN crystal having a polarization period of 2.137 μm and a periodic polarization duty ratio of 50%, a first-order frequency doubling light (wavelength of 610 nm, belonging to the red light range) is generated. The ratio of the light intensity between the order frequency doubling light (wavelength is 525 nm, which belongs to the green light range) and the third-order frequency doubling light (wavelength of 470 nm, belonging to the blue light range) is 9:0:1, so that the polarization period is 2.137. Micro The ratio of the intensity of red and blue light output from a PPLN crystal with a periodic polarization duty cycle of 50% is 9:1. Since the intensity of the output frequency doubling light is proportional to the square of the length of the periodically polarized crystal, when the intensity of the two fundamental lights (i.e., infrared lasers having wavelengths of 1064 nm and 1342 nm, respectively) is the same, only the above polarization needs to be made. The ratio of the length of the PPLN crystal with a period of 4.277 μm and a periodic polarization duty ratio of 50% to the length of the PPLN crystal with a polarization period of 2.137 μm and a periodic polarization duty ratio of 50% is equal to 7Ϊ, which is the final The light intensity ratio between red, green, and blue light output from the laser display source is 3:6:1.
实施例三 在本实施例中所需白平衡仍要求红绿蓝三色光的光强比为 3:6:1。 图 4示 出了本实施例提供的激光显示光源的示意图,本实施例与实施例二的不同仅在 于组成周期性极化晶体组合 3的两个 PPLN晶体的周期性极化占空比不同。 本实施例中采用的两个 PPLN晶体的极化周期仍为 2.137微米和 4.277微 米, 但周期性极化占空比分别为 22%和 46%。 通过理论计算可以得出: 在波长为 1342nm的红外激光输入到极化周期为 2.137微米、周期性极化占空比为 22%的 PPLN晶体时,产生的一阶倍频光(波 长为 610nm, 属于红光范围)、 二阶倍频光(波长为 525nm, 属于绿光范围)、 三阶倍频光(波长为 470nm, 属于蓝光范围 )之间的光强之比为 5:3: 1 , 这样, 从极化周期为 2.137微米、 周期性极化占空比为 22%的 PPLN晶体输出的红、 绿和蓝光的光强之比为 5:3: 1。 在波长为 1064nm的红外激光输入到极化周期为 4.277微米、 周期性极化 占空比为 46%的 PPLN晶体时, 产生的一阶倍频光(波长为 525nm, 属于绿光 范围)、 二阶倍频光(波长为 495nm, 属于绿光范围)和三阶倍频光(波长为 470nm,属于蓝光范围)之间的光强之比为 10:0.2:1 ,这样,从极化周期为 4.277 微米、周期性极化占空比为 46%的 PPLN晶体输出的作为三基色光源的绿光和 蓝光之比为 10:1。 需要说明的是, 由于作为三基色光源中绿光的优选波长为 530 ± 10 nm, 因此上述二阶倍频光的波长虽然从频谱的角度看属于绿光范围, 但在实际中通常不作为三基色光源的绿光光源使用,这样从 PPLN晶体输出的 占 0.2个比例的二阶倍频光需要被滤掉,可以通过设置能够滤掉 495nm波长光 的滤波器实现。但在色域更广的四基色甚至五基色等更多基色的光源中, 上述 495nm的绿光仍然可以保留。 由于输出倍频光的光强与周期性极化晶体的长度平方成正比,在两种基频 光(即波长分别为 1064nm和 1342nm的红外激光 ) 的光强相同时, 只需要使 上述极化周期为 2.137微米、周期性极化占空比为 22%的 PPLN晶体与极化周 期为 4.277微米、周期性极化占空比为 46%的 PPLN晶体的长度之比等于 VT? , 即可实现最终激光显示光源输出的红、 绿和蓝光之间的光强比为 3:6:1。 Embodiment 3 In the present embodiment, the required white balance still requires that the light intensity ratio of the red, green and blue light is 3:6:1. FIG. 4 shows a schematic diagram of the laser display light source provided by the embodiment. The difference between this embodiment and the second embodiment is that the periodic polarization duty ratios of the two PPLN crystals constituting the periodically polarized crystal combination 3 are different. The polarization periods of the two PPLN crystals used in this embodiment are still 2.137 microns and 4.277 microns, but the periodic polarization duty cycles are 22% and 46%, respectively. Theoretical calculations can be made: When the infrared laser with a wavelength of 1342 nm is input to a PPLN crystal with a polarization period of 2.137 μm and a periodic polarization duty ratio of 22%, the first-order frequency doubling light (wavelength is 610 nm, The ratio of the light intensity between the second-order frequency doubling light (wavelength of 525 nm, belonging to the green light range) and the third-order frequency doubling light (wavelength of 470 nm, belonging to the blue light range) is 5:3:1. Thus, the ratio of the intensity of red, green, and blue light output from a PPLN crystal having a polarization period of 2.137 μm and a periodic polarization duty ratio of 22% is 5:3:1. When an infrared laser with a wavelength of 1064 nm is input to a PPLN crystal having a polarization period of 4.277 μm and a periodic polarization duty ratio of 46%, a first-order frequency doubling light (wavelength of 525 nm, belonging to the green light range) is generated. The ratio of the light intensity between the order frequency doubling light (wavelength 495 nm, belonging to the green light range) and the third-order frequency doubling light (wavelength 470 nm, belonging to the blue light range) is 10:0.2:1, so that the polarization period is The P277 crystal output of a 4.277 micron, periodic polarization duty cycle of 46% has a ratio of green to blue light as a three primary color source of 10:1. It should be noted that the preferred wavelength of green light in the three primary color light source is 530 ± 10 nm, so the wavelength of the above-mentioned second-order frequency doubling light belongs to the green light range from the perspective of the spectrum, but it is not normally used as the green light source of the three primary color light source, so that 0.2 of the output from the PPLN crystal is used. The proportion of the second-order frequency doubling light needs to be filtered out, and can be achieved by setting a filter capable of filtering out light of 495 nm wavelength. However, in a light source having a wider color gamut of four primary colors or even five primary colors, the above-mentioned 495 nm green light can still be retained. Since the intensity of the output frequency doubling light is proportional to the square of the length of the periodically polarized crystal, when the intensity of the two fundamental lights (i.e., infrared lasers having wavelengths of 1064 nm and 1342 nm, respectively) is the same, only the above polarization needs to be made. The ratio of the length of the PPLN crystal with a period of 2.137 μm and a periodic polarization duty ratio of 22% to the length of the PPLN crystal with a polarization period of 4.277 μm and a periodic polarization duty ratio of 46% is equal to VT? The final laser display shows a light intensity ratio of 3:6:1 between red, green and blue light.
实施例四 在本实施例中, 所需白平衡要求红绿蓝三色光的光强比仍为 3:6:1。 本实 施例提供的激光显示光源与实施例三的不同在于: 激光晶体仅输出一个基频 光, 即波长为 1342nm的红外激光, 周期性极化晶体组合 3中包含两个周期性 极化晶体, 分别为极化周期为 2.137微米、 周期性极化占空比为 19%和极化周 期为 0.953微米、 周期性极化占空比为 50%的 PPLN晶体。  Embodiment 4 In this embodiment, the required white balance requires that the light intensity ratio of the red, green and blue light is still 3:6:1. The laser display light source provided by this embodiment differs from the third embodiment in that: the laser crystal outputs only one fundamental frequency light, that is, an infrared laser having a wavelength of 1342 nm, and the periodically polarized crystal combination 3 includes two periodically polarized crystals. They are PPLN crystals with a polarization period of 2.137 μm, a periodic polarization duty cycle of 19%, and a polarization period of 0.953 μm and a periodic polarization duty cycle of 50%.
通过理论计算可以得出: 在波长为 1342nm的红外激光输入到极化周期为 2.137微米、 周期性极化占空比分别为 19%的 PPLN晶体时, 产生的一阶倍频 光(波长为 610nm, 属于红光范围)、 二阶倍频光(波长为 525nm, 属于绿光 范围)、三阶倍频光(波长为 470nm, 属于蓝光范围)之间的光强之比为 3:2: 1 , 这样, 从极化周期为 2.137微米、 周期性极化占空比分别为 19%的 PPLN晶体 输出的红、 绿和蓝光的光强之比为 3:2:1。  Through theoretical calculations, it can be concluded that when the infrared laser with a wavelength of 1342 nm is input to a PPLN crystal with a polarization period of 2.137 μm and a periodic polarization duty cycle of 19%, respectively, the first-order frequency doubling light (wavelength is 610 nm) is generated. The ratio of the light intensity between the second-order frequency doubling light (wavelength of 525 nm, belonging to the green light range) and the third-order frequency doubling light (wavelength of 470 nm, belonging to the blue light range) is 3:2:1 Thus, the ratio of the intensity of red, green, and blue light output from a PPLN crystal having a polarization period of 2.137 μm and a periodic polarization duty ratio of 19%, respectively, is 3:2:1.
在波长为 1342nm的红外激光输入到极化周期为 0.953微米、 周期性极化 占空比为 50%的 PPLN晶体时,产生的一阶倍频光的波长为 525nm,属于绿光 范围, 二阶倍频光的光强为零, 三阶倍频光的波长已经在可见光之外, 这样, 从极化周期为 0.953微米、 周期性极化占空比为 50%的 PPLN晶体输出的红、 绿和蓝光的光强之比为 1 :0:0。 由于输出倍频光的光强与周期性极化晶体的长度平方成正比,只需要使上 述极化周期为 2.137微米、周期性极化占空比为 19%的 PPLN晶体与极化周期 为 0.953微米、 周期性极化占空比为 50%的 PPLN晶体的长度之比等于 2.5 , 即可实现最终激光显示光源输出的红、 绿和蓝光之间的光强比为 3:6:1。 When an infrared laser with a wavelength of 1342 nm is input to a PPLN crystal having a polarization period of 0.953 μm and a periodic polarization duty ratio of 50%, the first-order frequency doubling light is generated at a wavelength of 525 nm, belonging to the green light range, second order. The intensity of the frequency-doubled light is zero, and the wavelength of the third-order frequency doubled light is already outside the visible light. Thus, the red output of the PPLN crystal with a polarization period of 0.953 μm and a periodic polarization duty ratio of 50% The ratio of the light intensity of green and blue light is 1:0:0. Since the intensity of the output frequency doubling light is proportional to the square of the length of the periodically polarized crystal, it is only necessary to make the PPLN crystal with a polarization period of 2.137 μm and a periodic polarization duty ratio of 19% and a polarization period of 0.953. The ratio of the length of the PPLN crystal with a micron, periodic polarization duty cycle of 50% is equal to 2.5, so that the light intensity ratio between red, green and blue light output from the final laser display source is 3:6:1.
实施例五 本实施例相应提供一种激光显示系统,如图 5所示,该激光显示系统包括: 激光显示光源 21、 光学引擎 22和成像单元 23。 其中激光显示光源 21采用上 述实施例一至实施例四中的任意一个方案, 这里不再赘述。 激光显示光源 21 用于输出多阶倍频光;光学引擎 22用于接收激光显示光源 21输出的多阶倍频 光, 并根据输入的图像编码信号对所述多阶倍频光进行调制,输出调制后的光 信号; 成像单元 23用于接收所述光学引擎 22输出的调制后的光信号, 并进行 成像显示。 具体地, 激光显示光源 21输出满足预定要求的多基色激光(例如 三基色光)到光学引擎 22中, 光学引擎 22可以包括将多基色激光进行合束的 器件, 匀场器件, 以及根据输入的图像编码信号对多基色激光进行调制的光调 制器件, 成像单元 23用于将从光学引擎 22中输出的激光进行成像显示。  Embodiment 5 This embodiment provides a laser display system. As shown in FIG. 5, the laser display system includes: a laser display source 21, an optical engine 22, and an imaging unit 23. The laser display light source 21 adopts any one of the above-mentioned first embodiment to the fourth embodiment, and details are not described herein again. The laser display source 21 is configured to output multi-order frequency-doubled light; the optical engine 22 is configured to receive the multi-order frequency-doubled light output by the laser display source 21, and modulate the multi-order frequency-doubled light according to the input image coded signal, and output The modulated optical signal; the imaging unit 23 is configured to receive the modulated optical signal output by the optical engine 22 and perform imaging display. Specifically, the laser display source 21 outputs a multi-primary laser (eg, three primary colors) that meets predetermined requirements into the optical engine 22, and the optical engine 22 may include a device that combines the multiple primary lasers, a shimming device, and an input according to The image coding signal is a light modulation device that modulates the multi-primary laser light, and the imaging unit 23 is configured to image-display the laser light output from the optical engine 22.
由于本实施例中的激光显示系统的光源模块的结构紧凑,能够有效地节约 光源模块的体积, 降低能耗, 从而也相应减小了整个显示系统的体积和能耗。  Since the light source module of the laser display system in the embodiment has a compact structure, the volume of the light source module can be effectively saved, energy consumption is reduced, and the volume and energy consumption of the entire display system are correspondingly reduced.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。  The above is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. It should be considered as the scope of protection of the present invention.

Claims

权 利 要 求 Rights request
1、 一种激光显示光源, 其特征在于, 包括: 用于输出泵浦光的泵浦源, 以及位于谐振腔内的激光晶体和周期性极化晶体组合,所述周期性极化晶体组 合包括至少一个周期性极化晶体,所述激光晶体用于接收所述泵浦源输出的泵 浦光并输出激光,所述周期性极化晶体组合用于接收所述激光晶体输出的激光 作为基频光, 并输出多阶倍频光, 所述周期性极化晶体的周期性极化占空比和 晶体长度是根据所述多阶倍频光的光强确定的,所述周期性极化晶体的极化周 期是才艮据所述多阶倍频光的波长确定的。  What is claimed is: 1. A laser display light source, comprising: a pump source for outputting pump light, and a combination of a laser crystal and a periodically polarized crystal located in a resonant cavity, the periodically polarized crystal combination comprising At least one periodically polarized crystal for receiving pump light output by the pump source and outputting laser light, the periodically polarized crystal combination for receiving laser light output from the laser crystal as a fundamental frequency Light, and outputting multi-order frequency doubling light, wherein a periodic polarization duty ratio and a crystal length of the periodically polarized crystal are determined according to a light intensity of the multi-order frequency doubling light, the periodically polarized crystal The polarization period is determined based on the wavelength of the multi-order frequency doubling light.
2、 根据权利要求 1所述的激光显示光源, 其特征在于, 所述多个周期性 极化晶体在光传播方向上彼此无间隔的固定在一起。  The laser display light source according to claim 1, wherein the plurality of periodically polarized crystals are fixed together without being spaced apart from each other in a light propagation direction.
3、 根据权利要求 1所述的激光显示光源, 其特征在于, 在所述激光显示 光源的谐振腔的激光输出端外设置滤波器,所述滤波器用于滤掉不需要的倍频 光。  3. A laser display source according to claim 1, wherein a filter is provided outside the laser output end of the cavity of the laser display source, the filter for filtering out unwanted multiplier light.
4、 根据权利要求 1所述的激光显示光源, 其特征在于, 所述周期性极化 晶体为周期性极化铌酸锂晶体或周期性极化磷酸氧钛钾晶体。  The laser display light source according to claim 1, wherein the periodically polarized crystal is a periodically poled lithium niobate crystal or a periodically poled potassium titanyl phosphate crystal.
5、 根据权利要求 1至 4中任意一项所述的激光显示光源, 其特征在于, 所述泵浦光源为输出光波长为 808纳米的激光二极管。  The laser display light source according to any one of claims 1 to 4, wherein the pump light source is a laser diode having an output light wavelength of 808 nm.
6、 根据权利要求 5所述的激光显示光源, 其特征在于, 所述激光晶体为 Nb:YV04、 Nb:YAG或 Nb:GaV04晶体。  The laser display light source according to claim 5, wherein the laser crystal is Nb: YV04, Nb: YAG or Nb: GaV04 crystal.
7、 根据权利要求 1至 4中任意一项所述的激光显示光源, 其特征在于, 所述谐振腔为直形腔、 L形腔、 Z形腔或环形腔。  The laser display light source according to any one of claims 1 to 4, wherein the resonant cavity is a straight cavity, an L-shaped cavity, a Z-shaped cavity or an annular cavity.
8、 根据权利要求 1至 4中任意一项所述的激光显示光源, 其特征在于, 所述周期性极化晶体的形态为块状结构或波导结构。  The laser display light source according to any one of claims 1 to 4, wherein the form of the periodically polarized crystal is a block structure or a waveguide structure.
9、 一种激光显示系统, 其特征在于, 包括如权利要求 1至 4中任意一项 所述的激光显示光源, 光学引擎和成像单元, 所述激光显示光源用于输出多阶 倍频光; 所述光学引擎用于接收所述激光显示光源输出的多阶倍频光, 并根据 输入的图像编码信号对所述多阶倍频光进行调制, 输出调制后的光信号; 所述 成像单元用于接收所述光学引擎输出的调制后的光信号, 并进行成像显示。A laser display system, comprising: the laser display light source according to any one of claims 1 to 4, an optical engine and an imaging unit, wherein the laser display light source is for outputting multi-order frequency-doubled light; The optical engine is configured to receive multi-order frequency-doubled light output by the laser display light source, and modulate the multi-order frequency-doubled light according to the input image encoded signal, and output the modulated optical signal; The imaging unit is configured to receive the modulated optical signal output by the optical engine and perform imaging display.
10、 根据权利要求 9所述的激光显示系统, 其特征在于, 所述激光显示光 源中的泵浦光源采用输出光波长为 808 纳米的激光二极管, 所述激光晶体为 Nb:YV04、 Nb:YAG或 Nb:GaV04晶体。 The laser display system according to claim 9, wherein the pump light source in the laser display source uses a laser diode having an output light wavelength of 808 nm, and the laser crystal is Nb: YV04, Nb: YAG. Or Nb: GaV04 crystal.
PCT/CN2010/070706 2009-09-11 2010-02-22 Laser display light source and laser display system WO2011029294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910170877.4 2009-09-11
CN200910170877 2009-09-11

Publications (1)

Publication Number Publication Date
WO2011029294A1 true WO2011029294A1 (en) 2011-03-17

Family

ID=43731958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070706 WO2011029294A1 (en) 2009-09-11 2010-02-22 Laser display light source and laser display system

Country Status (1)

Country Link
WO (1) WO2011029294A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278852A (en) * 1990-10-11 1994-01-11 Kigre, Inc. Intra-cavity high order harmonic laser
US5943351A (en) * 1997-05-16 1999-08-24 Excel/Quantronix, Inc. Intra-cavity and inter-cavity harmonics generation in high-power lasers
CN1464597A (en) * 2002-06-11 2003-12-31 中国科学院物理研究所 High power all-solid-phase double resonance sum frequency blue light laser arrangement
CN2689538Y (en) * 2003-10-22 2005-03-30 中国科学院物理研究所 Frequency doubling device with polarizing modulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278852A (en) * 1990-10-11 1994-01-11 Kigre, Inc. Intra-cavity high order harmonic laser
US5943351A (en) * 1997-05-16 1999-08-24 Excel/Quantronix, Inc. Intra-cavity and inter-cavity harmonics generation in high-power lasers
CN1464597A (en) * 2002-06-11 2003-12-31 中国科学院物理研究所 High power all-solid-phase double resonance sum frequency blue light laser arrangement
CN2689538Y (en) * 2003-10-22 2005-03-30 中国科学院物理研究所 Frequency doubling device with polarizing modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU, WEIJIA: "Periodically-poled KTP crystal fabrication and characterization of second harmonic generation research", CHINESE MASTER'S THESES FULL-TEXT DATABASE ENGINEERING SCIENCE AND TECHNOLOGY, 1 April 2009 (2009-04-01) *

Similar Documents

Publication Publication Date Title
US8254415B2 (en) Short wavelength light source and optical device
EP0788015A2 (en) Multi quasi phase matched interactions in a non-linear crystal
JPH07507882A (en) Intracavity harmonic subresonator with wide phase matching area
WO2006006701A1 (en) Coherent light source and optical device using the same
JP2008242270A (en) Laser light generating apparatus
EP2137573A1 (en) Generation of quantum-correlated and/or polarization-entangled photon pairs with unequal wavelengths
CN101123341B (en) Laser light-source device and projector with the same
KR20070062931A (en) Light source device and projector including light source device
JPWO2009047888A1 (en) Solid-state laser device and image display device
WO2011132414A1 (en) Wavelength conversion laser light source and image display device
JP5529153B2 (en) Wavelength conversion laser light source and image display device
CN111487832A (en) Waveguide-based non-degenerate polarization entanglement source preparation device
US7639717B2 (en) Laser source device and projector equipped with the laser source device
US7561612B2 (en) Laser source device, image display device equipped with the laser source device, and monitor device
US20090161700A1 (en) Fiber laser
JP2008135689A (en) Laser light source device and image display device including the same
Niu et al. Multi-color laser generation in periodically poled KTP crystal with single period
US7817334B2 (en) Wavelength conversion element, light source device, image display device, and monitor device
WO2011029294A1 (en) Laser display light source and laser display system
CN101697397B (en) Laser display light source and laser display system
CN114665370A (en) Dual-wavelength visible light laser based on synchronous nonlinear frequency conversion
KR101064022B1 (en) Multicolor Laser Module
CN112787206A (en) White light laser light source generating device and method
CN101174751A (en) Laser beam source device and image display apparatus including the laser beam source device
CN102545028B (en) Cascaded optical parameter-based high-power red, green and blue optical maser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10814896

Country of ref document: EP

Kind code of ref document: A1