WO2011049376A2 - Snowfall measurement apparatus and method using rds fm-type snowfall measurement module - Google Patents

Snowfall measurement apparatus and method using rds fm-type snowfall measurement module Download PDF

Info

Publication number
WO2011049376A2
WO2011049376A2 PCT/KR2010/007213 KR2010007213W WO2011049376A2 WO 2011049376 A2 WO2011049376 A2 WO 2011049376A2 KR 2010007213 W KR2010007213 W KR 2010007213W WO 2011049376 A2 WO2011049376 A2 WO 2011049376A2
Authority
WO
WIPO (PCT)
Prior art keywords
rds
snowfall
counter
unit
signal
Prior art date
Application number
PCT/KR2010/007213
Other languages
French (fr)
Korean (ko)
Other versions
WO2011049376A3 (en
Inventor
조재명
권미화
오영하
한솔
조혜민
조용민
Original Assignee
제이엠씨엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엠씨엔지니어링 주식회사 filed Critical 제이엠씨엔지니어링 주식회사
Publication of WO2011049376A2 publication Critical patent/WO2011049376A2/en
Publication of WO2011049376A3 publication Critical patent/WO2011049376A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/885Meteorological systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention is driven by receiving an audio signal and a wake-up signal transmitted from a central control server of a remote location through the FM band (76 ⁇ 108MHz),
  • the present invention relates to an apparatus and method for measuring snowfall using an RDS-FM type snowfall measurement module for transmitting snowfall measurement data signals measured through ultrasonic waves to a central control server at a remote location.
  • meteorological disasters refer to disasters caused by meteorological phenomena such as rain, wind, snow, hail, and the like, when heavy disasters are expected due to the above-mentioned weather phenomena analyzed by the Korea Meteorological Agency, etc., heavy snow alarms, typhoon alarms, Weather alarms such as storm alarms and heavy rain alarms are notified through broadcast means such as TV or radio relay.
  • the conventional weather notification method is limited to a limited time because it only transmits and reports weather information from a broadcasting station such as a TV or a radio based on data analyzed by a disaster prevention center such as a meteorological office. Only as much weather information is received, and such a notification range is also limited to a specific region has a disadvantage that the reliability of the weather information is not guaranteed.
  • in the present invention can be self-powered through sunlight, it is possible to reduce the power consumption
  • Real-time wireless transmission and reception is not limited to the installation site, it is possible to prompt weather notification, as well as all peripheral devices (handset, hands-free, MP3 player, GPS / navigation, satellite digital audio radio, It is an object of the present invention to provide an apparatus and method for measuring snowfall using an RDS-FM type snowfall measurement module that can provide customized disaster broadcasting according to snowfall with an audio signal.
  • the snowfall measurement apparatus using the RDS-FM type snowfall measurement module according to the present invention uses the RDS-FM type snowfall measurement module according to the present invention
  • Installed on the support frame having a certain height consists of a device for measuring the amount of snow
  • the snowfall measuring device 1 is installed on one side of the upper end of the support frame, and collects sunlight and charges electricity generated by generating electricity to the battery, and then uses the solar cell used as a power source for the RDS FM snowfall measuring module.
  • Plate 100
  • the solar panel Located at the bottom of the solar panel, it is supplied with self-generated power from the solar panel, and is driven by receiving audio signals and wake-up signals transmitted from a central control server at a remote location through the FM band (76 to 108 MHz).
  • a RDS FM type snowfall measurement module 200 for transmitting the snowfall measurement data signal measured through the ultrasonic wave to a central control server of a remote location.
  • the microcomputer When the microcomputer receives the wake-up signal from the RDS-FM transmitter / receiver, it switches from the standby state to the operating state to wake up the operation of the PWM power & battery control and the PWM power & battery control. Supplying power to each device through (S300),
  • the ultrasonic sensor unit 250 transmits the ultrasonic wave to the bottom direction and measures the change or intensity of the ultrasonic wave reflected and returned to the microcomputer unit (S500),
  • RDS FM transceiver 210 is achieved by the step (S800) of transmitting the snowfall measurement data signal to the central control server of the remote location via the FM band (76 ⁇ 108MHz).
  • the present invention it is possible to self-generate through sunlight, to reduce power consumption, and real-time wireless transmission and reception, there is no restriction in the place of installation, all peripherals included in the RDS FM audible region (handset, hands-free, With audio signals to MP3 players, GPS / navigations, satellite digital audio radios, and mobile phones, you can broadcast customized disasters based on snowfall, allowing you to quickly and accurately recognize disasters caused by heavy snowfall. It is a good effect to prevent highway accidents in advance.
  • FIG. 1 is a perspective view showing a snowfall measuring device using the RDS FM type snowfall measuring module according to the present invention
  • FIG. 2 is a block diagram showing the components of the snowfall measurement apparatus using the RDS FM type snowfall measurement module according to the present invention
  • Figure 3 is an embodiment showing that a DC motor for transferring the RDS FM-type snowfall measurement module 200 in the vertical direction in the support frame is installed RDS FM-type snowfall measurement module 200 according to the present invention
  • Figure 4 is a rotatable head joint is installed in the support frame according to the present invention, by rotating the left and right RDS FM-type snowfall measurement module 200 at ⁇ 30 ⁇ 90 ° angle by the left and right rotation signal of the microcomputer to the top surface of the ultrasonic sensor
  • FIG. 4 One embodiment showing the process of shaking off the snow accumulated in the
  • FIG. 5 is a circuit diagram showing the configuration of the RDS FM transceiver 210 of the RDS FM type snowfall measurement module 200 according to the present invention
  • FIG. 6 is a circuit diagram showing the configuration of the PWM power microcontroller (PWM POWER & BAT CONTROL) 220 and the overcurrent overvoltage protection circuit 230 of the RDS FM type snowfall measurement module 200 according to the present invention;
  • FIG. 7 is a circuit diagram showing the configuration of a secondary battery power supply unit 240 of the RDS FM type snowfall measurement module 200 according to the present invention.
  • FIG. 8 is a circuit diagram showing the configuration of the ultrasonic sensor unit 250 of the RDS FM type snowfall measurement module 200 according to the present invention.
  • FIG. 9 is a circuit diagram showing the configuration of the counter PLD latch unit 260 of the RDS FM type snowfall measurement module 200 according to the present invention.
  • FIG. 10 is a circuit diagram showing the configuration of the microcomputer unit (MCU) 270 of the RDS FM-type snowfall measurement module 200 according to the present invention
  • FIG. 11 is a flowchart illustrating a snowfall measurement method using the RDS-FM type snowfall measurement module according to the present invention.
  • FIG. 12 is a flowchart illustrating a process of calculating a numerical value of snowfall through internal calculation when an ultrasonic counter latched from the counter PLD latch unit 260 is input to a microcomputer unit according to the present invention.
  • MCU microcomputer unit
  • FIG. 1 is a perspective view showing a snowfall measurement apparatus using the RDS FM-type snowfall measurement module according to the present invention, which is a solar panel 100 installed on a support frame having a predetermined height, RDS FM-type snowfall measurement module It consists of 200.
  • the support frame is formed in a long rod shape and serves to support the solar panel 100 and the RDS FM type snowfall measurement module 200 at a constant height from the ground.
  • the support frame is a solar panel is installed on one side of the top, the RDS FM type snowfall measurement module 200 is installed on the bottom of the solar panel.
  • RDS FM type snowfall measuring module 200 is formed in a rectangular box shape, the ultrasonic sensor unit is configured on the bottom surface facing the ground.
  • the DC frame is configured in the support frame in which the RDS FM-type snowfall measurement module 200 is installed, and transfers the RDS FM-type snowfall measurement module 200 in the vertical direction. .
  • proximity sensors are installed at intervals of 50 cm in a section in which the DC motor is transferred in the vertical direction.
  • the RDS FM-type snowfall measurement module 200 is configured to rotate the RDS FM-type snowfall measurement module 200 with a DC motor 360 ° at 30 ° ⁇ 90 ° rotation interval Rotating head joint is installed.
  • the rotatable head joint is attached to the sensor at 90 ° intervals so as to rotate 360 ° at 30 ° ⁇ 90 ° intervals through the control of the microcomputer on one side.
  • the rotational motor for rotating the head joint portion 360 ° at 90 ° intervals is configured.
  • the photovoltaic panel 100 is installed on one side of the upper end of the support frame, and collects sunlight and charges electricity generated by generating electricity to the battery, and then uses it as a power source for the RDS FM snowfall measuring module.
  • This is attached to the upper surface of the printed circuit board by a filler made of polyvinyl butylol (PVB) or ethylene vinyl acetate (EVA) having excellent moisture resistance.
  • PVB polyvinyl butylol
  • EVA ethylene vinyl acetate
  • a plurality of first unit cells of a positive terminal and a plurality of second unit cells of a negative terminal are spaced apart from each other and arranged in a matrix form.
  • Each unit cell is connected to each other in series or in parallel by an interconnector made of aluminum metal foil. Form a cell array.
  • the number of solar cells connected in series is determined by the charging capacity of the rechargeable battery.
  • the interconnector connecting each unit cell is connected to a power supply terminal plated on one side of the printed circuit board.
  • a transparent polycarbonate window is stacked on the solar cell array.
  • the RDS (Radio Data System) FM type snowfall measurement module 200 is located at the bottom of the solar panel, and receives the self-generated power from the solar panel,
  • the unit 250 includes a counter PLD latch unit 260 and a microcomputer unit (MCU) 270.
  • MCU microcomputer unit
  • the RDS FM transceiver 210 receives an audio signal and a wake-up signal transmitted from a central control server unit at a remote location through an FM band (76 to 108 MHz) and transmits the signal to a microcomputer unit (MCU), and is close to a snowfall measuring device. Audio signals and precipitation measurement data signals are sequentially transmitted to channels, such as handsets, hands-free, MP3 players, GPS / navigation, satellite digital audio radios, and cellular phones, which are located at the same location. ⁇ 108MHz) to transmit to the remote central control server.
  • channels such as handsets, hands-free, MP3 players, GPS / navigation, satellite digital audio radios, and cellular phones, which are located at the same location. ⁇ 108MHz
  • the Si4720 / 212 consists of a single chip for the FM radio transceiver and consists of a 3 ⁇ 3 ⁇ 0.5mm QFN package that combines the functionality of the FM transmitter and FM radio receiver.
  • the integrated FM antenna is supported in the FM band of 76 ⁇ 108MHz, provides RDS / RBDS processor, programmable output voltage control signal transmission, audio dynamic range control, analog / digital audio interface, and programmable reference clock. It is input and consists of 2.7V ⁇ 5.5V power supply.
  • an RX antenna having an FM radio reception function is connected to an FMI terminal.
  • a TX antenna with FM transmission is connected to the TXO terminal, a low voltage regulator (LDO) is connected to the VDD terminal and the GND terminal, and the FM radio signal received through the RX antenna becomes a tuner through an internal FM tuner.
  • the audio output terminal ROUT and the data output terminal LOUT are transferred to the receiving terminal RXD of the microcomputer unit (MCU).
  • the wake-up signal is transmitted to the receiving terminal RXD of the microcomputer unit through the data output terminal LOUT of the RDS FM transceiver.
  • the transmission terminal TXD of the microcomputer unit is connected to the input terminal LIN to input a snowfall measurement data signal
  • Wake-up driving signal of peripheral device is inputted from central control server of remote site to input terminal RIN, which is a peripheral device located near proximity to RDS FM type snowfall measurement module through TX antenna, handset, hands-free, MP3 player, GPS / navigation, satellite Digital audio radios are configured to transmit snowfall measurement data signals along with audio signals to mobile phones.
  • RIN is a peripheral device located near proximity to RDS FM type snowfall measurement module through TX antenna, handset, hands-free, MP3 player, GPS / navigation, satellite Digital audio radios are configured to transmit snowfall measurement data signals along with audio signals to mobile phones.
  • the RDS FM transceiver 210 has features of an integrated FM radio transceiver system such as transmitting support for a radio data system (RDS) and a radio broadcast data system (RBDS).
  • RDS radio data system
  • RBDS radio broadcast data system
  • data transmission such as artist name, song title, digital information category and brand message can be simultaneously performed.
  • the PWM power microcomputer unit (PWM POWER & BAT CONTROL) 220 serves to supply a stable power to the rechargeable battery by controlling the PWM flow after converting the DC_DC power flowing into the RDS FM-type snowfall measurement module.
  • the rechargeable battery refers to a power source for driving the RDS FM type snowfall measurement module 200.
  • the PWM power microcomputer unit (PWM POWER & BAT CONTROL) 220 is configured to use a long time after charging by controlling the power in a PWM method to prevent unnecessary power use.
  • the voltage set through the resistor R138 is applied to the INV terminal of the DC / DC converter, and the electrical and commercial power (18V to 50V) generated from the solar panel is applied to the resistors R123, R125, When voltage is distributed through R127 and applied to the V + terminal and the current peak sense terminal (SI) of the DC / DC converter,
  • the DC-DC converter (NJM2360) has 5.5V, 680mA, and power efficiency of 70%, and the dispersion of the output current can be ⁇ 5% or less even when a current detection resistor of ⁇ 1% is used for the external resistor.
  • the PWM power microcomputer unit (PWM POWER & BAT CONTROL) 220 is configured, the charging battery generated when charging the rechargeable battery with electric and commercial power (18V ⁇ 50V) generated in the solar panel is hot Loss can be effectively prevented.
  • the overcurrent overvoltage protection circuit 230 prevents overcurrent and overvoltage from flowing into the rechargeable battery BAT and prevents the rechargeable battery from being discharged and overdischarged.
  • the sensing resistor R140 when the sensing resistor R140 is connected to the charging battery BAT terminal to sense the voltage of the current charging battery and input to the first comparator, the voltage of the sensed current charging battery and the first program are sensed. After comparing and comparing the reference voltage VOLT1, the reference voltage VOLT1 is applied to the INV terminal of the DC / DC converter unit only when the first program reference voltage is equal to or greater than that.
  • the voltage of the sensed current charging battery and the second program reference voltage VOLT2 are compared. After the calculation, it is applied to the INV terminal of the DC / DC converter section only when the second program reference voltage or more is exceeded.
  • the third comparator After sensing the voltage of the current charging battery by connecting the sensing resistor R142 to the terminal of the battery BAT, and inputting it to the third comparator, the voltage of the sensed current charging battery and the third program reference voltage VOLT3 are compared. After the calculation, only the third program reference voltage or more is applied to the INV terminal of the DC / DC converter.
  • the fourth comparator After sensing the voltage of the current charging battery by connecting the sensing resistor R143 to the terminal of the battery BAT, and inputting it to the fourth comparator, the voltage of the sensed current charging battery and the fourth program reference voltage VOLT4 are compared. After the calculation, only the fourth program reference voltage or more is applied to the INV terminal of the DC / DC converter.
  • the first program reference voltage VOLLT1 represents a discharge voltage DISCHARGE VOLTAGE set value of the rechargeable battery.
  • the second program reference voltage VOLT2 indicates an overvoltage OVER_VOLTAGE setting value of the rechargeable battery.
  • the third program reference voltage VOLT3 indicates an overcurrent signal OVER_CURRENT setting value of the rechargeable battery.
  • the fourth program reference voltage VOLT4 indicates an overdischarge voltage OVER_DISCHARGE set value of the rechargeable battery.
  • the secondary battery power supply 240 is connected to one side of the microcomputer unit, and serves to supply power to the RDS FM snowfall measuring module through the secondary battery under the control of the microcomputer unit when the voltage charged in the solar panel is insufficient. .
  • the voltage set through the resistor R33 is applied to the INV terminal of the DC / DC converter.
  • the switch emitter terminal (Es) is driven when the reference voltage is higher than the diode. Smoothed through D2, 5.2V is output through inductor L2 to power each device in the RDS FM snowfall measurement module.
  • the DC-DC converter (NJM2360) has 5.5V, 680mA, and power efficiency of 70%, and the dispersion of the output current can be ⁇ 5% or less even when a current detection resistor of ⁇ 1% is used for the external resistor.
  • the ultrasonic sensor unit 250 is connected to one side of the microcomputer unit, and transmits the ultrasonic wave to the bottom direction and detects the change or intensity of the ultrasonic wave reflected and returned to the microcomputer unit.
  • Ultrasonic sensor unit 250 is installed on the lower end of the rectangular box-shaped body, and transmits the ultrasonic wave in the bottom direction in a state having a certain height, detect the change or intensity of the reflected ultrasonic return to the microcomputer unit Send.
  • the microcomputer unit compares the value measured by the ultrasonic sensor unit with the reference set value, and calculates the amount of snow snow accumulated on the floor.
  • the ultrasonic sensor unit emits ultrasonic waves in the bottom direction at T0 time and receives the reflected sound at T1 time.
  • the reflection sound is received and the distance is converted using the time difference.
  • the speed of the sound wave is determined by the resilience and inertia of the medium.
  • Equation 1 the speed of sound waves in air at 0 ° C. is 331 m / s.
  • the speed of the sound wave is determined by the resilience and inertia of the medium.
  • the restoring force is expressed by the volume modulus of elasticity (B) and the inertia by the mass density ( ⁇ ).
  • the volumetric modulus (B) is proportional to the mass density ( ⁇ ) and the absolute temperature (T), so that the velocity (V) of the sound wave in the ideal gas is It can be expressed as
  • the ultrasonic sensor unit 250 transmits the ultrasonic wave in the bottom direction in a state having a predetermined height, detects the change or intensity of the reflected ultrasonic wave, and transmits the ultrasonic wave to the microcomputer unit.
  • the ultrasonic sensor unit 250 according to the present invention, the first amplifier (U5A) and the second amplifier (U6A) is connected to one side, the first, the signal measured by the ultrasonic sensor, Secondary amplification is sent to the input terminal (RX_TRIG) of the microcomputer.
  • the counter PLD latch unit 260 when measuring the amount of snow through the ultrasonic sensor unit, sends an ultrasonic discharge counter to the ultrasonic sensor unit through the PLD (Programmable Logic Device), the ultrasonic discharge counter according to the time when the reflected sound returns after the ultrasonic emission in the bottom direction Latch and converts the latched signal to an analog signal to transmit to the microcomputer.
  • PLD Protein Landing Deformation Deformation
  • the microcomputer unit receives the latched signal from the counter PLD latch unit 260, and accurately calculates and displays the numerical value of the snowfall amount to three decimal places.
  • the counter PLD latch unit 260 includes a first dual BCD counter 261, a second dual BCD counter 262, a third dual BCD counter 263, and a fourth dual BCD counter ( 264), the first D / A converter unit 265 for converting the latched signal output from the first dual BCD counter and the second dual BCD counter into an analog signal, and the output from the third dual BCD counter and the fourth dual BCD counter. And a second D / A converter section 266 for converting the latched signal into a digital signal.
  • the first dual BCD counter and the second dual BCD counter send an ultrasonic emission counter to the ultrasonic sensor unit so that the constant portion of the snowfall value is expressed, and transmit the ultrasonic wave according to the time when the reflected sound returns after the ultrasonic emission in the bottom direction.
  • the counter latches the counter, converts the latched signal into a digital signal, and transmits the signal to the microcomputer unit.
  • the third dual BCD counter and the fourth dual BCD counter send an ultrasonic wave sending counter to the ultrasonic sensor unit so as to be expressed to three decimal places in the value of snowfall, and ultrasonic wave is emitted according to the time when the reflected sound returns after the ultrasonic firing in the bottom direction.
  • the counter latches the counter, converts the latched signal into a digital signal, and transmits the signal to the microcomputer unit.
  • the first, second, third, and fourth dual BCD counters are composed of an HEF 4518B, and have an active high clock input terminal nCP0, an active low clock input terminal nCP1, and a 4-bit buffer output terminal Q0, Q1, and Q2. Q3) and the master reset input terminal nMR are configured.
  • the counter pulse has an active high clock input terminal nCP0 in the positive region ⁇ , a high signal is input to the active low clock input terminal nCP1, and a master reset input terminal nMR.
  • a counter pulse is generated through the 4-bit buffer output terminals Q0, Q1, Q2, and Q3.
  • the counter pulse has a low signal input to the active high clock input terminal nCP0, the active low clock input terminal nCP1 is in the negative region ⁇ , and the master reset input terminal nMR.
  • a counter pulse is generated through the 4-bit buffer output terminals Q0, Q1, Q2, and Q3.
  • the active high clock input terminal nCP0 is connected to the output terminal P1.2 of the microcomputer unit, and receives a frequency of the crystal oscillator from the microcomputer unit to generate a high clock.
  • the active low clock input terminal nCP1 is connected to the output terminal P1.3 of the microcomputer unit and receives a frequency of the crystal oscillator from the microcomputer unit to generate a low clock.
  • the master reset input terminal nMR is connected to the output terminal P1.4 of the microcomputer unit to receive a master reset frequency from the microcomputer unit to reset the dual BCD counter.
  • the active high clock input terminal nCP0 and the active low clock input terminal nCP1 have pulses at the active high clock input terminal nCP0 and the active low clock input terminal nCP1 through a synchronization circuit configured inside a dual BCD counter. Synchronize to prevent glitches that occur when they occur.
  • the latch signal is connected to the output terminal P1.5 of the microcomputer unit and serves to regenerate a pulse having a constant pulse width based on the pulse selected by the microcomputer unit.
  • the first D / A converter is connected to a first A / D converter connected to one side of the microcomputer, and the second D / A converter is connected to a second A / D converter connected to one side of the microcomputer.
  • the microcomputer unit (MCU) 270 is an audio signal and a wake-up signal received from the RDS FM transceiver and are simultaneously input to the input terminal in multiple channels,
  • the state is changed from the standby state to the operating state to wake up the operation of the PWM power microcomputer and the ultrasonic sensor unit, and supply power to each device.
  • RDS FM transceiver controls RDS FM transceiver to transmit measured snowfall measurement data signal to remote central control server. It consists of 89C52 8-bit microcontroller.
  • the microcomputer according to the present invention is connected to the output terminal of the RDS FM transceiver for the input / output port P1.0 terminal, and receives the wake-up signal PW_ON from the RDS FM transceiver.
  • the output terminal of the ultrasonic sensor unit 250 is connected to the input / output port P1.1 terminal, and receives data about the change and intensity of the ultrasonic wave from the ultrasonic sensor unit 250.
  • An active high clock input terminal (nCP0) is connected to the input / output port P1.2 terminal to output a crystal oscillator clock to the active high clock input terminal (nCP0).
  • Active low clock input terminal (nCP1) is connected to input / output port P1.3 terminal
  • the output of the crystal oscillator is output to the active low clock input terminal (nCP1).
  • a master reset input terminal (nMR) is connected to the input / output port P1.4 terminal to reset the dual BCD counter, and the input / output ports P0.0 to P0. Set the 7 terminal to the 8-bit digital signal input terminal,
  • the first A / D converter unit and the second A / D converter unit are connected to each other, and the ultrasonic counter latched from the counter PLD latch unit 260 is input, and calculates and displays the numerical value of snowfall to three decimal places through internal calculation.
  • Board ID setting part 123a is connected to the I / O port P2.0 ⁇ 2.5 terminal,
  • the board ID setting unit 123a Through the board ID setting unit 123a, the first A / D converter unit and the second A / D converter unit corresponding to the ID set according to the 2-bit address value of AD0, AD1, AD2 are selected so as to be selected.
  • Input command G1 of board ID setting part is connected to write command signal (WD) terminal to send write command signal to board ID setting part.
  • Input terminal G2A of the board ID setting unit is connected to the read command signal RD to send a read command signal to the board ID setting unit.
  • One end of an input terminal of the RDS FM transceiver is connected to the transmitting terminal TXD, and one end of an output terminal of the RDS FM transceiver is connected to the receiving terminal RXD, thereby performing bidirectional data communication with the RDS FM transceiver.
  • microcomputer according to the present invention is configured with a board ID setting unit 271 on one side.
  • the board ID setting unit is connected to the address setting terminal of the microcomputer unit,
  • either one of the first A / D converter and the second A / D converter corresponding to the specific board ID It plays a role of relaying to be selected by the negative read command signal RD and the write command signal WD, and is composed of 74LS138 TTL elements.
  • the board ID setting unit is connected to the input terminal A, B, C of the 2-bit address setting terminal (AD0, AD1, AD2) of the microcomputer unit, and the write command signal (WD) terminal and the read command of the microcomputer unit to the input terminals G1, G2A.
  • Signal RD is connected,
  • the first A / D converter is connected to the output terminal Y0
  • the second A / D converter is connected to the output terminal Y1
  • the first A corresponding to the specific board ID is performed by two-bit operation of the input terminals A, B, and C.
  • the / D converter section and the second A / D converter section are selected by 2 bits.
  • the specific board ID is "00" by two-bit operation of the input terminals A, B and C
  • the first A / D converter unit is selected and the specific board is performed by the two-bit operation of the input terminals A, B and C. If the ID is " 01 ", the second A / D converter section is selected.
  • the microcomputer 270 receives a wake-up signal as a data signal from the RDS FM transceiver,
  • a wake up signal which is one of the data signals transmitted from the RDS FM transceiver, is input, and the power of the PWM power & battery and the ultrasonic sensor are turned on at 0.5 mA to 1.5 mA. .
  • the microcomputer calculates a numerical value of snowfall through internal calculation.
  • the amount of snow is calculated by moving the ultrasonic sensor unit of the RDS-FM type snowfall measurement module 200 in the lower direction at 50cm intervals (2m, 1.5m, 1m, 0.5m).
  • the sound waves in the air are converted into a snowfall value (1 mm) and a period (n_sec).
  • the microcomputer converts the main clock into a period n_sec.
  • main clock main clock
  • T 2,894n_sec
  • the value countered by the counter PLD latch unit 260 (e.g., constant 300mm) is multiplied by a period (e.g., 127n_sec) comparing the period of the sound wave in the air with the period of the main clock of the microcomputer unit,
  • the calculated integer value (e.g., 12.61mm) is subtracted from the counter value (e.g., constant 300mm) through the counter PLD latch unit 260, After dividing 2, the snowfall value is obtained by subtracting from the current position value of the ultrasonic sensor located in the bottom and top direction.
  • the value countered by the counter PLD latch unit 260 is a constant 300mm, multiply it by 127n_sec and divide the multiplied number by 3,021 n_sec to obtain an integer value of 12.61mm.
  • the reason for the division 2 is to calculate the exact snowfall value in consideration of the transmitted distance and the reflected distance because the ultrasonic sensor is reflected by the snow accumulated on the floor.
  • a snowfall amount of 1856.31 mm is obtained by subtracting 143.69 mm obtained by dividing 2 from the current position value of the ultrasonic sensor unit located at the bottom surface and the upper direction (as it is 2 m, 2000 mm).
  • the amount of snowfall is, as an example, a value calculated for convenience of calculation.
  • the average value is calculated from the counter values calculated at 2 m, 1.5 m, 1 m, and 0.5 m, and the final snowfall value is calculated.
  • the snowfall value is 1856.31mm
  • the snowfall value is 1840.78mm
  • the snowfall value is 1860.23mm
  • the amount of snowfall is calculated to be 1845.64mm when the ultrasonic sensor part of the RDS FM-type snowfall measurement module 200 is positioned at 0.5m in the bottom and top directions, the 1856.31mm + 1840.78mm + 1860.23mm + 1845.64mm are added together. If you divide by 4, you get 1850.74mm. The value at this time is set to the final snowfall value.
  • the amount of snowfall is, as an example, a value calculated for convenience of calculation.
  • the microcomputer according to the present invention is set to send a left and right rotation signal to the rotary head joint is installed before the drive signal to the ultrasonic sensor of the RDS FM type snowfall measurement module 200.
  • the left and right rotation signal of the microcomputer unit rotates the RDS-FM type snowfall measurement module 200 left and right at an angle of ⁇ 30 ⁇ 90 °.
  • the RDS FM-type snowfall measurement module 200 is rotated left and right at an angle of ⁇ 30 to 90 ° and stacked on the top surface of the ultrasonic sensor. Brush your eyes off.
  • the solar cell is collected through a solar panel installed on the upper side of the support frame, charged with electricity generated by generating electricity, and then supplied power to the RDS FM snowfall measuring module.
  • the RDS FM-type snowfall measurement module receives the audio signal and wake-up signal transmitted from the central control server of the remote in the FM band (76 ⁇ 108MHz) and delivers to the microcomputer (MCU).
  • the microcomputer when the microcomputer receives the wake-up signal from the RDS FM transmitter / receiver, it switches from the standby state to the operating state to convert the PWM power microcomputer (PWM POWER & BAT CONTROL) and PWM power microcomputer (PWM POWER & BAT CONTROL). Supply power to each device through
  • the microcomputer unit sends a left and right rotation signal to the rotary head joint provided with the ultrasonic sensor unit, and then operates the ultrasonic sensor unit.
  • the ultrasonic sensor unit 250 transmits the ultrasonic wave to the bottom direction and measures the change or intensity of the ultrasonic wave reflected and returned to the microcomputer unit.
  • the numerical value of the snow amount is calculated through internal calculation.
  • the sound waves in the air are converted into a snowfall value (1 mm) and a period (n_sec).
  • the main clock of the microcomputer unit is calculated through the 32 division circuit, and then converted into a period n_sec.
  • the value countered by the counter PLD latch unit 260 (e.g., a constant 300mm) is multiplied by a period (e.g., 127n_sec) comparing the period according to the sound wave in the air with the period of the main clock of the microcomputer unit (e.g., 127n_sec).
  • a period e.g., 127n_sec
  • the calculated integer value (e.g. 12.61mm) is subtracted from the counter value (e.g. constant 300mm) by the counter PLD latch unit 260, and divided by 2 Get the snowfall value by.
  • the amount of snowfall is calculated by repeating the above process by moving the ultrasonic sensor unit of the RDS-FM type snowfall measurement module 200 in the bottom direction at 50 cm intervals.
  • the average value is calculated from the counter values calculated at 2 m, 1.5 m, 1 m, and 0.5 m, and the final snowfall value is calculated.
  • the microcomputer unit transmits the snowfall measurement data signal to the input terminal RIN of the RDS FM transceiver.
  • the TX antenna of the RDS FM transmitter and receiver is a snowfall measurement data signal along with an audio signal to a handset, a hand furry, an MP3 player, a GPS / navigation, a satellite digital audio radio, and a mobile phone, which are in close proximity to the RDS FM type snowfall measurement module. Send.
  • the RDS FM transceiver 210 transmits the snowfall measurement data signal to the central control server at a remote location through the FM band (76 to 108 MHz).

Abstract

The present invention is to provide a snowfall measurement apparatus and method using an RDS FM-type snowfall measurement module, the apparatus comprises: a sunlight electric cell plate (100) which is installed on the one side of an upper end of a supporting frame having a certain height, charges electricity generated by collecting sunlight and performing electricity generation in a battery, and uses the charged electricity as the power of an RDS FM-type snowfall measurement module; and the RDS FM-type snowfall measurement module (200) which is positioned on a lower end of the sunlight electric cell plate, is supplied with the self-generated power from the sunlight electric cell plate, is driven by receiving a wakeup signal and an audio signal transmitted from a central control server in a remote place through the FM band (76-108MHz), and transmits a snowfall measurement data signal measured through the ultrasonic waves to the central control server in a remote place. Thus, the invention reduces power consumption since self-generation is performed through the sunlight, and there is no restriction on the installation place because the real-time wireless transmitting and receiving functions are carried out, and also, the weather information is quickly notified. Further, the customized broadcasting programs for disaster in accordance with snowfall are provided with audio signals to all the peripheral devices (handsets, hands-free units, MP3 players, GPS/navigation, satellite digital audio radio, and mobile phones) included in the RDS FM broadcast audio service regions.

Description

RDS FM형 강설량 측정모듈을 이용한 강설량측정장치 및 방법 Snowfall measurement device and method using RDS FM type snowfall measurement module
본 발명은 FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 구동되며,  The present invention is driven by receiving an audio signal and a wake-up signal transmitted from a central control server of a remote location through the FM band (76 ~ 108MHz),
초음파를 통해 측정된 강설량 측정 데이터 신호를 원격지의 중앙통제서버로 전송시키는 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치 및 방법에 관한 것이다. The present invention relates to an apparatus and method for measuring snowfall using an RDS-FM type snowfall measurement module for transmitting snowfall measurement data signals measured through ultrasonic waves to a central control server at a remote location.
일반적으로, 기상재해란, 비, 바람, 눈, 우박 등의 기상 현상으로 생기는 재해를 의미하는 것으로서, 기상청 등에서의 분석을 통하여 상기한 기상현상으로 큰 재해가 예상되는 경우에는 대설경보, 태풍경보, 폭풍경보, 호우경보 등의 기상경보를 TV 또는 라디오 중계 등의 방송수단을 통해 통보하게 된다. Generally, meteorological disasters refer to disasters caused by meteorological phenomena such as rain, wind, snow, hail, and the like, when heavy disasters are expected due to the above-mentioned weather phenomena analyzed by the Korea Meteorological Agency, etc., heavy snow alarms, typhoon alarms, Weather alarms such as storm alarms and heavy rain alarms are notified through broadcast means such as TV or radio relay.
그런데 이상과 같은 기존의 기상통보 방식은 단지 기상청 등의 방재센터에서 분석된 자료를 근거로 하여 방송국 등에서 TV 또는 라디오와 같은 공중파 방송매체로 기상정보를 송신하고 통보하는 것에 불과하므로 한정된 시간에 한정된 양만큼의 기상정보만이 수신되며, 그러한 통보범위 또한 특정지역으로 한정되어 있어 기상정보에 대한 신뢰성이 보장되지 못하는 단점이 있다. However, the conventional weather notification method is limited to a limited time because it only transmits and reports weather information from a broadcasting station such as a TV or a radio based on data analyzed by a disaster prevention center such as a meteorological office. Only as much weather information is received, and such a notification range is also limited to a specific region has a disadvantage that the reliability of the weather information is not guaranteed.
또한, 산업발전 등으로 인하여 엘니뇨 현상, 국지성 호우, 때늦은 폭설 등의 기상이변 현상 또한 속출하고 있는데 이러한 경우 신속한 기상통보 및 그에 따른 대응이 필수적으로 수행되어야 하나 실질적으로는 그러한 대응이 이루어지지 못하고 있는 실정이며, 또한 기상청 등에서 분석된 기상정보가 각지로 통보되기도 전에 각종 사고, 피해 등이 발생되는 경우가 허다하므로 그로 인한 인명피해, 재산피해 또한 막대하게 발생된다는 문제점이 있었다. In addition, due to industrial development, extreme weather events such as the El Niño phenomenon, localized heavy rain, and late snowfall are also occurring continuously. In this case, prompt weather notification and corresponding response must be carried out, but in reality, such a response cannot be achieved. In addition, since various accidents, damages, etc. are often generated before the weather information analyzed by the Meteorological Agency is notified to various places, there is a problem in that human injury and property damage are also caused.
특히, 근래에는 기상재해 중 폭설로 인한 비닐하우스 피해 및 고속도로 사고를 방지하기 위해 강설량을 측정하기 위해, 눈이 많이 내리는 특정 지역에 강설량 측정수단을 설치하고, 측정된 강설량정보를 실시간 수집하여 실시간 외부 방재센터로 제공하는 방식에 관하여 제안되고 있으나,  In particular, in recent years, in order to measure snowfall in order to prevent damage to the plastic house caused by heavy snowfall and highway accidents, snowfall measurement means have been installed in specific areas with a lot of snow, and the measured snowfall information is collected in real time. Proposed method for providing disaster prevention center,
무엇보다 유선방식으로 설치되고 있어 도심지 이외의 오지에 위치한 산간 등에는 전기공급이 어려워 전혀 설치가 곤란하다는 문제점 있으며,  Above all, it is installed in a wired way, so there is a problem that it is difficult to install electricity at all because it is difficult to supply electricity to mountains in remote areas other than the city center.
상기한 유선방식 자체가 정보 전송속도가 빠르지 못한 단점으로 인해 신속한 기상분석 및 통보가 실질적으로 곤란하다는 단점이 있었다. Due to the disadvantage that the wired method itself does not have a fast information transmission rate, there is a disadvantage in that rapid weather analysis and notification are practically difficult.
상기의 목적을 해결하기 위해, 본 발명에서는 태양광을 통해 자가발전을 할 수 있어, 전력 소비를 줄일 수 있고,  In order to solve the above object, in the present invention can be self-powered through sunlight, it is possible to reduce the power consumption,
실시간 무선 송수신이 가능하므로 설치장소의 제약이 없고, 신속한 기상통보가 가능함은 물론이고, RDS FM 방송 가청 지역에 포함된 모든 주변기기(핸드셋, 핸즈퓨리, MP3 플레이어, GPS/네비게이션, 위성 디지털 오디오 라디오, 핸드폰)에 오디오 신호와 함께, 강설량에 따른 맞춤형 재해 방송을 할 수 있는 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치 및 방법을 제공하는데 그 목적이 있다. Real-time wireless transmission and reception is not limited to the installation site, it is possible to prompt weather notification, as well as all peripheral devices (handset, hands-free, MP3 player, GPS / navigation, satellite digital audio radio, It is an object of the present invention to provide an apparatus and method for measuring snowfall using an RDS-FM type snowfall measurement module that can provide customized disaster broadcasting according to snowfall with an audio signal.
상기의 목적을 달성하기 위해 본 발명에 따른 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치는 In order to achieve the above object, the snowfall measurement apparatus using the RDS-FM type snowfall measurement module according to the present invention
일정 높이를 갖는 지지프레임에 설치되어 강설량을 측정하는 장치로 이루어지고, Installed on the support frame having a certain height consists of a device for measuring the amount of snow,
상기 강설량 측정장치(1)는 지지프레임의 상단 일측에 설치되어, 태양광을 모으고 발전(發電)을 하여 생성된 전기를 배터리에 충전시킨 후, RDS FM형 강설량 측정모듈의 전원으로 사용하는 태양광전지판(100)과, The snowfall measuring device 1 is installed on one side of the upper end of the support frame, and collects sunlight and charges electricity generated by generating electricity to the battery, and then uses the solar cell used as a power source for the RDS FM snowfall measuring module. Plate 100,
태양광전지판의 하단에 위치하여, 태양광전지판으로부터 자가발전된 전원을 공급받고, FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 구동되며,  Located at the bottom of the solar panel, it is supplied with self-generated power from the solar panel, and is driven by receiving audio signals and wake-up signals transmitted from a central control server at a remote location through the FM band (76 to 108 MHz).
초음파를 통해 측정된 강설량 측정 데이터 신호를 원격지의 중앙통제서버로 전송시키는 RDS FM형 강설량 측정모듈(200)이 포함되어 구성됨으로서 달성된다. It is achieved by including a RDS FM type snowfall measurement module 200 for transmitting the snowfall measurement data signal measured through the ultrasonic wave to a central control server of a remote location.
또한, 본 발명에 따른 RDS FM형 강설량 측정모듈을 이용한 강설량측정방법은, In addition, the snowfall measurement method using the RDS FM type snowfall measurement module according to the present invention,
태양광전지판을 통해 태양광을 모으고 발전(發電)을 하여 생성된 전기를 배터리에 충전시킨 후, RDS FM형 강설량 측정모듈로 전원을 공급시키는 단계(S100)와,  Collecting solar light through the solar panel and charging the battery with electricity generated by generating electricity, and then supplying power to the RDS-FM type snowfall measurement module (S100);
RDS FM형 강설량 측정모듈을 통해 FM 대역(76~108MHz)에서 원격지의 중앙통제서버로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 마이컴부(MCU)로 전달하는 단계(S200)와, Receiving an audio signal and a wake-up signal transmitted from the central control server of the remote in the FM band (76 ~ 108MHz) through the RDS FM type snowfall measurement module and delivering to the microcomputer (MCU) (S200),
마이컴부에서 RDS FM 송수신부로부터 웨이크업 신호를 수신받으면, 대기상태에서 동작 상태로 전환되어 PWM 전원마이컴부(PWM POWER & BAT CONTROL)의 동작을 깨우고, PWM 전원마이컴부(PWM POWER & BAT CONTROL)를 통해 각 기기로 전원을 공급시키는 단계(S300)와,  When the microcomputer receives the wake-up signal from the RDS-FM transmitter / receiver, it switches from the standby state to the operating state to wake up the operation of the PWM power & battery control and the PWM power & battery control. Supplying power to each device through (S300),
마이컴부에서 초음파센서부가 설치된 회전형 헤드 이음부에 좌우회전신호를 보낸 후, 초음파 센서부를 동작시키는 단계(S400)와, After transmitting the left and right rotation signal to the rotary head joint is installed in the ultrasonic sensor unit from the microcomputer unit, and operating the ultrasonic sensor unit (S400),
초음파 센서부(250)에서 바닥방향으로 초음파를 송출하고 반사되어 돌아오는 초음파의 변화나 세기를 측정한 후 마이컴부로 전송시키는 단계(S500)와,  The ultrasonic sensor unit 250 transmits the ultrasonic wave to the bottom direction and measures the change or intensity of the ultrasonic wave reflected and returned to the microcomputer unit (S500),
마이컴부에 카운터 PLD 래치부(260)로부터 래치된 초음파 카운터가 입력되면, 내부 연산을 통해 강설량의 수치를 연산하는 단계(S600)와, When the ultrasonic counter latched from the counter PLD latch unit 260 is input to the microcomputer unit, calculating a snowfall value through internal calculation (S600);
마이컴부(MCU)에서 RDS FM 송수신부의 입력단자 RIN으로 강설량 측정 데이터 신호를 전송시키는 단계(S700)와,  Transmitting a snowfall measurement data signal from a microcomputer (MCU) to an input terminal RIN of the RDS FM transceiver (S700);
RDS FM 송수신부(210)에서 강설량 측정 데이터 신호를 FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로 전송시키는 단계(S800)로 이루어짐으로서 달성된다. RDS FM transceiver 210 is achieved by the step (S800) of transmitting the snowfall measurement data signal to the central control server of the remote location via the FM band (76 ~ 108MHz).
이상에서 설명드린 바와 같이,  As explained above,
본 발명에서는 태양광을 통해 자가발전을 할 수 있어, 전력 소비를 줄일 수 있고, 실시간 무선 송수신이 가능하므로 설치장소의 제약이 없으며, RDS FM 방송 가청 지역에 포함된 모든 주변기기(핸드셋, 핸즈퓨리, MP3 플레이어, GPS/네비게이션, 위성 디지털 오디오 라디오, 핸드폰)에 오디오 신호와 함께, 강설량에 따른 맞춤형 재해 방송을 할 수 있어, 개별적으로 폭설로 인한 재난상황을 빠르고 정확하게 인지시킬 수 있어, 비닐하우스 피해 및 고속도로 조난사고를 사전에 미리 예방할 수 있는 좋은 효과가 있다.  In the present invention, it is possible to self-generate through sunlight, to reduce power consumption, and real-time wireless transmission and reception, there is no restriction in the place of installation, all peripherals included in the RDS FM audible region (handset, hands-free, With audio signals to MP3 players, GPS / navigations, satellite digital audio radios, and mobile phones, you can broadcast customized disasters based on snowfall, allowing you to quickly and accurately recognize disasters caused by heavy snowfall. It is a good effect to prevent highway accidents in advance.
도 1은 본 발명에 따른 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치를 도시한 사시도, 1 is a perspective view showing a snowfall measuring device using the RDS FM type snowfall measuring module according to the present invention;
도 2는 본 발명에 따른 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치의 구성요소를 도시한 블럭도, Figure 2 is a block diagram showing the components of the snowfall measurement apparatus using the RDS FM type snowfall measurement module according to the present invention,
도 3은 본 발명에 따른 RDS FM형 강설량 측정모듈(200)이 설치된 지지프레임에 RDS FM형 강설량 측정모듈(200)를 상하 수직방향으로 이송시키는 DC 모터가 구성된 것을 도시한 도시한 일실시예도, Figure 3 is an embodiment showing that a DC motor for transferring the RDS FM-type snowfall measurement module 200 in the vertical direction in the support frame is installed RDS FM-type snowfall measurement module 200 according to the present invention,
도 4는 본 발명에 따른 지지프레임에 회전형 헤드 이음부가 설치되어, 마이컴부의 좌우회전신호에 의해 RDS FM형 강설량 측정모듈(200)를 ±30~90°각도로 좌우회전시켜 초음파 센서의 상단면에 쌓인 눈을 털어버리는 과정을 도시한 일실시예도, Figure 4 is a rotatable head joint is installed in the support frame according to the present invention, by rotating the left and right RDS FM-type snowfall measurement module 200 at ± 30 ~ 90 ° angle by the left and right rotation signal of the microcomputer to the top surface of the ultrasonic sensor One embodiment showing the process of shaking off the snow accumulated in the
도 5는 본 발명에 따른 RDS FM형 강설량 측정모듈(200) 중 RDS FM 송수신부(210)의 구성을 도시한 회로도, 5 is a circuit diagram showing the configuration of the RDS FM transceiver 210 of the RDS FM type snowfall measurement module 200 according to the present invention;
도 6은 본 발명에 따른 RDS FM형 강설량 측정모듈(200) 중 PWM 전원마이컴부(PWM POWER & BAT CONTROL)(220)와 과전류과전압 보호 회로부(230)의 구성을 도시한 회로도, 6 is a circuit diagram showing the configuration of the PWM power microcontroller (PWM POWER & BAT CONTROL) 220 and the overcurrent overvoltage protection circuit 230 of the RDS FM type snowfall measurement module 200 according to the present invention;
도 7은 본 발명에 따른 RDS FM형 강설량 측정모듈(200) 중 2차 전지 전원 공급부(240)의 구성을 도시한 회로도, 7 is a circuit diagram showing the configuration of a secondary battery power supply unit 240 of the RDS FM type snowfall measurement module 200 according to the present invention;
도 8은 본 발명에 따른 RDS FM형 강설량 측정모듈(200) 중 초음파센서부(250)의 구성을 도시한 회로도, 8 is a circuit diagram showing the configuration of the ultrasonic sensor unit 250 of the RDS FM type snowfall measurement module 200 according to the present invention;
도 9는 본 발명에 따른 RDS FM형 강설량 측정모듈(200) 중 카운터 PLD 래치부(260)의 구성을 도시한 회로도, 9 is a circuit diagram showing the configuration of the counter PLD latch unit 260 of the RDS FM type snowfall measurement module 200 according to the present invention;
도 10은 본 발명에 따른 RDS FM형 강설량 측정모듈(200) 중 마이컴부(MCU)(270)의 구성을 도시한 회로도, 10 is a circuit diagram showing the configuration of the microcomputer unit (MCU) 270 of the RDS FM-type snowfall measurement module 200 according to the present invention;
도 11은 본 발명에 따른 RDS FM형 강설량 측정모듈을 이용한 강설량측정방법을 도시한 순서도, 11 is a flowchart illustrating a snowfall measurement method using the RDS-FM type snowfall measurement module according to the present invention;
도 12는 본 발명에 따른 마이컴부에 카운터 PLD 래치부(260)로부터 래치된 초음파 카운터가 입력되면, 내부 연산을 통해 강설량의 수치를 연산하는 과정을 도시한 순서도. 12 is a flowchart illustrating a process of calculating a numerical value of snowfall through internal calculation when an ultrasonic counter latched from the counter PLD latch unit 260 is input to a microcomputer unit according to the present invention.
※ 도면 부호의 간단한 설명 ※※ Brief description of reference numerals ※
100 : 태양광전지판 100 solar panel
200 : RDS FM형 강설량 측정모듈200: RDS FM type snowfall measurement module
210 : RDS FM 송수신부 210: RDS FM transceiver
220 : PWM 전원마이컴부220: PWM power microcomputer
230 : 과전류과전압 보호 회로부 230: overcurrent overvoltage protection circuit
240 : 2차 전지 전원 공급부240: secondary battery power supply
250 : 초음파 센서부 250: ultrasonic sensor unit
260 : 카운터 PLD 래치부260: counter PLD latch
270 : 마이컴부(MCU) 270: microcomputer unit (MCU)
300 : 중앙통제서버300: central control server
이하, 본 발명에 따른 바람직한 실시예를 도면을 첨부하여 설명한다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명에 따른 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치를 도시한 사시도에 관한 것으로, 이는 일정 높이를 갖는 지지프레임에 설치되는 태양광전지판(100)과, RDS FM형 강설량 측정모듈(200)로 구성된다. 1 is a perspective view showing a snowfall measurement apparatus using the RDS FM-type snowfall measurement module according to the present invention, which is a solar panel 100 installed on a support frame having a predetermined height, RDS FM-type snowfall measurement module It consists of 200.
상기 지지프레임은 긴 봉형상으로 형성되어 태양광전지판(100)과, RDS FM형 강설량 측정모듈(200)를 지면에서 일정한 높이로 지지하는 역할을 한다. The support frame is formed in a long rod shape and serves to support the solar panel 100 and the RDS FM type snowfall measurement module 200 at a constant height from the ground.
상기 지지프레임은 상단 일측에 태양광 전지판이 설치되고, 태양광 전지판 하단에 RDS FM형 강설량 측정모듈(200)이 설치된다.The support frame is a solar panel is installed on one side of the top, the RDS FM type snowfall measurement module 200 is installed on the bottom of the solar panel.
그리고, RDS FM형 강설량 측정모듈(200)은 사각 박스 형상으로 형성되고, 지면을 바라보는 하단면에 초음파 센서부가 구성된다. And, RDS FM type snowfall measuring module 200 is formed in a rectangular box shape, the ultrasonic sensor unit is configured on the bottom surface facing the ground.
여기서, RDS FM형 강설량 측정모듈(200)이 설치된 지지프레임에는 도 3에서 도시한 바와 같이, 상하 수직방향으로 DC 모터가 구성되어, RDS FM형 강설량 측정모듈(200)를 상하 수직방향으로 이송시킨다. Here, as shown in Figure 3, the DC frame is configured in the support frame in which the RDS FM-type snowfall measurement module 200 is installed, and transfers the RDS FM-type snowfall measurement module 200 in the vertical direction. .
그리고, 상하 수직방향으로 DC 모터가 이송되는 구간에 50cm 간격으로 근접센서가 설치된다. In addition, proximity sensors are installed at intervals of 50 cm in a section in which the DC motor is transferred in the vertical direction.
또한, DC 모터가 구성된 RDS FM형 강설량 측정모듈(200)이 설치된 지지프레임에는 도 4에서 도시한 바와 같이, RDS FM형 강설량 측정모듈(200)를 30°~90°회전간격으로 360°회전시키는 회전형 헤드 이음부가 설치된다.  In addition, as shown in Figure 4, the RDS FM-type snowfall measurement module 200 is configured to rotate the RDS FM-type snowfall measurement module 200 with a DC motor 360 ° at 30 ° ~ 90 ° rotation interval Rotating head joint is installed.
여기서, 회전형 헤드 이음부는 일측에 마이컴부의 제어를 통해 30°~ 90°간격으로 360°회전되도록 하기 위해 90°간격으로 센서가 부착된다. Here, the rotatable head joint is attached to the sensor at 90 ° intervals so as to rotate 360 ° at 30 ° ~ 90 ° intervals through the control of the microcomputer on one side.
그리고, 회전형 헤드 이음부를 90°간격으로 360°회전시키는 회전모터가 구성된다. Then, the rotational motor for rotating the head joint portion 360 ° at 90 ° intervals is configured.
먼저, 본 발명에 따른 태양광전지판(100)에 관해 설명한다 First, the solar panel 100 according to the present invention will be described.
상기 태양광전지판(100)은 지지프레임의 상단 일측에 설치되어, 태양광을 모으고 발전(發電)을 하여 생성된 전기를 배터리에 충전시킨 후, RDS FM형 강설량 측정모듈의 전원으로 사용하는 곳으로, 이는 투과율 저하가 적은 PVB(Poly Vinyl Butylol)나 내습성이 뛰어난 EVA(Ethylene Vinyl Asetate) 등으로 이루어진 충전재에 의해 인쇄회로기판의 상면에 부착된다.  The photovoltaic panel 100 is installed on one side of the upper end of the support frame, and collects sunlight and charges electricity generated by generating electricity to the battery, and then uses it as a power source for the RDS FM snowfall measuring module. This is attached to the upper surface of the printed circuit board by a filler made of polyvinyl butylol (PVB) or ethylene vinyl acetate (EVA) having excellent moisture resistance.
태양전지판은 플러스 단자의 제1 단위셀과 마이너스 단자의 제2 단위셀이 다수개 상호 이격되어 매트릭스 형태로 배열되며, 각각의 단위셀은 알루미늄 금속박으로 이루어진 인터커넥터에 의해 상호 직렬 또는 병렬로 연결되어 솔라셀 어레이를 형성한다. In the solar cell panel, a plurality of first unit cells of a positive terminal and a plurality of second unit cells of a negative terminal are spaced apart from each other and arranged in a matrix form. Each unit cell is connected to each other in series or in parallel by an interconnector made of aluminum metal foil. Form a cell array.
이때, 직렬 연결되는 솔라셀의 수량은 충전배터리의 충전용량에 따라 결정된다.  At this time, the number of solar cells connected in series is determined by the charging capacity of the rechargeable battery.
각 단위셀을 연결하는 인터커넥터는 인쇄회로기판의 일측에 도금된 전원단자에 접속된다.  The interconnector connecting each unit cell is connected to a power supply terminal plated on one side of the printed circuit board.
솔라셀 어레이의 상부에는 종전의 유리기판 대신, 투명 폴리카보네이트창이 적층된다.  Instead of the conventional glass substrate, a transparent polycarbonate window is stacked on the solar cell array.
이와 같이, 솔라셀 어레이 상부에 투명 폴리카보네이트창을 적층시킴으로 인해, 종래 유리기판의 표면에서 태양광이 반사됨으로 인해 광에너지가 손실되는 것을 방지할 수 있게 된다. As such, by stacking the transparent polycarbonate window on the solar cell array, it is possible to prevent the loss of light energy due to the reflection of sunlight from the surface of the glass substrate.
다음으로, 본 발명에 따른 RDS FM형 강설량 측정모듈(200)에 관해 설명한다. Next, the RDS FM type snowfall measurement module 200 according to the present invention will be described.
상기 RDS(Radio Data System) FM형 강설량 측정모듈(200)은 태양광전지판의 하단에 위치하여, 태양광전지판으로부터 자가발전된 전원을 공급받고,  The RDS (Radio Data System) FM type snowfall measurement module 200 is located at the bottom of the solar panel, and receives the self-generated power from the solar panel,
FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 구동되며, 초음파를 통해 측정된 강설량 측정 데이터 신호를 원격지의 중앙통제서버로 전송시키는 곳으로, 이는 사각박스형상의 본체 내부에 RDS FM 송수신부(210), PWM 전원마이컴부(PWM POWER & BAT CONTROL)(220), 과전류과전압 보호 회로부(230), 2차 전지 전원 공급부(240), 초음파 센서부(250), 카운터 PLD 래치부(260), 마이컴부(MCU)(270)로 구성된다. It is driven by receiving audio signal and wake-up signal transmitted from central control server of remote location through FM band (76 ~ 108MHz), and transmitting snowfall measurement data signal measured by ultrasonic wave to central control server of remote location. The RDS FM transceiver 210, PWM POWER & BAT CONTROL 220, overcurrent overvoltage protection circuit 230, secondary battery power supply 240, ultrasonic sensor The unit 250 includes a counter PLD latch unit 260 and a microcomputer unit (MCU) 270.
상기 RDS FM 송수신부(210)는 FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버부로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 마이컴부(MCU)로 전달하고, 강설량 측정장치와 근접된 위치에 있는 주변기기인 핸드셋, 핸즈퓨리, MP3 플레이어, GPS/네비게이션, 위성 디지털 오디오 라디오, 핸드폰에 오디오 신호와, 강수량 측정 데이터 신호를 순차적으로 채널별로 전송시키고, 강설량 측정 데이터 신호를 FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로 전송시키는 역할을 한다. The RDS FM transceiver 210 receives an audio signal and a wake-up signal transmitted from a central control server unit at a remote location through an FM band (76 to 108 MHz) and transmits the signal to a microcomputer unit (MCU), and is close to a snowfall measuring device. Audio signals and precipitation measurement data signals are sequentially transmitted to channels, such as handsets, hands-free, MP3 players, GPS / navigation, satellite digital audio radios, and cellular phones, which are located at the same location. ~ 108MHz) to transmit to the remote central control server.
이는 Si4720/212로 FM 라디오 트랜시버용 싱글 칩으로 이루어지고, FM 송신기와 FM 라디오 수신기의 기능이 결합된 3×3×0.5mm 사이즈의 QFN 팩키지로 구성된다. The Si4720 / 212 consists of a single chip for the FM radio transceiver and consists of a 3 × 3 × 0.5mm QFN package that combines the functionality of the FM transmitter and FM radio receiver.
그리고, 통합형 FM 안테나가 지원되고, 76~108MHz로 이루어진 FM 대역에서 지원되며, RDS/RBDS 프로세서, 프로그래머블 출력전압제어신호 전송, 오디오 동적 범위 제어, 아날로그/디지털 오디오 인터페이스를 제공하고, 프로그래머블 레퍼런스 클럭을 입력시키며, 2.7V~5.5V 전원공급로 이루어진다. The integrated FM antenna is supported in the FM band of 76 ~ 108MHz, provides RDS / RBDS processor, programmable output voltage control signal transmission, audio dynamic range control, analog / digital audio interface, and programmable reference clock. It is input and consists of 2.7V ~ 5.5V power supply.
본 발명에 따른 RDS FM 송수신부(210)는 도 5에서 도시한 바와 같이, FMI 단자에 FM 라디오 수신기능을 갖는 RX 안테나가 연결되고,  In the RDS FM transceiver 210 according to the present invention, as shown in FIG. 5, an RX antenna having an FM radio reception function is connected to an FMI terminal.
TXO 단자에 FM 송신기능을 갖는 TX 안테나가 연결되며, VDD 단자와 GND 단자에 저전압 레귤레이터(LDO)가 연결되고, RX 안테나를 통해 수신된 FM 라디오 신호는 내부의 FM 튜너부를 거쳐 튜너가 된 후, 오디오 출력단자 ROUT과 데이터 출력단자 LOUT를 통해 마이컴부(MCU)의 수신단자 RXD로 전달된다. A TX antenna with FM transmission is connected to the TXO terminal, a low voltage regulator (LDO) is connected to the VDD terminal and the GND terminal, and the FM radio signal received through the RX antenna becomes a tuner through an internal FM tuner. The audio output terminal ROUT and the data output terminal LOUT are transferred to the receiving terminal RXD of the microcomputer unit (MCU).
본 발명에서는 데이터 신호로서, 웨이크업 신호를 RDS FM 송수신부의 데이터 출력단자 LOUT를 통해 마이컴부의 수신단자 RXD로 전달된다. In the present invention, as a data signal, the wake-up signal is transmitted to the receiving terminal RXD of the microcomputer unit through the data output terminal LOUT of the RDS FM transceiver.
그리고, 입력단자 LIN에 마이컴부(MCU)의 송신단자 TXD가 연결되어 강설량 측정 데이터 신호가 입력되고,  Then, the transmission terminal TXD of the microcomputer unit (MCU) is connected to the input terminal LIN to input a snowfall measurement data signal,
입력단자 RIN에 원격지의 중앙통제서버로부터 주변기기 웨이크업 구동신호가 입력되어, TX 안테나를 통해 RDS FM형 강설량 측정모듈과 근접된 위치에 있는 주변기기인 핸드셋, 핸즈퓨리, MP3 플레이어, GPS/네비게이션, 위성 디지털 오디오 라디오, 핸드폰에 오디오 신호와 함께 강설량 측정 데이터 신호를 전송시키도록 구성된다. Wake-up driving signal of peripheral device is inputted from central control server of remote site to input terminal RIN, which is a peripheral device located near proximity to RDS FM type snowfall measurement module through TX antenna, handset, hands-free, MP3 player, GPS / navigation, satellite Digital audio radios are configured to transmit snowfall measurement data signals along with audio signals to mobile phones.
이러한 구성을 통해 본 발명에 따른 RDS FM 송수신부(210)는 라디오 데이터 시스템 (RDS)과 라디오 방송 데이터 시스템 (RBDS)에 대한 지원을 전송하는 등 FM 라디오 트랜시버 통합 시스템의 특징을 갖는다. Through such a configuration, the RDS FM transceiver 210 according to the present invention has features of an integrated FM radio transceiver system such as transmitting support for a radio data system (RDS) and a radio broadcast data system (RBDS).
또한, 오디오 전송 모드에서, 아티스트 이름, 노래 제목, 디지털 정보 카테고리와 브랜드 메시지와 같은 데이터 전송을 동시에 할 수가 있다. In addition, in the audio transmission mode, data transmission such as artist name, song title, digital information category and brand message can be simultaneously performed.
상기 PWM 전원마이컴부(PWM POWER & BAT CONTROL)(220)는 RDS FM형 강설량 측정모듈로 유입되는 전원을 DC_DC 변환한 후 PWM 방식으로 제어하여 충전배터리에 안정된 전원을 공급하는 역할을 한다. The PWM power microcomputer unit (PWM POWER & BAT CONTROL) 220 serves to supply a stable power to the rechargeable battery by controlling the PWM flow after converting the DC_DC power flowing into the RDS FM-type snowfall measurement module.
여기서, 충전배터리는 RDS FM형 강설량 측정모듈(200)을 구동시키는 전원을 말한다. Here, the rechargeable battery refers to a power source for driving the RDS FM type snowfall measurement module 200.
상기 PWM 전원마이컴부(PWM POWER & BAT CONTROL)(220)는 전원을 PWM 방식으로 제어하여 불필요한 전원 사용을 방지하여 충전 후 장시간 사용하도록 구성된다. The PWM power microcomputer unit (PWM POWER & BAT CONTROL) 220 is configured to use a long time after charging by controlling the power in a PWM method to prevent unnecessary power use.
이는 도 6에서 도시한 바와 같이, 저항 R138을 통해 프로그램 설정한 전압을 DC/DC컨버터부의 INV 단자에 인가시키고, 태양광전지판에서 발생된 전기 및 상용전원(18V~50V)을 저항 R123, R125, R127를 통해 전압분배하여 DC/DC컨버터부의 V+단자와 전류피크센스 단자(SI)에 인가시키면,  As shown in FIG. 6, the voltage set through the resistor R138 is applied to the INV terminal of the DC / DC converter, and the electrical and commercial power (18V to 50V) generated from the solar panel is applied to the resistors R123, R125, When voltage is distributed through R127 and applied to the V + terminal and the current peak sense terminal (SI) of the DC / DC converter,
DC/DC컨버터의 비교인버팅입력단자(INV)에 입력된 전압과 내부 레퍼런스 전압(1.25V)을 비교기를 통해 비교 연산한 후, 레퍼런스 전압 이상의 경우에는 PWM 방식으로, 입력된 DC를 DC-DC 컨버터(NJM2360)에서 1.5A로 스위칭시켜 교류로 만들고, 출력된 교류를 센싱 저항 R133을 통해 트랜지스터 Q4를 턴온시킨다. Comparing the voltage input to the comparison inverter input terminal (INV) of the DC / DC converter with the internal reference voltage (1.25V) using a comparator, and in case of the reference voltage or higher, the input DC is DC-DC. The converter (NJM2360) is switched to 1.5 A to make an alternating current, and the output alternating current is turned on by the transistor Q4 through the sensing resistor R133.
이때, 트랜지스터 Q4가 턴온되면, 트랜지스터 Q4의 컬렉터 단자에 있던 전압분배된 SOL_POWER 전압 및 상용전원(16V~50V)이 이미터 단자를 지나 다이오드 D69을 통해 평활되고, 인덕터 L5를 통해 5.2V가 출력되어 충전배터리(BAT)에 충전된다. At this time, when transistor Q4 is turned on, the voltage-distributed SOL_POWER voltage and the commercial power supply (16V to 50V) at the collector terminal of transistor Q4 are smoothed through diode D69 through the emitter terminal, and 5.2V is output through inductor L5. The battery is charged.
상기 DC-DC 컨버터(NJM2360)는 5.5V, 680mA, 전력효율이 70%로서, 외장 저항에 ±1%의 전류검출 저항을 사용해도 출력전류의 분산을 ±5% 이하로 할 수 있다. The DC-DC converter (NJM2360) has 5.5V, 680mA, and power efficiency of 70%, and the dispersion of the output current can be ± 5% or less even when a current detection resistor of ± 1% is used for the external resistor.
이처럼, 본 발명에서는 PWM 전원마이컴부(PWM POWER & BAT CONTROL)(220)가 구성됨으로서, 태양광전지판에서 발생된 전기 및 상용전원(18V~50V)을 충전배터리에 충전시 발생되는 충전배터리가 뜨거워지는 현상을 효과적으로 방지할 수가 있다.  As such, in the present invention, the PWM power microcomputer unit (PWM POWER & BAT CONTROL) 220 is configured, the charging battery generated when charging the rechargeable battery with electric and commercial power (18V ~ 50V) generated in the solar panel is hot Loss can be effectively prevented.
상기 과전류과전압 보호 회로부(230)는 충전배터리(BAT)에 과전류, 과전압이 유입되는 것을 방지하고, 충전배터리가 방전 및 과방전되는 것을 방지하는 역할을 한다. The overcurrent overvoltage protection circuit 230 prevents overcurrent and overvoltage from flowing into the rechargeable battery BAT and prevents the rechargeable battery from being discharged and overdischarged.
이는 도 6에서 도시한 바와 같이, 충전배터리(BAT) 단자에 센싱저항 R140을 연결시켜 현재 충전배터리의 전압을 센싱한 후, 제1 비교기에 입력시키면, 센싱된 현재 충전배터리의 전압과 제1 프로그램 레퍼런스 전압(VOLT1)을 비교 연산한 후, 제1 프로그램 레퍼런스 전압 이상의 경우에만 DC/DC컨버터부의 INV 단자에 인가시킨다. As shown in FIG. 6, when the sensing resistor R140 is connected to the charging battery BAT terminal to sense the voltage of the current charging battery and input to the first comparator, the voltage of the sensed current charging battery and the first program are sensed. After comparing and comparing the reference voltage VOLT1, the reference voltage VOLT1 is applied to the INV terminal of the DC / DC converter unit only when the first program reference voltage is equal to or greater than that.
또한, 충전배터리(BAT) 단자에 센싱저항 R141을 연결시켜 현재 충전배터리의 전압을 센싱한 후, 제2 비교기에 입력시키면, 센싱된 현재 충전배터리의 전압과 제2 프로그램 레퍼런스 전압(VOLT2)을 비교 연산한 후, 제2 프로그램 레퍼런스 전압 이상의 경우에만 DC/DC컨버터부의 INV 단자에 인가시킨다. In addition, after sensing the voltage of the current charging battery by connecting the sensing resistor R141 to the battery BAT terminal and inputting it to the second comparator, the voltage of the sensed current charging battery and the second program reference voltage VOLT2 are compared. After the calculation, it is applied to the INV terminal of the DC / DC converter section only when the second program reference voltage or more is exceeded.
그리고, 충전배터리(BAT) 단자에 센싱저항 R142를 연결시켜 현재 충전배터리의 전압을 센싱한 후, 제3 비교기에 입력시키면, 센싱된 현재 충전배터리의 전압과 제3 프로그램 레퍼런스 전압(VOLT3)을 비교 연산한 후, 제3 프로그램 레퍼런스 전압 이상의 경우에만 DC/DC컨버터부의 INV 단자에 인가시킨다. After sensing the voltage of the current charging battery by connecting the sensing resistor R142 to the terminal of the battery BAT, and inputting it to the third comparator, the voltage of the sensed current charging battery and the third program reference voltage VOLT3 are compared. After the calculation, only the third program reference voltage or more is applied to the INV terminal of the DC / DC converter.
또한, 충전배터리(BAT) 단자에 센싱저항 R143을 연결시켜 현재 충전배터리의 전압을 센싱한 후, 제4 비교기에 입력시키면, 센싱된 현재 충전배터리의 전압과 제4 프로그램 레퍼런스 전압(VOLT4)을 비교 연산한 후, 제4 프로그램 레퍼런스 전압 이상의 경우에만 DC/DC컨버터부의 INV 단자에 인가시킨다. In addition, after sensing the voltage of the current charging battery by connecting the sensing resistor R143 to the terminal of the battery BAT, and inputting it to the fourth comparator, the voltage of the sensed current charging battery and the fourth program reference voltage VOLT4 are compared. After the calculation, only the fourth program reference voltage or more is applied to the INV terminal of the DC / DC converter.
상기 제1 프로그램 레퍼런스 전압(VOLT1)은 충전 배터리의 방전 전압(DISCHARGE VOLTAGE) 설정치를 표시한 것이고,  The first program reference voltage VOLLT1 represents a discharge voltage DISCHARGE VOLTAGE set value of the rechargeable battery.
제2 프로그램 레퍼런스 전압(VOLT2)은 충전 배터리의 과전압(OVER_VOLTAGE) 설정치를 표시한 것이며,  The second program reference voltage VOLT2 indicates an overvoltage OVER_VOLTAGE setting value of the rechargeable battery.
제3 프로그램 레퍼런스 전압(VOLT3)은 충전 배터리의 과전류신호(OVER_CURRENT) 설정치를 표시한 것이고,  The third program reference voltage VOLT3 indicates an overcurrent signal OVER_CURRENT setting value of the rechargeable battery.
제4 프로그램 레퍼런스 전압(VOLT4)은 충전 배터리의 과방전 전압(OVER_DISCHARGE) 설정치를 표시한 것이다. The fourth program reference voltage VOLT4 indicates an overdischarge voltage OVER_DISCHARGE set value of the rechargeable battery.
상기 2차 전지 전원 공급부(240)는 마이컴부 일측에 연결되어, 태양전지판에 충전된 전압이 부족할 경우에 마이컴부의 제어하에 2차 전지를 통해 RDS FM형 강설량 측정모듈에 전원을 공급시키는 역할을 한다. The secondary battery power supply 240 is connected to one side of the microcomputer unit, and serves to supply power to the RDS FM snowfall measuring module through the secondary battery under the control of the microcomputer unit when the voltage charged in the solar panel is insufficient. .
이는 도 7에서 도시한 바와 같이, 저항 R33을 통해 설정한 전압을 DC/DC컨버터부의 INV 단자에 인가시키고,  As shown in FIG. 7, the voltage set through the resistor R33 is applied to the INV terminal of the DC / DC converter.
2차 전지의 전압(12V)을 저항 R28, R29, R30을 통해 전압분배하여 DC/DC컨버터부의 전류피크센스 단자(SI)에 인가시키면,  When the voltage (12V) of the secondary battery is divided by the resistors R28, R29, and R30 and applied to the current peak sense terminal SI of the DC / DC converter unit,
DC/DC컨버터의 비교인버팅입력단자(INV)에 입력된 전압과 내부 레퍼런스 전압(1.25V)을 비교기를 통해 비교 연산한 후, 레퍼런스 전압 이상의 경우에는 스위치 이미터 단자(Es)가 구동되어 다이오드 D2를 통해 평활되고, 인덕터 L2를 통해 5.2V가 출력되어 RDS FM형 강설량 측정모듈의 각 기기에 전원을 공급한다.  After comparing the voltage inputted to the comparative inverting input terminal (INV) of the DC / DC converter with the internal reference voltage (1.25V) through the comparator, the switch emitter terminal (Es) is driven when the reference voltage is higher than the diode. Smoothed through D2, 5.2V is output through inductor L2 to power each device in the RDS FM snowfall measurement module.
상기 DC-DC 컨버터(NJM2360)는 5.5V, 680mA, 전력효율이 70%로서, 외장 저항에 ±1%의 전류검출 저항을 사용해도 출력전류의 분산을 ±5% 이하로 할 수 있다. The DC-DC converter (NJM2360) has 5.5V, 680mA, and power efficiency of 70%, and the dispersion of the output current can be ± 5% or less even when a current detection resistor of ± 1% is used for the external resistor.
상기 초음파 센서부(250)는 마이컴부 일측에 연결되어, 바닥방향으로 초음파를 송출하고 반사되어 돌아오는 초음파의 변화나 세기를 검출하여 마이컴부로 송신하는 역할을 한다.. The ultrasonic sensor unit 250 is connected to one side of the microcomputer unit, and transmits the ultrasonic wave to the bottom direction and detects the change or intensity of the ultrasonic wave reflected and returned to the microcomputer unit.
본 발명에 따른 초음파 센서부(250)는 사각박스형상의 본체 하단에 설치되어, 일정 높이를 갖은 상태에서 바닥 방향으로 초음파를 송출하고, 반사되어 돌아오는 초음파의 변화나 세기를 검출하여, 마이컴부로 송신한다. Ultrasonic sensor unit 250 according to the present invention is installed on the lower end of the rectangular box-shaped body, and transmits the ultrasonic wave in the bottom direction in a state having a certain height, detect the change or intensity of the reflected ultrasonic return to the microcomputer unit Send.
이때, 마이컴부에서는 초음파 센서부에서 측정된 값과 기준설정치와 비교한 후, 바닥면에 쌓인 눈의 강설량을 연산한다. At this time, the microcomputer unit compares the value measured by the ultrasonic sensor unit with the reference set value, and calculates the amount of snow snow accumulated on the floor.
즉, 도 8에서 도시한 바와 같이, 초음파 센서부는 T0 시간에 바닥방향으로 초음파를 발사하고, T1 시간에 반사음을 수신한다.  That is, as shown in FIG. 8, the ultrasonic sensor unit emits ultrasonic waves in the bottom direction at T0 time and receives the reflected sound at T1 time.
이어서, 바닥방향으로 초음파 발사 후에 반사음을 수신하여 시간차를 이용하여 거리를 환산한다. Subsequently, after the ultrasonic emission in the bottom direction, the reflection sound is received and the distance is converted using the time difference.
이때, 음파의 속도는 매질의 복원력과 관성에 의해 결정된다. At this time, the speed of the sound wave is determined by the resilience and inertia of the medium.
일예로, 0℃ 공기 중에서 음파의 속도가 331m/s 이므로, 섭씨온도 t℃에서의 음파의 속도(V)는 다음의 수학식 1과 같이 표현할 수가 있다. For example, since the speed of sound waves in air at 0 ° C. is 331 m / s, the speed V of sound waves at a temperature t ° C. can be expressed by Equation 1 below.
[규칙 제91조에 의한 정정 19.01.2011] 
수학식 1
Figure WO-DOC-MATHS-1
[Revisions under Rule 91 19.01.2011]
Equation 1
Figure WO-DOC-MATHS-1
여기서, t는 섭씨온도를 나타낸다.Where t represents degrees Celsius.
상기 음파의 속도는 매질의 복원력과 관성에 의해 결정된다.The speed of the sound wave is determined by the resilience and inertia of the medium.
즉, 매질이 유체인 경우에는 복원력을 부피탄성률(B)과, 관성을 질량 밀도( ρ)로 표현하면 다음의 수학식 2와 같다. That is, when the medium is a fluid, the restoring force is expressed by the volume modulus of elasticity (B) and the inertia by the mass density (ρ).
[규칙 제91조에 의한 정정 19.01.2011] 
수학식 2
Figure WO-DOC-MATHS-2
[Revisions under Rule 91 19.01.2011]
Equation 2
Figure WO-DOC-MATHS-2
그리고, 매질이 유체 중에서도 이상기체인 경우에는 부피판성률(B)이 질량밀도(ρ)와 절대온도(T)에 비례하므로, 이상기체 속에서의 음파의 속도(V)는 다음의 수학식 3과 같이 표현할 수가 있다. In the case where the medium is an ideal gas among the fluids, the volumetric modulus (B) is proportional to the mass density (ρ) and the absolute temperature (T), so that the velocity (V) of the sound wave in the ideal gas is It can be expressed as
[규칙 제91조에 의한 정정 19.01.2011] 
수학식 3
Figure WO-DOC-MATHS-3
[Revisions under Rule 91 19.01.2011]
Equation 3
Figure WO-DOC-MATHS-3
상기 수학식 3을 이용해 어떤 온도에서 음파의 속도를 알면 다른 온도에서의 속도도 비례식으로 구할 수가 있다.  Knowing the velocity of sound waves at a certain temperature using Equation 3, the velocity at other temperatures can also be found proportionally.
따라서, 0℃ 공기 중에서 음파의 속도가 331m/s 이므로, 섭씨온도 t℃에서의 음파의 속도 V는 상기 수학식 1과 같이, 표현할 수가 있다. Therefore, since the speed of sound waves in 0 degreeC air is 331 m / s, the speed V of the sound waves in degrees Celsius t degreeC can be expressed as shown in said Formula (1).
이처럼, 본 발명에 따른 초음파 센서부(250)는 일정 높이를 갖은 상태에서 바닥 방향으로 초음파를 송출하고, 반사되어 돌아오는 초음파의 변화나 세기를 검출하여, 마이컴부로 전송한다. As described above, the ultrasonic sensor unit 250 according to the present invention transmits the ultrasonic wave in the bottom direction in a state having a predetermined height, detects the change or intensity of the reflected ultrasonic wave, and transmits the ultrasonic wave to the microcomputer unit.
그리고, 본 발명에 따른 초음파 센서부(250)는 도 8에서 도시한 바와 같이, 일측에 제1 증폭기(U5A)와 제2 증폭기(U6A)가 연결되어, 초음파 센서에서 측정된 신호를 1차, 2차로 증폭시켜 마이컴부의 입력단자(RX_TRIG)로 전송시킨다. And, as shown in Figure 8, the ultrasonic sensor unit 250 according to the present invention, the first amplifier (U5A) and the second amplifier (U6A) is connected to one side, the first, the signal measured by the ultrasonic sensor, Secondary amplification is sent to the input terminal (RX_TRIG) of the microcomputer.
상기 카운터 PLD 래치부(260)는 초음파 센서부를 통해 강설량 측정시, PLD(Programmable Logic Device)를 통해 초음파 센서부로 초음파 송출 카운터를 보내고, 바닥방향으로 초음파 발사 후에 반사음이 되돌아 오는 시간에 따라 초음파 송출 카운터를 래치시키고, 래치된 신호를 아날로그 신호로 변환시켜 마이컴부로 전송시키는 역할을 한다. The counter PLD latch unit 260, when measuring the amount of snow through the ultrasonic sensor unit, sends an ultrasonic discharge counter to the ultrasonic sensor unit through the PLD (Programmable Logic Device), the ultrasonic discharge counter according to the time when the reflected sound returns after the ultrasonic emission in the bottom direction Latch and converts the latched signal to an analog signal to transmit to the microcomputer.
이때, 마이컴부에서는 카운터 PLD 래치부(260)에서 래치된 신호를 입력받아, 강설량의 수치를 소수점 세자리까지 정확하게 연산하여 디스플레이시킨다. At this time, the microcomputer unit receives the latched signal from the counter PLD latch unit 260, and accurately calculates and displays the numerical value of the snowfall amount to three decimal places.
상기 카운터 PLD 래치부(260)는 도 9에서 도시한 바와 같이, 제1듀얼 BCD 카운터(261), 제2듀얼 BCD 카운터(262), 제3듀얼 BCD 카운터(263), 제4듀얼 BCD 카운터(264), 제1듀얼 BCD 카운터와 제2듀얼 BCD 카운터에서 출력되는 래치된 신호를 아날로그 신호로 변환시키는 제1 D/A 컨버터부(265), 제3듀얼 BCD 카운터와 제4듀얼 BCD 카운터에서 출력되는 래치된 신호를 디지털신호로 변환시키는 제2 D/A 컨버터부(266)로 구성된다.As illustrated in FIG. 9, the counter PLD latch unit 260 includes a first dual BCD counter 261, a second dual BCD counter 262, a third dual BCD counter 263, and a fourth dual BCD counter ( 264), the first D / A converter unit 265 for converting the latched signal output from the first dual BCD counter and the second dual BCD counter into an analog signal, and the output from the third dual BCD counter and the fourth dual BCD counter. And a second D / A converter section 266 for converting the latched signal into a digital signal.
상기 제1듀얼 BCD 카운터, 제2듀얼 BCD 카운터는 강설량의 수치 중 상수 부위가 표현이 되도록 하기 위해, 초음파 센서부로 초음파 송출 카운터를 보내고, 바닥방향으로 초음파 발사 후에 반사음이 되돌아 오는 시간에 따라 초음파 송출 카운터를 래치시키고, 래치된 신호를 디지털신호로 변환시켜 마이컴부로 전송시키는 역할을 한다. The first dual BCD counter and the second dual BCD counter send an ultrasonic emission counter to the ultrasonic sensor unit so that the constant portion of the snowfall value is expressed, and transmit the ultrasonic wave according to the time when the reflected sound returns after the ultrasonic emission in the bottom direction. The counter latches the counter, converts the latched signal into a digital signal, and transmits the signal to the microcomputer unit.
상기 제3듀얼 BCD 카운터, 제4듀얼 BCD 카운터는 강설량의 수치 중 소수점 세자리까지 표현이 되도록 하기 위해, 초음파 센서부로 초음파 송출 카운터를 보내고, 바닥방향으로 초음파 발사 후에 반사음이 되돌아 오는 시간에 따라 초음파 송출 카운터를 래치시키고, 래치된 신호를 디지털신호로 변환시켜 마이컴부로 전송시키는 역할을 한다. The third dual BCD counter and the fourth dual BCD counter send an ultrasonic wave sending counter to the ultrasonic sensor unit so as to be expressed to three decimal places in the value of snowfall, and ultrasonic wave is emitted according to the time when the reflected sound returns after the ultrasonic firing in the bottom direction. The counter latches the counter, converts the latched signal into a digital signal, and transmits the signal to the microcomputer unit.
상기 제1,2,3,4 듀얼 BCD 카운터는 HEF 4518B로 구성되고, 내부에 액티브 하이 클럭 입력단자(nCP0), 액티브 로우 클럭 입력단자(nCP1), 4비트 버퍼 출력단자(Q0,Q1,Q2,Q3), 마스터 리셋 입력단자(nMR)가 구성된다. The first, second, third, and fourth dual BCD counters are composed of an HEF 4518B, and have an active high clock input terminal nCP0, an active low clock input terminal nCP1, and a 4-bit buffer output terminal Q0, Q1, and Q2. Q3) and the master reset input terminal nMR are configured.
카운터 펄스는 표 1에 기재된 바와 같이, 액티브 하이 클럭 입력단자(nCP0)가 포스티브 영역(↑)에 있고, 액티브 로우 클럭 입력단자(nCP1)에 하이 신호가 입력되며, 마스터 리셋 입력단자(nMR)에 로우 신호가 입력되었을 때, 카운터 펄스가 4비트 버퍼 출력단자(Q0,Q1,Q2,Q3)를 통해 발생된다. As shown in Table 1, the counter pulse has an active high clock input terminal nCP0 in the positive region ↑, a high signal is input to the active low clock input terminal nCP1, and a master reset input terminal nMR. When a low signal is inputted, a counter pulse is generated through the 4-bit buffer output terminals Q0, Q1, Q2, and Q3.
또한, 카운터 펄스는 표 1에 기재된 바와 같이, 액티브 하이 클럭 입력단자(nCP0)에 로우 신호가 입력되고, 액티브 로우 클럭 입력단자(nCP1)가 네거티브 영역(↓)에 있고, 마스터 리셋 입력단자(nMR)에 로우 신호가 입력되었을 때, 카운터 펄스가 4비트 버퍼 출력단자(Q0,Q1,Q2,Q3)를 통해 발생된다. In addition, as shown in Table 1, the counter pulse has a low signal input to the active high clock input terminal nCP0, the active low clock input terminal nCP1 is in the negative region ↓, and the master reset input terminal nMR. When a low signal is input to the counter, a counter pulse is generated through the 4-bit buffer output terminals Q0, Q1, Q2, and Q3.
표 1
nCP0 nCP1 nMR 모드(Mode)
H L 카운터 펄스
L L 카운터 펄스
X L 노 체인지(no change)
X L 노 체인지(no change)
L L 노 체인지(no change)
H L 노 체인지(no change)
X X H nQ0 to nQ3= LOW
Table 1
nCP0 nCP1 nMR Mode
H L Counter pulse
L L Counter pulse
X L No change
X L No change
L L No change
H L No change
X X H nQ0 to nQ3 = LOW
상기 액티브 하이 클럭 입력단자(nCP0)는 마이컴부의 출력단자 P1.2와 연결되어 마이컴부로부터 크리스탈 오실레이터의 주파수를 입력받아 하이 클럭을 발생시키는 역할을 하고,  The active high clock input terminal nCP0 is connected to the output terminal P1.2 of the microcomputer unit, and receives a frequency of the crystal oscillator from the microcomputer unit to generate a high clock.
상기 액티브 로우 클럭 입력단자(nCP1)는 마이컴부의 출력단자 P1.3과 연결되어 마이컴부로부터 크리스탈 오실레이터의 주파수를 입력받아 로우 클럭을 발생시키는 역할을 하며,  The active low clock input terminal nCP1 is connected to the output terminal P1.3 of the microcomputer unit and receives a frequency of the crystal oscillator from the microcomputer unit to generate a low clock.
상기 마스터 리셋 입력단자(nMR)는 마이컴부의 출력단자 P1.4와 연결되어 마이컴부로부터 마스터 리셋의 주파수를 입력받아 듀얼 BCD 카운터를 리셋시키는 역할을 한다. The master reset input terminal nMR is connected to the output terminal P1.4 of the microcomputer unit to receive a master reset frequency from the microcomputer unit to reset the dual BCD counter.
상기 액티브 하이 클럭 입력단자(nCP0)와 상기 액티브 로우 클럭 입력단자(nCP1)는 듀얼 BCD 카운터 내부에 구성된 동기화 회로를 통해 액티브 하이 클럭 입력단자(nCP0)와 액티브 로우 클럭 입력단자(nCP1)에서 펄스들이 발생될 때 생기는 글리치를 방지하기 위하여 동기화를 시켜준다. The active high clock input terminal nCP0 and the active low clock input terminal nCP1 have pulses at the active high clock input terminal nCP0 and the active low clock input terminal nCP1 through a synchronization circuit configured inside a dual BCD counter. Synchronize to prevent glitches that occur when they occur.
상기 래치신호는 마이컴부의 출력단자 P1.5와 연결되어 마이컴부에서 선택된 펄스를 기준으로 일정한 펄스폭을 갖는 펄스를 재생성시키는 역할을 한다. The latch signal is connected to the output terminal P1.5 of the microcomputer unit and serves to regenerate a pulse having a constant pulse width based on the pulse selected by the microcomputer unit.
상기 제1 D/A 컨버터부는 마이컴부의 일측에 연결된 제1 A/D 컨버터부와 연결되고, 상기 제2 D/A 컨버터부는 마이컴부의 일측에 연결된 제2 A/D 컨버터부와 연결되어 구성된다. The first D / A converter is connected to a first A / D converter connected to one side of the microcomputer, and the second D / A converter is connected to a second A / D converter connected to one side of the microcomputer.
상기 마이컴부(MCU)(270)는 RDS FM 송수신부로부터 수신받은 오디오 신호와 웨이크업 신호가 다채널로 동시에 입력단자에 입력되고,  The microcomputer unit (MCU) 270 is an audio signal and a wake-up signal received from the RDS FM transceiver and are simultaneously input to the input terminal in multiple channels,
수신받은 웨이크업 신호에 따라 대기상태에서 동작 상태로 전환되어 PWM 전원마이컴부, 초음파 센서부의 동작을 깨우고, 각 기기에 전원을 공급시키며, In response to the received wake-up signal, the state is changed from the standby state to the operating state to wake up the operation of the PWM power microcomputer and the ultrasonic sensor unit, and supply power to each device.
RDS FM 송수신부를 제어하여 측정된 강설량 측정 데이터 신호를 원격지의 중앙통제서버로 전송시키도록 제어하는 곳으로, 이는 89C52 8비트 마이크로컨트롤러로 구성된다. It controls RDS FM transceiver to transmit measured snowfall measurement data signal to remote central control server. It consists of 89C52 8-bit microcontroller.
즉, 본 발명에 따른 마이컴부는 도 10에서 도시한 바와 같이, 입출력 포트 P1.0단자에 RDS FM 송수신부의 출력단자와 연결되어, RDS FM 송수신부로부터 웨이크 업 신호(PW_ON)를 입력받고,  That is, as shown in FIG. 10, the microcomputer according to the present invention is connected to the output terminal of the RDS FM transceiver for the input / output port P1.0 terminal, and receives the wake-up signal PW_ON from the RDS FM transceiver.
입출력 포트 P1.1단자에 초음파 센서부(250)의 출력단자가 연결되어, 초음파 센서부(250)로부터 초음파의 변화 및 세기에 관한 데이터를 입력받으며,  The output terminal of the ultrasonic sensor unit 250 is connected to the input / output port P1.1 terminal, and receives data about the change and intensity of the ultrasonic wave from the ultrasonic sensor unit 250.
입출력 포트 P1.2단자에 액티브 하이 클럭 입력단자(nCP0)가 연결되어, 액티브 하이 클럭 입력단자(nCP0)로 크리스탈 오실레이터의 클럭을 출력시키고,  An active high clock input terminal (nCP0) is connected to the input / output port P1.2 terminal to output a crystal oscillator clock to the active high clock input terminal (nCP0).
입출력 포트 P1.3단자에 액티브 로우 클럭 입력단자(nCP1)가 연결되어,  Active low clock input terminal (nCP1) is connected to input / output port P1.3 terminal,
액티브 로우 클럭 입력단자(nCP1)로 크리스탈 오실레이터의 클럭을 출력시키며, 입출력 포트 P1.4단자에 마스터 리셋 입력단자(nMR)가 연결되어, 듀얼 BCD 카운터를 리셋시키며, 입출력 포트 P0.0~P0.7 단자를 8비트 디지털 신호 입력단자로 설정하고,  The output of the crystal oscillator is output to the active low clock input terminal (nCP1). A master reset input terminal (nMR) is connected to the input / output port P1.4 terminal to reset the dual BCD counter, and the input / output ports P0.0 to P0. Set the 7 terminal to the 8-bit digital signal input terminal,
제1 A/D 컨버터부, 제2 A/D 컨버터부가 연결되어, 카운터 PLD 래치부(260)로부터 래치된 초음파 카운터가 입력되고, 내부 연산을 통해 강설량의 수치를 소수점 세자리까지 연산하여 디스플레이시키며, 입출력 포트 P2.0~2.5 단자에 보드 ID 설정부(123a)가 연결되어,  The first A / D converter unit and the second A / D converter unit are connected to each other, and the ultrasonic counter latched from the counter PLD latch unit 260 is input, and calculates and displays the numerical value of snowfall to three decimal places through internal calculation. Board ID setting part 123a is connected to the I / O port P2.0 ~ 2.5 terminal,
보드 ID 설정부(123a)를 통해 AD0,AD1,AD2의 2비트 어드레스값에 따라 설정한 ID에 해당하는 제1 A/D 컨버터부 및 제2 A/D 컨버터부가 선택(Select)되도록 제어하며,  Through the board ID setting unit 123a, the first A / D converter unit and the second A / D converter unit corresponding to the ID set according to the 2-bit address value of AD0, AD1, AD2 are selected so as to be selected.
쓰기명령신호(WD)단자에 보드 ID 설정부의 입력단자 G1이 연결되어 보드 ID 설정부로 쓰기 명령신호를 보내며,  Input command G1 of board ID setting part is connected to write command signal (WD) terminal to send write command signal to board ID setting part.
읽기명령신호(RD)에 보드 ID 설정부의 입력단자 G2A가 연결되어 보드 ID 설정부로 읽기 명령신호를 보내고,  Input terminal G2A of the board ID setting unit is connected to the read command signal RD to send a read command signal to the board ID setting unit.
송신단자 TXD에 RDS FM 송수신부의 입력단자 일측이 연결되고, 수신단자 RXD에 RDS FM 송수신부의 출력단자 일측이 연결되어, RDS FM 송수신부와 양방향 데이터 통신을 하도록 구성된다. One end of an input terminal of the RDS FM transceiver is connected to the transmitting terminal TXD, and one end of an output terminal of the RDS FM transceiver is connected to the receiving terminal RXD, thereby performing bidirectional data communication with the RDS FM transceiver.
또한, 본 발명에 따른 마이컴부는 일측에 보드 ID 설정부(271)가 구성된다. In addition, the microcomputer according to the present invention is configured with a board ID setting unit 271 on one side.
상기 보드 ID 설정부는 마이컴부의 어드레스 설정 단자와 연결되어,  The board ID setting unit is connected to the address setting terminal of the microcomputer unit,
마이컴부에서 설정된 어드레스값에 따라 제1 A/D 컨버터부 및 제2 A/D 컨버터부가 선택되도록 하기 위해,  In order for the first A / D converter unit and the second A / D converter unit to be selected according to the address value set in the microcomputer unit,
제1 A/D 컨버터부 및 제2 A/D 컨버터부에 특정 보드 ID를 설정한 후, 특정보드 ID에 해당하는 제1 A/D 컨버터부와 제2 A/D 컨버터부 중 어느 하나가 마이컴부의 읽기명령신호(RD) 및 쓰기명령신호(WD)에 의해 선택(Select)되도록 중계하는 역할을 하는 곳으로, 이는 74LS138 TTL 소자로 구성된다. After setting a specific board ID for the first A / D converter and the second A / D converter, either one of the first A / D converter and the second A / D converter corresponding to the specific board ID It plays a role of relaying to be selected by the negative read command signal RD and the write command signal WD, and is composed of 74LS138 TTL elements.
상기 보드 ID 설정부는 입력단자 A,B,C에 마이컴부의 2비트 어드레스 설정단자(AD0,AD1,AD2)가 연결되고, 입력단자 G1, G2A단자에 마이컴부의 쓰기명령신호(WD)단자 및 읽기명령신호(RD)가 연결되며,  The board ID setting unit is connected to the input terminal A, B, C of the 2-bit address setting terminal (AD0, AD1, AD2) of the microcomputer unit, and the write command signal (WD) terminal and the read command of the microcomputer unit to the input terminals G1, G2A. Signal RD is connected,
출력단자 Y0에 제1 A/D 컨버터부가 연결되고, 출력단자 Y1에 제2 A/D 컨버터부가 연결되어, 입력단자 A,B,C의 2비트 연산에 의해 특정 보드 ID에 해당하는 제1 A/D 컨버터부와 제2 A/D 컨버터부가 2비트로 실렉팅된다.  The first A / D converter is connected to the output terminal Y0, the second A / D converter is connected to the output terminal Y1, and the first A corresponding to the specific board ID is performed by two-bit operation of the input terminals A, B, and C. The / D converter section and the second A / D converter section are selected by 2 bits.
즉, 입력단자 A,B,C의 2비트 연산에 의해 특정 보드 ID가 "00"이면, 제1 A/D 컨버터부가 실렉팅되고, 입력단자 A,B,C의 2비트 연산에 의해 특정 보드 ID가 "01"이면, 제2 A/D 컨버터부가 실렉팅된다.That is, when the specific board ID is "00" by two-bit operation of the input terminals A, B and C, the first A / D converter unit is selected and the specific board is performed by the two-bit operation of the input terminals A, B and C. If the ID is " 01 ", the second A / D converter section is selected.
또한, 본 발명에 따른 마이컴부(270)는 RDS FM 송수신부로부터 데이터 신호로서, 웨이크업 신호가 수신되면,  In addition, the microcomputer 270 according to the present invention receives a wake-up signal as a data signal from the RDS FM transceiver,
대기상태에서 동작 상태로 전환되어 PWM 전원마이컴부(PWM POWER & BAT CONTROL), 초음파 센서부의 동작을 깨우고, 그 동작된 신호를 PWM 전원마이컴부(PWM POWER & BAT CONTROL)로 출력되도록 제어하여 전원을 각 기기로 공급시킨다. It switches from the standby state to the operating state, wakes up the PWM POWER & BAT CONTROL and the ultrasonic sensor, and controls the output signal to be outputted to the PWM POWER & BAT CONTROL. Supply to each device.
즉, RDS FM 송수신부로부터 전송된 데이터 신호 중 하나인 웨이크 업(Wake up) 신호를 입력받아, 0.5mA~1.5mA로 PWM 전원마이컴부(PWM POWER & BAT CONTROL), 초음파 센서부의 전원을 온 시킨다. That is, a wake up signal, which is one of the data signals transmitted from the RDS FM transceiver, is input, and the power of the PWM power & battery and the ultrasonic sensor are turned on at 0.5 mA to 1.5 mA. .
본 발명에 따른 마이컴부는 카운터 PLD 래치부(260)로부터 래치된 초음파 카운터가 입력되면, 내부 연산을 통해 강설량의 수치를 연산한다. According to the present invention, when the ultrasonic counter latched from the counter PLD latch unit 260 is input, the microcomputer calculates a numerical value of snowfall through internal calculation.
일예로, 공기 중의 음파를 331m/sec로 고정하고, 소수점 세자리 클럭 주파수를 계산하고, 강설량을 산출하는 과정을 설명한다. As an example, a process of fixing the sound waves in the air at 331 m / sec, calculating the clock frequency of three decimal places, and calculating the amount of snowfall will be described.
그리고, 바닥면과 상단방향으로 2m 위치에 RDS FM형 강설량 측정모듈(200)의 초음파 센서부가 위치되었을 때 강설량을 산출한 후,  And, after calculating the amount of snow when the ultrasonic sensor portion of the RDS FM-type snowfall measurement module 200 is located at the bottom surface and the upper direction 2m,
다시 50cm 간격(2m, 1.5m, 1m, 0.5m)으로 하단 방향으로 RDS FM형 강설량 측정모듈(200)의 초음파 센서부를 이동시켜 강설량을 산출한다. Again, the amount of snow is calculated by moving the ultrasonic sensor unit of the RDS-FM type snowfall measurement module 200 in the lower direction at 50cm intervals (2m, 1.5m, 1m, 0.5m).
본 발명에서는 강설량 산출시 소수점 세자리를 반올림하여 표시되도록 구성된다.In the present invention, when the amount of snowfall is calculated to be rounded to three decimal places.
먼저, 공기 중의 음파를 강설량 수치(1mm)와 주기(n_sec)로 환산한다. First, the sound waves in the air are converted into a snowfall value (1 mm) and a period (n_sec).
즉, 공기 중의 음파가 331m/s이므로, 이를 m와 m_sec로 환산하면,  That is, since the sound waves in the air is 331 m / s, when converted into m and m_sec,
331m=1,000m_sec가 되고, 331m = 1,000m_sec,
이를 다시 mm와 n_sec로 환산하면,331,000mm=1,000,000,000n_sec가 된다 Converting this back into mm and n_sec, 331,000 mm = 1,000,000,000 n_sec.
` 이때, 강설량 수치로 변환시키면, 1mm=3,021n_sec가 됨을 알 수가 있다.`At this time, if it is converted into a snowfall value, it can be seen that 1mm = 3,021n_sec.
주기(T) = 3,021n_sec를 주파수로 변환하면, Converting period (T) = 3021 n_sec to frequency,
주파수(F)=1/T Frequency (F) = 1 / T
=1/3,021n_sec         = 1 / 3,021n_sec
=331.016Khz가 된다.         = 331.016 Khz.
다음으로, 마이컴부의 메인 클럭을 32분주회로를 통해 연산한 후, 주기(n_sec)로 환산한다. Next, after calculating the main clock of the microcomputer unit through the 32 frequency divider circuit, the microcomputer converts the main clock into a period n_sec.
즉, 마이컴부의 메인 클럭(main clock)이 11.0592 Mhz이라면, 32분주회로를 통해 계산하면, 345.600Khz(T=2,894n_sec)가 된다. That is, if the main clock (main clock) of the microcomputer unit is 11.0592 Mhz, when calculated through a 32-division circuit, it becomes 345.600Khz (T = 2,894n_sec).
다음으로, 카운터 PLD 래치부(260)를 통해 카운터된 값(일예 : 상수 300mm)에 공기 중의 음파에 따른 주기와, 마이컴부의 메인 클럭의 주기를 비교한 차이값(일예 : 127n_sec)을 곱하고,  Next, the value countered by the counter PLD latch unit 260 (e.g., constant 300mm) is multiplied by a period (e.g., 127n_sec) comparing the period of the sound wave in the air with the period of the main clock of the microcomputer unit,
공기 중의 음파를 강설량 수치로 변환한 값(3,021 n_sec)으로 나눈 후 연산된 정수값(일예 : 12.61mm)을 카운터 PLD 래치부(260)를 통해 카운터된 값(일예 : 상수 300mm)에서 감산하고, 나누기 2를 한 후, 바닥면과 상단방향으로 위치한 초음파 센서부의 현 위치값에서 차감시켜 강설량 수치를 구한다. After dividing the sound wave in the air by the value of snowfall (3,021 n_sec), the calculated integer value (e.g., 12.61mm) is subtracted from the counter value (e.g., constant 300mm) through the counter PLD latch unit 260, After dividing 2, the snowfall value is obtained by subtracting from the current position value of the ultrasonic sensor located in the bottom and top direction.
일예로, 카운터 PLD 래치부(260)를 통해 카운터된 값이 상수 300mm이라면, 여기에 127n_sec를 곱하고, 그 곱한 수에 3,021 n_sec로 나누면 12.61mm의 정수값이 나온다. For example, if the value countered by the counter PLD latch unit 260 is a constant 300mm, multiply it by 127n_sec and divide the multiplied number by 3,021 n_sec to obtain an integer value of 12.61mm.
그리고, 카운터 PLD 래치부(260)를 통해 카운터된 값이 상수 300이니깐 여기서, 12.61mm의 정수값을 감산시키면 287.38mm가 나온다. Since the value countered by the counter PLD latch unit 260 is a constant 300, subtracting an integer value of 12.61 mm yields 287.38 mm.
그리고, 나누기 2를 하면 143.69mm가 나온다.Then divide by 2 and you get 143.69mm.
여기서, 나누기 2를 하는 이유는 초음파 센서가 바닥면에 쌓인 눈과 부딪쳐 반사되기 때문에 송신된 거리와, 반사된 거리를 감안하여 정확한 강설량 수치를 산출하기 위함이다.  Here, the reason for the division 2 is to calculate the exact snowfall value in consideration of the transmitted distance and the reflected distance because the ultrasonic sensor is reflected by the snow accumulated on the floor.
이어서, 바닥면과 상단방향으로 위치한 초음파 센서부의 현 위치값(2m이므로, 2000mm)에 상기 나누기 2를 한 143.69mm를 차감시켜 1856.31mm의 강설량 수치를 얻게 된다. Subsequently, a snowfall amount of 1856.31 mm is obtained by subtracting 143.69 mm obtained by dividing 2 from the current position value of the ultrasonic sensor unit located at the bottom surface and the upper direction (as it is 2 m, 2000 mm).
여기서, 나온 강설량은 하나의 일실시예로서, 계산의 편의를 위해서 계산한 값이다. Here, the amount of snowfall is, as an example, a value calculated for convenience of calculation.
다음으로, 50cm 간격으로 하단 방향으로 RDS FM형 강설량 측정모듈(200)의 초음파 센서부를 이동시켜 강설량을 상기와 같은 과정을 반복하여 산출한다. Next, by moving the ultrasonic sensor unit of the RDS FM-type snowfall measurement module 200 in the bottom direction at 50cm intervals to calculate the snowfall by repeating the above process.
다음으로, 2m, 1.5m, 1m, 0.5m에서 계산된 카운터 값 중 평균값을 구해서, 최종 강설량 수치를 산출한다. Next, the average value is calculated from the counter values calculated at 2 m, 1.5 m, 1 m, and 0.5 m, and the final snowfall value is calculated.
일예로, 바닥면과 상단방향으로 2m 위치에 RDS FM형 강설량 측정모듈(200)의 초음파 센서부가 위치되었을 때 강설량 수치가 1856.31mm이고,  For example, when the ultrasonic sensor portion of the RDS FM-type snowfall measurement module 200 is located at a position of 2m in the bottom and the top direction, the snowfall value is 1856.31mm,
바닥면과 상단방향으로 1.5m 위치에 RDS FM형 강설량 측정모듈(200)의 초음파 센서부가 위치되었을 때 강설량 수치가 1840.78mm이며,  When the ultrasonic sensor portion of the RDS FM-type snowfall measurement module 200 is located at the bottom and the top direction 1.5m position, the snowfall value is 1840.78mm,
바닥면과 상단방향으로 1m 위치에 RDS FM형 강설량 측정모듈(200)의 초음파 센서부가 위치되었을 때 강설량 수치가 1860.23mm이고,  When the ultrasonic sensor portion of the RDS FM-type snowfall measurement module 200 is located at a position 1m in the bottom and top direction, the snowfall value is 1860.23mm,
바닥면과 상단방향으로 0.5m 위치에 RDS FM형 강설량 측정모듈(200)의 초음파 센서부가 위치되었을 때 강설량 수치가 1845.64mm가 산출된다면, 상기 1856.31mm + 1840.78mm + 1860.23mm + 1845.64mm를 모두 더한 후, 나누기 4를 하면, 1850.74mm가 나온다. 이때의 값을 최종 강설량 수치로 설정한다. If the amount of snowfall is calculated to be 1845.64mm when the ultrasonic sensor part of the RDS FM-type snowfall measurement module 200 is positioned at 0.5m in the bottom and top directions, the 1856.31mm + 1840.78mm + 1860.23mm + 1845.64mm are added together. If you divide by 4, you get 1850.74mm. The value at this time is set to the final snowfall value.
여기서, 나온 강설량은 하나의 일실시예로서, 계산의 편의를 위해서 계산한 값이다. Here, the amount of snowfall is, as an example, a value calculated for convenience of calculation.
또한, 본 발명에 따른 마이컴부에서는 RDS FM형 강설량 측정모듈(200)의 초음파 센서로 구동신호를 보내기 전에 초음파센서부가 설치된 회전형 헤드 이음부에 좌우회전신호를 보내도록 셋팅된다. In addition, the microcomputer according to the present invention is set to send a left and right rotation signal to the rotary head joint is installed before the drive signal to the ultrasonic sensor of the RDS FM type snowfall measurement module 200.
여기서, 마이컴부의 좌우회전신호는 RDS FM형 강설량 측정모듈(200)를 ±30~90°각도로 좌우회전시킨다. Here, the left and right rotation signal of the microcomputer unit rotates the RDS-FM type snowfall measurement module 200 left and right at an angle of ± 30 ~ 90 °.
즉, 초음파 센서가 상단면에 쌓인 눈으로 인해 강설량 측정의 오차가 발생되는 것을 줄이기 위해, RDS FM형 강설량 측정모듈(200)를 ±30~90°각도로 좌우회전시켜 초음파 센서의 상단면에 쌓인 눈을 털어버리는 동작을 한다. That is, in order to reduce the occurrence of errors in snowfall measurement due to snow accumulated on the top surface of the ultrasonic sensor, the RDS FM-type snowfall measurement module 200 is rotated left and right at an angle of ± 30 to 90 ° and stacked on the top surface of the ultrasonic sensor. Brush your eyes off.
이하, 본 발명에 따른 RDS FM형 강설량 측정모듈을 이용한 강설량측정방법의 구체적인 동작과정에 관해 설명한다. Hereinafter, a detailed operation process of the snowfall measurement method using the RDS FM type snowfall measurement module according to the present invention.
먼저, 지지프레임의 상단 일측에 설치된 태양광전지판을 통해 태양광을 모으고 발전(發電)을 하여 생성된 전기를 배터리에 충전시킨 후, RDS FM형 강설량 측정모듈로 전원을 공급시킨다. First, the solar cell is collected through a solar panel installed on the upper side of the support frame, charged with electricity generated by generating electricity, and then supplied power to the RDS FM snowfall measuring module.
다음으로, RDS FM형 강설량 측정모듈을 통해 FM 대역(76~108MHz)에서 원격지의 중앙통제서버로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 마이컴부(MCU)로 전달한다. Next, through the RDS FM-type snowfall measurement module receives the audio signal and wake-up signal transmitted from the central control server of the remote in the FM band (76 ~ 108MHz) and delivers to the microcomputer (MCU).
다음으로, 마이컴부에서 RDS FM 송수신부로부터 웨이크업 신호를 수신받으면, 대기상태에서 동작 상태로 전환되어 PWM 전원마이컴부(PWM POWER & BAT CONTROL), PWM 전원마이컴부(PWM POWER & BAT CONTROL)를 통해 각 기기로 전원을 공급시킨다. Next, when the microcomputer receives the wake-up signal from the RDS FM transmitter / receiver, it switches from the standby state to the operating state to convert the PWM power microcomputer (PWM POWER & BAT CONTROL) and PWM power microcomputer (PWM POWER & BAT CONTROL). Supply power to each device through
다음으로, 마이컴부에서 초음파센서부가 설치된 회전형 헤드 이음부에 좌우회전신호를 보낸 후, 초음파 센서부를 동작시킨다. Next, the microcomputer unit sends a left and right rotation signal to the rotary head joint provided with the ultrasonic sensor unit, and then operates the ultrasonic sensor unit.
다음으로, 초음파 센서부(250)에서 바닥방향으로 초음파를 송출하고 반사되어 돌아오는 초음파의 변화나 세기를 측정한 후 마이컴부로 전송시킨다. Next, the ultrasonic sensor unit 250 transmits the ultrasonic wave to the bottom direction and measures the change or intensity of the ultrasonic wave reflected and returned to the microcomputer unit.
다음으로, 마이컴부에 카운터 PLD 래치부(260)로부터 래치된 초음파 카운터가 입력되면, 내부 연산을 통해 강설량의 수치를 연산한다. Next, when the ultrasonic counter latched from the counter PLD latch unit 260 is input to the microcomputer unit, the numerical value of the snow amount is calculated through internal calculation.
먼저, 공기 중의 음파를 강설량 수치(1mm)와 주기(n_sec)로 환산한다. First, the sound waves in the air are converted into a snowfall value (1 mm) and a period (n_sec).
이어서, 마이컴부의 메인 클럭을 32분주회로를 통해 연산한 후, 주기(n_sec)로 환산한다.Subsequently, the main clock of the microcomputer unit is calculated through the 32 division circuit, and then converted into a period n_sec.
이어서, 카운터 PLD 래치부(260)를 통해 카운터된 값(일예 : 상수 300mm)에 공기 중의 음파에 따른 주기와, 마이컴부의 메인 클럭의 주기를 비교한 차이값(일예 : 127n_sec)을 곱하고, 공기 중의 음파를 강설량 수치로 변환한 값(3,021 n_sec)으로 나눈 후 연산된 정수값(일예 : 12.61mm)을 카운터 PLD 래치부(260)를 통해 카운터된 값(일예 : 상수 300mm)에서 감산하고, 나누기 2를 하여 강설량 수치를 구한다. Subsequently, the value countered by the counter PLD latch unit 260 (e.g., a constant 300mm) is multiplied by a period (e.g., 127n_sec) comparing the period according to the sound wave in the air with the period of the main clock of the microcomputer unit (e.g., 127n_sec). After dividing the sound wave by the snowfall value (3,021 n_sec), the calculated integer value (e.g. 12.61mm) is subtracted from the counter value (e.g. constant 300mm) by the counter PLD latch unit 260, and divided by 2 Get the snowfall value by.
이어서, 50cm 간격으로 하단 방향으로 RDS FM형 강설량 측정모듈(200)의 초음파 센서부를 이동시켜 강설량을 상기와 같은 과정을 반복하여 산출한다. Subsequently, the amount of snowfall is calculated by repeating the above process by moving the ultrasonic sensor unit of the RDS-FM type snowfall measurement module 200 in the bottom direction at 50 cm intervals.
이어서, 2m, 1.5m, 1m, 0.5m에서 계산된 카운터 값 중 평균값을 구해서, 최종 강설량 수치를 산출한다.Next, the average value is calculated from the counter values calculated at 2 m, 1.5 m, 1 m, and 0.5 m, and the final snowfall value is calculated.
다음으로, 마이컴부(MCU)에서 RDS FM 송수신부의 입력단자 RIN으로 강설량 측정 데이터 신호를 전송시킨다.  Next, the microcomputer unit (MCU) transmits the snowfall measurement data signal to the input terminal RIN of the RDS FM transceiver.
이때, RDS FM 송수신부의 TX 안테나에서는 RDS FM형 강설량 측정모듈과 근접된 위치에 있는 주변기기인 핸드셋, 핸즈퓨리, MP3 플레이어, GPS/네비게이션, 위성 디지털 오디오 라디오, 핸드폰에 오디오 신호와 함께 강설량 측정 데이터 신호를 전송시킨다.  At this time, the TX antenna of the RDS FM transmitter and receiver is a snowfall measurement data signal along with an audio signal to a handset, a hand furry, an MP3 player, a GPS / navigation, a satellite digital audio radio, and a mobile phone, which are in close proximity to the RDS FM type snowfall measurement module. Send.
다음으로, RDS FM 송수신부(210)에서 강설량 측정 데이터 신호를 FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로 전송시킨다. Next, the RDS FM transceiver 210 transmits the snowfall measurement data signal to the central control server at a remote location through the FM band (76 to 108 MHz).

Claims (7)

  1. 일정 높이를 갖는 지지프레임에 설치되어 강설량을 측정하는 장치에 있어서, In the device for measuring the amount of snow installed on a support frame having a certain height,
    상기 강설량 측정장치(1)는 지지프레임의 상단 일측에 설치되어, The snowfall measuring device 1 is installed on one side of the upper end of the support frame,
    태양광을 모으고 발전(發電)을 하여 생성된 전기를 배터리에 충전시킨 후, RDS FM형 강설량 측정모듈의 전원으로 사용하는 태양광전지판(100)과, After collecting solar power and charging electricity generated in the battery, the solar panel 100 used as a power source for the RDS-FM type snowfall measurement module,
    태양광전지판의 하단에 위치하여, 태양광전지판으로부터 자가발전된 전원을 공급받고, FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 구동되며,  Located at the bottom of the solar panel, it is supplied with self-generated power from the solar panel, and is driven by receiving audio signals and wake-up signals transmitted from a central control server at a remote location through the FM band (76 to 108 MHz).
    초음파를 통해 측정된 강설량 측정 데이터 신호를 원격지의 중앙통제서버로 전송시키는 RDS FM형 강설량 측정모듈(200)이 포함되어 구성되는 것을 특징으로 하는 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치. Snowfall measurement device using the RDS FM-type snowfall measurement module, characterized in that it comprises a RDS FM-type snowfall measurement module 200 for transmitting the snowfall measurement data signal measured by the ultrasonic wave to a central control server of a remote location.
  2. 제1항에 있어서,  The method of claim 1,
    RDS FM형 강설량 측정모듈(200)은 RDS FM type snowfall measurement module 200
    FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버부로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 마이컴부(MCU)로 전달하고, Receives audio signal and wake-up signal transmitted from central control server of remote place through FM band (76 ~ 108MHz), and transmits it to microcomputer unit (MCU),
    강설량 측정장치와 근접된 위치에 있는 주변기기인 핸드셋, 핸즈퓨리, MP3 플레이어, GPS/네비게이션, 위성 디지털 오디오 라디오, 핸드폰에 오디오 신호와, 강수량 측정 데이터 신호를 순차적으로 채널별로 전송시키고,  Audio signals and precipitation measurement data signals are sequentially transmitted to channels, such as handsets, hands-free, MP3 players, GPS / navigations, satellite digital audio radios, and mobile phones, which are located close to the snowfall measuring device.
    강설량 측정 데이터 신호를 FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로 전송시키는 RDS FM 송수신부(210)와, RDS FM transmission and reception unit 210 for transmitting the snowfall measurement data signal to the central control server of the remote place through the FM band (76 ~ 108MHz),
    RDS FM형 강설량 측정모듈로 유입되는 전원을 DC_DC 변환한 후 PWM 방식으로 제어하여 충전배터리에 안정된 전원을 공급하는 PWM 전원마이컴부(PWM POWER & BAT CONTROL)(220)와, PWM power microcomputer (PWM POWER & BAT CONTROL) 220 for supplying stable power to the rechargeable battery by converting the power flowing into the RDS FM type snowfall measurement module into DC_DC and controlling it with PWM method;
    충전배터리(BAT)에 과전류, 과전압이 유입되는 것을 방지하고, 충전배터리가 방전 및 과방전되는 것을 방지하는 과전류과전압 보호 회로부(230)와, An overcurrent overvoltage protection circuit 230 which prevents overcurrent and overvoltage from flowing into the rechargeable battery BAT and prevents discharge and overdischarge of the rechargeable battery;
    마이컴부 일측에 연결되어, 태양전지판에 충전된 전압이 부족할 경우에 마이컴부의 제어하에 2차 전지를 통해 RDS FM형 강설량 측정모듈에 전원을 공급시키는 2차 전지 전원 공급부(240)와, A secondary battery power supply unit 240 connected to one side of the microcomputer unit and supplying power to the RDS-FM type snowfall measuring module through the secondary battery when the voltage charged in the solar panel is insufficient;
    마이컴부 일측에 연결되어, 바닥방향으로 초음파를 송출하고 반사되어 돌아오는 초음파의 변화나 세기를 검출하여 마이컴부로 송신하는 초음파 센서부(250)와, An ultrasonic sensor unit 250 connected to one side of the microcomputer unit and transmitting ultrasonic waves in the bottom direction and detecting changes or intensities of the ultrasonic waves reflected back to the microcomputer unit;
    초음파 센서부를 통해 강설량 측정시, PLD(Programmable Logic Device)를 통해 초음파 센서부로 초음파 송출 카운터를 보내고,  When measuring snowfall through the ultrasonic sensor unit, send an ultrasonic discharge counter to the ultrasonic sensor unit through a programmable logic device (PLD),
    바닥방향으로 초음파 발사 후에 반사음이 되돌아 오는 시간에 따라 초음파 송출 카운터를 래치시키고, 래치된 신호를 아날로그 신호로 변환시켜 마이컴부로 전송시키는 카운터 PLD 래치부(260)와, A counter PLD latch unit 260 which latches the ultrasonic wave transmitting counter according to the time when the reflected sound returns after the ultrasonic wave is fired in the bottom direction, converts the latched signal into an analog signal and transmits it to the microcomputer unit;
    RDS FM 송수신부로부터 수신받은 오디오 신호와 웨이크업 신호가 다채널로 동시에 입력단자에 입력되고, 수신받은 웨이크업 신호에 따라 대기상태에서 동작 상태로 전환되어 PWM 전원마이컴부, 초음파 센서부의 동작을 깨우고,  The audio signal and the wake-up signal received from the RDS FM transmitter / receiver are simultaneously input to the input terminal in multiple channels, and are switched from the standby state to the operating state according to the received wake-up signal to wake up the operation of the PWM power microcomputer and the ultrasonic sensor unit. ,
    각 기기에 전원을 공급시키며, RDS FM 송수신부를 제어하여 측정된 강설량 측정 데이터 신호를 원격지의 중앙통제서버로 전송시키도록 제어하는 마이컴부(MCU)(270)로 구성되는 것을 특징으로 하는 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치. RDS FM type, characterized in that consisting of a microcomputer unit (MCU) 270 for supplying power to each device, controlling the RDS FM transceiver to transmit the measured snowfall measurement data signal to a remote central control server Snowfall measurement device using snowfall measurement module.
  3. 제2항에 있어서,  The method of claim 2,
    상기 RDS FM 송수신부(210)는 The RDS FM transceiver 210
    FMI 단자에 FM 라디오 수신기능을 갖는 RX 안테나가 연결되고,  An RX antenna with FM radio reception is connected to the FMI terminal,
    TXO 단자에 FM 송신기능을 갖는 TX 안테나가 연결되며, VDD 단자와 GND 단자에 저전압 레귤레이터(LDO)가 연결되고,  TX antenna with FM transmission is connected to TXO terminal, low voltage regulator (LDO) is connected to VDD terminal and GND terminal,
    X 안테나를 통해 수신된 FM 라디오 신호는 내부의 The FM radio signal received through the X antenna is internal
    FM 튜너부를 거쳐 튜너가 된 후, 오디오 출력단자 ROUT과  After the FM tuner, the tuner is connected to the audio output terminal ROUT.
    데이터 출력단자 LOUT를 통해 4채널로 구성된 마이컴부(MCU)의 입력단자 RB4, RB5, RB6, RB7로 전달되고,  Through the data output terminal LOUT, it is transferred to the input terminals RB4, RB5, RB6, and RB7 of the microcomputer unit (MCU) composed of four channels.
    입력단자 LIN에 마이컴부(MCU)로부터 데이터 신호가 입력되고, 입력단자 RIN에 마이컴부(MCU)로부터 오디오 전송 명령신호가 입력되어,  A data signal is input from the microcomputer unit (MCU) to the input terminal LIN, and an audio transmission command signal is input from the microcomputer unit (MCU) to the input terminal RIN.
    TX 안테나를 통해 RDS FM형 강설량 측정모듈과 근접된 위치에 있는 주변기기인 핸드셋, 핸즈퓨리, MP3 플레이어, GPS/네비게이션, 위성 디지털 오디오 라디오, 핸드폰에 오디오 신호와 함께 강설량 측정 데이터 신호를 전송시키도록 구성되는 것을 특징으로 하는 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치. It is configured to transmit snow measurement data signal along with audio signal to peripheral devices such as handsets, hands-free, MP3 player, GPS / navigation, satellite digital audio radio and mobile phone which are located in close proximity to RDS FM type snowfall measurement module via TX antenna Snowfall measurement device using the RDS-FM type snowfall measurement module, characterized in that.
  4. 제2항에 있어서,  The method of claim 2,
    상기 PWM 전원마이컴부(PWM POWER & BAT CONTROL)(220)는 The PWM power microcomputer unit (PWM POWER & BAT CONTROL) 220
    저항 R138을 통해 프로그램 설정한 전압을 DC/DC컨버터부의 INV 단자에 인가시키고, Apply the voltage set by the resistor R138 to the INV terminal of the DC / DC converter.
    태양광전지판에서 발생된 전기 및 상용전원(18V~50V)을 저항 R123, R125, R127를 통해 전압분배하여 DC/DC컨버터부의 V+단자와 전류피크센스 단자(SI)에 인가시키면,  When electric and commercial power (18V ~ 50V) generated from the solar panel is divided by voltage through resistors R123, R125, and R127 and applied to the V + terminal and the current peak sense terminal (SI) of the DC / DC converter,
    DC/DC컨버터의 비교인버팅입력단자(INV)에 입력된 전압과 내부 레퍼런스 전압(1.25V)을 비교기를 통해 비교 연산한 후,  After comparing the voltage input to the comparison inverter input terminal (INV) of the DC / DC converter and the internal reference voltage (1.25V) through a comparator,
    레퍼런스 전압 이상의 경우에는 PWM 방식으로, 입력된 DC를 DC-DC 컨버터(NJM2360)에서 1.5A로 스위칭시켜 교류로 만들고,  If the voltage is higher than the reference voltage, the input DC is switched to 1.5A in the DC-DC converter (NJM2360) to make AC.
    출력된 교류를 센싱 저항 R133을 통해 트랜지스터 Q4를 턴온시켜, 트랜지스터 Q4의 컬렉터 단자에 있던 전압분배된 SOL_POWER 전압 및 상용전원(16V~50V)이 이미터 단자를 지나 다이오드 D69을 통해 평활시켜,  Transistor Q4 is turned on via sense resistor R133, and the voltage-distributed SOL_POWER voltage and the commercial power supply (16V to 50V) at the collector terminal of transistor Q4 are smoothed through diode D69 across the emitter terminal.
    인덕터 L5를 통해 5.2V가 출력되어 충전배터리(BAT)에 충전시키도록 구성되는 것을 특징으로 하는 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치. 5.2V is output through the inductor L5 snowfall measurement device using the RDS FM type snowfall measurement module, characterized in that configured to charge the rechargeable battery (BAT).
  5. 제2항에 있어서,  The method of claim 2,
    상기 카운터 PLD 래치부(260)는  The counter PLD latch unit 260 is
    강설량의 수치 중 상수 부위가 표현이 되도록 하기 위해, In order for the constant part of the snowfall number to be expressed,
    초음파 센서부로 초음파 송출 카운터를 보내고, 바닥방향으로 초음파 발사 후에 반사음이 되돌아 오는 시간에 따라 초음파 송출 카운터를 래치시키고, 래치된 신호를 디지털신호로 변환시켜 마이컴부로 전송시키는 제1듀얼 BCD 카운터제2듀얼 BCD 카운터와, A first dual BCD counter for sending an ultrasonic sending counter to the ultrasonic sensor unit and latching the ultrasonic sending counter according to the time when the reflected sound returns after the ultrasonic firing in the bottom direction, converting the latched signal into a digital signal and sending it to the microcomputer unit. With a BCD counter,
    강설량의 수치 중 소수점 세자리까지 표현이 되도록 하기 위해, 초음파 센서부로 초음파 송출 카운터를 보내고, 바닥방향으로 초음파 발사 후에 반사음이 되돌아 오는 시간에 따라 초음파 송출 카운터를 래치시키고,  In order to express the amount of snowfall to three decimal places, an ultrasonic sending counter is sent to the ultrasonic sensor unit, and the ultrasonic sending counter is latched according to the time when the reflected sound returns after the ultrasonic firing in the bottom direction.
    래치된 신호를 디지털신호로 변환시켜 마이컴부로 전송시키는 제3듀얼 BCD 카운터제4듀얼 BCD 카운터와, A third dual BCD counter for converting the latched signal into a digital signal and transmitting the digital signal to the microcomputer unit;
    상기 제1듀얼 BCD 카운터와 제2듀얼 BCD 카운터에서 출력되는 래치된 신호를 아날로그 신호로 변환시키는 제1 D/A 컨버터부와, A first D / A converter unit converting the latched signal output from the first dual BCD counter and the second dual BCD counter into an analog signal;
    상기 제3듀얼 BCD 카운터와 제4듀얼 BCD 카운터에서 출력되는 래치된 신호를 디지털신호로 변환시키는 제2 D/A 컨버터부로 구성되는 것을 특징으로 하는 RDS FM형 강설량 측정모듈을 이용한 강설량측정장치. And a second D / A converter unit converting the latched signal output from the third dual BCD counter and the fourth dual BCD counter into a digital signal.
  6. 태양광전지판을 통해 태양광을 모으고 발전(發電)을 하여 생성된 전기를 배터리에 충전시킨 후, RDS FM형 강설량 측정모듈로 전원을 공급시키는 단계(S100)와,  Collecting solar light through the solar panel and charging the battery with electricity generated by generating electricity, and then supplying power to the RDS-FM type snowfall measurement module (S100);
    RDS FM형 강설량 측정모듈을 통해 FM 대역(76~108MHz)에서 원격지의 중앙통제서버로부터 전송되는 오디오 신호와 웨이크업 신호를 수신받아 마이컴부(MCU)로 전달하는 단계(S200)와, Receiving an audio signal and a wake-up signal transmitted from the central control server of the remote in the FM band (76 ~ 108MHz) through the RDS FM type snowfall measurement module and delivering to the microcomputer (MCU) (S200),
    마이컴부에서 RDS FM 송수신부로부터 웨이크업 신호를 수신받으면, 대기상태에서 동작 상태로 전환되어 PWM 전원마이컴부(PWM POWER & BAT CONTROL)의 동작을 깨우고, PWM 전원마이컴부(PWM POWER & BAT CONTROL)를 통해 각 기기로 전원을 공급시키는 단계(S300)와,  When the microcomputer receives the wake-up signal from the RDS-FM transmitter / receiver, it switches from the standby state to the operating state to wake up the operation of the PWM power & battery control and the PWM power & battery control. Supplying power to each device through (S300),
    마이컴부에서 초음파센서부가 설치된 회전형 헤드 이음부에 좌우회전신호를 보낸 후, 초음파 센서부를 동작시키는 단계(S400)와, After transmitting the left and right rotation signal to the rotary head joint is installed in the ultrasonic sensor unit from the microcomputer unit, and operating the ultrasonic sensor unit (S400),
    초음파 센서부(250)에서 바닥방향으로 초음파를 송출하고 반사되어 돌아오는 초음파의 변화나 세기를 측정한 후 마이컴부로 전송시키는 단계(S500)와,  The ultrasonic sensor unit 250 transmits the ultrasonic wave to the bottom direction and measures the change or intensity of the ultrasonic wave reflected and returned to the microcomputer unit (S500),
    마이컴부에 카운터 PLD 래치부(260)로부터 래치된 초음파 카운터가 입력되면, 내부 연산을 통해 강설량의 수치를 연산하는 단계(S600)와,  When the ultrasonic counter latched from the counter PLD latch unit 260 is input to the microcomputer unit, calculating a snowfall value through internal calculation (S600);
    마이컴부(MCU)에서 RDS FM 송수신부의 입력단자 RIN으로 강설량 측정 데이터 신호를 전송시키는 단계(S700)와,  Transmitting a snowfall measurement data signal from a microcomputer (MCU) to an input terminal RIN of the RDS FM transceiver (S700);
    RDS FM 송수신부(210)에서 강설량 측정 데이터 신호를 FM 대역(76~108MHz)을 통해 원격지의 중앙통제서버로 전송시키는 단계(S800)로 이루어지는 것을 특징으로 하는 RDS FM형 강설량 측정모듈을 이용한 강설량측정방법. RDS FM transceiver 210 transmits the snowfall measurement data signal to the central control server of the remote location through the FM band (76 ~ 108MHz) (S800) characterized in that the snowfall measurement using the RDS FM type snowfall measurement module Way.
  7. 제6항에 있어서,  The method of claim 6,
    마이컴부에 카운터 PLD 래치부(260)로부터 래치된 초음파 카운터가 입력되면, 내부 연산을 통해 강설량의 수치를 연산하는 단계(S600)는 When the ultrasonic counter latched from the counter PLD latch unit 260 is input to the microcomputer unit, the step of calculating a snowfall value through internal calculation (S600)
    공기 중의 음파를 강설량 수치(1mm)와 주기(n_sec)로 환산하는 단계(S610)와, Converting sound waves in the air into a snowfall value (1 mm) and a period (n_sec) (S610),
    마이컴부의 메인 클럭을 32분주회로를 통해 연산한 후, 주기(n_sec)로 환산하는 단계(S620)와,  Computing the main clock of the microcomputer unit through a 32-dividing circuit, and converting it to a period n_sec (S620);
    카운터 PLD 래치부(260)를 통해 카운터된 값에 공기 중의 음파에 따른 주기와, 마이컴부의 메인 클럭의 주기를 비교한 차이값을 곱하고,  The value countered by the counter PLD latch unit 260 is multiplied by the difference value comparing the period of the sound wave in the air with the period of the main clock of the microcomputer unit,
    공기 중의 음파를 강설량 수치로 변환한 값으로 나눈 후 연산된 정수값을 카운터 PLD 래치부(260)를 통해 카운터된 값에서 감산하고, 나누기 2를 한 후, 바닥면과 상단방향으로 위치한 초음파 센서부의 현 위치값에서 차감시켜 강설량 수치를 연산하는 단계(S630)와, After dividing the sound wave in the air by the value of snowfall, the calculated integer value is subtracted from the counter value through the counter PLD latch unit 260, divided by 2, and then the ultrasonic sensor unit located in the bottom surface and the upper direction. Calculating a snowfall value by subtracting the current position value (S630);
    50cm 간격으로 하단 방향으로 RDS FM형 강설량 측정모듈(200)의 초음파 센서부를 이동시켜 강설량을 상기와 같은 연산과정을 반복하여 산출하는 단계(S640)와,  Comprising the steps of calculating the amount of snow repeatedly by repeating the above calculation process by moving the ultrasonic sensor unit of the RDS FM-type snowfall measurement module 200 in 50cm intervals (S640),
    2m, 1.5m, 1m, 0.5m에서 계산된 카운터 값 중 평균값을 구해서, 최종 강설량 수치를 산출하는 단계(S650)로 이루어지는 것을 특징으로 하는 RDS FM형 강설량 측정모듈을 이용한 강설량측정방법. Obtaining the average value of the counter value calculated at 2m, 1.5m, 1m, 0.5m, calculating the final snowfall value (S650) Snowfall measurement method using the RDS FM type snowfall measurement module, characterized in that consisting of.
PCT/KR2010/007213 2009-10-20 2010-10-20 Snowfall measurement apparatus and method using rds fm-type snowfall measurement module WO2011049376A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0099927 2009-10-20
KR1020090099927A KR101045239B1 (en) 2009-10-20 2009-10-20 The apparatus and method of amount of snowfall measure with rds fm module

Publications (2)

Publication Number Publication Date
WO2011049376A2 true WO2011049376A2 (en) 2011-04-28
WO2011049376A3 WO2011049376A3 (en) 2011-09-09

Family

ID=43900828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007213 WO2011049376A2 (en) 2009-10-20 2010-10-20 Snowfall measurement apparatus and method using rds fm-type snowfall measurement module

Country Status (2)

Country Link
KR (1) KR101045239B1 (en)
WO (1) WO2011049376A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945154A (en) * 2021-01-31 2021-06-11 吉林大学 Ultrasonic snow depth measuring device and method based on normalized cross-correlation time delay measurement
CN114993413A (en) * 2022-05-26 2022-09-02 嘉兴博创智能传感科技有限公司 Photoelectric sensing-based intelligent sensor with strong anti-interference capability

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318206B1 (en) * 2013-07-26 2013-10-15 한국항공우주연구원 Installation structure of multi-data receiving device used for reference station of gnss
CN108007524A (en) * 2017-12-06 2018-05-08 温州天勤网络科技有限公司 A kind of sandy beach safety management system of remote monitoring
CN108614311A (en) * 2018-05-08 2018-10-02 河海大学 A kind of ultrasonic wave snowfall detection device and its detection method
KR102422451B1 (en) * 2021-10-29 2022-07-19 (주)아이오티솔루션 IoT CONVERGENCE-INDEPENDENT URBAN IMMERSION OBSERVATION DEVICE, OBSERVATION SYSTEM INCLUDING THE SAME AND METHOD THEREFOR

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920827A (en) * 1997-06-27 1999-07-06 Baer; John S. Wireless weather station
US6177873B1 (en) * 1999-02-08 2001-01-23 International Business Machines Corporation Weather warning apparatus and method
US6861959B1 (en) * 1999-10-27 2005-03-01 Jose Maria Minguella Llobet Help and/or risk signaling means for the traffic of vehicles and pedestrians using a short range infrared or electromagnetic signaling system
US20050282560A1 (en) * 2004-06-16 2005-12-22 E-Radio Usa, Llc FM based radio data system information data messaging
KR20090082763A (en) * 2008-01-28 2009-07-31 주식회사 한성전자산업개발 Method and snowfall measurement equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902827A (en) 1998-04-17 1999-05-11 Cell Pathways Method for treating patients with psoriasis by administering substituted sulfonyl indenyl acetic acids, esters and alcohols

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920827A (en) * 1997-06-27 1999-07-06 Baer; John S. Wireless weather station
US6177873B1 (en) * 1999-02-08 2001-01-23 International Business Machines Corporation Weather warning apparatus and method
US6861959B1 (en) * 1999-10-27 2005-03-01 Jose Maria Minguella Llobet Help and/or risk signaling means for the traffic of vehicles and pedestrians using a short range infrared or electromagnetic signaling system
US20050282560A1 (en) * 2004-06-16 2005-12-22 E-Radio Usa, Llc FM based radio data system information data messaging
KR20090082763A (en) * 2008-01-28 2009-07-31 주식회사 한성전자산업개발 Method and snowfall measurement equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945154A (en) * 2021-01-31 2021-06-11 吉林大学 Ultrasonic snow depth measuring device and method based on normalized cross-correlation time delay measurement
CN112945154B (en) * 2021-01-31 2023-01-24 吉林大学 Ultrasonic snow depth measuring device and method based on normalized cross-correlation time delay measurement
CN114993413A (en) * 2022-05-26 2022-09-02 嘉兴博创智能传感科技有限公司 Photoelectric sensing-based intelligent sensor with strong anti-interference capability

Also Published As

Publication number Publication date
KR101045239B1 (en) 2011-06-30
WO2011049376A3 (en) 2011-09-09
KR20110043016A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2011049376A2 (en) Snowfall measurement apparatus and method using rds fm-type snowfall measurement module
WO2018139764A2 (en) Battery management apparatus and method
WO2011049377A2 (en) Sectional area data measurement apparatus and method for calculating rainfall and snowfall through three-dimensional wireless complex weather measurement module
WO2019135518A1 (en) Moving device for cleaning, cooperative cleaning system and method for controlling same
WO2019212139A1 (en) Indoor radon predicting system for reducing radon and method therefor
WO2014051411A1 (en) Low energy short range communication function operation method and apparatus of mobile terminal
WO2014073863A1 (en) Wireless power receiving device and power control method thereof
WO2018105881A1 (en) Battery management apparatus and method
WO2015060556A1 (en) Power amplification device and method
WO2019146960A1 (en) Battery pressure detection sensor and terminal including same
WO2015056964A1 (en) Apparatus for estimating state of hybrid secondary battery and method therefor
WO2019199064A1 (en) Battery diagnosis device and method
WO2018030754A1 (en) Photovoltaic module and photovoltaic system including the same
JP2002359387A (en) Solar battery installation structure and solar power generation system
WO2018129972A1 (en) Charging processing method and apparatus, storage medium, and electronic device
WO2011083967A2 (en) Network system
US6344731B2 (en) Battery gauging device during battery charging
WO2011071249A2 (en) Rainfall measurement device and rainfall prediction system having same
WO2019231047A1 (en) Dc-dc converter for solar-related energy storage system, and control method thereof
WO2023017913A1 (en) Solar power generation device having uniform focus area
WO2020085630A1 (en) Wireless power control method and apparatus
WO2023018115A1 (en) Electronic device for determining angle-of-arrival of signal, and method for operating electronic device
WO2019231061A1 (en) Dc-dc converter for solar-related energy storage system, and control method thereof
WO2020013363A1 (en) Mobile terminal and control method thereof
WO2022102957A1 (en) Electronic device and operation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27.06.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10825201

Country of ref document: EP

Kind code of ref document: A2