WO2011061178A1 - Mikrohohlkugeln enthaltende harzschaumstoffe - Google Patents

Mikrohohlkugeln enthaltende harzschaumstoffe Download PDF

Info

Publication number
WO2011061178A1
WO2011061178A1 PCT/EP2010/067556 EP2010067556W WO2011061178A1 WO 2011061178 A1 WO2011061178 A1 WO 2011061178A1 EP 2010067556 W EP2010067556 W EP 2010067556W WO 2011061178 A1 WO2011061178 A1 WO 2011061178A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
hollow microspheres
polymer foam
expandable
open
Prior art date
Application number
PCT/EP2010/067556
Other languages
English (en)
French (fr)
Inventor
Tobias Heinz Steinke
Armin Alteheld
Tatiana Ulanova
Meik Ranft
Maxim Peretolchin
Horst Baumgartl
Hans-Jürgen QUADBECK-SEEGER
Klaus Hahn
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2012539299A priority Critical patent/JP5538556B2/ja
Priority to EP10779788.8A priority patent/EP2501749B1/de
Priority to CN201080052601.7A priority patent/CN102639620B/zh
Priority to ES10779788T priority patent/ES2435811T3/es
Priority to US13/510,487 priority patent/US9056961B2/en
Publication of WO2011061178A1 publication Critical patent/WO2011061178A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/35Composite foams, i.e. continuous macromolecular foams containing discontinuous cellular particles or fragments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08J2361/24Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with urea or thiourea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine

Definitions

  • the present invention relates to a hollow microspheres with flexible outer layer containing open-cell foam for sound absorption, wherein the hollow microspheres have a D 50 value of at least 70 ⁇ and 250 ⁇ highest, a process for its preparation and its use for sound absorption and / or thermal insulation.
  • Another way to improve the sound-absorbing and sound-absorbing properties of plastics is to introduce different fillers into the plastics.
  • No. 5,378,733 describes sonic attenuation polyurethane compositions comprising a two-component polyurethane binder, a particulate filler having a density above 5, and hollow polymer microspheres having a density below 0.5 as the second filler.
  • the hollow microspheres are introduced into the polyurethane by dispersing in the polyol component before reaction of the components.
  • WO 2004/022298 A1 relates to a sound-insulating material which is produced by extruding thermoplastic rubber particles and PUR plastic particles with the addition of expandable micro hollow bodies as blowing agent.
  • WO 98/52997 A1 discloses a foam made of a mixture of epoxy resin and thermoplastic. Amongst others, thermally expandable hollow microspheres can be used as blowing agents. The foams described in WO 98/52997 can be used inter alia as mufflers in automobiles.
  • No. 5,272,001 relates to open-cell, flexible polyurethane foams which contain hollow microspheres having an average diameter of from 35 to 60 ⁇ m in order to improve the elasticity and the impact-absorbing properties.
  • hollow microspheres 15 to 60 wt .-% hollow microspheres with flexible outer layer, wherein the hollow microspheres have a D 50 value of at least 70 ⁇ and at most 250 ⁇ ,
  • the foam according to the invention has higher sound absorption coefficients in the frequency range of about 300 to 1600 Hz than the same foam which contains no or fewer hollow microspheres.
  • the effect of the microhol balls contained in the foam depends on their size.
  • the hollow microspheres must have a minimum size to have a positive effect, i. h effect the desired improvement of the sound absorption properties.
  • Mikroholku- rules with a D 50 value of about 35 to 55 ⁇ have no effect on the sound absorption of the foam, the foams, however, contain larger hollow microspheres with a D 50 value> 70 ⁇ , they show higher sound absorption coefficients and higher flow resistance, which also correlated with improved sound attenuation.
  • the mechanical properties of the foam materials according to the invention are surprisingly, although relatively large Mikroholkugeln must be used by the presence of hollow microspheres not or only negatively negatively negatively affected.
  • the foam of the invention contains 40 to 85 wt .-%, preferably 50 to 80 wt .-% open-cell polymer foam, based on the total weight of open-cell polymer foam and hollow microspheres.
  • Open-celled foams are those in which the foam scaffold essentially consists of a multiplicity of interconnected, three-dimensionally branched cell ridges. The less areas covered by polymer membranes the open-cell polymer foam contains, the more elastic it is.
  • open-cell polymer foams are preferably used which contain a multiplicity of interconnected, three-dimensionally branched webs, the average ratio of length: thickness of the webs being greater than 10: 1, preferably greater than 12: 1 and in particular greater than 15: 1, and the density of the webs Webs greater than 1, 1 g / cm 3, preferably greater than 1, 2 g / cm 3 and in particular greater than 1, 3 g / cm 3 .
  • the mean length: thickness ratio is determined microscopically, with the web length and thickness being determined by a statistical counting method.
  • the web length is defined as the distance between the midpoints of two nodal points and, as the web thickness, the thickness at the narrowest point of the web measured in each case on the microscopic image.
  • the foam is placed in a suitable liquid, for example isopropanol, with which it is soaked due to its offensiveness. The density of the webs is then determined according to the Archimedean principle.
  • the open-cell polymer foam is elastic.
  • Elastic foams have a great resilience after deformation.
  • elastic foams are those which have a permanent deformation of more than 2% of their original volume at a pressure deformation according to DIN 53580 up to 50% of their thickness (Römpp Chemie-Lexikon, 9th edition 1995, page 4016).
  • the polymer foam can be prepared from all polymers known to the person skilled in the art for the production of open-cell polymer foams.
  • the polymer foam is selected from thermosetting foams, more preferably from the group consisting of phenol-formaldehyde resin foam, urea-formaldehyde resin foam and melamine-formaldehyde resin foam, and particularly preferred is melamine-formaldehyde resin foam.
  • suitable melamine-formaldehyde resin foams is described for example in EP 0 017 671 B1, suitable urea-formaldehyde resin foams are known, for example, from EP 0 031 513 B1.
  • the production of thermoset foams, such as phenol-formaldehyde resin foams, which can be used according to the invention is described, for example, in EP 0 049 768 B1.
  • Melamine-formaldehyde are very particularly preferred in the present invention resin foams, as described for example in EP 0017672 B1 and are commercially available under the trade name Basotect ®, are used.
  • the apparent density of the open-cell foam is generally in the range from 5 to 100 g / l, preferably in the range from 8 to 20 g / l.
  • the tensile strength is preferably in the range of 100 to 150 kPa and the elongation at break in the range of 8 to 20%.
  • the foam of the invention contains 15 to 60 wt .-%, preferably 20 to 50 wt .-% hollow microspheres with a flexible outer layer, wherein the hollow microspheres have a D 50 value of at least 70 ⁇ and at most 250 ⁇ .
  • the micro-hollow bodies have a flexible outer layer, that is, the hollow microspheres can be easily compressed and are resilient enough to withstand multiple load changes without bursting their sheath.
  • the outer layer of the hollow microspheres is formed from one or more thermoplastic homopolymers and / or copolymers.
  • the hollow microspheres contained in the foam according to the invention are expanded hollow microspheres obtained by expansion of expandable hollow microspheres.
  • Such Mikroholkugeln consist essentially of a gas-tight, polymeric outer layer and a trapped therein, liquid or gaseous propellant.
  • the outer layer of the expandable or expanded hollow microspheres usually behaves like a thermoplastic to facilitate softening and expansion of the expandable hollow microspheres as the propellant expands upon heating.
  • the homopolymers and / or copolymers used in the outer layer may be linear, branched or crosslinked.
  • polymers and copolymers containing acrylic acid, methacrylic acid, styrene, vinylidene chloride, acrylonitrile, methacrylonitrile and the like, as well as mixtures thereof, are often used.
  • propellants are usually low hydrocarbons such as propane, n-butane, isobutane, isopentane, n-pentane, neopentane, hexane, heptane and petroleum ether and halo geniated hydrocarbons such as methyl chloride, methylene chloride, trichlorofluoromethane and dichlorodifluoromethane used.
  • the expandable hollow microspheres can be prepared by known methods, as described for example in US 3,615,972. The mean diameter of the expandable hollow microspheres usually increases approximately 4 to 6 times during expansion.
  • the hollow microspheres contained in the foam have a D 50 value of at least 70 ⁇ m, preferably of at least 90 ⁇ m, and very particularly preferably of at least 100 ⁇ m.
  • the D 50 value indicates the particle diameter at which 50% of the particles have a smaller diameter and 50% of the particles have a larger diameter.
  • the D 50 value can be determined, for example, by means of light scattering. A method of determining the D50 value is described, for example, in Akzo Nobel Technical Bulletin No. 3B.
  • the hollow microspheres contained in the foam preferably have a D 50 value of at most 250 ⁇ m.
  • the hollow microspheres are intended to fill the volume of the foam pores, but without clogging the pores and channels of the foam.
  • the hollow microspheres are preferably located in the pores of the open-celled polymer foam.
  • the present invention relates to a process for the production of foam containing hollow microspheres, in particular for the production of the above-described hollow microspheres containing foam, comprising the steps:
  • step I an open-celled polymer foam is impregnated with a liquid dispersion containing expandable hollow microspheres.
  • the impregnation can be carried out by spraying, dipping and impregnating with the expandable microhol balls.
  • dispersion for example by the incipient wetness method, in which the porous volume of the polymer foam is filled with approximately the same volume of impregnating solution and the support is dried. It is also possible to work with an excess of solution, the volume of this solution being greater than the porous volume of the polymer foam.
  • the polymer foam is mixed with the impregnating solution and stirred for a sufficient time.
  • the mixture used for the impregnation contains 0.01 to 50 wt .-%, preferably 1 to 10 wt .-% expandable hollow microspheres and 50 to 99.99 wt .-%, preferably 90 to 99 wt .-% liquid dispersion medium, based on the total weight of the liquid dispersion.
  • concentration and amount of the mixture used for the impregnation is adapted by the person skilled in the art to the foam to be impregnated polymer and the desired composition of the hollow microspheres foam. For example, in lower density polymer foams, low level microsphere impregnation blends are used.
  • the expandable hollow microspheres used for the impregnation preferably have a D 50 value> 16 ⁇ m, preferably> 20 ⁇ m and more preferably> 25 ⁇ m.
  • Water and / or CrC 4 -alcohols are preferably used as the dispersion medium, in particular in the case where the polymer foam is selected from polar polymers, and especially when the polymer foam is selected from melamine-formaldehyde foam, urea-formaldehyde foam and phenolic foam. formaldehyde resin foam.
  • the mixture used for the impregnation may contain further constituents, for example a) fluorocarbon resins for hydrophobization (see WO 2008/037600).
  • the impregnated polymer foam in step II) is pressed or compressed and dried, this is preferably carried out at temperatures below the expansion temperature of the expandable hollow microspheres.
  • the pressing can be carried out, for example, as described in EP 0 451 535 A, by passing the foam through a defined gap between two counter-rotating rollers aligned in parallel.
  • it is also possible to exert the necessary pressure by transporting the impregnated foam on a conveyor belt and a roller rotating at the same peripheral speed with which the foam moves is pressed on the foam.
  • the pressure on the foam can be exerted by the fact that the foam is placed for example in a press in which a stamp presses on the foam. In this case, however, a continuous pressing is not possible.
  • step III) of the method according to the invention the impregnated polymer foam is heat-treated at a temperature above the expansion temperature of the expandable hollow microspheres and below the decomposition temperature of the hollow microspheres, so that the hollow microspheres expand.
  • the exact temperature of the heat treatment depends on the expandable hollow microspheres used, as well as the duration of the heat treatment.
  • An advantage of the above-described manufacturing process for the foam containing hollow microspheres according to the invention is that it is ensured that the structure of the underlying open-cell polymer foam is maintained.
  • the relatively small hollow microspheres prior to expansion are uniformly distributed in the pores of the polymer foam during the impregnation step and expand within the pores. Since, according to the invention, hollow microspheres with a flexible outer layer are used, the hollow microspheres can also completely fill the respective pore after the expansion without destroying the polymer foam scaffold since they can adapt to the respective pore.
  • the present invention is the use of the hollow foam-containing foam described above for sound absorption, for sound damping and for thermal insulation, in particular in motor vehicle, railway, ship and aircraft construction and in space travel.
  • the present invention also provides sound absorption and thermal insulation elements containing the above-described foam, such as wall and ceiling panels.
  • Example 1 A melamine-formaldehyde resin foam (Basotect ® G, density 7.3 g / l, BASF SE) was impregnated with the aqueous dispersions of expandable hollow microbeads.
  • the hollow microspheres it was Expancel ® 091 DU 140, Akzo Nobel.
  • the outer layer of the balls is composed of a copolymer of acrylate, vinylidene chloride and acrylonitrile.
  • the hollow microspheres include a propellant (isobutane or isopentane) included.
  • the D 50 value of the expandable particles was according to the manufacturer 35 to 45 ⁇ .
  • the impregnated polymer foam was dried in a drying oven at 100 ° C and then held for 1 hour at 130 ° C, wherein the EXPANCEL ® -Mikrohohlkugeln expanded to a size of about 100 to 150 ⁇ .
  • Example 2 The procedure was as in Example 1 with the exception that was used as expandable hollow microspheres EXPANCEL ® 820SL40 with a D 50 value of 10 to 16 m, which had a D 50 value of about 35 to 55 m after expansion ,
  • Example 3 Measurement of the Sound Absorption Coefficients The sound absorption was determined for the hollow microspheres impregnated polymer foams of Examples 1 and 2 according to ISO 10534-2. The results are given for Example 1 in Table 1, for Example 2 in Table 2.
  • EXPANCEL ® 091 DU140 achieved a significant improvement in absorption at low to medium frequencies (250-1500 Hz), whereas EXPANCEL ® 820SL40 shows a worsening in this frequency range compared to untreated foam ,

Abstract

Die Erfindung betrifft Mikrohohlkugeln enthaltenden Schaumstoff zur Schallabsorption enthaltend 40 bis 85 Gew.-% offenzelligen Polymerschaumstoff und 15 bis 60 Gew.-% Mikrohohlkugeln mit flexibler Außenschicht, wobei die Mikrohohlkugeln einen D50-Wert von mindestens 70 μm und höchsten 250 μm aufweisen, bezogen auf das Gesamtgewicht von Polymerschaumstoff und Mikrohohlkugeln, sowie ein Verfahren zu dessen Herstellung umfassend die Schritte I) Imprägnieren eines offenzelligen Polymerschaumstoffs mit einer flüssigen Dispersion enthaltend expandierbare Mikrohohlkugeln, II) ggf. Pressen/Komprimieren und/oder Trocknen des Polymerschaumstoffs und III) Wärmebehandeln des imprägnierten Polymerschaumstoffs bei einer Temperatur oberhalb der Expansionstemperatur und unterhalb der Zersetzungstemperatur der expandierbaren Mikrohohlkugeln zum Expandieren der Mikrohohlkugeln.

Description

MIKROHOHLKUGELN ENTHALTENDE HARZSCHAUMSTOFFE
Beschreibung
Die vorliegende Erfindung betrifft einen Mikrohohlkugeln mit flexibler Außenschicht enthaltenden offenzelligen Schaumstoff zur Schallabsorption, wobei die Mikrohohlkugeln einen D50-Wert von mindestens 70 μηη und höchsten 250 μηη aufweisen, ein Verfahren zu dessen Herstellung und seine Verwendung zur Schallabsorption und/oder Wärmedämmung.
In der modernen Gesellschaft sind die Anforderungen an schallabsorbierende und schalldämpfende Materialien hoch. Schallabsorbierende und schalldämpfende Materialien werden verwendet, um den Raumklang zu verbessern, beispielsweise uner- wünschte Halleffekte zu vermindern. Häufig werden hierfür Kunststoffe verwendet, die infolge ihrer hervorragenden Viskoelastizität, ihrer einfachen Verarbeitung und kommerziellen Verfügbarkeit geeignete Materialien sind. Die Kunststoffe werden dabei häufig in Form von porösen Schaumstoffen eingesetzt. Poröse Materialien zeichnen sich dadurch aus, dass sie eine gute Schallabsorption bei hohen Frequenzen aufweisen, jedoch bei niederen Frequenzen ein niedriges Absorptionsvermögen besitzen. Eine Verbesserung der Schallabsorption von Kunststoffschäumen bei niederen Frequenzen kann beispielsweise durch Einsatz von dünnen Filmen und Schichten (Vibration) oder durch Resonatoren erzielt werden. Allerdings ist die Wirksamkeit dieser Maßnahmen infolge der eingeschränkten Frequenzbereiche sowie strukturelle Hemmnisse, zum Beispiel Breite und Gewicht, begrenzt.
Eine andere Möglichkeit, die schalldämpfenden und schallabsorbierenden Eigenschaften von Kunststoffen zu verbessern, besteht darin, unterschiedliche Füllstoffe in die Kunststoffe einzubringen.
US 5,378,733 beschreibt Polyurethanzusammensetzungen zur Abschwächung von Schall, die einen Zweikomponenten-Polyurethanbinder, einen teilchenformigen Füllstoff mit einer Dichte oberhalb von 5 und hohle Polymer-Mikrokugeln mit einer Dichte unter- halb von 0,5 als zweiten Füllstoff enthalten. Die Mikrohohlkugeln werden durch Disper- gieren in der Polyolkomponente vor Reaktion der Komponenten zu Polyurethan eingebracht.
WO 2004/022298 A1 betrifft ein schallisolierendes Material, das durch Extrudieren thermoplastischer Kautschukteilchen und PUR-Kunststoffteilchen unter Zugabe von expandierbaren Mikrohohlkörpern als Treibmittel hergestellt wird. Aus WO 98/52997 A1 ist ein Schaumstoff aus einer Mischung von Epoxidharz und Thermoplast bekannt. Als Treibmittel können u.a. thermisch expandierbare Mikrohohl- kugeln eingesetzt werden. Die in der WO 98/52997 beschriebenen Schaumstoffe kön- nen u.a. als Schalldämpfer in Automobilen verwendet werden.
Die US 5,272,001 bezieht sich auf offenzellige, flexible Polyurethanschäume, die zur Verbesserung der Elastizität und der stoßabsorbierenden Eigenschaften Mikrohohlku- geln mit einem mittleren Durchmesser von 35 bis 60 μηι enthalten.
Trotz der bereits bekannten modifizierten Schaumstoffe besteht Bedarf an Schaumstoffen mit verbesserten schallabsorbierenden und schalldämpfenden Eigenschaften im Bereich von niederen Frequenzen. Diese Aufgabe wird erfindungsgemäß gelöst durch einen
Mikrohohlkugeln enthaltenden Schaumstoff zur Schallabsorption enthaltend
40 bis 85 Gew.-% offenzelligen Polymerschaumstoff und
15 bis 60 Gew.-% Mikrohohlkugeln mit flexibler Außenschicht, wobei die Mikrohohlku- geln einen D50-Wert von mindestens 70 μηι und höchstens 250 μηι aufweisen,
bezogen auf das Gesamtgewicht von Polymerschaumstoff und Mikrohohlkugeln.
Der erfindungsgemäße Schaumstoff weist im Frequenzbereich von etwa 300 bis 1600 Hz höhere Schallabsorptionskoeffizienten auf als der gleiche Schaumstoff, der keine oder weniger Mikrohohlkugeln enthält. Überraschenderweise ist die Wirkung der im Schaumstoff enthaltenen Mikroholkugeln abhängig von ihrer Größe. Die Mikrohohlkugeln müssen eine Mindestgröße aufweisen, um einen positiven Effekt, d. h die gewünschte Verbesserung der Schallabsorptionseigenschaften zu bewirken. Mikroholku- geln mit einem D50-Wert von etwa 35 bis 55 μηι haben keine Einfluss auf die Schallabsorption des Schaumstoffs, enthalten die Schaumstoffe hingegen größere Mikrohohlkugeln mit einem D50-Wert > 70 μηι, zeigen sie höhere Schallabsorptionskoeffizienten und höhere Strömungswiderstände, was ebenfalls mit einer verbesserten Schalldämpfung korreliert. Die mechanischen Eigenschaften der erfindungsgemäßen Schaum- Stoffe werden überraschenderweise, obwohl vergleichsweise große Mikroholkugeln eingesetzt werden müssen, durch die Gegenwart der Mikrohohlkugeln nicht oder nur sehr gering negativ beeinflusst.
Im Folgenden wird die Erfindung im Einzelnen erläutert. Der erfindungsgemäße Schaumstoff enthält 40 bis 85 Gew.-%, bevorzugt 50 bis 80 Gew.-% offenzelligen Polymerschaumstoff, bezogen auf das Gesamtgewicht von offenzelligem Polymerschaumstoff und Mikrohohlkugeln. Als offenzellige Schäume werden solche bezeichnet, bei denen das Schaumgerüst im Wesentlichen aus einer Vielzahl miteinander verbundener, dreidimensional verzweigter Zellstege besteht. Je weniger durch Polymermembranen verschlossene Flächen der offenzellige Polymerschaumstoff enthält, desto elastischer ist er. Bevorzugt werden erfindungsgemäß offenzellige Polymerschaumstoffe eingesetzt, die eine Vielzahl miteinander verbundener, dreidimensional verzweigte Stege enthalten, wobei das mittlere Verhältnis von Länge : Dicke der Stege größer 10 : 1 , bevorzugt größer 12 : 1 und insbesondere größer als 15 : 1 ist und die Dichte der Stege größer 1 ,1 g/cm3, bevorzugt größer als 1 ,2 g/cm3 und insbesondere größer als 1 ,3 g/cm3 ist.
Das mittlere Verhältnis von Länge : Dicke wird mikroskopisch bestimmt, wobei die Steglänge und -dicke nach einem statistischen Auszählverfahren ermittelt werden. Als Steglänge ist der Abstand zwischen den Mittelpunkten zweier Knotenstellen und als Stegdicke die Dicke an der schmälsten Stelle des Stegs jeweils gemessen an der mik- roskopischen Aufnahme, definiert. Zur Bestimmung der Dichte der Schaumstoffstege wird der Schaumstoff in eine geeignete Flüssigkeit, zum Beispiel Isopropanol, eingelegt, mit der er sich aufgrund seiner Offenzeiligkeit vollsaugt. Die Dichte der Stege wird dann nach dem archimedischen Prinzip bestimmt. Erfindungsgemäß bevorzugt ist der offenzellige Polymerschaumstoff elastisch.
Elastische Schaumstoffe weisen ein großes Rückstellvermögen nach Deformation auf. Insbesondere werden als elastische Schaumstoffe solche bezeichnet, die bei einer Druckverformung nach DIN 53580 bis zu 50 % ihrer Dicke keine bleibende Verformung von mehr als 2 % ihres Ausgangsvolumens aufweisen (Römpp Chemie-Lexikon, 9. Auflage 1995, Seite 4016).
Prinzipiell kann der Polymerschaumstoff aus allen, dem Fachmann zur Herstellung von offenzelligen Polymerschaumstoffen als geeignet bekannten Polymeren hergestellt werden. Bevorzugt wird der Polymerschaumstoff ausgewählt aus duroplastischen Schaumstoffen, besonders bevorzugt aus der Gruppe bestehend aus Phenol- Formaldehydharzschaumstoff, Harnstoff-Formaldehydharzschaumstoff und Melamin- Formaldehydharzschaumstoff und insbesondere bevorzugt ist Melamin- Formaldehydharzschaumstoff. Die Herstellung geeigneter Melamin-Formaldehydharzschaumstoffe ist beispielsweise in der EP 0 017 671 B1 beschrieben, geeignete Harnstoff-Formaldehydharzschaumstoffe sind zum Beispiel aus der EP 0 031 513 B1 bekannt. Die Herstellung von Duroplast-Schaumstoffen wie Phenol-Formaldehydharzschaumstoffe, die erfindungsgemäß verwendet werden können, ist beispielsweise in der EP 0 049 768 B1 beschrieben.
Ganz besonders bevorzugt werden erfindungsgemäß Melamin-Formaldehyd- harzschaumstoffe, wie sie zum Beispiel in EP 0 017 672 B1 beschrieben sind und unter dem Handelsnamen Basotect® kommerziell erhältlich sind, eingesetzt.
Die Rohdichte des offenzelligen Schaumstoffes liegt in der Regel im Bereich von 5 bis 100 g/l, bevorzugt im Bereich von 8 bis 20 g/\. Die Zugfestigkeit liegt bevorzugt im Bereich von 100 bis 150 kPa und die Bruchdehnung im Bereich von 8 bis 20 %. Der erfindungsgemäße Schaumstoff enthält 15 bis 60 Gew.-%, bevorzugt 20 bis 50 Gew.-% Mikrohohlkugeln mit flexibler Außenschicht, wobei die Mikrohohlkugeln einen D50-Wert von mindestens 70 μηη und höchstens 250 μηη aufweisen.
Die Mikrohohlkörper weisen eine flexible Außenschicht auf, das bedeutet, die Mikro- hohlkugeln können leicht zusammengedrückt werden und sind so elastisch, dass sie mehreren Last- bzw. Druckwechseln ohne Platzen ihrer Hülle widerstehen. Bevorzugt werden Mikrohohlkugeln eingesetzt, deren Außenschicht aus einem oder mehreren Homopolymeren und/oder einem oder mehreren Copolymeren gebildet ist, deren Glasübergangstemperatur unterhalb der Verwendungstemperatur des Schaumstoffs liegt. Besonders bevorzugt wird die Außenschicht der Mikrohohlkugeln aus einem oder mehreren thermoplastischen Homopolymeren und/oder Copolymeren gebildet.
Ganz bevorzugt handelt es sich bei den in dem erfindungsgemäßen Schaumstoff enthaltenen Mikrohohlkugeln um expandierte Mikrohohlkugeln, die durch Expansion von expandierbaren Mikrohohlkugeln erhalten wurden. Derartige Mikroholkugeln bestehen im Wesentlichen aus einer gasdichten, polymeren Außenschicht und einem darin eingeschlossenen, flüssigen oder gasförmigen Treibmittel. Die Außenschicht der expandierbaren bzw. der expandierten Mikrohohlkugeln verhält sich üblicherweise wie ein Thermoplast, um ein Erweichen und die Expansion der expandierbaren Mikrohohl- kugeln zu ermöglichen, wenn sich das Treibmittel durch Erwärmen ausdehnt. Die in der Außenschicht verwendeten Homopolymere und/oder Copolymere können linear, verzweigt oder vernetzt vorliegen. Für die Außenschicht werden häufig Polymere und Copolymere, die Acrylsäure, Methacrylsäure, Styrol, Vinylidenchlorid, Acrylonitril, Methacrylonitril und ähnliche sowie Mischungen davon enthalten, verwendet. Als Treibmittel werden üblicherweise niedrige Kohlenwasserstoffe wie Propan, n-Butan, Isobutan, Isopentan, n-Pentan, Neopentan, Hexan, Heptan und Petrolether und halo- genierte Kohlenwasserstoffe wie Methylchlorid, Methylenchlorid, Trichlorfluormethan und Dichlordifluormethan verwendet. Die expandierbaren Mikrohohlkugeln können nach bekannten Verfahren hergestellt werden, wie sie beispielsweise in der US 3,615,972 beschrieben sind. Der mittlere Durchmesser der expandierbaren Mikrohohl- kugeln nimmt beim Expandieren üblicherweise auf etwa das 4- bis 6-fache zu.
Geeignete Mikrohohlkugeln in expandierbarer und in expandierter Form sind auch kommerziell erhältlich, beispielsweise unter dem Handelsnamen "EXPANCEL®" von der Akzo Nobel.
Erfindungsgemäß weisen die in dem Schaumstoff enthaltenen Mikrohohlkugeln einen D50-Wert von mindestens 70 μηη, bevorzugt von mindestens 90 μηη und ganz besonders bevorzugt von mindestens 100 μηη auf. Der D50-Wert gibt den Teilchendurchmesser an, bei dem 50 % der Teilchen einen kleineren und 50 % der Teilchen einen größe- ren Durchmesser aufweisen. Der D50-Wert kann beispielsweise mittels Lichtstreuung bestimmt werden. Ein Verfahren, wie die Bestimmung des D50-Wert.es durchgeführt werden kann, ist beispielsweise im Technical Bulletins Nr. 3B der Akzo Nobel beschrieben. Erfindungsgemäß bevorzugt weisen die in dem Schaumstoff enthaltenen Mikrohohlkugeln einen D50-Wert von höchstens 250 μπι auf. Die Mikrohohlkugeln sollen das Volumen der Schaumstoffporen ausfüllen, ohne jedoch die Poren und Kanäle des Schaumstoffs zu verstopfen. Erfindungsgemäß bevorzugt befinden sich die Mikrohohlkugeln in den Poren des of- fenzelligen Polymerschaumstoffs.
Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Herstellung von Mikrohohlkugeln enthaltendem Schaumstoff, insbesondere zur Herstellung des vorstehend beschriebenen Mikrohohlkugeln enthaltenden Schaumstoffs, umfassend die Schritte:
I) Imprägnieren eines offenzelligen Polymerschaumstoffs mit einer flüssigen Dispersion enthaltend expandierbare Mikrohohlkugeln,
II) ggf. Pressen/Komprimieren und/oder Trocknen des Polymerschaumstoffs und III) Wärmebehandeln des imprägnierten Polymerschaumstoffs bei einer Temperatur oberhalb der Expansionstemperatur und unterhalb der Zersetzungstemperatur der expandierbaren Mikrohohlkugeln zum Expandieren der Mikrohohlkugeln.
In Schritt I) wird ein offenzelliger Polymerschaumstoff mit einer flüssigen Dispersion enthaltend expandierbare Mikrohohlkugeln imprägniert. Die Imprägnierung kann durch Besprühen, Tauchen und Tränken mit der die expandierbaren Mikroholkugeln enthal- tenden Dispersion erfolgen, beispielsweise nach der Incipient-Wetness-Methode, bei der das poröse Volumen des Polymerschaumstoffs durch in etwa gleiches Volumen an Imprägnierlösung aufgefüllt wird und der Träger getrocknet wird. Man kann auch mit einem Überschuss an Lösung arbeiten, wobei das Volumen dieser Lösung größer ist als das poröse Volumen des Polymerschaumstoffs. Dabei wird der Polymerschaumstoff mit der Imprägnierlösung gemischt und ausreichend lange gerührt.
Die zur Imprägnierung eingesetzte Mischung enthält 0,01 bis 50 Gew.-%, bevorzugt 1 bis 10 Gew.-% expandierbare Mikrohohlkugeln und 50 bis 99,99 Gew.-%, bevorzugt 90 bis 99 Gew.-% flüssiges Dispersionsmedium, bezogen auf das Gesamtgewicht der flüssigen Dispersion. Die Konzentration und Menge der zur Imprägnierung eingesetzten Mischung wird vom Fachmann an den zu imprägnierenden Polymerschaumstoff und die gewünschte Zusammensetzung des Mikrohohlkugeln enthaltenden Schaum- Stoffs angepasst. Beispielsweise werden bei Polymerschaumstoffen mit niedrigerer Dichte Imprägniermischungen mit niedriger Konzentration an Mikrohohlkugeln eingesetzt.
Die für die Imprägnierung eingesetzten expandierbaren Mikrohohlkugeln weisen vor- zugsweise einen D50-Wert > 16 μηι, bevorzugt > 20 und besonders bevorzugt > 25 μηη auf. Um eine homogene Einarbeitung der Mikrohohlkugel in den Porenraum ohne Verstopfen der Poren und Kanäle zu gewährleisten, werden bevorzugt Mikrohohlkugeln mit einem D50-Wert < 100 μηη und besonders bevorzugt < 50 μηι, jeweils bezogen auf die Größe vor der Expansion, eingesetzt.
Als Dispersionsmedium werden bevorzugt Wasser und/oder CrC4-Alkohole eingesetzt, dies gilt insbesondere für den Fall, dass der Polymerschaumstoff aus polaren Polymeren ausgewählt ist, und ganz besonders, wenn der Polymerschaumstoff ausgewählt ist aus Melamin-Formaldehydharzschaumstoff, Harnstoff-Formaldehydharzschaumstoff und Phenol-Formaldehydharzschaumstoff.
Die zur Imprägnierung eingesetzte Mischung kann weitere Bestandteile enthalten, beispielsweise a) Fluorcarbonharze zur Hydrophobierung (siehe WO 2008/037600)
b) Hydrophobierende und brandhememnde Substanzen (siehe WO 2007/0231 18).
Gegebenenfalls wird der imprägnierte Polymerschaumstoff in Schritt II) gepresst bzw. komprimiert und getrocknet, dies erfolgt bevorzugt bei Temperaturen unterhalb der Expansionstemperatur der expandierbaren Mikrohohlkugeln. Das Pressen kann beispielsweise wie in EP 0 451 535 A beschrieben durchgeführt werden, indem der Schaumstoff durch einen definierten Spalt zwischen zwei gegensinnig rotierenden, parallel ausgerichteten Walzen hindurchgeführt wird. Neben dem Durchführen des Schaumstoffes durch einen Spalt zwischen zwei gleichsinnig rotierenden Walzen ist es auch möglich, den notwendigen Druck dadurch auszuüben, dass der imprägnierte Schaumstoff auf einem Förderband transportiert wird und eine Walze, die sich mit der gleichen Umfangsgeschwindigkeit dreht, mit der der Schaumstoff bewegt wird, auf den Schaumstoff presst. Weiterhin kann der Druck auf den Schaumstoff dadurch ausgeübt werden, dass der Schaumstoff zum Beispiel in eine Presse eingelegt wird, in welcher ein Stempel auf den Schaumstoff presst. In diesem Fall ist jedoch ein kontinuierliches Pressen nicht möglich.
In Schritt III) des erfindungsgemäßen Verfahrens wird der imprägnierte Polymerschaumstoff bei einer Temperatur oberhalb der Expansionstemperatur der expandierbaren Mikrohohlkugeln und unterhalb der Zersetzungstemperatur der Mikrohohlkugeln in der Wärme behandelt, so dass die Mikrohohlkugeln expandieren. Die genaue Temperatur der Wärmebehandlung hängt von den eingesetzten expandierbaren Mikrohohlkugeln ab, ebenso wie die Dauer der Wärmebehandlung.
Ein Vorteil an dem vorstehend beschriebenen Herstellungsverfahren für den erfindungsgemäßen Mikrohohlkugeln enthaltenden Schaumstoff ist, dass sichergestellt ist, dass die Struktur des zugrundeliegenden offenzelligen Polymerschaumstoffs erhalten bleibt. Die vor der Expansion vergleichsweise kleinen Mikrohohlkugeln werden beim Imprägnierungsschritt gleichmäßig in den Poren des Polymerschaumstoffs verteilt und expandieren innerhalb der Poren. Da erfindungsgemäß Mikrohohlkugeln mit flexibler Außenschicht eingesetzt werden, können die Mikrohohlkugeln nach der Expansion die jeweilige Pore auch vollständig ausfüllen, ohne das Polymerschaumstoffgerüst zu zerstören, da sie sich an die jeweilige Pore anpassen können.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung des vorstehend beschriebenen, Mikrohohlkugeln enthaltenden Schaumstoffs zur Schallabsorption, zur Schalldämpfung und zur Wärmedämmung, insbesondere im Kraftfahrzeug-, Eisenbahn-, Schiffs- und Flugzeugbau und in der Raumfahrt. Gegenstand der vorliegenden Erfindung sind auch Schallabsorptions- und Wärmedämmelemente, die den vorstehend beschriebenen Schaumstoff enthalten, beispielsweise Wand- und Deckenpaneele.
Im Folgenden wird die vorliegende Erfindung anhand von Beispielen dargestellt. Beispiele
Beispiel 1 (erfindungsgemäß) Ein Melamin-Formaldehydharzschaumstoff (Basotect® G, Dichte 7,3 g/l, BASF SE) wurde mit wässrigen Dispersionen von expandierbaren Mikrohohlkugeln getränkt. Bei den Mikrohohlkugeln handelte es sich um EXPANCEL® 091 DU 140, Akzo Nobel. Die Außenschicht der Kugeln ist aus einem Copolymeren aus Acrylat, Vinylidenchlorid und Acrylnitril aufgebaut. Die Mikrohohlkugeln enthalten eingeschlossen ein Treibmittel (Isobutan oder Isopentan). Der D50-Wert der expandierbaren Teilchen betrug nach Herstellerangabe 35 bis 45 μηη. Der imprägnierte Polymerschaum wurde im Trockenschrank bei 100 °C getrocknet und anschließend für 1 Stunde bei 130 °C gehalten, wobei die EXPANCEL® -Mikrohohlkugeln auf eine Größe von ca. 100 bis 150 μηη expandierten.
Beispiel 2 (Vergleich)
Es wurde wie in Beispiel 1 vorgegangen mit der Ausnahme, dass als expandierbare Mikrohohlkugeln EXPANCEL® 820SL40 mit einem D50-Wert von 10 bis 16 m einge- setzt wurde, die nach dem Expandieren einen D50-Wert von etwa 35 bis 55 m aufwiesen.
Beispiel 3 Messung der Schallabsorptionskoeffizienten Die Schallabsorption wurde für die mit Mikrohohlkugeln imprägnierten Polymerschaumstoffe aus den Beispielen 1 und 2 gemäß ISO 10534-2 bestimmt. Die Ergebnisse sind für Beispiel 1 in Tabelle 1 , für Beispiel 2 in Tabelle 2 wiedergegeben.
Tabelle 1
Absorptionskoeffizienten der Polymerschaumstoffe aus Beispiel 1 (erfindungsgemäß)
Absorptionskoeffizient
Frequenz Konzentration Mikrohohlkugel [Gew.-%]
[Hz] 0 5 10 20 30
100 0,05 0,056 0,049 0,047 0,061
125 0,062 0,073 0,071 0,066 0,058
160 0,097 0,104 0,104 0,101 0,08
200 0,112 0,122 0,126 0,116 0,115
250 0,133 0,147 0,164 0,133 0,157
315 0,155 0,173 0,217 0,17 0,24
400 0,199 0,204 0,285 0,264 0,393
500 0,306 0,296 0,343 0,421 0,573
630 0,452 0,467 0,37 0,608 0,765
800 0,6 0,627 0,581 0,764 0,901
1000 0,732 0,761 0,768 0,882 0,966
1250 0,831 0,882 0,84 0,925 0,997
1600 0,909 0,961 0,948 0,981 0,965
2000 0,956 0,989 0,982 0,963 0,897
2500 0,962 0,974 0,961 0,899 0,832
3150 0,933 0,935 0,913 0,852 0,792
4000 0,911 0,926 0,904 0,831 0,813
5000 0,892 0,923 0,924 0,891 0,88
Tabelle 2 Absorptionskoeffizienten für die mit Mikrohohlkugeln beladenen Polymerschaumstoffe aus Beispiel 2 (Vergleich)
Absorptionskoeffizient
Frequenz Konzentration Mikrohohlkugel [Gew.-%]
[Hz] 0 5 7 25
100 0,104 0,099 0,097 0,089
125 0,104 0,098 0,103 0,099
160 0,132 0,119 0,125 0,122
200 0,158 0,137 0,134 0,136
250 0,19 0,165 0,154 0,16
315 0,222 0,206 0,175 0,203
400 0,28 0,279 0,217 0,276
500 0,41 0,359 0,317 0,357
630 0,6 0,435 0,46 0,438
800 0,766 0,467 0,596 0,479
1000 0,888 0,645 0,72 0,628 1250 0,966 0,81 0,843 0,755
1600 0,991 0,915 0,936 0,89
2000 0,974 0,968 0,98 0,958
2500 0,941 0,971 0,972 0,965
3150 0,927 0,943 0,944 0,943
4000 0,979 0,917 0,926 0,917
5000 0,945 0,898 0,908 0,896
Bei Beladungen > 10 % konnte mit EXPANCEL® 091 DU140 eine deutliche Verbesserung der Absorption bei niederen bis mittleren Frequenzen (250-1500 Hz) erzielt werden, wohingegen mit EXPANCEL® 820SL40 eine Verschlechterung in diesem Fre- quenzbereich im Vergleich zum unbehandelten Schaumstoff zu beobachten ist.
Beispiel 4 Messung des Strömungswiderstands
Für die Mikrohohlkugeln enthaltenden Polymerschaumstoffe aus den Beispielen 1 und 2 wurde der Strömungswiderstand nach ISO 9053 bestimmt. Die Ergebnisse sind in den Tabellen 3 und 4 dargestellt.
Tabelle 3 Strömungswiderstand der Schaumstoffe gemäß Beispiel 1 (erfindungsgemäß)
Figure imgf000011_0001
Der Strömungswiderstand wurde bei 30%iger Beladung im Vergleich zum Standard nahezu verdoppelt. Tabelle 4 Strömungswiderstand der Schaumstoffe gemäß Beispiel 2 (Vergleich)
Konzentration Dichte [g/l] Strömungswiderstand* [Pa*s/m2]
Mikrohohlkugeln [Gew.-%]
0 7.3 1 1700
5 8.3 10725
7 8.2 1 1675
25 8.7 1 1925 Durch Tränken von Basotect mit den kleineren Mikrohohlkugeln Expancel SL40 konnte keine Verbesserung der Absorption und des Strömungswiderstands erzielt werden. Die Größe der Kugeln hat somit einen signifikanten Einfluss auf die akustischen Eigenschaften.

Claims

Patentansprüche
Mikrohohlkugeln enthaltender Schaumstoff zur Schallabsorption enthaltend 40 bis 85 Gew.-% offenzelligen Polymerschaumstoff und
15 bis 60 Gew.-% Mikrohohlkugeln mit flexibler Außenschicht, wobei die Mikrohohlkugeln einen D50-Wert von mindestens 70 Mikrometer und höchstens 250 Mikrometer aufweisen,
bezogen auf das Gesamtgewicht von Polymerschaumstoff und Mikrohohlkugeln.
Schaumstoff nach Anspruch 1 , dadurch gekennzeichnet, dass der offenzellige Polymerschaumstoff eine Dichte von 5 bis 100 g/l aufweist.
Schaumstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Polymerschaumstoff ausgewählt ist aus der Gruppe bestehend aus Phenol- Formaldehydharzschaumstoff, Harnstoff-Formaldehydharzschaumstoff und Me- lamin-Formaldehydharzschaumstoff, bevorzugt Melamin-Formaldehydharz- schaumstoff.
Schaumstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Außenschicht der Mikrohohlkugeln aus einem oder mehreren Homopolyme- ren und/oder Copolymeren mit einer Glasübergangstemperatur unterhalb der Verwendungstemperatur des Schaumstoffs gebildet ist.
Schaumstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mikrohohlkugeln einen D50-Wert > 90 Mikrometer aufweisen.
Verfahren zur Herstellung eines Mikrohohlkugeln enthaltenden Schaumstoffs gemäß einem der Ansprüche 1 bis 5 umfassend die Schritte
I) Imprägnieren eines offenzelligen Polymerschaumstoffs mit einer flüssigen Dispersion enthaltend expandierbare Mikrohohlkugeln,
II) ggf. Pressen/Komprimieren und/oder Trocknen des Polymerschaumstoffs und
III) Wärmebehandeln des imprägnierten Polymerschaumstoffs bei einer Temperatur oberhalb der Expansionstemperatur und unterhalb der Zersetzungstemperatur der expandierbaren Mikrohohlkugeln zum Expandieren der Mikrohohlkugeln.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die für die Imprägnierung eingesetzten expandierbaren Mikrohohlkugeln einen D50-Wert > 16 Mikrometer und < 100 μηι, bevorzugt < 50 μηη aufweisen.
Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die in Schritt I) zur Imprägnierung eingesetzte Mischung 0,01 bis 50 Gew.-% expandierbare Mikrohohlkugeln und 50 bis 99,99 Gew.-% flüssiges Dispersionsmedium enthält, bezogen auf das Gesamtgewicht der flüssigen Dispersion.
Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass in Schritt I) als Dispersionsmedium Wasser und/oder CrC4-Alkohole eingesetzt werden.
10. Verwendung von Mikrohohlkugeln enthaltendem Schaumstoff nach einem der Ansprüche 1 bis 5 zur Schallabsorption und/oder Wärmedämmung.
1 1 . Schallabsorptions- und/oder Wärmedämmelemente enthaltend Mikrohohlkugeln enthaltendem Schaumstoff nach einem der Ansprüche 1 bis 5.
PCT/EP2010/067556 2009-11-20 2010-11-16 Mikrohohlkugeln enthaltende harzschaumstoffe WO2011061178A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012539299A JP5538556B2 (ja) 2009-11-20 2010-11-16 微小中空球を含有する樹脂発泡体
EP10779788.8A EP2501749B1 (de) 2009-11-20 2010-11-16 Mikrohohlkugeln enthaltende harzschaumstoffe
CN201080052601.7A CN102639620B (zh) 2009-11-20 2010-11-16 含有微珠的树脂泡沫
ES10779788T ES2435811T3 (es) 2009-11-20 2010-11-16 Espumas de resina que contienen microesferas huecas
US13/510,487 US9056961B2 (en) 2009-11-20 2010-11-16 Melamine-resin foams comprising hollow microbeads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09176634 2009-11-20
EP09176634.5 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011061178A1 true WO2011061178A1 (de) 2011-05-26

Family

ID=43430764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067556 WO2011061178A1 (de) 2009-11-20 2010-11-16 Mikrohohlkugeln enthaltende harzschaumstoffe

Country Status (7)

Country Link
US (1) US9056961B2 (de)
EP (1) EP2501749B1 (de)
JP (1) JP5538556B2 (de)
KR (1) KR20120117784A (de)
CN (1) CN102639620B (de)
ES (1) ES2435811T3 (de)
WO (1) WO2011061178A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735584A1 (de) 2012-11-26 2014-05-28 Basf Se Thermoverformbarer Melaminharzschaumstoff mit partikelförmigem Füllmaterial
EP2942334A1 (de) * 2014-05-06 2015-11-11 Siemens Aktiengesellschaft Schichtsystem für ein Bauteil
US9242397B2 (en) 2010-11-05 2016-01-26 Basf Se Melamine resin foam with inorganic filling material
US9353232B2 (en) 2011-05-16 2016-05-31 Basf Se Melamine-formaldehyde foams comprising hollow microspheres
WO2022263228A1 (en) 2021-06-17 2022-12-22 Basf Se Method for preparing melamine resin foams using grinded melamine foam particles

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538556B2 (ja) 2009-11-20 2014-07-02 ビーエーエスエフ ソシエタス・ヨーロピア 微小中空球を含有する樹脂発泡体
US20110189464A1 (en) * 2010-02-03 2011-08-04 Basf Se Melamine-formaldehyde foam with built-in microcapsules
EP2539412A4 (de) 2010-02-24 2013-07-31 Basf Se Wässriges reinigungsmittel sowie pfropfcopolymere und ihre verwendung in einem verfahren zur reinigung gemusterter und unstrukturierter metalloberflächen
US8937106B2 (en) 2010-12-07 2015-01-20 Basf Se Melamine resin foams with nanoporous fillers
DE102013112685A1 (de) * 2013-11-18 2015-05-21 Rehau Ag + Co. Verwendung einer Polymerzusammensetzung für ein geschäumtes Wärmedämmelement zur zumindest partiellen Ausfüllung des Hohlraums eines Rollladenkastens, dadurch erhaltenes geschäumtes Wärmedämmelement sowie Verfahren zu seiner Herstellung
BR112016024805B1 (pt) * 2014-04-23 2022-03-29 American Aerogel Corporation Compósito evacuado e métodos relacionados
WO2015168482A1 (en) * 2014-04-30 2015-11-05 Cardell Peter Coated foam method and apparatus
CN106082910A (zh) * 2016-06-13 2016-11-09 南通南京大学材料工程技术研究院 一种可瓷化柔性保温饰面砖及其制备方法
CN109318552B (zh) * 2018-05-30 2021-12-28 桑德(上海)建筑科技有限公司 一种吸音载体开孔颗粒聚合板及其制备方法
CN111635551B (zh) * 2020-06-23 2022-04-22 哈尔滨工程大学 一步法制备聚酰亚胺开孔泡沫的方法及产品
CN114057509A (zh) * 2021-10-22 2022-02-18 中建六局(天津)绿色建筑科技有限公司 一种以抛光砖泥为主要原料的泡沫陶瓷及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
DE2401565A1 (de) * 1972-08-17 1975-07-24 Dow Chemical Co Polsterung und materialien dafuer
GB1451132A (en) * 1974-01-21 1976-09-29 Dow Chemical Co Foam materials and the preparation thereof
EP0017671B1 (de) 1979-04-17 1983-01-12 BASF Aktiengesellschaft Verfahren zur Herstellung von elastischen Schaumstoffen auf Basis eines Melamin/Formaldehyd-Kondensationsprodukts
EP0017672B1 (de) 1979-04-17 1983-04-27 BASF Aktiengesellschaft Elastischer Schaumstoff auf Basis eines Melamin/Formaldehyd-Kondensationsproduktes und seine Verwendung
EP0031513B1 (de) 1979-12-14 1984-06-20 BASF Aktiengesellschaft Elastischer Schaumstoff auf Basis eines Harnstoff/Formaldehyd-Kondensationsproduktes und seine Herstellung
EP0049768B1 (de) 1980-10-04 1985-04-24 BASF Aktiengesellschaft Elastische Duroplast-Schaumstoffe
EP0451535A1 (de) 1990-03-14 1991-10-16 Illbruck Production S.A. Verfahren zur Herstellung eines Formteils aus Melaminharzschaumstoff
US5272001A (en) 1993-04-08 1993-12-21 Morey Weisman Modified low-density polyurethane foam body
US5378733A (en) 1993-04-09 1995-01-03 Seaward International, Inc. Sound attenuating polymer composites
US5418257A (en) * 1993-04-08 1995-05-23 Weisman; Morey Modified low-density polyurethane foam body
WO1998052997A1 (en) 1997-05-21 1998-11-26 Denovus L.L.C. Epoxy-containing foaming compositions and use thereof
US6022912A (en) * 1998-09-22 2000-02-08 Bayer Corporation Expansion of polymeric microspheres insitu in a rigid PUR/PIR foam formulation using a twin screw extruder
US6166109A (en) * 1997-08-11 2000-12-26 Bayer Corporation Syntactic rigid PUR/PIR foam boardstock
DE10027770A1 (de) * 2000-06-07 2001-12-13 Basf Ag Verfahren zur Herstellung von Schaumstoffen aus Melamin/Formaldehyd-Kondensaten
WO2004022298A1 (de) 2002-08-13 2004-03-18 Carcoustics Tech Center Gmbh Schallisolierendes material und verfahren zu dessen herstellung
WO2007023118A2 (de) 2005-08-22 2007-03-01 Basf Aktiengesellschaft Offenzelliger schaumstoff mit brandhemmenden und oleophoben/hydrophoben eigenschaften und verfahren zu seiner herstellung
WO2008037600A1 (de) 2006-09-25 2008-04-03 Basf Se Auswaschresistenter hydro- und oleophober melaminharzschaum

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1206993A (en) * 1968-02-09 1970-09-30 Revertex Ltd Improvements in or relating to the treatment of foams
US3878133A (en) 1972-08-17 1975-04-15 Dow Chemical Co Cushioning and materials therefor
DE3011769A1 (de) 1980-03-27 1981-10-01 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von elastischen schaumstoffen auf basis eines melamin/formaldehyd-kondensationsprodukts
US4511678A (en) 1979-04-17 1985-04-16 Basf Aktiengesellschaft Resilient foam based on a melamine-formaldehyde condensate
SE440510B (sv) * 1980-06-11 1985-08-05 Ferrosan Ab Skumplast innehallande svellbara polymerpartiklar samt sett for framstellning derav
ATE179358T1 (de) 1981-01-21 1999-05-15 Kawasaki Chem Holding Granulat aus faserverstärkten verbundstoffen und deren herstellungsverfahren
US4454248A (en) * 1982-09-29 1984-06-12 The Boeing Company Open cell rigid thermoset foams and method
US5098496A (en) 1988-06-30 1992-03-24 Shell Oil Company Method of making postformable fiber reinforced composite articles
CA1336483C (en) 1989-01-30 1995-08-01 Hatsuo Ishida Process for preparing composites
DE4223241A1 (de) 1992-07-15 1994-01-20 Hoechst Ag Faserverstärkte Halbzeuge aus mittel- bis hochviskosen Thermoplasten und Verfahren zu ihrer Herstellung
US5424388A (en) 1993-06-24 1995-06-13 Industrial Technology Research Institute Pultrusion process for long fiber-reinforced nylon composites
EP0752306A1 (de) 1995-07-05 1997-01-08 Monsanto Europe S.A./N.V. Verfahren zur Herstellung von pultrudierten Gegenständen
DE19749731A1 (de) 1997-11-11 1999-05-12 Basf Ag Verwendung von Mikrokapseln als Latentwärmespeicher
JP2007302902A (ja) 2001-06-29 2007-11-22 Riken Technos Corp 発泡性熱可塑性エラストマー組成物及びその製造方法
DE10139171A1 (de) 2001-08-16 2003-02-27 Basf Ag Verwendung von Mikrokapseln in Gipskartonplatten
JP4250014B2 (ja) * 2003-04-22 2009-04-08 リケンテクノス株式会社 熱可塑性エラストマー用軟化剤組成物、熱可塑性エラストマー組成物
US7629043B2 (en) 2003-12-22 2009-12-08 Kimberly-Clark Worldwide, Inc. Multi purpose cleaning product including a foam and a web
JP2008501809A (ja) 2004-05-24 2008-01-24 ビーエーエスエフ アクチェンゲゼルシャフト リグノセルロース含有材料からなる成形体
DE102004034604A1 (de) 2004-07-16 2006-02-16 Basf Ag Modifizierte offenzellige Schaumstoffe und Verfahren zu ihrer Herstellung
DK1866339T3 (da) 2005-03-25 2013-09-02 Gitr Inc GTR-bindende molekyler og anvendelser heraf
JP2006335917A (ja) * 2005-06-03 2006-12-14 Toyota Motor Corp 成形体、防音材料及びその製造方法
US7476927B2 (en) 2005-08-24 2009-01-13 Micron Technology, Inc. Scalable multi-functional and multi-level nano-crystal non-volatile memory device
EP1808116A1 (de) * 2006-01-12 2007-07-18 The Procter and Gamble Company Reinigungsgerät mit einem offenzelliger Schaumstoff
EP1808115B1 (de) 2006-01-12 2017-03-22 The Procter & Gamble Company Reinigungsgerät
WO2008032826A1 (fr) 2006-09-14 2008-03-20 I.S.T. Corporation Dispositif de pliage
ES2573254T3 (es) 2006-12-13 2016-06-06 Basf Se Microcápsulas
DE102007055813A1 (de) 2006-12-22 2008-06-26 Basf Se Thermisch zerstörbare Mikrokapseln
ES2549311T3 (es) 2007-06-06 2015-10-26 Abb Research Ltd Kit de mejora de motor para una prensa mecánica
WO2009000741A1 (de) 2007-06-22 2008-12-31 Basf Se Formmassen enthaltend polyarylether mit verbesserter oberflächenqualität
RU2470959C2 (ru) 2007-06-28 2012-12-27 Басф Се Термопластичные формовочные массы, содержащие органические черные пигменты
WO2009003901A1 (de) 2007-07-03 2009-01-08 Basf Se Verfahren zur metallisierung von polyamidblends
DE102007031467A1 (de) 2007-07-05 2009-01-08 Polymer-Chemie Gmbh Verfahren zur Herstellung eines faserverstärkten Verbundstoffs und Verbundstoff
JP2010535926A (ja) 2007-08-15 2010-11-25 ビーエーエスエフ ソシエタス・ヨーロピア 改善された流動性および良好な機械的特性を有するポリエスエル混合物
EP2190924B1 (de) 2007-09-06 2011-05-25 Basf Se Blends aus verzweigten polyarylethern und hydrophilen polymeren
WO2009034114A1 (de) 2007-09-12 2009-03-19 Basf Se Verwendung eines verfahrens zur elektrostatischen lackierung
MY150563A (en) 2007-11-13 2014-01-30 Basf Se Method for producing polyaryl ethers
JP5306368B2 (ja) 2007-12-18 2013-10-02 ビーエーエスエフ ソシエタス・ヨーロピア ポリエーテルアミン類を有する熱可塑性ポリアミド
KR101637045B1 (ko) 2007-12-19 2016-07-06 바스프 에스이 발포 반응성 수지를 함유하는 지지체 물질의 성형물
EP2082763A1 (de) 2008-01-24 2009-07-29 Boehringer Ingelheim International Gmbh Inhalator
EP2240267B1 (de) 2008-02-05 2016-09-28 Basf Se Mikrokapseln umfassend lipophiles tensid und öl
CN102066498B (zh) 2008-03-03 2013-11-06 巴斯夫欧洲公司 微胶囊、其生产及用途
WO2009109537A1 (de) 2008-03-04 2009-09-11 Basf Se Schaumstoffe mit hoher flammfestigkeit und geringer dichte
US20110008608A1 (en) 2008-03-10 2011-01-13 Basf Se Composite molding in particular for furniture construction
WO2009112467A1 (de) 2008-03-11 2009-09-17 Basf Se Mikokapseln mit wänden aus acylharnstoff
JP5732384B2 (ja) 2008-04-29 2015-06-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 可とう性シリカ含有発泡体
JP5661616B2 (ja) 2008-06-20 2015-01-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリアミドペレットの多段階乾燥及び後縮合を連続的に行う方法
KR20110028533A (ko) 2008-07-02 2011-03-18 바스프 에스이 발포성 폴리아미드
KR101627383B1 (ko) 2008-09-08 2016-06-03 바스프 에스이 편평한 성형물 또는 필름의 제조 방법
US8841363B2 (en) 2008-10-14 2014-09-23 Basf Se Copolymers having long-chain acrylates
US8051767B2 (en) 2008-10-15 2011-11-08 Jack Gerber Conic funnel integrally connected to a supporting planar platform
KR20110089284A (ko) 2008-10-23 2011-08-05 바스프 에스이 분지형 폴리아릴렌 에테르 및 상기 에테르를 포함하는 열가소성 성형 화합물
JP5645838B2 (ja) 2008-11-20 2014-12-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 反応性ポリアリーレンエーテル、及びその製造方法
JP2012512297A (ja) 2008-12-17 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア カルボン酸無水物を含有する、ポリアリーレンエーテルとポリアリーレンスルフィドとからなる配合物
US20110270807A1 (en) 2008-12-30 2011-11-03 Susana Gomez Maturana Method In A Database Server
WO2010089241A1 (de) 2009-02-04 2010-08-12 Basf Se Schwarze, uv-stabile thermoplastische formmassen
WO2010089245A1 (de) 2009-02-06 2010-08-12 Basf Se Styrolcopolymere und polyamide enthaltende thermoplastische formmassen
CN102459409B (zh) 2009-06-08 2014-05-28 巴斯夫欧洲公司 链段状聚亚芳基醚嵌段共聚物
EP2442901A2 (de) 2009-06-15 2012-04-25 Basf Se Mikrokapseln mit hochverzweigten polymeren als vernetzer
WO2011000816A1 (de) 2009-07-03 2011-01-06 Basf Se Nanokompositblends enthaltend polyamide und polyolefine
WO2011005993A1 (en) 2009-07-08 2011-01-13 Advanced Bionics, Llc Lead insertion tools
JP5726185B2 (ja) 2009-07-10 2015-05-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 架橋剤としてのポリビニル単量体を有するマイクロカプセル
EP2456816A1 (de) 2009-07-21 2012-05-30 Basf Se Nanokompositblends auf basis von polyamiden und polyarylenethersulfonen
US20110029106A1 (en) 2009-07-30 2011-02-03 Sony Ericsson Mobile Communications Ab Method and arrangement in a mobile terminal
EP2287241A1 (de) 2009-08-20 2011-02-23 Basf Se Dämmstoffe aus unterschiedlichen pigmentierten Partikeln
US8437045B2 (en) 2009-08-27 2013-05-07 Xerox Corporation Bitmapped based trapping methods, apparatus and system by modifying non-black halftone pixel bitmap plane using estimated continuous tone value
US8822557B2 (en) 2009-10-27 2014-09-02 Basf Se Elastic inorganic-organic hybrid foam
BR112012010098A2 (pt) 2009-10-29 2016-05-31 Basf Se processo para a preparação de um filamento oco, uso de filamentos ocos, e, filamentos ocos
JP5538556B2 (ja) 2009-11-20 2014-07-02 ビーエーエスエフ ソシエタス・ヨーロピア 微小中空球を含有する樹脂発泡体
US9315626B2 (en) 2009-12-08 2016-04-19 Basf Se Process for preparing polyamides
EP2336219A1 (de) 2009-12-17 2011-06-22 Basf Se Verbesserte Blends aus Polyarylenethern und Polyarylensulfiden
EP2336220A1 (de) 2009-12-17 2011-06-22 Basf Se Verbesserte Blends aus Polyarylenethern und Polyarylensulfiden
US20110189464A1 (en) 2010-02-03 2011-08-04 Basf Se Melamine-formaldehyde foam with built-in microcapsules
US20110218294A1 (en) 2010-03-05 2011-09-08 Basf Se blends of polyarylene ethers and polyarylene sulfides
US20110237694A1 (en) 2010-03-23 2011-09-29 Basf Se Polyarylene ethers with improved flowability
US20110237693A1 (en) 2010-03-23 2011-09-29 Basf Se Blends made of polyarylene ethers and of polyarylene sulfides
US20110237699A1 (en) 2010-03-24 2011-09-29 Basf Se Process for producing molded foams from melamine/formaldehyde condensation products
WO2011117344A1 (de) 2010-03-24 2011-09-29 Basf Se Nachvernetzte polyamide und verfahren zu deren herstellung
US20120088048A1 (en) 2010-04-01 2012-04-12 Basf Se Process for producing fiber-reinforced composite materials
US20110244743A1 (en) 2010-04-01 2011-10-06 Basf Se Process for producing fiber-reinforced composite materials using polyamides as binders
US20110269864A1 (en) 2010-04-29 2011-11-03 Basf Se Producing resilient compressed foamed material based on melamine-formaldehyde resins
US20110306718A1 (en) 2010-05-11 2011-12-15 Basf Se Pultrusion process
US20110288258A1 (en) 2010-05-19 2011-11-24 Basf Se Crosslinked polyamide
US8703862B2 (en) 2010-05-26 2014-04-22 Basf Se Reinforced thermoplastic molding compositions based on polyarylene ethers
US20120071578A1 (en) 2010-09-16 2012-03-22 Basf Se Producing melamine-formaldehyde foams
US9242397B2 (en) 2010-11-05 2016-01-26 Basf Se Melamine resin foam with inorganic filling material
US8937106B2 (en) 2010-12-07 2015-01-20 Basf Se Melamine resin foams with nanoporous fillers

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
DE2401565A1 (de) * 1972-08-17 1975-07-24 Dow Chemical Co Polsterung und materialien dafuer
GB1451132A (en) * 1974-01-21 1976-09-29 Dow Chemical Co Foam materials and the preparation thereof
EP0017671B1 (de) 1979-04-17 1983-01-12 BASF Aktiengesellschaft Verfahren zur Herstellung von elastischen Schaumstoffen auf Basis eines Melamin/Formaldehyd-Kondensationsprodukts
EP0017672B1 (de) 1979-04-17 1983-04-27 BASF Aktiengesellschaft Elastischer Schaumstoff auf Basis eines Melamin/Formaldehyd-Kondensationsproduktes und seine Verwendung
EP0031513B1 (de) 1979-12-14 1984-06-20 BASF Aktiengesellschaft Elastischer Schaumstoff auf Basis eines Harnstoff/Formaldehyd-Kondensationsproduktes und seine Herstellung
EP0049768B1 (de) 1980-10-04 1985-04-24 BASF Aktiengesellschaft Elastische Duroplast-Schaumstoffe
EP0451535A1 (de) 1990-03-14 1991-10-16 Illbruck Production S.A. Verfahren zur Herstellung eines Formteils aus Melaminharzschaumstoff
US5272001A (en) 1993-04-08 1993-12-21 Morey Weisman Modified low-density polyurethane foam body
US5418257A (en) * 1993-04-08 1995-05-23 Weisman; Morey Modified low-density polyurethane foam body
US5378733A (en) 1993-04-09 1995-01-03 Seaward International, Inc. Sound attenuating polymer composites
WO1998052997A1 (en) 1997-05-21 1998-11-26 Denovus L.L.C. Epoxy-containing foaming compositions and use thereof
US6166109A (en) * 1997-08-11 2000-12-26 Bayer Corporation Syntactic rigid PUR/PIR foam boardstock
US6022912A (en) * 1998-09-22 2000-02-08 Bayer Corporation Expansion of polymeric microspheres insitu in a rigid PUR/PIR foam formulation using a twin screw extruder
DE10027770A1 (de) * 2000-06-07 2001-12-13 Basf Ag Verfahren zur Herstellung von Schaumstoffen aus Melamin/Formaldehyd-Kondensaten
WO2004022298A1 (de) 2002-08-13 2004-03-18 Carcoustics Tech Center Gmbh Schallisolierendes material und verfahren zu dessen herstellung
WO2007023118A2 (de) 2005-08-22 2007-03-01 Basf Aktiengesellschaft Offenzelliger schaumstoff mit brandhemmenden und oleophoben/hydrophoben eigenschaften und verfahren zu seiner herstellung
WO2008037600A1 (de) 2006-09-25 2008-04-03 Basf Se Auswaschresistenter hydro- und oleophober melaminharzschaum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RÖMPP CHEMIE-LEXIKON, vol. 9, 1995, pages 4016

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242397B2 (en) 2010-11-05 2016-01-26 Basf Se Melamine resin foam with inorganic filling material
US9353232B2 (en) 2011-05-16 2016-05-31 Basf Se Melamine-formaldehyde foams comprising hollow microspheres
EP2735584A1 (de) 2012-11-26 2014-05-28 Basf Se Thermoverformbarer Melaminharzschaumstoff mit partikelförmigem Füllmaterial
EP2942334A1 (de) * 2014-05-06 2015-11-11 Siemens Aktiengesellschaft Schichtsystem für ein Bauteil
WO2015169558A1 (de) * 2014-05-06 2015-11-12 Siemens Aktiengesellschaft Schichtsystem für ein bauteil
WO2022263228A1 (en) 2021-06-17 2022-12-22 Basf Se Method for preparing melamine resin foams using grinded melamine foam particles

Also Published As

Publication number Publication date
JP2013511583A (ja) 2013-04-04
EP2501749B1 (de) 2013-09-18
KR20120117784A (ko) 2012-10-24
JP5538556B2 (ja) 2014-07-02
CN102639620A (zh) 2012-08-15
EP2501749A1 (de) 2012-09-26
CN102639620B (zh) 2014-01-22
US20120225965A1 (en) 2012-09-06
ES2435811T3 (es) 2013-12-23
US9056961B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
EP2501749B1 (de) Mikrohohlkugeln enthaltende harzschaumstoffe
EP2010729B1 (de) Mehrschichtiges schaumstoff-verbundelement mit aussparungen
DE3002775A1 (de) Verfahren zur herstellung eines schalldaemmenden werkstoffes sowie durch das verfahren hergestellter werkstoff
EP0054767A1 (de) Flammschutzmittel und schwerentflammbarer Polyurethanschaum sowie Verfahren zu dessen Herstellung
DE1200458B (de) Schwingungsdaempfende Materialien mit grosser Temperaturbandbreite hoher Wirksamkeit aus Mischungen hochpolymerer Stoffe mit aeusseren Weichmachern
WO2013007243A1 (de) Erhöhung der schallabsorption in schaumstoff-dämmstoffen
WO2016113241A1 (de) Schalldämpfendes bzw. schallabsorbierendes verbundmaterial
DE3413083C2 (de)
EP1705232B1 (de) Dichtungselement
DE102016108538A1 (de) Brandschutzband
DE2700907C2 (de)
EP3208299B1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
EP0561216B1 (de) Schaumstoffplatten mit verbesserten Wärmedämmeigenschaften und Verfahren zu ihrer Herstellung
WO2007023160A2 (de) Wasserdampfabweisender offenzelliger schaumstoff und verfahren zu seiner herstellung
EP1409241B1 (de) Oberflächenbeschichtung von akustisch wirksamen schaumstoffmaterialien
DD224910A5 (de) Schalldaemmende lederpulverkomposition
EP2292674A2 (de) Formschaumelement mit zumindest zwei unterscheidbaren Geometriestrukturen
EP3686236B1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
EP3434720A1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
DE102011108755A1 (de) Multifunktionelle Wandelemente
WO2019020328A1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
DE2323883C3 (de) Verfahren zur Herstellung eines geschäumten Kunststoffkörpers
DE2323883B2 (de) Verfahren zur Herstellung eines geschäumten Kunststoffkörpers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052601.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10779788

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13510487

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012539299

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010779788

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127015841

Country of ref document: KR

Kind code of ref document: A