WO2011063595A1 - Depolymerized glycosaminoglycan from thelenota ananas and preparation method thereof - Google Patents

Depolymerized glycosaminoglycan from thelenota ananas and preparation method thereof Download PDF

Info

Publication number
WO2011063595A1
WO2011063595A1 PCT/CN2010/001678 CN2010001678W WO2011063595A1 WO 2011063595 A1 WO2011063595 A1 WO 2011063595A1 CN 2010001678 W CN2010001678 W CN 2010001678W WO 2011063595 A1 WO2011063595 A1 WO 2011063595A1
Authority
WO
WIPO (PCT)
Prior art keywords
dthg
glycosaminoglycan
oligomeric
thg
pineapple
Prior art date
Application number
PCT/CN2010/001678
Other languages
French (fr)
Chinese (zh)
Inventor
赵金华
康晖
吴明一
曾伟珍
李姿
高媛
崔婧
王志国
冯汉林
于琳
Original Assignee
深圳海王药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳海王药业有限公司 filed Critical 深圳海王药业有限公司
Priority to US13/512,142 priority Critical patent/US8809300B2/en
Priority to AU2010324437A priority patent/AU2010324437B2/en
Publication of WO2011063595A1 publication Critical patent/WO2011063595A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/737Sulfated polysaccharides, e.g. chondroitin sulfate, dermatan sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan

Abstract

Disclosed is a depolymerized glycosaminoglycan from Thelenota ananas(dTHG), weight average molecular weight of which is about 8000 ~ 20000Da, and monosaccharide components of which are acetylgalactosamine(GalNAc), glucuronic acid(GlcUA), fucose(Fuc) or their sulfates(expressed as -OSO3 -), in which molar ratio of GalNAc: GlcUA: Fuc: -OSO3 - is about 1: (1±0.3 ): (1±0.3): (3.5±0.5). Said dTHG is a potent endogenous factor X enzyme inhibitor, which has good anticoagulating and antithrombotic activity, and can be used to prevent and/or treat thrombotic diseases. Also provided is a method for preparing said dTHG, which comprises steps of 1) extracting and obtaining fucosylated glycosaminoglycan(THG) from Thelenota ananas body wall; 2) depolymerizing THG to obtain dTHG by method of peroxide depolymerization or method of peroxide depolymerization catalyzed by catalyst of the fourth period transition metal ions; 3) removing oligomer and/or polymer impurities in dTHG.

Description

低聚凤梨参糖胺聚糖及其制备方法 技术领域  Low poly pineapple gins glycosaminoglycan and preparation method thereof
本发明属于医药技术领域,具体涉及一种低聚凤梨参糖胺聚糖及其制备方 法、 含有该低聚凤梨参糖胺聚糖的药用组合物及其在血栓性疾病的预防和 /或 治疗中的用途。本发明是基于本申请人 2009年 11月 6日提交的名称为 "低聚 岩藻糖化糖胺聚糖及其制备方法"、 申请号为 200910110114.0的发明专利申请 的进一步发明, 所述专利申请的全文以参考文献的形式结合于本发明说明书。 技术背景  The invention belongs to the technical field of medicine, and particularly relates to an oligomeric pineapple gins glycosaminoglycan and a preparation method thereof, a pharmaceutical composition containing the same, and a medicament for preventing thrombotic diseases and/or Use in therapy. The present invention is based on a further invention of the invention patent application entitled "Oli-fucosylated glycosaminoglycan and its preparation method", the application No. 200910110114.0, filed on November 6, 2009 The entire text is incorporated into the specification of the present invention in the form of a reference. technical background
岩 ( Fucose-branched Glycosaminoglycan, fiicose-containing glycos-aminoglycan或 Fucosylated Glycosaminoglycan , FGAG )或称岩 糖化 硫酸软骨素( Fucose-branched Chondroitin Sulfate, FCS )是指一类从棘皮动物体 壁或内脏中提取获得的带有硫酸岩藻糖取代基团的特殊的糖胺聚糖(樊绘曾等. 药学学报, 1980, 18(3): 203; Ricardo P. et al., J. Biol. Chem., 1988, 263 (34) : 18176; Yutaka K. et al., J. Biol. Chem., 1990, 265:5081 ) 。  Fucose-branched Glycosaminoglycan (fiicose-containing glycos-aminoglycan or Fucosylated Glycosaminoglycan, FGAG) or Fucose-branched Chondroitin Sulfate (FCS) refers to a type of extract obtained from the body wall or internal organs of the echinoderms. A special glycosaminoglycan with a sulfated fucose-substituted group (Fan et al., Acta Pharmacea Sinica, 1980, 18(3): 203; Ricardo P. et al., J. Biol. Chem., 1988, 263 (34): 18176; Yutaka K. et al., J. Biol. Chem., 1990, 265:5081).
现有资料显示, 棘皮动物来源的 FGAG在化学组成方面既存在共性也存 在差异。 首先, 不同来源以及不同方法制备的 FGAG存在一些共同特点, 即, FGAG组成单糖包括 N-乙酰氨基半乳糖基 ( GalNAc, A,所述 N-乙酰氨基半乳 糖化学名为 N-乙酰基 -2去氧 -2-氨基半乳糖, 下文同)、 葡萄糖醛酸基 ( GlcUA, U )、岩藻糖基( Fuc, F )以及它们的硫酸酯(上文樊绘曾, 1980; Ricardo P, 1988; 和 Ken-ichiro Y. et al., Tetrahedron Letters, 1992, 33(34): 4959 ) ; 其中, GlcUA 和 GalNAc (或其硫酸酯)通过 β (1-3)及 β (1-4)糖苷键交互连接形成类似于硫 酸软骨素具有 [GlcUA β(1-3)- GalNAc β(1-4)-] 二糖重复结构单元的主链,而岩 藻糖或其硫酸酯以側链形式连接于主链。  Available data show that there is a commonality and difference in the chemical composition of echinoderma-derived FGAG. First, FGAG prepared from different sources and different methods have some common features, namely, FGAG consists of monosaccharides including N-acetylgalactosyl ( GalNAc, A, the N-acetylgalactose chemical name is N-acetyl- 2 deoxy-2-aminogalactose, hereinafter the same), glucuronic acid group (GlcUA, U), fucosyl (Fuc, F) and their sulfates (above Fan Yizeng, 1980; Ricardo P, 1988; and Ken-ichiro Y. et al., Tetrahedron Letters, 1992, 33(34): 4959); wherein GlcUA and GalNAc (or their sulfates) pass β (1-3) and β (1-4) Glycosidic linkages are linked to form a backbone similar to chondroitin sulfate with a [GlcUA β(1-3)- GalNAc β(1-4)-] disaccharide repeating structural unit, while fucose or its sulfate is in the form of a side chain Connected to the main chain.
不同来源以及不同方法制备的 FGAG存在着不同程度的化学结构差异, 例如:  FGAGs prepared from different sources and different methods have different degrees of chemical structure differences, such as:
( 1 )单糖组成比例方面的差异。 不同种属海参、 不同组织来源乃至不同 制备方法所得 FGAG的单糖组成都可能存在显著差异, 几种来源的 FGAG单 糖组成参见表 1。  (1) Differences in the composition ratio of monosaccharides. The monosaccharide composition of FGAG obtained from different species of sea cucumbers, different tissue sources and even different preparation methods may be significantly different. The composition of FGAG monosaccharides from several sources is shown in Table 1.
表 1. 几种海参来源的 FGAG单糖组成及硫酸酯基  Table 1. FGAG monosaccharide composition and sulfate group derived from several sea cucumbers
来源 化学组成(摩尔比)  Source chemical composition (molar ratio)
文献来源  Source of literature
海参种属 组织 A: U: F: -OSO;  Sea cucumber species organization A: U: F: -OSO;
^opus Japonicus 体壁 1:! M: ^: ^ 樊绘曾, 药学学报, 26? ^opus Japonicus Body Wall 1 :! M : ^: ^ Fan Yizeng, Journal of Pharmaceutical Sciences, 26?
I Ken-ichiro Y, Tetrahedron Letters, 1992, 33: I Ken-ichiro Y, Tetrahedron Letters, 1992, 33:
1: 0.88 :0.93 :4.01  1: 0.88 : 0.93 : 4.01
4959  4959
1: 1.18 : 2.78: 5.46 Yutaka , J. Biol. Chem., 1990, 265: 5081 1: 1.18 : 2.78: 5.46 Yutaka, J. Biol. Chem., 1990, 265: 5081
1: 0.84 :2.38: 3.69 [b] Yutaka , Biochem. J., 2002,132: 335 1: 0.84 : 2.38: 3.69 [b] Yutaka, Biochem. J., 2002, 132: 335
内脏 1 :1.00: 1.00: 4.70 樊绘曾, 海洋药物, 1983, (3): 134  Viscera 1 : 1.00: 1.00: 4.70 Fan Ji Zeng, Marine Medicine, 1983, (3): 134
Stichopus variegatus  Stichopus variegatus
体壁 1: 1.21 : 1.29 :4.62 陈菊娣,中国海洋药物, 1994, (1 ): 24  Body Wall 1: 1.21 : 1.29 :4.62 Chen Juzhen, Chinese Marine Medicine, 1994, (1 ): 24
(花剌参)  (花剌参)
Holothuria leucospilota  Holothuria leucospilota
1: 0.94 :0.84 :3.60 樊绘曾, 药学学报, 1983,18 (3): 203  1: 0.94 : 0.84 : 3.60 Fan Huazeng, Journal of Pharmaceutical Sciences, 1983, 18 (3): 203
(玉足海参)  (玉足海参)
1: 0.96 :0.78 : 1.98 李海棠,中药材, 1999, 22(7):328  1: 0.96 : 0.78 : 1.98 Li Haiyan, Chinese herbal medicine, 1999, 22(7): 328
Holothuria atra  Holothuria atra
体壁 1: 1.15 :0.79 : 2.7【e】 唐孝礼,中药材, 1999, 22(5):223 Body wall 1: 1.15 :0.79 : 2.7 [ e 】 Tang Xiaoli, Chinese herbal medicine, 1999, 22(5): 223
(黑海参)  (Black Sea Cucumber)
Holothuria scabr  Holothuria scabr
体壁 1: 1.28 :0.68 : 1.72 、 ,食品与发酵工业, 2006, 32: 123  Body Wall 1: 1.28 :0.68 : 1.72 , , Food and Fermentation Industry, 2006, 32: 123
(链海参)  (chain sea cucumber)
Ludwigothurea grisea 1: 1.17 :2.17: : 2.39 [c] Paulo AS, Eur. J. Biochem., 1987, 166:639 Ludwigothurea grisea 1: 1.17 : 2.17: : 2.39 [c] Paulo AS, Eur. J. Biochem., 1987, 166:639
Ricardo PV, J. Biol. Chem. , 1988, 263: 体壁 1: 0.90 :0.97 :2.67[dl Ricardo PV, J. Biol. Chem., 1988, 263: Body wall 1: 0.90:0.97: 2.67 [dl
18176  18176
1: 0.92 : 1.23 : 2.21 Paulo AS, J. Biol. Chem., 1996, 271:23973 文献以 mmol/g报告 (0.81:0.69:1.93:2.99); [bl文献以质量百分比(%)¾告(16.2 : 20.3: 11.66 :23.52); 1: 0.92 : 1.23 : 2.21 Paulo AS, J. Biol. Chem., 1996, 271:23973 The literature is reported in mmol/g (0.81:0.69:1.93:2.99); [bl literature in mass percent (%) 3⁄4 ( 16.2 : 20.3: 11.66 : 23.52);
[c】文献报告比例为 0.46: 0.54: 1.00: 1.10; td)文献报告比例为 0.33: 0.30: 0.32: 0.88。 [c ] The reported ratio of the literature is 0.46: 0.54: 1.00: 1.10; td) The reported ratio of the literature is 0.33: 0.30: 0.32: 0.88.
不同种属、组织来源及不同提取方法所得 FGAG组成差异主要表现在 Fuc 及硫酸酯基的组成比例变化较大。 根据资料可以判断, 不仅不同物种来源的 FGAG存在不同, 提取方法的不同也可能导致产物组成的较大差异。 例如, YutakaK等 ( 1990,2002)与樊绘曾等( 1980)、 Ken-ichiro Y等 ( 1992) 同样 从刺参体壁中提取 FGAG, 前者所得 FGAG中岩藻糖摩尔组成比例较后者高 2〜3倍; 而相同研究小组从同种海参 . g ea) 中提取获得的 FGAG在岩藻 糖组成比例方面也存在较大变化( Paulo AS等, 1987, 1988 )。 组织来源相同而 提取方法 /时间不同所致 FGAG的岩藻糖组成比例差异, 其原因可能是岩藻糖 组成比例较高的 FGAG产物中存在非 GAG类的岩藻聚糖污染,也可能是岩藻 糖组成比例较低的 FGAG产物制备过程中, 其侧链基团存在破坏和损失, 此 外还可能与含量检测方法的准确性有关。  The difference in FGAG composition obtained from different species, tissue sources and different extraction methods is mainly reflected in the large change in the composition ratio of Fuc and sulfate groups. According to the data, it is judged that not only the FGAGs of different species are different, but the difference in extraction methods may also lead to large differences in product composition. For example, YutakaK et al. (1990, 2002) extracted FGAG from the body wall of the sea cucumber with Fan et al. (1980) and Ken-ichiro Y et al. (1992). The former has a higher molar composition of fucose in the FGAG than the latter. 2 to 3 times; FGAG extracted from the same species of sea cucumber. g ea) also has a large change in the proportion of fucose composition (Paulo AS et al., 1987, 1988). The difference in the proportion of fucose composition of FGAG caused by the same source of tissue and different extraction methods/times may be due to the presence of non-GAG fucosan contamination in the FGAG product with a higher proportion of fucose composition, or may be rock In the preparation of FGAG products with low proportion of alginose, the side chain groups are destroyed and lost, and may also be related to the accuracy of the content detection method.
(2)主链结构方面的差异。 如同硫酸软骨素 A、 C、 D等存在的硫酸酯 基位置和数量方面的差异一样, 不同种属来源的 FGAG的主链结构中同样存 在硫酸酯基位置和数量方面的差异, 例如, 资料显示, 刺参 FGAG 主链中 GalNAc的 4-位和 6-位均存在石克酸酉旨化 ( Ken-ichiro Y et al., Tetrahedron Letters, 1992, 33: 4959 ); 玉足海参 FGAG主链 GalNAc仅存在 6-位硫酸酯化而无 4-位 硫酸酯化(樊绘曾等,药学学报, 1983, 18 (3): 203 ); 而 L. grisea来源的 FGAG 主链中, 约 53%的 GalNAc为 6-硫酸酯, 少量为 4,6-二硫酸酯(约 12% )、 4- 硫酸酯(约 4% ),并且存在约 31%未被硫酸酯化的 GalNAc ( Lubor Borsig et al. J. Biol. Chem. 2007, 282: 14984 )。 (2) Differences in the structure of the main chain. Like the difference in position and number of sulfate groups in the presence of chondroitin sulfates A, C, D, etc., the position and number of sulfate groups are also present in the main chain structure of FGAG of different species, for example, data display , in the FGAG main chain of the sea cucumber, the 4- and 6-positions of GalNAc have the meaning of succinic acid (Ken-ichiro Y et al., Tetrahedron Letters, 1992, 33: 4959); Jade foot sea cucumber FGAG main chain GalNAc There is only 6-position sulfation and no 4-position sulfation (Fan et al., Pharmacological Journal, 1983, 18 (3): 203); and L. grisea-derived FGAG In the main chain, about 53% of GalNAc is 6-sulfate, a small amount is 4,6-disulfate (about 12%), 4-sulfate (about 4%), and about 31% is not sulfated. GalNAc (Lubor Borsig et al. J. Biol. Chem. 2007, 282: 14984).
( 3 )侧链岩藻糖基及硫酸化程度差异。 根据资料, 5*. (刺参) 及 gn a来源的 FGAG都存在三种类型的侧链岩藻糖基, 即 2,4-二硫酸酯、 3,4-二硫酸酯以及 4-硫酸酯化的岩藻糖基; 后者另含约 25%未被硫酸酯化的岩 藻糖,这些岩藻糖成束存在于 FGAG的还原端( Ken-ichiro Y. et al., Tetrahedron Letters, 1992, 33: 4959, Paulo AS. et al., J. Biol. Chem., 1996, 271 : 23973 ) 。  (3) Difference in the degree of side chain fucosyl and sulfation. According to the data, there are three types of side chain fucosyl groups, namely 2,4-disulfate, 3,4-disulfate and 4-sulfate, in 5*. (Hawthorn) and gn a-derived FGAG. Fucosyl; the latter additionally contains about 25% fucose that has not been sulfated, and these fucose bundles are present at the reducing end of FGAG (Ken-ichiro Y. et al., Tetrahedron Letters, 1992) 33: 4959, Paulo AS. et al., J. Biol. Chem., 1996, 271: 23973).
如表 1所示,刺参、花刺参所得 FGAG的硫酸化程度一般较高,而 L. grisea. 黑海参、 糙海参来源的 FGAG的硫酸化程度相对较低。  As shown in Table 1, the degree of sulfation of FGAG obtained from sea cucumber and ginseng is generally higher, while the degree of sulfation of FGAG derived from L. grisea. Black sea cucumber and brown sea cucumber is relatively low.
现有资料显示, 棘皮动物来源的 FGAG具有多方面的生物学活性。  Available data show that echinoderma-derived FGAG has a variety of biological activities.
各种来源的 FGAG多具有一定的抗凝血活性(樊绘曾等, 药学学报, 1980, 15(5): 263;张佩文, 中国药理学与毒理学杂志, 1988, 2(2): 98; Paulo AS. etal., J. Biol. Chem. 1996, 271 : 23973 ) ; 然而, 这些天然 FGAG也同时具有诱导血小 板聚集活性( Jia-zeng L. et al, Thromb Haemos, 1988, 54(3): 435; 单春文, 中药 药理与临床, 1989, 5(3): 33 )。  FGAG from various sources has certain anticoagulant activity (Fan et al., Pharmacological Journal, 1980, 15(5): 263; Zhang Peiwen, Chinese Journal of Pharmacology and Toxicology, 1988, 2(2): 98; Paulo AS. et al., J. Biol. Chem. 1996, 271: 23973); however, these natural FGAGs also have an induction of platelet aggregation activity ( Jia-zeng L. et al, Thromb Haemos, 1988, 54(3): 435; Shan Chunwen, Pharmacology and Clinical Medicine, 1989, 5(3): 33).
见于报道的 FGAG生物学活性还涉及调血脂 (His-Hisen L. et al., J. Agric. Food Chem., 2002, 50: 3602 ) 、 抗动脉注样硬化及抑制血管内皮增生 ( Tapon- Bretaudiere et al., Thromb. Haemost, 2000, 84: 332; Masahiko I. et al., Atherosclerosis, 1997, 129: 27; 欧洲专利申请, EP 081 1635 ) 、 免疫调节 (孙玲 等, 生物化学与生物物理学进展, 1991, 18 (5): 394; 陈祖琼等, 天津医药, 1987, The biological activity of FGAG as reported is also related to the regulation of blood lipids (His-Hisen L. et al., J. Agric. Food Chem., 2002, 50: 3602), anti-arterial injection sclerosis and inhibition of vascular endothelial proliferation (Tapon- Bretaudiere) Et al., Thromb. Haemost, 2000, 84: 332; Masahiko I. et al., Atherosclerosis, 1997, 129: 27; European Patent Application, EP 081 1635), Immunomodulation (Sun Ling et al, Biochemistry and Biophysics) Progress in Studies, 1991, 18 (5): 394; Chen Zuqiong et al., Tianjin Pharmaceutical, 1987,
(5) : 278)、 抗肿瘤 { 尺 、 ,中国肿瘤临床, 1992, 19(1): 72; 李惟敏等,肿瘤临 床, 1985, 12(2): 1 18), 以及抗病毒 ( JA. Beutler etal., Antivir. Chem. Chemother., 1993, 4(3), 167; PCT专利申请 PCT/JP90/00159 )等。 (5): 278), Anti-tumor {Ji, Chinese Journal of Clinical Oncology, 1992, 19(1): 72; Li Weimin et al, Cancer Clinical, 1985, 12(2): 1 18), and anti-virus (J. Beutler) Etal., Antivir. Chem. Chemother., 1993, 4(3), 167; PCT Patent Application PCT/JP90/00159) and the like.
海参来源的 FGAG及其衍生物的抗血栓、 抗凝血活性及其作用机制、 药 理学作用靶点研究资料显示, FGAG具有不同于肝素、石克酸皮肤素的抗凝机制, 其抗凝血 /抗血栓作用靶点可涉及:  The antithrombotic and anticoagulant activities of FGAG and its derivatives derived from sea cucumber and its derivatives, pharmacological action target data show that FGAG has anticoagulant mechanism different from heparin and dermatan dermatan, and its anticoagulation /Antithrombotic targets may involve:
( 1 ) AT-III: 即存在依赖 ΑΤ-ΙΠ的抗凝血酶活性 ( Paulo AS etal., J. Biol. Chem., 1996, 271, 23973;马西, 中华血液学杂志, 1990, 1 1(5): 241 ) ; ( 2 )HC-II: 即存在依赖 HC-II 的抗凝血酶活性 (Hideki Nagase et al., Blood, 1995, 85, (1) AT-III: There is an anti-thrombin activity dependent on ΑΤ-ΙΠ (Paulo AS et al., J. Biol. Chem., 1996, 271, 23973; Marcy, Chinese Journal of Hematology, 1990, 1 1 (5): 241); (2) HC-II: the presence of anti-thrombin activity dependent on HC-II (Hideki Nagase et al., Blood, 1995, 85,
(6) : 1527; 张广森, 1997, 18(3): 127 ); ( 3 ) Ila: 即抑制凝血 酶(Ila)反馈激活因子 XIII ( Nagase H et al., Biochem. J., 1996, 1 19(1): 63-69 ) ;(6): 1527; Zhang Guangsen, 1997, 18(3): 127); (3) Ila: inhibition of thrombin (Ila) feedback activator XIII (Nagase H et al., Biochem. J., 1996, 1 19 (1): 63-69);
( 4 ) f.Xase: 抑制内源性因子 X酶(因子 VIII-IX复合物)对因子 X的激活 (Hideki Nagase et al., Blood, 1995, 85(6): 1527; JP Sheehan et al., Blood, 2006, 107(10): 3876 ); ( 5 ) TFPI: 包括提高 TFPI对 Xa的抑制速率, 降低 TFPI-Xa 对 TF-VIIa的抑制活性, 并且刺激 TFPI释放 ( Hideki Nagase et al., Thromb Haemost, 1997, 78: 864; T. Bretaudiere etal., Thromb Haemost, 2000, 84: 332 ); ( 6 ) 纤溶酶: 促进紆溶酶原的激活并由此促进血栓溶解(杨晓光等, 中国医 学科学院学 4艮, 1990, 12(3), 187; Yutaka Kariya et al., Biochem.丄, 2002, 132: 335 ) 。 (4) f.Xase: inhibition of activation of factor X by endogenous factor X enzyme (factor VIII-IX complex) (Hideki Nagase et al., Blood, 1995, 85(6): 1527; JP Sheehan et al. , Blood, 2006, 107(10): 3876 ); ( 5 ) TFPI: including increasing the rate of inhibition of Xa by TFPI, reducing TFPI-Xa Inhibition of TF-VIIa and stimulation of TFPI release ( Hideki Nagase et al., Thromb Haemost, 1997, 78: 864; T. Bretaudiere et al., Thromb Haemost, 2000, 84: 332); (6) Plasmin : Promotes activation of lysogen and promotes thrombolysis (Yang Xiaoguang et al., Chinese Academy of Medical Sciences 4, 1990, 12(3), 187; Yutaka Kariya et al., Biochem.丄, 2002, 132: 335) .
尽管海参 FGAG独特的抗凝血机制及其良好的抗凝活性强度使之具有重 要的潜在应用价值, 但迄今 FGAG难以应用于临床, 究其原因主要在于:  Although the unique anticoagulant mechanism of sea cucumber FGAG and its good anticoagulant activity make it have important potential application value, FGAG has been difficult to apply in clinical practice so far, mainly because:
( 1 )海参 FGAG兼具抗凝血以及诱导血小板聚集的活性。 临床上, 抗凝 血的目的在于抗血栓形成,而抗血小板则是临床常规使用的另一种重要的抗血 栓形成的方法。 显然, 对于血栓形成而言, FGAG的抗血栓的抗凝活性与其促 血栓的血小板激活效应相互对立,使其难以应用于临床血液学疾病的预防和治 疗。 例如, 研究表明, 在兔急性弥漫性血管内模型中, 刺参 FGAG的血小板 激活效应完全抵消了其抗凝血疗效作用 (李安国, 湖南中医学院学报, 1991, 1 1(3): 37 ) 。  (1) Sea cucumber FGAG has both anticoagulation and activity to induce platelet aggregation. Clinically, anti-coagulation is aimed at antithrombotic, while antiplatelet is another important anti-thrombotic method routinely used clinically. Obviously, for thrombosis, the antithrombotic anticoagulant activity of FGAG and its thrombogenic platelet activation effect are mutually antagonistic, making it difficult to apply to the prevention and treatment of clinical hematological diseases. For example, studies have shown that in an acute diffuse intravascular model of rabbits, the platelet activation effect of FGAG completely counteracts its anticoagulant effect (Li Anguo, Journal of Hunan College of Traditional Chinese Medicine, 1991, 1 1(3): 37) .
( 2 )药效剂量的刺参 FGAG的活体动物血管内给药可致血小板计数减少 (2) Pharmacological dose of sea cucumber FGAG in vivo intravascular administration can reduce platelet count
(李家增等, ^ 理 , 1985, 6(2): 107 )。 血小板减少, 例如肝素所致免疫 性血小板减少症, 既可能引发出血倾向,也可能引发严重乃至致命的弥漫型血 管内凝血。 现有资料显示, 海参 FGAG所致血小板减少可能与其诱导血小板 聚集,并由此导致血小板在微血管内的 "扣押 "有关(李家增等, 中药通报, 1983, 8(5): 35 ) 。 (Li Jiazeng et al., ^, 1985, 6(2): 107). Thrombocytopenia, such as heparin-induced immune thrombocytopenia, may trigger a bleeding tendency and may cause severe or even fatal diffuse intravascular coagulation. Available data suggest that thrombocytopenia caused by sea cucumber FGAG may be related to the induction of platelet aggregation and thus the "seizure" of platelets in microvessels (Li Jiazeng et al., Chinese Journal of Traditional Chinese Medicine, 1983, 8(5): 35).
( 3 )一般认为, 广泛的药理学作用耙点与抗凝药物的出血倾向副作用密 切相关, 选择性作用靶点已成为新型抗凝血药物研发的重要评价指标 (KA Bauer, Hematology, 2006, (1): 450 )。 海参 FGAG具有与已知的其它类型抗凝血 药物不同的药物靶点, 但如前文所述, 其作用靶点仍然相对广泛, 现有资料已 经显示,抗凝剂量下的 FGAG可以产生显著的出血倾向( Paulo AS etal, British Journal of Haematology, 1998, 101 : 647 ) 。  (3) It is generally believed that a wide range of pharmacological effects are closely related to the bleeding tendency of anticoagulant drugs. Selective targets have become important evaluation indicators for the development of new anticoagulant drugs (KA Bauer, Hematology, 2006, ( 1): 450). Sea cucumber FGAG has different drug targets than other known anticoagulant drugs, but as mentioned above, its target is still relatively broad. The available data have shown that FGAG can produce significant bleeding at anticoagulant dose. Tendency (Paulo AS etal, British Journal of Haematology, 1998, 101: 647).
天然来源的海参 FGAG具有独特抗凝机制和效价, 另一方面则存在限制 其应用的缺陷, 因此,通过结构修_饰以获得具有相对理想的目标产物已经成为 其应用研究的重要内容之一。  Naturally derived sea cucumber FGAG has unique anticoagulant mechanism and potency, on the other hand, it has defects that limit its application. Therefore, it has become one of the important contents of its application research through structural repair to obtain a relatively ideal target product. .
目前, FGAG的化学结构修饰方法包括过氧化解聚(欧洲专利公开 EP 040 At present, the chemical structure modification method of FGAG includes peroxidative depolymerization (European Patent Publication EP 040)
8770; Ken- ichiro Y etal., Tetrahedron Letters, 1992,33: 4959 ) 、 脱石克酸化或羧 基还原 (Paulo AS et al., Thrombosis Research, 2001, 102: 167 ) 、 部分酸水解 ( Yutaka Kariya, Biochem. J 2002, 132: 335; Paulo AS et al., Thrombosis Research, 2001, 102: 167 )等。 这些工作已经取得了一些进展。 例如, 研究发 现, 刺参 FGAG的诱导血小板聚集的活性可随分子量降低而减弱 (樊绘曾等, 生物化学杂志, 1993, 9(2): 146 ); 刺参 FGAG的过氧化解聚产物依赖 ΑΤΙΠ的 抗凝血酶活性也可能有所降低 (马西, 中华血液学杂志, 1990, 1 1(5): 241 ; Paulo AS et al., J. Biol. Chem. 1996, 271, 23973; Hideki Nagase et al., Blood, 1995, 85 (6): 1527 ); 对于 来源的 FGAG, 分子量的降低对于其 HC-II依赖的 抗凝血酵活' I1生影响更显著 ( RG Pacheco et al., Blood Coagulation and Fibrinolysis, 2000, 11 :563 )。 8770; Ken-ichiro Y et al., Tetrahedron Letters, 1992, 33: 4959), decalcification or carboxyl reduction (Paulo AS et al., Thrombosis Research, 2001, 102: 167), partial acid hydrolysis (Yutaka Kariya, Biochem. J 2002, 132: 335; Paulo AS et al., Thrombosis Research, 2001, 102: 167) et al. Some progress has been made in these efforts. For example, the study found that the activity of platelet aggregation induced by FGAG of sea cucumber can be reduced with the decrease of molecular weight (Fan et al. Journal of Biochemistry, 1993, 9(2): 146); The anti-thrombin activity of the peroxidative depolymerization product of FGAG may also be reduced (Maxi, Chinese Journal of Hematology, 1990, 1 1 ( 5): 241; Paulo AS et al., J. Biol. Chem. 1996, 271, 23973; Hideki Nagase et al., Blood, 1995, 85 (6): 1527); for source FGAG, molecular weight reduction for its HC-II-dependent anticoagulant live yeast 'I 1 more significantly affect green (RG Pacheco et al, Blood coagulation and Fibrinolysis, 2000, 11:. 563).
综合刺参 FGAG解聚产物(多被称为 DHG ) 的研究资料来看, 仅仅通过 解聚方法以获得相对理想效价与耙点特征的抗凝活性产物仍然存在困难。 例 如, 资料显示, 刺参 FGAG重均分子量低至约 9000Da时方可消除其血小板诱 导聚集活性(樊绘曾等, 1993, 9(2): 146 ); 另一方面, 由于抗凝 活' f生随分子量降 ^氐而减弱 ( RG Pacheco etal., Blood Coagulation and Fibrinolysis, 2000, 11 :563; 樊绘曾等,生物化学杂志, 1993, 9(2): 146 )。 DHG相关的药理药效 学研究资料中, 早期曾使用约 10000 Da以下分子量的 DHG, 但其后十余年的 研究中, DHG重均分子量多为 12000 ~ 15000 Da ( Hideki Nagase etal., Thromb Haemost, 1997, 77(2): 399; Kazuhisa M etal., Kidney International, 2003, 63: 1548; JP Sheehan etal. Blood, 2006, 107(10): 3876 ) 。 显然, 后者应当为保持必要的 抗凝效价所必须, 但对于刺参 FGAG而言, 该分子量范围对于消除血小板诱 导活性以及避免血管内给药所致血小板减少而言,其安全性显然存在疑虑, 而 这种安全性并未能在相关研究资料中得到体现和验证。  According to the research data of the FGAG depolymerization product (referred to as DHG), it is still difficult to obtain the anticoagulant activity products of the relative ideal potency and the defect characteristics only by the depolymerization method. For example, data show that the weight average molecular weight of sea cucumber FGAG is as low as about 9000 Da to eliminate its platelet-induced aggregation activity (Fan et al., 1993, 9(2): 146); on the other hand, due to anticoagulant 'f Life is reduced with molecular weight drop (RG Pacheco et al., Blood Coagulation and Fibrinolysis, 2000, 11: 563; Fan et al., J. Biol. Chem., 1993, 9(2): 146). DHG-related pharmacodynamic studies have used DHG with a molecular weight of less than 10,000 Da in the early stage, but in the following ten years of research, the weight average molecular weight of DHG is more than 12,000 ~ 15000 Da ( Hideki Nagase etal., Thromb Haemost , 1997, 77(2): 399; Kazuhisa M et al., Kidney International, 2003, 63: 1548; JP Sheehan et al. Blood, 2006, 107(10): 3876). Obviously, the latter should be necessary to maintain the necessary anticoagulant potency, but for the FGAG, the molecular weight range is clearly safe for eliminating platelet-inducing activity and avoiding thrombocytopenia caused by intravascular administration. Doubt, and this security has not been reflected and verified in relevant research materials.
研究已经显示, 水解侧链岩藻糖以及部分去硫酸化都可以致 FGAG抗凝 血活性显著降低乃至消失,羧基还原对抗凝活性影响相对较小,但出血倾向仍 然显著且对血小板活性的影响未知( Paulo AS, J. Biol. Chem., 1996, 271, 23973; Paulo AS et al., British J. Haematology, 1998, 101 : 647; Paulo AS et al, Thrombosis Research, 2001, 102: 167 )。  Studies have shown that both hydrolyzed side chain fucose and partial desulfation can cause a significant decrease or even disappearance of FGAG anticoagulant activity, and the effect of carboxyl reduction on anticoagulant activity is relatively small, but the bleeding tendency is still significant and affects platelet activity. Unknown (Paulo AS, J. Biol. Chem., 1996, 271, 23973; Paulo AS et al., British J. Haematology, 1998, 101: 647; Paulo AS et al, Thrombosis Research, 2001, 102: 167).
关于海参 FGAG化学与生物活性的研究资料主要来自 L. grisea以及刺参 The research data on the chemical and biological activities of sea cucumber FGAG mainly come from L. grisea and sea cucumber.
FGAG, 虽有资料介绍凤梨参糖胺聚糖的提取方法(刘学湘等, 南京中医药大 FGAG, although there is information on the extraction method of pineapple glycosaminoglycan (Liu Xuexiang, Nanjing University of Traditional Chinese Medicine
2003, 19(3): 161 ), 但未见其化学结构分析以及生物学活性方面的研究 报道。  2003, 19(3): 161), but no reports on chemical structure analysis and biological activity have been reported.
综合现有资料, L. grisea以及刺参 FGAG的化学结构方面的差异可表现 在: 硫酸化程度不同, 主链 GalNAc硫酸化类型和程度不同, 侧链岩藻糖类型 基本一致, 而不同类型侧链岩藻糖的组成比例不同并致侧链^ <酸化程度不同 ( Ken-ichiro Y et al., Tetrahedron Letters, 1992, 33: 4959; Lubor Borsig et al. J. Biol. Chem. 2007, 282: 14984 )。根据两种 FGAG相对于肝素和 /或低分子肝素的 抗凝效价判断,刺参 FGAG的抗凝及抗血栓效价更强( Norihiko S et al. Thromb Haemost, 1991, 65(4): 369; Paulo AS et al., British J. Haematology, 1998, 101 : 然而,上述工作均未能阐明其所得产物的血小板激活效应及其静脉内给药 对血小板计数的影响, 此为限制海参 FGAG产物应用价值的最重要的因素; 其次, 尽管相关资料报告了这些结构修饰产物对某些血液因子(药理学靶点) 的作用效价,但结构修饰与所得产物药理学作用机制特点的关系并不清晰, 因 此难以判断取得良好药理机制特点的结构修饰程度或范围。迄今为止,硫酸化 位置对于 FGAG的活性及作用特征的影响未见报道, 尽管改变主链和 /或侧链 糖基的硫酸化结构类型有可能发现实现更具选择性药效学作用特征并由此根 据应用价值的新型 FGAG, 然而, 在现有技术条件下, 虽然可以对糖胺聚糖的 进行非选择性的硫酸化或去硫酸化处理,但难以进行位置选择性的硫酸化或脱 硫酸化改造。 Based on the available data, the chemical structure of L. grisea and FGAG can be expressed as follows: The degree of sulfation is different, the type and degree of sulphation of the main chain GalNAc are different, and the types of side chain fucose are basically the same, while the different types are The composition ratio of the chain fucose is different and the degree of acidification of the side chain is different (Ken-ichiro Y et al., Tetrahedron Letters, 1992, 33: 4959; Lubor Borsig et al. J. Biol. Chem. 2007, 282: 14984). According to the anticoagulant titer of two FGAGs relative to heparin and/or low molecular weight heparin, the anticoagulant and antithrombotic potency of sea cucumber FGAG is stronger (Norihiko S et al. Thromb Haemost, 1991, 65(4): 369 Paulo AS et al., British J. Haematology, 1998, 101 : However, none of the above work has clarified the platelet activation effect of the products obtained and the effect of intravenous administration on platelet count, which is the most important factor limiting the application value of sea cucumber FGAG products; secondly, although the relevant data reports these structures The effect of the modified product on certain blood factors (pharmacological targets), but the relationship between structural modification and the pharmacological mechanism of the obtained product is not clear, so it is difficult to judge the extent or extent of structural modification that achieves good pharmacological mechanisms. So far, the effect of sulfation position on the activity and action characteristics of FGAG has not been reported, although it is possible to find a more selective pharmacodynamic effect by changing the type of sulfated structure of the main chain and/or side chain glycosylation. This new type of FGAG is based on the application value. However, under the prior art conditions, although non-selective sulfation or desulfation treatment of glycosaminoglycans is possible, it is difficult to carry out positional selective sulfation or desulfation. Transformation.
本发明通过凤梨参 FGAG的化学结构及生物学活性比较研究惊奇发现, FGAG侧链岩藻糖硫酯化位置或类型对其生物学活性,特别是对血小板诱导聚 集活性具有重要影响。 由此, 不同种属来源的 FGAG可存在显著的应用价值 的差异。 此外, 本发明人现已发现, 不同解聚程度和方法对 FGAG通过不同 靶点产生的生物学效应强度的影响不同,基于这种差异可以获得具有特殊靶点 选择性特征进而获得针对特定疾病治疗和 /或预防的 FGAG衍生物。  The present invention surprisingly found that the position or type of FGAG side chain fucose thioesterification has an important influence on its biological activity, especially on platelet-induced aggregation activity, through the comparative study on the chemical structure and biological activity of F. chinensis FGAG. As a result, FGAGs of different species origins can have significant differences in application value. In addition, the inventors have now discovered that different degrees of depolymerization and methods have different effects on the intensity of biological effects produced by FGAG through different targets, based on which differences can be obtained with specific target-selective characteristics to obtain treatment for specific diseases. And/or preventive FGAG derivatives.
本发明首先发现凤梨参来源的岩藻糖化糖胺聚糖 (Fucosylated glycos- aminoglycan from Thelenota ananas, THG) 具有特殊的化学结构特征, 其侧链 岩藻糖类型不同于已经或部分阐明化学结构的 FGAG,例如 JL grisea以及刺参 FGAG; THG在生物学活性方面同样具有特殊性, 其血小板激活活性远低于 玉足海参及刺参来源的 FGAG等。  The present invention firstly finds that Fucosylated glycos-aminoglycan from Thelenota ananas (THG) has special chemical structural features, and its side chain fucose type is different from FGAG which has partially or partially clarified chemical structure. For example, JL grisea and sea cucumber FGAG; THG is also unique in its biological activity, and its platelet activation activity is much lower than that of FGAG derived from sea cucumber and sea cucumber.
本发明确证了 THG具有抑制内源性因子 X酶(f.Xase)以及依赖 HC-II的 抗凝血酶(f.IIa) 活性,首次阐明了 THG的解聚程度与所述药理学作用的活性 强度的相关性, 在此基础上, 本发明获得了具有较高的抑制 f.Xase/抗 Ila活性 强度比例 (效价比) 的 THG解聚产物 (Depolymerized THQ dTHG)。也就是说, 本发明以具有特殊化学及生物活性的 THG为起始物, 基于解聚与生物学活性 之间的相关性规律,制备出一种具有良好抗凝效价并且具有特殊的耙点选择性 特征的 dTHG产物,所述 dTHG不存在诱导血小板聚集的活性, 高剂量及重复 给药情况下不发生血小板数量减少。 发明内容  The present invention confirms that THG has the activity of inhibiting endogenous factor X enzyme (f.Xase) and HC-II-dependent antithrombin (f.IIa), and firstly elucidates the degree of depolymerization of THG and the pharmacological action. On the basis of the correlation of the activity intensity, the present invention obtains a THG depolymerization product (Depolymerized THQ dTHG) having a high ratio of inhibition of f.Xase/Ila activity (potency ratio). That is to say, the present invention uses a specific chemical and biological activity of THG as a starting material, based on the correlation law between depolymerization and biological activity, to prepare a good anticoagulant titer and has a special defect. A selectively characterized dTHG product, the dTHG has no activity to induce platelet aggregation, and no platelet count is reduced in the case of high doses and repeated administration. Summary of the invention
本发明的一个目的在于提供一种具有特定化学结构和良好抗凝效价的低 聚凤梨参糖胺聚糖,该产品不存在诱导血小板聚集的活性, 不会导致血小板数 量减少。 本发明的另一个目的是提供制备上述低聚凤梨参糖胺聚糖的方法。 It is an object of the present invention to provide an oligomeric pineapple glycosaminoglycan having a specific chemical structure and good anticoagulant potency, which does not have an activity of inducing platelet aggregation and does not cause a decrease in the number of platelets. Another object of the present invention is to provide a process for preparing the above oligomeric pineapple glycosaminoglycan.
本发明的再一个目的是提供含有上述低聚凤梨参糖胺聚糖的药物组合物 及其在制备预防和 /或治疗血栓性疾病的药物中的应用。  Still another object of the present invention is to provide a pharmaceutical composition comprising the above oligomeric pineapple glycosaminoglycan and its use in the preparation of a medicament for preventing and/or treating a thrombotic disease.
本发明研究发现, 凤梨参来源的岩藻糖化糖胺聚糖( Glycosaminoglycan from Thelenota ananas, THG )除具有一些已知 FGAG的共性特点外,如组成单 糖包括 GalNAc、 GlcUA和 Fuc等, 还具有特殊的化学结构特征, 它的侧链岩 藻糖类型、硫酸化程度不同于已经阐明或部分阐明的海参 FGAG。例如 . grisea 和刺参 FGAG均主要包括三种结构类型的侧链岩藻糖, 即岩藻糖 -2,4-二硫酸 酯基、 -3,4-二硫酸酯和 -4-硫酸酯基, 而 THG则主要包括岩藻糖 -2,4-二硫酸酯 基、 -3-硫酸酯和 -4-硫酸酯基。 与此相一致, 本发明确证了 THG具有抑制内 源性因子 X酶(f.Xase ) 以及依赖 HC-II的抗凝血酶(f.IIa )活性, 并且发现 THG在生物学活性方面也表现出特殊性, 例如其血小板激活活性远低于玉足 海参和刺参来源的 FGAG。  The present inventors have found that the Glycosaminoglycan from Thelenota ananas (THG) derived from the pineapple ginseng has special features such as the known FGAG, such as the composition of monosaccharides including GalNAc, GlcUA and Fuc, etc. Its chemical structural features, its side chain fucose type, and degree of sulfation are different from the sea cucumber FGAG that has been elucidated or partially elucidated. For example, grisea and sea cucumber FGAG mainly include three structural types of side chain fucose, namely fucose-2,4-disulfate group, -3,4-disulfate and -4-sulfate group. THG mainly includes fucose-2,4-disulfate group, -3-sulfate group and -4-sulfate group. Consistent with this, the present invention confirmed that THG has an activity of inhibiting endogenous factor X (f.Xase) and HC-II-dependent antithrombin (f.IIa), and found that THG is also biologically active. It exhibits specificity, for example, its platelet activation activity is much lower than that of FGAG derived from sea cucumber and sea cucumber.
此外,本发明人通过对 THG的化学结构和生物学活性比较研究惊奇发现, FGAG 侧链岩藻糖硫酸酯化位置和类型对其生物学活性尤其是对血小板诱导 聚集活性具有重要影响。  In addition, the inventors have surprisingly found that the position and type of FGAG side chain fucose sulfation has an important influence on its biological activity, especially on platelet-induced aggregation activity, by comparing the chemical structure and biological activity of THG.
基于以上研究, 本发明以这种具有特殊化学结构和生物活性的 THG为起 始物,基于解聚与生物学活性之间的相关性规律, 制备出具有良好抗凝效价并 且具有特殊的靶点选择性特征的低聚凤梨参糖胺聚糖 ( Depolymerized THG, dTHG )。  Based on the above research, the present invention uses THG with special chemical structure and biological activity as a starting material, based on the correlation law between depolymerization and biological activity, and has a good anticoagulant titer and a special target. Point-selective feature of oligomeric pineapple glycosaminoglycan (Depolymerized THG, dTHG).
根据本发明的一个方面, 所述低聚凤梨参糖胺聚糖 (dTHG )是凤梨参 ( Thelenota ananas )来源的岩藻糖化糖胺聚糖 ( THG )的解聚产物, 其具有如 下式所示的结构:  According to one aspect of the invention, the oligomeric pineapple glycosaminoglycan (dTHG) is a depolymerization product of fucosylated glycosaminoglycan (THG) derived from Thelenota ananas, which has the formula Structure:
Figure imgf000009_0001
式 (I) 中: -OR 为羟基(-OH )、 硫酸酯基(-OS03- )、 或为如式(Π )所 示的硫酸酯化岩藻糖基:
Figure imgf000010_0001
式 (Π) 中: -OR定义同式 (1)。
Figure imgf000009_0001
In the formula (I): -OR is a hydroxyl group (-OH), a sulfate group (-OS0 3 - ), or a sulfated fucosyl group as shown by the formula (Π):
Figure imgf000010_0001
In the formula (Π): -OR defines the same formula (1).
其中:单糖组成包括 N-乙酰氨基半乳糖(GalNAc )、葡萄糖醛酸( GlcUA )、 岩藻糖(Fuc )、或其硫酸酯(以 - OSC 表示), 以摩尔比计, GalNAc: GlcUA: Fuc: - OS03 的比例约为 1 : ( 1士 0.3 ): ( 1士 0.3 ): ( 3·5±0.5 ), dTHG的重均分子 量(Mw ) 为约 8000 ~ 20000 Da。 优选的分子量范围为 10000 ~ 18000 Da, 更 优选为 12000 - 16000 Da。 Wherein: the monosaccharide composition includes N-acetylgalactosamine (GalNAc), glucuronic acid (GlcUA), fucose (Fuc), or its sulfate (expressed as -OSC), in molar ratio, GalNAc: GlcUA: The ratio of Fuc: - OS0 3 is approximately 1: (1 ± 0.3): (1 ± 0.3): (3·5 ± 0.5), and the weight average molecular weight (Mw) of dTHG is about 8000 ~ 20000 Da. A preferred molecular weight range is from 10,000 to 18,000 Da, more preferably from 12,000 to 16000 Da.
研究证明,本发明的 dTHG具有较高的抗 f.Xase/抗 f.IIa活性强度比例(效 价比), 较高的抗 Xase/延长 APTT效价比, 不存在诱导血小板聚集的活性, 并 且高剂量及重复给药情况下不发生血小板数量减少, 可以用于预防和 /或治疗 血栓性疾病。  Studies have shown that the dTHG of the present invention has a higher anti-f.Xase/anti-f.IIa activity intensity ratio (potency ratio), a higher anti-Xase/prolonged APTT titer ratio, and no activity for inducing platelet aggregation, and High doses and repeated administrations do not occur with a reduction in platelet count and can be used to prevent and/or treat thrombotic diseases.
根据本发明的另一方面,提供制备上述低聚凤梨参糖胺聚糖的方法, 主要 包括以下步骤:  According to another aspect of the present invention, there is provided a method of preparing the above oligomeric pineapple glycosaminoglycan, which comprises the following steps:
1)提取: 从凤梨参体壁提取获得岩藻糖化糖胺聚糖 ( THG );  1) Extraction: obtaining fucosylated glycosaminoglycan (THG) from the body surface of pineapple;
2 )解聚:解聚步骤 1 )所得的 THG以获得低聚岩藻糖化糖胺聚糖( dTHG ); 2) depolymerization: depolymerization step 1) obtained THG to obtain oligofucosylated glycosaminoglycan (dTHG);
3)精制: 收集和纯化所需分子量的 dTHG, 以除去其中的低分子和 /或高 分子杂质成分。 3) Refining: The dTHG of the desired molecular weight is collected and purified to remove low molecular and/or high molecular impurity components therein.
具体地, 步骤 1 )通常可包括切制 /粉碎、酶解、碱解、脱色、分离等步骤。 凤梨参可以是去内脏的鲜品或干品。 为达到提高提取得率的目的, 所述凤梨参 干品一般需切制成片状或小块状, 然后加水浸泡,对于鲜品则可以切制也直接 加水粉碎成混悬液, 然后对其进行酶解和 /或碱处理。  Specifically, step 1) may generally include steps of cutting/pulverization, enzymatic hydrolysis, alkaline hydrolysis, decolorization, separation, and the like. Pineapple can be fresh or dried to the internal organs. In order to achieve the purpose of increasing the extraction yield, the dried pineapple ginseng product generally needs to be cut into a sheet or a small piece, and then immersed in water. For the fresh product, it can be cut and directly pulverized into a suspension, and then Enzymatic and/or alkaline treatment is carried out.
酶解步骤中,一般选择广谱蛋白酶, 包括动物来源的胃蛋白酶、胰蛋白酶、 复合酶或粗酶制剂,植物和 /或微生物来源的蛋白酶如木瓜蛋白酶、 actinase等。 酶解条件如温度、 时间、 pH值及酶用量等均根据所用蛋白酶的自身属性进行 选择确定。  In the enzymatic hydrolysis step, broad-spectrum proteases are generally selected, including animal-derived pepsin, trypsin, complexase or crude enzyme preparations, plant and/or microbial-derived proteases such as papain, actinase and the like. Enzymatic conditions such as temperature, time, pH and amount of enzyme are determined according to the nature of the protease used.
碱解步骤中, 可选择使用氢氧化钾、 氢氧化钠等强碱, 用量一般选择为使 提取液中碱浓度达到约 0.5 ~ 2 N (当量浓度), 反应温度一般选择为室温至 70 °C, 碱处理时间可以为约 0.5 ~ 3 h。  In the alkaline hydrolysis step, a strong base such as potassium hydroxide or sodium hydroxide may be selected, and the amount is generally selected so that the alkali concentration in the extract reaches about 0.5 to 2 N (equivalent concentration), and the reaction temperature is generally selected from room temperature to 70 ° C. The alkali treatment time may be about 0.5 to 3 h.
酶解和 /或碱处理后的提取液经灭酶和 /或中和处理后 ,通过离心和 /或过滤 去不溶物, 所得上清液可采用或联合釆用低级醇 /酮如乙醇、 丙酮, 或者钾盐 如醋酸钟, 或者酸性粘多糖沉淀剂如十六烷基吡啶沉淀提取液中的糖胺聚糖, 所得沉淀可干燥成粗提物、或不经干燥直接进入下一步处理。所得糖胺聚糖粗 提物可选择进行脱色、 分级沉淀、 凝胶色谱和 /或离子交换色谱纯化。 本发明 优选采用过氧化氢脱色结合乙醇 -醋酸钾分级沉淀法(参见樊绘曾等, 药学学报After the enzymatic and/or alkali-treated extract is subjected to inactivation and/or neutralization treatment, the insoluble matter is removed by centrifugation and/or filtration, and the resulting supernatant may be used or combined with a lower alcohol/ketone such as ethanol or acetone. , or a potassium salt such as an acetic acid clock, or an acid mucopolysaccharide precipitant such as a glycosaminoglycan in a cetylpyridinium extract extract, The resulting precipitate can be dried to a crude extract or directly to the next step without drying. The crude glycosaminoglycan extract may be optionally subjected to decolorization, fractional precipitation, gel chromatography and/or ion exchange chromatography. The invention preferably uses decolorization of hydrogen peroxide combined with ethanol-potassium acetate fractionation precipitation method (see Fan et al., Journal of Pharmaceutical Sciences)
1983, 18 (3): 203 )获得相对纯净的凤梨参岩藻糖化糖胺聚糖, 即 THG。 1983, 18 (3): 203) Obtain relatively pure pineapple ginseng glycosaminoglycan, THG.
本发明中, 凤梨参 ( Thelenota a腿 as )来源的岩藻糖化糖胺聚糖 ( THG ) 具有一些已知岩藻糖化糖胺聚糖的共性特点,例如, 其组成单糖包括乙酰氨基 半乳糖(GalNAc )、 葡萄糖醛酸(GlcUA )、 岩藻糖( Fuc )等, 但其硫酸酯化 (以 -oso3 -表示)程度与已知的岩藻糖化糖胺聚糖有所不同。 以整数(或半 数)摩尔比计, THG的组成单糖及硫酸酯基的组成比例 GalNAc: GlcUA: Fuc: -OS03—接近 1 : 1 : 1 : 3.5, 进一步地, 约为 1 : ( 1±0.3 ): ( 1±0.3 ): ( 3.5±0.5 )。 In the present invention, the fucosylated glycosaminoglycan (THG) derived from the lentil (Thelenota a leg as) has the common characteristics of some known fucosylated glycosaminoglycans, for example, the constituent monosaccharides including acetamidogalactose (GalNAc), glucuronic acid (GlcUA), fucose (Fuc), etc., but the degree of sulfation (expressed as -oso 3 -) is different from the known fucosylated glycosaminoglycans. In the integer (or half) molar ratio, the composition ratio of the composition monosaccharide and sulfate group of THG is GalNAc: GlcUA: Fuc: -OS0 3 - close to 1: 1 : 1 : 3.5, further, about 1: (1) ±0.3 ): ( 1 ± 0.3 ): ( 3.5 ± 0.5 ).
步骤 2 )中, THG的解聚方法可选择过氧化氢解聚法, 或者由第 IV周期 过渡金属离子催化的过氧化物解聚法。本发明优选使用后者,该方法在本申请 人于 2009年 11月 6日提交的名称为 "低聚岩藻糖化糖胺聚糖及其制备方法"、 申请号为 200910110114.0 的发明专利申请中有详细描述, 它是在水相介质中 采用含有第四周期过渡金属离子的催化剂,催化过氧化物解聚反应,获得低聚 凤梨参岩藻糖化糖胺聚糖。 具体地, 该方法包括以下步骤:  In step 2), the depolymerization method of THG may be selected from a hydrogen peroxide depolymerization method or a peroxide depolymerization method catalyzed by a transition metal ion in the fourth period. The latter is preferably used in the present invention, which is disclosed in the patent application filed on November 6, 2009 by the applicant, entitled "Oltra-fucosylated glycosaminoglycan and its preparation method", application No. 200910110114.0 Detailed description, it is to use a catalyst containing a fourth period transition metal ion in an aqueous medium to catalyze the depolymerization of the peroxide to obtain an oligomeric pineapple ginseng fucose glycosaminoglycan. Specifically, the method includes the following steps:
2.1 )在第四周期过渡金属离子的催化剂存在下, 在水相介盾中, 加入过 氧化物以解聚海参来源的岩藻糖化糖胺聚糖 ( THG );  2.1) In the presence of a catalyst for transition metal ions in the fourth cycle, in the aqueous phase shield, a peroxide is added to depolymerize the fucose-derived glycosaminoglycan (THG) derived from sea cucumber;
2.2 )中止反应, 收集所需分子量范围的低聚岩藻糖化糖胺聚糖(dTHG )。 其中,解聚反应在水相介质中进行, 过氧化物可以在反应体系中产生自由 基, 通过自由基链式反应裂解 THG, 形成 dTHG产物。 所述过氧化物包括但 不限于过氧乙酸、 过氧化氢、 3-氯 -过苯甲酸、 氢过氧化枯烯、 过硫酸钠、 过 氧化苯曱酰以及它们的盐或酯, 优选为过氧化氢。  2.2) Stop the reaction and collect the oligomeric fucosylated glycosaminoglycan (dTHG) of the desired molecular weight range. Wherein, the depolymerization reaction is carried out in an aqueous medium, and the peroxide can generate a free radical in the reaction system, and the THG is cleaved by a free radical chain reaction to form a dTHG product. The peroxides include, but are not limited to, peroxyacetic acid, hydrogen peroxide, 3-chloro-perbenzoic acid, cumene hydroperoxide, sodium persulfate, benzoyl peroxide, and salts or esters thereof, preferably Hydrogen peroxide.
所述 THG在反应体系中的盾量分数约为 0.05%-15%, 过氧化物在反应体 系中的盾量分数约为 0.5%至约 30%。 FGAG的解聚反应过程中, 过氧化物反 应物可以在反应前一次性全部加入到反应体系中,也可以采用持续或断续性方 式将过氧化物反应物逐步加入到反应体系中。本发明优选将过氧化物反应物按 照可控速率的方式持续加入到反应体系中。  The shield fraction of the THG in the reaction system is about 0.05%-15%, and the shield fraction of the peroxide in the reaction system is about 0.5% to about 30%. During the depolymerization reaction of FGAG, the peroxide reactant may be added to the reaction system at one time before the reaction, or the peroxide reactant may be gradually added to the reaction system in a continuous or intermittent manner. The present invention preferably continuously adds the peroxide reactant to the reaction system in a controlled rate.
所述作为催化剂的金属离子为第四周期过渡金属离子, 包括 Cu+、 Cu2+、 Fe2+、 Fe3+、 Cr3+、 Cr207 2\ Mn2+、 Zn2+、 Ni2+等, 这些金属离子可以单独使用, 也可以相互组合作为复合催化剂使用。其中,优选的催化剂为 Cu+、 Cu2+、 Fe2+、 Fe3+、 Zn2+, 最优选为 Cu2+。 由于金属离子并非独立存在的化学试剂, 实际使 用的是这些金属离子的无机或有机盐。在反应体系中, 所述金属离子的浓度范 围可以为约 l nmol/L ~ 0.1mol/L, 优选的浓度范围为 10 μιηοΙ/L ~ 10 mmol/L。 The metal ion as a catalyst is a fourth periodic transition metal ion, including Cu+, Cu 2+ , Fe 2+ , Fe 3+ , Cr 3+ , Cr 2 0 7 2 \ Mn 2+ , Zn 2+ , Ni 2 . +, etc., these metal ions may be used singly or in combination with each other as a composite catalyst. Among them, preferred catalysts are Cu+, Cu 2+ , Fe 2+ , Fe 3+ , Zn 2+ , and most preferably Cu 2+ . Since metal ions are not independent chemical agents, inorganic or organic salts of these metal ions are actually used. In the reaction system, the concentration of the metal ion may range from about 1 nmol/L to 0.1 mol/L, and the preferred concentration range is from 10 μιηοΙ/L to 10 mmol/L.
所述解聚反应过程的常规工艺参数为: 温度范围为 10°C ~ 75 °C ; 反应时 间为 20分钟 ~ 8小时; 反应可以在常压或加压条件下进行; 可以选择氮气、 惰性气体保护下进行, 也可以在常压条件下与大气环境相通进行。 The conventional process parameters of the depolymerization reaction process are: temperature range of 10 ° C ~ 75 ° C; The reaction time is from 20 minutes to 8 hours; the reaction can be carried out under normal pressure or under pressure; it can be carried out under the protection of nitrogen or inert gas, or in the atmosphere under normal pressure.
反应结束时,可选择地向反应体系中加入螯合剂使之与金属离子催化剂螯 合而抑制催化反应速度, 继而通过冷却、 有机溶剂沉淀等技术手段终止反应。 螯合剂是指能与金属离子形成螯合物的物盾, 其包括但不限于乙二胺四乙酸 ( EDTA )、 二乙烯三胺五乙酸(DTPA )、 3-丙二胺四乙酸(PDTA )、 三乙酸基 氨(NTA )或它们的盐。 本发明方法优选乙二胺四乙酸二钠或其水合物。 反应 产物沉淀法是直接或在进一步加入无机盐(如乙酸钟 )的条件下加入有机溶剂 使聚糖类物质从反应体系中析出的方法, 所述有机溶剂包括曱醇、 乙醇、 丙酮 等低碳醇 /酮, 其中优选为乙醇和丙酮。  At the end of the reaction, a chelating agent is optionally added to the reaction system to chelate it with the metal ion catalyst to suppress the catalytic reaction rate, and then the reaction is terminated by a technique such as cooling or precipitation of an organic solvent. A chelating agent refers to a physical shield capable of forming a chelate with a metal ion, including but not limited to ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), 3-propylenediaminetetraacetic acid (PDTA). , triacetinylamine (NTA) or a salt thereof. The process of the invention is preferably disodium edetate or a hydrate thereof. The reaction product precipitation method is a method of adding a organic solvent to precipitate a polysaccharide substance from a reaction system directly or under the condition of further adding an inorganic salt such as an acetic acid clock, and the organic solvent includes a low carbon such as decyl alcohol, ethanol or acetone. Alcohol/ketone, of which ethanol and acetone are preferred.
上述方法可以显著改善过氧化物解聚岩藻糖化糖胺聚糖的反应条件,即采 用相同过氧化物反应物和原型 FGAG起始物制备相同或近似相等分子量的 dFG时, 在温度等反应条件近似的情况下, 相对于直接过氧化物解聚法(即没 有金属离子催化剂存在下的过氧化物解聚方法), 该方法可以提高反应速度, 缩短反应时程; 类似地, 在控制反应时间的条件下, 该方法可以显著降低反应 所需温度, 以至可以在室温条件下完成所需反应。  The above method can significantly improve the reaction conditions of the peroxide depolymerization fucosylated glycosaminoglycan, that is, when the same peroxide reactant and the prototype FGAG starting material are used to prepare dFG of the same or approximately equal molecular weight, the reaction conditions are similar at temperature and the like. In the case of the direct peroxide depolymerization method (i.e., the peroxide depolymerization method in the absence of a metal ion catalyst), the method can increase the reaction rate and shorten the reaction time course; similarly, the conditions for controlling the reaction time Next, the method can significantly lower the temperature required for the reaction, so that the desired reaction can be completed at room temperature.
在 dTHG的重复制备过程中,在保持反应条件相同或近似的条件下,与直 接氧化物解聚法相比,该方法所得产物的批次间差异显著降低, 所得低聚产物 的分子量与目标分子量的差异小于 5%, 可以显著改善 dTHG制备的重复性和 可控性, 并且低聚产物具有更好的质量均一性。这可能与催化剂所致活化能降 低进而形成相对稳定的反应速率有关,也可能与反应温度降低或反应时程缩短 等温和反应条件及其反应条件的可控性和稳定性改善有关。  In the repeated preparation of dTHG, the batch-to-batch difference of the product obtained by the method is significantly reduced compared with the direct oxide depolymerization method under the condition that the reaction conditions are the same or similar, and the molecular weight of the obtained oligomerization product and the target molecular weight are A difference of less than 5% can significantly improve the repeatability and controllability of dTHG preparation, and the oligomerization product has better quality uniformity. This may be related to a decrease in activation energy caused by the catalyst and a relatively stable reaction rate, and may also be related to a decrease in the reaction temperature or a shortened reaction time course, and an improvement in the controllability and stability of the reaction conditions and the reaction conditions.
此外, 为了进一步提高和改善解聚反应的可控性,还可选择地向金属离子 催化的过氧化物解聚反应体系中加入一定浓度的无机和 /或有机盐。 所述无机 和 /或有机盐包括金属元素 (如碱金属、 碱土金属元素等) 与卤素、 有机酸等 形成的盐, 有机酸或无机酸与有机碱形成的盐, 以及它们相互组合的复合盐, 其中优选氯化钠、 氯化钾、 乙酸钠、 三水合乙酸钠、 乙酸钾。 本发明中, 用于 改善解聚反应速度和反应可控性的无机和 /或有机盐的优选的盐浓度为约 0.1 mmol/L至约 1.0 mol/L。  Further, in order to further improve and improve the controllability of the depolymerization reaction, a certain concentration of inorganic and/or organic salts may be selectively added to the metal ion-catalyzed peroxide depolymerization reaction system. The inorganic and/or organic salts include salts of metal elements (such as alkali metals, alkaline earth metal elements, etc.) with halogens, organic acids, and the like, salts of organic or inorganic acids with organic bases, and complex salts thereof in combination with each other. Among them, sodium chloride, potassium chloride, sodium acetate, sodium acetate trihydrate, and potassium acetate are preferred. In the present invention, a preferred salt concentration of the inorganic and/or organic salt for improving the depolymerization reaction rate and reaction controllability is from about 0.1 mmol/L to about 1.0 mol/L.
本发明中,收集的所述 dTHG的重均分子量(Mw )约为 8000 ~ 20000 Da, 优选的分子量范围为 10000 ~ 18000 Da, 更优选为 12000 ~ 16000 Da。  In the present invention, the collected dTHG has a weight average molecular weight (Mw) of about 8,000 to 20,000 Da, and a preferred molecular weight range of 10,000 to 18,000 Da, more preferably 12,000 to 16,000 Da.
步骤 3 ) 中, 收集的 dTHG可采用本领域已知的方法纯化, 以除去低和 / 或高分子杂质成分。 纯化方法包括但不限于通过透析法除去低和 /或高分子杂 质成分、 通过离子交换法制备 THG 盐, 和 /或凝胶色谱 /阴离子交换色谱层析 法纯化等步骤。 进一步地, 本发明的制备低聚凤梨参糖胺聚糖的方法可包括步骤: In step 3), the collected dTHG can be purified by methods known in the art to remove low and/or high molecular impurity components. Purification methods include, but are not limited to, removal of low and/or high molecular impurity components by dialysis, preparation of THG salts by ion exchange, and/or purification by gel chromatography/anion exchange chromatography. Further, the method for preparing an oligomeric pineapple glycosaminoglycan of the present invention may comprise the steps of:
4 )干燥步骤 3 )中获得的 dTHG。 干燥方法可选择减压真空干燥或冷冻干 燥, 本发明优选冷冻干燥法干燥。  4) DTHG obtained in the drying step 3). The drying method may be selected from vacuum drying or freeze drying, and the present invention is preferably dried by freeze drying.
通过本发明上述方法制备得到的 dTHG,其单糖组成及硫酸酯基组成比例 可釆用本领域内已知的化学显色法、 红外光谱(IR ) 法以及核磁共振波谱 ( NMR )法检测(张惟杰, 糖复合物生化研究技术(第二版), 浙江: 浙江大 学出版社, 1999; 本申请人的前述发明专利申请 CN200910110114.0 )。  The monosaccharide composition and the sulfate group composition ratio of the dTHG prepared by the above method of the present invention can be detected by chemical colorimetry, infrared spectroscopy (IR) method and nuclear magnetic resonance spectroscopy (NMR) method known in the art ( Zhang Weijie, Biochemical Research Technology of Sugar Complex (Second Edition), Zhejiang: Zhejiang University Press, 1999; Applicant's aforementioned invention patent application CN200910110114.0).
由于本发明的 dTHG存在硫酸酯基及羧基,因此可以与无机离子或有机碱 性基团形成药学上可接受的盐或酯,其中所述 dTHG的药学上可接受的无机盐 可以是碱金属和 /或碱土金属盐, 优选为钠盐、 钾盐或钙盐。 显然, 这些盐或 酯也应包括在本发明范围之内。  Since the dTHG of the present invention has a sulfate group and a carboxyl group, it may form a pharmaceutically acceptable salt or ester with an inorganic ion or an organic basic group, wherein the pharmaceutically acceptable inorganic salt of the dTHG may be an alkali metal and / or alkaline earth metal salt, preferably a sodium salt, a potassium salt or a calcium salt. It will be apparent that such salts or esters are also included within the scope of the invention.
根据本发明的再一方面, 提供一种药用组合物, 其包括本发明所述的 dTHG或其药学上可接受的盐或酯, 以及药学上可接受的赋形剂。 所述药物组 合物可制备成口服制剂 (包括固体和液体制剂)、 注射剂 (包括注射液和冻干 粉针剂)等各种剂型, 然而本发明人已经发现, dTHG口服吸收微弱, 而皮下 注射等注射途径给药则具有良好的生物利用度。 因此, 本发明的药物组合物优 选制成注射剂, 由于 dTHG具有良好的水溶性,可以通过本领域内常用的技术 方法容易地制备其溶液型制剂和冻干制品。  According to still another aspect of the present invention, there is provided a pharmaceutical composition comprising dTHG of the present invention or a pharmaceutically acceptable salt or ester thereof, and a pharmaceutically acceptable excipient. The pharmaceutical composition can be prepared into various dosage forms such as oral preparations (including solid and liquid preparations), injections (including injections and lyophilized powder injections), but the inventors have found that oral absorption of dTHG is weak, and subcutaneous injection or the like. Administration by injection route has good bioavailability. Therefore, the pharmaceutical composition of the present invention is preferably prepared as an injection, and since dTHG has good water solubility, its solution type preparation and lyophilized preparation can be easily prepared by a technical method commonly used in the art.
本发明所述 dTHG为强效内源性因子 X酶抑制剂, 具有良好的抗凝抗血 栓活性, 因此含有 dTHG的上述药物组合物可以用于预防和 /或治疗血栓性疾 病, 例如各种术后抗凝治疗、 各种动静脉血栓的预防和治疗、 血栓相关性的心 脑血管疾病的预防和治疗等。 不同疾病的预防 /和或治疗的使用方法及剂量应 由临床医师决定。 附图说明  The dTHG of the present invention is a potent endogenous factor X enzyme inhibitor having good anticoagulant and antithrombotic activity, and thus the above pharmaceutical composition containing dTHG can be used for preventing and/or treating thrombotic diseases, for example, various techniques. Post-anticoagulant therapy, prevention and treatment of various arteriovenous thrombosis, prevention and treatment of thrombotic-related cardiovascular and cerebrovascular diseases. The use and dosage of the prevention/and/or treatment of different diseases should be determined by the clinician. DRAWINGS
图 1 : 图示 THG和 dTHG样品的 NMR谱图, 其中 dTHG-6、 dTHG-9 谱图中的水峰被压制;  Figure 1 : NMR spectrum of the THG and dTHG samples, in which the water peaks in the dTHG-6 and dTHG-9 spectra are suppressed;
图 2: 图示 dTHG ( A )与低聚刺参 FGAG (即 dSJG, B )的 'H-1!! COSY 谱图; 其中箭头指示的信号显示两种低聚 FGAG产物侧链岩藻糖结构类型的 差异: A图为 dTHG含有的岩藻糖 -3-硫酸酯相关信号, B图为 dSJG含有的岩 藻糖 -3,4-二硫酸酯相关信号;方框内信号分别为岩藻糖 -3-硫酸酯和岩藻糖 -3,4- 二硫酸酯的相关氢信号; 双圏内信号为岩藻糖 -3,4-二硫酸酯的 4位氢信号。 Figure 2: shows the 'H- 1 !! COSY spectrum of dTHG (A) and oligosporin FGAG (ie dSJG, B); the signal indicated by the arrow shows the side chain fucose structure of two oligomeric FGAG products Type difference: Figure A shows the fucose-3-sulfate-related signal contained in dTHG, Figure B shows the fucose-3,4-disulfate-related signal contained in dSJG; the signal in the box is fucose The hydrogen signal associated with -3-sulfate and fucose-3,4-disulfate; the signal within the bismuth is the 4-position hydrogen signal of fucose-3,4-disulfate.
图 3: 图示 THG与刺参 FGAG (即 SJG ) 的 13C NMR以及 DEPT谱图; 图 4: 图示 dTHG-6的 NMR同核 /异核相关谱图; Figure 3: shows the 13 C NMR and DEPT spectra of THG and sea cucumber FGAG (ie SJG ); Figure 4: shows the NMR homonuclear/heteronuclear correlation spectrum of dTHG-6;
图 5: 图示不同分子量的 dTHG抑制 f.Xase活性、 依赖 HC-II抗 Ila活性 以及延长 APTT时间的效价关系,其中方框限定部分为本发明所述 dTHG的分 子量范围; Figure 5: shows that different molecular weights of dTHG inhibit f.Xase activity, relying on HC-II anti-Ila activity And a potency relationship for prolonging the APTT time, wherein the box defining portion is the molecular weight range of the dTHG of the present invention;
图 6: 图示给药 dTHG与低分子肝素钠(LMWH )对实验动物出血时间的 影响。 具体实施方式  Figure 6: The effect of dTHG and low molecular weight heparin sodium (LMWH) on bleeding time in experimental animals. detailed description
通过以下实施例的详细描述, 结合附图可以进一步理解本发明, 所述实施 例并不构成对本发明范围的限制。  The invention is further understood by the following detailed description of the embodiments of the invention,
实施例 1 THG提取、 解聚与精制 Example 1 THG Extraction, Depolymerization and Purification
1.1 材料 1.1 Materials
凤梨参, 又称梅花参(Theienota ananas , 市售品, 去内脏干燥体壁。 刺参( Stichopus japonicus ) , 市售品, 去内脏干燥体壁。  Pineapple ginseng, also known as the ginseng (Theienota ananas, commercially available products, to the visceral dry body wall. Stichopus japonicus, commercially available products, to the visceral dry body wall.
玉足海参 H. leucospilota , 市售品, 去内脏干燥体壁。  Jade sea cucumber H. leucospilota, a commercial product, goes to the visceral dry body wall.
木瓜蛋白酶: 8xl05U / g, 广西南宁庞博生物工程有限公司。 Papain: 8xl0 5 U / g, Guangxi Nanning Pangbo Biological Engineering Co., Ltd.
阳离子交换树脂: 001x7强酸性苯乙烯系阳离子交换树脂, 天津南开大学 树脂厂。  Cation exchange resin: 001x7 strong acid styrene cation exchange resin, Tianjin Nankai University Resin Factory.
KOH、 KCOCH3、 H202、 乙醇等试剂均为市售分析纯试剂。 Reagents such as KOH, KCOCH 3 , H 2 0 2 , and ethanol are commercially available analytical reagents.
1.2提取 1.2 extraction
取干燥凤梨参 20 kg,切片机切制成厚度约 1.5 mm的薄片,装入夹层反应 罐( 300L )中,加入 200 L水搅拌浸泡。搅拌加入固体氢氧化钠至浓度为 0.5 M, 60°C碱解反应 2 h。 冷却, 6N盐酸调 pH值为 6 ~ 7, 加入 100 g木瓜蛋白酶, 50°C搅拌反应 6小时, 升温至 100°C保持 10 min。 冷却, 以 6 N盐酸调 pH值 为 2 (沉淀蛋白), 2 ~ 8 °C静置约 4 h, 离心去沉淀。 所得上清液调 pH值约为 7, 加乙醇使其终浓度达 70%, 静置、 离心, 离心沉淀加约 30倍量(v/v )水 溶解, 离心去不溶物, 以 2 M NaOH调 pH值约 10, 加 H202至终浓度约 3 % (v/v), 50°C搅拌反应 2 h (脱色)。 反应液加醋酸钾使其最终浓度为 0.5mol/L, 并加入乙醇使其终浓度达 30%, 静置、 离心, 离心沉淀加 20倍量(v/w )水溶 解, 离心去不溶物, 加醋酸钟使其终浓度为 2.5 mol/L, 静置、 离心, 离心沉 淀乙醇洗涤 2遍,减压去残留乙醇,水溶冷冻干燥,即得凤梨参糖胺聚糖( THG ) 约 162 g。 Take 20 kg of dried pineapple ginseng, cut into thin slices with a thickness of about 1.5 mm, place them in a sandwich reaction tank (300 L), and add 200 L of water to stir. Solid sodium hydroxide was added to a concentration of 0.5 M with stirring, and alkalized at 60 ° C for 2 h. After cooling, 6N hydrochloric acid was adjusted to pH 6-7, 100 g of papain was added, and the reaction was stirred at 50 ° C for 6 hours, and the temperature was raised to 100 ° C for 10 min. After cooling, the pH was adjusted to 2 (precipitated protein) with 6 N hydrochloric acid, and allowed to stand at 2 to 8 ° C for about 4 h, and centrifuged to precipitate. The obtained supernatant was adjusted to a pH of about 7, and ethanol was added to a final concentration of 70%. The mixture was allowed to stand, centrifuged, centrifuged and dissolved in about 30 times (v/v) water, and centrifuged to remove insoluble matter to 2 M NaOH. The pH was adjusted to about 10, H 2 0 2 was added to a final concentration of about 3 % (v/v), and the reaction was stirred at 50 ° C for 2 h (decolorization). The reaction solution was added with potassium acetate to a final concentration of 0.5 mol/L, and ethanol was added to a final concentration of 30%. The mixture was allowed to stand, centrifuged, centrifuged and dissolved in 20 times (v/w) water, and centrifuged to remove insoluble matter. Add acetic acid clock to a final concentration of 2.5 mol / L, stand, centrifuge, centrifuge to precipitate ethanol for 2 times, decompress the residual ethanol, water-soluble freeze-drying, that is, the pineapple glycosaminoglycan (THG) about 162 g.
作为参比, 同上述条件对 2 kg刺参和玉足海参进行提取, 分别得到刺参 FGAG ( SJG ) 20.2g和玉足海参 FGAG ( HLG ) 15.6 g。  As a reference, 2 kg of sea cucumber and jade foot sea cucumber were extracted with the above conditions, and the sea cucumber FGAG (SJG) 20.2 g and the jade foot sea cucumber FGAG (HLG) 15.6 g were obtained respectively.
1.3 解聚与精制 1.3 Depolymerization and refining
取上述方法制备的 THG 50 g,加入 1825 ml含有 122g三水合乙酸钠和 60g 氯化钠的水中, 加入 120ml 浓度为 0.0668mol/L的乙酸铜溶液, 搅拌混匀。 35 °C水浴搅拌条件下, 在约 2小时的时程内以 126ml/h速率滴加 10% ( v/v ) 的 H202。 整个过程中控制反应 pH值为 7.2 ~ 7.8。 上述条件下连续搅拌反应约 5 小时, 其反应过程中, 分别于反应起始后的 0.2、 0.5、 1.0、 1.5、 2.0、 2.5、 3.0、 3.5、 4.0、 4.5及 5.0小时的时间点分取反应液约 180 ml。 50 g of THG prepared by the above method was added, and 1825 ml of water containing 122 g of sodium acetate trihydrate and 60 g of sodium chloride was added, and 120 ml of a copper acetate solution having a concentration of 0.0668 mol/L was added thereto, and the mixture was stirred and mixed. 35 Under stirring ° C water bath, in about 2 hours time course was added dropwise to 126ml / h rate of 10% (v / v) of H 2 0 2. The pH of the reaction was controlled throughout the process from 7.2 to 7.8. The reaction was continuously stirred under the above conditions for about 5 hours, and the reaction was carried out at 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 hours after the start of the reaction. The liquid is about 180 ml.
被分取的每份反应液均在其取出后立即加入 0.5 g Na2EDTA,用 15 %乙酸 调节 pH值为 6.5 ~ 7.0,然后加入反应液 2.5倍体积(约 450ml )的乙醇,静置, 离心得沉淀。 沉淀以 100 ml水溶, 再次醇沉( 250 ml 95%乙醇), 离心所得沉 淀以 50 ml乙醇洗涤两遍,减压挥干乙醇,以约 30倍量(v/w )水溶解、 0.45μιη 膜抽滤, 滤液过 Na+型阳离子交换树脂柱(040 mm X 250 mm ), 收集流出液, 以截留分子量 3500Da的透析膜透析 6小时, 透析截留溶液冷冻干燥得到对应 于各解聚时间点的解聚产物 dTHG-1 ~ dTHG-10, 各时间点对应的产量在约 3.0 ~ 3.5 g范围内, 产物总量为 33.2 g。 Each of the fractions to be separated was added with 0.5 g of Na 2 EDTA immediately after the removal, and the pH was adjusted to 6.5 to 7.0 with 15% acetic acid, and then 2.5 times by volume (about 450 ml) of ethanol was added to the reaction solution, and allowed to stand. The precipitate was obtained by centrifugation. The precipitate was dissolved in 100 ml of water, re-alcoholized (250 ml of 95% ethanol), and the precipitate obtained by centrifugation was washed twice with 50 ml of ethanol, and the ethanol was evaporated under reduced pressure to dissolve in about 30 times (v/w) water, 0.45 μm film. After suction filtration, the filtrate was passed through a Na + type cation exchange resin column (040 mm X 250 mm ), and the effluent was collected, dialyzed against a dialysis membrane with a molecular weight of 3500 Da for 6 hours, and the dialysis retention solution was freeze-dried to obtain a solution corresponding to each depolymerization time point. The polydip products dTHG-1 ~ dTHG-10, the corresponding yield at each time point is in the range of about 3.0 ~ 3.5 g, and the total amount of the product is 33.2 g.
作为参比, 分别取 lOg SJG和 10g HLG, 同上述解聚条件进行操作, 分取 解聚反应液的时间点设定为 2个, 即反应起始后的 3h和 5 h。所得解聚产物记 为 dSJG-1 , dSJG-2和 dHLG-1, dHLG-2, 得到 dSJG总量为 7.5 g, dHLG总 量为 8.0 g。  As a reference, lOg SJG and 10g HLG were respectively taken and operated under the above depolymerization conditions, and the time point for depolymerizing the reaction liquid was set to two, that is, 3 hours and 5 hours after the start of the reaction. The obtained depolymerized products were recorded as dSJG-1, dSJG-2 and dHLG-1, dHLG-2, and the total amount of dSJG was 7.5 g, and the total amount of dHLG was 8.0 g.
1.3 dTHG 、 dSJG和 dHLG的理化性质检测与比较  1.3 Physicochemical properties of dTHG, dSJG and dHLG were tested and compared
样品: THG, dTHG-1 ~ dTHG- 10  Sample: THG, dTHG-1 ~ dTHG- 10
参比样品: SJG, dSJG-1 ~ dSJG-3; HLG, dHLG-1 ~ dHLG-4  Reference samples: SJG, dSJG-1 ~ dSJG-3; HLG, dHLG-1 ~ dHLG-4
分子量检测: HPGPC-LALLS法  Molecular weight detection: HPGPC-LALLS method
旋光度检测: 中国药典( 2005版)二部附录 VIE方法。 WZZ-1S型自动旋 光仪, 钠光源 (λ589.3ηπι ), 样品管 ldm。 Optical rotation detection: Chinese Pharmacopoeia (2005 edition) two appendix VIE method. WZZ-1S automatic polarimeter, sodium source (λ 589 . 3ηπι ), sample tube ldm.
特性黏度检测: 中国药典( 2005版)二部附录 VI G第三法。  Intrinsic viscosity test: Chinese Pharmacopoeia (2005 edition) two appendix VI G third method.
单糖组成检测: 乙酰氨基半乳糖(GalNAc ): Elson-Morgon法(张惟杰, 糖复合物生化研究技术(第二版), 浙江: 浙江大学出版社, 1999, 19-20 ); 葡萄糖醛酸(GlcUA ): 咔唑法;  Monosaccharide composition test: acetylgalactose (GalNAc): Elson-Morgon method (Zhang Weijie, Sugar Complex Biochemical Research Technology (Second Edition), Zhejiang: Zhejiang University Press, 1999, 19-20); Glucuronic acid ( GlcUA ): carbazole method;
岩藻糖 (Fuc ): 根据实施例 2 所述 NMR 曱基峰积分面积计算 GalNAc/Fuc摩尔比;  Fucose (Fuc): Calculate the GalNAc/Fuc molar ratio according to the NMR 曱 base peak integrated area as described in Example 2;
硫酸根(-OSCV ): 电导率法检测羧^/硫酸摩尔比(张惟杰, 糖复合物生 化研究技术(第二版), 浙江: 浙江大学出版社, 1999, 409-410 ), 以此作为 GlcUA/ -OS03—组成比。 Sulfate (-OSCV): Determination of Carboxylate/Sulfuric Acid Molar Ratio by Conductivity Method (Zhang Weijie, Biochemical Research Technology of Sugar Complex (Second Edition), Zhejiang: Zhejiang University Press, 1999, 409-410), as GlcUA / -OS0 3 - Composition ratio.
结果: 见表 2。  Results: See Table 2.
表 2. 各种样品的化学组成和理化性质  Table 2. Chemical composition and physical and chemical properties of various samples
分子量 旋光度 特性黏度 单糖组成(摩尔比) Molecular weight optical rotation characteristic viscosity monosaccharide composition (molar ratio)
†O° (MW) ([a]D 20, C=l%) ( O.lM NaCl, ml/g ) GalNAc: GlcUA: Fuc: -OS03" THG 65820 -59.1° 46.7 1.00 1.16 1.01 3.60 dTHG-1 46070 -58.3° 29.3 1.00 1.09 1.00 3.52 dTHG-2 33260 -58.2° 19.2 1.00 1.12 1.02 3.61 dTHG-3 25380 -59.5° 13.5 1.00 1.03 0.98 3.45 dTHG-4 19650 -57.3° 9.64 1.00 1.06 1.01 3.50 dTHG-5 17150 -55.7° 8.07 1.00 1.15 0.97 3.42 dTHG-6 13950 -53.7° 6.17 1.00 1.03 0.96 3.53 dTHG-7 1 1580 -58.4° 4.84 1.00 1.08 1.00 3.48 dTHG-8 10260 -55.9° 4.12 1.00 1.04 0.99 3.56 dTHG-9 8549 -59.0° 3.25 1.00 1.06 0.97 3.55 dTHG-10 6725 -56.9° 2.37 1.00 1.01 0.95 3.43 †O ° (MW) ([a] D 20 , C=l%) ( O.lM NaCl, ml/g ) GalNAc: GlcUA: Fuc: -OS0 3 " THG 65820 -59.1° 46.7 1.00 1.16 1.01 3.60 dTHG-1 46070 -58.3° 29.3 1.00 1.09 1.00 3.52 dTHG-2 33260 -58.2° 19.2 1.00 1.12 1.02 3.61 dTHG-3 25380 -59.5° 13.5 1.00 1.03 0.98 3.45 dTHG-4 19650 -57.3° 9.64 1.00 1.06 1.01 3.50 dTHG-5 17150 -55.7° 8.07 1.00 1.15 0.97 3.42 dTHG-6 13950 -53.7° 6.17 1.00 1.03 0.96 3.53 dTHG-7 1 1580 -58.4° 4.84 1.00 1.08 1.00 3.48 dTHG-8 10260 - 55.9° 4.12 1.00 1.04 0.99 3.56 dTHG-9 8549 -59.0° 3.25 1.00 1.06 0.97 3.55 dTHG-10 6725 -56.9° 2.37 1.00 1.01 0.95 3.43
SJG 68740 -64.2° 54.6 1.00 1.05 1.02 4.12 dSJG-1 14930 -63.5° 16.9 1.00 0.98 0.95 4.09 dSJG-2 9300 -60.3° 8.5 1.00 0.95 0.93 3.93 SJG 68740 -64.2° 54.6 1.00 1.05 1.02 4.12 dSJG-1 14930 -63.5° 16.9 1.00 0.98 0.95 4.09 dSJG-2 9300 -60.3° 8.5 1.00 0.95 0.93 3.93
HLG 51500 -48.9° 36.5 1.00 0.97 0.89 2.01 dHLG-1 13320 -47.3° 5.70 1.00 0.97 0.85 1.98 dHLG-2 9790 -47.6° 4.24 1.00 0.95 0.84 1.96 从表 2的结果可见, dTHG、 dSJG、 dHLG及其原型多糖 THG、 SJG、 HLG 中 GalNAc: GlcUA: Fuc的摩尔比均接近 1 : 1 : 1 , 而硫酸酯基含量则有所不 同,其中 SJG/dSJG含量较高, HLG/dHLG含量较低;此外,三种来源的 FGAG 的旋光度范围和特性黏度也有较大差异。 HLG 51500 -48.9° 36.5 1.00 0.97 0.89 2.01 dHLG-1 13320 -47.3° 5.70 1.00 0.97 0.85 1.98 dHLG-2 9790 -47.6° 4.24 1.00 0.95 0.84 1.96 From the results in Table 2, dTHG, dSJG, dHLG and its prototype polysaccharide The molar ratios of GalNAc: GlcUA: Fuc in THG, SJG and HLG are close to 1: 1 : 1 , while the content of sulfate base is different, among which the content of SJG/dSJG is higher and the content of HLG/dHLG is lower; There are also large differences in the optical rotation range and intrinsic viscosity of the FGAG from which the source is derived.
对于 THG/dTHG而言, 其单糖组成比例在同批次海参原料制备的产物中 变化较小, 而不同批次原料制备的 THG和 /或 dTHG产物中, 上述单糖比例的 变化范围有所增宽, 总体上, 其 GalNAc: GlcUA: Fuc: -OS03 -摩尔比通常 仍处于 1 : ( 1 ± 0.3 ): ( 1 ± 0.3 ): ( 3.5 ± 0.5 ) 范围内。 For THG/dTHG, the monosaccharide composition ratio varies little in the products prepared from the same batch of sea cucumber raw materials, while the THG and/or dTHG products prepared from different batches of raw materials vary in the range of monosaccharide ratios. Broadening, in general, its GalNAc: GlcUA: Fuc: -OS0 3 - molar ratio is usually still in the range of 1: (1 ± 0.3): (1 ± 0.3): (3.5 ± 0.5).
上述结果还可见,在过渡金属离子催化的过氧化物解聚法所得产物中,岩 藻糖与硫酸根含量比例变化较小,并且经 iH-1!! COSY检测分析可知其产物的 还原性末端主要为 GalNAc , 这与本申请人的前述发明专利申请 CN200910110114.0中的结果基本一致。 The above results also show that the ratio of fucose to sulfate content in the product obtained by the transition metal ion-catalyzed peroxide depolymerization method is small, and the reducing end of the product is known by iH- 1 !! COSY detection and analysis. Mainly GalNAc, which is basically consistent with the results of the applicant's aforementioned invention patent application CN200910110114.0.
实施例 2 THG/dTHG波谱分析 Example 2 THG/dTHG Spectral Analysis
检测样品: THG, dTHG-6, dTHG-9, 来源同实施例 1。  Test samples: THG, dTHG-6, dTHG-9, source as in Example 1.
参比样品: SJG, SJG-1 , 来源同实施例 1。  Reference sample: SJG, SJG-1, source as in Example 1.
检测谱图: NMR; 1H-1H COSY; Ή-Ή TOCSY; lH-lH NOESY; l3C-NMR; DEPT-135°; 'H-13C HSQC; -13( HMBC。 Detection spectrum: NMR; 1 H- 1 H COSY; Ή-Ή TOCSY; l H- l H NOESY; l3 C-NMR; DEPT-135°; 'H- 13 C HSQC; - 13 (HMBC.
检测条件: 溶剂, D20 , 99.9Atom%D ( Norell 公司 ); 内标, trimethylsilyl-propionic acid ( TSP-d4 ); 温度, 45 °C。 Test conditions: solvent, D 2 0 , 99.9 Atom% D (Norell); internal standard, trimethylsilyl-propionic acid (TSP-d4); temperature, 45 °C.
仪器, AVANCE AV 400超导核磁共振谱仪 (瑞士 Bruker公司 400 MHz )。 谱图: 见图 1〜图 4。 结果分析: Instrument, AVANCE AV 400 superconducting nuclear magnetic resonance spectrometer (400 MHz, Bruker, Switzerland). Spectrum: See Figure 1 to Figure 4. Result analysis:
( 1 ) THG与 dTHG的谱图比较:  (1) Comparison of the spectra of THG and dTHG:
图 1显示 THG、 dTHG-6、 dTHG-9的 'Η NMR谱图,其中 dTHG-6、 dTHG-9 谱图中的水峰被压制。 从图 1可见, THG、 dTHG-6和 dTHG-9三者信号特征 基本一致, 仅分子量较低时, 信号更为清晰, 可见 THG解聚前后的 NMR信 号特征保持稳定, 表明除聚合度降低外, THG解聚前后的基本化学结构未发 生显著变化。  Figure 1 shows the 'Η NMR spectrum of THG, dTHG-6, and dTHG-9, in which the water peaks in the dTHG-6 and dTHG-9 spectra were suppressed. It can be seen from Fig. 1 that the signal characteristics of THG, dTHG-6 and dTHG-9 are basically the same. When the molecular weight is low, the signal is clearer. It can be seen that the NMR signal characteristics before and after THG depolymerization remain stable, indicating that the degree of polymerization is reduced. The basic chemical structure before and after THG depolymerization did not change significantly.
( 2 ) THG、 SJG谱图比较:  (2) Comparison of THG and SJG spectra:
参见图 2 ~图 4, 图 2显示 dTHG ( A )与 dSJG ( B )的 COSY谱图; 其中箭头指示的信号显示两种低聚 FGAG产物侧链岩藻糖结构类型的差异: A 图为 dTHG含有的岩藻糖 -3-硫酸酯相关信号, B图为 dSJG含有的岩藻糖 -3,4- 二石克酸酯相关信号;方框内信号分别为岩藻糖 克酸酯和岩藻糖 -3,4-二 ^酸酯 的相关氢信号; 双圈内信号为岩藻糖 -3,4-二硫酸酯的 4位氢信号。 图 3显示 THG与 SJG的 13C NMR和 DEPT谱图。 图 4显示 dTHG-6的 NMR同核 /异核 相关谱图。 Referring to Figures 2 to 4, Figure 2 shows the COSY spectrum of dTHG (A) and dSJG (B); the signal indicated by the arrow shows the difference in the structure of the fucose structure of the two oligomeric FGAG products: A Figure is dTHG Contains the fucose-3-sulfate-related signal, B is the fucose-3,4-dikecoate-related signal contained in dSJG; the signals in the box are fucose cyanate and fucoal The hydrogen signal of the sugar-3,4-diacid ester; the signal within the double circle is the 4-position hydrogen signal of fucose-3,4-disulfate. Figure 3 shows the 13 C NMR and DEPT spectra of THG and SJG. Figure 4 shows the NMR homonuclear/heteronuclear correlation spectrum of dTHG-6.
综合图语数据可见, THG和 SJG的主链结构基本近似, 两者的显著差别 在于: 如图 2所示, dSJG的 3,4-二硫酸岩藻糖的强信号在 THG谱图中很微弱 或者不存在; 而后者归属为 3-硫酸岩藻糖的信号在 SJG谱图中未出现, 说明 两者在侧链取代基类型方面存在显著差异。  According to the comprehensive graphic data, the main chain structure of THG and SJG is basically similar. The significant difference between the two is: As shown in Figure 2, the strong signal of dSJG 3,4-disulfate fucose is very weak in the THG spectrum. Or absent; the latter signal belonging to 3-sulfate fucose does not appear in the SJG spectrum, indicating that there is a significant difference in the type of side chain substituents.
参见图 3,其中 6-位有和无硫酸酯基取代的 GalNAc 的碳信号分别出现在 约 70ppm和约 64ppm位置, 因 GalNAc的 6-位碳属于仲碳, 其在 DEPT135° 谱图中的信号峰为倒峰。 从图 3可知, THG主链中仍有少量(低于约 10% ) 6位羟基未被硫酸酯基取代的 GalNAc, 而 SJG主链中基本不存在 6位无硫酸 酯基取代的 GalNAc 。这进一步证明了 THG和 SJG的侧链取代基类型存在差 异。  Referring to Figure 3, the carbon signal of the 6-position with and without sulfate-substituted GalNAc appears at about 70 ppm and about 64 ppm, respectively, since the 6-position carbon of GalNAc belongs to the secondary carbon, and its signal peak in the DEPT135° spectrum. It is a peak. It can be seen from Fig. 3 that there is still a small amount (less than about 10%) of the GalNAc in which the 6-position hydroxyl group is not substituted by the sulfate group in the THG main chain, and there is substantially no 6-sulfate-free-substituted GalNAc in the SJG main chain. This further demonstrates the difference in the type of side chain substituents between THG and SJG.
此外, 从现有文献资料可知, 本发明的 THG与其他已知的海参 FGAG的 側链取代基也存在差异, 例如资料(Paulo AS et al., J. Biol. Chem. 1996, 271 : 23973; Lubor Borsig etal., J. Biol. Chem. 2007, 282, 14984 )及其所附 I3C NMR 图谱显示, L. grisea来源的 FGAG中约 35%的 GalNAc没有 6-位硫酸酯基取代; 资料(樊绘曾等, 药学学报, 1983, 18 (3): 203 )显示, 玉足海参 FGAG主链 GalNAc仅存在 6-位硫酸酯化而无 4-位硫酸酯化。 Furthermore, it is known from the literature that the THG of the present invention differs from other known side chain substituents of sea cucumber FGAG, for example, data (Paulo AS et al., J. Biol. Chem. 1996, 271: 23973; Lubor Borsig etal, J. Biol Chem 2007 , 282, 14984) I3 C NMR spectrum and the following display, FGAG L. grisea derived from about 35 percent GalNAc 6-position sulfate group is not substituted;... information ( Fan et al., Pharmaceutics Journal, 1983, 18 (3): 203) showed that the GGANA main chain of G. japonicus GGANA had only 6-position sulfated and no 4-sulfated.
综上所述, 本发明的 THG存在有异于已知结构的其他种属来源的 FGAG 的化学结构, 其首先表现在侧链岩藻糖取代基结构类型的不同, 即主要含有岩 藻糖 -2,4-二硫酸酯基、 -3-硫酸酯和 -4-硫酸酯基, 而不含或少含岩藻糖 -3,4-二 硫酸酯; 其主链结构与其他种属来源的 FGAG也有不同程度的差别。 (3) dTHG-6NMR谱图数据归属: 谱图归属见表 3, 几种相关谱图见图 4。 In summary, the THG of the present invention has a chemical structure of FGAG derived from other species of known structure, which first manifests in the difference in the structure type of the side chain fucose substituent, that is, mainly containing fucose- 2,4-disulfate group, -3-sulfate and -4-sulfate group, containing no or less fucose-3,4-disulfate; its main chain structure and other species FGAG also has varying degrees of difference. (3) dTHG-6NMR spectrum data attribution: The spectrum attribution is shown in Table 3, and several related spectra are shown in Figure 4.
表 3. THG-6 'H/^C-NMR谱图数据及归属
Figure imgf000018_0001
Table 3. THG-6 'H/^C-NMR spectrum data and attribution
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000019_0001
上表中: GalNAc4S6S表示 4,6-二硫酸 -N-乙酰氨基半乳糖基; GalNAc4S表示 4-疏酸 -N- 乙酰氨基半乳糖基; Fuc-2S4S表示 2,4-二硫酸岩藻糖基; Fuc-3S表示 3-硫酸岩藻糖基; Fuc-4S 表示 4-硫酸岩藻糖基; Fuc-OS表示无疏酸酯基的岩藻糖基。 括号 []表示其中的数据因信号 过度重叠而难以确认。  In the above table: GalNAc4S6S represents 4,6-disulfate-N-acetylaminogalactosyl; GalNAc4S represents 4-acid-N-acetylaminogalactosyl; Fuc-2S4S represents 2,4-disulfate fucose Fuc-3S represents 3-sulfate fucose group; Fuc-4S represents 4-sulfate fucose group; Fuc-OS represents fucosyl group without acid group. Brackets [] indicate that the data in it is difficult to confirm due to excessive overlap of signals.
实施例 3 THG/dTHG生物学活性检测 Example 3 Detection of THG/dTHG biological activity
3.1 血小板诱导活性检测 3.1 Platelet-induced activity assay
样品: dTHG-1 ~dTHG-10, 来源同实施例 1  Sample: dTHG-1 ~dTHG-10, source as in Example 1
参比样品: dSJG-1 ~ dSJG-4, 来源同实施例 1  Reference sample: dSJG-1 ~ dSJG-4, source same as Example 1
方法: 新西兰白兔, 腹主动脉取血, 3.8%枸橼酸钠抗凝( 1:9), 200xg离 心 8min得富血小板血浆(PRP), 1500xg离心 lOmin得贫血小板血浆。 PRP 血小板计数约 4.0 X 105/mm3。 Bron法(Bom GVR. Nature, 1962, 194:927)血 小板聚集仪检测样品对血小板聚集的影响。试验以生理盐水作空白对照,样品 终浓度为 200 g/ml, 重复试验三次, 计算血小板最大聚集率均值。 METHODS: New Zealand white rabbits were bled with abdominal aorta, anticoagulated with 3.8% sodium citrate (1:9), platelet-rich plasma (PRP) was obtained by centrifugation at 200 xg for 8 min, and platelet-poor plasma was obtained by centrifugation at 1500 x g for 10 min. The PRP platelet count is approximately 4.0 X 10 5 /mm 3 . The Bron method (Bom GVR. Nature, 1962, 194: 927) platelet accumulator measures the effect of samples on platelet aggregation. The test was performed with saline as a blank control. The final concentration of the sample was 200 g/ml, and the test was repeated three times to calculate the mean platelet aggregation rate.
结果: 见表 4。  Results: See Table 4.
表 4. 不同 FGAG诱导血小板聚集活性比较 样品 NS THG dTHG-1 dTHG-2 dTHG-3 dTHG-4 血小板聚集率 2.7 ±4.1 28.1 ±7.8 16.3 ±5.6 12.8 ±4.9 9.3 ±4.8 3.9 ±2.8 样品 dTHG-5 dTHG-6 dTHG-7 dTHG-8 dTHG-9 dTHG-10 血小板聚集率 1.9 ±2.9 1.1土 1.3 2.9 ±3.3 2.4 ±3.3 1.2 ±2.5 3.4 ±4.3 样品 SJG dSJG-1 dSJG-2 SJG dHLG-1 dHLG-2 血小板聚集率 58.4 ± 13.6 22.7 ± 8.5 5.3 ±5.5 53.6 ± 17.4 18.3 ±8.6 4.6 ±5.4 通过比较上述凤梨参、 刺参、 玉足海参来源的 FGAG及其不同程度的解 聚产物的血小板诱导活性, 可以发现, 对于原型 FGAG而言, THG诱导血小 板聚集的活性远低于 SJG和 HLG, 说明不同种属来源的 FGAG结构差异对其 血小板活性具有显著影响。 鉴于 THG与 SJG、 HLG的结构差异主要表现在側 链疏酸化岩藻糖基的类型的不同,由此推测其血小板活性差异应归因于岩藻糖 侧链的不同, THG的侧链岩藻糖基类型 /特征有效削弱了其血小板凝聚的活性。 从分子量方面看, THG重均分子量低至约 20000 Da时, dTHG的血小板诱导 活性业已消失, 而 SJG、 HLG分子量需要在其分子量低至约 9,000 - 12,000 Da 时, 方可避免高浓度下的血小板激活效应, 此与文献(樊绘曽等, Table 4. Comparison of different FGAG-induced platelet aggregation activities NS THG dTHG-1 dTHG-2 dTHG-3 dTHG-4 Platelet aggregation rate 2.7 ± 4.1 28.1 ± 7.8 16.3 ± 5.6 12.8 ± 4.9 9.3 ± 4.8 3.9 ± 2.8 Sample dTHG-5 dTHG-6 dTHG-7 dTHG-8 dTHG-9 dTHG-10 Platelet aggregation rate 1.9 ±2.9 1.1 Soil 1.3 2.9 ±3.3 2.4 ±3.3 1.2 ±2.5 3.4 ±4.3 Sample SJG dSJG-1 dSJG-2 SJG dHLG-1 dHLG- 2 Platelet aggregation rate 58.4 ± 13.6 22.7 ± 8.5 5.3 ± 5.5 53.6 ± 17.4 18.3 ± 8.6 4.6 ± 5.4 By comparing the platelet-inducing activity of FGAG derived from the above-mentioned pineapple, sea cucumber, jade foot sea cucumber and its different degree of depolymerization products, It can be found that for the prototype FGAG, the activity of THG-induced platelet aggregation is much lower than that of SJG and HLG, indicating that the FGAG structure differences of different species are Platelet activity has a significant effect. In view of the structural differences between THG and SJG and HLG, mainly in the type of side chain acidified fucosyl group, it is speculated that the difference in platelet activity is due to the difference in fucose side chain, THG side chain fucoid The glycosyl type/feature effectively weakens its platelet aggregation activity. In terms of molecular weight, the platelet-inducing activity of dTHG has disappeared when the weight average molecular weight of THG is as low as about 20,000 Da, and the molecular weight of SJG and HLG needs to be low at about 9,000 - 12,000 Da to avoid platelets at high concentrations. Activation effect, this and the literature (Fan et al.,
志, 1993, 9(2): 146 )结果基本一致,这表明 dTHG比原型 THG具有更好的应用 价值。 Zhi, 1993, 9(2): 146) The results are basically the same, which indicates that dTHG has better application value than prototype THG.
3.2抗凝血活性体外检测  3.2 anticoagulant activity in vitro detection
样品: dTHG-1 ~ dTHG-10, 来源同实施例 1  Sample: dTHG-1 ~ dTHG-10, source as in Example 1
参比样品: dSJG-l ~ dSJG-4, 来源同实施例 1  Reference sample: dSJG-l ~ dSJG-4, source same as example 1
低分子肝素钠 (LMWH ): 3500 - 5500 Da, 0.4 mix 4000AxaIU, Anofi -Aventis (法国)。  Low molecular weight heparin sodium (LMWH): 3500 - 5500 Da, 0.4 mix 4000AxaIU, Anofi - Aventis (France).
试剂: 凝血酶(Ila ): 123 NIH U/mg, sigma公司 (美国)。  Reagents: Thrombin (Ila): 123 NIH U/mg, sigma (USA).
凝血酶检测生色底物 ( S ): 25 mg/vial, HYPHEN BioMed (法国)。  Thrombin assay chromogenic substrate (S): 25 mg/vial, HYPHEN BioMed (France).
肝素辅因子 II ( HC-II ): 100 μ ΐ'Άΐ , HYPHEN BioMed (法国)。  Heparin Cofactor II (HC-II): 100 μΐ'Άΐ, HYPHEN BioMed (France).
因子 VIII ( f.VIII ): 200 IU/支, 绿十字 (中国)生物制品有限公司。 f.VIII检测试剂盒:试剂包括 Reagents: R1: Human Factor X; R2:Activeation Reagent, human Factor IXa, containing human thrombin, calcium and synthetic phospholipids; R3: SXa-11, Chomogenic substrate, specific for Factor Xa; R4:  Factor VIII (f.VIII): 200 IU/branch, Green Cross (China) Biological Products Co., Ltd. f.VIII test kit: reagents include Reagents: R1: Human Factor X; R2: Activeation Reagent, human Factor IXa, containing human thrombin, calcium and synthetic phospholipids; R3: SXa-11, Chomogenic substrate, specific for Factor Xa; R4 :
Tris-BSA Buffer; HYPHEN BioMed (法国)。 Tris-BSA Buffer; HYPHEN BioMed (France).
兔贫血小板血浆, 广州蕊特生物科技有限公司。  Rabbit platelet-poor plasma, Guangzhou Rui Te Biotechnology Co., Ltd.
APTT测定试剂盒(鞣花酸), 上海太阳生物技术有限公司。  APTT assay kit (ellagic acid), Shanghai Sun Biotechnology Co., Ltd.
仪器: 酶标仪, Bio-Rad 680 (美国); BICO-双信道血凝仪, Minivolt公 司 (意大利)。  Instruments: Microplate reader, Bio-Rad 680 (USA); BICO-dual channel blood coagulation instrument, Minivolt (Italy).
方法:  Method:
( 1 )抑制内源性因子 X酶( f.Xase, Tenase )活性检测: 釆用 f.VIII检测 试剂盒结合 f.VIII试剂建立的检测方法。系列浓度的 THG、 dTHG, SJG、 LMWH 溶液或空白对照溶液(Tris-BSA緩冲液 Κ4 ) 30μ1与 1.0 IU/ml因子 νΐΠ ( 30μ1 ) 混合后, 顺次加入试剂盒试剂 ( 30μ1 )、 R2 ( 30μ1 ), 37°C孵育 1 min后, 加 R3 ( 30μ1 ), 37 °C孵育 lmin,以 20%乙酸( 60μ1 )中止反应并检测 OD405nm。 根据空白对照 ( R4 )计算 AOD, 按文献( Sheehan J. P. & Walke Ε. Κ·, Blood, 2006,107:3876-3882 ) 中提供的公式计算各样品抑制 f.Xase的 IC50值。 (1) Inhibition of endogenous factor X enzyme (f.Xase, Tenase) activity detection: 检测 The detection method established by the f.VIII detection kit combined with the f.VIII reagent. Serial concentration of THG, dTHG, SJG, LMWH solution or blank control solution (Tris-BSA buffer Κ4) 30μ1 mixed with 1.0 IU/ml factor νΐΠ (30μ1), sequentially added kit reagent (30μ1), R 2 (30μ1), incubate for 1 min at 37 °C, add R 3 (30μ1), incubate for 1 min at 37 °C, stop the reaction with 20% acetic acid (60μ1) and detect OD 405nm . The AOD was calculated from the blank control (R4), and the IC 50 value of each sample was determined to inhibit f.Xase according to the formula provided in the literature (Sheehan JP & Walke Ε. Κ,, Blood, 2006, 107: 3876-3882).
( 2 ) HC-II依赖的抗凝血酶活性检测: 系列浓度的 THG、 dTHG, SJG、 LMWH溶液或空白对照溶液( Tris緩冲液)50μ1加入 96孔酶标板后,加入 50μ1 Ι μιηοΐ/L的 HC-Π, 混合, 37。C孵育 2min, 然后加入 50μ1 5U/ml的 IIa, 37 °C 孵育 2 min, 加入 50μ1 2mmol/L的 CS-0138, 混合, 37°C孵育 lmin, 以 50% 乙酸(ΙΟΟμΙ)中止反应并检测 OD4()5nm。 根据空白对照 (R4 )计算 AOD, 按文 献( Sheehan J. P. & Walke Ε. Κ·, Blood, 2006,107:3876-3882 )中提供的公式计算 各样品抑制 Ila的 IC5«值。 (2) Detection of HC-II-dependent antithrombin activity: Serial concentration of THG, dTHG, SJG, LMWH solution or blank control solution (Tris buffer) 50μ1 was added to 96-well microtiter plate, and 50μ1 was added. Ι μιηοΐ/L HC-Π, mixed, 37. Incubate for 2 min, then add 50 μl 5 U/ml IIa, incubate at 37 °C for 2 min, add 50 μl 2 mmol/L CS-0138, mix, incubate for 1 min at 37 ° C, stop the reaction with 50% acetic acid (ΙΟΟμΙ) and detect OD 4 () 5 nm . The AOD was calculated from the blank control (R4), and the IC 5 value of each sample was determined to suppress Ila according to the formula provided in the literature (Sheehan JP & Walke Ε. Κ·, Blood, 2006, 107: 3876-3882).
( 3 )延长 APTT时间的活性检测: 系列浓度的 THG、 dTHG、 SJG、 LMWH 溶液或空白对照溶液( Tris緩冲液) ΙΟμΙ混入 180μ1兔血浆, 然后按试剂盒说 明书的方法测各个样品的 ΑΡΤΤ时间,根据各样品检测结果计算倍增 ΑΡΤΤ时 间 (使 ΑΡΤΤ时间延长一倍) 的药物浓度。  (3) Activity detection for prolonging APTT time: serial concentration of THG, dTHG, SJG, LMWH solution or blank control solution (Tris buffer) ΙΟμΙ mixed into 180μ1 rabbit plasma, and then measuring the time of each sample according to the kit instructions According to the test results of each sample, the drug concentration of the doubling time (doubling the time of sputum) was calculated.
结果: 见表 5和图 5。  Results: See Table 5 and Figure 5.
表 5. THG/dTHG以及参比样品的抗凝血活性  Table 5. Anticoagulant activity of THG/dTHG and reference samples
IC50 ( g/ml) 倍增 APTT 抗 f.Xase-延长 IC 50 ( g/ml) multiplying APTT against f.Xase-extension
抗 f.Xase-抗  anti-f.Xase-resistant
样品 分子量  Sample molecular weight
的药物浓度 APTT效价比  Drug concentration APTT potency ratio
Mw (Da) Ila效价比【li Mw (Da) Ila titer ratio [ li
抗 f.Xase 抗 Ila ^g/ml) [21  anti-f.Xase anti-Ila ^g/ml) [21
THG 65820 0.275 1.25 4.54 1.77 8.66 dTHG-1 46070 0.270 1.56 5.78 2.05 7.59 dTHG-2 33260 0.268 1.64 6.1 1 2.50 9.32 dTHG-3 25380 0.266 1.75 6.58 3.28 12.3 dTHG-4 19650 0.253 1.90 7.51 3.59 14.2 dTHG-5 17150 0.245 2.27 9.26 4.08 16.6 dTHG-6 13950 0.216 2.84 13.1 4.56 21.1 dTHG-7 1 1580 0.282 3.55 12.6 6.29 22.3 dTHG-8 10260 0.463 4.02 8.68 8.82 19.1 dTHG-9 8549 0.714 5.96 8.34 10.6 14.8 dTHG-10 6725 0.864 6.23 2.17 21.9 7.6  THG 65820 0.275 1.25 4.54 1.77 8.66 dTHG-1 46070 0.270 1.56 5.78 2.05 7.59 dTHG-2 33260 0.268 1.64 6.1 1 2.50 9.32 dTHG-3 25380 0.266 1.75 6.58 3.28 12.3 dTHG-4 19650 0.253 1.90 7.51 3.59 14.2 dTHG-5 17150 0.245 2.27 9.26 4.08 16.6 dTHG-6 13950 0.216 2.84 13.1 4.56 21.1 dTHG-7 1 1580 0.282 3.55 12.6 6.29 22.3 dTHG-8 10260 0.463 4.02 8.68 8.82 19.1 19.1 dTHG-9 8549 0.714 5.96 8.34 10.6 14.8 dTHG-10 6725 0.864 6.23 2.17 21.9 7.6
SJG-2 9300 0.683 5.35 7.83 9.7 14.2  SJG-2 9300 0.683 5.35 7.83 9.7 14.2
LMWH 3500-5500 9.22 6.08 0.66 4.48 0.48  LMWH 3500-5500 9.22 6.08 0.66 4.48 0.48
[1]抗 f.Xase-抗 Ila效价比: 抗 Ila IC50 (μ^ιηΐ) I抗 f.Xase IC50 (μ^ηιΐ) [1] Anti-f.Xase-anti-Ila potency ratio: anti-Ila IC 50 (μ^ιηΐ) I anti-f.Xase IC 50 (μ^ηιΐ)
[2]抗 f.Xase-延长 APTT效价比: 倍增 APTT的药物浓度 ^g/ml) /抗 f.Xase IC50 ( g/ml) 文献资料 ( GZ. Feuerstein, et al., Arterioscler Thromb Vase Biol., 1999,[ 2] Anti-f.Xase-prolonged APTT potency ratio: drug concentration of multiplied APTT^g/ml)/anti-f.Xase IC 50 (g/ml) Literature (GZ. Feuerstein, et al., Arterioscler Thromb Vase Biol., 1999,
19:2554; CJ. Refino, et al., Arterioscler Thromb Vase Biol., 2002, 22:517 )显示, f.IXa抑制剂可以在基本上不影响血液 APTT以及出血时间的剂量下显著抑制 血栓形成, 并且抗凝药物的出血倾向与其抗凝血酶活性存在相关性。 此外, 低 分子肝素的临床实践已经证实, 随着抗 Xa/抗 Ila效价比提高, 其出血倾向得 到显著降低 ( G. Andriuoli et al. Heamostasis, 1985, 15: 324 )。基于以上认识以及 dTHG分子量与其作用于不同凝血因子靶点的效价强度的相关性,适当解聚的 THG有可能在消除 FGAG诱导血小板聚集活性的同时, 可以产生尽可能高的 抗 f.Xase与 HC-II依赖的抗 Ila活性的效价比,和 /或尽可能高的抗 f.Xase与延 长 APTT活性的效价比。 19:2554; CJ. Refino, et al., Arterioscler Thromb Vase Biol., 2002, 22: 517) shows that f. IXa inhibitors can significantly inhibit thrombosis at doses that do not substantially affect blood APTT and bleeding time. And the bleeding tendency of anticoagulant drugs is related to its antithrombin activity. In addition, the clinical practice of low molecular weight heparin has confirmed that as the anti-Xa/anti-Ila potency ratio increases, the bleeding tendency is significantly reduced (G. Andriuoli et al. Heamostasis, 1985, 15: 324). Based on the above understanding and the correlation between the molecular weight of dTHG and its potency at different targets of coagulation factors, appropriate depolymerization THG may produce the highest possible potency ratio of anti-f.Xase to HC-II-dependent anti-Ila activity and/or as high as possible anti-f.Xase and prolongation while eliminating FGAG-induced platelet aggregation activity. The potency ratio of APTT activity.
表 5的结果显示, THG和 /或 dTHG具有延长 APTT时间、抑制内源性 f.Xase 以及依赖 HC-II的抗凝血酶活性, 解聚 THG可以消除其血小板诱导活性, 但 解聚程度对其抗 f.Xase、抗 Ila (依赖 HC-II )及其延长 APTT活性的影响不同。  The results in Table 5 show that THG and/or dTHG have prolonged APTT time, inhibit endogenous f.Xase and HC-II-dependent antithrombin activity, and depolymerization of THG can eliminate platelet-inducing activity, but the degree of depolymerization is It has different effects on anti-f.Xase, anti-Ila (dependent on HC-II) and its prolongation of APTT activity.
首先, dTHG的分子量( Mw )低至约 20000 Da时其血小板诱导活性完全 消失, 而 Mw低至约 6000 Da时仍存在抗凝活性(延长 APTT时间)。 显然, 该分子量范围内的 dTHG较可能较原型 THG具有更好的应用价值。  First, the platelet-inducing activity of dTHG has a molecular weight (Mw) as low as about 20000 Da, and the anticoagulant activity (prolonged APTT time) is still present when the Mw is as low as about 6000 Da. Obviously, dTHG in this molecular weight range is more likely to have better application value than prototype THG.
其次, THG与 dTHG均具有强效抑制内源性 f.Xase的活性。 在本发明实 施例 3.2所述系统条件下, 对于重均分子量约 8000 - 70000 Da的 dTHG (或 THG ), 其抑制 f.Xase的 IC5。值一般低于约 0.1 mol/L (低于约 1 g/ml ), 且 总体上呈现活性随分子量升高而增强的趋势,但在不同分子量范围内,这种趋 势具有较大差异。 当分子量低于约 12000 Da时, dTHG抑制 f.Xase的活性可 随分子量降低而显著减弱; 而当分子量不低于约 12000 Da时, 其 IC5Q值均处 于约 0.2 g/ml ~ 0.3 g/ml的范围内, 以摩尔浓度计, 其 IC50值可随分子量升 高而略呈降 4氏趋势; 但以质量浓度计, 其 IC5c值基本不随分子量变化而变化, 或者更准确地说, 是随分子量升高反而略有升高。 总体上, 对于 dTHG (或 THG ) f.Xase而言, 当分子量不低于约 10000 Da时, 其抑制内源性因子 X酶 的活性可在一定程度上保持相对恒定。 Second, both THG and dTHG have potent inhibitory activity against endogenous f.Xase. Under the system conditions described in Example 3.2 of the present invention, for dTHG (or THG) having a weight average molecular weight of about 8,000 - 70,000 Da, it inhibits IC 5 of f.Xase. The value is generally less than about 0.1 mol/L (less than about 1 g/ml) and generally shows a tendency for activity to increase with increasing molecular weight, but this trend is quite different in different molecular weight ranges. When the molecular weight is less than about 12000 Da, the activity of dTHG inhibiting f.Xase can be significantly reduced with the decrease of molecular weight; and when the molecular weight is not lower than about 12000 Da, the IC 5 Q value is about 0.2 g/ml ~ 0.3 g. In the range of /ml, the IC 50 value may decrease slightly by 4 according to the molecular weight in terms of molar concentration; but the IC 5 c value of the mass concentration does not change substantially with the molecular weight, or more accurately It is said that it increases slightly with the increase in molecular weight. In general, for dTHG (or THG) f.Xase, when the molecular weight is not lower than about 10,000 Da, its activity of inhibiting endogenous factor X enzyme can be kept relatively constant to some extent.
表 5的结果还显示, THG/dTHG具有 HC-II抗凝血酶活性以及其延长 APTT 时间的活性。 对于重均分子量为约 8000 ~ 70000 Da的 dTHG (或 THG ), 其依 赖 HC-II抗凝血酶活性以及其延长 APTT的活性均随分子量升高而增强,这表 现在其依赖 HC-II抗凝血酶活性的 IC5。值以及其倍增 APTT时间的药物浓度均 随分子量的对数值升高而呈线性降低。 The results in Table 5 also show that THG/dTHG has HC-II antithrombin activity and its activity to prolong APTT time. For dTHG (or THG) with a weight average molecular weight of about 8000 ~ 70,000 Da, its dependence on HC-II antithrombin activity and its prolonged APTT activity are enhanced with increasing molecular weight, which is manifested in its dependence on HC-II resistance. Thrombin activity of IC 5 . Both the value and the drug concentration at which it multiplied the APTT time decreased linearly as the logarithm of the molecular weight increased.
综合本发明上述发现可以判断, 当 dTHG的重均分子量达到约 10000 Da, 特别是约 12000 Da以上时, 分子量大小对 dTHG延长 APTT和以及依赖 HCII 的抗凝血酶活性的影响远大于对抑制内源性 f.Xase活性的影响。 为方便叙述, 表 5定义了 "抗 f.Xase-抗 Ila效价比"和 "抗 f.Xase-延长 APTT效价比" 以体 现不同分子量 THG/dTHG抗凝血活性特点。 总体上, 对于重均分子量不低于 10000 Da的 dTHG而言, 分子量越低, 其抑制 f.Xase活性与其依赖 HC-II抗 凝血酶活性或延长 APTT 时间活性的效价比越高。 当分子量更低时 (低于约 10000 Da ), 该效价比则可呈现降氏趋势。  Based on the above findings of the present invention, it can be judged that when the weight average molecular weight of dTHG reaches about 10,000 Da, especially about 12,000 Da or more, the molecular weight affects the dTHG-prolonging APTT and the HCII-dependent antithrombin activity much more than the inhibition. The effect of the source of f.Xase activity. For convenience of description, Table 5 defines "anti-f.Xase-anti-Ila potency ratio" and "anti-f.Xase-prolonged APTT potency ratio" to reflect the anticoagulant activity of different molecular weight THG/dTHG. In general, for dTHG having a weight average molecular weight of not less than 10,000 Da, the lower the molecular weight, the higher the potency ratio of f.Xase activity to its dependence on HC-II antithrombin activity or prolonging APTT time activity. When the molecular weight is lower (less than about 10,000 Da), the potency ratio can show a trend of falling.
表 5的结果还表明, LMWH具有相对较弱的抗 f.Xase活性, 而对于 dSJG 而言, 血小板诱导活性限制了活性较强和 /或 "效价比" 较高的产物的应用。 本发明以 (1) 消除血小板诱导活性、 (2)获得尽可能高的抗 Xase/抗 Ila效价 比、 和 /或(3)获得尽可能高的抗 Xase/延长 APTT效价比为依据, 综合衡量 dTHG分子量与其抑制 f.Xase活性、 依赖 HC-II的抗凝血酶活性、 延长 APTT 时间活性以及血小板影响活性的关系,本发明选择的 dTHG重均分子量(Mw) 范围可以为约 8000 ~ 20000 Da, 优选的分子量范围为约 10000 ~ 18000 Da, 更 优选的分子量范围为约 12000 ~ 16000 Da。 The results in Table 5 also indicate that LMWH has a relatively weak anti-f.Xase activity, whereas for dSJG, platelet-inducing activity limits the use of products with higher activity and/or higher "potency ratio". The present invention is based on (1) eliminating platelet-inducing activity, (2) obtaining as high an anti-Xase/anti-Ila potency ratio as possible, and/or (3) obtaining as high an anti-Xase/prolonged APTT potency ratio as possible, To comprehensively measure the relationship between the molecular weight of dTHG and its inhibition of f.Xase activity, anti-thrombin activity dependent on HC-II, prolongation of APTT time activity, and platelet-influencing activity, the weight average molecular weight (Mw) of dTHG selected in the present invention may range from about 8000 °. The preferred molecular weight range is from about 10,000 to 18,000 Da, and the more preferred molecular weight range is from about 12,000 to 16,000 Da.
3.3 dTHG抗在体静脉血栓形成 3.3 dTHG anti-in vivo vein thrombosis
样品: dTHG-6, 来源见实施例 1; 低分子肝素钠(LMWH): 3500 ~ 5500 Da, 0.4 mix 4000 AxalU, Anofi -Aventis  Sample: dTHG-6, source see Example 1; low molecular weight heparin sodium (LMWH): 3500 ~ 5500 Da, 0.4 mix 4000 AxalU, Anofi - Aventis
方法:  Method:
( 1 )兔静脉血栓形成: 雄性新西兰白兔, 戊巴比妥(30mg/kgiv)麻醉, 分离左右双侧颈静脉, 分别于 2 cm区段放置两个结扎缝线, 静脉注射重组人 组织因子 lng/kg, 5min后结扎静脉近心端和远心端, 15min后纵向切开血管 取出血栓, 滤纸洗干残血, 称量血栓湿重。 受试药物 (dTHG-6、 LMWH)及 对照溶剂 (生理盐水, NS) 均于静脉结扎前 2小时皮下注射给药。  (1) Rabbit venous thrombosis: Male New Zealand white rabbits were anesthetized with pentobarbital (30 mg/kg iv), and the left and right jugular veins were separated. Two ligation sutures were placed in the 2 cm section, and recombinant human tissue factor was injected intravenously. Lng/kg, 5 min after ligation of the proximal and distal end of the vein, 15 min after longitudinal incision of the blood vessel to remove the thrombus, filter paper washed dry blood, weighing the wet weight of the thrombus. The test drugs (dTHG-6, LMWH) and the control solvent (normal saline, NS) were administered subcutaneously 2 hours before the venous ligation.
(2) 出血时间检测: SD大鼠, 戊巴比妥(30mg/kg )麻醉, 静脉注射 dTHG-6或 LMWH 15 sec后断尾(距尾端 5mm ),每隔 15 sec以滤纸小心吸取 断尾处出血印迹。 连续 lmin不出现出血印迹时即判断为已经止血。  (2) Bleeding time test: SD rats, pentobarbital (30mg/kg) anesthesia, intravenous dTHG-6 or LMWH 15 sec after tailing (5mm from the end), carefully sucked off with filter paper every 15 sec Bleeding blot at the tail. It is judged that hemostasis has been stopped when there is no bleeding blot for 1 min.
结果:  Result:
(1)兔静脉血栓形成: 在结扎和高粘血状态下的静脉血栓模型中, 皮下 注射 dTHG-64.5、 9、 18mg/kg可以显著抑制血栓形成, 抑制率范围为约 35% 至约 70%,其抑制活性呈现明显的量效关系(表 6 )。本试验中 , LMWH 720 IU/kg 对静脉血栓形成的抑制率约 56°/。。  (1) Rabbit venous thrombosis: In the model of venous thrombosis under ligation and hyperviscosity, subcutaneous injection of dTHG-64.5, 9, 18 mg/kg can significantly inhibit thrombosis, and the inhibition rate ranges from about 35% to about 70%. Its inhibitory activity showed a significant dose-effect relationship (Table 6). In this trial, LMWH 720 IU/kg inhibited venous thrombosis by approximately 56°/. .
表 6. THG对颈静脉血栓形成的影响  Table 6. Effect of THG on jugular vein thrombosis
細 n 血栓重量(mg) 抑制率(%) 模型组 10 152.8 ± 13.6 -- Fine n Thrombosis weight (mg) inhibition rate (%) Model group 10 152.8 ± 13.6 --
1HG 4.5 mgkg 10 98.3 ±25.6* 35.7 1HG 4.5 mgkg 10 98.3 ±25.6* 35.7
9 mgkg 10 56.4 ± 20.6 * 63.1  9 mgkg 10 56.4 ± 20.6 * 63.1
18 mgkg 10 45.7 ± 26.8 * 70.1  18 mgkg 10 45.7 ± 26.8 * 70.1
LMWH 720 IUkg 10 67.3 ±21.2* 56.0  LMWH 720 IUkg 10 67.3 ±21.2* 56.0
与模型组比较: * <0.05, ** <0.01  Compared with the model group: * <0.05, ** <0.01
(2)出血时间检测: 皮下注射 dTHG-6或 LMWH对大鼠出血时间的影响 检测结果见图 6。 试验结果表明, 相对于 LMWH, 在近似的抗凝抗血栓药效 剂量下, dTHG-6对出血时间的影响更低。  (2) Detection of bleeding time: The effect of subcutaneous injection of dTHG-6 or LMWH on the bleeding time of rats. The results of the trial showed that dTHG-6 had a lower effect on bleeding time than the LMWH at the approximate anticoagulant and antithrombotic doses.

Claims

权利要求书 Claim
1、 一种低聚凤梨参糖胺聚糖及其药学上可接受的盐, 其特征在于, 所述 低聚凤梨参糖胺聚糖是来源于凤梨参 Thelenota ananas ) 的岩藻糖化糖胺聚 糖的解聚产物, 其重均分子量为 8000 ~ 20000 Da, 其单糖组成包括 N-乙酰氨 基半乳糖、 葡萄糖醛酸、 岩藻糖以及它们的硫酸酯, 以摩尔比计, N-乙酰氨基 半乳糖:葡萄糖醛酸:岩藻糖:以 - OSO 表示的硫酸酯基的比例为' 1 : ( 1±0.3 ): ( 1±0.3 ): ( 3.5±0.5 )。  1. An oligomeric pineapple glycosaminoglycan and a pharmaceutically acceptable salt thereof, wherein the oligomeric pineapple glycosaminoglycan is derived from fucosylated glycosaminoglycans of Thelenota ananas a depolymerization product of sugar having a weight average molecular weight of 8000 to 20000 Da, and a monosaccharide composition thereof including N-acetylgalactosamine, glucuronic acid, fucose, and a sulfate thereof, in terms of a molar ratio, N-acetylamino group Galactose: Glucuronic acid: Fucose: The ratio of sulfate groups represented by -OSO is '1: (1±0.3): (1±0.3): (3.5±0.5).
2、 如权利要求 1所述的低聚凤梨参糖胺聚糖及其药学上可接受的盐, 其 特征在于, 所述单糖组成中, 其岩藻糖硫酸酯基包括 3-硫酸 -岩藻糖基。  The oligo-6-glycosaminoglycan and the pharmaceutically acceptable salt thereof according to claim 1, wherein the fucose sulfate group comprises 3-sulfate-rock in the monosaccharide composition Alginose base.
3、 如权利要求 1所述的低聚凤梨参糖胺聚糖及其药学上可接受的盐, 其 特征在于, 所述低聚凤梨参糖胺聚糖的重均分子量为 10000 ~ 18000 Da。  The oligomeric pineapple glycosaminoglycan and the pharmaceutically acceptable salt thereof according to claim 1, wherein the oligomeric pineapple glycosaminoglycan has a weight average molecular weight of 10,000 to 18,000 Da.
4、 一种制备权利要求 1所述低聚凤梨参糖胺聚糖及其药学上可接受的盐 的方法, 其中所述低聚凤梨参糖胺聚糖的制备包括步骤:  A method for producing the oligomeric pineapple glycosaminoglycan according to claim 1 or a pharmaceutically acceptable salt thereof, wherein the preparation of the oligomeric pineapple glycosaminoglycan comprises the steps of:
1 )从凤梨参体壁提取获得岩藻糖化糖胺聚糖;  1) obtaining fucosylated glycosaminoglycan from the pineapple wall;
2 )利用过氧化物解聚步骤 1 )所得的岩藻糖化糖胺聚糖, 以获得低聚 岩藻糖化糖胺聚糖;  2) utilizing the fucosylated glycosaminoglycan obtained by the peroxide depolymerization step 1) to obtain an oligomeric fucosylated glycosaminoglycan;
3 )收集和纯化所需分子量范围的低聚岩藻糖化糖胺聚糖。  3) Collect and purify oligomeric fucosylated glycosaminoglycans of the desired molecular weight range.
5、 如权利要求 4所述的方法, 其特征在于, 在催化剂存在下, 于水相介 盾中催化过氧化物解聚凤梨参岩藻糖化糖胺聚糖获得低聚岩藻糖化糖胺聚糖, 所述催化剂为含有选自元素周期表第四周期过渡金属离子的催化剂。  The method according to claim 4, wherein in the presence of a catalyst, the peroxide depolymerizes the pineapple ginseng fucosylated glycosaminoglycan in the aqueous phase shield to obtain the oligomeric fucosylated glycosaminoglycan. Sugar, the catalyst is a catalyst containing a transition metal ion selected from the fourth period of the periodic table.
6、 如权利要求 5所述的方法, 其中所述含选自元素周期表第四周期过渡 金属离子的催化剂为 Cu+、 Cu2+、 Fe2+、 Fe3+、 Cr3+、 Cr207 2\ Mn2+、 Zn2+、 Ni2+ 形成的无机盐或有机盐, 或其组合。 6. The method as claimed in claim 5, wherein said fourth period of the periodic table containing selected transition metal ion catalyst is Cu +, Cu 2+, Fe 2+ , Fe 3+, Cr 3+, Cr 2 0 7 2 \Inorganic or organic salts formed by Mn 2+ , Zn 2+ , Ni 2+ , or a combination thereof.
7、 一种药物组合物, 含有权利要求 1至 3任一项所述的低聚凤梨参糖胺 聚糖或其药学上可接受的盐, 以及药学上可接受的赋形剂。  A pharmaceutical composition comprising the oligomeric pine ginseng glycosaminoglycan according to any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.
8、 如权利要求 7所述的药物组合物, 其特征在于, 所述药学上可接受的 盐为钠盐、 钾盐或钙盐。  The pharmaceutical composition according to claim 7, wherein the pharmaceutically acceptable salt is a sodium salt, a potassium salt or a calcium salt.
9、 如权利要求 7或 8所述的药物组合物, 其特征在于, 所述药物组合物 制备成注射用冻干粉针剂。  The pharmaceutical composition according to claim 7 or 8, wherein the pharmaceutical composition is prepared as a lyophilized powder for injection.
10、 如权利要求 7或 8所述的药物组合物在用于制备预防和 /或治疗抗血 栓药物中的应用。  10. Use of a pharmaceutical composition according to claim 7 or 8 for the preparation of a medicament for the prevention and/or treatment of antithrombotic drugs.
PCT/CN2010/001678 2009-11-25 2010-10-25 Depolymerized glycosaminoglycan from thelenota ananas and preparation method thereof WO2011063595A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/512,142 US8809300B2 (en) 2009-11-25 2010-10-25 Depolymerized glycosaminoglycan from Thelenota ananas and preparation method thereof
AU2010324437A AU2010324437B2 (en) 2009-11-25 2010-10-25 Depolymerized glycosaminoglycan from Thelenota ananas and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910109861A CN101724086B (en) 2009-11-25 2009-11-25 Oligomerization pineapple ginseng glycosaminoglycan and preparation method thereof
CN200910109861.2 2009-11-25

Publications (1)

Publication Number Publication Date
WO2011063595A1 true WO2011063595A1 (en) 2011-06-03

Family

ID=42445696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001678 WO2011063595A1 (en) 2009-11-25 2010-10-25 Depolymerized glycosaminoglycan from thelenota ananas and preparation method thereof

Country Status (4)

Country Link
US (1) US8809300B2 (en)
CN (1) CN101724086B (en)
AU (1) AU2010324437B2 (en)
WO (1) WO2011063595A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724086B (en) 2009-11-25 2012-09-26 深圳海王药业有限公司 Oligomerization pineapple ginseng glycosaminoglycan and preparation method thereof
CN102247401A (en) * 2011-05-05 2011-11-23 中国科学院昆明植物研究所 Low molecular weight glycosylated chondroitin sulfate and its purpose in preparation of anti-HIV-1 medicament
CN102329397B (en) * 2011-10-19 2014-04-09 中国科学院昆明植物研究所 Fucosylated glycosaminoglycan derivative and preparation method thereof
CN102558389B (en) * 2011-12-22 2013-10-02 中国科学院昆明植物研究所 Low molecular weight carboxyl-reduced derivatives of fucosylated glycosaminoglycans and preparation method and applications of low molecular weight carboxyl-reduced derivatives
CN103285031B (en) * 2012-03-05 2015-09-09 上海开润生物医药有限公司 The application of depolymerization glycosaminoglycan extracted from sea cucumber in preparation control thromboembolic disorders medicine
CN103417565B (en) * 2012-05-17 2016-05-25 上海开润生物医药有限公司 The application of depolymerization glycosaminoglycan extracted from sea cucumber in preparation control thrombotic diseases medicine
CN103830263A (en) * 2012-11-26 2014-06-04 上海开润生物医药有限公司 Application of depolymerized holothurian glycosaminolycan in medicine preparation
CN103830264A (en) * 2012-11-26 2014-06-04 上海开润生物医药有限公司 Application of depolymerized holothuria glycosaminoglcan in preparing medicine for preventing and controlling thrombotic diseases
CN103869002B (en) * 2012-12-11 2015-05-27 深圳海王药业有限公司 Analysis method for determining oligomerization thelenota ananas glycosaminoglycan content
CN102993323A (en) * 2012-12-30 2013-03-27 青岛市市立医院 Method for extracting and purifying glycosaminoglycans (GAGs) from stichopus japonicus
CN103087207A (en) * 2012-12-30 2013-05-08 青岛市市立医院 Method for extracting holothuria leucospilota glycosaminoglycans
CN102993327A (en) * 2012-12-30 2013-03-27 青岛市市立医院 Method for preparing black holothurian glycosaminoglycan
CN103044564A (en) * 2012-12-30 2013-04-17 青岛市市立医院 Preparation method for holothuria leucospilota glycosaminoglycans
CN102993326A (en) * 2012-12-30 2013-03-27 青岛市市立医院 Method for extracting and purifying glycosaminoglycans (GAGs) from thelenota ananas
CN103030706A (en) * 2012-12-30 2013-04-10 青岛市市立医院 Method for extracting glycosaminoglycan from thelenota ananas
CN103044565A (en) * 2012-12-30 2013-04-17 青岛市市立医院 Method for extracting black sea cucumber glycosaminoglycan
WO2014153995A1 (en) 2013-03-26 2014-10-02 中国科学院昆明植物研究所 Low molecular weight glycosaminoglycan derivative, pharmaceutical composition thereof, preparation method therefor and use thereof
CN103214591B (en) * 2013-04-12 2015-11-04 中国科学院昆明植物研究所 A kind of lower molecular weight osamine polysaccharid derivative of the talose or derivatives thereof that dewaters containing end 2,5-
CN104147040A (en) * 2013-05-13 2014-11-19 上海开润生物医药有限公司 Application of holothuria glycosaminoglcan in preparation of medicines for preventing and treating thromboembolism disease
CN103788222B (en) 2014-01-08 2016-08-31 中国科学院昆明植物研究所 Substituted oligomeric glycosaminoglycans of Fuc3S4S and preparation method thereof
TWI769176B (en) 2016-09-07 2022-07-01 瑞瑟勒綜合技術協會 Biosynthetic heparin
EP3569608A4 (en) 2017-01-10 2020-09-09 Jiuzhitang Co., Ltd. Oligosaccharide compound for inhibiting endogenous coagulation factor x-enzyme complex, and preparation method therefor and uses thereof
CN108344875B (en) * 2017-01-22 2021-11-02 上海长岛生物技术有限公司 Method for improving sensitivity of reagent for activating partial thromboplastin time to heparin and application
JP2022523638A (en) 2019-01-15 2022-04-26 オプティムヴィア、エルエルシー Modified aryl sulphate-dependent enzyme
WO2021007429A1 (en) 2019-07-09 2021-01-14 Optimvia Llc Methods for synthesizing anticoagulant polysaccharides
CN114252546A (en) * 2020-09-23 2022-03-29 牡丹江友搏药业有限责任公司 Method for determining content of low-molecular-weight fucosylated glycosaminoglycan
CN114252436A (en) * 2020-09-23 2022-03-29 牡丹江友搏药业有限责任公司 Method for identifying natural fucosylated glycosaminoglycan

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087543A1 (en) * 2002-04-25 2004-05-06 Zachary Shriver Methods and products for mucosal delivery
CN1651470A (en) * 2004-02-04 2005-08-10 森德克斯股份有限公司 Low molecular weight heparin triethanolamine salt usable as local delivery antithrombotic treating agent, preparing process and use thereof
JP2007008899A (en) * 2005-07-04 2007-01-18 Mie Univ Vascularization inhibitor
CN101057859A (en) * 2007-05-14 2007-10-24 张登科 Depolymerization glycosaminoglycan extracted from sea cucumber composition and its preparation method and application
CN101451157A (en) * 2008-12-25 2009-06-10 大连海晏堂生物有限公司 Method for preparing low molecular weight sea cucumber polysaccharide
CN101724086A (en) * 2009-11-25 2010-06-09 深圳海王药业有限公司 Oligomerization pineapple ginseng glycosaminoglycan and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240544B1 (en) * 1995-12-20 2000-01-15 고바야시 유끼오 Intravasicular membrane thickening inhibitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087543A1 (en) * 2002-04-25 2004-05-06 Zachary Shriver Methods and products for mucosal delivery
CN1651470A (en) * 2004-02-04 2005-08-10 森德克斯股份有限公司 Low molecular weight heparin triethanolamine salt usable as local delivery antithrombotic treating agent, preparing process and use thereof
JP2007008899A (en) * 2005-07-04 2007-01-18 Mie Univ Vascularization inhibitor
CN101057859A (en) * 2007-05-14 2007-10-24 张登科 Depolymerization glycosaminoglycan extracted from sea cucumber composition and its preparation method and application
CN101451157A (en) * 2008-12-25 2009-06-10 大连海晏堂生物有限公司 Method for preparing low molecular weight sea cucumber polysaccharide
CN101724086A (en) * 2009-11-25 2010-06-09 深圳海王药业有限公司 Oligomerization pineapple ginseng glycosaminoglycan and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENG, WENJING ET AL.: "Chemical CompomentAnalysis of Polysaccharides from Different Sea Cucumbers.", CHIN J MAR DRUGS., vol. 26, no. 1, February 2007 (2007-02-01), pages 44 - 49 *

Also Published As

Publication number Publication date
CN101724086B (en) 2012-09-26
US8809300B2 (en) 2014-08-19
AU2010324437A1 (en) 2012-07-19
CN101724086A (en) 2010-06-09
AU2010324437B2 (en) 2014-12-18
US20120270834A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
WO2011063595A1 (en) Depolymerized glycosaminoglycan from thelenota ananas and preparation method thereof
Wu et al. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase
CN102329397B (en) Fucosylated glycosaminoglycan derivative and preparation method thereof
JP6472808B2 (en) Fuc3S4S-substituted low-molecular glycosaminoglycan and method for producing the same
CA2856918C (en) Use of chemically modified heparin derivates in sickle cell disease
HUT64087A (en) Process for producing n,o-sulfated heparosanes of high molecular weigh and pharmaceutical compositions comprising such compounds
JP6248179B2 (en) Low molecular weight glycosaminoglycan derivative comprising terminal 2,5-dehydrated talose or a derivative thereof
US20240041918A1 (en) Oligosaccharide Compound for Inhibiting Intrinsic Coagulation Factor X-Enzyme Complex, and Preparation Method Therefor and Uses Thereof
Spadarella et al. From unfractionated heparin to pentasaccharide: Paradigm of rigorous science growing in the understanding of the in vivo thrombin generation
EP1731131A1 (en) Hgf production accelerator containing heparin-like oligosaccharide
US11202797B2 (en) Mixture of fucosylated chondroitin sulfate oligosaccharides and method for rapidly producing the same
KR970000528B1 (en) New sulfated polysaccharide, pharmaceutically acceptable salts thereof, preparation thereof and drug containing the same as active ingredient
JP6293862B2 (en) Low molecular weight glycosaminoglycan derivative and drug composition thereof, production method and use thereof
CN109251255B (en) Fucosylated chondroitin sulfate FCShmAnd preparation method and application thereof
US20110263527A1 (en) Sulfated Galactans With Antithrombotic Activity, Pharmaceutical Composition, Method for Treating or Prophylaxis of Arterial or Venous Thrombosis, Method of Extraction and Use Thereof
Millet et al. The venous antithrombotic effect of LF 1351 in the rat following oral administration
Bisio et al. Carbohydrate‐Based Antithrombotics
Ventre FROM UNFRACTIONATED HEPARIN TO PENTASACCHARIDE: PARADIGM OF RIGOROUS SCIENCE GROWING IN THE UNDERSTANDING OF THE IN VIVO THROMBIN GENERATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010324437

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13512142

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010324437

Country of ref document: AU

Date of ref document: 20101025

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10832502

Country of ref document: EP

Kind code of ref document: A1