WO2011093545A1 - Plasma generation device using electromagnetic waves and wave guide thereof - Google Patents

Plasma generation device using electromagnetic waves and wave guide thereof Download PDF

Info

Publication number
WO2011093545A1
WO2011093545A1 PCT/KR2010/000615 KR2010000615W WO2011093545A1 WO 2011093545 A1 WO2011093545 A1 WO 2011093545A1 KR 2010000615 W KR2010000615 W KR 2010000615W WO 2011093545 A1 WO2011093545 A1 WO 2011093545A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
plasma
dielectric tube
atmospheric pressure
wave guide
Prior art date
Application number
PCT/KR2010/000615
Other languages
French (fr)
Korean (ko)
Inventor
정태환
Original Assignee
주식회사 에스피에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스피에스 filed Critical 주식회사 에스피에스
Publication of WO2011093545A1 publication Critical patent/WO2011093545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/14Auxiliary devices for switching or interrupting by electric discharge devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Definitions

  • the present invention relates to a plasma generator using electromagnetic waves and a waveguide therefor, and more particularly, to an atmospheric pressure plasma generator and a waveguide capable of forming a large-capacity atmospheric plasma in a stable form.
  • the plasma is generated as follows. Heat is applied to a solid with the lowest energy state of matter, and when the temperature rises, it becomes a liquid, and when heat energy is applied, it causes a transition to gas. Subsequently, when the gas receives more energy, ionized particles are produced that are different from the state transition, and the total number of charges of the cations and anions is about the same. This state is an electrically neutral plasma state.
  • Plasma states that can be observed around us include fluorescent lamps used as lighting, neon signs commonly seen on the street, and lightning such as lightning that occurs frequently when showers occur. Aurora can also be regarded as light emitted by plasma.
  • the plasma can be used to synthesize artificial diamond, and surface treatment with plasma on the metal remains discovered in ancient historical sites can prevent wear and corrosion and improve the condition of the artifacts.
  • Plasma Display Panels using light emitted from plasma are widely used throughout the industry, and PDP TVs are a typical example.
  • plasma can be used to replace fossil fuels such as petroleum and coal through nuclear fusion, and the world's major developed countries are actively researching to develop alternative energy sources using plasma.
  • plasma is a high-tech material such as surface treatment of various materials, ion implantation, organic-inorganic film deposition and removal, cleaning operation, removal of toxic substances, sterilization, etc. It is used for various purposes in various fields ranging from environmental industry.
  • plasma processing technology is much more advanced in precision than mechanical processing technology, it is important to be used as a core equipment for manufacturing products and parts in semiconductors, LCDs, and MEMS that require fine patterns.
  • the method of generating plasma in vacuum has many difficulties in practical application. Since the plasma is generated in a closed space in a vacuum, it is difficult to control the processing conditions in a material to be treated in an instant, and in a closed system, the processing is performed in a continuous process in which an article is moved. Has the disadvantage of being difficult.
  • the dielectric tube 12 and the 3-stub matching system 20 are arranged in the waveguide 18 so as to form a quarter interval of the intra-wavelength.
  • the magnetron 22 having the power supply system 24 oscillates the electromagnetic wave into the waveguide 18, it matches with the three-stub matching system 20 while supplying the maximum electric field in the dielectric tube 12 to generate plasma under atmospheric pressure. To be created.
  • the waveguide 18 is composed of a first waveguide, a tapered portion, and a low height portion as shown in FIG.
  • the dielectric tube 12 is installed in the through hole 30 formed at the low height, and the magnetron 22 is installed in the insertion hole 32 formed in the first waveguide.
  • three stubs of the three-stub matching system 20 are installed outside the upper plate of the lower portion.
  • the 3-stub matching system 20 is installed so that the spacing between the stubs is ⁇ g / 4 when the wavelength in the waveguide 18 is ⁇ g, so that the characteristic impedance of the waveguide 18 and the load impedance of the low height portion of the waveguide 18 are provided. It acts to transfer the maximum power to the load while matching. At this time, the electric field of the microwave generated by the magnetron 22 is maximized at the position where the dielectric tube 12 of the waveguide 18 is installed. At this time, the dielectric tube 12 is made of a quartz tube, and the inner wall thereof is coated with boron nitride 4 having high heat resistance, and is configured to withstand high temperature flames.
  • the ignition device 14 supplies the initial electrons necessary for the discharge to discharge the dielectric tube 12.
  • the plasma generated in the dielectric tube 12 by the electromagnetic wave having the maximum electric field is generated under atmospheric pressure, it is possible to generate the plasma at atmospheric pressure without a separate vacuum device.
  • the plasma flame of high temperature (5000-6000 degreeC) is discharged through the torch exit of the dielectric tube 12.
  • Swirl gas (6) supplied to the dielectric pipe (12) together with the torch gas (8) is injected to have a spiral trajectory along the inner circumferential surface of the dielectric pipe to prevent overheating of the inner wall of the dielectric pipe by discharge heat, It collects the plasma flame discharged through the torch outlet.
  • arranging the dielectric tubes 12 at quarter intervals of the intra-wavelength of the waveguide 18 is merely a theory of rectangular waveguides. Depending on how the waveguide 18 is designed, spacing less than one quarter of the wavelength may be most efficient and may be optimized at spacings greater than one quarter.
  • the general waveguide configuration of such an atmospheric pressure plasma generator is the same as that shown in FIG.
  • the dielectric tube is inserted into a dielectric tube made of a ceramic, quartz tube, or the like at a point equal to 1/4 of the internal wavelength of the waveguide 18 to generate a plasma.
  • a high-density electric field must be formed, unlike the plasma generating apparatus under vacuum conditions, the atmospheric pressure plasma achieves this through a narrower waveguide configuration.
  • the dielectric tube must be provided in a narrow waveguide (particularly a waveguide having a low height in the case of a spherical waveguide) in which a high electric field is formed, so that plasma can be generated at atmospheric pressure.
  • the prior art has a problem that when the inner diameter of the dielectric tube 12 exceeds 27mm, the plasma is unstable and it is difficult to generate a large amount of plasma. Therefore, due to the low height and limited directness, the dielectric tube formed in the low height waveguide has its limitation in the internal volume for plasma generation, and as a result, the atmospheric pressure plasma has obvious limitations in terms of its capacity despite its high economy. There was.
  • the first problem to be solved by the present invention is to provide a plasma apparatus capable of a larger capacity atmospheric pressure plasma by overcoming the limitation of the diameter of the dielectric tube that is recognized in the prior art.
  • the present invention is an atmospheric pressure plasma generating apparatus using an electromagnetic wave provided with a waveguide provided with a magnetron for oscillating electromagnetic waves, and a dielectric tube for generating plasma as installed in the waveguide, wherein the waveguide is made of A first waveguide having a height and a tapered portion provided at an end of the main body, the tapered portion being reduced by a predetermined angle, wherein the dielectric tube has a tapered portion of the waveguide, a first waveguide, or a tapered portion and a boundary between the first waveguide and the first waveguide. It provides an atmospheric pressure plasma generating apparatus characterized in that provided in.
  • the present invention also provides an atmospheric pressure plasma generating apparatus using an electromagnetic wave provided with a waveguide provided with a magnetron for oscillating electromagnetic waves, and a dielectric tube for generating plasma as installed in the waveguide.
  • a first waveguide having a first height and a triangular shape or a ladder shape connected to an end of the first waveguide, wherein the dielectric tube is provided at a boundary with the triangular shape or the square shape or the first waveguide.
  • An atmospheric pressure plasma generator is provided.
  • the tapered portion has a trapezoidal shape, and a second waveguide having a second height lower than the first height is provided at a rear end of the tapered portion, and the second waveguide is terminated before the ⁇ / 4 point of the electromagnetic wave wavelength.
  • the dielectric tube is provided in the tapered portion, and the triangular portion or the ladder portion has a length shorter than ⁇ / 4 of the electromagnetic wave wavelength.
  • the end of the second waveguide has a shape that is not planar.
  • the present invention provides a waveguide for an atmospheric pressure plasma generator.
  • the plasma generator of the present invention has a large height and volume of the waveguide provided with the dielectric tube generating the plasma, the total intensity of the electric field in the dielectric tube is strong, and a larger and higher-capacity high density plasma is produced regardless of the diameter of the dielectric tube. It can achieve the effect of generating a stable and economical high temperature high density plasma without using a high power ignition device.
  • FIG. 1 is a perspective view of a waveguide of a conventional plasma generator
  • FIG. 2 is a cross-sectional view of the dielectric tube installed in the waveguide of FIG.
  • FIG. 3 is a circuit diagram of a magnetron and a power supply system installed in the waveguide of FIG. 1;
  • FIG. 4 is a perspective view of a waveguide of one embodiment of a plasma generating device according to the present invention.
  • FIG. 5 is a side view of the waveguide of FIG. 4;
  • FIGS. 6 and 7 are side views of a plate conduit of another embodiment of a plasma generating apparatus according to the present invention.
  • FIG. 9 is a front view from above of various types of waveguides according to the present invention.
  • FIG. 10 is a photograph of plasma generation in the dielectric tube according to the present invention.
  • FIG. 4 is a perspective view of a conduit tube and a dielectric tube, which are main components of the plasma generating apparatus, according to an embodiment of the present invention.
  • FIG. 5 is a side view of the conduit tube of FIG.
  • the waveguide includes a first waveguide 50a having a first height and a tapered portion 50b provided at one end of the first waveguide 50a and reduced at a predetermined angle.
  • the second end of the tapered portion 50 has a second waveguide having a height lower than the first height having a length of ⁇ / 4 or more, and provided a dielectric tube at a point of ⁇ / 4.
  • the position of the dielectric tube in which the plasma is generated in the atmospheric pressure plasma generator according to the present invention is not the low height portion of the waveguide, but the taper portion 50b or the first waveguide 50a. That is, if sufficient atmospheric pressure is generated at the position, the volume of the waveguide and the dielectric tube penetrates also increases, thereby increasing the total capacity of the plasma.
  • a dielectric tube may be installed in the waveguide having the volume condition. Compared with the above, it is possible to generate a large-capacity atmospheric plasma.
  • the dielectric tube 60 is provided in any one of the first waveguide 50a or the tapered portion 50b having a large volume as described above.
  • the dielectric tube may be installed on the interface between the first waveguide and the tapered portion, and as long as it is provided in the waveguide having a volume larger than the second waveguide volume, it is not installed only in the second waveguide of low height as in the prior art. It belongs to the scope of the present invention.
  • a dielectric tube is formed only in a large volume waveguide, sufficient electric field required for plasma generation cannot be obtained, or even when plasma is generated, its intensity is very low and unstable.
  • the present invention is connected to the other end of the tapered portion 50b so that the length of the second waveguide (lower height portion) having a lower height than the first waveguide (this is based on the direction in which the electric field is applied) within the waveguide. It is composed of less than one quarter of the electric wave wavelength lambda, so that a sufficient electric field is generated in the tapered portion or the first waveguide portion having a larger volume than the second waveguide, or the boundary region thereof. That is, according to the present invention, since the point of ⁇ / 4 is formed at the low height of the waveguide, the length of the second waveguide portion is at least ⁇ / 4 or more.
  • the length of the second waveguide portion 50c is less than [lambda] / 4 even when the second waveguide portion constituting the second waveguide portion having an increased electric field density is present, even in a waveguide having a larger volume like the tapered portion 50b.
  • An electric wave of a level required for plasma generation is applied, and this is applied to a large capacity of plasma.
  • FIG. 4 shows an example in which the dielectric tube 60 is provided in the tapered portion 50b.
  • a through hole 51 having a dielectric tube is formed in the tapered portion 50b.
  • a magnetron (not shown) for oscillating electromagnetic waves is provided in the first waveguide 50 (52 points) to apply an electric wave to the first waveguide.
  • the point where the magnetron is provided does not need to be a ⁇ / 4 point from the end of the waveguide as shown in FIG. 1, and may be located at various points.
  • the present invention can generate the maximum atmospheric pressure plasma in various forms without limiting the position of the components, which will be described in detail below.
  • the applied electric wave passes through the tapered portion 50b and is reflected at a length less than ⁇ / 4, an electric field in which plasma can be formed is formed in the tapered portion 50b or the first waveguide 50a.
  • the maximum electric field forming conditions can be freely configured according to the angle or length of the tapered portion (50b). .
  • the rear end of the tapered portion 50b may have various configurations as long as it is not a second waveguide configuration of lambda / 4 (electromagnetic wave wavelength) or more as in the prior art, and FIG. 5 shows a second waveguide having a short length (lower height than the first waveguide). The configuration is shown.
  • the length B of the tapered portion 50b and the length A of the second waveguide 50c having a low height can be freely selected, and must be limited to 1/4 times the wavelength of the electric field as in the prior art. There is no.
  • the tube wavelength is 21.34 cm
  • the length of the taper portion and the second waveguide is n * 21.34, where n is a non-integer ratio and includes all ratios less than 1/4.
  • the length thereof is configured to be less than 1/4 of the wavelength of the electric field applied in the tube, thereby generating an electric field sufficient to generate plasma even at a taper of a larger volume.
  • the length of the waveguide portion can be freely selected without any particular limitation on the length condition of the waveguide portion as in the prior art.
  • the position at which the electric field is maximized is derived from the three equations of Equation 1 derived from the Maxwell equation. At this time, it is possible to calculate the point where the electric field is maximized by adjusting the values of a and b.
  • a and b are lengths on the x-axis and y-axis in the three-dimensional coordinates of FIG. 8, respectively.
  • the dielectric tube 60 may be made of quartz, ceramics, or the like, but the quartz tube was used in the present invention. Boron nitride (4) may be coated on the inner wall of the quartz tube as in the related art, but the boron nitride may not be coated when the quartz tube withstands high temperature with swirl gas flowing along the inner wall of the dielectric tube 60.
  • the dielectric tube 60 is located in the tapered portion 60 or the first waveguide 50a having a high height, and a sufficient electric field capable of forming a plasma is formed in the tapered portion or the first waveguide.
  • a dielectric tube is provided in the tapered portion where the electric field density is as high as possible, but the present invention is not limited thereto.
  • the height and volume of the dielectric tube 60 included in the larger volume waveguide 50 can be increased, and as a result, the average electric field applied to the dielectric tube 60 becomes stronger. Therefore, even if the outer diameter of the dielectric tube 60 is increased, a stable large-capacity plasma can be generated.
  • FIG. 6 and 7 are side views of the waveguide of another embodiment of the plasma generating apparatus according to the present invention, in which the second waveguide is not provided.
  • FIG. 6 shows a waveguide in which the tapered portions 50b form a triangle and the second height portion 50c is not provided. That is, in FIG. 6A, the tapered portion 50b forms a triangular portion, and its length (length in the direction in which the electric field is applied) should be less than 1/4 of the wavelength in the tube.
  • the tapered portion 50b is a trapezoidal portion, and the tip height is a and there is no low height portion 50c. Even in this case, the trapezoidal portion should have a length less than 1/4 of the wavelength in the tube.
  • A, B, C indicating the length and a, b indicating the height are symbols indicating the internal length or height of the waveguide (see FIG. 8).
  • the waveguide of the present invention can be used in various forms.
  • the tip height of the tapered portion 50b may be 0 as shown in FIG. 6, or may be a non-zero as shown in FIG. 7, and thus may have a triangular or trapezoidal shape.
  • the end of the waveguide is not only a general plane but also an end of various shapes. For example, curved shapes, triangular shapes, trapezoidal shapes, and the like are all possible, and the configuration of these various waveguide ends is disclosed in FIG. 9.
  • the length of the region in which the wavelength in the tube is integrated is less than 1/4 of the wavelength in the tube, and is provided in the largest volume of the region in which the dielectric tube is integrated. As long as they are installed, they all fall within the scope of the present invention.
  • FIG. 9 is a front view from above of various types of waveguides according to the present invention.
  • a waveguide that is, a second waveguide, according to an embodiment of the present invention may have a cross section of various non-planar surfaces such as a triangle, a curved surface, and a trapezoid.
  • the electric field is integrated to a higher level.
  • the second waveguide 50c has a length of less than 1 / 4 ⁇ , and the dielectric tube 60 is provided in the tapered portion 50b, which is also shown in FIG.
  • the dielectric tube is preferably a tapered portion, but the dielectric tube 60 may be a tapered portion 50b, a first waveguide 50a, or a tapered portion 50b regardless of the shape of the waveguide 50 including the tapered portion.
  • the dielectric tube 60 At the boundary between the first waveguide 50a and the boundary between the tapered portion 50b and the second waveguide 50c (all of these cases have a larger area than the case where the dielectric waveguide is provided only in the second waveguide). Since the dielectric tube 60 is large in height and volume included in the waveguide 50, the intensity of the total electric field applied to the dielectric tube 60 increases, thereby generating a larger amount of plasma. As a result, the atmospheric pressure plasma can be generated even at a diameter of 27 mm or more, which is recognized as a limit value of the diameter of the dielectric tube in the prior art, which will be described in more detail in the following experimental example.
  • the electric discharge electric field of air is 30000 V / cm, and if a higher voltage is applied, plasma can be generated without an ignition device. If argon gas or helium gas is used, it can be discharged at a lower voltage. Therefore, it is easier to ignite using inert gas instead of air as torch gas.
  • plasma of 1 m or more can be generated.
  • the temperature of plasma is 2000 degreeC or more.
  • Experimental Example 1 is an experimental example when the dielectric tube 60 is located in the tapered portion 50b of the waveguide 50.
  • Shape of waveguide 50 first waveguide 50a: length C: 110 mm, height a + b: 34 mm
  • Taper portion 50b length B: 76 mm, tip height a: 5 mm
  • Second waveguide 50c length A: 5 mm, height a: 5 mm
  • Diameter of the through hole 51 50 mm
  • the atmospheric pressure plasma was generated according to the configuration disclosed in FIG. 5, and in particular, the atmospheric pressure plasma was generated by a 50 mm dielectric tube corresponding to almost twice the diameter of the dielectric tube of 27 mm, which was recognized as a limitation in the prior art.
  • Magnetrons with 1kW and 1.2kW capacities were used, and air, oxygen, argon, helium, and nitrogen were used as torch gases. The experiment was then controlled from 7 to 20 lpm (increase flow rate or reduce power if arcing occurs).
  • the swirl gas does not necessarily use air, and other gases (O 2 , N 2 , and H 2 depending on the purpose of the experiment) were used regardless of the type if necessary.
  • the dielectric tube exists at the interface between the first waveguide and the taper portion, except that the distance from the end of the second waveguide (low height portion) to the center of the through hole provided with the dielectric tube is 78 mm.
  • the intensity of the electric field was weaker than that of Experimental Example 1.
  • the temperature and density of the plasma generated by the weakness of the electric field weakened somewhat.
  • plasma was also generated in the present experimental example, and it can be seen that sufficient atmospheric pressure plasma can be generated even with a wider dielectric tube than the prior art.
  • the waveguide and the dielectric tube configuration according to the present invention can form a large-capacity stable plasma in a larger diameter dielectric tube.

Abstract

The present invention relates to a plasma generation device using electromagnetic waves and a wave guide, and more specially, to a plasma generation device using electromagnetic waves, an atmospheric pressure plasma generation device in which high-density stable plasma can be generated regardless of a diameter of a dielectric tube by providing the dielectric tube which generates plasma in a taper part of the wave guide or in a first wave guide equipped in a higher position. According to the present invention, the atmospheric pressure plasma generation device using the electromagnetic waves comprises: the wave guide in which magnetron for oscillating the electromagnetic waves is provided; and the dielectric tube which is provided in the wave guide, and generates the plasma, wherein: the wave guide includes the first wave guide which has a first height, and the taper part which is equipped on an end of a body and is reduced as much as predetermined angles; and the dielectric tube is positioned in the taper part of the waveguide, in the first wave guide, or on the border between the taper part and the first wave guide. Since the volume and the height of the wave guide equipped with the dielectric tube from which the plasma is generated are large, the total strength of an electric field within the dielectric tube becomes strong. Further, it is possible to obtain larger plasma with high capacity and high density irrespective of the diameter of the dielectric tube.

Description

전자파를 이용한 플라즈마 발생장치 및 이를 위한 도파관Plasma Generator Using Electromagnetic Wave and Waveguide for the Same
본 발명은 전자파를 이용한 플라즈마 발생장치 및 이를 위한 도파관에 관한 것으로서, 보다 상세하게는 대용량의 상압 플라즈마를 안정된 형태로 형성시킬 수 있는 상압 플라즈마 발생장치 및 도파관에 관한 것이다. The present invention relates to a plasma generator using electromagnetic waves and a waveguide therefor, and more particularly, to an atmospheric pressure plasma generator and a waveguide capable of forming a large-capacity atmospheric plasma in a stable form.
기체 상태의 물질에 계속 열을 가하여 온도를 올려주면, 이온핵과 자유전자로 이루어진 입자들의 집합체가 만들어진다. 이를 물질의 세 가지 형태인 고체, 액체, 기체와 더불어 '제4의 물질상태'로 불리며, 이러한 상태의 물질을 플라즈마(plasma) 라고 한다.When the temperature of a gaseous substance is continuously heated to raise its temperature, an aggregate of particles composed of an ion nucleus and free electrons is formed. This, together with the three forms of matter, solid, liquid, and gas, is called the 'fourth state of matter', and this state of matter is called plasma.
플라즈마는 다음과 같이 생성된다. 물질 중에서 가장 낮은 에너지 상태를 가지고 있는 고체에 열을 가하여 온도가 올라가면 액체가 되고 다시 열에너지가 가해지면 기체로 전이를 일으킨다. 계속해서 기체가 더 큰 에너지를 받으면 상태전이와는 다른 이온화된 입자들이 만들어 지게 되며 이때 양이온과 음이온의 총 전하수는 거의 같아진다. 이러한 상태가 전기적으로 중성을 띄는 플라즈마 상태이다.The plasma is generated as follows. Heat is applied to a solid with the lowest energy state of matter, and when the temperature rises, it becomes a liquid, and when heat energy is applied, it causes a transition to gas. Subsequently, when the gas receives more energy, ionized particles are produced that are different from the state transition, and the total number of charges of the cations and anions is about the same. This state is an electrically neutral plasma state.
이 상태는 지구상에서는 흔하지 않은 현상이지만 우주에서는 거의 모든 물질의 정상상태가 플라즈마상태이며 태양의 대기 또한 플라즈마로 채워져 있다. 우리 주변에서 관찰할 수 있는 플라즈마 상태로는 조명등으로 사용하고 있는 형광등과 길거리에서 흔하게 볼 수 있는 네온사인, 그리고 자연현상으로는 소나기가 쏟아지면서 자주 발생하는 번갯불과 같은 것들이 있으며 북극지방 밤하늘에 발생하는 오로라(AURORA)도 플라즈마가 나타내는 빛이라고 볼 수 있다.This is a rare phenomenon on Earth, but in space, the steady state of almost all matter is plasma, and the sun's atmosphere is also filled with plasma. Plasma states that can be observed around us include fluorescent lamps used as lighting, neon signs commonly seen on the street, and lightning such as lightning that occurs frequently when showers occur. Aurora can also be regarded as light emitted by plasma.
이러한 플라즈마를 이용하면 인공 다이아몬드를 합성할 수 있고, 고대 유적지에서 발굴된 금속유물에 플라즈마로 표면 코팅처리를 하면 마모나 부식을 방지할 수 있고 유물의 상태를 개선하는 효과를 낼 수도 있다. The plasma can be used to synthesize artificial diamond, and surface treatment with plasma on the metal remains discovered in ancient historical sites can prevent wear and corrosion and improve the condition of the artifacts.
플라즈마가 내는 빛을 이용한 플라즈마 표시장치(PDP: Plasma Display Panel)는 산업전반에 폭넓게 사용되고 있는데 대표적인 것이 PDP TV이다. 또한 플라즈마는 핵융합을 통해 석유나 석탄과 같은 화석연료를 대체하여 사용할 수 있으며, 세계의 주요 선진국들은 플라즈마를 이용한 대체에너지원 개발을 위해 활발한 연구를 진행하고 있다.Plasma Display Panels (PDPs) using light emitted from plasma are widely used throughout the industry, and PDP TVs are a typical example. In addition, plasma can be used to replace fossil fuels such as petroleum and coal through nuclear fusion, and the world's major developed countries are actively researching to develop alternative energy sources using plasma.
현대 산업에서 플라즈마는 고기능, 고강도, 고가공성을 요구하는 물질에서부터, 각종 소재의 표면처리, 이온주입, 유기-무기막 증착 및 제거, 세정작업, 독성물질의 제거, 살균 등 첨단재료나, 전자, 환경산업에 이르기까지 다양한 분야에서 다양한 용도로 사용되고 있다. In the modern industry, plasma is a high-tech material such as surface treatment of various materials, ion implantation, organic-inorganic film deposition and removal, cleaning operation, removal of toxic substances, sterilization, etc. It is used for various purposes in various fields ranging from environmental industry.
그리고 플라즈마 가공기술은 기계가공기술보다 정밀도에 있어서 월등히 진보된 것이므로 미세 패턴이 필요한 반도체, LCD, MEMS 등에서는 제품 및 부품을 제조하는 핵심장비로서 중요하게 사용되고 있다. In addition, since plasma processing technology is much more advanced in precision than mechanical processing technology, it is important to be used as a core equipment for manufacturing products and parts in semiconductors, LCDs, and MEMS that require fine patterns.
플라즈마는 진공상태 또는 대기압 상태에서 생성하는 방법이 공지되어 있다. It is known to produce plasma in vacuum or at atmospheric pressure.
진공상태에서 플라즈마를 생성하는 방법은 실제로 응용하는데 많은 어려움이 있다. 진공상태에서 플라즈마를 생성하는 방법은 플라즈마가 닫힌 공간에서 발생하므로, 순간적으로 처리해야 하는 물질에서는 처리조건을 제어하기가 어렵고, 폐쇄된 시스템으로는 물품이 이동하면서 수행되어야 하는 연속공정에서 처리를 하기가 어렵다는 단점이 있다. The method of generating plasma in vacuum has many difficulties in practical application. Since the plasma is generated in a closed space in a vacuum, it is difficult to control the processing conditions in a material to be treated in an instant, and in a closed system, the processing is performed in a continuous process in which an article is moved. Has the disadvantage of being difficult.
대기압 상태에서 플라즈마를 생성하는 방법 중에서 전자파를 이용하는 방법이 있는데, 이 방법은 특허 제394994호로 공지되어 있다. There is a method of using an electromagnetic wave among the methods for generating a plasma at atmospheric pressure, which is known from the Patent No. 394994.
이 종래의 플라즈마 발생장치는 도 1 내지 도 3에 도시된 바와 같이, 유전관(12)과 3-스터브정합시스템(20)을 도파관(18)에 관내파장의 1/4 간격을 이루도록 배열 설치하되, 파워공급시스템(24)을 구비한 마그네트론(22)에서 전자파를 도파관(18)내로 발진하면 3-스터브정합시스템(20)에서 정합하면서 유전관(12)내에 최대 전기장을 공급하여 대기압하에서 플라즈마를 생성하도록 구성한 것이다. In the conventional plasma generator, as shown in FIGS. 1 to 3, the dielectric tube 12 and the 3-stub matching system 20 are arranged in the waveguide 18 so as to form a quarter interval of the intra-wavelength. When the magnetron 22 having the power supply system 24 oscillates the electromagnetic wave into the waveguide 18, it matches with the three-stub matching system 20 while supplying the maximum electric field in the dielectric tube 12 to generate plasma under atmospheric pressure. To be created.
도판관(18)은 도 1에 도시된 바와 같이 제 1 도파관, 테이퍼부, 그리고 낮은 높이부로 이루어져 있다. 유전관(12)은 낮은 높이부에 형성된 관통공(30)에 설치되고 마그네트론(22)은 제 1 도파관에 형성된 삽입공(32)에 설치된다. 그리고 3-스터브정합시스템(20)의 3개의 스터브는 낮은 부분의 상판 외부에 설치되어 있다. The waveguide 18 is composed of a first waveguide, a tapered portion, and a low height portion as shown in FIG. The dielectric tube 12 is installed in the through hole 30 formed at the low height, and the magnetron 22 is installed in the insertion hole 32 formed in the first waveguide. And three stubs of the three-stub matching system 20 are installed outside the upper plate of the lower portion.
마그네트론(22)과 도파관(18)의 끝단 사이, 3-스터브정합시스템(20)의 3개 스터브들사이, 유전관(12)과 인접 스터브, 유전관(12)과 도파관(18)의 선단 사이의 간격은 모두 λg/4 이 되도록 설치되어 있다. Between the end of the magnetron 22 and the waveguide 18, between the three stubs of the three-stub matching system 20, between the dielectric tube 12 and the adjacent stub, the tip of the dielectric tube 12 and the waveguide 18 The spacing of all is provided so that it is (lambda) g / 4.
3-스터브정합시스템(20)은 도파관(18)내의 파장을 λg 라 할 때 각 스터브간의 간격이 λg/4가 되도록 설치되어 도파관(18)의 특성임피던스와 도파관(18)의 낮은 높이부의 부하임피던스를 정합시키면서 부하에 최대전력을 전송하는 작용을 한다. 이때, 마그네트론(22)에서 생성되는 마이크로웨이브의 전기장은 도파관(18) 중 유전관(12)이 설치된 위치에서 최대가 된다. 이때 유전관(12)은 석영관으로 되어 있고 그 내벽에 내열성이 강한 질화붕소(4)를 피복하여 고온의 불꽃에 견디도록 구성되어 있다. 가스공급원으로부터 유전관(12)내로 토치가스(8)가 공급되면 점화장치(14)에서 방전에 필요한 초기 전자를 공급하여 유전관(12)내에서 방전시키게 된다. 이때, 최대 전기장을 갖는 전자파에 의해 유전관(12)내에서 생성되는 플라즈마가 대기압하에서 발생되고, 별도의 진공장치 없이도 대기압상에서 플라즈마를 생성시킬 수 있다. 유전관(12)의 토치출구를 통해 고온(5000~6000℃)의 플라즈마 불꽃이 방출된다. The 3-stub matching system 20 is installed so that the spacing between the stubs is λg / 4 when the wavelength in the waveguide 18 is λg, so that the characteristic impedance of the waveguide 18 and the load impedance of the low height portion of the waveguide 18 are provided. It acts to transfer the maximum power to the load while matching. At this time, the electric field of the microwave generated by the magnetron 22 is maximized at the position where the dielectric tube 12 of the waveguide 18 is installed. At this time, the dielectric tube 12 is made of a quartz tube, and the inner wall thereof is coated with boron nitride 4 having high heat resistance, and is configured to withstand high temperature flames. When the torch gas 8 is supplied from the gas supply into the dielectric tube 12, the ignition device 14 supplies the initial electrons necessary for the discharge to discharge the dielectric tube 12. At this time, the plasma generated in the dielectric tube 12 by the electromagnetic wave having the maximum electric field is generated under atmospheric pressure, it is possible to generate the plasma at atmospheric pressure without a separate vacuum device. The plasma flame of high temperature (5000-6000 degreeC) is discharged through the torch exit of the dielectric tube 12.
토치가스(8)와 함께 유전관(12)에 공급되는 스월가스(Swirl Gas)(6)는 유전관의 내주면을 따라 나선형의 궤적을 갖도록 주입되어 방전열에 의한 유전관 내벽의 과열을 방지하고, 토치출구를 통해 배출되는 플라즈마 불꽃을 모아주는 작용을 하게 된다. Swirl gas (6) supplied to the dielectric pipe (12) together with the torch gas (8) is injected to have a spiral trajectory along the inner circumferential surface of the dielectric pipe to prevent overheating of the inner wall of the dielectric pipe by discharge heat, It collects the plasma flame discharged through the torch outlet.
그러나 이와 같이 유전관(12)을 도파관(18)의 관내파장의 1/4간격으로 배열하는 것은 구형도파관(矩形 導波管, Rectangular waveguide)의 이론에 불과하다. 도파관(18)을 어떻게 설계하느냐에 따라서 파장의 1/4보다 작은 간격이 효율이 가장 좋을 수도 있고 또 1/4보다 큰 간격에서 최적화를 시킬 수도 있다. 이와 같은 상압 플라즈마 발생 장치의 일반적인 도파관 구성은 도 1에 개시된 구성과 같다. However, arranging the dielectric tubes 12 at quarter intervals of the intra-wavelength of the waveguide 18 is merely a theory of rectangular waveguides. Depending on how the waveguide 18 is designed, spacing less than one quarter of the wavelength may be most efficient and may be optimized at spacings greater than one quarter. The general waveguide configuration of such an atmospheric pressure plasma generator is the same as that shown in FIG.
도 1을 참조하면, 먼저 유전관의 위치는 도파관(18)의 관내파장의 1/4 이 되는 지점에 세라믹, 석영관 등으로 된 유전관을 삽입하여 플라즈마를 발생시키게 된다. 하지만 상압 조건에서 플라즈마를 발생시키기 위해서는 높은 밀도의 전기장을 형성시켜야 하는 점에서 진공 조건의 플라즈마 발생 장치와는 달리 상압 플라즈마는 보다 좁은 도파관 구성을 통하여 이를 달성하고 있다. 하지만, 이 경우 유전관은 높은 전기장이 형성되는 좁은 도파관(특히 구형 도파관인 경우 낮은 높이를 갖는 도파관)에 반드시 구비되어야만, 상압에서 플라즈마가 발생할 수 있다. Referring to FIG. 1, first, the dielectric tube is inserted into a dielectric tube made of a ceramic, quartz tube, or the like at a point equal to 1/4 of the internal wavelength of the waveguide 18 to generate a plasma. However, in order to generate a plasma at atmospheric pressure conditions, a high-density electric field must be formed, unlike the plasma generating apparatus under vacuum conditions, the atmospheric pressure plasma achieves this through a narrower waveguide configuration. In this case, however, the dielectric tube must be provided in a narrow waveguide (particularly a waveguide having a low height in the case of a spherical waveguide) in which a high electric field is formed, so that plasma can be generated at atmospheric pressure.
하지만, 종래 기술은 유전관(12)의 내부 직경이 27mm가 넘어가면 플라즈마가 불안정하여 대용량의 플라즈마를 발생시키기가 어렵다는 문제점을 가지고 있다. 따라서, 낮은 높이와 제한된 직격으로 인하여, 낮은 높이의 도파관에 형성되는유전관은 플라즈마 발생을 위한 내부 용적에 있어서 그 한계가 있으며, 그 결과 상압 플라즈마는 높은 경제성에도 불구하고 그 용량면에 있어서 명백한 한계가 있었다. However, the prior art has a problem that when the inner diameter of the dielectric tube 12 exceeds 27mm, the plasma is unstable and it is difficult to generate a large amount of plasma. Therefore, due to the low height and limited directness, the dielectric tube formed in the low height waveguide has its limitation in the internal volume for plasma generation, and as a result, the atmospheric pressure plasma has obvious limitations in terms of its capacity despite its high economy. There was.
따라서 본 발명이 해결하고자 하는 첫 번째 과제는 전술한 종래 기술에서 인식되고 있는 유전관 직경의 한계를 극복하여 보다 큰 대용량의 상압 플라즈마가 가능한 플라즈마 장치를 제공하는 데 있다. Therefore, the first problem to be solved by the present invention is to provide a plasma apparatus capable of a larger capacity atmospheric pressure plasma by overcoming the limitation of the diameter of the dielectric tube that is recognized in the prior art.
상기 과제를 해결하기 위하여, 본 발명은 전자파를 발진하는 마그네트론이 설치되는 도파관과, 상기 도파관에 설치되는 것으로서 플라즈마가 생성되는 유전관을 구비한 전자파를 이용한 상압 플라즈마 발생장치에 있어서, 상기 도파관은 제 1 높이를 갖는 제 1 도파관 및 상기 본체의 단부에 구비되어 소정의 각도만큼 감소되는 테이퍼 부를 포함하며, 상기 유전관은 상기 도파관의 테이퍼 부, 제 1 도파관, 또는 테이퍼 부와 제 1 도파관의 경계상에 구비된 것을 특징으로 하는 상압 플라즈마 발생장치를 제공한다. In order to solve the above problems, the present invention is an atmospheric pressure plasma generating apparatus using an electromagnetic wave provided with a waveguide provided with a magnetron for oscillating electromagnetic waves, and a dielectric tube for generating plasma as installed in the waveguide, wherein the waveguide is made of A first waveguide having a height and a tapered portion provided at an end of the main body, the tapered portion being reduced by a predetermined angle, wherein the dielectric tube has a tapered portion of the waveguide, a first waveguide, or a tapered portion and a boundary between the first waveguide and the first waveguide. It provides an atmospheric pressure plasma generating apparatus characterized in that provided in.
상기 과제를 해결하기 위하여, 본 발명은 또한 전자파를 발진하는 마그네트론이 설치되는 도파관과, 상기 도파관에 설치되는 것으로서 플라즈마가 생성되는 유전관을 구비한 전자파를 이용한 상압 플라즈마 발생장치에 있어서, 상기 도파관은 제 1 높이를 갖는 제 1 도파관 및 상기 제 1 도파관의 단부에 연결된 삼각 형상부 또는 사다리 형상부를 포함하며, 상기 유전관은 삼각 형상부 또는 사각 형상부, 또는 제 1 도파관과의 경계에 구비된 것을 특징으로 하는 상압 플라즈마 발생장치를 제공한다. In order to solve the above problems, the present invention also provides an atmospheric pressure plasma generating apparatus using an electromagnetic wave provided with a waveguide provided with a magnetron for oscillating electromagnetic waves, and a dielectric tube for generating plasma as installed in the waveguide. A first waveguide having a first height and a triangular shape or a ladder shape connected to an end of the first waveguide, wherein the dielectric tube is provided at a boundary with the triangular shape or the square shape or the first waveguide. An atmospheric pressure plasma generator is provided.
상기 테이퍼부는 사다리꼴을 나타내며, 상기 테이퍼부의 후단에는 상기 제 1 높이보다 낮은 제 2 높이를 갖는 제 2 도파관이 구비되며, 상기 제 2 도파관은 전자파 파장의 λ/4 지점 이전에 종결된다.  The tapered portion has a trapezoidal shape, and a second waveguide having a second height lower than the first height is provided at a rear end of the tapered portion, and the second waveguide is terminated before the λ / 4 point of the electromagnetic wave wavelength.
본 발명의 일 실시예에서 상기 유전관은 상기 테이퍼부에 구비되며, 상기 삼각 형상부 또는 사다리 형상부는 전자파 파장의 λ/4 보다 짧은 길이를 갖는다. 또한, 상기 제 2 도파관의 단부는 평면이 아닌 형상을 갖는다.  In one embodiment of the present invention, the dielectric tube is provided in the tapered portion, and the triangular portion or the ladder portion has a length shorter than λ / 4 of the electromagnetic wave wavelength. In addition, the end of the second waveguide has a shape that is not planar.
본 발명은 상기 과제를 해결하기 위하여, 상술한 상압 플라즈마 발생장치용 도파관을 제공한다.In order to solve the above problems, the present invention provides a waveguide for an atmospheric pressure plasma generator.
본 발명의 플라즈마 발생장치는 플라즈마가 발생되는 유전관이 구비되는 도파관의 높이 및 부피가 크므로, 유전관 내 전기장의 총 세기가 강하게 되며, 보다 크고 대용량의 고밀도 플라즈마를 유전관의 직경에 상관없이 달성할 수 있으며, 고전력의 점화장치를 사용하지 않고도 안정되고 경제적인 고온의 고밀도 플라즈마를 발생시키는 효과를 발휘할 수 있다.Since the plasma generator of the present invention has a large height and volume of the waveguide provided with the dielectric tube generating the plasma, the total intensity of the electric field in the dielectric tube is strong, and a larger and higher-capacity high density plasma is produced regardless of the diameter of the dielectric tube. It can achieve the effect of generating a stable and economical high temperature high density plasma without using a high power ignition device.
도 1은 종래 플라즈마 발생장치의 도파관의 사시도,1 is a perspective view of a waveguide of a conventional plasma generator,
도 2는 도1의 도파관에 설치되는 유전관의 단면도, 2 is a cross-sectional view of the dielectric tube installed in the waveguide of FIG.
도 3은 도1의 도파관에 설치되는 마그네트론 및 파워공급 시스템의 회로도, 3 is a circuit diagram of a magnetron and a power supply system installed in the waveguide of FIG. 1;
도 4는 본 발명에 따른 플라즈마 발생장치의 일실시예 도파관의 사시도, 4 is a perspective view of a waveguide of one embodiment of a plasma generating device according to the present invention;
도 5는 도4의 도파관의 측면도, 5 is a side view of the waveguide of FIG. 4;
도 6 및 7은 본 발명에 따른 플라즈마 발생장치의 다른 실시예의 도판관의 측면도,6 and 7 are side views of a plate conduit of another embodiment of a plasma generating apparatus according to the present invention;
도 8은 전기장이 최대가 되는 도파관 내의 유전관의 위치를 구하는데 사용되는 공식에서 변수 a, b를 설명하기 위한 3차원 좌표이다. 8 is three-dimensional coordinates for explaining variables a and b in the formula used to find the position of the dielectric tube in the waveguide where the electric field is maximum.
도 9는 본 발명에 따른 다양한 형태의 도파관을 위에서 본 정면도이다.9 is a front view from above of various types of waveguides according to the present invention.
도 10은 본 발명에 따른 유전관에서의 플라즈마 발생 사진이다. 10 is a photograph of plasma generation in the dielectric tube according to the present invention.
이하 본 발명을 첨부도면을 참조하여 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 4는 본 발명의 일 실시예에 따른 플라즈마 발생장치의 주요 구성부품인 도판관과 유전관의 사시도이고, 도 5는 도 4의 도판관의 측면도이다. FIG. 4 is a perspective view of a conduit tube and a dielectric tube, which are main components of the plasma generating apparatus, according to an embodiment of the present invention. FIG. 5 is a side view of the conduit tube of FIG.
도 4 및 5를 참조하면, 상기 실시예에서 도파관은 제 1 높이를 갖는 제 1 도파관(50a)과 상기 제 1 도파관(50a)의 일단에 구비되어 소정의 각도로 감소되는 테이퍼부(50b)를 포함한다. 종래 기술은 상기 테이퍼부(50)의 타단에는 상기 제 1 높이보다 낮은 높이의 제 2 도파관을 λ/4 이상의 길이로 구성한 후, λ/4 의 지점에 유전관을 구비시켰으나, 본 발명자는 상압 플라즈마를 이러한 복잡한 구성에 의하지 않고서 테이퍼부의 후단에 제 2 도파관을 구성하지 않거나, 또는 λ/4 미만의 제 1 도파관을 구성하는 경우 상압 플라즈마 발생에 충분한 전기장이 보다 넓은 체적의 테이퍼부(50b) 또는 제 1 도파관(50a)에 발생하는 점을 발견하였다. 4 and 5, in the embodiment, the waveguide includes a first waveguide 50a having a first height and a tapered portion 50b provided at one end of the first waveguide 50a and reduced at a predetermined angle. Include. In the prior art, the second end of the tapered portion 50 has a second waveguide having a height lower than the first height having a length of λ / 4 or more, and provided a dielectric tube at a point of λ / 4. When the second waveguide is not formed at the rear end of the tapered portion without forming such a complicated structure, or when the first waveguide is smaller than λ / 4, an electric field sufficient for generating an atmospheric pressure plasma has a larger volume of the tapered portion 50b or One point was found to occur in the waveguide 50a.
따라서, 본 발명에 따른 상압 플라즈마 발생장치에서 플라즈마가 발생하는 유전관의 위치는 도파관의 낮은 높이부가 아닌, 테이퍼부(50b) 또는 제 1 도파관(50a)가 된다. 즉, 상기 위치에서 충분한 상압 플라즈마가 발생하는 경우라면, 도파관과 유전관이 관통하는 체적의 크기 또한 커지게 되며, 이로써 플라즈마의 전체 용량이 커지게 된다. Therefore, the position of the dielectric tube in which the plasma is generated in the atmospheric pressure plasma generator according to the present invention is not the low height portion of the waveguide, but the taper portion 50b or the first waveguide 50a. That is, if sufficient atmospheric pressure is generated at the position, the volume of the waveguide and the dielectric tube penetrates also increases, thereby increasing the total capacity of the plasma.
이와 같이 보다 큰 체적의 도파관(테이퍼부, 또는 제 1 도파관)에 전기장이 인가되어 플라즈마 발생이 가능한 경우, 상기 체적 조건의 도파관에 유전관이 설치될 수 있으며, 이 경우 유전관의 치수를 종래 기술에 비하여 증대되어 대용량의 상압 플라즈마를 발생시킬 수 있다.In this case, when an electric field is applied to a larger volume waveguide (taper portion or first waveguide) to generate plasma, a dielectric tube may be installed in the waveguide having the volume condition. Compared with the above, it is possible to generate a large-capacity atmospheric plasma.
본 발명의 상기 구성에 따른 플라즈마 발생장치의 작동 원리를 설명하면 다음과 같다. Referring to the operation principle of the plasma generating apparatus according to the above configuration of the present invention.
본 발명은 유전관(60)은 상술한 바와 같이 큰 체적을 갖는 제 1 도파관(50a) 또는 테이퍼부(50b) 중 어느 한 부분에 설치된다. 하지만, 제 1 도파관 및 테이퍼부의 경계면 상에도 유전관은 설치될 수 있으며, 종래 기술과 같이 낮은 높이의 제 2 도파관에만 설치되지 않으며, 제 2 도파관 체적보다 큰 체적을 갖는 도파관에 구비되는 한 이는 모두 본 발명의 범위에 속한다. 하지만, 단순히 넓은 체적의 도파관에만 유전관을 구성하는 경우, 플라즈마 발생에 필요한 충분한 전기장을 얻을 수 없거나, 또는 플라즈마를 발생시킨다 하여도 그 세기가 매우 떨어지고 불안정하였다. 따라서, 본 발명은 테이퍼부(50b)의 타단에 연결되어, 상기 제 1 도파관보다 낮은 높이를 갖는 제 2 도파관(낮은 높이부)의 길이(이것은 전기장인 인가되는 방향을 기준으로 한다)를 도파관 내의 전기파 파장(λ)의 1/4 미만으로 구성하며, 이에 따라 제 2 도파관 보다 넓은 체적을 갖는 테이퍼부 또는 제 1 도파관부 또는 그 경계 영역에서 플라즈마 발생에 필요한 충분한 전기장이 발생한다. 즉, 본 발명은 종래 기술에서는 λ/4 이 되는 지점을 도파관의 낮은 높이부에 형성하였으므로, 제 2 도파관부의 길이는 최소 λ/4 이상이었다. 하지만, 본 발명은 비록 전기장의 밀도가 높아지는 제 2 도파관부를 구성하는 경우에도 제 2 도파관부(50c)의 길이가 λ/4 미만인 경우에도, 테이퍼부(50b)와 같이 보다 큰 체적을 갖는 도파관에서도 플라즈마 발생에 필요한 수준의 전기파가 인가되며, 이를 플라즈마의 대용량화에 응용한다.In the present invention, the dielectric tube 60 is provided in any one of the first waveguide 50a or the tapered portion 50b having a large volume as described above. However, the dielectric tube may be installed on the interface between the first waveguide and the tapered portion, and as long as it is provided in the waveguide having a volume larger than the second waveguide volume, it is not installed only in the second waveguide of low height as in the prior art. It belongs to the scope of the present invention. However, when a dielectric tube is formed only in a large volume waveguide, sufficient electric field required for plasma generation cannot be obtained, or even when plasma is generated, its intensity is very low and unstable. Accordingly, the present invention is connected to the other end of the tapered portion 50b so that the length of the second waveguide (lower height portion) having a lower height than the first waveguide (this is based on the direction in which the electric field is applied) within the waveguide. It is composed of less than one quarter of the electric wave wavelength lambda, so that a sufficient electric field is generated in the tapered portion or the first waveguide portion having a larger volume than the second waveguide, or the boundary region thereof. That is, according to the present invention, since the point of λ / 4 is formed at the low height of the waveguide, the length of the second waveguide portion is at least λ / 4 or more. However, even if the length of the second waveguide portion 50c is less than [lambda] / 4 even when the second waveguide portion constituting the second waveguide portion having an increased electric field density is present, even in a waveguide having a larger volume like the tapered portion 50b. An electric wave of a level required for plasma generation is applied, and this is applied to a large capacity of plasma.
도 4는 유전관(60)이 테이퍼부(50b)에 설치되어 있는 예를 나타내고 있다. 도 4를 참조하면, 테이퍼부(50b)에 유전관이 구비되는 관통공(51)이 형성되어 있다. 전자파를 발진하는 마그네트론(미 도시)은 제 1 도파관(50)에 구비되어(52 지점), 상기 제 1 도파관에 전기파를 인가한다. 하지만, 마그네트론이 구비되는 지점은 도 1에서 보는 바와 같이 도파관 끝으로부터 λ/4 지점일 필요가 없으며, 다양한 지점에 위치될 수 있다. 본 발명은 이와 같이 구성요소의 위치의 제한없이 다양한 형태로도 최대의 상압 플라즈마를 발생시킬 수 있는데, 이는 이하 상세히 설명한다. 4 shows an example in which the dielectric tube 60 is provided in the tapered portion 50b. Referring to FIG. 4, a through hole 51 having a dielectric tube is formed in the tapered portion 50b. A magnetron (not shown) for oscillating electromagnetic waves is provided in the first waveguide 50 (52 points) to apply an electric wave to the first waveguide. However, the point where the magnetron is provided does not need to be a λ / 4 point from the end of the waveguide as shown in FIG. 1, and may be located at various points. As described above, the present invention can generate the maximum atmospheric pressure plasma in various forms without limiting the position of the components, which will be described in detail below.
상기 인가된 전기파가 테이퍼부(50b)를 지난후 λ/4 미만의 길이 조건에서 반사되는 경우 플라즈마 형성이 가능한 조건의 전기장이 상기 테이퍼부(50b) 또는 제 1 도파관(50a)에 형성되게 된다. 이때 상기 최대 전기장 형성 조건은 테이퍼부(50b)의 각도 또는 길이에 따라 자유로이 구성할 수 있다. . When the applied electric wave passes through the tapered portion 50b and is reflected at a length less than λ / 4, an electric field in which plasma can be formed is formed in the tapered portion 50b or the first waveguide 50a. At this time, the maximum electric field forming conditions can be freely configured according to the angle or length of the tapered portion (50b). .
상기 테이퍼부(50b) 후단은 종래 기술과 같이 λ/4 (전기파 파장) 이상의 제 2 도파관 구성이 아닌 한 다양한 구성이 가능한데, 도 5는 짧은 길이의 제 2 도파관(제 1 도파관에 비하여 낮은 높이) 구성을 나타낸다. The rear end of the tapered portion 50b may have various configurations as long as it is not a second waveguide configuration of lambda / 4 (electromagnetic wave wavelength) or more as in the prior art, and FIG. 5 shows a second waveguide having a short length (lower height than the first waveguide). The configuration is shown.
특히 상기 테이퍼부(50b)의 길이(B)와 낮은 높이의 제 2 도파관(50c)의 길이(A)는 자유로이 선택할 수 있으며, 종래 기술과 같이 반드시 전기장의 파장에 대한 1/4배로 국한될 필요가 없다. 예를 들면 2.45GHz의 조건에서 관내 파장은 21.34cm가 되며, 테이버부 및 제 2 도파관의 길이는 n*21.34가 되는데, 이때 n은 정수가 아닌 유리수로서 1/4 미만의 유리수를 모두 포함한다. In particular, the length B of the tapered portion 50b and the length A of the second waveguide 50c having a low height can be freely selected, and must be limited to 1/4 times the wavelength of the electric field as in the prior art. There is no. For example, in the condition of 2.45 GHz, the tube wavelength is 21.34 cm, and the length of the taper portion and the second waveguide is n * 21.34, where n is a non-integer ratio and includes all ratios less than 1/4.
본 발명은 이와 같이 전기파가 인가되어 반사되는 제 2 도파관의 경우, 그 길이를 관내 인가되는 전기장 파장의 1/4 미만으로 구성하며, 이로써 보다 큰 체적의 테이퍼부에서도 플라즈마 발생에 충분한 전기장이 발생한다.According to the present invention, in the case of the second waveguide in which the electric wave is applied and reflected, the length thereof is configured to be less than 1/4 of the wavelength of the electric field applied in the tube, thereby generating an electric field sufficient to generate plasma even at a taper of a larger volume. .
따라서, 종래 기술과 같이 도파관부의 길이 조건에 대한 특별한 한정없이 자유로이 도파관부의 길이를 선택할 수 있다. Therefore, the length of the waveguide portion can be freely selected without any particular limitation on the length condition of the waveguide portion as in the prior art.
이하 전기장의 최대 발생 지점을 도출한 방식을 자세히 설명한다. Hereinafter, the method of deriving the maximum generation point of the electric field will be described in detail.
전기장이 최대가 되는 위치는 막스웰 방정식으로부터 유도된 하기 수학식 1의 3개의 식으로부터 유도된다. 이때 a와 b의 값을 조절함에 따라 전기장이 최대로 되는 점을 계산할 수 있다. The position at which the electric field is maximized is derived from the three equations of Equation 1 derived from the Maxwell equation. At this time, it is possible to calculate the point where the electric field is maximized by adjusting the values of a and b.
[규칙 제91조에 의한 정정 20.05.2010] 
수학식 1
Figure WO-DOC-MATHS-51
[Revisions under Rule 91 20.05.2010]
Equation 1
Figure WO-DOC-MATHS-51
여기서 a, b 는 도 8의 3차원 좌표에서 각각 x축과 y축 상의 길이이다.  Here, a and b are lengths on the x-axis and y-axis in the three-dimensional coordinates of FIG. 8, respectively.
유전관(60)의 재질은 석영, 세라믹 등을 사용할 수 있으나 본 발명에서는 석영관을 이용하였다. 석영관의 내벽에 종래와 같이 질화붕소(4)를 코팅할 수 있으나 유전관(60)의 내벽을 따라 흐르는 스월가스로 석영관이 고온에 견디도록 하면 질화붕소를 코팅하지 않아도 무방하다. The dielectric tube 60 may be made of quartz, ceramics, or the like, but the quartz tube was used in the present invention. Boron nitride (4) may be coated on the inner wall of the quartz tube as in the related art, but the boron nitride may not be coated when the quartz tube withstands high temperature with swirl gas flowing along the inner wall of the dielectric tube 60.
상술한 바와 같이 유전관(60)의 외경이 클수록 유전관(60)의 중심에 걸리는 전기장은 외경이 작은 유전관에 비하여 약하다. 그러나 본 발명의 경우는 유전관(60)이 테이퍼부(60) 또는 높은 높이의 제 1 도파관(50a)에 위치해 있으며, 테이퍼부 또는 제 1 도파관에는 플라즈마 형성이 가능한 충분한 전기장이 형성된다. 바람직하게는 가능한 전기장 밀도가 높은 테이퍼부에 유전관이 구비되나, 본 발명이 이에 제한되지 않는다. As described above, the larger the outer diameter of the dielectric tube 60, the weaker the electric field applied to the center of the dielectric tube 60 than the dielectric tube having the smaller outer diameter. However, in the case of the present invention, the dielectric tube 60 is located in the tapered portion 60 or the first waveguide 50a having a high height, and a sufficient electric field capable of forming a plasma is formed in the tapered portion or the first waveguide. Preferably, a dielectric tube is provided in the tapered portion where the electric field density is as high as possible, but the present invention is not limited thereto.
본 발명에 따라 보다 큰 체적의 도파관(50) 내부에 포함되는 유전관(60)의 높이 및 부피를 크게 할 수 있으며, 그 결과 유전관(60) 내부에 가해지는 평균적인 전기장은 더 강해진다. 따라서 유전관(60)의 외경을 크게 하여도 안정된 대용량의 플라즈마를 발생시킬 수 있다. According to the present invention, the height and volume of the dielectric tube 60 included in the larger volume waveguide 50 can be increased, and as a result, the average electric field applied to the dielectric tube 60 becomes stronger. Therefore, even if the outer diameter of the dielectric tube 60 is increased, a stable large-capacity plasma can be generated.
도 6 및 도 7은 본 발명에 따른 플라즈마 발생장치의 다른 실시예의 도판관의 측면도로서, 제 2 도파관이 구비되지 않은 형태이다.6 and 7 are side views of the waveguide of another embodiment of the plasma generating apparatus according to the present invention, in which the second waveguide is not provided.
도 6은 테이퍼부(50b)가 삼각형을 이루며, 낮은 높이의 제 2 높이부(50c)가 구비되어 있지 않은 도파관을 나타내고 있다. 즉, 도 6a에서 상기 테이퍼부(50b)는 삼각 형상부를 이루는 것으로서, 그 길이(전기장 인가되는 방향에서의 길이)는 관내 파장의 1/4 미만이어야 한다. FIG. 6 shows a waveguide in which the tapered portions 50b form a triangle and the second height portion 50c is not provided. That is, in FIG. 6A, the tapered portion 50b forms a triangular portion, and its length (length in the direction in which the electric field is applied) should be less than 1/4 of the wavelength in the tube.
또한 도 7은 테이퍼부(50b)가 사다리꼴 형상부로서, 선단의 높이가 a 이고 낮은 높이부(50c)가 없는 도파관을 나타내고 있다. 이 경우에도 상기 사다리꼴 형상부는 관내 파장의 1/4 미만의 길이를 가져야 한다. 7 shows a waveguide in which the tapered portion 50b is a trapezoidal portion, and the tip height is a and there is no low height portion 50c. Even in this case, the trapezoidal portion should have a length less than 1/4 of the wavelength in the tube.
이때 도면에서 길이를 나타내는 A, B, C와 높이를 나타내는 a, b 는 도파관의 내부 길이 또는 높이를 나타내는 기호이다(도 8 참조).At this time, A, B, C indicating the length and a, b indicating the height are symbols indicating the internal length or height of the waveguide (see FIG. 8).
이와 같이 본 발명의 도파관은 다양한 형태의 것을 사용할 수 있다. As described above, the waveguide of the present invention can be used in various forms.
테이퍼부(50b)의 선단 높이가 도 6과 같이 0일수도 있고, 도 7과 같이 0이 아닌 a 일 수 있으며, 이에 따라 삼각형 또는 사다리꼴의 형태를 나타낼 수 있다. 더 나아가 상기 도파관의 단부 또한 일반적인 평면일 뿐만 아니라 다양한 형상의 단부가 가능하다. 예를 들면, 곡면 형태, 삼각 형태, 사다리꼴 형태 등이 모두 가능하며, 이러한 다양한 도파관 단부의 구성은 도 9에서 개시된다. The tip height of the tapered portion 50b may be 0 as shown in FIG. 6, or may be a non-zero as shown in FIG. 7, and thus may have a triangular or trapezoidal shape. Furthermore, the end of the waveguide is not only a general plane but also an end of various shapes. For example, curved shapes, triangular shapes, trapezoidal shapes, and the like are all possible, and the configuration of these various waveguide ends is disclosed in FIG. 9.
하지만, 테이퍼부 형상, 테이퍼부 후단의 제 2 도파관 유무와 관계없이, 관내 파장이 집적되는 영역의 길이가 관내 파장의 1/4 미만이 됨과 동시에 유전관이 집적되는 영역 중의 최대 체적 부분에 구비되어, 설치되는 한 이는 모두 본 발명의 범위에 속한다.However, irrespective of the shape of the taper portion and the presence or absence of the second waveguide at the rear end of the taper portion, the length of the region in which the wavelength in the tube is integrated is less than 1/4 of the wavelength in the tube, and is provided in the largest volume of the region in which the dielectric tube is integrated. As long as they are installed, they all fall within the scope of the present invention.
도 9는 본 발명에 따른 다양한 형태의 도파관을 위에서 본 정면도이다.9 is a front view from above of various types of waveguides according to the present invention.
도 9를 참조하면, 본 발명의 일 실시예에 따른 도파관, 즉 제 2 도파관은 삼각형, 곡면, 사다리꼴 등의 다양항 비평면의 단면을 가질 수 있다. 이 경우, 보다 높은 수준으로 전기장이 집적된다. 하지만, 단부의 형태와 상관없이 제 2 도파관(50c)은 1/4λ 미만의 길이를 가지며, 테이퍼부(50b)에 유전관(60)이 구비되며, 이 또한 도 8에 나타내었다.9, a waveguide, that is, a second waveguide, according to an embodiment of the present invention may have a cross section of various non-planar surfaces such as a triangle, a curved surface, and a trapezoid. In this case, the electric field is integrated to a higher level. However, irrespective of the shape of the end portion, the second waveguide 50c has a length of less than 1 / 4λ, and the dielectric tube 60 is provided in the tapered portion 50b, which is also shown in FIG.
상기 유전관의 위치는 바람직하게는 테이퍼부이나, 테이퍼부를 포함하는 도파관(50)의 형상이 어떠한 형상이더라도 유전관(60)이 테이퍼부(50b), 제 1 도파관(50a), 테이퍼부(50b)와 제 1 도파관(50a)의 경계부분, 테이퍼부(50b)와 제 2 도파관(50c)의 경계 부분에 위치시키는 경우(이들 경우는 모두 제 2 도파관에만 유전관이 구비되는 경우보다 큰 면적을 갖는다)에는 유전관(60)이 도파관(50)에 포함되는 높이 및 부피가 크므로 유전관 (60) 내부에 걸리는 총 전기장의 강도는 커지며, 본 발명은 이를 통하여 보다 대용량의 플라즈마를 발생시켰다. 그 결과 종래 기술에서 유전관 직경의 한계 수치로 인정된 27mm이상의 직경에서도 상압 플라즈마를 발생시킬 수 있으며, 이는 하기 실험예에서 보다 상세히 설명한다. The dielectric tube is preferably a tapered portion, but the dielectric tube 60 may be a tapered portion 50b, a first waveguide 50a, or a tapered portion 50b regardless of the shape of the waveguide 50 including the tapered portion. ) At the boundary between the first waveguide 50a and the boundary between the tapered portion 50b and the second waveguide 50c (all of these cases have a larger area than the case where the dielectric waveguide is provided only in the second waveguide). Since the dielectric tube 60 is large in height and volume included in the waveguide 50, the intensity of the total electric field applied to the dielectric tube 60 increases, thereby generating a larger amount of plasma. As a result, the atmospheric pressure plasma can be generated even at a diameter of 27 mm or more, which is recognized as a limit value of the diameter of the dielectric tube in the prior art, which will be described in more detail in the following experimental example.
그 결과 공기의 방전 전기장은 30000V/cm이므로 그 이상의 전압을 걸어주면 점화장치 없이도 플라즈마를 발생시킬 수 있다. 아르곤가스나 헬륨가스를 사용하면 더 낮은 전압에서 방전이 가능하므로 토치가스로서 공기대신 불활성가스를 사용하여 점화시키면 더 쉽게 점화가 가능하다. As a result, the electric discharge electric field of air is 30000 V / cm, and if a higher voltage is applied, plasma can be generated without an ignition device. If argon gas or helium gas is used, it can be discharged at a lower voltage. Therefore, it is easier to ignite using inert gas instead of air as torch gas.
스월가스로 공기를 사용했을 때 1m 이상의 플라즈마도 발생시킬 수 있다. 플라즈마의 온도는 2000℃ 이상이다. When air is used as the swirl gas, plasma of 1 m or more can be generated. The temperature of plasma is 2000 degreeC or more.
실험예 1Experimental Example 1
실험예1은 유전관(60)이 도파관(50)의 테이퍼부(50b)에 위치할 때의 실험예이다. Experimental Example 1 is an experimental example when the dielectric tube 60 is located in the tapered portion 50b of the waveguide 50.
도파관(50)의 형상: 제 1 도파관(50a): 길이(C): 110mm, 높이(a+b): 34mmShape of waveguide 50: first waveguide 50a: length C: 110 mm, height a + b: 34 mm
테이퍼부(50b): 길이(B): 76mm, 선단의 높이(a): 5mm                  Taper portion 50b: length B: 76 mm, tip height a: 5 mm
제 2 도파관(50c): 길이(A):5mm, 높이(a): 5mm                  Second waveguide 50c: length A: 5 mm, height a: 5 mm
도파관의 폭: 72.14mm                  Waveguide Width: 72.14mm
도파관의 낮은 높이부의 선단에서 관통공(51)의 중심까지의 거리: 69.85 mmDistance from the tip of the lower portion of the waveguide to the center of the through hole 51: 69.85 mm
관통공(51)의 직경: 50mmDiameter of the through hole 51: 50 mm
유전관의 외경: 50mm, 내경 : 47mm, 길이: 1m, 재질: 석영관Outer diameter of dielectric tube: 50mm, inner diameter: 47mm, length: 1m, material: quartz tube
본 실험예에서는 도 5에서 개시된 구성에 따라 상압 플라즈마를 발생시켰으며, 특히 종래 기술에서 한계로 인식된 27mm의 유전관 직경의 거의 두 배에 해당하는 50mm 유전관으로 상압 플라즈마를 발생시켰다.In this experimental example, the atmospheric pressure plasma was generated according to the configuration disclosed in FIG. 5, and in particular, the atmospheric pressure plasma was generated by a 50 mm dielectric tube corresponding to almost twice the diameter of the dielectric tube of 27 mm, which was recognized as a limitation in the prior art.
1kW와 1.2kW 용량의 마그네트론을 사용하고, 토치가스로서 공기, 산소, 아르곤, 헬륨, 질소를 이용하였으며, 토치가스의 유량은 내경에 관계없이 저 유량 (0에서 약 2 lpm)에서 먼저 점화를 한 다음 7에서 20 lpm까지 조절하며 실험하였다(아크가 발생할 경우 유량을 늘리거나 파워를 낮춘다). 또한 스월가스는 반드시 공기를 사용할 필요 없고 필요에 따라서 종류에 관계없이 다른 가스(실험 목적에 따라 O2, N2, H2)를 사용하였다. Magnetrons with 1kW and 1.2kW capacities were used, and air, oxygen, argon, helium, and nitrogen were used as torch gases. The experiment was then controlled from 7 to 20 lpm (increase flow rate or reduce power if arcing occurs). In addition, the swirl gas does not necessarily use air, and other gases (O 2 , N 2 , and H 2 depending on the purpose of the experiment) were used regardless of the type if necessary.
본 실험을 통해 안정되고 경제적인 고밀도의 플라즈마가 발생하였음을 확인하였으며, 이를 도 10에 나타내었다. 특히 본 실험예에서는 상기 플라즈마 발생을 위하여 고 전력을 인가하는 별도의 점화 장치 없이 UV 램프를 이용하였는데, 이와 같이 커진 총 전기장 세기로 인하여, UV 램프만으로도 점화가 가능하였다This experiment confirmed that a stable and economical high density plasma was generated, which is shown in FIG. In particular, in the present experimental example, a UV lamp was used without a separate ignition device applying high power for generating the plasma. Due to the increased total electric field strength, the ignition was possible only with the UV lamp.
실험예 2Experimental Example 2
본 실험예에서는 유전관이 제 1 도파관과 태이퍼부의 경계면에 존재하며, 제 2 도파관(낮은 높이부)의 단부로부터 유전관이 구비되는 관통공의 중심까지의 거리가 78mm인 점을 제외하고 실험예 1과 동일하다. 본 실험예에서 전기장의 세기는 실험예 1에 비해 약해졌다. 또한 전기장의 세기의 약함으로 인하여 발생된 플라즈마의 온도, 밀도도 다소 약해졌다. 하지만, 본 실험예에서도 플라즈마가 발생했으며, 이는 종래 기술보다 넓은 유전관을 사용하여도 충분한 상압 플라즈마가 발생할 수 있다는 것을 알 수 있다. In this experimental example, the dielectric tube exists at the interface between the first waveguide and the taper portion, except that the distance from the end of the second waveguide (low height portion) to the center of the through hole provided with the dielectric tube is 78 mm. Same as Example 1. In this Experimental Example, the intensity of the electric field was weaker than that of Experimental Example 1. In addition, the temperature and density of the plasma generated by the weakness of the electric field weakened somewhat. However, plasma was also generated in the present experimental example, and it can be seen that sufficient atmospheric pressure plasma can be generated even with a wider dielectric tube than the prior art.             
비교 실험예 1Comparative Experimental Example 1
종래 기술과 같이 1/4λ 이상의 길이를 갖는 제 2 도파관이 구비된 상압 플라즈마 발생장치에서 종래 기술에 따른 좁은 직경(25mm) 유전관을 테이퍼부에 설치한 후 실험예 1과 동일한 조건으로 플라즈마를 발생시켰으나, 상압 플라즈마가 충분히 형성되지 않았다. In the atmospheric pressure plasma generator having a second waveguide having a length of 1 / 4λ or more, as in the prior art, a narrow diameter (25 mm) dielectric tube according to the prior art is installed in a tapered portion, and then plasma is generated under the same conditions as in Experiment 1. However, the atmospheric pressure plasma was not sufficiently formed.
따라서 상기 실험결과로부터 본 발명에 따른 도파관 및 유전관 구성에 의하여 보다 큰 직경의 유전관에서 대용량의 안정한 플라즈마를 형성시킬 수 있다는 것이 충분히 증명된다.Therefore, it is fully demonstrated from the above experimental results that the waveguide and the dielectric tube configuration according to the present invention can form a large-capacity stable plasma in a larger diameter dielectric tube.
본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술 분야의 당업자에게는 명백한 것이며, 따라서 그러한 변경 또는 변형은 첨부된 특허청구범위에 속한다 해야 할 것이다. Although the invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various changes or modifications can be made within the spirit and scope of the invention, and such changes or modifications are consequently claimed. You will have to belong to the range.

Claims (8)

  1. 전자파를 발진하는 마그네트론이 설치되는 도파관과, 상기 도파관에 설치되는 것으로서 플라즈마가 생성되는 유전관을 구비한 전자파를 이용한 상압 플라즈마 발생장치에 있어서, In the atmospheric pressure plasma generator using an electromagnetic wave provided with a waveguide provided with a magnetron for oscillating electromagnetic waves, and a dielectric tube provided in the waveguide to generate plasma,
    상기 도파관은 제 1 높이를 갖는 제 1 도파관 및 상기 본체의 단부에 구비되어 소정의 각도만큼 감소되는 테이퍼 부를 포함하며, The waveguide includes a first waveguide having a first height and a tapered portion provided at an end of the main body and reduced by a predetermined angle.
    상기 유전관은 상기 도파관의 테이퍼 부, 제 1 도파관, 또는 테이퍼 부와 제 1 도파관의 경계상에 구비된 것을 특징으로 하는 상압 플라즈마 발생장치.The dielectric tube is an atmospheric pressure plasma generator, characterized in that provided on the boundary of the tapered portion, the first waveguide, or the tapered portion and the first waveguide of the waveguide.
  2. 전자파를 발진하는 마그네트론이 설치되는 도파관과, 상기 도파관에 설치되는 것으로서 플라즈마가 생성되는 유전관을 구비한 전자파를 이용한 상압 플라즈마 발생장치에 있어서, In the atmospheric pressure plasma generator using an electromagnetic wave provided with a waveguide provided with a magnetron for oscillating electromagnetic waves, and a dielectric tube provided in the waveguide to generate plasma,
    상기 도파관은 제 1 높이를 갖는 제 1 도파관 및 상기 제 1 도파관의 단부에 연결된 삼각 형상부 또는 사다리 형상부를 포함하며, 상기 유전관은 삼각 형상부 또는 사각 형상부, 또는 제 1 도파관과의 경계에 구비된 것을 특징으로 하는 상압 플라즈마 발생장치.The waveguide includes a first waveguide having a first height and a triangular shape or a ladder shape connected to an end of the first waveguide, wherein the dielectric tube is at a boundary with the triangular shape or the square shape or the first waveguide. Atmospheric pressure plasma generator, characterized in that provided.
  3. 제 1항에 있어서, The method of claim 1,
    상기 테이퍼부는 사다리꼴을 나타내는 것을 특징으로 하는 상압 플라즈마 발생장치.The atmospheric pressure plasma generator, characterized in that the tapered portion has a trapezoid.
  4. 제 1항에 있어서, The method of claim 1,
    상기 테이퍼부의 후단에는 상기 제 1 높이보다 낮은 제 2 높이를 갖는 제 2 도파관이 구비되며, 상기 제 2 도파관은 전자파 파장의 λ/4 지점 이전에 종결되는 것을 특징으로 하는 상압 플라즈마 발생장치.A second waveguide having a second height lower than the first height is provided at the rear end of the tapered portion, wherein the second waveguide is terminated before the λ / 4 point of the electromagnetic wave wavelength.
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 유전관은 상기 테이퍼부에 구비되는 것을 특징으로 하는 상압 플라즈마 발생 장치.The dielectric tube is an atmospheric pressure plasma generator, characterized in that provided in the tapered portion.
  6. 제 2항에 있어서, The method of claim 2,
    상기 삼각 형상부 또는 사다리 형상부는 전자파 파장의 λ/4 보다 짧은 길이를 갖는 것을 특징으로 하는 상압 플라즈마 발생장치. The triangular portion or ladder portion has a length of less than λ / 4 of the electromagnetic wave wavelength, the atmospheric pressure plasma generating apparatus.
  7. 제 4항에 있어서, The method of claim 4, wherein
    상기 제 2 도파관의 단부는 평면이 아닌 형상을 갖는 것을 특징으로 하는 상압 플라즈마 발생장치.An end portion of the second waveguide is an atmospheric pressure plasma generator, characterized in that the non-planar shape.
  8. 제 1항, 제 3항 내지 제 5항 또는 제 7항 중 어느 한 항에 따른 상압 플라즈마 발생장치용 도파관.A waveguide for an atmospheric pressure plasma generator according to any one of claims 1, 3 to 5 or 7.
PCT/KR2010/000615 2010-01-29 2010-02-02 Plasma generation device using electromagnetic waves and wave guide thereof WO2011093545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0008263 2010-01-29
KR1020100008263A KR20110088658A (en) 2010-01-29 2010-01-29 Plasma generation apparatus using electromagnetic waves and waveguide for the same

Publications (1)

Publication Number Publication Date
WO2011093545A1 true WO2011093545A1 (en) 2011-08-04

Family

ID=44319514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000615 WO2011093545A1 (en) 2010-01-29 2010-02-02 Plasma generation device using electromagnetic waves and wave guide thereof

Country Status (2)

Country Link
KR (1) KR20110088658A (en)
WO (1) WO2011093545A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437440B1 (en) * 2012-12-27 2014-09-11 한국기초과학지원연구원 Microwave plasma torch
KR101427720B1 (en) * 2013-03-27 2014-08-13 (주)트리플코어스코리아 Plasma waveguide using step part and block part
KR101475822B1 (en) * 2014-03-19 2014-12-23 한국기초과학지원연구원 Microwave plasma torch
KR102406350B1 (en) 2022-03-31 2022-06-08 주식회사 조양 Plazma creation gas sleeve manufacturing method and gas sleeve thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131992A (en) * 1990-01-08 1992-07-21 The United States Of America, As Represented By The Secretary Of The Interior Microwave induced plasma process for producing tungsten carbide
WO1996041505A1 (en) * 1995-06-07 1996-12-19 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
EP0280044B1 (en) * 1987-01-26 1997-05-07 Mitsubishi Denki Kabushiki Kaisha Plasma apparatus
KR100375423B1 (en) * 2000-09-27 2003-03-15 홍용철 Plasma device for removing exhaust gas from diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280044B1 (en) * 1987-01-26 1997-05-07 Mitsubishi Denki Kabushiki Kaisha Plasma apparatus
US5131992A (en) * 1990-01-08 1992-07-21 The United States Of America, As Represented By The Secretary Of The Interior Microwave induced plasma process for producing tungsten carbide
WO1996041505A1 (en) * 1995-06-07 1996-12-19 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
KR100375423B1 (en) * 2000-09-27 2003-03-15 홍용철 Plasma device for removing exhaust gas from diesel engine

Also Published As

Publication number Publication date
KR20110088658A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2011093545A1 (en) Plasma generation device using electromagnetic waves and wave guide thereof
KR20140130542A (en) Toroidal plasma chamber for high gas flow rate process
TW200950601A (en) Plasma reactor with internal transformer
EP1797746A2 (en) Microwave plasma apparatus with vorticular gas flow
CN100417308C (en) Apparatus and method for forming a plasma
ES2399181T3 (en) Process and installation for surface preparation by discharging a dielectric barrier
WO2015142091A1 (en) Electromagnetic wave plasma torch
WO2018199417A1 (en) Glow plasma reaction apparatus for water treatment and operating method thereof
KR100893735B1 (en) Plasma reactor for diesel particulate filter trap and apparatus for soot reduction using the same
KR100599461B1 (en) Apparatus for generating plasma at atmospheric pressure and plasma process system using the same
WO2014007472A1 (en) Plasma generation apparatus and plasma generation method
KR20100052933A (en) Plasma generation apparatus, using electromagnetic waves
KR100520407B1 (en) Apparatus for generating plasma at atmospheric pressure
KR20020092548A (en) Apparatus for manufacturing particles using corona discharge and method thereof
WO2012036491A2 (en) Plasma treatment device using leakage current transformer
WO2009131374A2 (en) Plasma generating device
KR20040010898A (en) Igniting device of Microwave Plasma Discharge System
WO2016068586A1 (en) Fire chamber, plasma generator, and plasma generating method
WO2023214793A1 (en) Powder processing device using microwave torch plasma having high density in edge area
Wendt et al. Radio frequency inductive discharge source design for large area processing
KR20040025587A (en) Plasma source
IT201800020206A1 (en) EQUIPMENT FOR THE TREATMENT OF MATERIALS WITH PLASMA.
KR100500427B1 (en) Apparatus for Surface Treatment Using Atmospheric Pressure Plasma
WO2019231308A1 (en) Plasma generator with improved insulated section
WO2018009027A1 (en) Electromagnetic wave plasma torch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (08.10.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10844769

Country of ref document: EP

Kind code of ref document: A1