WO2011109312A2 - Adaptive alarm system - Google Patents

Adaptive alarm system Download PDF

Info

Publication number
WO2011109312A2
WO2011109312A2 PCT/US2011/026545 US2011026545W WO2011109312A2 WO 2011109312 A2 WO2011109312 A2 WO 2011109312A2 US 2011026545 W US2011026545 W US 2011026545W WO 2011109312 A2 WO2011109312 A2 WO 2011109312A2
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
baseline
alarm
adaptive
threshold
Prior art date
Application number
PCT/US2011/026545
Other languages
French (fr)
Other versions
WO2011109312A3 (en
Inventor
Ammar Al-Ali
Original Assignee
Masimo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44048877&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011109312(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Masimo Corporation filed Critical Masimo Corporation
Priority to JP2012556145A priority Critical patent/JP2013521054A/en
Priority to DE112011100761T priority patent/DE112011100761T5/en
Priority to GB1214902.7A priority patent/GB2490832B/en
Publication of WO2011109312A2 publication Critical patent/WO2011109312A2/en
Publication of WO2011109312A3 publication Critical patent/WO2011109312A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0276Determining malfunction

Definitions

  • a pulse oximetry system generally includes an optical sensor applied to a patient, a monitor for processing sensor signals and displaying results and a patient cable electrically interconnecting the sensor and the monitor.
  • a pulse oximetry sensor has light emitting diodes (LEDs), typically one emitting a red wavelength and one emitting an infrared (IR) wavelength, and a photodiode detector. The emitters and detector are typically attached to a finger, and the patient cable transmits drive signals to these emitters from the monitor.
  • LEDs light emitting diodes
  • IR infrared
  • the emitters respond to the drive signals to transmit light into the fleshy fingertip tissue.
  • the detector generates a signal responsive to the emitted light after attenuation by pulsatile blood flow within the fingertip.
  • the patient cable transmits the detector signal to the monitor, which processes the signal to provide a numerical readout of physiological parameters such as oxygen saturation (SpO 2 ) and pulse rate.
  • Advanced pulse oximetry is described in at least U.S. Pat. Nos. 6,770,028; 6,658,276; 6,157,850; 6,002,952; 5,769,785 and 5,758,644, which are assigned to Masimo Corporation ("Masimo") of Irvine, California and are incorporated by reference herein.
  • Corresponding low noise optical sensors are disclosed in at least U.S. Pat. Nos. 6,985,764; 6,813,511 ; 6,792,300; 6,256,523; 6,088,607; 5,782,757 and 5,638,818, which are also assigned to Masimo and are also incorporated by reference herein.
  • Advanced pulse oximetry systems including Masimo SET ® low noise optical sensors and read through motion pulse oximetry monitors for measuring SpO 2 , pulse rate (PR) and perfusion index (PI) are available from Masimo.
  • Optical sensors include any of Masimo LNOP ® , LNCS ® , SofTouchTM and BlueTM adhesive or reusable sensors.
  • Pulse oximetry monitors include any of Masimo Rad-8 ® , Rad-5 ® , Rad ® -5v or SatShare ® monitors.
  • Advanced blood parameter measurement systems include Masimo Rainbow ® SET, which provides measurements in addition to Sp0 2 , such as total hemoglobin (SpHbTM), oxygen content (SpOCTM), methemoglobin (SpMet ® ), carboxyhemoglobin (SpCO ® ) and PVI ® .
  • Advanced blood parameter sensors include Masimo Rainbow ® adhesive, ReSposableTM and reusable sensors.
  • Advanced blood parameter monitors include Masimo Radical-7TM, Rad-87TM and Rad-57TM monitors, all available from Masimo.
  • Advanced parameter measurement systems may also include acoustic monitoring such as acoustic respiration rate (RRaTM) using a Rainbow Acoustic SensorTM and Rad-87TM monitor, available from Masimo.
  • RRaTM acoustic respiration rate
  • FIGS. 1-3 illustrate problems and issues associated with physiological parameter measurement systems having fixed threshold alarm schemas.
  • FIG. 1 illustrates a lower-limit, fixed-threshold alarm schema with respect to an oxygen saturation (Sp0 2 ) parameter.
  • Two alarm thresholds, D L (delay) and ND L (no delay) are defined. If oxygen saturation falls below D L for a time delay greater than TD, an alarm is triggered. If oxygen saturation falls below ND L an alarm is immediately triggered.
  • D L 120 is typically set around or somewhat above 90% oxygen saturation and ND
  • FIG. 2 illustrates an upper-limit, fixed-threshold alarm schema with respect to an oxygen saturation (Sp0 2 ) parameter.
  • This alarm scenario is particularly applicable to the avoidance of ROP (retinopathy of prematurity).
  • two alarm thresholds, Du (delay) and NDu (no delay) are defined.
  • Du 220 might be set at or around 85% oxygen saturation and NDu 230 might be set at or around 90% oxygen saturation.
  • FIG. 3 illustrates a baseline drift problem with the fixed threshold alarm schema described above.
  • a person's oxygen saturation is plotted on an oxygen saturation (SpO 2 ) versus time graph 300.
  • a person has an oxygen saturation 310 with a relatively stable "baseline” 312 punctuated by a shallow, transient desaturation event 314.
  • This scenario may occur after the person has been on oxygen so that baseline oxygen saturation is near 100%.
  • the transient event 314 does not trigger a nuisance alarm.
  • the effects of oxygen treatments wear off over time and oxygen saturation levels drift downward 350.
  • a person has an oxygen saturation 320 with a relatively stable baseline 322.
  • the later baseline 322 is established at a substantially lower oxygen saturation than the earlier baseline 312.
  • a shallow, transient desaturation event 324 now exceeds the alarm threshold 330 and results in a nuisance alarm.
  • a caregiver may lower the alarm threshold 330 to unsafe levels or turn off alarms altogether, significantly hampering the effectiveness of monitoring oxygen saturation.
  • a fixed threshold alarm schema is described above with respect to an oxygen saturation parameter, such as derived from a pulse oximeter.
  • problematic fixed threshold alarm behavior may be exhibited in a variety of parameter measurement systems that calculate physiological parameters related to circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine or reproductive systems, such as the circulatory and respiratory parameters cited above, as but a few examples.
  • An adaptive alarm system advantageously provides an adaptive threshold alarm to solve false alarm and missed true alarm problems associated with baseline drift among other issues. For example, for a lower limit embodiment, an adaptive alarm system adjusts an alarm threshold downwards when a parameter baseline is established at lower values. Likewise, for an upper limit embodiment, the adaptive alarm system adjusts an alarm threshold upwards in accordance with baseline drift so as to avoid nuisance alarms. In an embodiment, the rate of baseline movement is limited so as to avoid masking of transients. In an embodiment, the baseline is established along upper or lower portions of a parameter envelop so as to provide a margin of safety in lower limit or upper limit systems, respectively.
  • One aspect of an adaptive alarm system is responsive to a physiological parameter so as to generate an alarm threshold that adapts to baseline drift in the parameter and reduce false alarms without a corresponding increase in missed true alarms.
  • the adaptive alarm system has a parameter derived from a physiological measurement system using a sensor in communication with a living being.
  • a baseline processor calculates a parameter baseline from an average value of the parameter.
  • Parameter limits specify an allowable range of the parameter.
  • An adaptive threshold processor calculates an adaptive threshold from the parameter baseline and the parameter limits.
  • An alarm generator is responsive to the parameter and the adaptive threshold so as to trigger an alarm indicative of the parameter crossing the adaptive threshold.
  • the adaptive threshold is responsive to the parameter baseline so as to increase in value as the parameter baseline drifts to a higher parameter value and to decrease in value as the parameter baseline drifts to a lower parameter value.
  • the baseline processor has a sliding window that identifies a time slice of parameter values.
  • a trend calculator determines a trend from an average of the parameter values in the time slice.
  • a response limiter tracks only the relatively long-term transitions of the trend.
  • a bias calculator deletes the highest parameter values in the time slice or the lowest parameter values in the time slice so as to adjust the baseline to either a lower value or a higher value, respectively.
  • the adaptive threshold becomes less response to baseline drift as the baseline approaches a predefined parameter limit.
  • a first adaptive threshold is responsive to lower parameter limits and a second adaptive threshold is responsive to upper parameter limits.
  • the alarm generator is responsive to both positive and negative transients from the baseline according to the first adaptive threshold and the second adaptive threshold.
  • the first adaptive threshold is increasingly responsive to negative transients and the second adaptive threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.
  • an adaptive alarm system measures a physiological parameter, establishes a baseline for the parameter, adjusts an alarm threshold according to drift of the baseline and triggers an alarm in response to the parameter measurement crossing the alarm threshold.
  • the baseline is established by biasing a segment of the parameter, calculating a biased trend from the biased segment and restricting the transient response of the biased trend.
  • the alarm threshold is adjusted by setting a parameter limit and calculating a delta difference between the alarm threshold and the baseline as a linear function of the baseline according to the parameter limit. The delta difference is calculated by decreasing delta as the baseline drifts toward the parameter limit and increasing delta as the baseline drifts away from the parameter limit.
  • a parameter limit is set by selecting a first parameter limit in relation to a delayed alarm and selecting a second parameter limit in relation to an un-delayed alarm.
  • a segment of the parameter is biased by windowing the parameter measurements, removing a lower value portion of the windowed parameter measurements and averaging a remaining portion of the windowed parameter measurements.
  • An upper delta difference between an upper alarm threshold and the baseline is calculated and a lower delta difference between a lower alarm threshold and the baseline is calculated.
  • a further aspect of an adaptive alarm system has a baseline processor that inputs a parameter and outputs a baseline according to a trend of the parameter.
  • An adaptive threshold processor establishes an alarm threshold at a delta difference from the baseline.
  • An alarm generator triggers an alarm based upon a parameter transient from the baseline crossing the alarm threshold.
  • a trend calculator outputs a biased trend and the baseline is responsive to the biased trend so as to reduce the size of a transient that triggers the alarm.
  • a response limiter reduces baseline movement due to parameter transients.
  • the adaptive threshold processor establishes a lower alarm threshold below the baseline and an upper alarm threshold above the baseline so that the alarm generator is responsive to both positive and negative transients from the baseline.
  • the baseline processor establishes a lower baseline biased above the parameter trend and an upper baseline biased below the parameter trend.
  • the lower alarm threshold is increasingly responsive to negative transients and the upper alarm threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.
  • FIGS. 1-3 are exemplar graphs illustrating problems and issues associated with physiological parameter measurement systems having fixed threshold alarm schemas
  • FIGS. 4A-B are general block diagrams of an adaptive alarm system having lower parameter limits
  • FIGS. 5A-B are a graph of a physiological parameter versus delta space and a graph of delta versus baseline, respectively, illustrating the relationship between a baseline, a lower-limit adaptive threshold and a variable difference delta between the baseline and the adaptive threshold;
  • FIG. 6 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having a lower-limit adaptive threshold
  • FIG. 7 is a graph of oxygen saturation versus time illustrating a baseline for determining an adaptive threshold
  • FIG. 8 is a graph of oxygen saturation versus time comparing adaptive- threshold alarm performance with fixed-threshold alarm performance
  • FIGS. 9A-B are general block diagrams of an adaptive alarm system having upper parameter limits
  • FIGS. 10A-B are a graph of a physiological parameter versus delta space and a graph of delta versus baseline, respectively, illustrating the relationship between a baseline, an upper-limit adaptive threshold and a variable delta difference between the baseline and the adaptive threshold;
  • FIG. 11 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having an upper-limit adaptive threshold
  • FIGS. 12A-B are general block diagrams of an adaptive alarm system having both lower alarm limits and upper alarm limits
  • FIGS. 13A-E are physiological parameter versus delta space graphs illustrating a lower-limit adaptive threshold, an upper-limit adaptive threshold, and a combined lower- and upper-limit adaptive threshold in various delta spaces;
  • FIG. 14 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having both lower and upper alarm limits.
  • FIGS. 4A-B illustrate an adaptive alarm system 400 embodiment having lower parameter limits l_i and l_ 2 .
  • the adaptive alarm system 400 has parameter 401 , first limit (L-i) 403, second limit (L 2 ) 405 and maximum parameter value (Max) 406 inputs and generates a corresponding alarm 412 output.
  • the parameter 401 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples.
  • the adaptive alarm system 400 has an alarm generator 410, a baseline processor 420, and an adaptive threshold processor 440.
  • the alarm generator 410 has parameter 401 and adaptive threshold (AT) 442 inputs and generates the alarm 412 output accordingly.
  • AT adaptive threshold
  • a baseline processor 420 has the parameter 401 input and generates a parameter baseline (B) 422 output.
  • the baseline processor 420 is described in detail with respect to FIG. 4B, below.
  • An adaptive threshold processor 440 has parameter baseline (B) 422, Li 403, L 2 405 and Max 406 inputs and generates the adaptive threshold (AT) 442.
  • the adaptive threshold processor 440 is described in detail with respect to FIGS. 5A-B, below.
  • U 403 and L 2 405 may correspond to conventional fixed alarm thresholds with and without an alarm time delay, respectively.
  • l_i 403 and L 2 405 do not determine an alarm threshold per se, but are reference levels for determining an adaptive threshold (AT) 442.
  • l_i 403 is an upper limit of the adaptive alarm threshold AT when the baseline is near the maximum parameter value (Max)
  • L 2 405 is a lower limit of the adaptive alarm threshold, as described in detail with respect to FIGS. 5A-B, below.
  • U 403 is set at or around 90% and L 2 405 is set at 5 to 10% below U, i.e. at 85% to 80% oxygen saturation.
  • Many other L-i and L 2 values may be used for an adaptive threshold schema as described herein.
  • the alarm 412 output is triggered when the parameter 401 input falls below AT 442 and ends when the parameter 401 input rises above AT 442 or is otherwise cancelled.
  • the alarm 412 output is triggered after a time delay (TD), which may be fixed or variable.
  • the time delay (TD) is a function of the adaptive threshold (AT) 442.
  • the time delay (TD) is zero when the adaptive threshold (AT) is at the second lower limit (L 2 ) 405.
  • a baseline processor 420 embodiment has a sliding window 450, a bias calculator 460, a trend calculator 470 and a response limiter 480.
  • the sliding window 450 inputs the parameter 401 and outputs a time segment 452 of the parameter 401.
  • each window incorporates a five minute span of parameter values.
  • the bias calculator 460 advantageously provides an upward shift in the baseline (B) 422 for an additional margin of error over missed true alarms. That is, a baseline 422 is generated that tracks a higher-than-average range of parameter values, effectively raising the adaptive threshold AT slightly above a threshold calculated based upon a true parameter average, as shown and described in detail with respect to FIGS. 7-8, below.
  • the bias calculator 460 rejects a lower range of parameter values from each time segment 452 from the sliding window so as to generate a biased time segment 462.
  • the trend calculator 470 outputs a biased trend 472 of the remaining higher range of parameter values in each biased segment 462.
  • the biased trend 462 is an average of the values in the biased time segment 462.
  • the biased trend 462 is a median or mode of the values in the biased time segment 462.
  • the response limiter 480 advantageously limits the extent to which the baseline 422 output tracks the biased trend 472. Accordingly, the baseline 422 tracks only relatively longer-lived transitions of the parameter, but does not track (and hence mask) physiologically significant parameter events, such as oxygen desaturations for a Sp0 2 parameter to name but one example.
  • the response limiter 480 has a low pass transfer function.
  • FIGS. 5A-B further illustrate an adaptive threshold processor 440 (FIG. 4A) having a baseline (B) 422 input and generating an adaptive threshold (AT) 442 output and a delta ( ⁇ ) 444 ancillary output according to parameter limits Li 403, L 2 405 and Max 406, as described above.
  • the adaptive threshold (AT) 444 monotonically decreases (increases) between Li 403 and L 2 405.
  • the delta ( ⁇ ) 444 difference between the baseline (B) 422 and the adaptive threshold (AT) 442 monotonically decreases (increases) between Max - Li and zero.
  • the relationship between the delta ( ⁇ ) 444 and the baseline (B) 444 may be linear 550 (solid line), non-linear 560 (small-dash lines) or piecewise-linear (large-dash lines), to name a few.
  • the adaptive threshold processor 440 calculates an adaptive threshold (AT) 442 output in response to the baseline (B) 422 input according to a linear relationship.
  • the adaptive threshold processor 440 calculates the adaptive threshold (AT) 442 according to EQS. 1-2:
  • FIG. 6 illustrates the operational characteristics an adaptive alarm system 400 (FIG. 4A) having parameter limits Max 612, U 614 and L 2 616 and an alarm responsive to a baseline (B) 622, 632, 642; an adaptive threshold (AT) 628, 638, 648; and a corresponding ⁇ 626, 636, 646 according to EQS. 1-2, above.
  • a physiological parameter 610 is graphed versus time 690 for various time segments t-i, t 2 , t 3 692-696.
  • the parameter range (PR) 650 is:
  • PR Max-L 2 (3) and the adaptive threshold range (ATR) 660 is:
  • a parameter segment 620 has a baseline (B) 622 at about Max 612.
  • ⁇ 626 Max-U
  • the adaptive threshold (AT) 628 is at about Li 614. Accordingly, a transient 624 having a size less than ⁇ 626 does not trigger the alarm 412 (FIG. 4A).
  • a parameter segment 630 has a baseline (B) 632 at about Li 614.
  • ⁇ 636 is less than Max-L_i and the adaptive threshold (AT) 638 is between L and L 2 . Accordingly, a smaller transient 634 will trigger the alarm as compared to a transient 624 in the first time segment.
  • a parameter segment 640 has a baseline (B) 642 at about L 2 616.
  • ⁇ 646 is about zero and the adaptive threshold (AT) 648 is at about L 2 . Accordingly, even a small negative transient will trigger the alarm.
  • the behavior of the alarm threshold AT 628, 638, 648 advantageously adapts to higher or lower baseline values so as to increase or decrease the size of negative transients that trigger or do not trigger the alarm 412 (FIG. 4A).
  • FIG. 7 is a parameter versus time graph 700 illustrating the characteristics of an adaptive alarm system 400 (FIGS. 4A-B), as described with respect to FIGS. 4-6, above, where the parameter is oxygen saturation (Sp0 2 ).
  • the graph 700 has a Sp0 2 trace 710 and a superimposed baseline trace 720.
  • the graph 700 also delineates tracking periods 730, where the baseline 720 follows the upper portions of Sp0 2 values, and lagging periods 740, where the baseline 720 does not follow transient Sp0 2 events.
  • the tracking time periods 730 illustrate that the baseline 720 advantageously tracks at the higher range of Sp0 2 values 710 during relatively stable (flat) periods, as described above.
  • Lagging time periods 740 illustrate that the baseline 720 is advantageously limited in response to transient desaturation events so that significant desaturations fall below an adaptive threshold (not shown) and trigger an alarm accordingly.
  • FIG. 8 is a parameter versus time graph 800 illustrating characteristics of an adaptive alarm system 400 (FIGS. 4A-B), as described with respect to FIGS. 4-6, above, where the parameter is oxygen saturation (Sp0 2 ).
  • Vertical axis (Sp0 2 ) resolution is 1%.
  • the time interval 801 between vertical hash marks is five minutes.
  • the graph 800 has a Sp0 2 trace 810 and a baseline trace 820.
  • the graph 800 also has a fixed threshold trace 830, a first adaptive threshold (AT) trace 840 and a second AT trace 850.
  • the graph 800 further has a fixed threshold alarm trace 860, a first adaptive threshold alarm trace 870 and a second adaptive threshold alarm trace 880.
  • l_i 90% and L 2 is 85% for the first AT trace 840 and first AT alarm trace 870.
  • L 2 is 80% for a second AT trace 850 and a second AT alarm trace 880.
  • the fixed threshold 830 results in many nuisance alarms 860.
  • the adaptive threshold alarm with L 2 80%, has no alarms during the 1 hour 25 minute monitoring period.
  • FIGS. 9A-B illustrate an adaptive alarm system 900 embodiment having upper parameter limits Ui and U 2 .
  • the adaptive alarm system 900 has parameter 901 , first limit (Ui) 903, second limit (U 2 ) 905 and minimum parameter value (Min) 906 inputs and generates a corresponding alarm 912 output.
  • the parameter 901 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples.
  • the adaptive alarm system 900 has an alarm generator 910, a baseline processor 920, and an adaptive threshold processor 940.
  • the alarm generator 910 has parameter 901 and adaptive threshold (AT) 942 inputs and generates the alarm 912 output accordingly.
  • AT adaptive threshold
  • a baseline processor 920 has the parameter 901 input and generates a parameter baseline (B) 922 output.
  • the baseline processor 920 is described in detail with respect to FIG. 9B, below.
  • An adaptive threshold processor 940 has parameter baseline (B) 922, Ui 903, U 2 905 and Min 906 inputs and generates the adaptive threshold (AT) 942.
  • the adaptive threshold processor 940 is described in detail with respect to FIGS. 10A-B, below.
  • Ui 903 and U 2 905 may correspond to conventional fixed alarm thresholds with and without an alarm time delay, respectively.
  • Ui 903 and U 2 905 do not determine an alarm threshold per se, but are reference levels for determining an adaptive threshold (AT) 942.
  • Ui 903 is a lower limit of the adaptive alarm threshold AT when the baseline is near the minimum parameter value (Min)
  • U 2 905 is an upper limit of the adaptive alarm threshold, as described in detail with respect to FIGS. 10A-B, below.
  • the parameter is oxygen saturation
  • Ui 903 is set at or around 85% and U 2 905 is set at or around 90% oxygen saturation.
  • Many other Ui and U 2 values may be used for an adaptive threshold schema as described herein.
  • the alarm 912 output is triggered when the parameter 901 input rises above AT 942 and ends when the parameter 901 input falls below AT 942 or is otherwise cancelled.
  • the alarm 912 output is triggered after a time delay (TD), which may be fixed or variable.
  • the time delay (TD) is a function of the adaptive threshold (AT) 942.
  • the time delay (TD) is zero when the adaptive threshold (AT) is at the second upper limit (U 2 ) 905.
  • a baseline processor 920 embodiment has a sliding window 950, a bias calculator 960, a trend calculator 970 and a response limiter 980.
  • the sliding window 950 inputs the parameter 901 and outputs a time segment 952 of the parameter 901.
  • each window incorporates a five minute span of parameter values.
  • the bias calculator 960 advantageously provides a downward shift in the baseline (B) 922 for an additional margin of error over missed true alarms. That is, a baseline 922 is generated that tracks a lower-than- average range of parameter values, effectively lowering the adaptive threshold AT slightly below a threshold calculated based upon a true parameter average.
  • the bias calculator 960 rejects an upper range of parameter values from each time segment 952 from the sliding window so as to generate a biased time segment 962.
  • the trend calculator 970 outputs a biased trend 972 of the remaining lower range of parameter values in each biased segment 962.
  • the biased trend 962 is an average of the values in the biased time segment 962.
  • the biased trend 962 is a median or mode of the values in the biased time segment 962.
  • the response limiter 980 advantageously limits the extent to which the baseline 922 output tracks the biased trend 972. Accordingly, the baseline 922 tracks only relatively longer-lived transitions of the parameter, but does not track (and hence mask) physiologically significant parameter events, such as oxygen desaturations for a Sp02 parameter to name but one example.
  • the response limiter 980 has a low pass transfer function.
  • the response limiter 980 is a slew rate limiter.
  • FIGS. 10A-B further illustrate an adaptive threshold processor 940 (FIG. 9A) having a baseline (B) 922 input and generating an adaptive threshold (AT) 942 output and a delta ( ⁇ ) 944 ancillary output according to parameter limits Ui 903, U 2 905 and Min 906, as described above.
  • the adaptive threshold (AT) 944 monotonically decreases (increases) between Ui 903 and U 2 905.
  • the delta ( ⁇ ) 944 difference between the baseline (B) 922 and the adaptive threshold (AT) 942 monotonically decreases (increases) between Min - Ui and zero.
  • the relationship between the delta ( ⁇ ) 944 and the baseline (B) 944 may be linear 550 (solid line), non-linear 560 (small-dash lines) or piecewise-linear (large-dash lines), to name a few.
  • the adaptive threshold processor 940 calculates an adaptive threshold (AT) 942 output in response to the baseline (B) 922 input according to a linear relationship.
  • the adaptive threshold processor 940 calculates the adaptive threshold (AT) 942 according to EQS. 5-6:
  • FIG. 11 illustrates the operational characteristics an adaptive alarm system 900 (FIG. 9A) having parameter limits Min 1112, U-, 1114 and U 2 1116 and an alarm responsive to a baseline (B) 1122, 1132, 1142; an adaptive threshold (AT) 1128, 1 138, 1148; and a corresponding ⁇ 1126, 1136, 1146 according to EQS. 5-6, above.
  • a physiological parameter 11 10 is graphed versus time 1190 for various time segments ti , t 2 , t 3 1 192-1196.
  • the parameter range (PR) 1150 is:
  • PR U 2 -Min (7) and the adaptive threshold range (ATR) 1160 is:
  • a parameter segment 1120 has a baseline (B) 1122 at about Min 1112.
  • ⁇ 1126 Ui-Min
  • the adaptive threshold (AT) 1128 is at about U-i 1114. Accordingly, a transient 1124 having a size less than ⁇ 1126 does not trigger the alarm 912 (FIG. 9A).
  • a parameter segment 1130 has a baseline (B) 1132 at about U-i 1114. As such, ⁇ 1136 is less than UrMin and the adaptive threshold (AT) 1 138 is between Ui and U 2 . Accordingly, a smaller transient 1134 will trigger the alarm as compared to a transient 1124 in the first time segment.
  • a parameter segment 1140 has a baseline (B) 1142 at about U 2 1116. As such, ⁇ 1146 is about zero and the adaptive threshold (AT) 1148 is at about U 2 .
  • the behavior of the alarm threshold AT 1128, 1138, 1148 advantageously adapts to higher or lower baseline values so as to increase or decrease the size of positive transients that trigger or do not trigger the alarm 912 (FIG. 9A).
  • FIGS. 12A-B illustrate an adaptive alarm system 1200 embodiment having lower limits l_i, L 2 1203, such as described with respect to FIGS. 4A-B above, or upper limits U-i, U 2 1205 such as described with respect to FIGS. 9A-B above, or both.
  • the adaptive alarm system 1200 has parameter 1201 , lower limit 1203 and upper limit 1205 inputs and generates a corresponding alarm 1212 output.
  • the parameter 1201 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples.
  • the adaptive alarm system 1200 has an alarm generator 1210, a baseline processor 1220 and an adaptive threshold processor 1240.
  • the alarm generator 1210 has parameter 1201 and adaptive threshold (AT) 1242 inputs and generates the alarm 1212 output accordingly.
  • a baseline processor 1220 has the parameter 1201 input and generates one or more parameter baseline 1222 outputs.
  • the baseline processor 1220 is described in detail with respect to FIG. 12B, below.
  • An adaptive threshold processor 1240 has parameter baseline 1222, lower limit L 2 1203 and upper limit U-i, U 2 1205 inputs and generates lower and upper adaptive threshold AT / , AT U 1242 outputs.
  • the adaptive threshold processor 1240 also generates ancillary upper and lower delta 1244 outputs.
  • the adaptive threshold processor 1240 is described in detail with respect to FIGS. 13A-E, below.
  • L 2 1203 and U-i, U 2 1205 may correspond to conventional fixed alarm thresholds with an alarm delay (L-i, Ui) and without an alarm delay (L 2 , U 2 ).
  • these limits 1203, 1205 do not determine an alarm threshold per se, but are reference levels for determining lower and upper adaptive thresholds AT / , AT u 1242.
  • the alarm 1212 output is triggered when the parameter 1201 input falls below AT / 1242 and ends when the parameter 1201 input rises above AT / 1242 or the alarm is otherwise cancelled.
  • the alarm 1212 output is triggered when the parameter 1201 input rises above ATu 1242 and ends when the parameter 1201 input falls below AT 0 1242 or the alarm is otherwise cancelled.
  • the alarm 1212 output is triggered after a time delay (TD), which may be fixed or variable.
  • the time delay (TD) is a function of the adaptive thresholds (AT / , ATu) 1242.
  • the time delay (TD) is zero when the lower adaptive threshold (AT / ) 1242 is at the second lower limit (L 2 ) 1203 or when the upper adaptive alarm threshold ATu 1242 is at the second upper limit (U 2 ) 1205.
  • a baseline processor 1220 embodiment has a sliding window 1250, an over-bias calculator 1260, an under-bias calculator 1265, trend calculators 1270 and response limiters 1280.
  • the sliding window 1250 inputs the parameter 1201 and outputs a time segment 1252 of the parameter 1201.
  • each window incorporates a five minute span of parameter 1201 values.
  • the over-bias calculator 1260 advantageously provides an upward shift in the lower baseline (B / ) 1282 for an additional margin of error over missed lower true alarms. That is, a lower baseline (B / ) 1282 is generated that tracks a higher-than-average range of parameter values, effectively raising the lower adaptive threshold AT / slightly above a threshold calculated based upon a true parameter average.
  • the over-bias calculator 1260 rejects a lower range of parameter values from each time segment 1252 of the sliding window 1250 so as to generate an over-biased time segment 1262.
  • the under-bias calculator 1265 advantageously provides a downward shift in the upper baseline (B u ) 1287 for an additional margin of error over missed upper true alarms. That is, an upper baseline (Bu) 1287 is generated that tracks a lower-than-average range of parameter values, effectively lowering the upper adaptive threshold ATvo slightly below a threshold calculated based upon a true parameter average.
  • the under- bias calculator 1267 rejects an upper range of parameter values from each time segment 1252 of the sliding window 1250 so as to generate an under-biased time segment 1267.
  • the trend calculator 1270 outputs an over- biased trend 1272 of the remaining higher range of parameter values in each over- biased segment 1262. Further, the trend calculator 1270 outputs an under-biased trend 1277 of the remaining lower range of parameter values in each under-biased segment 1267.
  • the biased trends 1272, 1277 are each an average of the values in the corresponding biased time segments 1262, 1267. In other embodiments, the biased trends 1272, 1277 are each a median or mode of the values in the corresponding biased time segments 1262, 1267.
  • the response limiter 1280 advantageously limits the extent to which the baseline 1222 outputs track the biased trends 1272, 1277.
  • the baseline 1222 outputs track only relatively longer-lived transitions of the parameter 1201 , but do not track (and hence mask) physiologically significant parameter events.
  • the response limiter 1280 has a low pass transfer function.
  • the response limiter 1280 is a slew rate limiter.
  • FIGS. 13A-E illustrate parameter (P) operating ranges and ideal ranges in view of both lower and upper parameter limits.
  • the adaptive threshold (AT / ) 1318 monotonically decreases (increases) between Li and L 2 .
  • the delta ( ⁇ / ) 1319 difference between the baseline (B / ) 1317 and the adaptive threshold (AT / ) 1318 monotonically decreases (increases) between Max - l_i and 0.
  • the parameter (P) operating range is bounded by the overlapping regions of 13A and 13B 1330 having an upper bound of U 2 and a lower bound of L 2 .
  • L-i, L 2 are the upper and lower limits of the lower adaptive alarm threshold AT / ; and U 2 , U-i are the upper and lower limits of the upper adaptive alarm threshold AT ⁇ .
  • FIG. 13D illustrates parameter (P) versus the overlapping independent delta domains F u , F/ for upper and lower baselines B u , Br, adaptive thresholds ATu, AT / and deltas ⁇ ⁇ , ⁇ / , based upon FIGS 13A-C.
  • FIG. 13E illustrates parameter (P) versus the overlapping independent delta domains Fu, F / (reversed); for upper and lower baselines B ⁇ , Br, adaptive thresholds AT ⁇ , AT / and deltas A u , ⁇ / ,
  • FIGS. 14A-B illustrate the operational characteristics an adaptive alarm system 1200 (FIGS. 12A-B) having upper limits U-i , U 2 1412, 1414 and lower limits I_2 1422, 1424.
  • An alarm 1212 (FIG. 12A-B) having upper limits U-i , U 2 1412, 1414 and lower limits I_2 1422, 1424.
  • An alarm 1212 (FIG. 12A-B) having upper limits U-i , U 2 1412, 1414 and lower limits I_2 1422, 1424.
  • An alarm 1212 (FIG.
  • the 12A output is responsive to a baseline (B) 1432, 1442, 1452, 1462; an upper delta ( ⁇ instruct) 1437, 1447, 1457, 1467; and a corresponding upper adaptive threshold (AT U ) 1439, 1449, 1459, 1469, according to EQS. 9-10, above.
  • the alarm 1212 (FIG. 12A) output is responsive to a lower delta ( ⁇ / ) 1436, 1446, 1456, 1466 and a corresponding lower adaptive threshold (AT,) 1438, 1448, 1458, 1468, according to EQS. 1 1-12, above.
  • a physiological parameter 1410 is graphed versus time 1490 for various time segments t-i , t 2 , t 3 , t 4 1492-1498.
  • the parameter range (PR) 1480 is:
  • a parameter segment 1430 has a baseline (B) 1432 at about U 2 1414.
  • ⁇ / 1436 U2-L1 ;
  • a u 1437 0;
  • AT / 1438 l_i ;
  • ⁇ legal 1439 U 2 .
  • does not trigger an alarm.
  • a parameter segment 1440 has a baseline (B) 1442 less than U 2 .
  • ⁇ / 1446 is less than U-1-L1 and the adaptive threshold (AT ⁇ ) 1447 is between Ui and U 2 . Accordingly, a smaller negative transient 1444 will trigger the alarm as compared to the negative transient 1434 in the first time segment 1430.
  • a parameter segment 1450 has a baseline (B) 1452 less than Ui 1412.
  • B the baseline 1452
  • a smaller negative transient 1454 will trigger the alarm as compared to the negative transient 1444 in the second time segment 1440.
  • a larger positive transient 1455 is needed to trigger the alarm as compared to the positive transient 1445 in the second time segment 1440.
  • a parameter segment 1460 has a baseline (B) 1462 at about L 2 1424.

Abstract

An adaptive alarm system is responsive to a physiological parameter so as to generate an alarm threshold that adapts to baseline drift in the parameter and reduce false alarms without a corresponding increase in missed true alarms. The adaptive alarm system has a parameter derived from a physiological measurement system using a sensor in communication with a living being. A baseline processor calculates a parameter baseline from a parameter trend. Parameter limits specify an allowable range of the parameter. An adaptive threshold processor calculates an adaptive threshold from the parameter baseline and the parameter limits. An alarm generator is responsive to the parameter and the adaptive threshold so as to trigger an alarm indicative of the parameter crossing the adaptive threshold. The adaptive threshold is responsive to the parameter baseline so as to increase in value as the parameter baseline drifts to a higher parameter value and to decrease in value as the parameter baseline drifts to a lower parameter value.

Description

MASIMO.780WO PATENT
ADAPTIVE ALARM SYSTEM
PRIORITY CLAIM TO RELATED PROVISIONAL APPLICATIONS
[0001] The present application claims priority benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Serial No. 61/309,419, filed March 01 , 2010 titled Adaptive Threshold Alarm System; and U.S. Provisional Patent Application Serial No. 61/328,630, filed April 27, 2010 titled Adaptive Alarm System; all of the above-cited provisional patent applications are hereby incorporated by reference herein.
BACKGROUND OF THE INVENTION
[0002] Pulse oximetry systems for measuring constituents of circulating blood have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios. A pulse oximetry system generally includes an optical sensor applied to a patient, a monitor for processing sensor signals and displaying results and a patient cable electrically interconnecting the sensor and the monitor. A pulse oximetry sensor has light emitting diodes (LEDs), typically one emitting a red wavelength and one emitting an infrared (IR) wavelength, and a photodiode detector. The emitters and detector are typically attached to a finger, and the patient cable transmits drive signals to these emitters from the monitor. The emitters respond to the drive signals to transmit light into the fleshy fingertip tissue. The detector generates a signal responsive to the emitted light after attenuation by pulsatile blood flow within the fingertip. The patient cable transmits the detector signal to the monitor, which processes the signal to provide a numerical readout of physiological parameters such as oxygen saturation (SpO2) and pulse rate. SUMMARY OF THE INVENTION
[0003] Conventional pulse oximetry assumes that arterial blood is the only pulsatile blood flow in the measurement site. During patient motion, venous blood also moves, which causes errors in conventional pulse oximetry. Advanced pulse oximetry processes the venous blood signal so as to report true arterial oxygen saturation and pulse rate under conditions of patient movement. Advanced pulse oximetry also functions under conditions of low perfusion (small signal amplitude), intense ambient light (artificial or sunlight) and electrosurgical instrument interference, which are scenarios where conventional pulse oximetry tends to fail.
[0004] Advanced pulse oximetry is described in at least U.S. Pat. Nos. 6,770,028; 6,658,276; 6,157,850; 6,002,952; 5,769,785 and 5,758,644, which are assigned to Masimo Corporation ("Masimo") of Irvine, California and are incorporated by reference herein. Corresponding low noise optical sensors are disclosed in at least U.S. Pat. Nos. 6,985,764; 6,813,511 ; 6,792,300; 6,256,523; 6,088,607; 5,782,757 and 5,638,818, which are also assigned to Masimo and are also incorporated by reference herein. Advanced pulse oximetry systems including Masimo SET® low noise optical sensors and read through motion pulse oximetry monitors for measuring SpO2, pulse rate (PR) and perfusion index (PI) are available from Masimo. Optical sensors include any of Masimo LNOP®, LNCS®, SofTouch™ and Blue™ adhesive or reusable sensors. Pulse oximetry monitors include any of Masimo Rad-8®, Rad-5®, Rad®-5v or SatShare® monitors.
[0005] Advanced blood parameter measurement systems are described in at least U.S. Pat. 7,647,083, filed March 1 , 2006, titled Multiple Wavelength Sensor Equalization; U.S. Pat. No. 7,729,733, filed March 1 , 2006, titled Configurable Physiological Measurement System; U.S. Pat. Pub. No. 2006/0211925, filed March 1 , 2006, titled Physiological Parameter Confidence Measure and U.S. Pat. Pub. No. 2006/0238358, filed March 1 , 2006, titled Noninvasive Multi-Parameter Patient Monitor, all assigned to Masimo Laboratories, Irvine, CA (Masimo Labs) and all incorporated by reference herein. An advanced parameter measurement system that includes acoustic monitoring is described in U.S. Pat. Pub. No. 2010/0274099, filed December 21 , 2009, titled Acoustic Sensor Assembly, assigned to Masimo and incorporated by reference herein.
[0006] Advanced blood parameter measurement systems include Masimo Rainbow® SET, which provides measurements in addition to Sp02, such as total hemoglobin (SpHb™), oxygen content (SpOC™), methemoglobin (SpMet®), carboxyhemoglobin (SpCO®) and PVI® . Advanced blood parameter sensors include Masimo Rainbow® adhesive, ReSposable™ and reusable sensors. Advanced blood parameter monitors include Masimo Radical-7™, Rad-87™ and Rad-57™ monitors, all available from Masimo. Advanced parameter measurement systems may also include acoustic monitoring such as acoustic respiration rate (RRa™) using a Rainbow Acoustic Sensor™ and Rad-87™ monitor, available from Masimo. Such advanced pulse oximeters, low noise sensors and advanced physiological parameter measurement systems have also gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios.
[0007] FIGS. 1-3 illustrate problems and issues associated with physiological parameter measurement systems having fixed threshold alarm schemas. FIG. 1 illustrates a lower-limit, fixed-threshold alarm schema with respect to an oxygen saturation (Sp02) parameter. Two alarm thresholds, DL (delay) and NDL (no delay), are defined. If oxygen saturation falls below DL for a time delay greater than TD, an alarm is triggered. If oxygen saturation falls below NDL an alarm is immediately triggered. DL 120 is typically set around or somewhat above 90% oxygen saturation and ND|_ 130 is typically set at 5% to 10% below DL. For example, say a person's oxygen saturation 110 drops below DL 120 at t = ti 162 and stays below DL for at least a time delay TD 163. This triggers a delayed alarm 140 at t = t2 164, where t2 = ti+ TD. The alarm 140 remains active until oxygen saturation 110 rises above DL 120 at t = t3 166. As another example, say that oxygen saturation 1 10 then drops below ND|_ 130, which triggers an immediate alarm 150 at t = t4 168. The alarm 150 remains active until oxygen saturation 110 rises above DL 120 at t = t5 169. [0008] FIG. 2 illustrates an upper-limit, fixed-threshold alarm schema with respect to an oxygen saturation (Sp02) parameter. This alarm scenario is particularly applicable to the avoidance of ROP (retinopathy of prematurity). Again, two alarm thresholds, Du (delay) and NDu (no delay), are defined. Du 220 might be set at or around 85% oxygen saturation and NDu 230 might be set at or around 90% oxygen saturation. For example, a neonate's oxygen saturation 210 rises above Du 220 at t = ti 262 and stays above Du for at least a time delay TD 263. This triggers a delayed alarm 240 at t = t2 264, where t2 = ti+ TD. The alarm 240 remains active until oxygen saturation 210 falls below Du 220 at t = t3 166. Oxygen saturation 210 then rises above NDu 230, which triggers an immediate alarm 250 at t = U 268. The alarm 250 remains active until oxygen saturation 210 falls below Du 220 at t = t5 269.
[0009] FIG. 3 illustrates a baseline drift problem with the fixed threshold alarm schema described above. A person's oxygen saturation is plotted on an oxygen saturation (SpO2) versus time graph 300. In particular, during a first time interval T1 362, a person has an oxygen saturation 310 with a relatively stable "baseline" 312 punctuated by a shallow, transient desaturation event 314. This scenario may occur after the person has been on oxygen so that baseline oxygen saturation is near 100%. Accordingly, with a fixed threshold alarm 330 set at, say, 90%, the transient event 314 does not trigger a nuisance alarm. However, the effects of oxygen treatments wear off over time and oxygen saturation levels drift downward 350. In particular, during a second time interval T2 364, a person has an oxygen saturation 320 with a relatively stable baseline 322. The later baseline 322 is established at a substantially lower oxygen saturation than the earlier baseline 312. In this scenario, a shallow, transient desaturation event 324 now exceeds the alarm threshold 330 and results in a nuisance alarm. After many such nuisance alarms, a caregiver may lower the alarm threshold 330 to unsafe levels or turn off alarms altogether, significantly hampering the effectiveness of monitoring oxygen saturation. [0010] A fixed threshold alarm schema is described above with respect to an oxygen saturation parameter, such as derived from a pulse oximeter. However, problematic fixed threshold alarm behavior may be exhibited in a variety of parameter measurement systems that calculate physiological parameters related to circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine or reproductive systems, such as the circulatory and respiratory parameters cited above, as but a few examples.
[0011] An adaptive alarm system, as described in detail below, advantageously provides an adaptive threshold alarm to solve false alarm and missed true alarm problems associated with baseline drift among other issues. For example, for a lower limit embodiment, an adaptive alarm system adjusts an alarm threshold downwards when a parameter baseline is established at lower values. Likewise, for an upper limit embodiment, the adaptive alarm system adjusts an alarm threshold upwards in accordance with baseline drift so as to avoid nuisance alarms. In an embodiment, the rate of baseline movement is limited so as to avoid masking of transients. In an embodiment, the baseline is established along upper or lower portions of a parameter envelop so as to provide a margin of safety in lower limit or upper limit systems, respectively.
[0012] One aspect of an adaptive alarm system is responsive to a physiological parameter so as to generate an alarm threshold that adapts to baseline drift in the parameter and reduce false alarms without a corresponding increase in missed true alarms. The adaptive alarm system has a parameter derived from a physiological measurement system using a sensor in communication with a living being. A baseline processor calculates a parameter baseline from an average value of the parameter. Parameter limits specify an allowable range of the parameter. An adaptive threshold processor calculates an adaptive threshold from the parameter baseline and the parameter limits. An alarm generator is responsive to the parameter and the adaptive threshold so as to trigger an alarm indicative of the parameter crossing the adaptive threshold. The adaptive threshold is responsive to the parameter baseline so as to increase in value as the parameter baseline drifts to a higher parameter value and to decrease in value as the parameter baseline drifts to a lower parameter value.
[0013] In various embodiments, the baseline processor has a sliding window that identifies a time slice of parameter values. A trend calculator determines a trend from an average of the parameter values in the time slice. A response limiter tracks only the relatively long-term transitions of the trend. A bias calculator deletes the highest parameter values in the time slice or the lowest parameter values in the time slice so as to adjust the baseline to either a lower value or a higher value, respectively. The adaptive threshold becomes less response to baseline drift as the baseline approaches a predefined parameter limit. A first adaptive threshold is responsive to lower parameter limits and a second adaptive threshold is responsive to upper parameter limits. The alarm generator is responsive to both positive and negative transients from the baseline according to the first adaptive threshold and the second adaptive threshold. The first adaptive threshold is increasingly responsive to negative transients and the second adaptive threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.
[0014] Another aspect of an adaptive alarm system measures a physiological parameter, establishes a baseline for the parameter, adjusts an alarm threshold according to drift of the baseline and triggers an alarm in response to the parameter measurement crossing the alarm threshold. In various embodiments, the baseline is established by biasing a segment of the parameter, calculating a biased trend from the biased segment and restricting the transient response of the biased trend. The alarm threshold is adjusted by setting a parameter limit and calculating a delta difference between the alarm threshold and the baseline as a linear function of the baseline according to the parameter limit. The delta difference is calculated by decreasing delta as the baseline drifts toward the parameter limit and increasing delta as the baseline drifts away from the parameter limit. A parameter limit is set by selecting a first parameter limit in relation to a delayed alarm and selecting a second parameter limit in relation to an un-delayed alarm. A segment of the parameter is biased by windowing the parameter measurements, removing a lower value portion of the windowed parameter measurements and averaging a remaining portion of the windowed parameter measurements. An upper delta difference between an upper alarm threshold and the baseline is calculated and a lower delta difference between a lower alarm threshold and the baseline is calculated.
[0015] A further aspect of an adaptive alarm system has a baseline processor that inputs a parameter and outputs a baseline according to a trend of the parameter. An adaptive threshold processor establishes an alarm threshold at a delta difference from the baseline. An alarm generator triggers an alarm based upon a parameter transient from the baseline crossing the alarm threshold. In various embodiments, a trend calculator outputs a biased trend and the baseline is responsive to the biased trend so as to reduce the size of a transient that triggers the alarm. A response limiter reduces baseline movement due to parameter transients. The adaptive threshold processor establishes a lower alarm threshold below the baseline and an upper alarm threshold above the baseline so that the alarm generator is responsive to both positive and negative transients from the baseline. The baseline processor establishes a lower baseline biased above the parameter trend and an upper baseline biased below the parameter trend. The lower alarm threshold is increasingly responsive to negative transients and the upper alarm threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.
DESCRIPTION OF THE DRAWINGS
[0016] FIGS. 1-3 are exemplar graphs illustrating problems and issues associated with physiological parameter measurement systems having fixed threshold alarm schemas;
[0017] FIGS. 4A-B are general block diagrams of an adaptive alarm system having lower parameter limits;
[0018] FIGS. 5A-B are a graph of a physiological parameter versus delta space and a graph of delta versus baseline, respectively, illustrating the relationship between a baseline, a lower-limit adaptive threshold and a variable difference delta between the baseline and the adaptive threshold;
[0019] FIG. 6 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having a lower-limit adaptive threshold;
[0020] FIG. 7 is a graph of oxygen saturation versus time illustrating a baseline for determining an adaptive threshold;
[0021] FIG. 8 is a graph of oxygen saturation versus time comparing adaptive- threshold alarm performance with fixed-threshold alarm performance;
[0022] FIGS. 9A-B are general block diagrams of an adaptive alarm system having upper parameter limits;
[0023] FIGS. 10A-B are a graph of a physiological parameter versus delta space and a graph of delta versus baseline, respectively, illustrating the relationship between a baseline, an upper-limit adaptive threshold and a variable delta difference between the baseline and the adaptive threshold;
[0024] FIG. 11 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having an upper-limit adaptive threshold;
[0025] FIGS. 12A-B are general block diagrams of an adaptive alarm system having both lower alarm limits and upper alarm limits;
[0026] FIGS. 13A-E are physiological parameter versus delta space graphs illustrating a lower-limit adaptive threshold, an upper-limit adaptive threshold, and a combined lower- and upper-limit adaptive threshold in various delta spaces; and
[0027] FIG. 14 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having both lower and upper alarm limits. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0028] FIGS. 4A-B illustrate an adaptive alarm system 400 embodiment having lower parameter limits l_i and l_2. As shown in FIG. 4A, the adaptive alarm system 400 has parameter 401 , first limit (L-i) 403, second limit (L2) 405 and maximum parameter value (Max) 406 inputs and generates a corresponding alarm 412 output. The parameter 401 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples. The adaptive alarm system 400 has an alarm generator 410, a baseline processor 420, and an adaptive threshold processor 440. The alarm generator 410 has parameter 401 and adaptive threshold (AT) 442 inputs and generates the alarm 412 output accordingly. A baseline processor 420 has the parameter 401 input and generates a parameter baseline (B) 422 output. The baseline processor 420, is described in detail with respect to FIG. 4B, below. An adaptive threshold processor 440 has parameter baseline (B) 422, Li 403, L2 405 and Max 406 inputs and generates the adaptive threshold (AT) 442. The adaptive threshold processor 440 is described in detail with respect to FIGS. 5A-B, below.
[0029] As shown in FIG. 4A, in an embodiment U 403 and L2 405 may correspond to conventional fixed alarm thresholds with and without an alarm time delay, respectively. For an adaptive threshold schema, however, l_i 403 and L2 405 do not determine an alarm threshold per se, but are reference levels for determining an adaptive threshold (AT) 442. In an embodiment, l_i 403 is an upper limit of the adaptive alarm threshold AT when the baseline is near the maximum parameter value (Max), and L2 405 is a lower limit of the adaptive alarm threshold, as described in detail with respect to FIGS. 5A-B, below. In an exemplar embodiment when the parameter is oxygen saturation, U 403 is set at or around 90% and L2 405 is set at 5 to 10% below U, i.e. at 85% to 80% oxygen saturation. Many other L-i and L2 values may be used for an adaptive threshold schema as described herein.
[0030] Also shown in FIG. 4A, in an embodiment the alarm 412 output is triggered when the parameter 401 input falls below AT 442 and ends when the parameter 401 input rises above AT 442 or is otherwise cancelled. In an embodiment, the alarm 412 output is triggered after a time delay (TD), which may be fixed or variable. In an embodiment, the time delay (TD) is a function of the adaptive threshold (AT) 442. In an embodiment, the time delay (TD) is zero when the adaptive threshold (AT) is at the second lower limit (L2) 405.
[0031] As shown in FIG. 4B, a baseline processor 420 embodiment has a sliding window 450, a bias calculator 460, a trend calculator 470 and a response limiter 480. The sliding window 450 inputs the parameter 401 and outputs a time segment 452 of the parameter 401. In an embodiment, each window incorporates a five minute span of parameter values. The bias calculator 460 advantageously provides an upward shift in the baseline (B) 422 for an additional margin of error over missed true alarms. That is, a baseline 422 is generated that tracks a higher-than-average range of parameter values, effectively raising the adaptive threshold AT slightly above a threshold calculated based upon a true parameter average, as shown and described in detail with respect to FIGS. 7-8, below. In an embodiment, the bias calculator 460 rejects a lower range of parameter values from each time segment 452 from the sliding window so as to generate a biased time segment 462.
[0032] Also shown in FIG. 4B, the trend calculator 470 outputs a biased trend 472 of the remaining higher range of parameter values in each biased segment 462. In an embodiment, the biased trend 462 is an average of the values in the biased time segment 462. In other embodiments, the biased trend 462 is a median or mode of the values in the biased time segment 462. The response limiter 480 advantageously limits the extent to which the baseline 422 output tracks the biased trend 472. Accordingly, the baseline 422 tracks only relatively longer-lived transitions of the parameter, but does not track (and hence mask) physiologically significant parameter events, such as oxygen desaturations for a Sp02 parameter to name but one example. In an embodiment, the response limiter 480 has a low pass transfer function. In an embodiment, the response limiter 480 is a slew rate limiter. [0033] FIGS. 5A-B further illustrate an adaptive threshold processor 440 (FIG. 4A) having a baseline (B) 422 input and generating an adaptive threshold (AT) 442 output and a delta (Δ) 444 ancillary output according to parameter limits Li 403, L2 405 and Max 406, as described above. As shown in FIG. 5A, as the baseline (B) 422 decreases (increases) the adaptive threshold (AT) 444 monotonically decreases (increases) between Li 403 and L2 405. Further, as the baseline (B) 422 decreases (increases) the delta (Δ) 444 difference between the baseline (B) 422 and the adaptive threshold (AT) 442 monotonically decreases (increases) between Max - Li and zero.
[0034] As shown in FIG. 5B, the relationship between the delta (Δ) 444 and the baseline (B) 444 may be linear 550 (solid line), non-linear 560 (small-dash lines) or piecewise-linear (large-dash lines), to name a few. In an embodiment, the adaptive threshold processor 440 (FIG. 4A) calculates an adaptive threshold (AT) 442 output in response to the baseline (B) 422 input according to a linear relationship. In a linear embodiment, the adaptive threshold processor 440 (FIG. 4A) calculates the adaptive threshold (AT) 442 according to EQS. 1-2:
Figure imgf000012_0001
AT = B - A (2) where Δ = Max-Li @ B = Max; Δ = 0 @ B = L2
and where AT = Li @ B = Max; AT = L2 @ B = L2) accordingly.
[0035] FIG. 6 illustrates the operational characteristics an adaptive alarm system 400 (FIG. 4A) having parameter limits Max 612, U 614 and L2 616 and an alarm responsive to a baseline (B) 622, 632, 642; an adaptive threshold (AT) 628, 638, 648; and a corresponding Δ 626, 636, 646 according to EQS. 1-2, above. In particular, a physiological parameter 610 is graphed versus time 690 for various time segments t-i, t2, t3 692-696. The parameter range (PR) 650 is:
PR = Max-L2 (3) and the adaptive threshold range (ATR) 660 is:
ATR = Ll -L2 (4)
[0036] As shown in FIG. 6, during a first time period ti 692, a parameter segment 620 has a baseline (B) 622 at about Max 612. As such, Δ 626 = Max-U and the adaptive threshold (AT) 628 is at about Li 614. Accordingly, a transient 624 having a size less than Δ 626 does not trigger the alarm 412 (FIG. 4A).
[0037] Also shown in FIG. 6, during a second time period t2 694, a parameter segment 630 has a baseline (B) 632 at about Li 614. As such, Δ 636 is less than Max-L_i and the adaptive threshold (AT) 638 is between L and L2. Accordingly, a smaller transient 634 will trigger the alarm as compared to a transient 624 in the first time segment.
[0038] Further shown in FIG. 6, during a third time period t3 696, a parameter segment 640 has a baseline (B) 642 at about L2 616. As such, Δ 646 is about zero and the adaptive threshold (AT) 648 is at about L2. Accordingly, even a small negative transient will trigger the alarm. As such, the behavior of the alarm threshold AT 628, 638, 648 advantageously adapts to higher or lower baseline values so as to increase or decrease the size of negative transients that trigger or do not trigger the alarm 412 (FIG. 4A).
[0039] FIG. 7 is a parameter versus time graph 700 illustrating the characteristics of an adaptive alarm system 400 (FIGS. 4A-B), as described with respect to FIGS. 4-6, above, where the parameter is oxygen saturation (Sp02). The graph 700 has a Sp02 trace 710 and a superimposed baseline trace 720. The graph 700 also delineates tracking periods 730, where the baseline 720 follows the upper portions of Sp02 values, and lagging periods 740, where the baseline 720 does not follow transient Sp02 events. The tracking time periods 730 illustrate that the baseline 720 advantageously tracks at the higher range of Sp02 values 710 during relatively stable (flat) periods, as described above. Lagging time periods 740 illustrate that the baseline 720 is advantageously limited in response to transient desaturation events so that significant desaturations fall below an adaptive threshold (not shown) and trigger an alarm accordingly.
[0040] FIG. 8 is a parameter versus time graph 800 illustrating characteristics of an adaptive alarm system 400 (FIGS. 4A-B), as described with respect to FIGS. 4-6, above, where the parameter is oxygen saturation (Sp02). Vertical axis (Sp02) resolution is 1%. The time interval 801 between vertical hash marks is five minutes. The graph 800 has a Sp02 trace 810 and a baseline trace 820. The graph 800 also has a fixed threshold trace 830, a first adaptive threshold (AT) trace 840 and a second AT trace 850. The graph 800 further has a fixed threshold alarm trace 860, a first adaptive threshold alarm trace 870 and a second adaptive threshold alarm trace 880. In this example, l_i is 90% and L2 is 85% for the first AT trace 840 and first AT alarm trace 870. L2 is 80% for a second AT trace 850 and a second AT alarm trace 880. The fixed threshold 830 results in many nuisance alarms 860. By comparison, the adaptive threshold alarm with L2 = 85% has just one time interval of alarms 872 during a roughly 6% desaturation period (from 92% to 86%). The adaptive threshold alarm with L2=80%, has no alarms during the 1 hour 25 minute monitoring period.
[0041] FIGS. 9A-B illustrate an adaptive alarm system 900 embodiment having upper parameter limits Ui and U2. As shown in FIG. 9A, the adaptive alarm system 900 has parameter 901 , first limit (Ui) 903, second limit (U2) 905 and minimum parameter value (Min) 906 inputs and generates a corresponding alarm 912 output. The parameter 901 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples. The adaptive alarm system 900 has an alarm generator 910, a baseline processor 920, and an adaptive threshold processor 940. The alarm generator 910 has parameter 901 and adaptive threshold (AT) 942 inputs and generates the alarm 912 output accordingly. A baseline processor 920 has the parameter 901 input and generates a parameter baseline (B) 922 output. The baseline processor 920, is described in detail with respect to FIG. 9B, below. An adaptive threshold processor 940 has parameter baseline (B) 922, Ui 903, U2 905 and Min 906 inputs and generates the adaptive threshold (AT) 942. The adaptive threshold processor 940 is described in detail with respect to FIGS. 10A-B, below.
[0042] As shown in FIG. 9A, in an embodiment Ui 903 and U2 905 may correspond to conventional fixed alarm thresholds with and without an alarm time delay, respectively. For an adaptive threshold schema, however, Ui 903 and U2 905 do not determine an alarm threshold per se, but are reference levels for determining an adaptive threshold (AT) 942. In an embodiment, Ui 903 is a lower limit of the adaptive alarm threshold AT when the baseline is near the minimum parameter value (Min), and U2 905 is an upper limit of the adaptive alarm threshold, as described in detail with respect to FIGS. 10A-B, below. In an exemplar embodiment when the parameter is oxygen saturation, Ui 903 is set at or around 85% and U2 905 is set at or around 90% oxygen saturation. Many other Ui and U2 values may be used for an adaptive threshold schema as described herein.
[0043] Also shown in FIG. 9A, in an embodiment the alarm 912 output is triggered when the parameter 901 input rises above AT 942 and ends when the parameter 901 input falls below AT 942 or is otherwise cancelled. In an embodiment, the alarm 912 output is triggered after a time delay (TD), which may be fixed or variable. In an embodiment, the time delay (TD) is a function of the adaptive threshold (AT) 942. In an embodiment, the time delay (TD) is zero when the adaptive threshold (AT) is at the second upper limit (U2) 905.
[0044] As shown in FIG. 9B, a baseline processor 920 embodiment has a sliding window 950, a bias calculator 960, a trend calculator 970 and a response limiter 980. The sliding window 950 inputs the parameter 901 and outputs a time segment 952 of the parameter 901. In an embodiment, each window incorporates a five minute span of parameter values. The bias calculator 960 advantageously provides a downward shift in the baseline (B) 922 for an additional margin of error over missed true alarms. That is, a baseline 922 is generated that tracks a lower-than- average range of parameter values, effectively lowering the adaptive threshold AT slightly below a threshold calculated based upon a true parameter average. In an embodiment, the bias calculator 960 rejects an upper range of parameter values from each time segment 952 from the sliding window so as to generate a biased time segment 962.
[0045] Also shown in FIG. 9B, the trend calculator 970 outputs a biased trend 972 of the remaining lower range of parameter values in each biased segment 962. In an embodiment, the biased trend 962 is an average of the values in the biased time segment 962. In other embodiments, the biased trend 962 is a median or mode of the values in the biased time segment 962. The response limiter 980 advantageously limits the extent to which the baseline 922 output tracks the biased trend 972. Accordingly, the baseline 922 tracks only relatively longer-lived transitions of the parameter, but does not track (and hence mask) physiologically significant parameter events, such as oxygen desaturations for a Sp02 parameter to name but one example. In an embodiment, the response limiter 980 has a low pass transfer function. In an embodiment, the response limiter 980 is a slew rate limiter.
[0046] FIGS. 10A-B further illustrate an adaptive threshold processor 940 (FIG. 9A) having a baseline (B) 922 input and generating an adaptive threshold (AT) 942 output and a delta (Δ) 944 ancillary output according to parameter limits Ui 903, U2 905 and Min 906, as described above. As shown in FIG. 10A, as the baseline (B) 922 decreases (increases) the adaptive threshold (AT) 944 monotonically decreases (increases) between Ui 903 and U2 905. Further, as the baseline (B) 922 decreases (increases) the delta (Δ) 944 difference between the baseline (B) 922 and the adaptive threshold (AT) 942 monotonically decreases (increases) between Min - Ui and zero.
[0047] As shown in FIG. 10B, the relationship between the delta (Δ) 944 and the baseline (B) 944 may be linear 550 (solid line), non-linear 560 (small-dash lines) or piecewise-linear (large-dash lines), to name a few. In an embodiment, the adaptive threshold processor 940 (FIG. 9A) calculates an adaptive threshold (AT) 942 output in response to the baseline (B) 922 input according to a linear relationship. In a linear embodiment, the adaptive threshold processor 940 (FIG. 9A) calculates the adaptive threshold (AT) 942 according to EQS. 5-6:
Figure imgf000017_0001
AT = B + A (6) where Δ = U Min @ B = Min; Δ = 0 @ B = U2
and where AT = Ui @ B = Min; AT = U2 @ B = U2, accordingly.
[0048] FIG. 11 illustrates the operational characteristics an adaptive alarm system 900 (FIG. 9A) having parameter limits Min 1112, U-, 1114 and U2 1116 and an alarm responsive to a baseline (B) 1122, 1132, 1142; an adaptive threshold (AT) 1128, 1 138, 1148; and a corresponding Δ 1126, 1136, 1146 according to EQS. 5-6, above. In particular, a physiological parameter 11 10 is graphed versus time 1190 for various time segments ti , t2, t3 1 192-1196. The parameter range (PR) 1150 is:
PR = U2 -Min (7) and the adaptive threshold range (ATR) 1160 is:
ATR = U2 - Ul (8)
[0049] As shown in FIG. 11 , during a first time period ti 1192, a parameter segment 1120 has a baseline (B) 1122 at about Min 1112. As such, Δ 1126 = Ui-Min and the adaptive threshold (AT) 1128 is at about U-i 1114. Accordingly, a transient 1124 having a size less than Δ 1126 does not trigger the alarm 912 (FIG. 9A).
[0050] Also shown in FIG. 11 , during a second time period t2 1194, a parameter segment 1130 has a baseline (B) 1132 at about U-i 1114. As such, Δ 1136 is less than UrMin and the adaptive threshold (AT) 1 138 is between Ui and U2. Accordingly, a smaller transient 1134 will trigger the alarm as compared to a transient 1124 in the first time segment. [0051] Further shown in FIG. 11 , during a third time period t3 1196, a parameter segment 1140 has a baseline (B) 1142 at about U2 1116. As such, Δ 1146 is about zero and the adaptive threshold (AT) 1148 is at about U2. Accordingly, even a small positive transient will trigger the alarm. As such, the behavior of the alarm threshold AT 1128, 1138, 1148 advantageously adapts to higher or lower baseline values so as to increase or decrease the size of positive transients that trigger or do not trigger the alarm 912 (FIG. 9A).
[0052] FIGS. 12A-B illustrate an adaptive alarm system 1200 embodiment having lower limits l_i, L2 1203, such as described with respect to FIGS. 4A-B above, or upper limits U-i, U2 1205 such as described with respect to FIGS. 9A-B above, or both. As shown in FIG. 12A, the adaptive alarm system 1200 has parameter 1201 , lower limit 1203 and upper limit 1205 inputs and generates a corresponding alarm 1212 output. The parameter 1201 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples. The adaptive alarm system 1200 has an alarm generator 1210, a baseline processor 1220 and an adaptive threshold processor 1240. The alarm generator 1210 has parameter 1201 and adaptive threshold (AT) 1242 inputs and generates the alarm 1212 output accordingly. A baseline processor 1220 has the parameter 1201 input and generates one or more parameter baseline 1222 outputs. The baseline processor 1220, is described in detail with respect to FIG. 12B, below. An adaptive threshold processor 1240 has parameter baseline 1222, lower limit L2 1203 and upper limit U-i, U2 1205 inputs and generates lower and upper adaptive threshold AT/, ATU 1242 outputs. The adaptive threshold processor 1240 also generates ancillary upper and lower delta 1244 outputs. The adaptive threshold processor 1240 is described in detail with respect to FIGS. 13A-E, below.
[0053] As shown in FIG. 12A, in an embodiment , L2 1203 and U-i, U2 1205 may correspond to conventional fixed alarm thresholds with an alarm delay (L-i, Ui) and without an alarm delay (L2, U2). For an adaptive threshold schema, however, these limits 1203, 1205 do not determine an alarm threshold per se, but are reference levels for determining lower and upper adaptive thresholds AT/, ATu 1242. [0054] Also shown in FIG. 12A, in an embodiment the alarm 1212 output is triggered when the parameter 1201 input falls below AT/ 1242 and ends when the parameter 1201 input rises above AT/ 1242 or the alarm is otherwise cancelled. Further, the alarm 1212 output is triggered when the parameter 1201 input rises above ATu 1242 and ends when the parameter 1201 input falls below AT0 1242 or the alarm is otherwise cancelled. In an embodiment, the alarm 1212 output is triggered after a time delay (TD), which may be fixed or variable. In an embodiment, the time delay (TD) is a function of the adaptive thresholds (AT/, ATu) 1242. In an embodiment, the time delay (TD) is zero when the lower adaptive threshold (AT/) 1242 is at the second lower limit (L2) 1203 or when the upper adaptive alarm threshold ATu 1242 is at the second upper limit (U2) 1205.
[0055] As shown in FIG. 12B, a baseline processor 1220 embodiment has a sliding window 1250, an over-bias calculator 1260, an under-bias calculator 1265, trend calculators 1270 and response limiters 1280. The sliding window 1250 inputs the parameter 1201 and outputs a time segment 1252 of the parameter 1201. In an embodiment, each window incorporates a five minute span of parameter 1201 values.
[0056] Also shown in FIG. 12B, the over-bias calculator 1260 advantageously provides an upward shift in the lower baseline (B/) 1282 for an additional margin of error over missed lower true alarms. That is, a lower baseline (B/) 1282 is generated that tracks a higher-than-average range of parameter values, effectively raising the lower adaptive threshold AT/ slightly above a threshold calculated based upon a true parameter average. In an embodiment, the over-bias calculator 1260 rejects a lower range of parameter values from each time segment 1252 of the sliding window 1250 so as to generate an over-biased time segment 1262.
[0057] Further shown in FIG. 12B, the under-bias calculator 1265 advantageously provides a downward shift in the upper baseline (Bu) 1287 for an additional margin of error over missed upper true alarms. That is, an upper baseline (Bu) 1287 is generated that tracks a lower-than-average range of parameter values, effectively lowering the upper adaptive threshold AT„ slightly below a threshold calculated based upon a true parameter average. In an embodiment, the under- bias calculator 1267 rejects an upper range of parameter values from each time segment 1252 of the sliding window 1250 so as to generate an under-biased time segment 1267.
[0058] Additionally shown in FIG. 12B, the trend calculator 1270 outputs an over- biased trend 1272 of the remaining higher range of parameter values in each over- biased segment 1262. Further, the trend calculator 1270 outputs an under-biased trend 1277 of the remaining lower range of parameter values in each under-biased segment 1267. In an embodiment, the biased trends 1272, 1277 are each an average of the values in the corresponding biased time segments 1262, 1267. In other embodiments, the biased trends 1272, 1277 are each a median or mode of the values in the corresponding biased time segments 1262, 1267. The response limiter 1280 advantageously limits the extent to which the baseline 1222 outputs track the biased trends 1272, 1277. Accordingly, the baseline 1222 outputs track only relatively longer-lived transitions of the parameter 1201 , but do not track (and hence mask) physiologically significant parameter events. In an embodiment, the response limiter 1280 has a low pass transfer function. In an embodiment, the response limiter 1280 is a slew rate limiter.
[0059] FIGS. 13A-E illustrate parameter (P) operating ranges and ideal ranges in view of both lower and upper parameter limits. As shown in FIG. 13A, as the baseline (B/) 1317 decreases (increases) the adaptive threshold (AT/) 1318 monotonically decreases (increases) between Li and L2. Further, as the baseline (B/) 1317 decreases (increases) the delta (Δ/) 1319 difference between the baseline (B/) 1317 and the adaptive threshold (AT/) 1318 monotonically decreases (increases) between Max - l_i and 0.
[0060] As shown in FIG. 13B, as the baseline (B„) 1327 increases (decreases) the adaptive threshold (ATU) 1328 monotonically increases (decreases) between Ui and U2. Further, as the baseline (Bu) 1327 increases (decreases) the delta ( u) 1329 difference between the adaptive threshold (ATU) 1328 and the baseline (B„) 1327 monotonically decreases (increases) between Min - Ui and 0.
[0061] As shown in FIG. 13C, combining FIGS. 13A-B, the parameter (P) operating range is bounded by the overlapping regions of 13A and 13B 1330 having an upper bound of U2 and a lower bound of L2. In particular, L-i, L2 are the upper and lower limits of the lower adaptive alarm threshold AT/; and U2, U-i are the upper and lower limits of the upper adaptive alarm threshold AT^.
[0062] FIG. 13D illustrates parameter (P) versus the overlapping independent delta domains Fu, F/ for upper and lower baselines Bu, Br, adaptive thresholds ATu, AT/ and deltas Δυ, Δ/, based upon FIGS 13A-C. FIG. 13E illustrates parameter (P) versus the overlapping independent delta domains Fu, F/ (reversed); for upper and lower baselines B^, Br, adaptive thresholds AT^, AT/ and deltas Au, Δ/,
As shown in FIG. 13E, the equations for bi-lateral adaptive thresholds are:
Figure imgf000021_0001
ATU = B + Au (10) where Δ„ = Ui-L2 @ B = L2; and Δ„ = 0 @ B = U2; and
where ATU = Ui @ B = L2; and AT^ = U2 @ B = U2.
Further:
Figure imgf000021_0002
AT, = B - A, (12) where Δ/ = U2- @ B = U2; and Δ/ = 0 @ B = L2; and
where AT/ = l_i @ B = U2; AT/ = L2 @ B = L2.
[0063] Although shown as a linear relationship, in general:
That is, Δ| and Au can each be a linear function of B, a non-linear function of B or a piecewise linear function of B, to name a few, in a manner similar to that described with respect to FIGS. 5B and 10B, above. [0064] FIGS. 14A-B illustrate the operational characteristics an adaptive alarm system 1200 (FIGS. 12A-B) having upper limits U-i , U2 1412, 1414 and lower limits I_2 1422, 1424. An alarm 1212 (FIG. 12A) output is responsive to a baseline (B) 1432, 1442, 1452, 1462; an upper delta (Δ„) 1437, 1447, 1457, 1467; and a corresponding upper adaptive threshold (ATU) 1439, 1449, 1459, 1469, according to EQS. 9-10, above. Further, the alarm 1212 (FIG. 12A) output is responsive to a lower delta (Δ/) 1436, 1446, 1456, 1466 and a corresponding lower adaptive threshold (AT,) 1438, 1448, 1458, 1468, according to EQS. 1 1-12, above.
[0065] As shown in FIGS. 14A-B, a physiological parameter 1410 is graphed versus time 1490 for various time segments t-i , t2, t3, t4 1492-1498. The parameter range (PR) 1480 is:
PR = U2 - L2 (13) the lower adaptive threshold AT/ range is:
ATRl = L, - L2 (14) the upper adaptive threshold AT,, range is:
ATR, = U2 - U1 (15)
[0066] As shown in FIG. 14A, during a first time period ti 1492, a parameter segment 1430 has a baseline (B) 1432 at about U2 1414. As such, Δ/ 1436 = U2-L1 ; Au 1437 = 0; AT/ 1438 = l_i ; ΑΤ„ 1439 = U2. Accordingly, a negative transient 1434 having a size less than U2-L-| does not trigger an alarm.
[0067] Also shown in FIG. 14A, during a second time period t2 1494, a parameter segment 1440 has a baseline (B) 1442 less than U2. As such, Δ/ 1446 is less than U-1-L1 and the adaptive threshold (AT^) 1447 is between Ui and U2. Accordingly, a smaller negative transient 1444 will trigger the alarm as compared to the negative transient 1434 in the first time segment 1430.
[0068] Further shown in FIG. 14A, during a third time period t3 1496, a parameter segment 1450 has a baseline (B) 1452 less than Ui 1412. As such, a smaller negative transient 1454 will trigger the alarm as compared to the negative transient 1444 in the second time segment 1440. However, a larger positive transient 1455 is needed to trigger the alarm as compared to the positive transient 1445 in the second time segment 1440.
[0069] Additionally shown in FIG. 14A, during a fourth time period t4 1460, a parameter segment 1460 has a baseline (B) 1462 at about L2 1424. As such, Δ/ 1466 = 0; u 1467 = U L2; AT/ 1468 = L2; ATU 1469 = Ui. Accordingly, a positive transient 1465 having a size less than U-|-L2 does not trigger an alarm.
[0070] An adaptive alarm system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.

Claims

WHAT IS CLAIMED IS:
1. An adaptive alarm system is responsive to a physiological parameter so as to generate an alarm threshold that adapts to baseline drift in the parameter so as to reduce false alarms without a corresponding increase in missed true alarms, the adaptive alarm system comprising:
a parameter derived from a physiological measurement system having a sensor in communication with a living being;
a baseline processor that calculates a parameter baseline from an average value of the parameter;
a plurality of parameter limits that specify an allowable range of the parameter;
an adaptive threshold processor that calculates an adaptive threshold from the parameter baseline and the parameter limits;
an alarm generator responsive to the parameter and the adaptive threshold so as to trigger an alarm indicative of the parameter crossing the adaptive threshold; and
the adaptive threshold responsive to the parameter baseline so as to increase in value as the parameter baseline drifts to a higher parameter value and to decrease in value as the parameter baseline drifts to a lower parameter value.
2. The adaptive threshold alarm system according to claim 1 wherein the baseline processor comprises:
a sliding window that identifies a time slice of parameter values;
a trend calculator that determines a trend from an average of the parameter values in the time slice;
and a response limiter that tracks only the relatively long-term transitions of the trend.
3. The adaptive threshold alarm system according to claim 2 further comprising a bias calculator that deletes one of a plurality of the highest parameter values in the time slice and a plurality of the lowest parameter values in the time slice so as to adjust the baseline to one of a lower value and a higher value, respectively.
4. The adaptive threshold alarm system according to claim 3 wherein the adaptive threshold becomes less response to baseline drift as the baseline approaches a predefined parameter limit.
5. The adaptive threshold alarm system according to claim 4 wherein: a first adaptive threshold is responsive to lower parameter limits; and a second adaptive threshold responsive to upper parameter limits.
6. The adaptive threshold alarm system according to claim 5 wherein the alarm generator is responsive to both positive and negative transients from the baseline according to the first adaptive threshold and the second adaptive threshold.
7. The adaptive threshold alarm system according to claim 6 wherein the first adaptive threshold is increasingly responsive to negative transients and the second adaptive threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.
8. An adaptive alarm method comprising:
measuring a physiological parameter;
establishing a baseline for the parameter;
adjusting an alarm threshold according to drift of the baseline; and
triggering an alarm in response to the parameter measurement crossing the alarm threshold.
9. The adaptive alarm method according to claim 8 wherein establishing a baseline comprises:
biasing a segment of the parameter;
calculating a biased trend from the biased segment; and
restricting the transient response of the biased trend.
10. The adaptive threshold alarm method according to claim 9 wherein adjusting an alarm threshold comprises:
setting a parameter limit; and
calculating a delta difference between the alarm threshold and the baseline as a linear function of the baseline according to the parameter limit.
11. The adaptive threshold alarm method according to claim 10 wherein calculating a delta difference comprises:
decreasing delta as the baseline drifts toward the parameter limit; and increasing the delta as the baseline drifts away from the parameter limit.
12. The adaptive threshold alarm method according to claim 1 1 wherein setting a parameter limit comprises:
selecting a first parameter limit in relation to a delayed alarm; and
selecting a second parameter limit in relation to an un-delayed alarm.
13. The adaptive threshold alarm according to claim 12 wherein biasing a segment of the parameter comprises:
windowing the parameter measurements;
removing a lower value portion of the windowed parameter measurements; and
averaging a remaining portion of the windowed parameter measurements.
14. The adaptive threshold alarm according to claim 13 further comprising: calculating an upper delta difference between an upper alarm threshold and the baseline; and
calculating a lower delta difference between a lower alarm threshold and the baseline.
15. An adaptive alarm system comprising:
a baseline processor that inputs a parameter and outputs a baseline according to a trend of the parameter;
an adaptive threshold processor that establishes an alarm threshold at a delta difference from the baseline; and
an alarm generator triggers an alarm based upon a parameter transient from the baseline crossing the alarm threshold.
16. The adaptive alarm system according to claim 15 further comprising a trend calculator that outputs a biased trend; and
the baseline responsive to the biased trend so as to reduce the size of a transient that triggers the alarm.
17. The adaptive alarm system according to claim 16 further comprising a response limiter that reduces baseline movement due to parameter transients.
18. The adaptive alarm system according to claim 17 wherein the adaptive threshold processor establishes a lower alarm threshold below the baseline and an upper alarm threshold above the baseline so that the alarm generator is responsive to both positive and negative transients from the baseline.
19. The adaptive alarm system according to claim 18 wherein the baseline processor establishes a lower baseline biased above the parameter trend and an upper baseline biased below the parameter trend.
20. The adaptive alarm system according to claim 19 wherein the lower alarm threshold is increasingly responsive to negative transients and the upper alarm threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.
PCT/US2011/026545 2010-03-01 2011-02-28 Adaptive alarm system WO2011109312A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012556145A JP2013521054A (en) 2010-03-01 2011-02-28 Adaptive alarm system
DE112011100761T DE112011100761T5 (en) 2010-03-01 2011-02-28 Adaptive alarm system
GB1214902.7A GB2490832B (en) 2010-03-01 2011-02-28 Adaptive alarm system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30941910P 2010-03-01 2010-03-01
US61/309,419 2010-03-01
US32863010P 2010-04-27 2010-04-27
US61/328,630 2010-04-27

Publications (2)

Publication Number Publication Date
WO2011109312A2 true WO2011109312A2 (en) 2011-09-09
WO2011109312A3 WO2011109312A3 (en) 2012-01-05

Family

ID=44048877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/026545 WO2011109312A2 (en) 2010-03-01 2011-02-28 Adaptive alarm system

Country Status (5)

Country Link
US (5) US9724024B2 (en)
JP (1) JP2013521054A (en)
DE (1) DE112011100761T5 (en)
GB (1) GB2490832B (en)
WO (1) WO2011109312A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501058A (en) * 2011-12-21 2015-01-08 コーニンクレッカ フィリップス エヌ ヴェ Method and system for predicting changes in physiological and clinical conditions
RU2695886C2 (en) * 2014-01-06 2019-07-29 Конинклейке Филипс Н.В. Help in setting alarm limits for patient

Families Citing this family (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
EP2319398B1 (en) 1998-06-03 2019-01-16 Masimo Corporation Stereo pulse oximeter
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
DE60139128D1 (en) 2000-08-18 2009-08-13 Masimo Corp PULSE OXIMETER WITH TWO OPERATING MODES
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
EP1722676B1 (en) 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US8190223B2 (en) 2005-03-01 2012-05-29 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US8280473B2 (en) 2006-10-12 2012-10-02 Masino Corporation, Inc. Perfusion index smoother
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
WO2008073855A2 (en) 2006-12-09 2008-06-19 Masimo Corporation Plethysmograph variability processor
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
WO2009049101A1 (en) 2007-10-12 2009-04-16 Masimo Corporation Connector assembly
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
WO2009111542A2 (en) 2008-03-04 2009-09-11 Glucolight Corporation Methods and systems for analyte level estimation in optical coherence tomography
JP5575752B2 (en) 2008-05-02 2014-08-20 マシモ コーポレイション Monitor configuration system
JP2011519684A (en) 2008-05-05 2011-07-14 マシモ コーポレイション Pulse oximeter system with electrical disconnect circuit
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
SE532941C2 (en) 2008-09-15 2010-05-18 Phasein Ab Gas sampling line for breathing gases
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
WO2010102069A2 (en) 2009-03-04 2010-09-10 Masimo Corporation Medical monitoring system
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
WO2011035070A1 (en) 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
US20110082711A1 (en) 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US10463340B2 (en) 2009-10-15 2019-11-05 Masimo Corporation Acoustic respiratory monitoring systems and methods
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
WO2011047216A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Physiological acoustic monitoring system
US8790268B2 (en) 2009-10-15 2014-07-29 Masimo Corporation Bidirectional physiological information display
US8690799B2 (en) 2009-10-15 2014-04-08 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9724016B1 (en) 2009-10-16 2017-08-08 Masimo Corp. Respiration processor
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (en) 2009-12-04 2013-03-28 Masimo Corporation Calibration for multi-level physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US11289199B2 (en) 2010-01-19 2022-03-29 Masimo Corporation Wellness analysis system
JP2013521054A (en) 2010-03-01 2013-06-10 マシモ コーポレイション Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
WO2012027613A1 (en) 2010-08-26 2012-03-01 Masimo Corporation Blood pressure measurement system
JP5710767B2 (en) 2010-09-28 2015-04-30 マシモ コーポレイション Depth of consciousness monitor including oximeter
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
US10332630B2 (en) 2011-02-13 2019-06-25 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US9335183B2 (en) * 2011-04-12 2016-05-10 International Business Machines Corporation Method for reliably operating a sensor
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
WO2013056141A1 (en) 2011-10-13 2013-04-18 Masimo Corporation Physiological acoustic monitoring system
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
EP3584799B1 (en) 2011-10-13 2022-11-09 Masimo Corporation Medical monitoring hub
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
EP2845086B1 (en) 2012-03-25 2021-12-22 Masimo Corporation Physiological monitor touchscreen interface
JP6490577B2 (en) 2012-04-17 2019-03-27 マシモ・コーポレイション How to operate a pulse oximeter device
US10353869B2 (en) 2012-05-18 2019-07-16 International Business Machines Corporation Minimization of surprisal data through application of hierarchy filter pattern
WO2013184965A1 (en) 2012-06-07 2013-12-12 Masimo Corporation Depth of consciousness monitor
US9002888B2 (en) * 2012-06-29 2015-04-07 International Business Machines Corporation Minimization of epigenetic surprisal data of epigenetic data within a time series
US8972406B2 (en) 2012-06-29 2015-03-03 International Business Machines Corporation Generating epigenetic cohorts through clustering of epigenetic surprisal data based on parameters
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US9965946B2 (en) 2013-03-13 2018-05-08 Masimo Corporation Systems and methods for monitoring a patient health network
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
DE112013006865T5 (en) * 2013-03-25 2015-12-10 Draeger Medical Systems, Inc. Interface for displaying blood blood oxygen levels
US20140350352A1 (en) * 2013-05-23 2014-11-27 Children's Medical Center Corporation System and method of assessing stability of patients
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US9414244B2 (en) 2013-07-22 2016-08-09 Motorola Solutions, Inc. Apparatus and method for determining context-aware and adaptive thresholds in a communications system
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
EP3054849B1 (en) 2013-10-07 2022-03-16 Masimo Corporation Regional oximetry sensor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10828007B1 (en) 2013-10-11 2020-11-10 Masimo Corporation Acoustic sensor with attachment portion
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US10532174B2 (en) 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
US10463315B2 (en) * 2014-12-01 2019-11-05 Covidien Lp Adaptive alarm for physiological monitoring
US10007238B1 (en) 2015-01-22 2018-06-26 John C. Taube Oxygen mixing and delivery
AU2016209104B2 (en) 2015-01-23 2020-04-30 Masimo Sweden Ab Nasal/oral cannula system and manufacturing
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
CN107431301B (en) 2015-02-06 2021-03-30 迈心诺公司 Connector assembly with retractable needle for use with medical sensors
EP3253289B1 (en) 2015-02-06 2020-08-05 Masimo Corporation Fold flex circuit for optical probes
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
US11653862B2 (en) 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US10448871B2 (en) 2015-07-02 2019-10-22 Masimo Corporation Advanced pulse oximetry sensor
US10991135B2 (en) 2015-08-11 2021-04-27 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
CN108348162B (en) 2015-08-31 2021-07-23 梅西莫股份有限公司 Wireless patient monitoring system and method
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
US10608817B2 (en) 2016-07-06 2020-03-31 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
US10750984B2 (en) 2016-12-22 2020-08-25 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
WO2018156809A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Augmented reality system for displaying patient data
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
EP3585254B1 (en) 2017-02-24 2024-03-20 Masimo Corporation Medical device cable and method of sharing data between connected medical devices
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
EP3592231A1 (en) 2017-03-10 2020-01-15 Masimo Corporation Pneumonia screener
US20180293359A1 (en) 2017-04-10 2018-10-11 International Business Machines Corporation Monitoring an individual's condition based on models generated from e-textile based clothing
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
US10856750B2 (en) 2017-04-28 2020-12-08 Masimo Corporation Spot check measurement system
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
JP7159208B2 (en) 2017-05-08 2022-10-24 マシモ・コーポレイション A system for pairing a medical system with a network controller by using a dongle
WO2019014629A1 (en) 2017-07-13 2019-01-17 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
US10637181B2 (en) 2017-08-15 2020-04-28 Masimo Corporation Water resistant connector for noninvasive patient monitor
USD890708S1 (en) 2017-08-15 2020-07-21 Masimo Corporation Connector
USD906970S1 (en) 2017-08-15 2021-01-05 Masimo Corporation Connector
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
JP7282085B2 (en) 2017-10-31 2023-05-26 マシモ・コーポレイション System for displaying oxygen status indicators
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US10932729B2 (en) 2018-06-06 2021-03-02 Masimo Corporation Opioid overdose monitoring
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
US20200111552A1 (en) * 2018-10-08 2020-04-09 Masimo Corporation Patient database analytics
CA3115776A1 (en) 2018-10-11 2020-04-16 Masimo Corporation Patient connector assembly with vertical detents
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
EP3864869A1 (en) 2018-10-12 2021-08-18 Masimo Corporation System for transmission of sensor data using dual communication protocol
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
JP2022529948A (en) 2019-04-17 2022-06-27 マシモ・コーポレイション Patient monitoring systems, equipment, and methods
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
KR20220083771A (en) 2019-10-18 2022-06-20 마시모 코오퍼레이션 Display layouts and interactive objects for patient monitoring
CN115176155A (en) 2019-10-25 2022-10-11 塞卡科实验室有限公司 Indicator compounds, devices including indicator compounds, and methods of making and using the same
EP4104037A1 (en) 2020-02-13 2022-12-21 Masimo Corporation System and method for monitoring clinical activities
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
EP4120901A1 (en) 2020-03-20 2023-01-25 Masimo Corporation Wearable device for noninvasive body temperature measurement
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD946598S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946596S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946597S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
WO2024010893A1 (en) * 2022-07-07 2024-01-11 CalmWave, Inc. Information management system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5769785A (en) 1991-03-07 1998-06-23 Masimo Corporation Signal processing apparatus and method
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6157850A (en) 1991-03-07 2000-12-05 Masimo Corporation Signal processing apparatus
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US6985764B2 (en) 2001-05-03 2006-01-10 Masimo Corporation Flex circuit shielded optical sensor
US20060211925A1 (en) 2005-03-01 2006-09-21 Marcelo Lamego Physiological parameter confidence measure
US20100274099A1 (en) 2008-12-30 2010-10-28 Masimo Corporation Acoustic sensor assembly

Family Cites Families (586)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US791086A (en) * 1903-04-30 1905-05-30 Electric And Train Lighting Syndicate Ltd Self-alining bearing.
US3608545A (en) 1968-11-25 1971-09-28 Medical Engineering Research C Heart rate monitor
US4338950A (en) 1980-09-22 1982-07-13 Texas Instruments Incorporated System and method for sensing and measuring heart beat
US4450843A (en) 1980-11-24 1984-05-29 Texas Instruments Incorporated Miniature biofeedback instrument
JPS57120009U (en) 1981-01-19 1982-07-26
US4653498A (en) 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
JPS59166382U (en) 1983-04-25 1984-11-07 第一電子工業株式会社 shield connector
US4639718A (en) 1984-04-02 1987-01-27 Olin Corporation Boiler blowdown monitoring system and process for practicing same
US4807639A (en) 1985-08-31 1989-02-28 Casio Computer Co., Ltd. Pulse detection apparatus
JPS62292137A (en) 1986-06-11 1987-12-18 株式会社 シグナル テクノロジ− Hemomanometer
US4889132A (en) 1986-09-26 1989-12-26 The University Of North Carolina At Chapel Hill Portable automated blood pressure monitoring apparatus and method
US4883055A (en) 1988-03-11 1989-11-28 Puritan-Bennett Corporation Artificially induced blood pulse for use with a pulse oximeter
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
CH677413A5 (en) 1988-06-10 1991-05-15 Cerberus Ag
US4960128A (en) 1988-11-14 1990-10-02 Paramed Technology Incorporated Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
US5163438A (en) 1988-11-14 1992-11-17 Paramed Technology Incorporated Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
US5111817A (en) 1988-12-29 1992-05-12 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
GB9011887D0 (en) 1990-05-26 1990-07-18 Le Fit Ltd Pulse responsive device
WO1992004806A1 (en) 1990-08-31 1992-03-19 The General Hospital Corporation A network for portable patient monitoring devices
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
MX9702434A (en) 1991-03-07 1998-05-31 Masimo Corp Signal processing apparatus.
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US5226417A (en) 1991-03-11 1993-07-13 Nellcor, Inc. Apparatus for the detection of motion transients
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US6541756B2 (en) * 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US5377676A (en) * 1991-04-03 1995-01-03 Cedars-Sinai Medical Center Method for determining the biodistribution of substances using fluorescence spectroscopy
AU667199B2 (en) * 1991-11-08 1996-03-14 Physiometrix, Inc. EEG headpiece with disposable electrodes and apparatus and system and method for use therewith
US5253645A (en) 1991-12-13 1993-10-19 Critikon, Inc. Method of producing an audible alarm in a blood pressure and pulse oximeter monitor
EP0549835B1 (en) 1991-12-30 1996-03-13 Hamamatsu Photonics K.K. Diagnostic apparatus
US5285782A (en) * 1992-01-17 1994-02-15 Physio-Control Corporation Method and apparatus for improving the accuracy of pulse transmittance oximeter
JP3047610B2 (en) 1992-02-20 2000-05-29 株式会社デンソー Skin potential detector
US20050062609A9 (en) 1992-08-19 2005-03-24 Lynn Lawrence A. Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
JPH08503867A (en) * 1992-12-07 1996-04-30 クラテクノロジーズ インク Electronic stethoscope
US5341805A (en) 1993-04-06 1994-08-30 Cedars-Sinai Medical Center Glucose fluorescence monitor and method
US5494043A (en) * 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
USD353196S (en) 1993-05-28 1994-12-06 Gary Savage Stethoscope head
USD353195S (en) 1993-05-28 1994-12-06 Gary Savage Electronic stethoscope housing
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5464012A (en) * 1993-09-13 1995-11-07 Hewlett-Packard Company Patient alarm detection using target mode
US5456252A (en) 1993-09-30 1995-10-10 Cedars-Sinai Medical Center Induced fluorescence spectroscopy blood perfusion and pH monitor and method
US7376453B1 (en) 1993-10-06 2008-05-20 Masimo Corporation Signal processing apparatus
US5533511A (en) 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
USD359546S (en) 1994-01-27 1995-06-20 The Ratechnologies Inc. Housing for a dental unit disinfecting device
CN1111499A (en) 1994-02-03 1995-11-15 欧姆龙株式会社 Pulse counter and pulse meter
US5436499A (en) 1994-03-11 1995-07-25 Spire Corporation High performance GaAs devices and method
US5810734A (en) 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5791347A (en) 1994-04-15 1998-08-11 Vital Insite, Inc. Motion insensitive pulse detector
US5904654A (en) * 1995-10-20 1999-05-18 Vital Insite, Inc. Exciter-detector unit for measuring physiological parameters
US5590649A (en) * 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US5785659A (en) 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
US6371921B1 (en) * 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
USD363120S (en) 1994-04-21 1995-10-10 Gary Savage Stethoscope ear tip
USD361840S (en) 1994-04-21 1995-08-29 Gary Savage Stethoscope head
USD362063S (en) 1994-04-21 1995-09-05 Gary Savage Stethoscope headset
US5561275A (en) 1994-04-28 1996-10-01 Delstar Services Informatiques (1993) Inc. Headset for electronic stethoscope
SE9401578D0 (en) 1994-05-06 1994-05-06 Siemens Elema Ab Medical device
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
EP1905352B1 (en) 1994-10-07 2014-07-16 Masimo Corporation Signal processing method
US5764693A (en) 1994-11-14 1998-06-09 Research In Motion Limited Wireless radio modem with minimal inter-device RF interference
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US5562002A (en) 1995-02-03 1996-10-08 Sensidyne Inc. Positive displacement piston flow meter with damping assembly
US5793413A (en) 1995-05-01 1998-08-11 Bell Atlantic Network Services, Inc. Wireless video distribution
US6517283B2 (en) 2001-01-16 2003-02-11 Donald Edward Coffey Cascading chute drainage system
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US5743262A (en) * 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
SG38866A1 (en) 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US6010937A (en) 1995-09-05 2000-01-04 Spire Corporation Reduction of dislocations in a heteroepitaxial semiconductor structure
US5637002A (en) 1995-09-15 1997-06-10 Buck; Charles T. Self locking and ejecting RJ-11 plug
USD393830S (en) * 1995-10-16 1998-04-28 Masimo Corporation Patient cable connector
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US5726440A (en) 1995-11-06 1998-03-10 Spire Corporation Wavelength selective photodetector
US6232609B1 (en) 1995-12-01 2001-05-15 Cedars-Sinai Medical Center Glucose monitoring apparatus and method using laser-induced emission spectroscopy
US5747806A (en) 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US6040578A (en) 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
USD390192S (en) 1996-03-04 1998-02-03 Smk Corporation Electrical connector
USD391551S (en) 1996-03-04 1998-03-03 Smk Corporation Electrical connector
US6253097B1 (en) 1996-03-06 2001-06-26 Datex-Ohmeda, Inc. Noninvasive medical monitoring instrument using surface emitting laser devices
EP0842635B1 (en) 1996-04-08 2003-09-24 Seiko Epson Corporation Motion prescription support device
US5890929A (en) * 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US5802463A (en) 1996-08-20 1998-09-01 Advanced Micro Devices, Inc. Apparatus and method for receiving a modulated radio frequency signal by converting the radio frequency signal to a very low intermediate frequency signal
JP3581975B2 (en) 1997-01-06 2004-10-27 日本光電工業株式会社 Blood pressure monitoring device
US6066204A (en) 1997-01-08 2000-05-23 Bandwidth Semiconductor, Llc High pressure MOCVD reactor system
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
EP0872210B1 (en) 1997-04-18 2006-01-04 Koninklijke Philips Electronics N.V. Intermittent measuring of arterial oxygen saturation of hemoglobin
TW357517B (en) 1997-05-29 1999-05-01 Koji Akai Monitoring system
IL121079A0 (en) 1997-06-15 1997-11-20 Spo Medical Equipment Ltd Physiological stress detector device and method
US6124597A (en) 1997-07-07 2000-09-26 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
US20080287756A1 (en) 1997-07-14 2008-11-20 Lynn Lawrence A Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US6115673A (en) 1997-08-14 2000-09-05 Instrumentation Metrics, Inc. Method and apparatus for generating basis sets for use in spectroscopic analysis
WO2002065090A2 (en) 2001-01-26 2002-08-22 Sensys Medical Noninvasive measurement of glucose through the optical properties of tissue
US6415167B1 (en) 2000-05-02 2002-07-02 Instrumentation Metrics, Inc. Fiber optic probe placement guide
US6384591B1 (en) 1997-09-11 2002-05-07 Comsonics, Inc. Hands-free signal level meter
US5865736A (en) 1997-09-30 1999-02-02 Nellcor Puritan Bennett, Inc. Method and apparatus for nuisance alarm reductions
US6255708B1 (en) 1997-10-10 2001-07-03 Rengarajan Sudharsanan Semiconductor P-I-N detector
US5987343A (en) 1997-11-07 1999-11-16 Datascope Investment Corp. Method for storing pulse oximetry sensor characteristics
US6050951A (en) 1997-11-10 2000-04-18 Critikon Company, L.L.C. NIBP trigger in response to detected heart rate variability
US6184521B1 (en) * 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6241683B1 (en) 1998-02-20 2001-06-05 INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) Phonospirometry for non-invasive monitoring of respiration
US6525386B1 (en) * 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US6505059B1 (en) * 1998-04-06 2003-01-07 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US6728560B2 (en) * 1998-04-06 2004-04-27 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US6721582B2 (en) * 1999-04-06 2004-04-13 Argose, Inc. Non-invasive tissue glucose level monitoring
US7899518B2 (en) * 1998-04-06 2011-03-01 Masimo Laboratories, Inc. Non-invasive tissue glucose level monitoring
EP2319398B1 (en) 1998-06-03 2019-01-16 Masimo Corporation Stereo pulse oximeter
US5920263A (en) 1998-06-11 1999-07-06 Ohmeda, Inc. De-escalation of alarm priorities in medical devices
US6128521A (en) 1998-07-10 2000-10-03 Physiometrix, Inc. Self adjusting headgear appliance using reservoir electrodes
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
EP0909551B1 (en) * 1998-08-07 2001-03-28 Hewlett-Packard Company Selecting limit values for patient monitoring systems
US6129675A (en) 1998-09-11 2000-10-10 Jay; Gregory D. Device and method for measuring pulsus paradoxus
JP3840816B2 (en) 1998-10-02 2006-11-01 オムロンヘルスケア株式会社 Blood pressure monitoring device
US6519487B1 (en) 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6684091B2 (en) * 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US6343224B1 (en) * 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6280381B1 (en) 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
EP1148809B1 (en) 1999-01-25 2007-11-14 Masimo Corporation Universal/upgrading pulse oximeter
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
AU2977700A (en) 1999-01-29 2000-08-18 Evgueni N. Bogomolov Personal physiological monitor
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6166633A (en) 1999-05-21 2000-12-26 Wang; Randall Process for reducing motion-type false alarm of security alarm system with self-analyzing and self-adjusting control
US6526300B1 (en) * 1999-06-18 2003-02-25 Masimo Corporation Pulse oximeter probe-off detection system
US20030018243A1 (en) 1999-07-07 2003-01-23 Gerhardt Thomas J. Selectively plated sensor
US6301493B1 (en) 1999-07-10 2001-10-09 Physiometrix, Inc. Reservoir electrodes for electroencephalograph headgear appliance
USRE41333E1 (en) 1999-07-22 2010-05-11 Sensys Medical, Inc. Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US6515273B2 (en) * 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6411373B1 (en) 1999-10-08 2002-06-25 Instrumentation Metrics, Inc. Fiber optic illumination and detection patterns, shapes, and locations for use in spectroscopic analysis
US6943348B1 (en) 1999-10-19 2005-09-13 Masimo Corporation System for detecting injection holding material
ATE326900T1 (en) 1999-10-27 2006-06-15 Hospira Sedation Inc MODULE FOR OBTAINING ELECTROENCEPHALOGRAPHY SIGNALS FROM A PATIENT
US6317627B1 (en) 1999-11-02 2001-11-13 Physiometrix, Inc. Anesthesia monitoring system based on electroencephalographic signals
WO2001033201A1 (en) 1999-11-03 2001-05-10 Argose, Inc. Asynchronous fluorescence scan
US6542764B1 (en) * 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US6587196B1 (en) 2000-01-26 2003-07-01 Sensys Medical, Inc. Oscillating mechanism driven monochromator
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
CA2400305A1 (en) 2000-02-18 2001-08-23 Argose,Inc. Generation of spatially-averaged excitation-emission map in heterogeneous tissue
EP1257195A2 (en) 2000-02-18 2002-11-20 Argose, Inc. Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
AU2001237067A1 (en) 2000-02-18 2001-08-27 Argose, Inc. Reduction of inter-subject variation via transfer standardization
US6587199B1 (en) 2000-02-25 2003-07-01 Sensys Medical, Inc. Embedded data acquisition and control system for non-invasive glucose prediction instrument
US6510344B1 (en) 2000-03-22 2003-01-21 Ge Medical Systems Information Technologies, Inc. Procedure alarm silence feature for medical telemetry system
US6441747B1 (en) 2000-04-18 2002-08-27 Motorola, Inc. Wireless system protocol for telemetry monitoring
US7606608B2 (en) 2000-05-02 2009-10-20 Sensys Medical, Inc. Optical sampling interface system for in-vivo measurement of tissue
US7519406B2 (en) 2004-04-28 2009-04-14 Sensys Medical, Inc. Noninvasive analyzer sample probe interface method and apparatus
US6534012B1 (en) 2000-08-02 2003-03-18 Sensys Medical, Inc. Apparatus and method for reproducibly modifying localized absorption and scattering coefficients at a tissue measurement site during optical sampling
AU2001261618A1 (en) 2000-05-18 2001-11-26 Argose, Inc. Pre-and post-processing of spectral data for calibration using multivariate analysis techniques
US6645155B2 (en) 2000-05-26 2003-11-11 Colin Corporation Blood pressure monitor apparatus
US7395158B2 (en) 2000-05-30 2008-07-01 Sensys Medical, Inc. Method of screening for disorders of glucose metabolism
US6487429B2 (en) 2000-05-30 2002-11-26 Sensys Medical, Inc. Use of targeted glycemic profiles in the calibration of a noninvasive blood glucose monitor
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6738652B2 (en) 2000-06-15 2004-05-18 Sensys Medical, Inc. Classification and screening of test subjects according to optical thickness of skin
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
US6697656B1 (en) * 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
DE60139128D1 (en) 2000-08-18 2009-08-13 Masimo Corp PULSE OXIMETER WITH TWO OPERATING MODES
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6368283B1 (en) * 2000-09-08 2002-04-09 Institut De Recherches Cliniques De Montreal Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient
US7629890B2 (en) * 2003-12-04 2009-12-08 Hoana Medical, Inc. System and methods for intelligent medical vigilance with bed exit detection
US6816241B2 (en) 2000-09-26 2004-11-09 Sensys Medical, Inc. LED light source-based instrument for non-invasive blood analyte determination
US6640117B2 (en) 2000-09-26 2003-10-28 Sensys Medical, Inc. Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination
AU2002230429A1 (en) 2000-11-13 2002-05-21 Argose, Inc. Reduction of spectral site to site variation
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
US7379712B2 (en) 2001-01-25 2008-05-27 Suunto Oy Wearable device
AU2002251877A1 (en) 2001-02-06 2002-08-19 Argose, Inc. Layered calibration standard for tissue sampling
US6850787B2 (en) * 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US20030013975A1 (en) 2001-07-12 2003-01-16 Kiani Massi E. Method of selling a continuous mode blood pressure monitor
US6595316B2 (en) 2001-07-18 2003-07-22 Andromed, Inc. Tension-adjustable mechanism for stethoscope earpieces
US6754516B2 (en) * 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
US6788965B2 (en) 2001-08-03 2004-09-07 Sensys Medical, Inc. Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
US6876931B2 (en) 2001-08-03 2005-04-05 Sensys Medical Inc. Automatic process for sample selection during multivariate calibration
US6635559B2 (en) 2001-09-06 2003-10-21 Spire Corporation Formation of insulating aluminum oxide in semiconductor substrates
WO2003023356A2 (en) 2001-09-07 2003-03-20 Argose, Inc. Portable non-invasive glucose monitor
GB0123395D0 (en) * 2001-09-28 2001-11-21 Isis Innovation Locating features ina photoplethysmograph signal
US6840904B2 (en) 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
MXPA04004246A (en) 2001-11-01 2004-09-10 Scott Lab Inc User interface for sedation and analgesia delivery systems and methods.
US7399277B2 (en) 2001-12-27 2008-07-15 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US20050027182A1 (en) 2001-12-27 2005-02-03 Uzair Siddiqui System for monitoring physiological characteristics
US20080255438A1 (en) 2001-12-27 2008-10-16 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US20030212312A1 (en) 2002-01-07 2003-11-13 Coffin James P. Low noise patient cable
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6822564B2 (en) * 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US7015451B2 (en) * 2002-01-25 2006-03-21 Masimo Corporation Power supply rail controller
US20030156288A1 (en) 2002-02-20 2003-08-21 Barnum P. T. Sensor band for aligning an emitter and a detector
WO2003071939A1 (en) 2002-02-22 2003-09-04 Masimo Corporation Active pulse spectraphotometry
US7509494B2 (en) * 2002-03-01 2009-03-24 Masimo Corporation Interface cable
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US8718738B2 (en) 2002-03-08 2014-05-06 Glt Acquisition Corp. Method and apparatus for coupling a sample probe with a sample site
US7697966B2 (en) 2002-03-08 2010-04-13 Sensys Medical, Inc. Noninvasive targeting system method and apparatus
US8504128B2 (en) 2002-03-08 2013-08-06 Glt Acquisition Corp. Method and apparatus for coupling a channeled sample probe to tissue
EP1499231A4 (en) 2002-03-08 2007-09-26 Sensys Medical Inc Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6661161B1 (en) 2002-06-27 2003-12-09 Andromed Inc. Piezoelectric biological sound monitor with printed circuit board
TW549740U (en) 2002-07-26 2003-08-21 Hon Hai Prec Ind Co Ltd Electrical connector
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
US7341559B2 (en) * 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7274955B2 (en) 2002-09-25 2007-09-25 Masimo Corporation Parameter compensated pulse oximeter
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
JP2004121668A (en) 2002-10-04 2004-04-22 Denso Corp System for detecting and measuring abnormal respiration, and method for detecting abnormal respiration
US20040106163A1 (en) 2002-11-12 2004-06-03 Workman Jerome James Non-invasive measurement of analytes
AU2003287735A1 (en) 2002-11-12 2004-06-03 Argose, Inc. Non-invasive measurement of analytes
WO2004047631A2 (en) * 2002-11-22 2004-06-10 Masimo Laboratories, Inc. Blood parameter measurement system
US6956649B2 (en) 2002-11-26 2005-10-18 Sensys Medical, Inc. Spectroscopic system and method using a ceramic optical reference
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US7919713B2 (en) * 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7640140B2 (en) 2003-03-07 2009-12-29 Sensys Medical, Inc. Method of processing noninvasive spectra
US7620674B2 (en) 2003-03-07 2009-11-17 Sensys Medical, Inc. Method and apparatus for enhanced estimation of an analyte property through multiple region transformation
SE525095C2 (en) 2003-04-25 2004-11-30 Phasein Ab Window for IR gas analyzer and method for making such window
US7079035B2 (en) 2003-05-19 2006-07-18 Ge Medical Systems Information Technologies, Inc. Method and apparatus for controlling an alarm while monitoring
US8214043B2 (en) 2006-08-29 2012-07-03 Matos Jeffrey A Control of a defibrillator and/or pacemaker
US20050055276A1 (en) 2003-06-26 2005-03-10 Kiani Massi E. Sensor incentive method
US7003338B2 (en) * 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
WO2005007215A2 (en) * 2003-07-09 2005-01-27 Glucolight Corporation Method and apparatus for tissue oximetry
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US7483729B2 (en) * 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7373193B2 (en) 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
NZ547851A (en) 2003-12-05 2010-03-26 Carefusion 303 Inc Patient-controlled analgesia with patient monitoring system
WO2005065241A2 (en) 2003-12-24 2005-07-21 Argose, Inc. Smmr (small molecule metabolite reporters) for use as in vivo glucose biosensors
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7510849B2 (en) * 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
US7371981B2 (en) 2004-02-20 2008-05-13 Masimo Corporation Connector switch
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
EP1722676B1 (en) 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
WO2005089640A2 (en) 2004-03-19 2005-09-29 Masimo Corporation Low power and personal pulse oximetry systems
US7292883B2 (en) 2004-03-31 2007-11-06 Masimo Corporation Physiological assessment system
CA2464029A1 (en) 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
CA2464634A1 (en) * 2004-04-16 2005-10-16 Andromed Inc. Pap estimator
US8868147B2 (en) 2004-04-28 2014-10-21 Glt Acquisition Corp. Method and apparatus for controlling positioning of a noninvasive analyzer sample probe
US9341565B2 (en) 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US7976472B2 (en) 2004-09-07 2011-07-12 Masimo Corporation Noninvasive hypovolemia monitor
WO2006039350A1 (en) 2004-09-29 2006-04-13 Masimo Corporation Multiple key position plug
USD529616S1 (en) 2004-11-19 2006-10-03 Sensys Medical, Inc. Noninvasive glucose analyzer
USD526719S1 (en) 2004-11-19 2006-08-15 Sensys Medical, Inc. Noninvasive glucose analyzer
US7514725B2 (en) 2004-11-30 2009-04-07 Spire Corporation Nanophotovoltaic devices
JP4777640B2 (en) 2004-12-03 2011-09-21 日本精密測器株式会社 Wrist blood pressure monitor
EP1850734A4 (en) 2005-01-13 2009-08-26 Welch Allyn Inc Vital signs monitor
USD554263S1 (en) 2005-02-18 2007-10-30 Masimo Corporation Portable patient monitor
US20060189871A1 (en) 2005-02-18 2006-08-24 Ammar Al-Ali Portable patient monitor
USD566282S1 (en) 2005-02-18 2008-04-08 Masimo Corporation Stand for a portable patient monitor
US7937129B2 (en) 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US7593230B2 (en) 2005-05-05 2009-09-22 Sensys Medical, Inc. Apparatus for absorbing and dissipating excess heat generated by a system
US7698105B2 (en) 2005-05-23 2010-04-13 Sensys Medical, Inc. Method and apparatus for improving performance of noninvasive analyte property estimation
US20100270257A1 (en) 2005-07-13 2010-10-28 Vitality, Inc. Medicine Bottle Cap With Electronic Embedded Curved Display
US20070073116A1 (en) 2005-08-17 2007-03-29 Kiani Massi E Patient identification using physiological sensor
US7570152B2 (en) 2005-08-19 2009-08-04 Bed-Check Corporation Method and apparatus for temporarily disabling a patient monitor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7530942B1 (en) 2005-10-18 2009-05-12 Masimo Corporation Remote sensing infant warmer
EP2374407B1 (en) 2005-11-29 2021-05-05 Masimo Corporation Optical sensor including disposable and reusable elements
WO2007065015A2 (en) 2005-12-03 2007-06-07 Masimo Corporation Physiological alarm notification system
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US20070244377A1 (en) 2006-03-14 2007-10-18 Cozad Jenny L Pulse oximeter sleeve
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US9176141B2 (en) 2006-05-15 2015-11-03 Cercacor Laboratories, Inc. Physiological monitor calibration system
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US8998809B2 (en) 2006-05-15 2015-04-07 Cercacor Laboratories, Inc. Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
USD592507S1 (en) 2006-07-06 2009-05-19 Vitality, Inc. Top for medicine container
JP5005277B2 (en) 2006-07-13 2012-08-22 日東電工株式会社 Patches and patch preparations
US20080064965A1 (en) 2006-09-08 2008-03-13 Jay Gregory D Devices and methods for measuring pulsus paradoxus
USD609193S1 (en) * 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
US8315683B2 (en) 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
USD587657S1 (en) * 2007-10-12 2009-03-03 Masimo Corporation Connector assembly
USD614305S1 (en) * 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
US20080103375A1 (en) 2006-09-22 2008-05-01 Kiani Massi E Patient monitor user interface
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US8280473B2 (en) 2006-10-12 2012-10-02 Masino Corporation, Inc. Perfusion index smoother
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US20080094228A1 (en) 2006-10-12 2008-04-24 Welch James P Patient monitor using radio frequency identification tags
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
WO2008073855A2 (en) 2006-12-09 2008-06-19 Masimo Corporation Plethysmograph variability processor
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US7791155B2 (en) 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US7629889B2 (en) * 2006-12-27 2009-12-08 Cardiac Pacemakers, Inc. Within-patient algorithm to predict heart failure decompensation
US8768718B2 (en) * 2006-12-27 2014-07-01 Cardiac Pacemakers, Inc. Between-patient comparisons for risk stratification of future heart failure decompensation
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US20080183054A1 (en) 2007-01-30 2008-07-31 Peter Kroeger Combination level alarms and alarm persistence for patient monitoring
USD566512S1 (en) * 2007-03-02 2008-04-15 Midas Enterprises (Far East) Limited Cutter
US20090093687A1 (en) 2007-03-08 2009-04-09 Telfort Valery G Systems and methods for determining a physiological condition using an acoustic monitor
US20080221418A1 (en) 2007-03-09 2008-09-11 Masimo Corporation Noninvasive multi-parameter patient monitor
WO2008118993A1 (en) 2007-03-27 2008-10-02 Masimo Laboratories, Inc. Multiple wavelength optical sensor
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US7769436B1 (en) 2007-06-04 2010-08-03 Pacesetter, Inc. System and method for adaptively adjusting cardiac ischemia detection thresholds and other detection thresholds used by an implantable medical device
US8764671B2 (en) 2007-06-28 2014-07-01 Masimo Corporation Disposable active pulse sensor
US20090036759A1 (en) 2007-08-01 2009-02-05 Ault Timothy E Collapsible noninvasive analyzer method and apparatus
US20090040874A1 (en) 2007-08-08 2009-02-12 Rooney World Corp. Medication Reminder System and Method
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
WO2009049101A1 (en) 2007-10-12 2009-04-16 Masimo Corporation Connector assembly
US20090095926A1 (en) 2007-10-12 2009-04-16 Macneish Iii William Jack Physiological parameter detector
JP2011501274A (en) 2007-10-12 2011-01-06 マシモ コーポレイション System and method for storing, analyzing and retrieving medical data
US8355766B2 (en) 2007-10-12 2013-01-15 Masimo Corporation Ceramic emitter substrate
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US20090247984A1 (en) 2007-10-24 2009-10-01 Masimo Laboratories, Inc. Use of microneedles for small molecule metabolite reporter delivery
JP5529041B2 (en) 2008-01-21 2014-06-25 コーニンクレッカ フィリップス エヌ ヴェ Alarm control in medical equipment
US8275553B2 (en) * 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
WO2009111542A2 (en) 2008-03-04 2009-09-11 Glucolight Corporation Methods and systems for analyte level estimation in optical coherence tomography
US9560994B2 (en) 2008-03-26 2017-02-07 Covidien Lp Pulse oximeter with adaptive power conservation
US20090247851A1 (en) 2008-03-26 2009-10-01 Nellcor Puritan Bennett Llc Graphical User Interface For Monitor Alarm Management
US8792949B2 (en) * 2008-03-31 2014-07-29 Covidien Lp Reducing nuisance alarms
JP5575752B2 (en) 2008-05-02 2014-08-20 マシモ コーポレイション Monitor configuration system
US20090275807A1 (en) 2008-05-02 2009-11-05 General Electric Company Method for managing alarms in a physiological monitoring system
KR20110009667A (en) 2008-05-02 2011-01-28 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 External ear-placed non-invasive physiological sensor
JP2011519684A (en) 2008-05-05 2011-07-14 マシモ コーポレイション Pulse oximeter system with electrical disconnect circuit
US20090326340A1 (en) 2008-06-30 2009-12-31 Hui Wang Patient Monitor Alarm System And Method
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
USD606659S1 (en) 2008-08-25 2009-12-22 Masimo Laboratories, Inc. Patient monitor
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
US20100099964A1 (en) 2008-09-15 2010-04-22 Masimo Corporation Hemoglobin monitor
SE532941C2 (en) 2008-09-15 2010-05-18 Phasein Ab Gas sampling line for breathing gases
WO2010031070A2 (en) 2008-09-15 2010-03-18 Masimo Corporation Patient monitor including multi-parameter graphical display
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
US8401602B2 (en) 2008-10-13 2013-03-19 Masimo Corporation Secondary-emitter sensor position indicator
EP2348960A1 (en) 2008-11-05 2011-08-03 Nellcor Puritan Bennett LLC System and method for facilitating observation of monitored physiologic data
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
WO2010102069A2 (en) 2009-03-04 2010-09-10 Masimo Corporation Medical monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US20100234718A1 (en) 2009-03-12 2010-09-16 Anand Sampath Open architecture medical communication system
US8897847B2 (en) 2009-03-23 2014-11-25 Masimo Corporation Digit gauge for noninvasive optical sensor
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8180440B2 (en) 2009-05-20 2012-05-15 Sotera Wireless, Inc. Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
WO2010135646A1 (en) 2009-05-22 2010-11-25 Abbott Diabetes Care Inc. Usability features for integrated insulin delivery system
US8418524B2 (en) 2009-06-12 2013-04-16 Masimo Corporation Non-invasive sensor calibration device
US10085657B2 (en) 2009-06-17 2018-10-02 Sotera Wireless, Inc. Body-worn pulse oximeter
US8670811B2 (en) 2009-06-30 2014-03-11 Masimo Corporation Pulse oximetry system for adjusting medical ventilation
US20110208015A1 (en) 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US20110040197A1 (en) 2009-07-20 2011-02-17 Masimo Corporation Wireless patient monitoring system
US8471713B2 (en) 2009-07-24 2013-06-25 Cercacor Laboratories, Inc. Interference detector for patient monitor
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US20110028809A1 (en) 2009-07-29 2011-02-03 Masimo Corporation Patient monitor ambient display device
US20110028806A1 (en) 2009-07-29 2011-02-03 Sean Merritt Reflectance calibration of fluorescence-based glucose measurements
US20110087081A1 (en) 2009-08-03 2011-04-14 Kiani Massi Joe E Personalized physiological monitor
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US20110172498A1 (en) 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
WO2011035070A1 (en) 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US8571618B1 (en) 2009-09-28 2013-10-29 Cercacor Laboratories, Inc. Adaptive calibration system for spectrophotometric measurements
US20110082711A1 (en) 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US9106038B2 (en) 2009-10-15 2015-08-11 Masimo Corporation Pulse oximetry system with low noise cable hub
US8790268B2 (en) 2009-10-15 2014-07-29 Masimo Corporation Bidirectional physiological information display
WO2011047216A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Physiological acoustic monitoring system
US10463340B2 (en) 2009-10-15 2019-11-05 Masimo Corporation Acoustic respiratory monitoring systems and methods
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US8690799B2 (en) 2009-10-15 2014-04-08 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9724016B1 (en) 2009-10-16 2017-08-08 Masimo Corp. Respiration processor
US20110118561A1 (en) 2009-11-13 2011-05-19 Masimo Corporation Remote control for a medical monitoring device
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (en) 2009-12-04 2013-03-28 Masimo Corporation Calibration for multi-level physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US11289199B2 (en) 2010-01-19 2022-03-29 Masimo Corporation Wellness analysis system
JP2013521054A (en) 2010-03-01 2013-06-10 マシモ コーポレイション Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US8712494B1 (en) 2010-05-03 2014-04-29 Masimo Corporation Reflective non-invasive sensor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US8852994B2 (en) 2010-05-24 2014-10-07 Masimo Semiconductor, Inc. Method of fabricating bifacial tandem solar cells
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US8740792B1 (en) 2010-07-12 2014-06-03 Masimo Corporation Patient monitor capable of accounting for environmental conditions
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
WO2012027613A1 (en) 2010-08-26 2012-03-01 Masimo Corporation Blood pressure measurement system
US20130310422A1 (en) 2010-09-01 2013-11-21 The General Hospital Corporation Reversal of general anesthesia by administration of methylphenidate, amphetamine, modafinil, amantadine, and/or caffeine
US8455290B2 (en) 2010-09-04 2013-06-04 Masimo Semiconductor, Inc. Method of fabricating epitaxial structures
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
JP5710767B2 (en) 2010-09-28 2015-04-30 マシモ コーポレイション Depth of consciousness monitor including oximeter
US20120165629A1 (en) 2010-09-30 2012-06-28 Sean Merritt Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US8723677B1 (en) 2010-10-20 2014-05-13 Masimo Corporation Patient safety system with automatically adjusting bed
US20120123231A1 (en) 2010-11-11 2012-05-17 O'reilly Michael Monitoring cardiac output and vessel fluid volume
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
US20120209084A1 (en) 2011-01-21 2012-08-16 Masimo Corporation Respiratory event alert system
US10332630B2 (en) 2011-02-13 2019-06-25 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
EP2699161A1 (en) 2011-04-18 2014-02-26 Cercacor Laboratories, Inc. Pediatric monitor sensor steady game
US8830449B1 (en) 2011-04-18 2014-09-09 Cercacor Laboratories, Inc. Blood analysis system
US9095316B2 (en) 2011-04-20 2015-08-04 Masimo Corporation System for generating alarms based on alarm patterns
US20140187973A1 (en) 2011-05-06 2014-07-03 Emery N. Brown System and method for tracking brain states during administration of anesthesia
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US8852115B2 (en) 2011-06-30 2014-10-07 Covidien Lp Patient monitoring systems with goal indicators
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US20130023775A1 (en) 2011-07-20 2013-01-24 Cercacor Laboratories, Inc. Magnetic Reusable Sensor
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US8755872B1 (en) 2011-07-28 2014-06-17 Masimo Corporation Patient monitoring system for indicating an abnormal condition
US20130060147A1 (en) 2011-08-04 2013-03-07 Masimo Corporation Occlusive non-inflatable blood pressure device
US20130096405A1 (en) 2011-08-12 2013-04-18 Masimo Corporation Fingertip pulse oximeter
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
WO2013056141A1 (en) 2011-10-13 2013-04-18 Masimo Corporation Physiological acoustic monitoring system
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
EP3584799B1 (en) 2011-10-13 2022-11-09 Masimo Corporation Medical monitoring hub
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US9267572B2 (en) 2012-02-08 2016-02-23 Masimo Corporation Cable tether system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
EP2845086B1 (en) 2012-03-25 2021-12-22 Masimo Corporation Physiological monitor touchscreen interface
JP6490577B2 (en) 2012-04-17 2019-03-27 マシモ・コーポレイション How to operate a pulse oximeter device
US20130296672A1 (en) 2012-05-02 2013-11-07 Masimo Corporation Noninvasive physiological sensor cover
WO2013184965A1 (en) 2012-06-07 2013-12-12 Masimo Corporation Depth of consciousness monitor
US20130345921A1 (en) 2012-06-22 2013-12-26 Masimo Corporation Physiological monitoring of moving vehicle operators
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
USD692145S1 (en) 2012-09-20 2013-10-22 Masimo Corporation Medical proximity detection token
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US20140180160A1 (en) 2012-10-12 2014-06-26 Emery N. Brown System and method for monitoring and controlling a state of a patient during and after administration of anesthetic compound
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US20140166076A1 (en) 2012-12-17 2014-06-19 Masimo Semiconductor, Inc Pool solar power generator
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
US9965946B2 (en) 2013-03-13 2018-05-08 Masimo Corporation Systems and methods for monitoring a patient health network
US20150005600A1 (en) 2013-03-13 2015-01-01 Cercacor Laboratories, Inc. Finger-placement sensor tape
US9474474B2 (en) 2013-03-14 2016-10-25 Masimo Corporation Patient monitor as a minimally invasive glucometer
US9986952B2 (en) 2013-03-14 2018-06-05 Masimo Corporation Heart sound simulator
US20140275871A1 (en) 2013-03-14 2014-09-18 Cercacor Laboratories, Inc. Wireless optical communication between noninvasive physiological sensors and patient monitors
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
WO2014159132A1 (en) 2013-03-14 2014-10-02 Cercacor Laboratories, Inc. Systems and methods for testing patient monitors
US10456038B2 (en) 2013-03-15 2019-10-29 Cercacor Laboratories, Inc. Cloud-based physiological monitoring system
US20140316217A1 (en) 2013-04-23 2014-10-23 Patrick L. Purdon System and method for monitoring anesthesia and sedation using measures of brain coherence and synchrony
JP2016520374A (en) 2013-04-23 2016-07-14 ザ ジェネラル ホスピタル コーポレイション System and method for monitoring brain metabolism and activity using electroencephalogram and optical imaging
WO2014176441A1 (en) 2013-04-24 2014-10-30 The General Hospital Corporation System and method for monitoring level of dexmedatomidine-induced sedation
WO2014176444A1 (en) 2013-04-24 2014-10-30 The General Hospital Corporation System and method for estimating high time-frequency resolution eeg spectrograms to monitor patient state
US10383574B2 (en) 2013-06-28 2019-08-20 The General Hospital Corporation Systems and methods to infer brain state during burst suppression
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
WO2015038969A1 (en) 2013-09-13 2015-03-19 The General Hospital Corporation Systems and methods for improved brain monitoring during general anesthesia and sedation
EP3054849B1 (en) 2013-10-07 2022-03-16 Masimo Corporation Regional oximetry sensor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10828007B1 (en) 2013-10-11 2020-11-10 Masimo Corporation Acoustic sensor with attachment portion
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US9028407B1 (en) 2013-12-13 2015-05-12 Safer Care LLC Methods and apparatus for monitoring patient conditions
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US10532174B2 (en) 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
AU2016209104B2 (en) 2015-01-23 2020-04-30 Masimo Sweden Ab Nasal/oral cannula system and manufacturing
EP3253289B1 (en) 2015-02-06 2020-08-05 Masimo Corporation Fold flex circuit for optical probes
CN107431301B (en) 2015-02-06 2021-03-30 迈心诺公司 Connector assembly with retractable needle for use with medical sensors
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
US11653862B2 (en) 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US10448871B2 (en) 2015-07-02 2019-10-22 Masimo Corporation Advanced pulse oximetry sensor
US20170024748A1 (en) 2015-07-22 2017-01-26 Patient Doctor Technologies, Inc. Guided discussion platform for multiple parties
US10991135B2 (en) 2015-08-11 2021-04-27 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
CN108348162B (en) 2015-08-31 2021-07-23 梅西莫股份有限公司 Wireless patient monitoring system and method
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US10471159B1 (en) 2016-02-12 2019-11-12 Masimo Corporation Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US20170251974A1 (en) 2016-03-04 2017-09-07 Masimo Corporation Nose sensor
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
US10608817B2 (en) 2016-07-06 2020-03-31 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
US10750984B2 (en) 2016-12-22 2020-08-25 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
JP6762242B2 (en) 2017-01-30 2020-09-30 ジーコム コーポレイションGecom Corporation Vehicle door latch device
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
WO2018156809A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Augmented reality system for displaying patient data
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
EP3585254B1 (en) 2017-02-24 2024-03-20 Masimo Corporation Medical device cable and method of sharing data between connected medical devices
EP3592231A1 (en) 2017-03-10 2020-01-15 Masimo Corporation Pneumonia screener
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
USD822215S1 (en) 2017-04-26 2018-07-03 Masimo Corporation Medical monitoring device
USD822216S1 (en) 2017-04-28 2018-07-03 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
US10856750B2 (en) 2017-04-28 2020-12-08 Masimo Corporation Spot check measurement system
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
JP7159208B2 (en) 2017-05-08 2022-10-24 マシモ・コーポレイション A system for pairing a medical system with a network controller by using a dongle
USD833624S1 (en) 2017-05-09 2018-11-13 Masimo Corporation Medical device
WO2019014629A1 (en) 2017-07-13 2019-01-17 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
USD864120S1 (en) 2017-08-15 2019-10-22 Masimo Corporation Connector
USD906970S1 (en) 2017-08-15 2021-01-05 Masimo Corporation Connector
USD890708S1 (en) 2017-08-15 2020-07-21 Masimo Corporation Connector
US10637181B2 (en) 2017-08-15 2020-04-28 Masimo Corporation Water resistant connector for noninvasive patient monitor
USD880477S1 (en) 2017-08-15 2020-04-07 Masimo Corporation Connector
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
JP7282085B2 (en) 2017-10-31 2023-05-26 マシモ・コーポレイション System for displaying oxygen status indicators
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US10932729B2 (en) 2018-06-06 2021-03-02 Masimo Corporation Opioid overdose monitoring
US20210161465A1 (en) 2018-06-06 2021-06-03 Masimo Corporation Kit for opioid overdose monitoring
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
USD887549S1 (en) 2018-09-10 2020-06-16 Masino Corporation Cap for a flow alarm device
USD887548S1 (en) 2018-09-10 2020-06-16 Masimo Corporation Flow alarm device housing
US20200111552A1 (en) 2018-10-08 2020-04-09 Masimo Corporation Patient database analytics
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
CA3115776A1 (en) 2018-10-11 2020-04-16 Masimo Corporation Patient connector assembly with vertical detents
EP3864869A1 (en) 2018-10-12 2021-08-18 Masimo Corporation System for transmission of sensor data using dual communication protocol
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
US20200113520A1 (en) 2018-10-16 2020-04-16 Masimo Corporation Stretch band with indicators or limiters
US20200138368A1 (en) 2018-11-05 2020-05-07 Masimo Corporation System to manage patient hydration
US20200163597A1 (en) 2018-11-27 2020-05-28 Cercacor Laboratories, Inc. Assembly for medical monitoring device with multiple physiological sensors
US20200253474A1 (en) 2018-12-18 2020-08-13 Masimo Corporation Modular wireless physiological parameter system
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
EP3920791A1 (en) 2019-02-07 2021-12-15 Masimo Corporation Combining multiple qeeg features to estimate drug-independent sedation level using machine learning
US20200275841A1 (en) 2019-02-26 2020-09-03 Masimo Corporation Non-contact core body temperature measurement systems and methods
US20200288983A1 (en) 2019-02-26 2020-09-17 Masimo Corporation Respiratory core body temperature measurement systems and methods
JP2022529948A (en) 2019-04-17 2022-06-27 マシモ・コーポレイション Patient monitoring systems, equipment, and methods
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
US20210104173A1 (en) 2019-10-03 2021-04-08 Cercacor Laboratories, Inc. Personalized health coaching system
KR20220083771A (en) 2019-10-18 2022-06-20 마시모 코오퍼레이션 Display layouts and interactive objects for patient monitoring
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
CN115176155A (en) 2019-10-25 2022-10-11 塞卡科实验室有限公司 Indicator compounds, devices including indicator compounds, and methods of making and using the same
US20210236729A1 (en) 2020-01-30 2021-08-05 Cercacor Laboratories, Inc. Redundant staggered glucose sensor disease management system
EP4104037A1 (en) 2020-02-13 2022-12-21 Masimo Corporation System and method for monitoring clinical activities
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769785A (en) 1991-03-07 1998-06-23 Masimo Corporation Signal processing apparatus and method
US6157850A (en) 1991-03-07 2000-12-05 Masimo Corporation Signal processing apparatus
US6792300B1 (en) 1991-03-21 2004-09-14 Masimo Corporation Low-noise optical probes for reducing light piping
US5782757A (en) 1991-03-21 1998-07-21 Masimo Corporation Low-noise optical probes
US6088607A (en) 1991-03-21 2000-07-11 Masimo Corporation Low noise optical probe
US6256523B1 (en) 1991-03-21 2001-07-03 Masimo Corporation Low-noise optical probes
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US6813511B2 (en) 1991-03-21 2004-11-02 Masimo Corporation Low-noise optical probes for reducing ambient noise
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US6985764B2 (en) 2001-05-03 2006-01-10 Masimo Corporation Flex circuit shielded optical sensor
US20060211925A1 (en) 2005-03-01 2006-09-21 Marcelo Lamego Physiological parameter confidence measure
US20060238358A1 (en) 2005-03-01 2006-10-26 Ammar Al-Ali Noninvasive multi-parameter patient monitor
US7647083B2 (en) 2005-03-01 2010-01-12 Masimo Laboratories, Inc. Multiple wavelength sensor equalization
US7729733B2 (en) 2005-03-01 2010-06-01 Masimo Laboratories, Inc. Configurable physiological measurement system
US20100274099A1 (en) 2008-12-30 2010-10-28 Masimo Corporation Acoustic sensor assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501058A (en) * 2011-12-21 2015-01-08 コーニンクレッカ フィリップス エヌ ヴェ Method and system for predicting changes in physiological and clinical conditions
JP2017152030A (en) * 2011-12-21 2017-08-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and system to predict physiologic and clinical status change
RU2695886C2 (en) * 2014-01-06 2019-07-29 Конинклейке Филипс Н.В. Help in setting alarm limits for patient

Also Published As

Publication number Publication date
GB2490832B (en) 2016-09-21
GB2490832A (en) 2012-11-14
USRE47218E1 (en) 2019-02-05
US9724024B2 (en) 2017-08-08
DE112011100761T5 (en) 2013-01-03
WO2011109312A3 (en) 2012-01-05
JP2013521054A (en) 2013-06-10
US9775570B2 (en) 2017-10-03
GB201214902D0 (en) 2012-10-03
US20170231537A1 (en) 2017-08-17
US20110213212A1 (en) 2011-09-01
USRE47882E1 (en) 2020-03-03
USRE49007E1 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
USRE49007E1 (en) Adaptive alarm system
US20220160302A1 (en) Fluid titration system
US11330996B2 (en) Patient monitor for determining microcirculation state
US10130289B2 (en) Pulse and confidence indicator displayed proximate plethysmograph
EP1722676B1 (en) Physiological parameter system
US8596270B2 (en) Systems and methods for controlling a ventilator
EP2563217B1 (en) Method for respiration rate and blood pressure alarm management
US11317821B2 (en) System and method for generating an adjusted fluid responsiveness metric
JP2002538920A (en) Improved pulse oximeter probe-off detector
US20120323086A1 (en) Alarm sensitivity control for patient monitors
US20140323876A1 (en) Systems and methods for determining fluid responsiveness in the presence of gain changes and baseline changes
US20150327799A1 (en) Systems and methods for measurement of oxygen levels in blood by placement of a single sensor on the skin
EP3060126A1 (en) Systems and methods for generating respiration alarms
US10499835B2 (en) Methods and systems for determining fluid responsiveness in the presence of noise
US10213550B2 (en) Systems and methods for monitoring clinical procedures using regional blood oxygen saturation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11709525

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 1214902

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110228

WWE Wipo information: entry into national phase

Ref document number: 1214902.7

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2012556145

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111007612

Country of ref document: DE

Ref document number: 112011100761

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11709525

Country of ref document: EP

Kind code of ref document: A2