WO2011125958A1 - Polarizing laminate film, polarizing plate, and method for producing each - Google Patents

Polarizing laminate film, polarizing plate, and method for producing each Download PDF

Info

Publication number
WO2011125958A1
WO2011125958A1 PCT/JP2011/058476 JP2011058476W WO2011125958A1 WO 2011125958 A1 WO2011125958 A1 WO 2011125958A1 JP 2011058476 W JP2011058476 W JP 2011058476W WO 2011125958 A1 WO2011125958 A1 WO 2011125958A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
resin
polyvinyl alcohol
polarizer layer
Prior art date
Application number
PCT/JP2011/058476
Other languages
French (fr)
Japanese (ja)
Inventor
雄一朗 九内
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44762894&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011125958(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020177003690A priority Critical patent/KR101796907B1/en
Priority to KR1020147013629A priority patent/KR101711265B1/en
Priority to KR1020127027051A priority patent/KR101420556B1/en
Priority to CN201180017093.3A priority patent/CN102834748B/en
Publication of WO2011125958A1 publication Critical patent/WO2011125958A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/04Polyvinylalcohol
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present invention relates to a polarizing laminated film, a polarizing plate, and a method for producing them.
  • the polarizing plate is widely used as a polarization supplying element in a display device such as a liquid crystal display device.
  • a polarizing plate a polarizing film made of polyvinyl alcohol resin and a protective film made of triacetyl cellulose are conventionally used.
  • mobile devices such as notebook personal computers and mobile phones for liquid crystal display devices have been used. With the development of equipment, etc., reduction in thickness and weight is required.
  • a method for producing such a thin polarizing plate after providing a polyvinyl alcohol-based resin layer on the surface of the substrate film, stretching, and then dyeing to obtain a polarizing laminated film having a polarizer layer, A method has been proposed in which this is used as it is as a polarizing plate, or after a protective film is bonded to the polarizing laminate film, the substrate film is peeled off and used as a polarizing plate (for example, JP2000- 338329-A, JP2009-93074-A, JP2009-98653-A and JP2003-43257-A).
  • the resin layer is coated by coating the aqueous solution of the polyvinyl alcohol-based resin directly on the surface of the base film.
  • the contrast of the liquid crystal display device may not always be sufficient.
  • an object of the present invention is to provide a thin polarizing plate capable of giving a good contrast ratio in a liquid crystal display device, a polarizing laminated film used therefor, and a method for producing them.
  • the present inventor has obtained a polarizing plate obtained when a resin layer is formed using a general-purpose polyvinyl alcohol-based resin having a saponification degree exceeding 99.0 mol% in the conventional method.
  • the polarization performance is not sufficient, and as a result, the present inventors have found that the contrast ratio of a liquid crystal display device using a polarizing plate is not always sufficient.
  • the present invention includes the following.
  • Polyvinyl alcohol comprising a base film and a polarizer layer formed on one surface of the base film, the polarizer layer having a thickness of 10 ⁇ m or less and adsorbed and oriented with a dichroic dye
  • the saponification degree of the polyvinyl alcohol resin is 99.0 mol% or less
  • the visibility corrected single transmittance (Ty) is 40% or more
  • the visibility corrected polarization degree (Py) is 99.99%.
  • Polarizing laminated film which is 9% or more.
  • [3] is the polarizing laminated film according to [1] or [2] used for a polarizing plate.
  • a polyvinyl alcohol resin comprising a protective film and a polarizer layer formed on one surface of the protective film, the polarizer layer having a thickness of 10 ⁇ m or less and adsorbed and oriented with a dichroic dye
  • the saponification degree of the polyvinyl alcohol resin is 99.0 mol% or less
  • the visibility corrected single transmittance (Ty) is 40% or more
  • the visibility corrected polarization degree (Py) is 99.9%.
  • the polarizing plate according to [5] wherein the polarizer layer is formed on one surface of the protective film via an adhesive layer or an adhesive layer.
  • [8] The method for producing a polarizing laminated film according to any one of [1] to [4], wherein a polyvinyl alcohol type having a saponification degree of 99.0 mol% or less is formed on one surface of the base film.
  • a polarizer layer is formed by dyeing with a dyeing step to obtain a polarizing laminated film, and a protective film is bonded to the surface of the polarizing laminated film opposite to the surface of the polarizer layer on the base film side
  • the manufacturing method of the polarizing plate including the bonding process which obtains a multilayer film, and the peeling process which peels a base film from a multilayer film.
  • the present invention it is possible to provide a thin polarizing plate capable of providing a display with a good contrast ratio in a liquid crystal display device and a polarizing laminated film used therefor.
  • the resin layer which consists of a polyvinyl alcohol-type resin whose saponification degree is 99.0 mol% or less is formed in the surface of a base film, 5
  • uniaxially stretching at a stretching ratio exceeding twice an effect that a good dyeing speed can be obtained in the subsequent dyeing step is exhibited.
  • FIG. 1 is a schematic cross-sectional view showing an example of a basic layer configuration of a polarizing laminate film according to the present invention.
  • the polarizing laminated film 10 includes a base film 11 and a polarizer layer 12 formed on one surface of the base film 11.
  • the polarizer layer 12 has a thickness of 10 ⁇ m or less, and is formed from a polyvinyl alcohol resin in which a dichroic dye is adsorbed and oriented.
  • the saponification degree of the polyvinyl alcohol-based resin is 99.0 mol% or less.
  • the visibility corrected single transmittance (Ty) of the polarizing laminated film 10 is 40% or more, and the visibility corrected polarization degree (Py) is 99.9% or more.
  • the polarizing laminated film 10 can be used as a polarizing plate. Since the polarizing laminated film 10 has the optical characteristics as described above, a display having a good contrast ratio can be obtained when the polarizing laminated film 10 is used as a polarizing plate of a liquid crystal display device.
  • the visibility corrected single transmittance (Ty) is obtained in the wavelength range of 380 nm to 780 nm by obtaining the MD transmittance and the TD transmittance of the polarizing laminated film or the polarizing plate, and based on the formula (1) shown below. It can be obtained by calculating the single transmittance at the wavelength and further correcting the visibility with the 2 degree visual field (C light source) of JIS Z 8701.
  • the visibility correction polarization degree (Py) is obtained by calculating MD transmittance and TD transmittance in the same manner as described above, and calculating the degree of polarization (%) at each wavelength based on the following formula (2). Can be obtained by correcting the visibility.
  • MD transmittance is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the polarizing plate sample, and is expressed as “MD” in the equations (1) and (2).
  • the “TD transmittance” is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism and the polarizing plate sample are orthogonal to the transmission axis. In the formulas (1) and (2), “TD”. It expresses. Both MD transmittance and TD transmittance can be measured with a spectrophotometer with an integrating sphere.
  • Single transmittance (%) (MD + TD) / 2 Formula (1)
  • Degree of polarization (%) ⁇ ⁇ (MD ⁇ TD) / (MD + TD) ⁇ ⁇ 100 (2)
  • each component will be described in detail.
  • a thermoplastic resin excellent in transparency, mechanical strength, thermal stability, stretchability and the like is used as a material of the base film 11 used in the present invention.
  • thermoplastic resins include cellulose ester resins such as cellulose triacetate, polyester resins, polyether sulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins. , (Meth) acrylic resins, cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • the material for the base film preferably includes at least one selected from the group consisting of cellulose ester resins, polyolefin resins, cyclic polyolefin resins, and (meth) acrylic resins.
  • the cellulose ester resin is an ester of cellulose and a fatty acid.
  • Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Among these, cellulose triacetate is particularly preferable. Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost.
  • Examples of commercially available cellulose triacetate include Fujitac (registered trademark) TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UF (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UZ (Fuji Film ( Co., Ltd.), Fujitac (registered trademark) TD40UZ (Fuji Film Co., Ltd.), KC8UX2M (Konica Minolta Opto Co., Ltd.), KC4UY (Konica Minolta Opto Co., Ltd.), and the like.
  • polystyrene resin examples include polyethylene and polypropylene.
  • a base film made of polypropylene it is preferable because it can be stably stretched at a high magnification.
  • cyclic polyolefin resin a norbornene resin is preferably used.
  • the cyclic polyolefin-based resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and examples thereof include resins described in JPH01-240517-A, JPH03-14882-A, JPH03-122137-A, and the like. .
  • ring-opening (co) polymers of cyclic olefins include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, cyclic olefins and ⁇ -olefins such as ethylene and propylene (typically random copolymers), And graft polymers obtained by modifying them with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof.
  • cyclic olefin include norbornene monomers.
  • cyclic polyolefin resins Various products are commercially available as cyclic polyolefin resins. Specific examples include Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (manufactured by ZEON Corporation), ZEONEX (ZEONEX). (Registered trademark) (manufactured by ZEON CORPORATION) and Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.).
  • Topas registered trademark
  • Arton registered trademark
  • ZEONOR registered trademark
  • ZEON ZEON Corporation
  • ZEONEX ZEONEX
  • Apel registered trademark
  • any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin.
  • poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer).
  • poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-
  • C1-6 alkyl poly (meth) acrylates such as poly (meth) acrylate methyl
  • the (meth) acrylic resin is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
  • any appropriate additive may be added to the base film 11 in addition to the above thermoplastic resin.
  • additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, anti-coloring agents, flame retardants, nucleating agents, antistatic agents, pigments, and coloring agents.
  • the content of the thermoplastic resin exemplified above in the base film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97%. % By weight. If the content of the thermoplastic resin in the base film is less than 50% by weight, the high transparency inherent in the thermoplastic resin may not be sufficiently exhibited.
  • the thickness of the base film 11 can be determined as appropriate, it is generally preferably 1 to 500 ⁇ m, more preferably 1 to 300 ⁇ m, and even more preferably 5 to 200 ⁇ m from the viewpoint of workability such as strength and handleability.
  • the thickness of the base film 11 is most preferably 5 to 150 ⁇ m.
  • the base film 11 may be subjected to corona treatment, plasma treatment, flame treatment or the like on at least the surface on which the polarizer layer 12 is formed in order to improve the adhesion with the polarizer layer 12. Moreover, in order to improve adhesiveness, you may form thin layers, such as a primer layer, in the surface at the side in which the polarizer layer 12 of the base film 11 is formed.
  • the polarizer layer 12 is obtained by adsorbing and orienting a dichroic dye on a uniaxially stretched polyvinyl alcohol-based resin layer.
  • a saponified polyvinyl acetate resin can be used as the polyvinyl alcohol resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol resin is 99.0 mol% or less.
  • the reason why a polyvinyl alcohol resin having a saponification degree of 99.0 mol% or less is used is that a constant dyeing speed can be maintained even when uniaxial stretching is performed more than 5 times. There is an advantage that a thin polarizing laminated film having high polarizing performance can be efficiently produced.
  • the dyeing speed is remarkably slow, and a polarizing laminated film having sufficient polarization performance may not be obtained. In some cases, the production takes several times longer than usual.
  • the saponification degree of the polyvinyl alcohol-based resin is preferably 90 mol% or more, and more preferably 94 mol% or more. If the saponification degree is less than 90 mol%, strength such as water resistance may not be sufficient.
  • the saponification degree as used herein is a unit ratio (mol%) representing the ratio of the acetate group contained in the polyvinyl acetate resin, which is a raw material for the polyvinyl alcohol resin, to a hydroxyl group by the saponification step. Is a numerical value defined by the following formula. It can be obtained by the method defined in JIS K 6726 (1994).
  • Saponification degree (mol%) (number of hydroxyl groups) ⁇ (number of hydroxyl groups + number of acetate groups) ⁇ 100 The higher the degree of saponification, the higher the proportion of hydroxyl groups, that is, the lower the proportion of acetate groups that inhibit crystallization.
  • the polyvinyl alcohol resin used in the present invention is not particularly limited as long as the saponification degree is 99.0 mol% or less, and may be modified polyvinyl alcohol partially modified.
  • polyvinyl alcohol-based resins modified with olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters of unsaturated carboxylic acids, acrylamide, etc.
  • the average degree of polymerization of the polyvinyl alcohol-based resin is not particularly limited, but is preferably 100 to 10,000, and more preferably 1500 to 10,000.
  • polyvinyl alcohol resin having such characteristics examples include PVA124 (degree of saponification: 98.0 to 99.0 mol%) and PVA117 (degree of saponification: 98.0 to 99.0) manufactured by Kuraray Co., Ltd. Mol%), PVA624 (degree of saponification: 95.0 to 96.0 mol%) and PVA617 (degree of saponification: 94.5 to 95.5 mol%); for example, AH- manufactured by Nippon Synthetic Chemical Industry Co., Ltd. 26 (saponification degree: 97.0 to 98.8 mol%), AH-22 (degree of saponification: 97.5 to 98.5 mol%), NH-18 (degree of saponification: 98.0 to 99.99%).
  • a film obtained by forming such a polyvinyl alcohol-based resin constitutes the polarizer layer 12 according to the present invention.
  • the method for forming the polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method, but from the viewpoint that it is easy to obtain the polarizer layer 12 having a desired thickness. It is preferable to form a film by applying a resin solution onto the base film 11.
  • the polarizer layer 12 is preferably uniaxially stretched at a stretch ratio of more than 5 times, more preferably more than 5 times and not more than 17 times.
  • the polarizer layer 12 has a dichroic dye adsorbed and oriented on the polyvinyl alcohol resin as described above.
  • the thickness of the polarizer layer 12 is 10 ⁇ m or less, preferably 7 ⁇ m or less. By setting the thickness of the polarizer layer 12 to 10 ⁇ m or less, a thin polarizing laminated film can be configured.
  • FIG. 2 is a schematic cross-sectional view showing an example of a basic layer configuration of the polarizing plate according to the present invention.
  • the polarizing plate 13 includes a protective film 14 and a polarizer layer 12 formed on one surface of the protective film 14.
  • the polarizer layer 12 has a thickness of 10 ⁇ m or less, and is formed from a polyvinyl alcohol resin in which a dichroic dye is adsorbed and oriented.
  • the saponification degree of the polyvinyl alcohol-based resin is 99.0 mol% or less.
  • the visibility corrected single transmittance (Ty) of the polarizing plate 13 is 40% or more, and the visibility corrected polarization degree (Py) is 99.9% or more.
  • the polarizing plate 13 can be used as a polarizing plate of a liquid crystal display device. Since the polarizing plate 13 has the optical characteristics as described above, when the polarizing plate 13 is used as a polarizing plate of a liquid crystal display device, a display with a good contrast ratio can be obtained.
  • the protective film 14 and the polarizer layer 12 are bonded via, for example, a pressure-sensitive adhesive layer or an adhesive layer not explicitly shown in FIG. 3.
  • a pressure-sensitive adhesive layer or an adhesive layer not explicitly shown in FIG. 3.
  • the protective film 14 may be a simple protective film having no optical function, or may be a protective film having an optical function such as a retardation film or a brightness enhancement film.
  • the material of the protective film 14 is not particularly limited, but for example, a cyclic polyolefin resin film, a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, Examples thereof include films that have been widely used in the art, such as polyester resin films, polycarbonate resin films, acrylic resin films, and polypropylene resin films made of a resin such as polybutylene terephthalate.
  • cyclic polyolefin-based resin examples include appropriate commercial products such as Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (Nippon ZEON ( ZEONEX (registered trademark) (manufactured by Nippon Zeon Co., Ltd.), Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be suitably used.
  • Topas registered trademark
  • Arton registered trademark
  • ZEONOR registered trademark
  • Nippon ZEON ZEONEX
  • Apel registered trademark
  • Mitsui Chemicals, Inc. a known method such as a solvent casting method or a melt extrusion method is appropriately used.
  • cyclic polyolefins such as Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), SCA40 (manufactured by Sekisui Chemical Co., Ltd.), ZEONOR (registered trademark) film (manufactured by Optes Co., Ltd.), etc.
  • Essina registered trademark
  • SCA40 manufactured by Sekisui Chemical Co., Ltd.
  • ZEONOR registered trademark film
  • a commercial product of a film made of a resin may be used.
  • the cyclic polyolefin resin film may be uniaxially stretched or biaxially stretched.
  • An arbitrary retardation value can be imparted to the cyclic polyolefin-based resin film by stretching. Stretching is usually performed continuously while unwinding the film roll, and is stretched in the heating furnace in the roll traveling direction, the direction perpendicular to the traveling direction, or both.
  • the temperature of the heating furnace is usually in the range from the vicinity of the glass transition temperature of the cyclic polyolefin resin to the glass transition temperature + 100 ° C.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times in one direction.
  • the cyclic polyolefin resin film generally has poor surface activity
  • surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment is performed on the surface to be bonded to the polarizing film.
  • plasma treatment and corona treatment that can be performed relatively easily are preferable.
  • Examples of the cellulose acetate-based resin film include commercially available products such as Fujitac (registered trademark) TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UF (manufactured by Fuji Film Co., Ltd.), and Fujitac (registered trademark).
  • TD80UZ Fluji Film Co., Ltd.
  • Fujitac registered trademark
  • TD40UZ Fujiji Film Co., Ltd.
  • KC8UX2M Konica Minolta Opto Co., Ltd.
  • KC4UY Konica Minolta Opto Co., Ltd.
  • a liquid crystal layer or the like may be formed on the surface of the cellulose acetate-based resin film in order to improve viewing angle characteristics. Moreover, in order to provide a phase difference, what stretched the cellulose acetate type-resin film may be used.
  • the cellulose acetate-based resin film is usually subjected to a saponification treatment in order to improve the adhesiveness with the polarizing film.
  • a saponification treatment a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be employed.
  • An optical layer such as a hard coat layer, an antiglare layer, or an antireflection layer can be formed on the surface of the protective film 14 as described above.
  • the method for forming these optical layers on the surface of the protective film is not particularly limited, and a known method can be used.
  • the thickness of the protective film 14 is preferably as thin as possible from the demand for thinning, is preferably 88 ⁇ m or less, and more preferably 48 ⁇ m or less. On the other hand, if it is too thin, the strength is lowered and the processability is poor, and therefore it is preferably 5 ⁇ m or more.
  • the polarizer layer 12 can be configured similarly to the polarizer layer 12 of the above-described polarizing laminated film 10.
  • the pressure-sensitive adhesive used for bonding the protective film 14 and the polarizer layer 12 usually uses an acrylic resin, a styrene resin, a silicone resin, or the like as a base polymer, and there are an isocyanate compound, an epoxy compound, an aziridine compound, and the like.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 to 40 ⁇ m, but it is preferably applied thinly, and more preferably 3 to 25 ⁇ m, as long as the workability and durability characteristics are not impaired.
  • the thickness is from 3 to 25 ⁇ m, it has good processability and is also suitable for suppressing the dimensional change of the polarizing film.
  • the pressure-sensitive adhesive layer is less than 1 ⁇ m, the tackiness is lowered, and when it exceeds 40 ⁇ m, problems such as the pressure-sensitive adhesive protruding easily occur.
  • the pressure-sensitive adhesive layer may be bonded to the polarizer layer 12 after providing the pressure-sensitive adhesive layer on the surface of the protective film 14. After providing the pressure-sensitive adhesive layer on the surface, the protective film 14 may be bonded thereto.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited, and a solution containing each component including the above-mentioned base polymer is applied to the surface of the protective film 14 or the surface of the polarizer layer 12 and dried to adhere.
  • the protective film 14 and the polarizer layer 12 may be bonded together, or after forming the pressure-sensitive adhesive layer on the separator, it is transferred to the surface of the protective film 14 or the surface of the polarizer layer 12 and laminated. May be.
  • the pressure-sensitive adhesive layer is formed on the surface of the protective film 14 or the polarizer layer 12, if necessary, an adhesion treatment is applied to one or both of the surface of the protective film 14 or the polarizer layer 12, or the pressure-sensitive adhesive layer, for example, corona. You may perform a process etc.
  • Examples of the adhesive used for bonding the protective film 14 and the polarizer layer 12 include an aqueous adhesive using a polyvinyl alcohol-based resin aqueous solution, an aqueous two-component urethane emulsion adhesive, and the like.
  • a polyvinyl alcohol resin aqueous solution is suitably used as an aqueous adhesive for bonding to the polarizer layer 12.
  • Polyvinyl alcohol resins used as adhesives include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as other single quantities copolymerizable with vinyl acetate. And vinyl alcohol copolymers obtained by saponifying the copolymer with the polymer, and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups.
  • a polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive.
  • the adhesive layer obtained therefrom is usually 1 ⁇ m or less, and even when the cross section is observed with a normal optical microscope, the adhesive layer is practically not observed.
  • the method of bonding the polarizer layer 12 and the protective film 14 using an aqueous adhesive is not particularly limited.
  • the adhesive is uniformly applied to the surface of the polarizer layer 12 and / or the protective film 14.
  • the other film is stacked on the coated surface, pressed with a roll or the like, and dried.
  • the adhesive is applied at a temperature of 15 to 40 ° C., and the bonding temperature is usually in the range of 15 to 30 ° C.
  • the polarizer layer 12 and the protective film 14 are bonded together and then dried to remove water contained in the water-based adhesive.
  • the temperature of the drying furnace is preferably 30 ° C to 90 ° C. When the temperature is lower than 30 ° C., the adhesive surface between the polarizer layer 12 and the protective film 14 tends to be easily peeled off. If it is 90 ° C. or higher, the optical performance may be deteriorated by heat.
  • the drying time can be 10 to 1000 seconds, and preferably 60 to 750 seconds, more preferably 150 to 600 seconds, particularly from the viewpoint of productivity.
  • the temperature at the time of curing is generally set lower than the temperature adopted at the time of drying.
  • a photo-curable adhesive can be used as an adhesive when the polarizer layer 12 and the protective film 14 are bonded.
  • the photocurable adhesive include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator.
  • a method of bonding the polarizer layer 12 and the protective film 14 with a photocurable adhesive a conventionally known method can be used.
  • a casting method, a Mayer bar coating method, a gravure coating method, a comma coater examples thereof include a method in which an adhesive is applied to the adhesive surface of the polarizer layer 12 and / or the protective film 14 by a method, a doctor plate method, a die coating method, a dip coating method, a spraying method, and the like, and the both are overlapped.
  • the polarizer layer 12 or the protective film 14 which is an object to be coated is moved in a substantially vertical direction, a substantially horizontal direction, or an oblique direction between the two, and the adhesive is allowed to flow down on the surface. This is a method of spreading.
  • the polarizer layer 12 and the protective film 14 are bonded together by sandwiching them with a nip roll or the like through the adhesive application surface. Moreover, after dripping an adhesive agent between the polarizer layer 12 and the protective film 14 in a state where the polarizer layer 12 and the protective film 14 are overlapped, the laminate is pressed with a roll or the like and uniformly spread.
  • the method can also be preferably used. In this case, a metal, rubber, or the like can be used as the material of the roll. Further, a method in which an adhesive is dropped between the polarizer layer 12 and the protective film 14 and then the laminate is passed between the rolls and then pressed and spread is preferably employed. In this case, these rolls may be made of the same material or different materials.
  • the thickness of the adhesive layer after being bonded using the nip roll or the like before drying or curing is preferably 5 ⁇ m or less and 0.01 ⁇ m or more.
  • the surface of the polarizer layer 12 and / or the protective film 14 is appropriately subjected to surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment, and the like. May be.
  • surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment, and the like.
  • the saponification treatment include a method of immersing in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide.
  • the photocurable adhesive is cured by irradiating active energy rays after the polarizer layer 12 and the protective film 14 are joined.
  • the light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • the low pressure mercury lamp, the medium pressure mercury lamp, the high pressure mercury lamp, the ultrahigh pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
  • the light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / it is preferable that the cm 2.
  • the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when it is 6000 mW / cm 2 or less, the epoxy is generated by the heat radiated from the light source and the heat generated when the photo-curable adhesive is cured. There is little risk of yellowing of the resin or deterioration of the polarizing film.
  • the light irradiation time to the photocurable adhesive is not particularly limited and is applied according to the photocurable adhesive to be cured, but the integrated light amount expressed as the product of the irradiation intensity and the irradiation time. Is preferably set to 10 to 10,000 mJ / cm 2 . When the cumulative amount of light to the photocurable adhesive is 10 mJ / cm 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to allow the curing reaction to proceed more reliably, and at 10,000 mJ / cm 2 or less. In some cases, the irradiation time does not become too long and good productivity can be maintained.
  • the thickness of the adhesive layer after irradiation with active energy rays is usually about 0.001 to 5 ⁇ m, preferably 0.01 ⁇ m or more and 2 ⁇ m or less, more preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the curing is performed under conditions that do not deteriorate the functions of the polarizing plate such as the degree of polarization of the polarizer layer 12, the transmittance and the hue, and the transparency of the protective film 14. Preferably it is done.
  • the polarizing plate of the present invention produced as described above can be used as a polarizing plate in which other optical layers are laminated in practical use.
  • the said protective film 14 may have a function of these optical layers.
  • other optical layers include a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties, a film with an antiglare function having an uneven shape on the surface, and a surface antireflection function. Examples thereof include an attached film, a reflective film having a reflective function on the surface, a transflective film having both a reflective function and a transmissive function, and a viewing angle compensation film.
  • the viewing angle compensation film examples include an optical compensation film coated with a liquid crystal compound on the surface of the substrate and oriented, a retardation film made of a polycarbonate resin, and a retardation film made of a cyclic polyolefin resin.
  • WV film Fluji Film Co., Ltd.
  • NH film Tin Nippon Oil Co., Ltd.
  • NR Examples include films (manufactured by Nippon Oil Corporation).
  • Commercial products corresponding to retardation films made of cyclic polyolefin resins include Arton (registered trademark) film (manufactured by JSR Corporation), Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), Zeonor ( Registered trademark) film (manufactured by Optes Co., Ltd.).
  • FIG. 3 is a flowchart showing an embodiment of a method for producing the polarizing laminated film 10 shown in FIG.
  • the manufacturing method of the light-polarizing laminated film 10 forms the resin film which consists of a polyvinyl alcohol-type resin whose saponification degree is 99.0 mol% or less on one surface of the base film 11, and is a laminated film.
  • the dyeing step (S30) for obtaining the polarizing laminated film 10 as the polarizer layer 12 is performed in this order.
  • the resin layer forming step (S10), the stretching step (S20), and the dyeing step (S30) are the same as the corresponding steps in the polarizing plate manufacturing method described later.
  • the laminated film obtained by this production method becomes the polarizing laminated film 10 provided with the polarizer layer 12 having a thickness of 10 ⁇ m or less on the stretched base film 11.
  • This can be used as a polarizing plate as it is, or as an intermediate product for transferring the polarizer layer 12 to a protective film as described later.
  • FIG. 4 is a flowchart showing an embodiment of a method for manufacturing the polarizing plate 13 shown in FIG. According to this, the polarizing plate 13 is manufactured by forming a resin layer made of a polyvinyl alcohol resin having a saponification degree of 99.0 mol% or less on one surface of the base film to obtain a laminated film.
  • the protective film 14 is bonded to the surface of the polarizer layer 12 of the polarizing laminated film opposite to the surface of the base film 11 side, and the multilayer film A bonding step (S40) for obtaining a film, and a peeling step (S50) for peeling the base film 11 from the multilayer film are provided in this order.
  • the polarizing plate 13 obtained by this manufacturing method becomes the polarizing plate 13 provided with the polarizer layer 12 having a thickness of 10 ⁇ m or less on the protective film 14.
  • the polarizing plate 13 can be used, for example, by being bonded to another optical film or a liquid crystal cell via a pressure-sensitive adhesive.
  • the material suitable for the base film is as described in the description of the configuration of the polarizing laminated film.
  • those having a melting point of 130 ° C. or higher are used. If the melting point of the base film is less than 110 ° C., the base film is likely to melt in the stretching step (S20) described later, and the stretching temperature cannot be raised sufficiently, making stretching more than 5 times difficult. It is.
  • the melting point of the base film is a value measured at a heating rate of 10 ° C./min based on ISO3146.
  • the material of the polyvinyl alcohol resin suitable for forming the resin layer is as described in the explanation of the configuration of the polarizing laminated film.
  • the thickness of the resin layer to be formed is preferably more than 3 ⁇ m and not more than 30 ⁇ m, more preferably 5 to 20 ⁇ m. If it is 3 ⁇ m or less, it becomes too thin after stretching and the dyeability is remarkably deteriorated. If it exceeds 30 ⁇ m, the thickness of the finally obtained polarizer layer may exceed 10 ⁇ m, which is not preferable.
  • the resin layer is preferably formed by applying a polyvinyl alcohol resin solution obtained by dissolving polyvinyl alcohol resin powder in a good solvent onto one surface of the base film, and evaporating the solvent to dry the resin layer. It is formed. By forming the resin layer in this way, it can be formed thin.
  • a method for coating a polyvinyl alcohol resin solution on a base film a wire bar coating method, a reverse coating, a roll coating method such as gravure coating, a die coating method, a comma coating method, a lip coating method, a spin coating method, a screen coating method.
  • a method, a fountain coating method, a dipping method, a spray method, and the like can be appropriately selected from known methods and employed.
  • the drying temperature is, for example, 50 to 200 ° C., preferably 60 to 150 ° C.
  • the drying time is, for example, 2 to 20 minutes.
  • the resin layer in this embodiment can also be formed by sticking a raw film made of a polyvinyl alcohol resin on one surface of the base film.
  • a primer layer may be provided between the base film and the resin layer in order to improve the adhesion between the base film and the polyvinyl alcohol resin.
  • the primer layer is preferably formed from a composition containing a crosslinking agent or the like in a polyvinyl alcohol resin from the viewpoint of adhesion.
  • a laminated film composed of a base film and a resin layer is uniaxially stretched so as to have a draw ratio of more than 5 times with respect to the original length of the laminated film to obtain a stretched film.
  • uniaxial stretching is performed so that the stretching ratio is more than 5 times and not more than 17 times. More preferably, it is uniaxially stretched so that the stretch ratio is more than 5 times and not more than 8 times.
  • the draw ratio is 5 times or less, the resin layer made of the polyvinyl alcohol resin is not sufficiently oriented, and as a result, the degree of polarization of the polarizer layer is not sufficiently high.
  • the stretching process in the stretching step (S20) is not limited to one-stage stretching, and can be performed in multiple stages. In the case of performing in multiple stages, the stretching process is performed so that the stretching ratio is more than 5 times by combining all stages of the stretching process.
  • a longitudinal stretching process performed in the longitudinal direction of the laminated film is preferable.
  • a fixed end represented by transverse uniaxial stretching by the tenter method or the like.
  • Uniaxial stretching may be used.
  • the longitudinal stretching method include an inter-roll stretching method, a compression stretching method, and a stretching method using a tenter.
  • the stretching process is not limited to the longitudinal stretching process, and may be an oblique stretching process or the like. Moreover, it is preferable that it is free end uniaxial stretching.
  • the stretching treatment either a wet stretching method or a dry stretching method can be adopted, but the use of the dry stretching method is preferable in that the temperature for stretching the laminated film can be selected from a wide range.
  • the stretching treatment in a temperature range of ⁇ 30 ° C. to + 5 ° C. of the melting point of the base film. More preferably, the stretching process is performed in the temperature range from ⁇ 25 ° C. to the melting point of the base film.
  • the stretching temperature is lower than the melting point of the base film 11 of ⁇ 30 ° C., it becomes difficult to stretch the film at a high magnification exceeding 5 times.
  • the stretching temperature exceeds + 5 ° C. of the melting point of the base film, it is not preferable because stretching becomes difficult due to melting of the base film.
  • stretching temperature is in the said range, More preferably, it is 120 degreeC or more. This is because when the stretching temperature is 120 ° C. or higher, there is no difficulty in the stretching treatment even at a high stretching ratio of more than 5 times.
  • the temperature adjustment of the stretching process is usually based on the temperature adjustment of the heating furnace.
  • the resin layer of the stretched film is dyed with a dichroic dye.
  • the dichroic dye include iodine and organic dyes.
  • organic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First Orange S, First Black, etc. can be used.
  • One kind of these dichroic substances may be used, or two or more kinds may be used in combination.
  • the dyeing step is performed, for example, by immersing the entire stretched film in a solution (dye solution) containing the dichroic dye.
  • a solution in which the above dichroic dye is dissolved in a solvent can be used.
  • a solvent for the dyeing solution water is generally used, but an organic solvent compatible with water may be further added.
  • the concentration of the dichroic dye is preferably 0.01 to 10% by weight, more preferably 0.02 to 7% by weight, and particularly preferably 0.025 to 5% by weight.
  • iodine When iodine is used as the dichroic dye, it is preferable to further add an iodide because the dyeing efficiency can be further improved.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide.
  • examples include titanium.
  • the addition ratio of these iodides is preferably 0.01 to 10% by weight in the dyeing solution.
  • the ratio of iodine to potassium iodide is preferably in the range of 1: 5 to 1: 100, more preferably in the range of 1: 6 to 1:80 by weight. And particularly preferably in the range of 1: 7 to 1:70.
  • the immersion time of the stretched film in the dyeing solution is not particularly limited, but is usually preferably in the range of 15 seconds to 15 minutes, and more preferably 1 minute to 3 minutes.
  • the temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C.
  • a crosslinking treatment can be performed after dyeing.
  • the crosslinking treatment can be performed, for example, by immersing the stretched film in a solution containing a crosslinking agent (crosslinking solution).
  • crosslinking solution Conventionally known substances can be used as the crosslinking agent. Examples thereof include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. One kind of these may be used, or two or more kinds may be used in combination.
  • crosslinking solution a solution in which a crosslinking agent is dissolved in a solvent can be used.
  • solvent for example, water can be used, but an organic solvent compatible with water may be further included.
  • concentration of the crosslinking agent in the crosslinking solution is not limited to this, but is preferably in the range of 1 to 20% by weight, more preferably 6 to 15% by weight.
  • An iodide may be added to the crosslinking solution. By adding iodide, the in-plane polarization characteristics of the resin layer can be made more uniform.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Is mentioned.
  • the iodide content is 0.05 to 15% by weight, more preferably 0.5 to 8% by weight.
  • the immersion time of the stretched film in the crosslinking solution is usually preferably from 15 seconds to 20 minutes, and more preferably from 30 seconds to 15 minutes.
  • the temperature of the crosslinking solution is preferably in the range of 10 to 80 ° C.
  • a washing step a water washing treatment can be performed.
  • the water washing treatment can usually be performed by immersing the stretched film in pure water such as ion exchange water or distilled water.
  • the water washing temperature is usually in the range of 3 to 50 ° C., preferably 4 to 20 ° C.
  • the immersion time is usually 2 to 300 seconds, preferably 3 to 240 seconds.
  • washing treatment with an iodide solution and water washing treatment may be combined, and a solution in which liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol, propanol or the like is appropriately blended may be used.
  • liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol, propanol or the like is appropriately blended
  • the resin layer has a function as a polarizer.
  • the resin layer which has a function as a polarizer is called a polarizer layer, and the laminated body provided with the polarizer layer on the base film is called a polarizing laminated film.
  • a polyvinyl alcohol resin having a saponification degree of 99.0 mol% or less is used for the resin layer, and uniaxial stretching is performed at a stretching ratio of more than 5 times in the stretching step (S20). Therefore, a good dyeing speed is maintained in the dyeing step (S30).
  • the resin layer using the polyvinyl alcohol-type resin with a high saponification degree has a low dyeing speed in the dyeing step (S30), and the dyeing tends to be insufficient.
  • a protective film is bonded to the surface opposite to the surface on the base film side of the polarizer layer in the polarizing laminated film to obtain a multilayer film.
  • a method of bonding a protective film the method of bonding the polarizer layer 12 and the protective film 14 with an adhesive, and the method of bonding the polarizer layer 12 surface and the protective film 14 with an adhesive are mentioned.
  • Materials suitable as the protective film are as described in the description of the structure of the polarizing plate.
  • the preferable method of bonding the polarizer layer 12 and the protective film 14 using the adhesive suitable for use, the material of an adhesive, and these is as having demonstrated by description of the structure of the above-mentioned polarizing plate.
  • a peeling process (S50) is performed after the bonding process (S40) which bonds a protective film to the polarizer layer 12 of a polarizing laminated film.
  • a peeling process (S50) a base film is peeled from a multilayer film.
  • the peeling method of a base film is not specifically limited, It can peel by the method similar to the peeling process of the peeling film performed with a normal polarizing plate with an adhesive.
  • the protective film may be peeled off as it is, or once wound up in a roll shape, a separate peeling step may be provided and peeled off.
  • Example 1 The polarizing plate shown in FIG. 2 was produced according to the manufacturing method shown in FIG.
  • Base film An unstretched polypropylene (PP) film (melting point: 163 ° C.) having a thickness of 110 ⁇ m was used as the base film.
  • Polyvinyl alcohol powder (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., average polymerization degree 1100, saponification degree 99.5 mol%, trade name: Z-200) is dissolved in 95 ° C. hot water to give an aqueous solution having a concentration of 3% by weight. Prepared. The resulting aqueous solution was mixed with 5 parts by weight of a crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez (registered trademark) Resin 650) with respect to 6 parts by weight of polyvinyl alcohol powder. The obtained mixed aqueous solution was applied on a corona-treated substrate film using a microgravure coater and dried at 80 ° C. for 10 minutes to form a primer layer having a thickness of 0.2 ⁇ m.
  • a crosslinking agent manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez (registered trademark) Resin 650
  • the laminated film was subjected to 5.8-fold free end uniaxial stretching at 160 ° C. using a tenter apparatus to obtain a stretched film.
  • the thickness of the resin layer after stretching was 6.1 ⁇ m.
  • the stretched film is immersed in a 60 ° C. hot bath for 60 seconds, dyed by immersion for about 150 seconds in a dyeing solution that is a mixed aqueous solution of iodine and potassium iodide at 30 ° C., and then excess iodine is added with pure water at 10 ° C. The liquid was washed away. Subsequently, it was immersed for 600 second in the bridge
  • the polarizer layer was formed from the resin layer by the above process, and the light-polarizing laminated film was obtained. The blending ratio of each solution is as follows.
  • ⁇ Dyeing solution> Water: 100 parts by weight Iodine: 0.6 parts by weight Potassium iodide: 10 parts by weight ⁇ Crosslinking solution> Water: 100 parts by weight Boric acid: 9.5 parts by weight Potassium iodide: 5 parts by weight (bonding of protective film)
  • Polyvinyl alcohol powder manufactured by Kuraray Co., Ltd., average polymerization degree 1800, trade name: KL-318 was dissolved in 95 ° C. hot water to prepare an aqueous solution having a concentration of 3% by weight.
  • the resulting aqueous solution was mixed with 1 part by weight of a crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez (registered trademark) Resin 650) with respect to 2 parts by weight of polyvinyl alcohol powder to obtain an adhesive solution.
  • a crosslinking agent manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez (registered trademark) Resin 650
  • the protective film (TAC: KC4UY manufactured by Konica Minolta Opto Co., Ltd.) is applied after applying the above-mentioned polyvinyl alcohol-based adhesive on the surface opposite to the surface of the polarizer layer of the polarizing laminated film on the base film side.
  • Bonding was performed to obtain a polarizing plate comprising five layers of a protective film, an adhesive layer, a polarizer layer, a primer layer, and a base film.
  • the base film was peeled from the obtained polarizing plate.
  • the base film was easily peeled off to obtain a polarizing plate comprising four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer.
  • the thickness of the polarizer layer was 6.1 ⁇ m.
  • Example 2 As polyvinyl alcohol used for the resin layer, polyvinyl alcohol powder (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., average polymerization degree 2200, saponification degree 97.5 to 98.5 mol%, trade name: AH-22) was used. A stretched film was obtained in the same manner as in Example 1 except for the above. The thickness of the resin layer in the stretched film was 5.5 ⁇ m. Further, the polarizing plate of Example 2 comprising four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer is carried out in the same manner as in Example 1 by carrying out a dyeing process, a bonding process, a peeling process, and the like. Obtained. The thickness of the polarizer layer was 5.6 ⁇ m.
  • Example 3 As polyvinyl alcohol used for the resin layer, polyvinyl alcohol powder (manufactured by Nippon Vinegar Poval Co., Ltd., average polymerization degree 2600, saponification degree 95.5 to 97.5 mol%, trade name: JM-26) was used. A stretched film was obtained in the same manner as in Example 1 except for the point. The thickness of the resin layer in the stretched film was 5.3 ⁇ m. Furthermore, the polarizing plate of Example 3 consisting of four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer is carried out by performing the dyeing step, the bonding step, the peeling step and the like in the same manner as in Example 1. Obtained. The thickness of the polarizer layer was 5.3 ⁇ m.
  • Comparative Example 1 As the polyvinyl alcohol used for the resin layer, the same method as in Example 1 except that polyvinyl alcohol powder (manufactured by Kuraray Co., Ltd., average polymerization degree 1700, saponification degree 99.3 mol% or more, trade name: PVA117H) was used. A stretched film was obtained. The thickness of the resin layer in the stretched film was 6.3 ⁇ m. Furthermore, the dyeing process, the bonding process, the peeling process, and the like are performed in the same manner as in Example 1, and the polarizing plate of Comparative Example 1 including the protective film, the adhesive layer, the polarizer layer, and the primer layer is used. Obtained. The thickness of the polarizer layer was 6.3 ⁇ m.
  • Comparative Example 2 As the polyvinyl alcohol used in the resin layer, polyvinyl alcohol (manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more, trade name: Kuraray Poval VF-PS # 7500) is used. A stretched film was obtained in the same manner as in Example 1 except that the stretch ratio in the stretching step was 4.0. The thickness of the resin layer in the stretched film was 6.7 ⁇ m. Furthermore, the dyeing process, the bonding process, the peeling process, and the like are performed in the same manner as in Example 1 to obtain the polarizing plate of Comparative Example 2 that includes four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer. Obtained. The thickness of the polarizer layer was 6.7 ⁇ m.
  • Comparative Example 3 As the polyvinyl alcohol used in the resin layer, polyvinyl alcohol (manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more, trade name: Kuraray Poval VF-PS # 7500) is used. A stretched film was obtained in the same manner as in Example 1 except for the points mentioned above. The thickness of the resin layer in the stretched film was 6.3 ⁇ m. Furthermore, the dyeing process, the bonding process, the peeling process, and the like are performed in the same manner as in Example 1, and the polarizing plate of Comparative Example 3 including the protective film, the adhesive layer, the polarizer layer, and the primer layer is used. Obtained. The thickness of the polarizer layer was 6.3 ⁇ m.
  • the MD transmittance and TD transmittance of a polarizing plate comprising four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer obtained by peeling the base film were measured with a spectrophotometer with an integrating sphere (JASCO ( V7100). Based on the above formulas (1) and (2), the single transmittance and the degree of polarization at each wavelength are calculated, and further the visibility correction is performed by the 2 degree field of view (C light source) of JIS Z 8701, and the visibility correction single transmission is performed. The rate (Ty) and the visibility correction polarization degree (Py) were determined. In addition, the measurement of the polarizing plate was set in the apparatus so that the protective film side was the detector side and light was incident from the primer layer side.
  • Table 1 shows the visibility corrected single transmittance (Ty) and the visibility corrected polarization degree (Py) calculated for the polarizing plates of Example 1 and Comparative Examples 1 to 3.
  • the polarizing plates obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were attached to the top and bottom of the liquid crystal cell via a pressure sensitive adhesive.
  • the absorption axis of the polarizing plate attached on the upper side (viewing side) of the liquid crystal cell was arranged to be 170 degrees counterclockwise from the short side of the liquid crystal cell as viewed from the viewing side.
  • the absorption axis of the polarizing plate attached to the lower side (backlight side) of the liquid crystal cell was arranged to be 80 degrees counterclockwise from the short side of the liquid crystal cell as viewed from the viewing side. This arrangement angle is the same as the arrangement angle of the absorption axis of the original polarizing plate originally attached to the liquid crystal cell.
  • the mobile phone was assembled again to display an image.
  • the display state was evaluated by visually determining the clarity of the image in a general indoor environment and in a dark room.
  • Table 1 shows the evaluation results of the polarizing plates of Examples 1 to 3 and Comparative Examples 1 to 3.
  • Examples 1 to 3 by using a polyvinyl alcohol-based resin having a saponification degree of 99.0 mol% or less and having a draw ratio of more than 5 times, a dyeing time that does not hinder normal production can be obtained. Desired Ty and Py could be obtained. Then, by using the obtained polarizing plate for a liquid crystal display device, clear and good image display was obtained.
  • Comparative Examples 1 and 3 the polyvinyl alcohol resin having a saponification degree of more than 99.0 mol% is used and the draw ratio is more than 5 times, so that a dyeing time that does not hinder normal production is sufficient.
  • the Py was also low.
  • the contrast ratio (CR) was low and the image display lacked in clarity.
  • Comparative Example 2 since the draw ratio is 5 times or less using a polyvinyl alcohol resin having a saponification degree of more than 99.0 mol%, the dyeing is sufficiently performed with a dyeing time that does not hinder normal production. Although it was made, Py was a low value. And when the obtained polarizing plate was used for the liquid crystal display device, the contrast ratio (CR) was low and the image display lacked in clarity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Disclosed is a thin polarizing plate—that is provided with a protective film and a polarizer layer formed on one surface of the protective film, and that can impart a favorable contrast ratio in a liquid crystal display—wherein: the polarizer layer has a thickness of no more than 10 μm and is formed from a polyvinyl alcohol resin to which a dichroic pigment has been adsorbed/oriented; the degree of saponification of the polyvinyl alcohol resin is no greater than 99.0 mol%; the luminosity-corrected unit transmittance (Ty) is at least 40%; and the luminosity-corrected degree of polarization (Py) is at least 99.9%.

Description

偏光性積層フィルム、偏光板、およびそれらの製造方法Polarizing laminated film, polarizing plate, and production method thereof
 本発明は、偏光性積層フィルム、偏光板、およびそれらの製造方法に関する。 The present invention relates to a polarizing laminated film, a polarizing plate, and a method for producing them.
 偏光板は、液晶表示装置などの表示装置における偏光の供給素子等として広く用いられている。かかる偏光板として、従来より、ポリビニルアルコール系樹脂からなる偏光フィルムにトリアセチルセルロースからなる保護フィルムを接着したものが使用されているが、近年、液晶表示装置のノート型パーソナルコンピュータや携帯電話などモバイル機器への展開などに伴い、薄肉軽量化が求められている。 The polarizing plate is widely used as a polarization supplying element in a display device such as a liquid crystal display device. As such a polarizing plate, a polarizing film made of polyvinyl alcohol resin and a protective film made of triacetyl cellulose are conventionally used. However, in recent years, mobile devices such as notebook personal computers and mobile phones for liquid crystal display devices have been used. With the development of equipment, etc., reduction in thickness and weight is required.
 そのような薄型の偏光板を製造する方法して、基材フィルム表面にポリビニルアルコール系樹脂層を設けた後、延伸し、次いで染色することにより、偏光子層を有する偏光性積層フィルムを得、これをそのまま偏光板として利用したり、該偏光性積層フィルムに保護フィルムを貼合した後、基材フィルムを剥離したものを偏光板として利用したりする方法が提案されている(例えば、JP2000−338329−A、JP2009−93074−A、JP2009−98653−A及びJP2003−43257−A参照)。 A method for producing such a thin polarizing plate, after providing a polyvinyl alcohol-based resin layer on the surface of the substrate film, stretching, and then dyeing to obtain a polarizing laminated film having a polarizer layer, A method has been proposed in which this is used as it is as a polarizing plate, or after a protective film is bonded to the polarizing laminate film, the substrate film is peeled off and used as a polarizing plate (for example, JP2000- 338329-A, JP2009-93074-A, JP2009-98653-A and JP2003-43257-A).
 上記従来の方法により得られた、基材フィルム表面にポリビニルアルコール系樹脂層を形成してなる偏光板においては、基材フィルム表面上へ直接ポリビニルアルコール系樹脂の水溶液をコーティングすることで樹脂層を形成することにより、ポリビニル系樹脂のフィルム原反を用いる場合よりも格段に薄いポリビニルアルコール層が得られるというメリットがある。 In the polarizing plate obtained by forming the polyvinyl alcohol-based resin layer on the surface of the base film obtained by the conventional method, the resin layer is coated by coating the aqueous solution of the polyvinyl alcohol-based resin directly on the surface of the base film. By forming, there is an advantage that a much thinner polyvinyl alcohol layer can be obtained than in the case of using a polyvinyl resin film raw material.
 しかしながら、上記従来の方法により得られた偏光板を液晶表示装置に使用した場合、液晶表示装置のコントラストにおいて必ずしも十分ではないことがあった。 However, when the polarizing plate obtained by the conventional method is used in a liquid crystal display device, the contrast of the liquid crystal display device may not always be sufficient.
 そこで、本発明の目的は、液晶表示装置において良好なコントラスト比を与えうる薄型の偏光板、それに利用される偏光性積層フィルム、およびそれらの製造方法を提供する。 Therefore, an object of the present invention is to provide a thin polarizing plate capable of giving a good contrast ratio in a liquid crystal display device, a polarizing laminated film used therefor, and a method for producing them.
 本発明者は、鋭意検討の結果、上記従来の方法において、ケン化度が99.0モル%を超える汎用のポリビニルアルコール系樹脂を使用して樹脂層を形成した場合に、得られる偏光板の偏光性能の点で十分でないことがあり、その結果、偏光板を使用した液晶表示装置のコントラスト比が必ずしも十分とはなっていなかったことを見出し本発明に至った。 As a result of intensive studies, the present inventor has obtained a polarizing plate obtained when a resin layer is formed using a general-purpose polyvinyl alcohol-based resin having a saponification degree exceeding 99.0 mol% in the conventional method. In some cases, the polarization performance is not sufficient, and as a result, the present inventors have found that the contrast ratio of a liquid crystal display device using a polarizing plate is not always sufficient.
 本発明は、以下のものを含む。
〔1〕 基材フィルムと、基材フィルムの一方の面に形成されている偏光子層とを備え、偏光子層は、厚さ10μm以下であり、二色性色素を吸着配向させたポリビニルアルコール系樹脂から形成され、ポリビニルアルコール系樹脂のケン化度は99.0モル%以下であり、視感度補正単体透過率(Ty)が40%以上でかつ視感度補正偏光度(Py)が99.9%以上である、偏光性積層フィルム。
〔2〕 偏光子層が、5倍超の延伸倍率で一軸延伸されている、〔1〕に記載の偏光性積層フィルム。
〔3〕 は、偏光板に用いられる〔1〕または〔2〕に記載の偏光性積層フィルム。
〔4〕 偏光子層が、プライマー層を介して基材フィルムの一方の面に形成されている、〔1〕~〔3〕のいずれかに記載の光性積層フィルム。
The present invention includes the following.
[1] Polyvinyl alcohol comprising a base film and a polarizer layer formed on one surface of the base film, the polarizer layer having a thickness of 10 μm or less and adsorbed and oriented with a dichroic dye The saponification degree of the polyvinyl alcohol resin is 99.0 mol% or less, the visibility corrected single transmittance (Ty) is 40% or more, and the visibility corrected polarization degree (Py) is 99.99%. Polarizing laminated film which is 9% or more.
[2] The polarizing laminated film according to [1], wherein the polarizer layer is uniaxially stretched at a stretch ratio of more than 5 times.
[3] is the polarizing laminated film according to [1] or [2] used for a polarizing plate.
[4] The optical laminated film according to any one of [1] to [3], wherein the polarizer layer is formed on one surface of the base film via a primer layer.
〔5〕 保護フィルムと、保護フィルムの一方の面に形成されている偏光子層とを備え、偏光子層は、厚さ10μm以下であり、二色性色素を吸着配向させたポリビニルアルコール系樹脂から形成され、ポリビニルアルコール系樹脂のケン化度は99.0モル%以下であり、視感度補正単体透過率(Ty)が40%以上でかつ視感度補正偏光度(Py)が99.9%以上である、偏光板。
〔6〕 偏光子層が、粘着剤層または接着剤層を介して保護フィルムの一方の面に形成されている、〔5〕に記載の偏光板。
〔7〕 偏光子層が、5倍超の延伸倍率で一軸延伸されている、〔5〕または〔6〕に記載の偏光板。
[5] A polyvinyl alcohol resin comprising a protective film and a polarizer layer formed on one surface of the protective film, the polarizer layer having a thickness of 10 μm or less and adsorbed and oriented with a dichroic dye The saponification degree of the polyvinyl alcohol resin is 99.0 mol% or less, the visibility corrected single transmittance (Ty) is 40% or more, and the visibility corrected polarization degree (Py) is 99.9%. This is the polarizing plate.
[6] The polarizing plate according to [5], wherein the polarizer layer is formed on one surface of the protective film via an adhesive layer or an adhesive layer.
[7] The polarizing plate according to [5] or [6], wherein the polarizer layer is uniaxially stretched at a stretch ratio of more than 5 times.
〔8〕 〔1〕~〔4〕のいずれかに記載の偏光性積層フィルムの製造方法であって、基材フィルムの一方の面に、ケン化度が99.0モル%以下のポリビニルアルコール系樹脂からなる樹脂層を形成して積層フィルムを得る樹脂層形成工程と、積層フィルムを5倍超の延伸倍率で一軸延伸して延伸フィルムを得る延伸工程と、延伸フィルムの当該樹脂層を二色性色素で染色して偏光子層を形成する染色工程と、を含む偏光性積層フィルムの製造方法。 [8] The method for producing a polarizing laminated film according to any one of [1] to [4], wherein a polyvinyl alcohol type having a saponification degree of 99.0 mol% or less is formed on one surface of the base film. A resin layer forming step of forming a resin layer made of a resin to obtain a laminated film, a stretching step of obtaining a stretched film by uniaxially stretching the laminated film at a stretch ratio of more than 5 times, and the resin layer of the stretched film in two colors And a dyeing step of forming a polarizer layer by dyeing with a fluorescent dye.
〔9〕 〔5〕~〔8〕のいずれかに記載の偏光板の製造方法であって、基材フィルムの一方の面に、ケン化度が99.0モル%以下であるポリビニルアルコール系樹脂からなる樹脂層を形成して積層フィルムを得る樹脂層形成工程と、積層フィルムを5倍超の延伸倍率で一軸延伸して延伸フィルムを得る延伸工程と、延伸フィルムの樹脂層を二色性色素で染色して偏光子層を形成し、偏光性積層フィルムを得る染色工程と、偏光性積層フィルムにおける偏光子層の基材フィルム側の面とは反対側の面に保護フィルムを貼合して多層フィルムを得る貼合工程と、多層フィルムから基材フィルムを剥離する剥離工程と、を含む偏光板の製造方法。 [9] A method for producing a polarizing plate according to any one of [5] to [8], wherein a polyvinyl alcohol resin having a saponification degree of 99.0 mol% or less on one surface of the base film. A resin layer forming step of forming a resin layer comprising a laminated film, a stretching step of obtaining a stretched film by uniaxially stretching the laminated film at a stretch ratio of more than 5 times, and a resin layer of the stretched film as a dichroic dye A polarizer layer is formed by dyeing with a dyeing step to obtain a polarizing laminated film, and a protective film is bonded to the surface of the polarizing laminated film opposite to the surface of the polarizer layer on the base film side The manufacturing method of the polarizing plate including the bonding process which obtains a multilayer film, and the peeling process which peels a base film from a multilayer film.
 本発明によれば、液晶表示装置において良好なコントラスト比の表示を与えうる薄型の偏光板およびそれに利用される偏光性積層フィルムを提供することができる。また、本発明の偏光板または偏光性積層フィルムの製造方法によれば、基材フィルムの表面にケン化度が99.0モル%以下であるポリビニルアルコール系樹脂からなる樹脂層を形成し、5倍超の延伸倍率で一軸延伸することによって、後段の染色工程において良好な染色速度が得られるという効果が奏される。 According to the present invention, it is possible to provide a thin polarizing plate capable of providing a display with a good contrast ratio in a liquid crystal display device and a polarizing laminated film used therefor. Moreover, according to the manufacturing method of the polarizing plate or polarizing laminated film of this invention, the resin layer which consists of a polyvinyl alcohol-type resin whose saponification degree is 99.0 mol% or less is formed in the surface of a base film, 5 By uniaxially stretching at a stretching ratio exceeding twice, an effect that a good dyeing speed can be obtained in the subsequent dyeing step is exhibited.
本発明に係る偏光性積層フィルムの基本的な層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the fundamental layer structure of the light-polarizing laminated film which concerns on this invention. 本発明に係る偏光板の基本的な層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the fundamental layer structure of the polarizing plate which concerns on this invention. 図1に示す偏光性積層フィルムの製造方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing method of the light-polarizing laminated film shown in FIG. 図2に示す偏光板の製造方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing method of the polarizing plate shown in FIG.
 以下、図面を参照して、本発明の好ましい実施形態について詳細に説明する。
 <偏光性積層フィルムの構成>
 図1は、本発明に係る偏光性積層フィルムの基本的な層構成の一例を示す概略断面図である。偏光性積層フィルム10は、基材フィルム11と、基材フィルム11の一方の面に形成されている偏光子層12とを備える。偏光子層12は、厚さ10μm以下であり、二色性色素を吸着配向させたポリビニルアルコール系樹脂から形成されている。ポリビニルアルコール系樹脂のケン化度は99.0モル%以下である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
<Configuration of polarizing laminated film>
FIG. 1 is a schematic cross-sectional view showing an example of a basic layer configuration of a polarizing laminate film according to the present invention. The polarizing laminated film 10 includes a base film 11 and a polarizer layer 12 formed on one surface of the base film 11. The polarizer layer 12 has a thickness of 10 μm or less, and is formed from a polyvinyl alcohol resin in which a dichroic dye is adsorbed and oriented. The saponification degree of the polyvinyl alcohol-based resin is 99.0 mol% or less.
 偏光性積層フィルム10の視感度補正単体透過率(Ty)は40%以上であり、かつ視感度補正偏光度(Py)は99.9%以上である。偏光性積層フィルム10は、偏光板として用いることができる。偏光性積層フィルム10が上述のような光学特性を有することにより、偏光性積層フィルム10を液晶表示装置の偏光板に用いた場合に良好なコントラスト比を有する表示が得られる。 The visibility corrected single transmittance (Ty) of the polarizing laminated film 10 is 40% or more, and the visibility corrected polarization degree (Py) is 99.9% or more. The polarizing laminated film 10 can be used as a polarizing plate. Since the polarizing laminated film 10 has the optical characteristics as described above, a display having a good contrast ratio can be obtained when the polarizing laminated film 10 is used as a polarizing plate of a liquid crystal display device.
 尚、視感度補正単体透過率(Ty)は、波長380nm~780nmの範囲において、偏光性積層フィルムまたは偏光板のMD透過率とTD透過率を求め、以下に表す式(1)に基づいて各波長における単体透過率を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行うことにより求めることができる。
 また視感度補正偏光度(Py)は、前記と同様にMD透過率とTD透過率を求め、以下に表す式(2)に基づいて各波長における偏光度(%)を算出し、前記と同様の視感度補正を行うことにより求めることができる。
「MD透過率」とは、グラントムソンプリズムから出る偏光の向きと偏光板サンプルの透過軸を平行にしたときの透過率であり、式(1)、式(2)においては「MD」と表す。また、「TD透過率」とは、グラントムソンプリズムから出る偏光の向きと偏光板サンプルを透過軸を直交にしたときの透過率であり、式(1)、式(2)においては「TD」と表す。MD透過率、TD透過率ともに、積分球付き分光光度計にて測定することができる。
 単体透過率(%)=(MD+TD)/2            ・・・式(1)
 偏光度(%)=√{(MD−TD)/(MD+TD)}×100 ・・・式(2)
以下、各構成要素について詳細に説明する。
In addition, the visibility corrected single transmittance (Ty) is obtained in the wavelength range of 380 nm to 780 nm by obtaining the MD transmittance and the TD transmittance of the polarizing laminated film or the polarizing plate, and based on the formula (1) shown below. It can be obtained by calculating the single transmittance at the wavelength and further correcting the visibility with the 2 degree visual field (C light source) of JIS Z 8701.
In addition, the visibility correction polarization degree (Py) is obtained by calculating MD transmittance and TD transmittance in the same manner as described above, and calculating the degree of polarization (%) at each wavelength based on the following formula (2). Can be obtained by correcting the visibility.
“MD transmittance” is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the polarizing plate sample, and is expressed as “MD” in the equations (1) and (2). . The “TD transmittance” is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism and the polarizing plate sample are orthogonal to the transmission axis. In the formulas (1) and (2), “TD”. It expresses. Both MD transmittance and TD transmittance can be measured with a spectrophotometer with an integrating sphere.
Single transmittance (%) = (MD + TD) / 2 Formula (1)
Degree of polarization (%) = √ {(MD−TD) / (MD + TD)} × 100 (2)
Hereinafter, each component will be described in detail.
 〔基材フィルム〕
 本発明で用いられる基材フィルム11の材料としては、たとえば、透明性、機械的強度、熱安定性、延伸性などに優れる熱可塑性樹脂が用いられる。このような熱可塑性樹脂の具体例としては、セルローストリアセテート等のセルロースエステル系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、およびこれらの混合物などが挙げられる。
基材フィルムの材料として、セルロースエステル系樹脂、ポリオレフィン系樹脂、環状ポリオレフィン系樹脂および(メタ)アクリル系樹脂からなる群から選択される少なくともいずれか1つが含まれることが好ましい。
[Base film]
As a material of the base film 11 used in the present invention, for example, a thermoplastic resin excellent in transparency, mechanical strength, thermal stability, stretchability and the like is used. Specific examples of such thermoplastic resins include cellulose ester resins such as cellulose triacetate, polyester resins, polyether sulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins. , (Meth) acrylic resins, cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
The material for the base film preferably includes at least one selected from the group consisting of cellulose ester resins, polyolefin resins, cyclic polyolefin resins, and (meth) acrylic resins.
 セルロースエステル系樹脂は、セルロースと脂肪酸のエステルである。このようセルロースエステル系樹脂の具体例としては、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートなどが挙げられる。
これらの中でも、セルローストリアセテートが特に好ましい。セルローストリアセテートは多くの製品が市販されており、入手容易性やコストの点でも有利である。セルローストリアセテートの市販品の例としては、フジタック(登録商標)TD80(富士フィルム(株)製)、フジタック(登録商標)TD80UF(富士フィルム(株)製)、フジタック(登録商標)TD80UZ(富士フィルム(株)製)、フジタック(登録商標)TD40UZ(富士フィルム(株)製)、KC8UX2M(コニカミノルタオプト(株)製)、KC4UY(コニカミノルタオプト(株)製)などが挙げられる。
The cellulose ester resin is an ester of cellulose and a fatty acid. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate.
Among these, cellulose triacetate is particularly preferable. Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost. Examples of commercially available cellulose triacetate include Fujitac (registered trademark) TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UF (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UZ (Fuji Film ( Co., Ltd.), Fujitac (registered trademark) TD40UZ (Fuji Film Co., Ltd.), KC8UX2M (Konica Minolta Opto Co., Ltd.), KC4UY (Konica Minolta Opto Co., Ltd.), and the like.
 ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレンなどが挙げられる。ポリプロピレンからなる基材フィルムを用いた場合、安定的に高倍率に延伸しやすく好ましい。環状ポリオレフィン系樹脂としては、好ましくはノルボルネン系樹脂が用いられる。
環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、たとえば、JPH01−240517−A、JPH03−14882−A、JPH03−122137−A等に記載されている樹脂が挙げられる。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα−オレフィンとその共重合体(代表的にはランダム共重合体)、およびこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、ならびにそれらの水素化物などが挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。
Examples of the polyolefin resin include polyethylene and polypropylene. When a base film made of polypropylene is used, it is preferable because it can be stably stretched at a high magnification. As the cyclic polyolefin resin, a norbornene resin is preferably used.
The cyclic polyolefin-based resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and examples thereof include resins described in JPH01-240517-A, JPH03-14882-A, JPH03-122137-A, and the like. . Specific examples include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, cyclic olefins and α-olefins such as ethylene and propylene (typically random copolymers), And graft polymers obtained by modifying them with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof. Specific examples of the cyclic olefin include norbornene monomers.
 環状ポリオレフィン系樹脂としては種々の製品が市販されている。具体例としては、Topas(登録商標)(Ticona社製)、アートン(登録商標)(JSR(株)製)、ゼオノア(ZEONOR)(登録商標)(日本ゼオン(株)製)、ゼオネックス(ZEONEX)(登録商標)(日本ゼオン(株)製)、アペル(登録商標)(三井化学(株)製)が挙げられる。 Various products are commercially available as cyclic polyolefin resins. Specific examples include Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (manufactured by ZEON Corporation), ZEONEX (ZEONEX). (Registered trademark) (manufactured by ZEON CORPORATION) and Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.).
 (メタ)アクリル系樹脂としては、任意の適切な(メタ)アクリル系樹脂を採用し得る。たとえば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル−(メタ)アクリル酸共重合体、メタクリル酸メチル−(メタ)アクリル酸エステル共重合体、メタクリル酸メチル−アクリル酸エステル−(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル−スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(たとえば、メタクリル酸メチル−メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル−(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。
好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1−6アルキルが挙げられる。(メタ)アクリル系樹脂として、より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が用いられる。
Any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin. For example, poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer).
Preferably, C1-6 alkyl poly (meth) acrylates, such as poly (meth) acrylate methyl, are mentioned. More preferably, the (meth) acrylic resin is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
 基材フィルム11には、上記の熱可塑性樹脂の他に、任意の適切な添加剤が添加されていてもよい。このような添加剤としては、たとえば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、および着色剤などが挙げられる。基材フィルム中の上記にて例示した熱可塑性樹脂の含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。基材フィルム中の熱可塑性樹脂の含有量が50重量%未満の場合、熱可塑性樹脂が本来有する高透明性等が十分に発現されないおそれがある。 Any appropriate additive may be added to the base film 11 in addition to the above thermoplastic resin. Examples of such additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, anti-coloring agents, flame retardants, nucleating agents, antistatic agents, pigments, and coloring agents. . The content of the thermoplastic resin exemplified above in the base film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97%. % By weight. If the content of the thermoplastic resin in the base film is less than 50% by weight, the high transparency inherent in the thermoplastic resin may not be sufficiently exhibited.
 基材フィルム11の厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性の点から1~500μmが好ましく、1~300μmがより好ましく、さらには5~200μmが好ましい。基材フィルム11の厚さは、5~150μmが最も好ましい。 Although the thickness of the base film 11 can be determined as appropriate, it is generally preferably 1 to 500 μm, more preferably 1 to 300 μm, and even more preferably 5 to 200 μm from the viewpoint of workability such as strength and handleability. The thickness of the base film 11 is most preferably 5 to 150 μm.
 基材フィルム11は、偏光子層12との密着性を向上させるために、少なくとも偏光子層12が形成される側の表面に、コロナ処理、プラズマ処理、火炎処理等を行ってもよい。また密着性を向上させるために、基材フィルム11の偏光子層12が形成される側の表面にプライマー層等の薄層を形成してもよい。 The base film 11 may be subjected to corona treatment, plasma treatment, flame treatment or the like on at least the surface on which the polarizer layer 12 is formed in order to improve the adhesion with the polarizer layer 12. Moreover, in order to improve adhesiveness, you may form thin layers, such as a primer layer, in the surface at the side in which the polarizer layer 12 of the base film 11 is formed.
 〔偏光子層〕
 偏光子層12は、具体的には、一軸延伸されたポリビニルアルコール系樹脂層に二色性色素を吸着配向させたものである。ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと共重合可能な他の単量体との共重合体などが例示される。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
(Polarizer layer)
Specifically, the polarizer layer 12 is obtained by adsorbing and orienting a dichroic dye on a uniaxially stretched polyvinyl alcohol-based resin layer. As the polyvinyl alcohol resin, a saponified polyvinyl acetate resin can be used. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、99.0モル%以下である。本発明において、ケン化度が99.0モル%以下のポリビニルアルコール系樹脂を用いる理由としては、5倍超の一軸延伸を実施した場合にも一定の染色速度を維持できるためであり、これによって、偏光性能が高い薄型偏光性積層フィルムを、効率良く生産できるメリットがある。一方、ケン化度が99.0モル%を超えるポリビニルアルコール系樹脂を使用した場合には、著しく染色速度が遅くなり、十分な偏光性能を有する偏光性積層フィルムが得られない場合があり、また製造において通常の数倍もの時間を要する不具合を生じる場合がある。 The saponification degree of the polyvinyl alcohol resin is 99.0 mol% or less. In the present invention, the reason why a polyvinyl alcohol resin having a saponification degree of 99.0 mol% or less is used is that a constant dyeing speed can be maintained even when uniaxial stretching is performed more than 5 times. There is an advantage that a thin polarizing laminated film having high polarizing performance can be efficiently produced. On the other hand, when a polyvinyl alcohol-based resin having a saponification degree exceeding 99.0 mol% is used, the dyeing speed is remarkably slow, and a polarizing laminated film having sufficient polarization performance may not be obtained. In some cases, the production takes several times longer than usual.
 また、ポリビニルアルコール系樹脂のケン化度は、90モル%以上であることが好ましく、94モル%以上であることがより好ましい。ケン化度が90モル%より小さいと、耐水性などの強度が十分でない場合がある。 The saponification degree of the polyvinyl alcohol-based resin is preferably 90 mol% or more, and more preferably 94 mol% or more. If the saponification degree is less than 90 mol%, strength such as water resistance may not be sufficient.
 ここでいうケン化度とは、ポリビニルアルコール系樹脂の原料であるポリ酢酸ビニル系樹脂に含まれる酢酸基がケン化工程により水酸基に変化した割合をユニット比(モル%)で表したものであり、下記式で定義される数値である。JIS K 6726(1994)で規定されている方法で求めることができる。 The saponification degree as used herein is a unit ratio (mol%) representing the ratio of the acetate group contained in the polyvinyl acetate resin, which is a raw material for the polyvinyl alcohol resin, to a hydroxyl group by the saponification step. Is a numerical value defined by the following formula. It can be obtained by the method defined in JIS K 6726 (1994).
 ケン化度(モル%)=(水酸基の数)÷(水酸基の数+酢酸基の数)×100
 ケン化度が高いほど、水酸基の割合が高いことを示しており、すなわち結晶化を阻害する酢酸基の割合が低いことを示している。また、本発明に用いるポリビニルアルコール系樹脂は、ケン化度が99.0モル%以下であれば特に限定されるものではなく、一部が変性されている変性ポリビニルアルコールでもよい。例えば、ポリビニルアルコール系樹脂をエチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、不飽和カルボン酸のアルキルエステル、アクリルアミドなどで数%ほど変性したものなどが挙げられる。ポリビニルアルコール系樹脂の平均重合度も特に限定されるものではないが、100~10000が好ましく、1500~10000がより好ましい。
Saponification degree (mol%) = (number of hydroxyl groups) ÷ (number of hydroxyl groups + number of acetate groups) × 100
The higher the degree of saponification, the higher the proportion of hydroxyl groups, that is, the lower the proportion of acetate groups that inhibit crystallization. The polyvinyl alcohol resin used in the present invention is not particularly limited as long as the saponification degree is 99.0 mol% or less, and may be modified polyvinyl alcohol partially modified. For example, polyvinyl alcohol-based resins modified with olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters of unsaturated carboxylic acids, acrylamide, etc. . The average degree of polymerization of the polyvinyl alcohol-based resin is not particularly limited, but is preferably 100 to 10,000, and more preferably 1500 to 10,000.
 このような特性を有するポリビニルアルコール系樹脂としては、例えば(株)クラレ製のPVA124(ケン化度:98.0~99.0モル%)、PVA117(ケン化度:98.0~99.0モル%)、PVA624(ケン化度:95.0~96.0モル%)およびPVA617(ケン化度:94.5~95.5モル%);例えば日本合成化学工業(株)製のAH−26(ケン化度:97.0~98.8モル%)、AH−22(ケン化度:97.5~98.5モル%)、NH−18(ケン化度:98.0~99.0モル%)およびN−300(ケン化度:98.0~99.0モル%);例えば日本酢ビ・ポバール(株)のJF−17(ケン化度:98.0~99.0モル%)、JF−17L(ケン化度:98.0~99.0モル%)およびJF−20(ケン化度:98.0~99.0モル%)などが挙げられ、本発明において好適に用いることができる。 Examples of the polyvinyl alcohol resin having such characteristics include PVA124 (degree of saponification: 98.0 to 99.0 mol%) and PVA117 (degree of saponification: 98.0 to 99.0) manufactured by Kuraray Co., Ltd. Mol%), PVA624 (degree of saponification: 95.0 to 96.0 mol%) and PVA617 (degree of saponification: 94.5 to 95.5 mol%); for example, AH- manufactured by Nippon Synthetic Chemical Industry Co., Ltd. 26 (saponification degree: 97.0 to 98.8 mol%), AH-22 (degree of saponification: 97.5 to 98.5 mol%), NH-18 (degree of saponification: 98.0 to 99.99%). 0 mol%) and N-300 (degree of saponification: 98.0 to 99.0 mol%); for example, JF-17 (saponification degree: 98.0 to 99.0 mol) of Nippon Vinegar Pival Co., Ltd. %), JF-17L (degree of saponification: 98.0 to 99.0 mol%) and JF-20 ( Saponification degree: 98.0 to 99.0 mol%) and the like, and can be suitably used in the present invention.
 かかるポリビニルアルコール系樹脂を製膜したものが本発明にかかる偏光子層12を構成する。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法で製膜することができるが、所望の厚さの偏光子層12を得やすいという点から、ポリビニルアルコール系樹脂の溶液を基材フィルム11上に塗布して製膜することが好ましい。偏光子層12は、好ましくは5倍超、さらに好ましくは5倍超でかつ17倍以下の延伸倍率で一軸延伸されている。 A film obtained by forming such a polyvinyl alcohol-based resin constitutes the polarizer layer 12 according to the present invention. The method for forming the polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method, but from the viewpoint that it is easy to obtain the polarizer layer 12 having a desired thickness. It is preferable to form a film by applying a resin solution onto the base film 11. The polarizer layer 12 is preferably uniaxially stretched at a stretch ratio of more than 5 times, more preferably more than 5 times and not more than 17 times.
 偏光子層12は、上述のようなポリビニルアルコール系樹脂に二色性色素が吸着配向されている。偏光子層12の厚さは10μm以下であり、好ましくは7μm以下である。偏光子層12の厚さを10μm以下とすることにより、薄型の偏光性積層フィルムを構成することができる。 The polarizer layer 12 has a dichroic dye adsorbed and oriented on the polyvinyl alcohol resin as described above. The thickness of the polarizer layer 12 is 10 μm or less, preferably 7 μm or less. By setting the thickness of the polarizer layer 12 to 10 μm or less, a thin polarizing laminated film can be configured.
 <偏光板の構成>
 図2は、本発明に係る偏光板の基本的な層構成の一例を示す概略断面図である。偏光板13は、保護フィルム14と、保護フィルム14の一方の面に形成されている偏光子層12とを備える。偏光子層12は、厚さ10μm以下であり、二色性色素を吸着配向させたポリビニルアルコール系樹脂から形成されている。ポリビニルアルコール系樹脂のケン化度は99.0モル%以下である。
<Configuration of polarizing plate>
FIG. 2 is a schematic cross-sectional view showing an example of a basic layer configuration of the polarizing plate according to the present invention. The polarizing plate 13 includes a protective film 14 and a polarizer layer 12 formed on one surface of the protective film 14. The polarizer layer 12 has a thickness of 10 μm or less, and is formed from a polyvinyl alcohol resin in which a dichroic dye is adsorbed and oriented. The saponification degree of the polyvinyl alcohol-based resin is 99.0 mol% or less.
 偏光板13の視感度補正単体透過率(Ty)は40%以上であり、かつ視感度補正偏光度(Py)は99.9%以上である。偏光板13は、液晶表示装置の偏光板として用いることができる。偏光板13が上述のような光学特性を有することにより、偏光板13を液晶表示装置の偏光板として用いた場合に良好なコントラスト比の表示が得られる。 The visibility corrected single transmittance (Ty) of the polarizing plate 13 is 40% or more, and the visibility corrected polarization degree (Py) is 99.9% or more. The polarizing plate 13 can be used as a polarizing plate of a liquid crystal display device. Since the polarizing plate 13 has the optical characteristics as described above, when the polarizing plate 13 is used as a polarizing plate of a liquid crystal display device, a display with a good contrast ratio can be obtained.
 偏光板13において、保護フィルム14と偏光子層12とは、例えば、図3には明示されていない粘着剤層または接着剤層を介して貼合されている。以下、各構成要素について詳細に説明する。 In the polarizing plate 13, the protective film 14 and the polarizer layer 12 are bonded via, for example, a pressure-sensitive adhesive layer or an adhesive layer not explicitly shown in FIG. 3. Hereinafter, each component will be described in detail.
 〔保護フィルム〕
 保護フィルム14としては、光学機能を有さない単なる保護フィルムであってもかまわないし、位相差フィルムや輝度向上フィルムといった光学機能を併せ持つ保護フィルムであってもかまわない。保護フィルム14の材料としては、特に限定されるものではないが、例えば、環状ポリオレフィン系樹脂フィルム、トリアセチルセルロース、ジアセチルセルロースのような樹脂からなる酢酸セルロース系樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのような樹脂からなるポリエステル系樹脂フィルム、ポリカーボネート系樹脂フィルム、アクリル系樹脂フィルム、ポリプロピレン系樹脂フィルムなど、当分野において従来より広く用いられてきているフィルムを挙げることができる。
〔Protective film〕
The protective film 14 may be a simple protective film having no optical function, or may be a protective film having an optical function such as a retardation film or a brightness enhancement film. The material of the protective film 14 is not particularly limited, but for example, a cyclic polyolefin resin film, a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, Examples thereof include films that have been widely used in the art, such as polyester resin films, polycarbonate resin films, acrylic resin films, and polypropylene resin films made of a resin such as polybutylene terephthalate.
 環状ポリオレフィン系樹脂としては、適宜の市販品、例えば、Topas(登録商標)(Ticona社製)、アートン(登録商標)(JSR(株)製)、ゼオノア(ZEONOR)(登録商標)(日本ゼオン(株)製)、ゼオネックス(登録商標)(ZEONEX)(日本ゼオン(株)製)、アペル(登録商標)(三井化学(株)製)を好適に用いることができる。このような環状ポリオレフィン系樹脂を製膜してフィルムとする際には、溶剤キャスト法、溶融押出法などの公知の方法が適宜用いられる。また、エスシーナ(登録商標)(積水化学工業(株)製)、SCA40(積水化学工業(株)製)、ゼオノア(登録商標)フィルム((株)オプテス製)などの予め製膜された環状ポリオレフィン系樹脂製のフィルムの市販品を用いてもよい。 Examples of the cyclic polyolefin-based resin include appropriate commercial products such as Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (Nippon ZEON ( ZEONEX (registered trademark) (manufactured by Nippon Zeon Co., Ltd.), Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be suitably used. When such a cyclic polyolefin resin is formed into a film, a known method such as a solvent casting method or a melt extrusion method is appropriately used. In addition, pre-formed cyclic polyolefins such as Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), SCA40 (manufactured by Sekisui Chemical Co., Ltd.), ZEONOR (registered trademark) film (manufactured by Optes Co., Ltd.), etc. A commercial product of a film made of a resin may be used.
 環状ポリオレフィン系樹脂フィルムは、一軸延伸又は二軸延伸されたものであってもよい。延伸することで、環状ポリオレフィン系樹脂フィルムに任意の位相差値を付与することができる。延伸は、通常、フィルムロールを巻き出しながら連続的に行われ、加熱炉にて、ロールの進行方向、その進行方向と垂直の方向、またはその両方へ延伸される。加熱炉の温度は、通常、環状ポリオレフィン系樹脂のガラス転移温度近傍からガラス転移温度+100℃までの範囲である。延伸の倍率は、一つの方向につき通常1.1~6倍、好ましくは1.1~3.5倍である。 The cyclic polyolefin resin film may be uniaxially stretched or biaxially stretched. An arbitrary retardation value can be imparted to the cyclic polyolefin-based resin film by stretching. Stretching is usually performed continuously while unwinding the film roll, and is stretched in the heating furnace in the roll traveling direction, the direction perpendicular to the traveling direction, or both. The temperature of the heating furnace is usually in the range from the vicinity of the glass transition temperature of the cyclic polyolefin resin to the glass transition temperature + 100 ° C. The stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times in one direction.
 環状ポリオレフィン系樹脂フィルムは、一般に表面活性が劣るため、偏光フィルムと接着させる表面には、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を行うのが好ましい。中でも、比較的容易に実施可能なプラズマ処理、コロナ処理が好適である。 Since the cyclic polyolefin resin film generally has poor surface activity, surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment is performed on the surface to be bonded to the polarizing film. preferable. Among these, plasma treatment and corona treatment that can be performed relatively easily are preferable.
 酢酸セルロース系樹脂フィルムとしては、適宜の市販品、たとえば、フジタック(登録商標)TD80(富士フィルム(株)製)、フジタック(登録商標)TD80UF(富士フィルム(株)製)、フジタック(登録商標)TD80UZ(富士フィルム(株)製)、フジタック(登録商標)TD40UZ(富士フィルム(株)製)、KC8UX2M(コニカミノルタオプト(株)製)、KC4UY(コニカミノルタオプト(株)製)を好適に用いることができる。 Examples of the cellulose acetate-based resin film include commercially available products such as Fujitac (registered trademark) TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UF (manufactured by Fuji Film Co., Ltd.), and Fujitac (registered trademark). TD80UZ (Fuji Film Co., Ltd.), Fujitac (registered trademark) TD40UZ (Fuji Film Co., Ltd.), KC8UX2M (Konica Minolta Opto Co., Ltd.), KC4UY (Konica Minolta Opto Co., Ltd.) are preferably used. be able to.
 酢酸セルロース系樹脂フィルムの表面には、視野角特性を改良するために液晶層などを形成してもよい。また、位相差を付与するため酢酸セルロース系樹脂フィルムを延伸させたものでもよい。酢酸セルロース系樹脂フィルムは、偏光フィルムとの接着性を高めるため、通常はケン化処理が施される。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が採用できる。 A liquid crystal layer or the like may be formed on the surface of the cellulose acetate-based resin film in order to improve viewing angle characteristics. Moreover, in order to provide a phase difference, what stretched the cellulose acetate type-resin film may be used. The cellulose acetate-based resin film is usually subjected to a saponification treatment in order to improve the adhesiveness with the polarizing film. As the saponification treatment, a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be employed.
 上述したような保護フィルム14の表面には、ハードコート層、防眩層、反射防止層などの光学層を形成することもできる。保護フィルム表面にこれらの光学層を形成する方法はとくに限定されず、公知の方法を用いることができる。 An optical layer such as a hard coat layer, an antiglare layer, or an antireflection layer can be formed on the surface of the protective film 14 as described above. The method for forming these optical layers on the surface of the protective film is not particularly limited, and a known method can be used.
 保護フィルム14の厚みは薄型化の要求から、できるだけ薄いものが好ましく、88μm以下が好ましく、48μm以下がより好ましい。逆に薄すぎると強度が低下して加工性に劣るため、5μm以上であることが好ましい。 The thickness of the protective film 14 is preferably as thin as possible from the demand for thinning, is preferably 88 μm or less, and more preferably 48 μm or less. On the other hand, if it is too thin, the strength is lowered and the processability is poor, and therefore it is preferably 5 μm or more.
 〔偏光子層〕
 偏光子層12は、上述の偏光性積層フィルム10の偏光子層12と同様の構成とすることができる。
(Polarizer layer)
The polarizer layer 12 can be configured similarly to the polarizer layer 12 of the above-described polarizing laminated film 10.
 〔粘着剤層〕
 保護フィルム14と偏光子層12との貼合に用いられる粘着剤は、通常、アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂などをベースポリマーとし、そこに、イソシアネート化合物、エポキシ化合物、アジリジン化合物などの架橋剤を加えた組成物からなる。
さらに微粒子を含有して光散乱性を示す粘着剤層とすることもできる。
(Adhesive layer)
The pressure-sensitive adhesive used for bonding the protective film 14 and the polarizer layer 12 usually uses an acrylic resin, a styrene resin, a silicone resin, or the like as a base polymer, and there are an isocyanate compound, an epoxy compound, an aziridine compound, and the like. The composition which added the crosslinking agent of.
Furthermore, it can also be set as the adhesive layer which contains microparticles | fine-particles and shows light-scattering property.
 粘着剤層の厚みは1~40μmであることが好ましいが、加工性、耐久性の特性を損なわない範囲で、薄く塗るのが好ましく、より好ましくは3~25μmである。3~25μmであると良好な加工性を有し、かつ偏光フィルムの寸法変化を押さえる上でも好適な厚みである。粘着剤層が1μm未満であると粘着性が低下し、40μmを超えると粘着剤がはみ出すなどの不具合を生じ易くなる。 The thickness of the pressure-sensitive adhesive layer is preferably 1 to 40 μm, but it is preferably applied thinly, and more preferably 3 to 25 μm, as long as the workability and durability characteristics are not impaired. When the thickness is from 3 to 25 μm, it has good processability and is also suitable for suppressing the dimensional change of the polarizing film. When the pressure-sensitive adhesive layer is less than 1 μm, the tackiness is lowered, and when it exceeds 40 μm, problems such as the pressure-sensitive adhesive protruding easily occur.
 粘着剤により保護フィルム14を偏光子層12に貼合する方法においては、保護フィルム14面に粘着剤層を設けた後、偏光子層12に貼合してもよいし、偏光子層12の表面に粘着剤層を設けた後、ここに保護フィルム14を貼合してもよい。 In the method of bonding the protective film 14 to the polarizer layer 12 with the pressure-sensitive adhesive, the pressure-sensitive adhesive layer may be bonded to the polarizer layer 12 after providing the pressure-sensitive adhesive layer on the surface of the protective film 14. After providing the pressure-sensitive adhesive layer on the surface, the protective film 14 may be bonded thereto.
 粘着剤層を形成する方法は特に限定されるものではなく、保護フィルム14面、もしくは偏光子層12面に、上記したベースポリマーをはじめとする各成分を含む溶液を塗布し、乾燥して粘着剤層を形成した後、保護フィルム14と偏光子層12とを貼り合わせてもよいし、セパレータ上に粘着剤層を形成した後、保護フィルム14面もしくは偏光子層12面に転写して積層してもよい。また、粘着剤層を保護フィルム14もしくは偏光子層12面に形成する際には必要に応じて保護フィルム14もしくは偏光子層12面、または粘着剤層の片方若しくは両方に密着処理、たとえば、コロナ処理等を施してもよい。 The method for forming the pressure-sensitive adhesive layer is not particularly limited, and a solution containing each component including the above-mentioned base polymer is applied to the surface of the protective film 14 or the surface of the polarizer layer 12 and dried to adhere. After forming the agent layer, the protective film 14 and the polarizer layer 12 may be bonded together, or after forming the pressure-sensitive adhesive layer on the separator, it is transferred to the surface of the protective film 14 or the surface of the polarizer layer 12 and laminated. May be. Further, when the pressure-sensitive adhesive layer is formed on the surface of the protective film 14 or the polarizer layer 12, if necessary, an adhesion treatment is applied to one or both of the surface of the protective film 14 or the polarizer layer 12, or the pressure-sensitive adhesive layer, for example, corona. You may perform a process etc.
 〔接着剤層〕
 保護フィルム14と偏光子層12との貼合に用いられる接着剤は、たとえば、ポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤などを用いた水系接着剤が挙げられる。保護フィルム14としてケン化処理などで親水化処理された酢酸セルロース系フィルムを用いる場合、偏光子層12との貼合用の水系接着剤として、ポリビニルアルコール系樹脂水溶液が好適に用いられる。接着剤として用いるポリビニルアルコール系樹脂には、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるビニルアルコール系共重合体、さらにはそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体などがある。水系接着剤には、多価アルデヒド、水溶性エポキシ化合物、メラミン系化合物、ジルコニア化合物、亜鉛化合物などが添加剤として添加されてもよい。このような水系の接着剤を用いた場合、それから得られる接着剤層は、通常1μm以下となり、通常の光学顕微鏡で断面を観察しても、その接着剤層は事実上観察されない。
[Adhesive layer]
Examples of the adhesive used for bonding the protective film 14 and the polarizer layer 12 include an aqueous adhesive using a polyvinyl alcohol-based resin aqueous solution, an aqueous two-component urethane emulsion adhesive, and the like. In the case of using a cellulose acetate film hydrophilized by a saponification process or the like as the protective film 14, a polyvinyl alcohol resin aqueous solution is suitably used as an aqueous adhesive for bonding to the polarizer layer 12. Polyvinyl alcohol resins used as adhesives include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as other single quantities copolymerizable with vinyl acetate. And vinyl alcohol copolymers obtained by saponifying the copolymer with the polymer, and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups. A polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive. When such an aqueous adhesive is used, the adhesive layer obtained therefrom is usually 1 μm or less, and even when the cross section is observed with a normal optical microscope, the adhesive layer is practically not observed.
 水系接着剤を用いて偏光子層12と保護フィルム14とを貼合する方法は特に限定されるものではなく、たとえば偏光子層12および/または保護フィルム14の表面に接着剤を均一に塗布し、塗布面にもう一方のフィルムを重ねてロールなどにより押圧し、乾燥する方法などが挙げられる。通常、接着剤は、その調製後、15~40℃の温度下で塗布され、貼合温度は、通常15~30℃の範囲である。 The method of bonding the polarizer layer 12 and the protective film 14 using an aqueous adhesive is not particularly limited. For example, the adhesive is uniformly applied to the surface of the polarizer layer 12 and / or the protective film 14. The other film is stacked on the coated surface, pressed with a roll or the like, and dried. Usually, after the preparation, the adhesive is applied at a temperature of 15 to 40 ° C., and the bonding temperature is usually in the range of 15 to 30 ° C.
 水系接着剤を使用する場合は、偏光子層12と保護フィルム14とを貼合した後、水系接着剤中に含まれる水を除去するため、乾燥させる。乾燥炉の温度は、30℃~90℃が好ましい。30℃未満であると偏光子層12と保護フィルム14との接着面が剥離しやすくなる傾向がある。90℃以上であると熱によって光学性能が劣化するおそれがある。乾燥時間は10~1000秒とすることができ、特に生産性の観点からは、好ましくは60~750秒、更に好ましくは150~600秒である。 When using a water-based adhesive, the polarizer layer 12 and the protective film 14 are bonded together and then dried to remove water contained in the water-based adhesive. The temperature of the drying furnace is preferably 30 ° C to 90 ° C. When the temperature is lower than 30 ° C., the adhesive surface between the polarizer layer 12 and the protective film 14 tends to be easily peeled off. If it is 90 ° C. or higher, the optical performance may be deteriorated by heat. The drying time can be 10 to 1000 seconds, and preferably 60 to 750 seconds, more preferably 150 to 600 seconds, particularly from the viewpoint of productivity.
 乾燥後はさらに、室温またはそれよりやや高い温度、たとえば、20~45℃程度の温度で12~600時間程度養生しても良い。養生のときの温度は、乾燥時に採用した温度よりも低く設定されるのが一般的である。 After drying, it may be further cured at room temperature or slightly higher, for example, at a temperature of about 20 to 45 ° C. for about 12 to 600 hours. The temperature at the time of curing is generally set lower than the temperature adopted at the time of drying.
 また偏光子層12と保護フィルム14を貼合する際の接着剤として、光硬化性接着剤を用いることもできる。光硬化性接着剤としては、たとえば、光硬化性エポキシ樹脂と光カチオン重合開始剤との混合物などを挙げることができる。 Also, a photo-curable adhesive can be used as an adhesive when the polarizer layer 12 and the protective film 14 are bonded. Examples of the photocurable adhesive include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator.
 偏光子層12と保護フィルム14を光硬化性接着剤にて貼合する方法としては、従来公知の方法を用いることができ、たとえば、流延法、マイヤーバーコート法、グラビアコート法、カンマコーター法、ドクタープレート法、ダイコート法、ディップコート法、噴霧法などにより、偏光子層12および/または保護フィルム14の接着面に接着剤を塗布し、両者を重ね合わせる方法が挙げられる。流延法とは、被塗布物である偏光子層12または保護フィルム14を、概ね垂直方向、概ね水平方向、または両者の間の斜め方向に移動させながら、その表面に接着剤を流下して拡布させる方法である。 As a method of bonding the polarizer layer 12 and the protective film 14 with a photocurable adhesive, a conventionally known method can be used. For example, a casting method, a Mayer bar coating method, a gravure coating method, a comma coater Examples thereof include a method in which an adhesive is applied to the adhesive surface of the polarizer layer 12 and / or the protective film 14 by a method, a doctor plate method, a die coating method, a dip coating method, a spraying method, and the like, and the both are overlapped. In the casting method, the polarizer layer 12 or the protective film 14 which is an object to be coated is moved in a substantially vertical direction, a substantially horizontal direction, or an oblique direction between the two, and the adhesive is allowed to flow down on the surface. This is a method of spreading.
 偏光子層12または保護フィルム14の表面に接着剤を塗布した後、偏光子層12および保護フィルム14を接着剤塗布面を介してニップロールなどで挟んで貼り合わせることにより接着される。また、偏光子層12と保護フィルム14とを重ね合わせた状態で偏光子層12と保護フィルム14との間に接着剤を滴下した後、この積層体をロール等で加圧して均一に押し広げる方法も好適に使用することができる。この場合、ロールの材質としては金属やゴム等を用いることが可能である。さらに、偏光子層12と保護フィルム14の間に接着剤を滴下した後、この積層体をロールとロールとの間に通し、加圧して押し広げる方法も好ましく採用される。この場合、これらロールは同じ材質であってもよく、異なる材質であってもよい。上記ニップロール等を用いて貼り合わされた後の接着剤層の、乾燥または硬化前の厚さは、5μm以下かつ0.01μm以上であることが好ましい。 After the adhesive is applied to the surface of the polarizer layer 12 or the protective film 14, the polarizer layer 12 and the protective film 14 are bonded together by sandwiching them with a nip roll or the like through the adhesive application surface. Moreover, after dripping an adhesive agent between the polarizer layer 12 and the protective film 14 in a state where the polarizer layer 12 and the protective film 14 are overlapped, the laminate is pressed with a roll or the like and uniformly spread. The method can also be preferably used. In this case, a metal, rubber, or the like can be used as the material of the roll. Further, a method in which an adhesive is dropped between the polarizer layer 12 and the protective film 14 and then the laminate is passed between the rolls and then pressed and spread is preferably employed. In this case, these rolls may be made of the same material or different materials. The thickness of the adhesive layer after being bonded using the nip roll or the like before drying or curing is preferably 5 μm or less and 0.01 μm or more.
 偏光子層12および/または保護フィルム14の接着表面には、接着性を向上させるために、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を適宜施してもよい。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が挙げられる。 In order to improve the adhesion, the surface of the polarizer layer 12 and / or the protective film 14 is appropriately subjected to surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment, and the like. May be. Examples of the saponification treatment include a method of immersing in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide.
 接着剤として光硬化性樹脂を用いた場合は、偏光子層12と保護フィルム14とを接合後、活性エネルギー線を照射することによって光硬化性接着剤を硬化させる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好ましく用いられる。 When a photocurable resin is used as the adhesive, the photocurable adhesive is cured by irradiating active energy rays after the polarizer layer 12 and the protective film 14 are joined. The light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable. Specifically, the low pressure mercury lamp, the medium pressure mercury lamp, the high pressure mercury lamp, the ultrahigh pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
 光硬化性接着剤への光照射強度は、光硬化性接着剤の組成によって適宜決定され、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度が0.1~6000mW/cmであることが好ましい。照射強度が0.1mW/cm以上である場合、反応時間が長くなりすぎず、6000mW/cm以下である場合、光源から輻射される熱および光硬化性接着剤の硬化時の発熱によるエポキシ樹脂の黄変や偏光フィルムの劣化を生じるおそれが少ない。光硬化性接着剤への光照射時間は、硬化させる光硬化性接着剤に応じて適用されるものであって特に限定されないが、上記の照射強度と照射時間との積として表される積算光量が10~10000mJ/cmとなるように設定されることが好ましい。光硬化性接着剤への積算光量が10mJ/cm以上である場合、重合開始剤由来の活性種を十分量発生させて硬化反応をより確実に進行させることができ、10000mJ/cm以下である場合、照射時間が長くなりすぎず、良好な生産性を維持できる。なお、活性エネルギー線照射後の接着剤層の厚みは、通常0.001~5μm程度であり、好ましくは0.01μm以上でかつ2μm以下、さらに好ましくは0.01μm以上でかつ1μm以下である。 The light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / it is preferable that the cm 2. When the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when it is 6000 mW / cm 2 or less, the epoxy is generated by the heat radiated from the light source and the heat generated when the photo-curable adhesive is cured. There is little risk of yellowing of the resin or deterioration of the polarizing film. The light irradiation time to the photocurable adhesive is not particularly limited and is applied according to the photocurable adhesive to be cured, but the integrated light amount expressed as the product of the irradiation intensity and the irradiation time. Is preferably set to 10 to 10,000 mJ / cm 2 . When the cumulative amount of light to the photocurable adhesive is 10 mJ / cm 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to allow the curing reaction to proceed more reliably, and at 10,000 mJ / cm 2 or less. In some cases, the irradiation time does not become too long and good productivity can be maintained. The thickness of the adhesive layer after irradiation with active energy rays is usually about 0.001 to 5 μm, preferably 0.01 μm or more and 2 μm or less, more preferably 0.01 μm or more and 1 μm or less.
 活性エネルギー線の照射によって光硬化性接着剤を硬化させる場合、偏光子層12の偏光度、透過率および色相、ならびに保護フィルム14の透明性など、偏光板の諸機能が低下しない条件で硬化を行うことが好ましい。 When the photocurable adhesive is cured by irradiation with active energy rays, the curing is performed under conditions that do not deteriorate the functions of the polarizing plate such as the degree of polarization of the polarizer layer 12, the transmittance and the hue, and the transparency of the protective film 14. Preferably it is done.
 〔他の光学層〕
 以上のようして製造される本発明の偏光板は、実用に際して他の光学層を積層した偏光板として用いることができる。また、上記保護フィルム14がこれらの光学層の機能を有していてもよい。他の光学層の例としては、ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルム、表面に凹凸形状を有する防眩機能付きフィルム、表面反射防止機能付きフィルム、表面に反射機能を有する反射フィルム、反射機能と透過機能とを併せ持つ半透過反射フィルム、視野角補償フィルムが挙げられる。
[Other optical layers]
The polarizing plate of the present invention produced as described above can be used as a polarizing plate in which other optical layers are laminated in practical use. Moreover, the said protective film 14 may have a function of these optical layers. Examples of other optical layers include a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties, a film with an antiglare function having an uneven shape on the surface, and a surface antireflection function. Examples thereof include an attached film, a reflective film having a reflective function on the surface, a transflective film having both a reflective function and a transmissive function, and a viewing angle compensation film.
 ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルムに相当する市販品としては、例えばDBEF(3M社製、住友スリーエム(株)から入手可能)、APF(3M社製、住友スリーエム(株)から入手可能)が挙げられる。視野角補償フィルムとしては基材表面に液晶性化合物が塗布され、配向されている光学補償フィルム、ポリカーボネート系樹脂からなる位相差フィルム、環状ポリオレフィン系樹脂からなる位相差フィルムが挙げられる。基材表面に液晶性化合物が塗布され、配向されている光学補償フィルムに相当する市販品としては、WVフィルム(富士フィルム(株)製)、NHフィルム(新日本石油(株)製)、NRフィルム(新日本石油(株)製)などが挙げられる。また、環状ポリオレフィン系樹脂からなる位相差フィルムに相当する市販品としては、アートン(登録商標)フィルム(JSR(株)製)、エスシーナ(登録商標)(積水化学工業(株)製)、ゼオノア(登録商標)フィルム((株)オプテス製)などが挙げられる。 Commercially available products corresponding to reflective polarizing films that transmit certain types of polarized light and reflect polarized light that exhibits the opposite properties include DBEF (available from 3M, Sumitomo 3M Co., Ltd.), APF (Available from 3M, available from Sumitomo 3M Limited). Examples of the viewing angle compensation film include an optical compensation film coated with a liquid crystal compound on the surface of the substrate and oriented, a retardation film made of a polycarbonate resin, and a retardation film made of a cyclic polyolefin resin. Commercially available products corresponding to an optical compensation film coated with a liquid crystal compound on the substrate surface and oriented are WV film (Fuji Film Co., Ltd.), NH film (Shin Nippon Oil Co., Ltd.), NR Examples include films (manufactured by Nippon Oil Corporation). Commercial products corresponding to retardation films made of cyclic polyolefin resins include Arton (registered trademark) film (manufactured by JSR Corporation), Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), Zeonor ( Registered trademark) film (manufactured by Optes Co., Ltd.).
 <偏光性積層フィルムの製造方法>
 図3は、図1に示す偏光性積層フィルム10の製造方法の一実施形態を示すフローチャートである。これによると、偏光性積層フィルム10の製造方法は、基材フィルム11の一方の表面上にケン化度が99.0モル%以下であるポリビニルアルコール系樹脂からなる樹脂層を形成して積層フィルムとする樹脂層形成工程(S10)、上記積層フィルムを5倍超の延伸倍率で一軸延伸処理を施し延伸フィルムとする延伸工程(S20)、上記延伸フィルムの樹脂層を二色性色素で染色して偏光子層12として偏光性積層フィルム10を得る染色工程(S30)をこの順番に実施するものである。樹脂層形成工程(S10)、延伸工程(S20)及び染色工程(S30)は、後述する偏光板の製造方法において対応する各工程と同様である。
<Method for producing polarizing laminated film>
FIG. 3 is a flowchart showing an embodiment of a method for producing the polarizing laminated film 10 shown in FIG. According to this, the manufacturing method of the light-polarizing laminated film 10 forms the resin film which consists of a polyvinyl alcohol-type resin whose saponification degree is 99.0 mol% or less on one surface of the base film 11, and is a laminated film. A resin layer forming step (S10), a stretching step (S20) in which the laminated film is subjected to a uniaxial stretching treatment at a stretching ratio of more than 5 times to obtain a stretched film, and the resin layer of the stretched film is dyed with a dichroic dye. Thus, the dyeing step (S30) for obtaining the polarizing laminated film 10 as the polarizer layer 12 is performed in this order. The resin layer forming step (S10), the stretching step (S20), and the dyeing step (S30) are the same as the corresponding steps in the polarizing plate manufacturing method described later.
 この製造方法により得られる積層フィルムは、延伸された基材フィルム11上に、厚さ10μm以下の偏光子層12を備えた偏光性積層フィルム10となる。これを、そのまま偏光板として用いることもできるし、後述するように、偏光子層12を保護フィルムへ転写するための中間体製品として用いることもできる。 The laminated film obtained by this production method becomes the polarizing laminated film 10 provided with the polarizer layer 12 having a thickness of 10 μm or less on the stretched base film 11. This can be used as a polarizing plate as it is, or as an intermediate product for transferring the polarizer layer 12 to a protective film as described later.
 <偏光板の製造方法>
 図4は、図2に示す偏光板13の製造方法の一実施形態を示すフローチャートである。
これによると、偏光板13の製造方法は、基材フィルムの一方の表面上にケン化度が99.0モル%以下であるポリビニルアルコール系樹脂からなる樹脂層を形成して積層フィルムとする樹脂層形成工程(S10)、上記積層フィルムに5倍超の延伸倍率で一軸延伸処理を施し延伸フィルムとする延伸工程(S20)、二色性色素で染色して偏光子層12として偏光性積層フィルムを得る染色工程(S30)をこの順番に実施した後、上記偏光性積層フィルムの偏光子層12の基材フィルム11側の面とは反対側の面に保護フィルム14を貼合して多層フィルムを得る貼合工程(S40)、上記多層フィルムから基材フィルム11を剥離する剥離工程(S50)をこの順に備える。
<Production method of polarizing plate>
FIG. 4 is a flowchart showing an embodiment of a method for manufacturing the polarizing plate 13 shown in FIG.
According to this, the polarizing plate 13 is manufactured by forming a resin layer made of a polyvinyl alcohol resin having a saponification degree of 99.0 mol% or less on one surface of the base film to obtain a laminated film. A layer forming step (S10), a stretching step (S20) in which the above laminated film is subjected to a uniaxial stretching treatment at a stretching ratio of more than 5 times to obtain a stretched film, dyed with a dichroic dye, and a polarizing layer film as a polarizer layer 12 After carrying out the dyeing step (S30) to obtain the above in this order, the protective film 14 is bonded to the surface of the polarizer layer 12 of the polarizing laminated film opposite to the surface of the base film 11 side, and the multilayer film A bonding step (S40) for obtaining a film, and a peeling step (S50) for peeling the base film 11 from the multilayer film are provided in this order.
 この製造方法により得られる偏光板13は、保護フィルム14上に厚さ10μm以下の偏光子層12を備えた偏光板13となる。この偏光板13は、例えば、感圧式接着剤を介して他の光学フィルムや液晶セルに貼り合せるなどして用いることができる。 The polarizing plate 13 obtained by this manufacturing method becomes the polarizing plate 13 provided with the polarizer layer 12 having a thickness of 10 μm or less on the protective film 14. The polarizing plate 13 can be used, for example, by being bonded to another optical film or a liquid crystal cell via a pressure-sensitive adhesive.
 以下、図3および図4におけるS10~S50の各工程について、詳しく説明する。なお、図3および図4のS10~S30の各工程は同様の工程である。 Hereinafter, each step of S10 to S50 in FIGS. 3 and 4 will be described in detail. Note that the steps S10 to S30 in FIGS. 3 and 4 are similar steps.
 [樹脂層形成工程(S10)]
 ここでは、基材フィルムの一方の表面上にポリビニルアルコール系樹脂からなる樹脂層を形成する。
[Resin Layer Forming Step (S10)]
Here, a resin layer made of a polyvinyl alcohol-based resin is formed on one surface of the base film.
 基材フィルムに適した材料は、上記にて偏光性積層フィルムの構成の説明で述べた通りである。なお、本実施形態において、基材フィルムは、ポリビニルアルコール系樹脂の延伸に適した温度範囲で延伸できるように、融点が110℃以上のものを用いることが好ましい。好ましくは、融点が130℃以上のものを用いる。基材フィルムの融点が110℃未満であると、後述の延伸工程(S20)において、基材フィルムが融解しやすく延伸温度を十分に上げることができず、5倍超の延伸が困難になるためである。基材フィルムの融点とは、ISO3146に基づいて昇温速度10℃/minで測定した値である。 The material suitable for the base film is as described in the description of the configuration of the polarizing laminated film. In addition, in this embodiment, it is preferable to use a base film having a melting point of 110 ° C. or higher so that the base film can be stretched in a temperature range suitable for stretching of the polyvinyl alcohol resin. Preferably, those having a melting point of 130 ° C. or higher are used. If the melting point of the base film is less than 110 ° C., the base film is likely to melt in the stretching step (S20) described later, and the stretching temperature cannot be raised sufficiently, making stretching more than 5 times difficult. It is. The melting point of the base film is a value measured at a heating rate of 10 ° C./min based on ISO3146.
 樹脂層を形成するために適したポリビニルアルコール系樹脂の材料は、偏光性積層フィルムの構成の説明で述べた通りである。形成する樹脂層の厚みは、3μm超かつ30μm以下であることが好ましく、さらには5~20μmが好ましい。3μm以下であると延伸後に薄くなりすぎて染色性が著しく悪化してしまい、30μmを超えると、最終的に得られる偏光子層の厚みが10μmを超えてしまうことがあり好ましくない。 The material of the polyvinyl alcohol resin suitable for forming the resin layer is as described in the explanation of the configuration of the polarizing laminated film. The thickness of the resin layer to be formed is preferably more than 3 μm and not more than 30 μm, more preferably 5 to 20 μm. If it is 3 μm or less, it becomes too thin after stretching and the dyeability is remarkably deteriorated. If it exceeds 30 μm, the thickness of the finally obtained polarizer layer may exceed 10 μm, which is not preferable.
 樹脂層は、好ましくは、ポリビニルアルコール系樹脂の粉末を良溶媒に溶解させて得たポリビニルアルコール系樹脂溶液を基材フィルムの一方の表面上に塗工し、溶剤を蒸発させて乾燥することにより形成される。樹脂層をこのように形成することにより、薄く形成することが可能となる。ポリビニルアルコール系樹脂溶液を基材フィルムに塗工する方法としては、ワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、などを公知の方法から適宜選択して採用できる。乾燥温度は、たとえば50~200℃であり、好ましくは60~150℃である。乾燥時間は、たとえば2~20分である。 The resin layer is preferably formed by applying a polyvinyl alcohol resin solution obtained by dissolving polyvinyl alcohol resin powder in a good solvent onto one surface of the base film, and evaporating the solvent to dry the resin layer. It is formed. By forming the resin layer in this way, it can be formed thin. As a method for coating a polyvinyl alcohol resin solution on a base film, a wire bar coating method, a reverse coating, a roll coating method such as gravure coating, a die coating method, a comma coating method, a lip coating method, a spin coating method, a screen coating method. A method, a fountain coating method, a dipping method, a spray method, and the like can be appropriately selected from known methods and employed. The drying temperature is, for example, 50 to 200 ° C., preferably 60 to 150 ° C. The drying time is, for example, 2 to 20 minutes.
 なお、本実施形態における樹脂層は、ポリビニルアルコール系樹脂からなる原反フィルムを基材フィルムの一方の表面上に貼着することにより形成することも可能である。 In addition, the resin layer in this embodiment can also be formed by sticking a raw film made of a polyvinyl alcohol resin on one surface of the base film.
 また、基材フィルムとポリビニルアルコール系樹脂の密着性を向上させるために、基材フィルムと樹脂層の間にプライマー層を設けても良い。プライマー層はポリビニルアルコール系樹脂に架橋剤などを含有する組成物で形成することが密着性の観点から好ましい。 Also, a primer layer may be provided between the base film and the resin layer in order to improve the adhesion between the base film and the polyvinyl alcohol resin. The primer layer is preferably formed from a composition containing a crosslinking agent or the like in a polyvinyl alcohol resin from the viewpoint of adhesion.
 [延伸工程(S20)]
 ここでは、基材フィルムおよび樹脂層からなる積層フィルムを、積層フィルムの元長に対して、5倍超の延伸倍率となるように一軸延伸し延伸フィルムを得る。好ましくは、5倍超かつ17倍以下の延伸倍率となるように一軸延伸する。さらに好ましくは5倍超かつ8倍以下の延伸倍率となるように一軸延伸する。延伸倍率が5倍以下だと、ポリビニルアルコール系樹脂からなる樹脂層が十分に配向しないため、結果として、偏光子層の偏光度が十分に高くならない。一方、延伸倍率が17倍を超えると延伸時の積層フィルムの破断が生じ易くなると同時に、延伸フィルムの厚みが必要以上に薄くなり、後工程での加工性・ハンドリング性が低下するおそれがある。延伸工程(S20)における延伸処理は、一段での延伸に限定されることはなく多段で行うこともできる。多段で行う場合は、延伸処理の全段を合わせて5倍超の延伸倍率となるように延伸処理を行う。
[Stretching step (S20)]
Here, a laminated film composed of a base film and a resin layer is uniaxially stretched so as to have a draw ratio of more than 5 times with respect to the original length of the laminated film to obtain a stretched film. Preferably, uniaxial stretching is performed so that the stretching ratio is more than 5 times and not more than 17 times. More preferably, it is uniaxially stretched so that the stretch ratio is more than 5 times and not more than 8 times. When the draw ratio is 5 times or less, the resin layer made of the polyvinyl alcohol resin is not sufficiently oriented, and as a result, the degree of polarization of the polarizer layer is not sufficiently high. On the other hand, when the draw ratio exceeds 17 times, the laminated film is likely to break during stretching, and at the same time, the thickness of the stretched film becomes unnecessarily thin, and the workability and handling properties in the subsequent process may be reduced. The stretching process in the stretching step (S20) is not limited to one-stage stretching, and can be performed in multiple stages. In the case of performing in multiple stages, the stretching process is performed so that the stretching ratio is more than 5 times by combining all stages of the stretching process.
 本実施形態における延伸工程(S20)においては、積層フィルムの長手方向に対して行なう縦延伸処理が好ましいが、偏光性能をさほど求めない場合にはテンター法による横一軸延伸などに代表される固定端一軸延伸であっても構わない。縦延伸方式としては、ロール間延伸方法、圧縮延伸方法、テンターを用いた延伸方法などが挙げられる。延伸処理は、縦延伸処理に限定されることはなく、斜め延伸処理等であってもよい。また、自由端一軸延伸であることが好ましい。 In the stretching step (S20) in the present embodiment, a longitudinal stretching process performed in the longitudinal direction of the laminated film is preferable. However, when the polarization performance is not so much required, a fixed end represented by transverse uniaxial stretching by the tenter method or the like. Uniaxial stretching may be used. Examples of the longitudinal stretching method include an inter-roll stretching method, a compression stretching method, and a stretching method using a tenter. The stretching process is not limited to the longitudinal stretching process, and may be an oblique stretching process or the like. Moreover, it is preferable that it is free end uniaxial stretching.
 また、延伸処理は、湿潤式延伸方法と乾式延伸方法のいずれも採用できるが、乾式延伸方法を用いる方が、積層フィルムを延伸する際の温度を広い範囲から選択することができる点で好ましい。 In addition, as the stretching treatment, either a wet stretching method or a dry stretching method can be adopted, but the use of the dry stretching method is preferable in that the temperature for stretching the laminated film can be selected from a wide range.
 本実施形態においては、基材フィルムの融点の−30℃から+5℃の温度範囲で延伸処理を行なうことが好ましい。さらに好ましくは、基材フィルムの融点の−25℃から融点の温度範囲で延伸処理を行う。延伸温度を基材フィルム11の融点の−30℃より低くすると、5倍超の高倍率延伸が困難になる。延伸温度が基材フィルムの融点の+5℃を超えると、基材フィルムの融解により延伸が困難となるため好ましくない。なお、延伸温度は上記範囲内であって、さらに好ましくは120℃以上である。延伸温度が120℃以上の場合、5倍超の高延伸倍率であっても延伸処理に困難性を伴わないからである。延伸処理の温度調整は、通常、加熱炉の温度調整による。 In this embodiment, it is preferable to perform the stretching treatment in a temperature range of −30 ° C. to + 5 ° C. of the melting point of the base film. More preferably, the stretching process is performed in the temperature range from −25 ° C. to the melting point of the base film. When the stretching temperature is lower than the melting point of the base film 11 of −30 ° C., it becomes difficult to stretch the film at a high magnification exceeding 5 times. When the stretching temperature exceeds + 5 ° C. of the melting point of the base film, it is not preferable because stretching becomes difficult due to melting of the base film. In addition, extending | stretching temperature is in the said range, More preferably, it is 120 degreeC or more. This is because when the stretching temperature is 120 ° C. or higher, there is no difficulty in the stretching treatment even at a high stretching ratio of more than 5 times. The temperature adjustment of the stretching process is usually based on the temperature adjustment of the heating furnace.
 [染色工程(S30)]
 ここでは、延伸フィルムの樹脂層を、二色性色素で染色する。二色性色素としては、たとえば、ヨウ素や有機染料などが挙げられる。有機染料としては、たとえば、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラックなどが使用できる。これらの二色性物質は、一種類でも良いし、二種類以上を併用して用いても良い。
[Dyeing step (S30)]
Here, the resin layer of the stretched film is dyed with a dichroic dye. Examples of the dichroic dye include iodine and organic dyes. Examples of organic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First Orange S, First Black, etc. can be used. One kind of these dichroic substances may be used, or two or more kinds may be used in combination.
 染色工程は、たとえば、上記二色性色素を含有する溶液(染色溶液)に、延伸フィルム全体を浸漬することにより行う。染色溶液としては、上記二色性色素を溶媒に溶解した溶液を使用できる。染色溶液の溶媒としては、一般的には水が使用されるが、水と相溶性のある有機溶媒がさらに添加されても良い。二色性色素の濃度としては、0.01~10重量%であることが好ましく、0.02~7重量%であることがより好ましく、0.025~5重量%であることが特に好ましい。 The dyeing step is performed, for example, by immersing the entire stretched film in a solution (dye solution) containing the dichroic dye. As the staining solution, a solution in which the above dichroic dye is dissolved in a solvent can be used. As a solvent for the dyeing solution, water is generally used, but an organic solvent compatible with water may be further added. The concentration of the dichroic dye is preferably 0.01 to 10% by weight, more preferably 0.02 to 7% by weight, and particularly preferably 0.025 to 5% by weight.
 二色性色素としてヨウ素を使用する場合、染色効率をより一層向上できることから、さらにヨウ化物を添加することが好ましい。このヨウ化物としては、たとえば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンなどが挙げられる。これらヨウ化物の添加割合は、染色溶液において、0.01~10重量%であることが好ましい。ヨウ化物の中でも、ヨウ化カリウムを添加することが好ましい。ヨウ化カリウムを添加する場合、ヨウ素とヨウ化カリウムの割合は重量比で、1:5~1:100の範囲にあることが好ましく、1:6~1:80の範囲にあることがより好ましく、1:7~1:70の範囲にあることが特に好ましい。 When iodine is used as the dichroic dye, it is preferable to further add an iodide because the dyeing efficiency can be further improved. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide. Examples include titanium. The addition ratio of these iodides is preferably 0.01 to 10% by weight in the dyeing solution. Of the iodides, it is preferable to add potassium iodide. When potassium iodide is added, the ratio of iodine to potassium iodide is preferably in the range of 1: 5 to 1: 100, more preferably in the range of 1: 6 to 1:80 by weight. And particularly preferably in the range of 1: 7 to 1:70.
 染色溶液への延伸フィルムの浸漬時間は、特に限定されないが、通常は15秒~15分間の範囲であることが好ましく、1分~3分間であることがより好ましい。また、染色溶液の温度は、10~60℃の範囲にあることが好ましく、20~40℃の範囲にあることがより好ましい。 The immersion time of the stretched film in the dyeing solution is not particularly limited, but is usually preferably in the range of 15 seconds to 15 minutes, and more preferably 1 minute to 3 minutes. The temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C.
 染色工程において、染色に次いで架橋処理を行うことが出来る。架橋処理は、たとえば架橋剤を含む溶液(架橋溶液)中に延伸フィルムを浸漬することにより行うことができる。架橋剤としては、従来公知の物質を使用することができる。たとえば、ホウ酸、ホウ砂等のホウ素化合物や、グリオキザール、グルタルアルデヒドなどが挙げられる。これらは一種類でも良いし、二種類以上を併用しても良い。 In the dyeing process, a crosslinking treatment can be performed after dyeing. The crosslinking treatment can be performed, for example, by immersing the stretched film in a solution containing a crosslinking agent (crosslinking solution). Conventionally known substances can be used as the crosslinking agent. Examples thereof include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. One kind of these may be used, or two or more kinds may be used in combination.
 架橋溶液として、架橋剤を溶媒に溶解した溶液を使用できる。溶媒としては、たとえば水が使用できるが、さらに、水と相溶性のある有機溶媒を含んでも良い。架橋溶液における架橋剤の濃度は、これに限定されるものではないが、1~20重量%の範囲にあることが好ましく、6~15重量%であることがより好ましい。 As the crosslinking solution, a solution in which a crosslinking agent is dissolved in a solvent can be used. As the solvent, for example, water can be used, but an organic solvent compatible with water may be further included. The concentration of the crosslinking agent in the crosslinking solution is not limited to this, but is preferably in the range of 1 to 20% by weight, more preferably 6 to 15% by weight.
 架橋溶液中には、ヨウ化物を添加してもよい。ヨウ化物の添加により、樹脂層の面内における偏光特性をより均一化させることができる。ヨウ化物としては、たとえば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンが挙げられる。ヨウ化物の含有量は、0.05~15重量%、より好ましくは0.5~8重量%である。 An iodide may be added to the crosslinking solution. By adding iodide, the in-plane polarization characteristics of the resin layer can be made more uniform. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Is mentioned. The iodide content is 0.05 to 15% by weight, more preferably 0.5 to 8% by weight.
 架橋溶液への延伸フィルムの浸漬時間は、通常、15秒~20分間であることが好ましく、30秒~15分間であることがより好ましい。また、架橋溶液の温度は、10~80℃の範囲にあることが好ましい。 The immersion time of the stretched film in the crosslinking solution is usually preferably from 15 seconds to 20 minutes, and more preferably from 30 seconds to 15 minutes. The temperature of the crosslinking solution is preferably in the range of 10 to 80 ° C.
 最後に洗浄工程および乾燥工程を行なうことが好ましい。洗浄工程としては、水洗浄処理を施すことができる。水洗浄処理は、通常、イオン交換水、蒸留水などの純水に延伸フィルムを浸漬することにより行なうことができる。水洗浄温度は、通常3~50℃、好ましくは4℃~20℃の範囲である。浸漬時間は通常2~300秒間、好ましくは3秒~240秒間である。 Finally, it is preferable to perform a washing step and a drying step. As the washing step, a water washing treatment can be performed. The water washing treatment can usually be performed by immersing the stretched film in pure water such as ion exchange water or distilled water. The water washing temperature is usually in the range of 3 to 50 ° C., preferably 4 to 20 ° C. The immersion time is usually 2 to 300 seconds, preferably 3 to 240 seconds.
 洗浄工程は、ヨウ化物溶液による洗浄処理と水洗浄処理を組み合わせてもよく、適宜にメタノール、エタノール、イソプロピルアルコール、ブタノール、プロパノール等の液体アルコールを配合した溶液を用いることもできる。 In the washing step, washing treatment with an iodide solution and water washing treatment may be combined, and a solution in which liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol, propanol or the like is appropriately blended may be used.
 洗浄工程の後に、乾燥工程を施すことが好ましい。乾燥工程として、任意の適切な方法(たとえば、自然乾燥、送風乾燥、加熱乾燥)を採用しうる。たとえば、加熱乾燥の場合の乾燥温度は、通常、20~95℃であり、乾燥時間は、通常、1~15分間程度である。以上の染色工程(S30)により、樹脂層が偏光子としての機能を有することになる。
本明細書においては、偏光子としての機能を有する樹脂層を偏光子層といい、基材フィルム上に偏光子層を備えた積層体を偏光性積層フィルムという。
It is preferable to perform a drying process after the washing process. Any appropriate method (for example, natural drying, ventilation drying, heat drying) can be adopted as the drying step. For example, the drying temperature in the case of heat drying is usually 20 to 95 ° C., and the drying time is usually about 1 to 15 minutes. Through the above dyeing step (S30), the resin layer has a function as a polarizer.
In this specification, the resin layer which has a function as a polarizer is called a polarizer layer, and the laminated body provided with the polarizer layer on the base film is called a polarizing laminated film.
 本実施形態においては、樹脂層にケン化度が99.0モル%以下のポリビニルアルコール系樹脂を使用し、また延伸工程(S20)においては、5倍超の延伸倍率で一軸延伸を行なっているので、染色工程(S30)において良好な染色速度が維持される。なお、ケン化度が高いポリビニルアルコール系樹脂を用いた樹脂層は、染色工程(S30)における染色速度が低下し、染色が不十分となりやすい。 In the present embodiment, a polyvinyl alcohol resin having a saponification degree of 99.0 mol% or less is used for the resin layer, and uniaxial stretching is performed at a stretching ratio of more than 5 times in the stretching step (S20). Therefore, a good dyeing speed is maintained in the dyeing step (S30). In addition, the resin layer using the polyvinyl alcohol-type resin with a high saponification degree has a low dyeing speed in the dyeing step (S30), and the dyeing tends to be insufficient.
 [貼合工程(S40)]
 ここでは、偏光性積層フィルムにおける偏光子層の基材フィルム側の面とは反対側の面に保護フィルムを貼合して多層フィルムを得る。保護フィルムを貼合する方法としては、粘着剤で偏光子層12と保護フィルム14を貼合する方法、接着剤で偏光子層12面と保護フィルム14を貼合する方法が挙げられる。保護フィルムとして適した材料は、上述の偏光板の構成の説明で述べた通りである。また、使用に適した接着剤、粘着剤の材料、およびこれらを用いて偏光子層12と保護フィルム14を貼合する好ましい方法は、上述の偏光板の構成の説明で述べた通りである。
[Bonding process (S40)]
Here, a protective film is bonded to the surface opposite to the surface on the base film side of the polarizer layer in the polarizing laminated film to obtain a multilayer film. As a method of bonding a protective film, the method of bonding the polarizer layer 12 and the protective film 14 with an adhesive, and the method of bonding the polarizer layer 12 surface and the protective film 14 with an adhesive are mentioned. Materials suitable as the protective film are as described in the description of the structure of the polarizing plate. Moreover, the preferable method of bonding the polarizer layer 12 and the protective film 14 using the adhesive suitable for use, the material of an adhesive, and these is as having demonstrated by description of the structure of the above-mentioned polarizing plate.
 [剥離工程(S50)]
 本実施形態の偏光板の製造方法では、図4に示すように、保護フィルムを偏光性積層フィルムの偏光子層12に貼合する貼合工程(S40)の後、剥離工程(S50)を行なう。剥離工程(S50)では、基材フィルムを多層フィルムから剥離する。基材フィルムの剥離方法は特に限定されるものでなく、通常の粘着剤付偏光板で行われる剥離フィルムの剥離工程と同様の方法で剥離できる。保護フィルムの貼合工程(S40)の後、そのまますぐ剥離してもよいし、一度ロール状に巻き取った後、別に剥離工程を設けて剥離してもよい。
[Peeling step (S50)]
In the manufacturing method of the polarizing plate of this embodiment, as shown in FIG. 4, a peeling process (S50) is performed after the bonding process (S40) which bonds a protective film to the polarizer layer 12 of a polarizing laminated film. . In a peeling process (S50), a base film is peeled from a multilayer film. The peeling method of a base film is not specifically limited, It can peel by the method similar to the peeling process of the peeling film performed with a normal polarizing plate with an adhesive. After the protective film laminating step (S40), the protective film may be peeled off as it is, or once wound up in a roll shape, a separate peeling step may be provided and peeled off.
 以下、実施例および比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
 実施例1
 図4に示す製造方法にしたがって、図2に示す偏光板を作製した。
Example 1
The polarizing plate shown in FIG. 2 was produced according to the manufacturing method shown in FIG.
 (基材フィルム)
 基材フィルムとして、厚み110μmの未延伸のポリプロピレン(PP)フィルム(融点:163℃)を用いた。
(Base film)
An unstretched polypropylene (PP) film (melting point: 163 ° C.) having a thickness of 110 μm was used as the base film.
 (プライマー層形成工程)
 ポリビニルアルコール粉末(日本合成化学工業(株)製、平均重合度1100、ケン化度99.5モル%、商品名:Z−200)を95℃の熱水に溶解させ濃度3重量%の水溶液を調製した。得られた水溶液にポリビニルアルコール粉末6重量部に対して5重量部の架橋剤(住友化学(株)製、商品名:スミレーズ(登録商標)レジン650)を混ぜた。
得られた混合水溶液をコロナ処理を施した基材フィルム上にマイクログラビアコーターを用いて塗工し、80℃で10分間乾燥させ厚み0.2μmのプライマー層を形成した。
(Primer layer formation process)
Polyvinyl alcohol powder (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., average polymerization degree 1100, saponification degree 99.5 mol%, trade name: Z-200) is dissolved in 95 ° C. hot water to give an aqueous solution having a concentration of 3% by weight. Prepared. The resulting aqueous solution was mixed with 5 parts by weight of a crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez (registered trademark) Resin 650) with respect to 6 parts by weight of polyvinyl alcohol powder.
The obtained mixed aqueous solution was applied on a corona-treated substrate film using a microgravure coater and dried at 80 ° C. for 10 minutes to form a primer layer having a thickness of 0.2 μm.
 (樹脂層形成工程)
 ポリビニルアルコール粉末(クラレ(株)製、平均重合度2400、ケン化度98.0~99.0モル%、商品名:PVA124)を95℃の熱水中に溶解させ濃度8重量%のポリビニルアルコール水溶液を調製した。得られた水溶液を上記プライマー層の上にリップコーターを用いて塗工し80℃で20分間乾燥させ、基材フィルム、プライマー層、樹脂層からなる三層の積層フィルムを作成した。
(Resin layer forming process)
Polyvinyl alcohol powder having a concentration of 8% by weight by dissolving polyvinyl alcohol powder (manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 98.0 to 99.0 mol%, trade name: PVA124) in hot water at 95 ° C. An aqueous solution was prepared. The obtained aqueous solution was coated on the primer layer using a lip coater and dried at 80 ° C. for 20 minutes to prepare a three-layer laminated film comprising a base film, a primer layer, and a resin layer.
 (延伸工程)
 上記積層フィルムをテンター装置を用いて160℃で5.8倍の自由端一軸延伸を実施し延伸フィルムを得た。延伸後の樹脂層の厚みは6.1μmであった。
(Stretching process)
The laminated film was subjected to 5.8-fold free end uniaxial stretching at 160 ° C. using a tenter apparatus to obtain a stretched film. The thickness of the resin layer after stretching was 6.1 μm.
 (染色工程)
 その後、延伸フィルムを60℃の温浴に60秒浸漬し、30℃のヨウ素とヨウ化カリウムの混合水溶液である染色溶液に150秒ほど浸漬して染色した後、10℃の純水で余分なヨウ素液を洗い流した。次いで76℃のホウ酸とヨウ化カリウムの混合水溶液である架橋溶液に600秒浸漬させた。その後10℃の純水で4秒間洗浄し、最後に50℃で300秒間乾燥させた。以上の工程により樹脂層から偏光子層を形成し、偏光性積層フィルムを得た。各溶液の配合比率は以下である。
(Dyeing process)
Thereafter, the stretched film is immersed in a 60 ° C. hot bath for 60 seconds, dyed by immersion for about 150 seconds in a dyeing solution that is a mixed aqueous solution of iodine and potassium iodide at 30 ° C., and then excess iodine is added with pure water at 10 ° C. The liquid was washed away. Subsequently, it was immersed for 600 second in the bridge | crosslinking solution which is a 76 degreeC mixed aqueous solution of boric acid and potassium iodide. Thereafter, it was washed with pure water at 10 ° C. for 4 seconds, and finally dried at 50 ° C. for 300 seconds. The polarizer layer was formed from the resin layer by the above process, and the light-polarizing laminated film was obtained. The blending ratio of each solution is as follows.
 <染色溶液>
水:100重量部
ヨウ素:0.6重量部
ヨウ化カリウム:10重量部
 <架橋溶液>
水:100重量部
ホウ酸:9.5重量部
ヨウ化カリウム:5重量部
 (保護フィルムの貼合)
 ポリビニルアルコール粉末((株)クラレ製、平均重合度1800、商品名:KL−318)を95℃の熱水に溶解させ濃度3重量%の水溶液を調製した。得られた水溶液に架橋剤(住友化学(株)製、商品名:スミレーズ(登録商標)レジン650)をポリビニルアルコール粉末2重量部に対して1重量部を混ぜて接着剤溶液とした。上記偏光性積層フィルムの偏光子層の基材フィルム側の面とは反対側の面に上述のポリビニルアルコール系接着剤を塗布した後に保護フィルム(コニカミノルタオプト(株)製のTAC:KC4UY)を貼合し、保護フィルム、接着剤層、偏光子層、プライマー層、基材フィルムの五層からなる偏光板を得た。得られた偏光板から基材フィルムを剥離した。基材フィルムは容易に剥離され、保護フィルム、接着剤層、偏光子層、プライマー層の四層からなる偏光板を得た。偏光子層の厚みは6.1μmであった。
<Dyeing solution>
Water: 100 parts by weight Iodine: 0.6 parts by weight Potassium iodide: 10 parts by weight <Crosslinking solution>
Water: 100 parts by weight Boric acid: 9.5 parts by weight Potassium iodide: 5 parts by weight (bonding of protective film)
Polyvinyl alcohol powder (manufactured by Kuraray Co., Ltd., average polymerization degree 1800, trade name: KL-318) was dissolved in 95 ° C. hot water to prepare an aqueous solution having a concentration of 3% by weight. The resulting aqueous solution was mixed with 1 part by weight of a crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumirez (registered trademark) Resin 650) with respect to 2 parts by weight of polyvinyl alcohol powder to obtain an adhesive solution. The protective film (TAC: KC4UY manufactured by Konica Minolta Opto Co., Ltd.) is applied after applying the above-mentioned polyvinyl alcohol-based adhesive on the surface opposite to the surface of the polarizer layer of the polarizing laminated film on the base film side. Bonding was performed to obtain a polarizing plate comprising five layers of a protective film, an adhesive layer, a polarizer layer, a primer layer, and a base film. The base film was peeled from the obtained polarizing plate. The base film was easily peeled off to obtain a polarizing plate comprising four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer. The thickness of the polarizer layer was 6.1 μm.
 実施例2
 樹脂層に用いるポリビニルアルコールとして、ポリビニルアルコール粉末(日本合成化学工業(株)製、平均重合度2200、ケン化度97.5~98.5モル%、商品名:AH−22)を用いた点以外は実施例1と同じ方法で延伸フィルムを得た。延伸フィルムにおける樹脂層の厚みは5.5μmであった。さらに、実施例1と同様の方法で染色工程、貼合工程、剥離工程などを実施して、保護フィルム、接着剤層、偏光子層、プライマー層の四層からなる実施例2の偏光板を得た。偏光子層の厚みは5.6μmであった。
Example 2
As polyvinyl alcohol used for the resin layer, polyvinyl alcohol powder (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., average polymerization degree 2200, saponification degree 97.5 to 98.5 mol%, trade name: AH-22) was used. A stretched film was obtained in the same manner as in Example 1 except for the above. The thickness of the resin layer in the stretched film was 5.5 μm. Further, the polarizing plate of Example 2 comprising four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer is carried out in the same manner as in Example 1 by carrying out a dyeing process, a bonding process, a peeling process, and the like. Obtained. The thickness of the polarizer layer was 5.6 μm.
 実施例3
 樹脂層に用いるポリビニルアルコールとして、ポリビニルアルコール粉末(日本酢ビ・ポバール(株)製、平均重合度2600、ケン化度95.5~97.5モル%、商品名:JM−26)を用いた点以外は実施例1と同じ方法で延伸フィルムを得た。延伸フィルムにおける樹脂層の厚みは5.3μmであった。さらに、実施例1と同様の方法で染色工程、貼合工程、剥離工程などを実施して、保護フィルム、接着剤層、偏光子層、プライマー層の四層からなる実施例3の偏光板を得た。偏光子層の厚みは5.3μmであった。
Example 3
As polyvinyl alcohol used for the resin layer, polyvinyl alcohol powder (manufactured by Nippon Vinegar Poval Co., Ltd., average polymerization degree 2600, saponification degree 95.5 to 97.5 mol%, trade name: JM-26) was used. A stretched film was obtained in the same manner as in Example 1 except for the point. The thickness of the resin layer in the stretched film was 5.3 μm. Furthermore, the polarizing plate of Example 3 consisting of four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer is carried out by performing the dyeing step, the bonding step, the peeling step and the like in the same manner as in Example 1. Obtained. The thickness of the polarizer layer was 5.3 μm.
 比較例1
 樹脂層に用いるポリビニルアルコールとして、ポリビニルアルコール粉末(クラレ(株)製、平均重合度1700、ケン化度99.3モル%以上、商品名:PVA117H)を用いた点以外は実施例1と同じ方法で延伸フィルムを得た。延伸フィルムにおける樹脂層の厚みは6.3μmであった。さらに、実施例1と同様の方法で染色工程、貼合工程、剥離工程などを実施して、保護フィルム、接着剤層、偏光子層、プライマー層の四層からなる比較例1の偏光板を得た。偏光子層の厚みは6.3μmであった。
Comparative Example 1
As the polyvinyl alcohol used for the resin layer, the same method as in Example 1 except that polyvinyl alcohol powder (manufactured by Kuraray Co., Ltd., average polymerization degree 1700, saponification degree 99.3 mol% or more, trade name: PVA117H) was used. A stretched film was obtained. The thickness of the resin layer in the stretched film was 6.3 μm. Furthermore, the dyeing process, the bonding process, the peeling process, and the like are performed in the same manner as in Example 1, and the polarizing plate of Comparative Example 1 including the protective film, the adhesive layer, the polarizer layer, and the primer layer is used. Obtained. The thickness of the polarizer layer was 6.3 μm.
 比較例2
 樹脂層に用いるポリビニルアルコールとして、ポリビニルアルコール(クラレ(株)製、平均重合度2400、ケン化度99.9モル%以上、商品名:クラレポバールVF−PS#7500)を細かく刻んだものを用いた点と、延伸工程における延伸倍率を4.0倍とした点以外は実施例1と同じ方法で延伸フィルムを得た。延伸フィルムにおける樹脂層の厚みは6.7μmであった。さらに、実施例1と同様の方法で染色工程、貼合工程、剥離工程などを実施して、保護フィルム、接着剤層、偏光子層、プライマー層の四層からなる比較例2の偏光板を得た。偏光子層の厚みは6.7μmであった。
Comparative Example 2
As the polyvinyl alcohol used in the resin layer, polyvinyl alcohol (manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more, trade name: Kuraray Poval VF-PS # 7500) is used. A stretched film was obtained in the same manner as in Example 1 except that the stretch ratio in the stretching step was 4.0. The thickness of the resin layer in the stretched film was 6.7 μm. Furthermore, the dyeing process, the bonding process, the peeling process, and the like are performed in the same manner as in Example 1 to obtain the polarizing plate of Comparative Example 2 that includes four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer. Obtained. The thickness of the polarizer layer was 6.7 μm.
 比較例3
 樹脂層に用いるポリビニルアルコールとして、ポリビニルアルコール(クラレ(株)製、平均重合度2400、ケン化度99.9モル%以上、商品名:クラレポバールVF−PS#7500)を細かく刻んだものを用いた点以外は実施例1と同じ方法で延伸フィルムを得た。延伸フィルムにおける樹脂層の厚みは6.3μmであった。さらに、実施例1と同様の方法で染色工程、貼合工程、剥離工程などを実施して、保護フィルム、接着剤層、偏光子層、プライマー層の四層からなる比較例3の偏光板を得た。偏光子層の厚みは6.3μmであった。
Comparative Example 3
As the polyvinyl alcohol used in the resin layer, polyvinyl alcohol (manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more, trade name: Kuraray Poval VF-PS # 7500) is used. A stretched film was obtained in the same manner as in Example 1 except for the points mentioned above. The thickness of the resin layer in the stretched film was 6.3 μm. Furthermore, the dyeing process, the bonding process, the peeling process, and the like are performed in the same manner as in Example 1, and the polarizing plate of Comparative Example 3 including the protective film, the adhesive layer, the polarizer layer, and the primer layer is used. Obtained. The thickness of the polarizer layer was 6.3 μm.
 (偏光性能の測定)
 基材フィルムを剥離して得られた保護フィルム、接着剤層、偏光子層、プライマー層の四層からなる偏光板のMD透過率及びTD透過率は、積分球付き分光光度計(日本分光(株)製、V7100)にて測定した。前記式(1)、式(2)に基づいて各波長における単体透過率、偏光度を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行い、視感度補正単体透過率(Ty)および視感度補正偏光度(Py)を求めた。なお、偏光板の測定は保護フィルム側をディテクター側とし、プライマー層側から光が入光するように機器にセットした。
(Measurement of polarization performance)
The MD transmittance and TD transmittance of a polarizing plate comprising four layers of a protective film, an adhesive layer, a polarizer layer, and a primer layer obtained by peeling the base film were measured with a spectrophotometer with an integrating sphere (JASCO ( V7100). Based on the above formulas (1) and (2), the single transmittance and the degree of polarization at each wavelength are calculated, and further the visibility correction is performed by the 2 degree field of view (C light source) of JIS Z 8701, and the visibility correction single transmission is performed. The rate (Ty) and the visibility correction polarization degree (Py) were determined. In addition, the measurement of the polarizing plate was set in the apparatus so that the protective film side was the detector side and light was incident from the primer layer side.
 実施例1および比較例1~3の偏光板について算出した視感度補正単体透過率(Ty)および視感度補正偏光度(Py)を表1に表す。 Table 1 shows the visibility corrected single transmittance (Ty) and the visibility corrected polarization degree (Py) calculated for the polarizing plates of Example 1 and Comparative Examples 1 to 3.
 (市販携帯電話への実装評価)
 KDDI(株)から販売されている「au EXILIMケータイW53CA」(製造元:CASIO計算機(株)を分解し、液晶セルの上下に貼ってあった偏光板を剥がして液晶セルを取り出した。
(Evaluation of mounting on commercial mobile phones)
“Au EXILIM mobile phone W53CA” (manufacturer: CASIO Computer Co., Ltd.) sold by KDDI Corporation was disassembled, and the polarizing plates attached to the top and bottom of the liquid crystal cell were peeled off, and the liquid crystal cell was taken out.
 実施例1~3および比較例1~3で得られた偏光板を、感圧式接着剤を介して液晶セルの上下に貼りつけた。この際、液晶セルの上側(視認側)に貼り付ける偏光板の吸収軸は、視認側から見た視点で液晶セルの短辺から反時計回りに170度となるように配置した。また、液晶セルの下側(バックライト側)に貼り付ける偏光板の吸収軸は、視認側から見た視点で液晶セルの短辺から反時計回りに80度となるように配置した。なお、この配置角度はもともと液晶セルに貼ってあったオリジナル偏光板の吸収軸の配置角度と同じになるようにしたものである。 The polarizing plates obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were attached to the top and bottom of the liquid crystal cell via a pressure sensitive adhesive. At this time, the absorption axis of the polarizing plate attached on the upper side (viewing side) of the liquid crystal cell was arranged to be 170 degrees counterclockwise from the short side of the liquid crystal cell as viewed from the viewing side. Also, the absorption axis of the polarizing plate attached to the lower side (backlight side) of the liquid crystal cell was arranged to be 80 degrees counterclockwise from the short side of the liquid crystal cell as viewed from the viewing side. This arrangement angle is the same as the arrangement angle of the absorption axis of the original polarizing plate originally attached to the liquid crystal cell.
 実施例1~3および比較例1~3で得られた偏光板を上下に貼り付けた液晶セルを用いて、再び携帯電話を組み立てて画像を表示した。一般の屋内環境、および、暗室内にて画像の明瞭さを目視判定することで表示状態の評価を実施した。 Using the liquid crystal cell in which the polarizing plates obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were pasted up and down, the mobile phone was assembled again to display an image. The display state was evaluated by visually determining the clarity of the image in a general indoor environment and in a dark room.
 実施例1~3および比較例1~3の偏光板の評価結果を表1に表す。 Table 1 shows the evaluation results of the polarizing plates of Examples 1 to 3 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3では、ケン化度が99.0モル%以下のポリビニルアルコール系樹脂を用いて延伸倍率を5倍超としていることで、通常の生産に支障がでない程度の染色時間としても、所望のTy、Pyを得ることができた。そして、得られた偏光板を液晶表示装置に使用することにより、明瞭で良好な画像表示となった。 In Examples 1 to 3, by using a polyvinyl alcohol-based resin having a saponification degree of 99.0 mol% or less and having a draw ratio of more than 5 times, a dyeing time that does not hinder normal production can be obtained. Desired Ty and Py could be obtained. Then, by using the obtained polarizing plate for a liquid crystal display device, clear and good image display was obtained.
 一方、比較例1、3では、ケン化度が99.0モル%を超えるポリビニルアルコール系樹脂を用いて延伸倍率を5倍超としているため、通常の生産に支障がでない程度の染色時間では十分に染色できず、Pyも低い値となった。そして、得られた偏光板を液晶表示装置に使用すると、コントラスト比(CR)が低く、明瞭さに欠ける画像表示となった。 On the other hand, in Comparative Examples 1 and 3, the polyvinyl alcohol resin having a saponification degree of more than 99.0 mol% is used and the draw ratio is more than 5 times, so that a dyeing time that does not hinder normal production is sufficient. The Py was also low. And when the obtained polarizing plate was used for the liquid crystal display device, the contrast ratio (CR) was low and the image display lacked in clarity.
 また、比較例2では、ケン化度が99.0モル%を超えるポリビニルアルコール系樹脂を用いて延伸倍率を5倍以下としているため、通常の生産に支障がでない程度の染色時間で十分に染色できたものの、Pyは低い値となった。そして、得られた偏光板を液晶表示装置に使用すると、コントラスト比(CR)が低く、明瞭さに欠ける画像表示となった。 In Comparative Example 2, since the draw ratio is 5 times or less using a polyvinyl alcohol resin having a saponification degree of more than 99.0 mol%, the dyeing is sufficiently performed with a dyeing time that does not hinder normal production. Although it was made, Py was a low value. And when the obtained polarizing plate was used for the liquid crystal display device, the contrast ratio (CR) was low and the image display lacked in clarity.
10 偏光性積層フィルム
11 基材フィルム
12 偏光子層
13 偏光板
14 保護フィルム
DESCRIPTION OF SYMBOLS 10 Polarizing laminated film 11 Base film 12 Polarizer layer 13 Polarizing plate 14 Protective film

Claims (9)

  1.  基材フィルムと、基材フィルムの一方の面に形成されている偏光子層とを備え、
     偏光子層は、厚さ10μm以下であり、二色性色素を吸着配向させたポリビニルアルコール系樹脂から形成され、
     ポリビニルアルコール系樹脂のケン化度は99.0モル%以下であり、
     視感度補正単体透過率(Ty)が40%以上でかつ視感度補正偏光度(Py)が99.9%以上である、偏光性積層フィルム。
    A base film, and a polarizer layer formed on one surface of the base film,
    The polarizer layer has a thickness of 10 μm or less, and is formed from a polyvinyl alcohol resin in which a dichroic dye is adsorbed and oriented,
    The saponification degree of the polyvinyl alcohol-based resin is 99.0 mol% or less,
    A polarizing laminated film having a visibility corrected single transmittance (Ty) of 40% or more and a visibility corrected polarization degree (Py) of 99.9% or more.
  2.  偏光子層が、5倍超の延伸倍率で一軸延伸されている、請求の範囲1に記載の偏光性積層フィルム。 The polarizing laminated film according to claim 1, wherein the polarizer layer is uniaxially stretched at a stretch ratio of more than 5 times.
  3.  偏光板に使用される、請求の範囲1または2に記載の偏光性積層フィルム。 The polarizing laminated film according to claim 1 or 2, which is used for a polarizing plate.
  4. 偏光子層が、プライマー層を介して基材フィルムの一方の面に形成されている、請求の範囲1~3のいずれかに記載の光性積層フィルム。 The optical laminated film according to any one of claims 1 to 3, wherein the polarizer layer is formed on one surface of the base film through a primer layer.
  5.  保護フィルムと、保護フィルムの一方の面に形成されている偏光子層とを備え、
     偏光子層は、厚さ10μm以下であり、二色性色素を吸着配向させたポリビニルアルコール系樹脂から形成され、
     前記ポリビニルアルコール系樹脂のケン化度は99.0モル%以下であり、
     視感度補正単体透過率(Ty)が40%以上でかつ視感度補正偏光度(Py)が99.9%以上である、偏光板。
    A protective film, and a polarizer layer formed on one surface of the protective film,
    The polarizer layer has a thickness of 10 μm or less, and is formed from a polyvinyl alcohol resin in which a dichroic dye is adsorbed and oriented,
    The degree of saponification of the polyvinyl alcohol-based resin is 99.0 mol% or less,
    A polarizing plate having a visibility corrected single transmittance (Ty) of 40% or more and a visibility correction polarization degree (Py) of 99.9% or more.
  6.  偏光子層が、粘着剤層または接着剤層を介して保護フィルムの一方の面に形成されている、請求の範囲5に記載の偏光板。 The polarizing plate according to claim 5, wherein the polarizer layer is formed on one surface of the protective film via an adhesive layer or an adhesive layer.
  7.  偏光子層が、5倍超の延伸倍率で一軸延伸されている、請求の範囲5または6に記載の偏光板。 The polarizing plate according to claim 5 or 6, wherein the polarizer layer is uniaxially stretched at a stretch ratio of more than 5 times.
  8.  請求の範囲1~4のいずれかに記載の偏光性積層フィルムの製造方法であって、
     基材フィルムの一方の面に、ケン化度が99.0モル%以下のポリビニルアルコール系樹脂からなる樹脂層を形成して積層フィルムを得る樹脂層形成工程と、
     積層フィルムを5倍超の延伸倍率で一軸延伸して延伸フィルムを得る延伸工程と、
     延伸フィルムの樹脂層を二色性色素で染色して偏光子層を形成する染色工程と、を含む偏光性積層フィルムの製造方法。
    A method for producing a polarizing laminated film according to any one of claims 1 to 4,
    A resin layer forming step of forming a laminated film by forming a resin layer made of a polyvinyl alcohol-based resin having a saponification degree of 99.0 mol% or less on one surface of the base film;
    A stretching step of obtaining a stretched film by uniaxially stretching the laminated film at a stretch ratio of more than 5 times;
    A dyeing step of dyeing a resin layer of a stretched film with a dichroic dye to form a polarizer layer.
  9.  請求の範囲5~8のいずれかに記載の偏光板の製造方法であって、
     基材フィルムの一方の面に、ケン化度が99.0モル%以下であるポリビニルアルコール系樹脂からなる樹脂層を形成して積層フィルムを得る樹脂層形成工程と、
     積層フィルムを5倍超の延伸倍率で一軸延伸して延伸フィルムを得る延伸工程と、
     延伸フィルムの樹脂層を二色性色素で染色して偏光子層を形成し、偏光性積層フィルムを得る染色工程と、
     偏光性積層フィルムにおける偏光子層の基材フィルム側の面とは反対側の面に保護フィルムを貼合して多層フィルムを得る貼合工程と、
     多層フィルムから基材フィルムを剥離する剥離工程と、を含む偏光板の製造方法。
    A method for producing a polarizing plate according to any one of claims 5 to 8, comprising:
    A resin layer forming step of forming a laminated film by forming a resin layer made of a polyvinyl alcohol-based resin having a saponification degree of 99.0 mol% or less on one surface of the base film;
    A stretching step of obtaining a stretched film by uniaxially stretching the laminated film at a stretch ratio of more than 5 times;
    Dyeing the resin layer of the stretched film with a dichroic dye to form a polarizer layer, and obtaining a polarizing laminated film,
    A laminating step of laminating a protective film on a surface opposite to the surface on the base film side of the polarizer layer in the polarizing laminated film to obtain a multilayer film;
    And a peeling step of peeling the base film from the multilayer film.
PCT/JP2011/058476 2010-03-31 2011-03-28 Polarizing laminate film, polarizing plate, and method for producing each WO2011125958A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177003690A KR101796907B1 (en) 2010-03-31 2011-03-28 Polarizing laminate film, polarizing plate, and method for producing each
KR1020147013629A KR101711265B1 (en) 2010-03-31 2011-03-28 Polarizing laminate film, polarizing plate, and method for producing each
KR1020127027051A KR101420556B1 (en) 2010-03-31 2011-03-28 Polarizing laminate film, polarizing plate, and method for producing each
CN201180017093.3A CN102834748B (en) 2010-03-31 2011-03-28 Polarizability stacked film, polarization plates and their manufacture method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010081758 2010-03-31
JP2010-081758 2010-03-31
JP2010289992A JP5048120B2 (en) 2010-03-31 2010-12-27 Method for producing polarizing laminated film and method for producing polarizing plate
JP2010-289992 2010-12-27

Publications (1)

Publication Number Publication Date
WO2011125958A1 true WO2011125958A1 (en) 2011-10-13

Family

ID=44762894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058476 WO2011125958A1 (en) 2010-03-31 2011-03-28 Polarizing laminate film, polarizing plate, and method for producing each

Country Status (5)

Country Link
JP (1) JP5048120B2 (en)
KR (3) KR101711265B1 (en)
CN (1) CN102834748B (en)
TW (2) TWI459056B (en)
WO (1) WO2011125958A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379169B2 (en) 2010-09-03 2013-02-19 Nitto Denko Corporation Optical display device having polarizing film
WO2013129259A1 (en) * 2012-02-28 2013-09-06 住友化学株式会社 Method for producing polarizing plate
WO2014088122A1 (en) * 2012-12-07 2014-06-12 住友化学株式会社 Processes for producing polarizing layered film and polarizing plate, polarizing layered film, and polarizing plate set
JP2014115404A (en) * 2012-12-07 2014-06-26 Sumitomo Chemical Co Ltd Method for manufacturing polarizing laminate film and polarizing plate, polarizing laminate film, and polarizing plate set
JP2014168857A (en) * 2013-03-01 2014-09-18 Nitto Denko Corp Laminate
EP2672298B1 (en) * 2012-06-06 2014-12-24 Nitto Denko Corporation Polarizing film including modified PVA, and optical laminate with the polarizing film
JP2015152911A (en) * 2014-02-19 2015-08-24 住友化学株式会社 Polarizing laminate film and method for manufacturing polarizing plate
WO2015129399A1 (en) * 2014-02-27 2015-09-03 住友化学株式会社 Polarizing plate manufacturing method and polarizing plate
WO2016052536A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Polarizing film protected on one side, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production process therefor
WO2016052534A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Polarizing film protected on one side, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production process therefor
WO2016052531A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
US9310523B2 (en) 2012-09-03 2016-04-12 Nitto Denko Corporation Laminate and method of producing laminate
JP2016071371A (en) * 2014-09-30 2016-05-09 日東電工株式会社 One-side protected polarizing film, polarizing film with adhesive layer, image display device and method for continuously manufacturing the same
JP2016071370A (en) * 2014-09-30 2016-05-09 日東電工株式会社 One-side protected polarizing film, polarizing film with adhesive layer, image display device and method for continuously manufacturing the same
JP2016071372A (en) * 2014-09-30 2016-05-09 日東電工株式会社 One-side protected polarizing film, polarizing film with adhesive layer, image display device and method for continuously manufacturing the same
US9340681B2 (en) 2012-09-03 2016-05-17 Nitto Denko Corporation Resin film and method of producing resin film
WO2017145607A1 (en) * 2016-02-26 2017-08-31 日東電工株式会社 Polarizer, one-side-protected polarizing film, polarizing film including adhesive layer, and image display device and method for continuously manufacturing same
US10088705B2 (en) 2014-09-30 2018-10-02 Nitto Denko Corporation Method for producing polarizing film
US10247979B2 (en) 2014-09-30 2019-04-02 Nitto Denko Corporation Polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, and image display device
US11137522B2 (en) 2014-09-30 2021-10-05 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244848B2 (en) * 2009-05-01 2013-07-24 日東電工株式会社 Manufacturing method of polarizer
JP5261626B2 (en) * 2009-05-01 2013-08-14 日東電工株式会社 Polarizer with polyvinyl alcohol resin layer
JP5735302B2 (en) * 2010-08-25 2015-06-17 積水化学工業株式会社 Manufacturing method of polarizing film, polarizing film, and PVA resin for polarizing film
JP5667016B2 (en) 2010-09-03 2015-02-12 日東電工株式会社 Thin polarizing film, optical laminate having thin polarizing film, and manufacturing method of thin polarizing film
JP5361941B2 (en) 2010-09-03 2013-12-04 日東電工株式会社 Method for producing laminate strip roll having polarizing film
EP2614951A1 (en) 2010-09-09 2013-07-17 Nitto Denko Corporation Method of producing thin polarizing film
US20140016195A1 (en) * 2011-03-03 2014-01-16 Hajime Shouhi Method for manufacturing polarizing film, poly(vinyl alcohol)-based resin for polarizing film, poly(vinyl alcohol)-based resin solution for polarizing film, polarizing film, and polarizing plate
JP5504232B2 (en) * 2011-09-22 2014-05-28 住友化学株式会社 Manufacturing method of polarizing plate
JP5616318B2 (en) * 2011-12-12 2014-10-29 日東電工株式会社 Manufacturing method of polarizing film
JP2013171210A (en) * 2012-02-22 2013-09-02 Sekisui Chem Co Ltd Polyvinyl alcohol resin film material, polarizing film and method of manufacturing polarizing film
JPWO2013133276A1 (en) * 2012-03-05 2015-07-30 コニカミノルタ株式会社 Polarizing plate and display device using the same
JP6122579B2 (en) * 2012-05-17 2017-04-26 積水化学工業株式会社 Polyvinyl alcohol resin film material, method for producing polyvinyl alcohol resin film material, and method for producing polarizing film
JP5850796B2 (en) * 2012-05-17 2016-02-03 積水化学工業株式会社 Polyvinyl alcohol resin film material and method for producing polarizing film
KR101688716B1 (en) * 2012-05-23 2016-12-21 코니카 미놀타 가부시키가이샤 Polarizing plate, fabrication method for polarizing plate, and image display device
JP6232921B2 (en) * 2013-03-18 2017-11-22 住友化学株式会社 Production method of polarizing laminated film and polarizing plate
KR101533883B1 (en) 2013-06-18 2015-07-03 주식회사 엘지화학 Polarizer plate and display device having the same
KR101575489B1 (en) * 2013-06-18 2015-12-07 주식회사 엘지화학 Oriented laminate, preparing method for thin polarizer, thin polarizer manufactured by using the same and polarizing plate comprising the same
KR101578610B1 (en) * 2013-06-18 2015-12-17 주식회사 엘지화학 Oriented laminate, preparing method for thin polarizer, thin polarizer manufactured by using the same and polarizing plate comprising the same
JP6138002B2 (en) 2013-09-09 2017-05-31 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive film, laminate, and image display device
KR101835924B1 (en) * 2013-09-27 2018-04-19 제일모직주식회사 Optical film and method for preparing the same
JP5932760B2 (en) * 2013-11-29 2016-06-08 住友化学株式会社 Polarizer and polarizing plate including the same
JP6803131B2 (en) 2014-02-18 2020-12-23 日東電工株式会社 Laminate and image display device
JP6664912B2 (en) 2014-09-19 2020-03-13 日東電工株式会社 Polarizer
JP5945037B2 (en) * 2014-09-29 2016-07-05 住友化学株式会社 Polarizer
JP6078132B1 (en) * 2015-08-27 2017-02-08 日東電工株式会社 Manufacturing method of polarizing film
JP6931518B2 (en) * 2015-09-28 2021-09-08 日東電工株式会社 Single-sided protective polarizing film, polarizing film with adhesive layer, image display device and its continuous manufacturing method
JP6018276B2 (en) * 2015-02-13 2016-11-02 日東電工株式会社 Polarizing film, polarizing film with pressure-sensitive adhesive layer, and image display device
WO2016052549A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
WO2016052540A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Polarizing film, adhesive-layer-equipped polarizing film, and image display device
WO2016052538A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Method for producing polarizing film
KR101882553B1 (en) 2014-12-31 2018-07-26 삼성에스디아이 주식회사 Optical film, liquid crystal display including the same and method for preparing the same
KR101839672B1 (en) * 2015-02-12 2018-03-16 스미또모 가가꾸 가부시키가이샤 Polarizing film and polarizing plate comprising the same
EP3290969B1 (en) * 2015-04-29 2021-06-23 Triapex Co., Ltd. Polarizing lens including a polarizing film
JP2017003906A (en) 2015-06-15 2017-01-05 日東電工株式会社 Polarization film with adhesive layer on both sides, and image formation apparatus
JP6756465B2 (en) * 2015-07-02 2020-09-16 住友化学株式会社 Method of manufacturing polarizing film
WO2017135059A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Laminate and liquid crystal display device
JP6600618B2 (en) * 2016-02-05 2019-10-30 富士フイルム株式会社 Laminated body and liquid crystal display device
JP6737609B2 (en) * 2016-03-22 2020-08-12 日東電工株式会社 Method for producing one-sided protective polarizing film with adhesive layer
JP6764244B2 (en) * 2016-03-31 2020-09-30 住友化学株式会社 Method of manufacturing polarizing film
JP6257680B2 (en) * 2016-03-31 2018-01-10 住友化学株式会社 Manufacturing method of polarizing film, laminated film
KR102455461B1 (en) * 2016-06-14 2022-10-19 닛토덴코 가부시키가이샤 Polarizing film with double-sided adhesive layer and image display device
JP2017049604A (en) * 2016-11-15 2017-03-09 住友化学株式会社 Circularly polarizing plate
WO2018101204A1 (en) * 2016-11-30 2018-06-07 日本ゼオン株式会社 Polarizing plate and method for manufacturing polarizing plate
WO2018151295A1 (en) 2017-02-17 2018-08-23 富士フイルム株式会社 Liquid crystal display device
KR102551170B1 (en) 2017-04-03 2023-07-05 닛토덴코 가부시키가이샤 Polarizers and Polarizers
KR102263513B1 (en) 2017-04-03 2021-06-11 닛토덴코 가부시키가이샤 Method for manufacturing a polarizer
JP6518303B2 (en) * 2017-09-27 2019-05-22 日東電工株式会社 Method of manufacturing polarizing film
JP7240091B2 (en) * 2017-10-03 2023-03-15 日東電工株式会社 Polarizing plate, image display device, and method for manufacturing polarizing plate
JP6914355B2 (en) 2017-11-24 2021-08-04 日東電工株式会社 Polarizer and polarizing plate
JP6914356B2 (en) 2017-11-24 2021-08-04 日東電工株式会社 Polarizer manufacturing method
WO2019188735A1 (en) 2018-03-29 2019-10-03 日東電工株式会社 Method for manufacturing polarizer
WO2019189718A1 (en) 2018-03-30 2019-10-03 日東電工株式会社 Polarizer and polarizing plate
JP2019188795A (en) * 2018-04-24 2019-10-31 住友化学株式会社 Optical laminate and method for producing the same
CN112867947A (en) 2018-10-02 2021-05-28 日东电工株式会社 Polarizing plate
WO2020090197A1 (en) 2018-11-01 2020-05-07 日東電工株式会社 Polarizer production method
WO2020174787A1 (en) 2019-02-28 2020-09-03 日東電工株式会社 Resin composition for protecting polarizer, and polarizing plate including protective layer formed from said composition
WO2021033406A1 (en) 2019-08-21 2021-02-25 日東電工株式会社 Optical layered body
JPWO2021039122A1 (en) 2019-08-29 2021-03-04
JP2019215574A (en) * 2019-08-29 2019-12-19 日東電工株式会社 Method of performing activation treatment on and manufacturing method for optical film, optical film, and image display device
JP7297642B2 (en) 2019-10-30 2023-06-26 日東電工株式会社 POLARIZING PLATE COMPOSITION FOR PROTECTING POLARIZER AND PROTECTIVE LAYER MADE FROM THE COMPOSITION
JP7149975B2 (en) * 2020-02-13 2022-10-07 日東電工株式会社 Polarizing film with double-sided adhesive layer and image display device
TW202308852A (en) 2021-04-28 2023-03-01 日商日東電工股份有限公司 Polarizing plate having pressure sensitive adhesive layer and image display device using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343521A (en) * 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizing plate and method for manufacturing the same
JP2004037880A (en) * 2002-07-04 2004-02-05 Nitto Denko Corp Polarizer, its manufacturing method, polarizing plate, optical film, and image display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448011B2 (en) * 2000-04-25 2003-09-16 株式会社クラレ Manufacturing method of polarizing film
JP5553468B2 (en) * 2006-10-05 2014-07-16 日東電工株式会社 Polarizing plate and liquid crystal display device
JP2009098653A (en) 2007-09-27 2009-05-07 Nitto Denko Corp Polarizing plate, optical film and image display device
JP2009093074A (en) * 2007-10-11 2009-04-30 Nitto Denko Corp Manufacturing method for polarizing plate, the polarizing plate, optical film, and image display
JP2009300768A (en) * 2008-06-13 2009-12-24 Sumitomo Chemical Co Ltd Polarizing plate roll, and polarizing plate roll with pressure sensitive adhesive layer, polarizing plate and liquid crystal display device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343521A (en) * 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizing plate and method for manufacturing the same
JP2004037880A (en) * 2002-07-04 2004-02-05 Nitto Denko Corp Polarizer, its manufacturing method, polarizing plate, optical film, and image display device

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411360B2 (en) 2010-09-03 2013-04-02 Nitto Denko Corporation Polarizing film for an organic electroluminescent (EL) display, a method of making the same and an organic EL display device having the polarizing film
US8520169B2 (en) 2010-09-03 2013-08-27 Nitto Denko Corporation Optical display device having polarizing film
US8520171B2 (en) 2010-09-03 2013-08-27 Nitto Denko Corporation Optical display device having polarizing film
US8379169B2 (en) 2010-09-03 2013-02-19 Nitto Denko Corporation Optical display device having polarizing film
US8771454B2 (en) 2010-09-03 2014-07-08 Nitto Denko Corporation Polarizing film, optical film laminate including polarizing film, and method for manufacturing the same
WO2013129259A1 (en) * 2012-02-28 2013-09-06 住友化学株式会社 Method for producing polarizing plate
JP2013178356A (en) * 2012-02-28 2013-09-09 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate
EP2672298B1 (en) * 2012-06-06 2014-12-24 Nitto Denko Corporation Polarizing film including modified PVA, and optical laminate with the polarizing film
US9310523B2 (en) 2012-09-03 2016-04-12 Nitto Denko Corporation Laminate and method of producing laminate
US9340681B2 (en) 2012-09-03 2016-05-17 Nitto Denko Corporation Resin film and method of producing resin film
JP2014115405A (en) * 2012-12-07 2014-06-26 Sumitomo Chemical Co Ltd Method for manufacturing polarizing laminate film and polarizing plate, polarizing laminate film, and polarizing plate set
JP2014115404A (en) * 2012-12-07 2014-06-26 Sumitomo Chemical Co Ltd Method for manufacturing polarizing laminate film and polarizing plate, polarizing laminate film, and polarizing plate set
WO2014088122A1 (en) * 2012-12-07 2014-06-12 住友化学株式会社 Processes for producing polarizing layered film and polarizing plate, polarizing layered film, and polarizing plate set
JP2014168857A (en) * 2013-03-01 2014-09-18 Nitto Denko Corp Laminate
US9340718B2 (en) 2013-03-01 2016-05-17 Nitto Denko Corporation Laminate and method of producing laminate
JP2015152911A (en) * 2014-02-19 2015-08-24 住友化学株式会社 Polarizing laminate film and method for manufacturing polarizing plate
WO2015129399A1 (en) * 2014-02-27 2015-09-03 住友化学株式会社 Polarizing plate manufacturing method and polarizing plate
JP2015161782A (en) * 2014-02-27 2015-09-07 住友化学株式会社 Method for manufacturing polarizing plate and polarizing plate
US9995853B2 (en) 2014-02-27 2018-06-12 Sumitomo Chemical Company, Limited Method for producing polarizing plate and polarizing plate
WO2016052534A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Polarizing film protected on one side, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production process therefor
US10088705B2 (en) 2014-09-30 2018-10-02 Nitto Denko Corporation Method for producing polarizing film
JP2016071372A (en) * 2014-09-30 2016-05-09 日東電工株式会社 One-side protected polarizing film, polarizing film with adhesive layer, image display device and method for continuously manufacturing the same
JP2016071371A (en) * 2014-09-30 2016-05-09 日東電工株式会社 One-side protected polarizing film, polarizing film with adhesive layer, image display device and method for continuously manufacturing the same
WO2016052531A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
US11137522B2 (en) 2014-09-30 2021-10-05 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
WO2016052536A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Polarizing film protected on one side, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production process therefor
US10247979B2 (en) 2014-09-30 2019-04-02 Nitto Denko Corporation Polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, and image display device
US10061066B2 (en) 2014-09-30 2018-08-28 Nitto Denko Corporation One-sided-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
US10067268B2 (en) 2014-09-30 2018-09-04 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
JP2016071370A (en) * 2014-09-30 2016-05-09 日東電工株式会社 One-side protected polarizing film, polarizing film with adhesive layer, image display device and method for continuously manufacturing the same
US10094954B2 (en) 2014-09-30 2018-10-09 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
JPWO2017145607A1 (en) * 2016-02-26 2018-08-09 日東電工株式会社 Polarizer, single-protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
US10884169B2 (en) 2016-02-26 2021-01-05 Nitto Denko Corporation Polarizer, one-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
TWI725114B (en) * 2016-02-26 2021-04-21 日商日東電工股份有限公司 Polarizer, single-sided protective polarizing film, polarizing film with adhesive layer, and image display device and continuous manufacturing method thereof
WO2017145607A1 (en) * 2016-02-26 2017-08-31 日東電工株式会社 Polarizer, one-side-protected polarizing film, polarizing film including adhesive layer, and image display device and method for continuously manufacturing same

Also Published As

Publication number Publication date
TWI459056B (en) 2014-11-01
JP2011227450A (en) 2011-11-10
CN102834748A (en) 2012-12-19
KR20170018481A (en) 2017-02-17
JP5048120B2 (en) 2012-10-17
KR101420556B1 (en) 2014-07-16
KR20140085531A (en) 2014-07-07
TW201501909A (en) 2015-01-16
KR101796907B1 (en) 2017-11-10
CN102834748B (en) 2016-03-16
KR101711265B1 (en) 2017-02-28
KR20130066578A (en) 2013-06-20
TW201142381A (en) 2011-12-01
TWI538796B (en) 2016-06-21

Similar Documents

Publication Publication Date Title
JP5048120B2 (en) Method for producing polarizing laminated film and method for producing polarizing plate
JP4901978B2 (en) Stretched film, polarizing stretched film, and method for producing polarizing plate
WO2011125961A1 (en) Polarizing plate and method for manufacturing the same
WO2012063954A1 (en) Methods for producing polarizing laminate film and polarizing plate
WO2012105668A1 (en) Method for producing polarizing laminated film and double-sided polarizing laminated film
JP6234977B2 (en) Method for producing polarizing laminated film and method for producing polarizing plate
JP2011221278A (en) Polarizing laminated film, polarizing plate, and manufacturing method thereof
JP6232921B2 (en) Production method of polarizing laminated film and polarizing plate
JP2011128486A (en) Method of manufacturing polarizing plate
WO2016052331A1 (en) Method for producing polarizing laminated film and method for producing polarizing plate
KR20190086571A (en) Method for manufacturing polarizing plate
JP2012013764A (en) Polarizing plate and liquid crystal display device
JP2012032834A (en) Oriented film, polarizing oriented film, and method for producing the same
JP6174298B2 (en) Polarizing laminated film and laminated film
JP2011248294A (en) Manufacturing method of polarizing laminated film and manufacturing method of polarizing plate
JP2012103466A (en) Method for manufacturing polarizing laminate film and polarizing plate
JP5514700B2 (en) Manufacturing method of polarizing plate
JP2016170438A (en) Polarizing laminate film and laminate film
JP2012133296A (en) Polarizing laminate film and manufacturing method of polarizing plate
JP2012133295A (en) Polarizing laminate film and manufacturing method of polarizing plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017093.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027051

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11765858

Country of ref document: EP

Kind code of ref document: A1