WO2011161294A1 - Nanocomposite material reinforced with a polymer derivative grafted onto a carbon nanomaterial - Google Patents

Nanocomposite material reinforced with a polymer derivative grafted onto a carbon nanomaterial Download PDF

Info

Publication number
WO2011161294A1
WO2011161294A1 PCT/ES2011/070443 ES2011070443W WO2011161294A1 WO 2011161294 A1 WO2011161294 A1 WO 2011161294A1 ES 2011070443 W ES2011070443 W ES 2011070443W WO 2011161294 A1 WO2011161294 A1 WO 2011161294A1
Authority
WO
WIPO (PCT)
Prior art keywords
material according
poly
polymer
carbon
nanocomposite material
Prior art date
Application number
PCT/ES2011/070443
Other languages
Spanish (es)
French (fr)
Inventor
Ana María DÍEZ PASCUAL
Gerardo MARTÍNEZ ALBILLOS
María de los Ángeles GÓMEZ RODRÍGUEZ
María Teresa MARTÍNEZ FERNÁNDEZ DE LANDA
José Miguel GONZÁLEZ DOMÍNGUEZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011161294A1 publication Critical patent/WO2011161294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK

Definitions

  • the present invention falls within the area of plastic materials, and in particular in the field of polymeric nanocomposites, and is dedicated to obtaining light materials and high thermal and mechanical performance for the manufacture of structures in the aeronautical industry and of transport, as well as good electrical and thermal conductivity for applications in antistatic coatings and shielding of electromagnetic signals.
  • Poly (ether ether ketone) (PEEK) is a semi-crystalline thermoplastic polymer with a high glass transition temperature (T g ) and fusion widely used in the chemical and aerospace industry due to its excellent mechanical properties, high thermal and chemical resistance.
  • T g glass transition temperature
  • CNFs carbon nanofibers
  • Carbon nanotubes have a great tendency to form agglomerates and, therefore, it is difficult to distribute them homogeneously in the polymer.
  • the methods traditionally used to avoid agglomeration, such as processing in solution or polymerization "in sitLf 'cannot be applied with the PEEK, due to its insolubility in organic solvents and its processability at very high temperatures.
  • An alternative solution is the functionalization of the CNTs by covalent and non-covalent reactions with organic molecules, including polymers
  • the non-covalent method is based on the introduction of functional groups on the surface of CNTs, such as carboxylic acids generated during purification with nitric and / or sulfuric acid, which they allow them to interact with polymer chains through hydrogen bonds or hydrophobic interactions.
  • the covalent strategy is based on the chemical bonding of the polymer chains to the surface of the nanotube through esterification or amidation reactions.
  • the combination of covalent and non-interactions covalent between the matrix and the r Effort gives rise to composite materials with very good dispersion of CNTs and load transfer between the two phases, which allows to improve thermal and mechanical properties compared to those prepared by direct incorporation of non-functionalized CNTs.
  • the present invention provides a nanocomposite polymer matrix material and carbon nanomaterial reinforcement covalently bonded to a PEEK derived polymer.
  • the inventors have observed that grafting the polymer derivative on the surface of CNTs facilitates the dispersion of these and improves its interfacial adhesion with the matrix, obtaining the most spectacular results in terms of the improvement of physical properties in general for materials of this type.
  • a first aspect of the present invention relates to a nanocomposite material comprising:
  • a matrix comprising a polymer that has groups
  • a carbon nanomaterial reinforcement comprising groups - COOH and -CO-R 1 -Z, where R 1 is selected from O or NH, and Z is an olymer formed by monomers of formula (i):
  • the carbon nanomaterial comprises -COOH groups that are covalently linked by ester or amide bond to a PEEK-derived polymer.
  • R is O, whereby the bond between the carbon nanomaterial and the PEEK-derived polymer is ester type.
  • nanocomposite material materials formed by two or more components distinguishable from each other, where at least one of them has a dimension of the order of nanometers; These nanocomposite materials have properties that are obtained as a combination of the properties of their components, being superior to that of the materials that form them separately.
  • the matrix can be any polymer of structural characteristics similar to PEEK; The greater the similarity between the matrix and the derivative polymer, the more favorable the interactions between them will be and therefore the characteristics and properties that the resulting nanocomposite material will offer.
  • the polymer matrix is from the family of poly (aryl ether ketones);
  • the poly (aryl ether ketone) is selected from poly (ether ketone ether) PEEK, poly (ketone ether) (PEK) and poly (ketone ether ketone) (PEKK).
  • the matrix is PEEK.
  • the carbon nanomaterial is selected from carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon nanospirals, fullerenes or any combination thereof. More preferably the nanomaterial are CNTs, with single-wall (SWCNTs) or multi-wall (MWCNTs) carbon nanotubes even more preferable, and SWCNTs even more preferable.
  • CNTs carbon nanotubes
  • CNFs carbon nanofibers
  • MWCNTs multi-wall
  • carbon nanotube CNT
  • CNT carbon nanotube
  • a preferred embodiment of the present invention comprises a proportion of carbon nanomaterial of less than 10% by weight with respect to the total composition. In a more preferred embodiment, it is in a proportion less than 5% by weight, and in an even more preferred embodiment it is in a proportion between 0.1 and 1% by weight.
  • One possible use of the invention is the preparation of PEEK matrix composites using the melt mixing technique by incorporating a hydroxylated polymer (HPEEK) covalently grafted on the surface of SWCNTs.
  • HPEEK hydroxylated polymer
  • its thermal, mechanical and electrical properties have been studied and compared with the behavior of reinforced composite materials with similar non-functionalized CNTs.
  • the addition of these reinforcements leads to an exceptional increase in the thermal stability of the matrix.
  • Tensile tests show unprecedented improvements in Young's modulus, the strength and toughness of these materials composed of the graft of the polymer, attributed to a very efficient load transfer achieved by covalent bonds and hydrogen bonds.
  • the incorporation of these reinforcements exceptionally increases the electrical and thermal conductivity of the matrix.
  • thermoplastic matrix nanocomposite materials for low weight structural applications.
  • a second aspect of the present invention relates to the process for obtaining the nanocomposite material described above (from now on the process of the invention), which comprises the steps:
  • step (b) melt mixing of the product obtained in step (b) with the polymer matrix.
  • the process of the invention is preferably characterized by further comprising a step (d) of processing the nanocomposite material obtained in (c); said processing is carried out by any method of treatment and / or forming of polymers that is selected from those conventionally used for thermoplastic materials.
  • step (a) is carried out with boron and / or aluminum hydrides, preferably with NaBH 4 , said reduction being preferably carried out at a temperature between 80 and 150 S C; In another preferred embodiment the reduction of step (a) is carried out for 2 to 50 hours.
  • the process of the invention may further comprise a step (a ' ) comprising the amination of the polymer obtained in step (a) for obtaining the olymer formed by monomers of formula ⁇ III).
  • the polymer formed by monomers of formula (III) is aminated.
  • the amination is carried out with a HOOC-R2- reagent.
  • alkyl refers, in the present invention, to radicals of hydrocarbon chains, linear or branched, having 1 to 10 carbon atoms, preferably 1 to 10, and which are attached to the rest of the molecule by a single bond, for example, methyl, ethyl, n-propyl, / -propyl, n-butyl, tere-butyl, sec-butyl, n-pentyl, n-hexyl etc.
  • mixing of step (b) is carried out in an inert atmosphere.
  • step (b) mixing of step (b), called graft reaction, consists of an esterification reaction (if the derivative polymer is that obtained in step (a)) or amidation (if the derivative polymer is that obtained in step (a ' )), in which the functionalization of the carbon nanomaterial occurs;
  • the esterification or amidation can be carried out directly, with or without activation, or indirectly via acylation.
  • the esterification is activated with N, N-dicyclohexylcarbodiimide.
  • the acylation is performed with thionyl chloride (SOCI 2 ). It can also be performed with other acylation reagents known to any person skilled in the art, such as PCI 5 or PCI 3 .
  • the solvent used in step (b) is polar, with the one selected from A /, / V-dimethylformamide, / V, / V-dimethylacetamide, 1-methyl-2-pyrrolidone, hexamethylene phosphotriamide, dimethyl sulfoxide or any being used of their combinations.
  • this mixing stage (b) is performed at temperatures between 30 and 100 e C, and in another preferred embodiment the mixing stage (b) is performed for 10 to 100 hours.
  • melt mixing step (c) is carried out at temperatures between 350 and 400 QC .
  • a third aspect of the present invention relates to the use of the nanocomposite material as described above, for the manufacture of components of high mechanical strength and / or thermal stability
  • Another aspect of the present invention relates to the use of the nanocomposite material as described above, for the manufacture of materials of high electrical and / or thermal conductivity.
  • Another aspect of the present invention relates to the use of the nanocomposite material as described above for the manufacture of structures of the aeronautical, aerospace or transport industry (automotive, naval and railway).
  • Another aspect of the present invention relates to the use of the nanocomposite material as described above for the manufacture of cooling or heating systems, air intakes, antistatic coatings and shielding of electromagnetic signals.
  • Fig. 2. Shows typical images of transmission electron microscopy (TEM) of (a ) HPEEK polymeric derivative, (b) acid treated SWCNTs and (c) HPEEK-CNT-1 The image in (d) is an enlargement of (c) showing the nanotube bundles surrounded by the hydroxylated polymer.
  • Fig. 4. It shows the electrical conductivity ⁇ (dotted lines) at room temperature and the thermal conductivity ⁇ (continuous lines) of PEEK nanocomposite materials based on the CNT content.
  • Fig. 5 It shows the Young E Module, tensile strength or and , elongation of breakage (£ b) and toughness (T), at 25 e C, for PEEK nanocomposite materials with CNT contents of 0.1, 0.5 and 1.0% by weight. Continuous straight lines represent predictions according to the rule of mixtures.
  • Covalent binding of the polymer derivative to the SWCNTs was carried out following two experimental procedures (Scheme. 1).
  • the graft was performed by a direct esterification reaction.
  • the oxidized SWCNTs 500 mg were dispersed in DMF (125 ml) by ultrasonication for 30 min.
  • the HPEEK 5.5 g was dispersed in DMF (125 ml) and maintained at 50-C for 24 h with gentle agitation.
  • the polymer dispersion was added to a solution of DCC (23.1 g, 11 mmol) and DMAP (1.7 g, 13.8 mmol) in DMF (250 mL).
  • the second procedure was performed in two stages. First, acid-treated SWCNTs (257 mg) were dispersed in anhydrous DMF (35 ml) and sonicated for 15 min. Subsequently, they were reacted with excess SOCI 2 (40 ml) at 120 S C for 18 h, at reflux and with constant stirring. The residual SOCI 2 was removed by distillation under reduced pressure, providing the functionalized SWCNTs. Secondly, the HPEEK (2.7 g) was dispersed in DMF (65 ml) and sonicated for 30 min.
  • the morphology of the hydroxylated derivative and grafted samples was examined by TEM (Fig. 2).
  • the morphology of the HPEEK (Fig. 2a) is difficult to visualize by TEM due to its low degree of crystallinity.
  • the SWCNTs image (Fig. 2b) shows small beams of CNTs (6-8 individual tubes) with an average beam diameter of -12 nm.
  • the image of the HPEEK-CNT-1 (Fig. 2c) reveals a heterogeneous mixture with continuous dark areas attributed to the polymer and a few isolated black dots, which correspond to Ni catalyst particles according to the X-ray dispersive energy analysis (EDAX ).
  • EDAX X-ray dispersive energy analysis
  • the nanotube beams are coated by the HPEEK and their average diameter is slightly larger (-18 nm); This suggests the chemical or physical binding of the polymer derivative to the surface of the SWCNTs.
  • the HPEEK-CNT-1 sample synthesized via direct esterification was dispersed in a small volume of ethanol and mixed with the PEEK powder.
  • the mixture was homogenized by mechanical stirring and ultrasonication for about 30 min and dried under vacuum at 50 Q C to completely remove the solvent.
  • Melt mixing was carried out in a Haake Rheocord 90 extruder at 380 9 C, with a rotational speed of the rotors of 150 rpm for 20 min.
  • compounds with similar amounts of non-functionalized SWCNTs were also prepared, and are designated as PEEK CNT.
  • the samples were cooled to room temperature, divided into small pieces and pressed at 380 S C to form 0.5 mm thick films. Before testing, the samples were annealed for 3 hours at 200 C.
  • TGA thermogravimetric analysis
  • T ⁇ and T m áx of this stage increase progressively with the content of CNTs.
  • T ⁇ increases by 20, 32 and 54 Q C, and T max approximately by 28, 42 and 64-C, compared to those of PEEK
  • the improvements in thermal stability achieved in these samples are considerably greater than those obtained by the direct incorporation of similar contents of SWCNTs without functionalization.
  • the results confirm that the inclusion of HPEEK covalently bound to CNTs significantly increase the degradation temperatures of these composite materials, being suitable for high temperature use.
  • Fig. 4 shows the electrical and thermal conductivity at room temperature as a function of the content in CNTs for the two types of composite materials prepared.
  • PEEK is an insulating material ( ⁇ ⁇ 10 "13 S / cm), and has an increase in electrical conductivity of more than eight orders of magnitude after the incorporation of small amounts of CNTs.
  • the samples prepared through Direct incorporation of CNTs has conductivity values of an order of magnitude greater than those reinforced with HPEEK-CNT-1, while at higher concentrations, both types of compounds have approximately the same conductivity.
  • the thermal conductivity ( ⁇ ) of pure PEEK is approximately 0.23 W / mK and increases by 16, 80 and 150% for PEEK / HPEEK-CNT-1 nanocomposite materials that include 0.1, 0.5 and 1.0% by weight of CNTs.
  • the samples directly reinforced with CNTs show a non-linear growth of ⁇ , and the increases in relation to the PEEK are approximately 23, 75 and 125% for the same nanotube concentrations.
  • the thermal conductivity also depends on the factors discussed above (ratio of aspect and dispersion), as well as the thermal resistance between the nanotube and the matrix.
  • the results of the tensile tests at room temperature carried out according to the UNE-EN ISO 527-1 standard for PEEK and the different nanocomposite materials depending on the content in CNTs are shown in Fig. 5.
  • the Young (E) module of the PEEK is 4.1 GPa, and in PEEK / HPEEK-CNT-1 systems it increases by -18, 37 and 58% for CNT concentrations of 0.1, 0.5 and 1.0% by weight, respectively.
  • module improvements are less spectacular, only about 9, 16 and 20% for the concentrations indicated above.
  • HPEEK-CNT-1 has -27% greater resistance than PEEK.
  • PEEK / HPEEK-CNT-1 composites a and increases by 6, 15 and 23% for 0.1, 0.5 and 1.0% by weight of CNTs, respectively, values slightly higher than the theoretical predictions , while for samples directly reinforced with CNTs, the increases for the same concentrations are ⁇ 4, 8 and 1 1%.
  • the elongation at break (£ b ) of nanocomposite materials reinforced directly with CNTs decreases from 12.3% for PEEK to 1 1, 2, 9.1 and 6.6% for concentrations of 0.1, 0.5 and 1.0% by weight, respectively.
  • those that include covalent bonds have a ductility greater than PEEK for a concentration of 0.1% by weight, similar for 0.5% by weight and slightly lower for higher contents.
  • the incorporation of reinforcements drastically reduces the elongation at breakage of the matrix.
  • the uniform dispersion of CNTs decreases the concentration of stresses in the polymer-reinforcement interface, which contributes to maintaining ductility.
  • the toughness of PEEK / CNT composites is also progressively reduced with the reinforcement content.
  • the addition of 0.1, 0.5 and 1.0% by weight of CNTs causes an average increase in toughness of 18, 9 and 7%, respectively.
  • HPEEK grafting in CNTs considerably improves the toughness of these materials, due to the better inter-adhesion that provides an effective barrier to crack propagation.

Abstract

The present invention relates to a nanocomposite material having a polymer matrix and nanomaterial reinforcement of carbon covalently bonded to a polymer derived from polyetheretherketone (PEEK), the procedure for the obtainment thereof and the uses thereof as a material having high mechanical strength and thermal stability for the manufacture of structures in the aeronautical and transport industry, together with good electrical and thermal conductivity for applications in antistatic coatings and electromagnetic signal screening.

Description

MATERIAL NANOCOMPUESTO REFORZADO CON UN DERIVADO POLÍMÉRICO INJERTADO EN UN NANOMATERIAL DE CARBONO  REINFORCED NANOCOMPOSITE MATERIAL WITH A POLYMER DERIVATIVE INTEGRATED IN A CARBON NANOMATERIAL
La presente invención se encuadra en el área de los materiales plásticos, y en particular, en el campo de los nanocompuestos poliméricos, y está dedicada a la obtención de materiales ligeros y de altas prestaciones térmicas y mecánicas para la fabricación de estructuras en la industria aeronáutica y del transporte, así como buena conductividad eléctrica y térmica para aplicaciones en recubrimientos antiestáticos y de apantallamiento de señales electromagnéticas. The present invention falls within the area of plastic materials, and in particular in the field of polymeric nanocomposites, and is dedicated to obtaining light materials and high thermal and mechanical performance for the manufacture of structures in the aeronautical industry and of transport, as well as good electrical and thermal conductivity for applications in antistatic coatings and shielding of electromagnetic signals.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
Durante los últimos años, el desarrollo de materiales de ingeniería de altas prestaciones para aplicaciones estructurales que satisfagan aspectos funcionales y técnico-económicos ha despertado una gran atención. Poli(éter éter cetona) (PEEK) es un polímero termoplástico semícristalino con una alta temperatura de transición vitrea (Tg) y fusión ampliamente utilizado en la industria química y aeroespacial debido a sus excelentes propiedades mecánicas, alta resistencia térmica y química. Con objeto de extender sus aplicaciones estructurales, diversos estudios se han centrado en reforzar esta matriz medíante la incorporación de nanopartículas (Kuo et al., Mater. Chem. Phys. 2005, 90,185), nanofibras de carbono (CNFs) (Sandler et al., Composites A 2002, 33, 1033) o nanotubos de carbono de pared múltiple (MWCNTs) (Rong et al., Comp. Sci. Technot. 2010, 70, 380; Bangarusampath et al., Potymer 2009, 50, 5803). En estos trabajos, la mejora en propiedades respeto a las del polímero puro ha sido bastante limitada, muy por debajo de las predicciones teóricas, siendo necesarias concentraciones de refuerzo próximas al 10% en peso para conseguir aumentos significativos en la propiedades mecánicas. Recientemente, nuestro grupo de investigación ha demostrado que los materiales compuestos de PEEK reforzados con muy pequeñas cantidades de nanotubos de carbono de pared simple (SWCNTs) presentan características sensiblemente mejoradas (Diez-Pascual et al., Carbón 2009, 47, 3079; Diez- Pascual et al., Nanotechnology 2009, 20, 315707). In recent years, the development of high-performance engineering materials for structural applications that satisfy functional and technical-economic aspects has aroused great attention. Poly (ether ether ketone) (PEEK) is a semi-crystalline thermoplastic polymer with a high glass transition temperature (T g ) and fusion widely used in the chemical and aerospace industry due to its excellent mechanical properties, high thermal and chemical resistance. In order to extend its structural applications, several studies have focused on strengthening this matrix through the incorporation of nanoparticles (Kuo et al., Mater. Chem. Phys. 2005, 90,185), carbon nanofibers (CNFs) (Sandler et al. , Composites A 2002, 33, 1033) or multi-walled carbon nanotubes (MWCNTs) (Rong et al., Comp. Sci. Technot. 2010, 70, 380; Bangarusampath et al., Potymer 2009, 50, 5803). In these works, the improvement in properties with respect to those of the pure polymer has been quite limited, well below the theoretical predictions, reinforcing concentrations close to 10% by weight being necessary to achieve significant increases in mechanical properties. Recently, our research group has shown that PEEK composites reinforced with very small amounts of single wall carbon nanotubes (SWCNTs) have characteristics significantly improved (Diez-Pascual et al., Carbon 2009, 47, 3079; Diez-Pascual et al., Nanotechnology 2009, 20, 315707).
Uno de los principales problemas en el desarrollo de estos materiales compuestos es conseguir una buena dispersión del refuerzo dentro de la matriz, así como una fuerte adhesión interfacial entre las dos fases del compuesto. Los nanotubos de carbono (CNTs) tienen gran tendencia a formar aglomerados y, por tanto, es difícil conseguir distribuirlos homogéneamente en el polímero. Los métodos tradícionalmente empleados para evitar aglomeración, como procesado en disolución o polimerización "in sitLf' no pueden aplicarse con el PEEK, debido a su insolubilidad en disolventes orgánicos y a su procesabílidad a muy altas temperaturas. Una solución alternativa es la funcionalización de los CNTs mediante reacciones covalentes y no-covalentes con moléculas orgánicas, incluyendo polímeros. El método no-covalente está basado en la introducción de grupos funcionales en la superficie de los CNTs, tales como ácidos carboxilicos generados durante la purificación con acido nítrico y/o sulfúrico, que les permiten interaccionar con las cadenas de polímero mediante puentes de hidrogeno o interacciones hidrofóbicas. La estrategia covalente se basa en la unión química de las cadenas del polímero a la superficie del nanotubo medíante reacciones de esterificación o amidación. La combinación de interacciones covalentes y no-covalentes entre la matriz y el refuerzo da lugar a materiales compuestos con muy buena dispersión de los CNTs y transferencia de carga entre las dos fases, lo que permite mejorar las propiedades térmicas y mecánicas en comparación con aquellos preparados mediante incorporación directa de CNTs sin funcionalizar. One of the main problems in the development of these composite materials is to achieve a good dispersion of the reinforcement within the matrix, as well as a strong interfacial adhesion between the two phases of the compound. Carbon nanotubes (CNTs) have a great tendency to form agglomerates and, therefore, it is difficult to distribute them homogeneously in the polymer. The methods traditionally used to avoid agglomeration, such as processing in solution or polymerization "in sitLf 'cannot be applied with the PEEK, due to its insolubility in organic solvents and its processability at very high temperatures. An alternative solution is the functionalization of the CNTs by covalent and non-covalent reactions with organic molecules, including polymers The non-covalent method is based on the introduction of functional groups on the surface of CNTs, such as carboxylic acids generated during purification with nitric and / or sulfuric acid, which they allow them to interact with polymer chains through hydrogen bonds or hydrophobic interactions.The covalent strategy is based on the chemical bonding of the polymer chains to the surface of the nanotube through esterification or amidation reactions.The combination of covalent and non-interactions covalent between the matrix and the r Effort gives rise to composite materials with very good dispersion of CNTs and load transfer between the two phases, which allows to improve thermal and mechanical properties compared to those prepared by direct incorporation of non-functionalized CNTs.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención proporciona un material nanocompuesto de matriz polimérica y refuerzo de nanomaterial de carbono unido covalentemente a un polímero derivado de PEEK. En particular los inventores han observado que el injerto del derivado polimérico en la superficie de CNTs facilita la dispersión de estos y mejora su adhesión interfacial con ia matriz, obteniéndose los resultados más espectaculares en cuanto a la mejora de propiedades físicas en general para materiales de este tipo. The present invention provides a nanocomposite polymer matrix material and carbon nanomaterial reinforcement covalently bonded to a PEEK derived polymer. In particular, the inventors have observed that grafting the polymer derivative on the surface of CNTs facilitates the dispersion of these and improves its interfacial adhesion with the matrix, obtaining the most spectacular results in terms of the improvement of physical properties in general for materials of this type.
Por tanto, un primer aspecto de la presente invención se refiere a un material nanocompuesto que comprende: Therefore, a first aspect of the present invention relates to a nanocomposite material comprising:
a. una matriz que comprende un polímero que posee grupos  to. a matrix comprising a polymer that has groups
C=0, y  C = 0, and
b. un refuerzo de nanomaterial de carbono que comprende grupos - COOH y -CO-R1-Z, donde R1 se selecciona entre O ó NH, y Z es un olímero formado por monómeros de fórmula (i): b. a carbon nanomaterial reinforcement comprising groups - COOH and -CO-R 1 -Z, where R 1 is selected from O or NH, and Z is an olymer formed by monomers of formula (i):
Figure imgf000004_0001
Figure imgf000004_0001
Fórmula (I)  Formula (I)
De esta forma el nanomaterial de carbono comprende grupos -COOH que quedan unidos covalentemente medíante enlace éster o amida a un polímero derivado de PEEK. En una realización preferida R es O, por lo que el enlace entre el nanomaterial de carbono y el polímero derivado de PEEK es tipo éster. In this way the carbon nanomaterial comprises -COOH groups that are covalently linked by ester or amide bond to a PEEK-derived polymer. In a preferred embodiment R is O, whereby the bond between the carbon nanomaterial and the PEEK-derived polymer is ester type.
Por "material nanocompuesto" se entiende en la presente invención materiales formados por dos o más componentes distinguibles entre sí, donde ai menos uno de ellos tiene una dimensión del orden de nanómetros; estos materiales nanocompuestos poseen propiedades que se obtienen como combinación de las propiedades de sus componentes, siendo superiores a la de los materiales que los forman por separado. La matriz puede ser cualquier polímero de características estructurales similares al PEEK; cuanto mayor sea la similitud entre la matriz y el polímero derivado más favorables serán las interacciones entre ellos y por tanto mejores las características y propiedades que ofrecerá el material nanocompuesto resultante. By "nanocomposite material" is understood in the present invention materials formed by two or more components distinguishable from each other, where at least one of them has a dimension of the order of nanometers; These nanocomposite materials have properties that are obtained as a combination of the properties of their components, being superior to that of the materials that form them separately. The matrix can be any polymer of structural characteristics similar to PEEK; The greater the similarity between the matrix and the derivative polymer, the more favorable the interactions between them will be and therefore the characteristics and properties that the resulting nanocomposite material will offer.
En una realización preferida la matriz polimérica es de la familia de las poli(aril éter cetonas); en una realización más preferida la poli(aril éter cetona) se selecciona entre poli(éter éter cetona) PEEK, poli(éter cetona) (PEK) y poli(éter cetona cetona) (PEKK). Y en una realización aún más preferida la matriz es PEEK. In a preferred embodiment the polymer matrix is from the family of poly (aryl ether ketones); In a more preferred embodiment the poly (aryl ether ketone) is selected from poly (ether ketone ether) PEEK, poly (ketone ether) (PEK) and poly (ketone ether ketone) (PEKK). And in an even more preferred embodiment the matrix is PEEK.
Preferiblemente el nanomaterial de carbono se selecciona entre nanotubos de carbono (CNTs), nanofibras de carbono (CNFs), nanoespirales de carbono, fullerenos o cualquiera de sus combinaciones. Más preferiblemente el nanomaterial son CNTs, siendo aún más preferible los nanotubos de carbono de pared simple (SWCNTs) o de pared múltiple (MWCNTs), y aún más preferible los SWCNTs. Preferably the carbon nanomaterial is selected from carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon nanospirals, fullerenes or any combination thereof. More preferably the nanomaterial are CNTs, with single-wall (SWCNTs) or multi-wall (MWCNTs) carbon nanotubes even more preferable, and SWCNTs even more preferable.
Por "nanotubo de carbono" (CNT) se entiende en la presente invención aquella forma alotrópica del carbono de estructura tubular cuyo diámetro es del orden del nanómetro. By "carbon nanotube" (CNT) is understood in the present invention that allotropic form of the carbon of tubular structure whose diameter is of the order of the nanometer.
Una realización preferida de la presente invención comprende una proporción de nanomaterial de carbono menor de un 10% en peso con respecto a la composición total. En una realización más preferida, está en una proporción menor a un 5% en peso, y en una realización aún más preferida está en una proporción entre 0,1 y 1 % en peso. A preferred embodiment of the present invention comprises a proportion of carbon nanomaterial of less than 10% by weight with respect to the total composition. In a more preferred embodiment, it is in a proportion less than 5% by weight, and in an even more preferred embodiment it is in a proportion between 0.1 and 1% by weight.
Una posible utilización de la invención es la preparación de materiales compuestos de matriz PEEK utilizando la técnica de mezclado en estado fundido mediante la incorporación de un polímero hidroxilado (HPEEK) injertado covalentemente en la superficie de SWCNTs. En los ejemplos de la presente invención se han estudiado sus propiedades térmicas, mecánicas y eléctricas y se han comparado con el comportamiento de materiales compuestos reforzados con similares CNTs no funcionalizados. La adición de estos refuerzos conduce a un aumento excepcional en la estabilidad térmica de la matriz. Los ensayos de tracción muestran mejoras sin precedentes en el módulo de Young, la resistencia y la tenacidad de estos materiales compuestos por el injerto del polímero, atribuidas a una muy eficaz transferencia de carga conseguida mediante enlaces covalentes y por puentes de hidrógeno. Además, la incorporación de estos refuerzos aumenta excepcionalmente la conductividad eléctrica y térmica de la matriz. One possible use of the invention is the preparation of PEEK matrix composites using the melt mixing technique by incorporating a hydroxylated polymer (HPEEK) covalently grafted on the surface of SWCNTs. In the examples of the present invention its thermal, mechanical and electrical properties have been studied and compared with the behavior of reinforced composite materials with similar non-functionalized CNTs. The addition of these reinforcements leads to an exceptional increase in the thermal stability of the matrix. Tensile tests show unprecedented improvements in Young's modulus, the strength and toughness of these materials composed of the graft of the polymer, attributed to a very efficient load transfer achieved by covalent bonds and hydrogen bonds. In addition, the incorporation of these reinforcements exceptionally increases the electrical and thermal conductivity of the matrix.
Esta estrategia es un método sencillo, escalable y eficaz que permite mejorar las propiedades de materiales nanocompuestos de matriz termoplástica para aplicaciones estructurales de bajo peso. This strategy is a simple, scalable and efficient method that allows to improve the properties of thermoplastic matrix nanocomposite materials for low weight structural applications.
Un segundo aspecto de la presente invención se refiere al procedimiento de obtención del material nanocompuesto descrito anteriormente (a partir de ahora procedimiento de la invención), que comprende las etapas: A second aspect of the present invention relates to the process for obtaining the nanocomposite material described above (from now on the process of the invention), which comprises the steps:
a. reducción de la poli(éter éter cetona) para la obtención de un olímero formado por monómeros de fórmula (II),  to. reduction of the poly (ether ether ketone) to obtain an olymer formed by monomers of formula (II),
Figure imgf000006_0001
Figure imgf000006_0001
Fórmula (II)  Formula (II)
b. mezclado del nanomaterial de carbono carboxilado con el polímero obtenido en (a), y  b. mixing the carboxylated carbon nanomaterial with the polymer obtained in (a), and
c. mezclado en fundido del producto obtenido en la etapa (b) con la matriz poliméríca. El procedimiento de la invención preferiblemente está caracterizado por comprender además una etapa (d) de procesado del material nanocompuesto obtenido en (c); dicho procesado es realizado por cualquier método de tratamiento y/o conformado de polímeros que se selecciona de entre los utilizados convencionalmente para materiales termoplásticos. C. melt mixing of the product obtained in step (b) with the polymer matrix. The process of the invention is preferably characterized by further comprising a step (d) of processing the nanocomposite material obtained in (c); said processing is carried out by any method of treatment and / or forming of polymers that is selected from those conventionally used for thermoplastic materials.
En una realización preferida la reducción de la etapa (a) se realiza con hidruros de boro y/o aluminio, preferiblemente con NaBH4, efectuándose preferiblemente dicha reducción a una temperatura entre 80 y 150SC; en otra realización preferida la reducción de la etapa (a) se lleva a cabo durante 2 a 50 horas. In a preferred embodiment the reduction of step (a) is carried out with boron and / or aluminum hydrides, preferably with NaBH 4 , said reduction being preferably carried out at a temperature between 80 and 150 S C; In another preferred embodiment the reduction of step (a) is carried out for 2 to 50 hours.
El procedimiento de la invención puede comprender además una etapa (a') que comprende la aminación del polímero obtenido en la etapa (a) para la obtención del olímero formado por monómeros de fórmula {III). The process of the invention may further comprise a step (a ' ) comprising the amination of the polymer obtained in step (a) for obtaining the olymer formed by monomers of formula {III).
Figure imgf000007_0001
Figure imgf000007_0001
Fórmula (III)  Formula (III)
El polímero formado por monómeros de fórmula (III) está aminado.  The polymer formed by monomers of formula (III) is aminated.
Más preferiblemente la aminación se realiza con un reactivo del tipo HOOC-R2- More preferably the amination is carried out with a HOOC-R2- reagent.
NH2, donde F½ es un alquilo C-rdo. NH 2 , where F½ is a C-rdo alkyl.
El término "alquilo" se refiere, en la presente invención, a radicales de cadenas hidrocarbonadas, lineales o ramificadas, que tienen de 1 a 10 átomos de carbono, preferiblemente de 1 a 10, y que se unen al resto de la molécula mediante un enlace sencillo, por ejemplo, metilo, etilo, n-propilo, /-propilo, n- butílo, tere-butilo, sec-butilo, n-pentilo, n-hexílo etc. En una realización preferida el mezclado de la etapa (b) se realiza en atmósfera inerte. The term "alkyl" refers, in the present invention, to radicals of hydrocarbon chains, linear or branched, having 1 to 10 carbon atoms, preferably 1 to 10, and which are attached to the rest of the molecule by a single bond, for example, methyl, ethyl, n-propyl, / -propyl, n-butyl, tere-butyl, sec-butyl, n-pentyl, n-hexyl etc. In a preferred embodiment, mixing of step (b) is carried out in an inert atmosphere.
En otra realización preferida el mezclado de la etapa (b), denominado reacción de injerto, consiste en una reacción de esterificacíón (si el polímero derivado es el obtenido en la etapa (a)) o amidación (si el polímero derivado es el obtenido en la etapa (a')), en la que se produce la funcionalízacíón del nanomateríal de carbono; en esta etapa (b) la esterificacíón o amidación se puede realizar vía directa, con o sin activación, o vía indirecta medíante acilación. En una realización aún más preferida la esterificacíón se activa con N,N- diciclohexilcarbodiimida. In another preferred embodiment, mixing of step (b), called graft reaction, consists of an esterification reaction (if the derivative polymer is that obtained in step (a)) or amidation (if the derivative polymer is that obtained in step (a ' )), in which the functionalization of the carbon nanomaterial occurs; In this stage (b) the esterification or amidation can be carried out directly, with or without activation, or indirectly via acylation. In an even more preferred embodiment, the esterification is activated with N, N-dicyclohexylcarbodiimide.
En otra realización más preferida la acilación se realiza con cloruro de tionilo (SOCI2). También se puede realizar con otros reactivos de acilación conocidos por cualquier experto en la materia, tales como PCI5 o PCI3. In another more preferred embodiment, the acylation is performed with thionyl chloride (SOCI 2 ). It can also be performed with other acylation reagents known to any person skilled in the art, such as PCI 5 or PCI 3 .
Preferiblemente el disolvente empleado en la etapa (b) es polar, siendo más preferiblemente utilizado aquel seleccionado de entre A/,/V-dímetilformamida, /V,/V-dimetílacetamida, 1 -metil-2-pirrolidona, hexametilenfosfotriamida, dimetilsulfóxido o cualquiera de sus combinaciones. Preferably, the solvent used in step (b) is polar, with the one selected from A /, / V-dimethylformamide, / V, / V-dimethylacetamide, 1-methyl-2-pyrrolidone, hexamethylene phosphotriamide, dimethyl sulfoxide or any being used of their combinations.
En una realización preferida esta etapa (b) de mezclado se realiza a temperaturas entre 30 y 100eC, y en otra realización preferida la etapa (b) de mezclado se realiza durante 10 a 100 horas. In a preferred embodiment this mixing stage (b) is performed at temperatures between 30 and 100 e C, and in another preferred embodiment the mixing stage (b) is performed for 10 to 100 hours.
Preferiblemente la etapa (c) de mezclado en fundido se realiza a temperaturas de entre 350 y 400QC. Preferably the melt mixing step (c) is carried out at temperatures between 350 and 400 QC .
Un tercer aspecto de la presente invención se refiere al uso del material nanocompuesto según se ha descrito anteriormente, para la fabricación de componentes de alta resistencia mecánica y/o estabilidad térmica, Otro aspecto de la presente invención se refiere al uso del material nanocompuesto según se ha descrito anteriormente, para la fabricación de materiales de alta conductividad eléctrica y/o térmica. A third aspect of the present invention relates to the use of the nanocomposite material as described above, for the manufacture of components of high mechanical strength and / or thermal stability, Another aspect of the present invention relates to the use of the nanocomposite material as described above, for the manufacture of materials of high electrical and / or thermal conductivity.
Otro aspecto de la presente invención se refiere ai uso del material nanocompuesto según se ha descrito anteriormente para la fabricación de estructuras de la industria aeronáutica, aeroespacíai o de transporte {automoción, naval y ferroviaria). Another aspect of the present invention relates to the use of the nanocomposite material as described above for the manufacture of structures of the aeronautical, aerospace or transport industry (automotive, naval and railway).
Otro aspecto de la presente invención se refiere al uso del material nanocompuesto según se ha descrito anteriormente para la fabricación de sistemas de refrigeración o calefacción, tomas de aire, recubrimientos antíestátícos y de apantallamíento de señales electromagnéticas. Another aspect of the present invention relates to the use of the nanocomposite material as described above for the manufacture of cooling or heating systems, air intakes, antistatic coatings and shielding of electromagnetic signals.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig. 1. Presenta los espectros infrarrojos de transformada de Fourier con reflectancia total atenuada (ATR-FTIR) de PEEK, HPEEK y las muestras injertadas. Las flechas indican las bandas relacionadas con la vibración de tensión C=O del grupo carboxílico a 1703 crrf1 y la del grupo éster a 1738 cm"1. Fíg. 2. Muestra imágenes típicas de microscopía electrónica de transmisión (TEM) de (a) derivado polimérico HPEEK, (b) SWCNTs tratados con ácido y (c) HPEEK-CNT-1 . La imagen en (d) es una ampliación de (c) que muestra los haces de nanotubos rodeados por el polímero hidroxilado. Fig. 3. Muestra las curvas TGA de PEEK y materiales nanocompuestos con contenidos de CNTs de 0,1 , 0,5 y 1 ,0% en peso, obtenidas en atmósfera de nitrógeno a una velocidad de calentamiento de 10eC/min. Con fines comparativos, se representa sólo el intervalo de temperatura entre 250 y 700SC. Fig. 1. Presents the Fourier transform infrared spectra with attenuated total reflectance (ATR-FTIR) of PEEK, HPEEK and grafted samples. The arrows indicate the bands related to the vibration of tension C = O of the carboxylic group at 1703 crrf 1 and that of the ester group at 1738 cm "1. Fig. 2. Shows typical images of transmission electron microscopy (TEM) of (a ) HPEEK polymeric derivative, (b) acid treated SWCNTs and (c) HPEEK-CNT-1 The image in (d) is an enlargement of (c) showing the nanotube bundles surrounded by the hydroxylated polymer. Fig. 3. It shows the TGA curves of PEEK and nanocomposite materials with CNT contents of 0.1, 0.5 and 1.0% by weight, obtained under a nitrogen atmosphere at a heating rate of 10 e C / min. For comparative purposes, only the temperature range between 250 and 700 S C is represented.
Fig. 4. Muestra la conductividad eléctrica σ (líneas de puntos) a temperatura ambiente y la conductividad térmica λ (líneas continuas) de materiales nanocompuestos de PEEK en función del contenido en CNTs.  Fig. 4. It shows the electrical conductivity σ (dotted lines) at room temperature and the thermal conductivity λ (continuous lines) of PEEK nanocomposite materials based on the CNT content.
Fig. 5. Muestra el Módulo de Young E, resistencia a la tracción oy, alargamiento de rotura (£b) y tenacidad (T), a 25eC, para materiales nanocompuestos de PEEK con contenidos de CNTs de 0,1 , 0,5 y 1 ,0% en peso. Las líneas rectas continuas representan las predicciones según la regla de las mezclas. Fig. 5. It shows the Young E Module, tensile strength or and , elongation of breakage (£ b) and toughness (T), at 25 e C, for PEEK nanocomposite materials with CNT contents of 0.1, 0.5 and 1.0% by weight. Continuous straight lines represent predictions according to the rule of mixtures.
EJEMPLOS DE REALIZACIÓN EXAMPLES OF REALIZATION
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que muestran posibles procedimientos para su ejecución. The invention will now be illustrated by tests carried out by the inventors, which show possible procedures for its execution.
1. injerto de las cadenas de HPEEK en ios SWCNTs 1. grafting of HPEEK chains in ios SWCNTs
La unión covalente del derivado polimérico a los SWCNTs se llevo a cabo siguiendo dos procedimientos experimentales (Esquema. 1 ). En la primera estrategia, el injerto se realizó mediante una reacción de esterificación directa. Los SWCNTs oxidados (500 mg) se dispersaron en DMF (125 mi) mediante ultrasonicación durante 30 min. Separadamente, el HPEEK (5,5 g) se dispersó en DMF (125 mi) y se mantuvo a 50-C durante 24 h con agitación suave. La dispersión polimérica se añadió a una disolución de DCC (23,1 g, 1 12 mmol) y DMAP (1 ,7 g, 13,8 mmol) en DMF (250 mi). Posteriormente se mezclaron ambas dispersiones de polímero y SWCNT en atmósfera de nitrógeno a 409C durante 68 h. La coagulación de la mezcla se realizó añadiendo 3 I de metanol anhidro. Finalmente, se filtró el producto sólido resultante (HPEEK-CNT-1 ), se lavó con metanol y se secó a 50QC a vacío.
Figure imgf000011_0001
Covalent binding of the polymer derivative to the SWCNTs was carried out following two experimental procedures (Scheme. 1). In the first strategy, the graft was performed by a direct esterification reaction. The oxidized SWCNTs (500 mg) were dispersed in DMF (125 ml) by ultrasonication for 30 min. Separately, the HPEEK (5.5 g) was dispersed in DMF (125 ml) and maintained at 50-C for 24 h with gentle agitation. The polymer dispersion was added to a solution of DCC (23.1 g, 11 mmol) and DMAP (1.7 g, 13.8 mmol) in DMF (250 mL). Subsequently both SWCNT polymer dispersions and under nitrogen at 40 9 C were mixed for 68 h. Coagulation of the mixture was performed by adding 3 I of anhydrous methanol. Finally, the resulting solid product (HPEEK-CNT-1) was filtered, washed with methanol and dried at 50 Q C in vacuo.
Figure imgf000011_0001
PEEK HPEEK PEEE HPEEK
Figure imgf000011_0002
Figure imgf000011_0002
Esquema. 1 Procedimientos de síntesis de las muestras HPEEK-CNT. Parte superior: síntesis del derivado hidroxílado (HPEEK). Parte inferior: injerto del HPEEK en la superficie de ios SWCNTs mediante esterificación directa (1 ) o acílación de los grupos carboxílicos con SOC (2).  Scheme. 1 Synthesis procedures for HPEEK-CNT samples. Upper part: synthesis of the hydroxy derivative (HPEEK). Bottom: HPEEK grafting on the surface of ios SWCNTs by direct esterification (1) or acylation of carboxylic groups with SOC (2).
El segundo procedimiento se realizó en dos etapas. En primer lugar, los SWCNTs tratados con ácido (257 mg) se dispersaron en DMF anhidra (35 mi) y se sonicaron durante 15 min. Posteriormente, se hicieron reaccionar con exceso de SOCI2 (40 mi) a 120SC durante 18 h, a reflujo y con agitación constante. El SOCI2 residual se eliminó mediante destilación a presión reducida, proporcionando los SWCNTs funcionalizados. En segundo lugar, el HPEEK (2,7 g) se dispersó en DMF (65 mi) y se sometió a sonicación durante 30 min. Posteriormente, se añadió píridina (2 mi) y se mantuvo el sistema con agitación a ~60eC; a continuación se añadieron ios nanotubos acilados y se dejó proceder la reacción durante 20 h a 60SC en atmosfera de argón. La mezcla de reacción se coaguló en metanol anhidro (300 mi) durante 1 h; después se filtró el compuesto resultante (HPEEK-CNT-2) a través de una membrana de PTFE, se lavó con metanol y etanol acuoso (al 96% v/v) y se secó a vacío a 120SC durante 0 días. The second procedure was performed in two stages. First, acid-treated SWCNTs (257 mg) were dispersed in anhydrous DMF (35 ml) and sonicated for 15 min. Subsequently, they were reacted with excess SOCI 2 (40 ml) at 120 S C for 18 h, at reflux and with constant stirring. The residual SOCI 2 was removed by distillation under reduced pressure, providing the functionalized SWCNTs. Secondly, the HPEEK (2.7 g) was dispersed in DMF (65 ml) and sonicated for 30 min. Subsequently, pyridine (2 ml) was added and the system was maintained with stirring at ~ 60 e C; The acylated nanotubes were then added and the reaction was allowed to proceed for 20 h at 60 S C in an argon atmosphere. The reaction mixture was coagulated in anhydrous methanol (300 ml) for 1 h; The resulting compound (HPEEK-CNT-2) was then filtered through a PTFE membrane, washed with methanol and aqueous ethanol (96% v / v) and dried under vacuum at 120 S C for 0 days.
Caracterización del HPEEK unido covalentemente a los SWCNTs La unión covalente del HPEEK a los SWCNTs se corroboró mediante espectroscopia ATR-FTIR (Fíg. 1 ). La intensidad de las absorciones relacionadas con los grupos hidroxilo disminuye en los espectros de las muestras injertadas en comparación con el espectro del polímero hidroxilado, debido a la esterificación de algunos grupos OH del HPEEK con grupos COOH de la superficie de los nanotubos. Por otro lado, el espectro de los SWCNTs sin funcionalízar muestra una señal a 1703 crrf que corresponde a la tensión del carbonilo del ácido carboxílico. Después de la reacción de injerto, esta banda se desplaza hasta -1738 cm"1, que corresponde a la tensión C=O del grupo éster. La aparición de esta banda en los espectros de las muestras HPEEK- CNT confirma la unión covalente del HPEEK a los nanotubos. Characterization of HPEEK covalently linked to SWCNTs The covalent binding of HPEEK to SWCNTs was corroborated by ATR-FTIR spectroscopy (Fig. 1). The intensity of the absorptions related to the hydroxyl groups decreases in the spectra of the grafted samples compared to the spectrum of the hydroxylated polymer, due to the esterification of some OH groups of the HPEEK with COOH groups of the surface of the nanotubes. On the other hand, the spectrum of the non-functional SWCNTs shows a signal at 1703 crrf corresponding to the carbonyl tension of the carboxylic acid. After the grafting reaction, this band moves to -1738 cm "1 , which corresponds to the C = O tension of the ester group. The appearance of this band in the spectra of the HPEEK-CNT samples confirms the covalent binding of the HPEEK to the nanotubes.
La morfología del derivado hidroxilado y las muestras injertadas se examinó mediante TEM (Fig. 2). La morfología del HPEEK (Fig. 2a) es difícil de visualizar por TEM debido a su bajo grado de cristalinidad. La imagen de los SWCNTs (Fig. 2b) muestra pequeños haces de CNTs (6-8 tubos individuales) con un diámetro medio de haz de -12 nm. La imagen del HPEEK-CNT-1 (Fig. 2c) revela una mezcla heterogénea con áreas oscuras continuas atribuidas al polímero y unos pocos puntos negros aislados, que corresponden a partículas del catalizador de Ni según el análisis por energía dispersiva de rayos X (EDAX). Como puede observarse a más ampliaciones (Fig. 2d), los haces de nanotubos están recubiertos por el HPEEK y su diámetro medio es ligeramente mayor (-18 nm); esto sugiere la unión química o física del derivado poliméríco a la superficie de los SWCNTs. The morphology of the hydroxylated derivative and grafted samples was examined by TEM (Fig. 2). The morphology of the HPEEK (Fig. 2a) is difficult to visualize by TEM due to its low degree of crystallinity. The SWCNTs image (Fig. 2b) shows small beams of CNTs (6-8 individual tubes) with an average beam diameter of -12 nm. The image of the HPEEK-CNT-1 (Fig. 2c) reveals a heterogeneous mixture with continuous dark areas attributed to the polymer and a few isolated black dots, which correspond to Ni catalyst particles according to the X-ray dispersive energy analysis (EDAX ). As can be seen at more enlargements (Fig. 2d), the nanotube beams are coated by the HPEEK and their average diameter is slightly larger (-18 nm); This suggests the chemical or physical binding of the polymer derivative to the surface of the SWCNTs.
2. Preparación de materiales nanocompuestos polimericos 2. Preparation of polymeric nanocomposite materials
En primer lugar, la muestra HPEEK-CNT-1 sintetizada vía esterificación directa se dispersó en un pequeño volumen de etanol y se mezcló con el polvo del PEEK. Después la mezcla se homogeneizó mediante agitación mecánica y ultrasonicación durante aproximadamente 30 min y se secó a vacío a 50QC hasta eliminar totalmente el disolvente. El mezclado en estado fundido se llevó a cabo en una extrusora Haake Rheocord 90 a 3809C, con una velocidad de giro de los rotores de 150 rpm durante 20 min. Se prepararon tres materiales compuestos de PEEK/ HPEEK- CNT-1 con contenidos efectivos de SWCNTs de 0,1 , 0,5 y 1 ,0% en peso, respectivamente. Con fines comparativos, se prepararon también compuestos con cantidades similares de SWCNTs sin funcionalizar, y se designan como PEEK CNT. Finalmente, las muestras se enfriaron a temperatura ambiente, se dividieron en pequeños trozos y se prensaron a 380 SC para formar películas de 0,5 mm de espesor. Antes de ensayar, las muestras se templaron durante 3 h a 200SC. First, the HPEEK-CNT-1 sample synthesized via direct esterification was dispersed in a small volume of ethanol and mixed with the PEEK powder. The mixture was homogenized by mechanical stirring and ultrasonication for about 30 min and dried under vacuum at 50 Q C to completely remove the solvent. Melt mixing was carried out in a Haake Rheocord 90 extruder at 380 9 C, with a rotational speed of the rotors of 150 rpm for 20 min. Three PEEK / HPEEK-CNT-1 composite materials with effective SWCNT contents of 0.1, 0.5 and 1.0% by weight, respectively, were prepared. For comparative purposes, compounds with similar amounts of non-functionalized SWCNTs were also prepared, and are designated as PEEK CNT. Finally, the samples were cooled to room temperature, divided into small pieces and pressed at 380 S C to form 0.5 mm thick films. Before testing, the samples were annealed for 3 hours at 200 C. S
Caracterización de los materiales nanocompuestos a) Estabilidad térmica Characterization of nanocomposite materials a) Thermal stability
La estabilidad térmica se evaluó mediante análisis termogravimétrico (TGA). Las curvas TGA en nitrógeno para PEEK, HPEEK-CNT-1 y los correspondientes nanocompuestos se muestran en la Fíg. 3. El PEEK puro presenta una sola etapa de degradación que se inicia a 5209C (T¡) y tiene la velocidad máxima (Tmáx) a 550SC. Los materiales compuestos de PEEK/HPEEK-CNT-1 presentan una pequeña pérdida de peso aproximadamente a 3459C, que puede asignarse a la eliminación de los grupos hídroxilo sin reaccionar del HPEEK. Su mayor pérdida de peso tiene lugar en una segunda etapa, entre 540 y 650SC, y la cantidad de residuo aumenta con la introducción de los CNTs en un % en peso similar a la concentración incorporada. Además, T¡ y Tmáx de esta etapa aumentan progresivamente con el contenido de CNTs. Así, para concentraciones de 0,1 , 0,5 y 1 ,0% en peso, T¡ aumenta en 20, 32 y 54QC, y Tmáx aproximadamente en 28, 42 y 64-C, en comparación con las de PEEK. Las mejoras en estabilidad térmica alcanzadas en estas muestras son considerablemente mayores que las obtenidas mediante la incorporación directa de contenidos similares de SWCNTs sin funcionalizar. Los resultados confirman que la inclusión del HPEEK unido covalentemente a los CNTs aumenta considerablemente las temperaturas de degradación de estos materiales compuestos, siendo idóneos para uso a alta temperatura. b) Medidas de conductividad eléctrica y térmica Thermal stability was evaluated by thermogravimetric analysis (TGA). The nitrogen TGA curves for PEEK, HPEEK-CNT-1 and the corresponding nanocomposites are shown in Fig. 3. Pure PEEK has a single degradation stage that starts at 520 9 C (T¡) and has the maximum speed (T m max) at 550 S C. PEEK / HPEEK-CNT-1 composite materials have a Small weight loss at approximately 345 9 C, which can be assigned to the elimination of unreacted hydroxyl groups from HPEEK. Its greater weight loss takes place in a second stage, between 540 and 650 S C, and the amount of waste increases with the introduction of the CNTs by a weight% similar to the concentration incorporated. In addition, T¡ and T m áx of this stage increase progressively with the content of CNTs. Thus, for concentrations of 0.1, 0.5 and 1.0% by weight, T¡ increases by 20, 32 and 54 Q C, and T max approximately by 28, 42 and 64-C, compared to those of PEEK The improvements in thermal stability achieved in these samples are considerably greater than those obtained by the direct incorporation of similar contents of SWCNTs without functionalization. The results confirm that the inclusion of HPEEK covalently bound to CNTs significantly increase the degradation temperatures of these composite materials, being suitable for high temperature use. b) Electrical and thermal conductivity measurements
La Fig. 4 muestra la conductividad eléctrica y térmica a temperatura ambiente en función del contenido en CNTs para los dos tipos de materiales compuestos preparados. El PEEK es un material aislante (σ < 10"13 S/cm), y presenta un aumento en la conductividad eléctrica de más de ocho órdenes de magnitud tras la incorporación de pequeñas cantidades de CNTs. A muy bajas concentraciones, las muestras preparadas medíante incorporación directa de los CNTs presentan valores de conductividad un orden de magnitud mayor que las reforzadas con HPEEK-CNT-1 , mientras que a concentraciones más altas, ambos tipos de compuestos presentan aproximadamente la misma conductividad. Estos resultados sugieren que la influencia del injerto polimérico sobre la conductividad tiene doble aspecto. Por otro lado, la unión covalente de las cadenas poliméricas mejora la dispersión de los nanotubos; los CNTs bien dispersos presentan una mayor relación de aspecto que los agregados, dando lugar a mayores valores de conductividad. Por otro lado, el injerto del HPEEK sobre la superficie de los CNTs disminuye las interacciones tubo-tubo, reduciendo así la conductividad. En los materiales nanocompuestos de PEEK/HPEEK-CNT-1 , parece que las desventajas del injerto con respecto a la conductividad se compensan con la mejor dispersión, manteniéndose el nivel de conductividad alcanzado en los compuestos PEEK/CNT. Fig. 4 shows the electrical and thermal conductivity at room temperature as a function of the content in CNTs for the two types of composite materials prepared. PEEK is an insulating material (σ <10 "13 S / cm), and has an increase in electrical conductivity of more than eight orders of magnitude after the incorporation of small amounts of CNTs. At very low concentrations, the samples prepared through Direct incorporation of CNTs has conductivity values of an order of magnitude greater than those reinforced with HPEEK-CNT-1, while at higher concentrations, both types of compounds have approximately the same conductivity.These results suggest that the influence of the polymer graft on the conductivity it has a double aspect.On the other hand, the covalent union of the polymer chains improves the dispersion of the nanotubes; the well dispersed CNTs have a greater aspect ratio than the aggregates, giving rise to higher conductivity values. , grafting of HPEEK on the surface of CNTs decreases tube-tube interactions, thus reducing conductivity In the PEEK / HPEEK-CNT-1 nanocomposite materials, it seems that graft disadvantages with respect to conductivity are compensated with the best dispersion, while maintaining the level of conductivity achieved in PEEK / CNT compounds.
La conductividad térmica (λ) del PEEK puro es aproximadamente 0,23 W/mK y aumenta en 16, 80 y 150% para materiales nanocompuestos PEEK/HPEEK- CNT-1 que incluyen 0,1 , 0,5 y 1 ,0% en peso de CNTs. En contraposición, las muestras reforzadas directamente con CNTs presentan un crecimiento no lineal de λ, y los incrementos en relación con el PEEK son de aproximadamente 23, 75 y 125% para las mismas concentraciones de nanotubos. La conductividad térmica depende también de los factores discutidos anteriormente (relación de aspecto y dispersión), así como de la resistencia térmica entre el nanotubo y la matriz. La alta resistencia térmica interfacíal disminuye con la introducción de enlaces covalentes; sin embargo, estos enlaces reducen la conductividad intrínseca del nanotubo actuando como centros de dispersión para la propagación de fonones a lo largo de los tubos. Por lo tanto, el aumento de λ observado para los materiales compuestos de PEEK/HPEEK-CNT- que contienen 1 ,0% en peso de nanotubos se atribuye probablemente a la mejor dispersión alcanzada por el injerto de HPEEK. Esto está de acuerdo con las altas temperaturas de degradación observadas para estos materiales compuestos, como se revela por análisis TGA, puesto que el incremento de conductividad térmica facilita la disipación de calor en la muestra. c) Propiedades mecánicas The thermal conductivity (λ) of pure PEEK is approximately 0.23 W / mK and increases by 16, 80 and 150% for PEEK / HPEEK-CNT-1 nanocomposite materials that include 0.1, 0.5 and 1.0% by weight of CNTs. In contrast, the samples directly reinforced with CNTs show a non-linear growth of λ, and the increases in relation to the PEEK are approximately 23, 75 and 125% for the same nanotube concentrations. The thermal conductivity also depends on the factors discussed above (ratio of aspect and dispersion), as well as the thermal resistance between the nanotube and the matrix. The high interfacial thermal resistance decreases with the introduction of covalent bonds; however, these bonds reduce the intrinsic conductivity of the nanotube by acting as dispersion centers for the propagation of phonons along the tubes. Therefore, the increase in λ observed for PEEK / HPEEK-CNT-composite materials containing 1.0% by weight of nanotubes is probably attributed to the best dispersion achieved by HPEEK grafting. This is in accordance with the high degradation temperatures observed for these composite materials, as revealed by TGA analysis, since the increase in thermal conductivity facilitates heat dissipation in the sample. c) Mechanical properties
Los resultados de los ensayos de tracción a temperatura ambiente realizados según la norma UNE-EN ISO 527-1 para PEEK y los diferentes materiales nanocompuestos en función del contenido en CNTs se muestran en la Fig. 5. El módulo de Young (E) del PEEK es 4,1 GPa, y en los sistemas PEEK/HPEEK-CNT-1 aumenta en -18, 37 y 58% para concentraciones de CNTs de 0,1 , 0,5 y 1 ,0% en peso, respectivamente. En el caso de materiales compuestos preparados mediante la inclusión directa de los SWCNTs, las mejoras del módulo son menos espectaculares, sólo de aproximadamente 9, 16 y 20% para las concentraciones indicadas anteriormente. El excepcional aumento de módulo en los sistemas injertados covalentemente probablemente sea el resultado de una muy eficaz transferencia de carga del polímero al nanotubo debido a una óptima dispersión y una fuerte adhesión interfacial. Los valores de E teóricos para las distintas concentraciones se han calculado según la regla de las mezclas (ver líneas rectas continuas en Fig. 5). Los datos experimentales de materiales compuestos que contienen HPEEK-CNT-1 exceden las predicciones teóricas en todo el intervalo de concentración estudiado, siguiendo un crecimiento casi lineal. El injerto de HPEEK en los CNTs, combinado con las interacciones no- covalentes entre grupos polares del polímero y ácidos carboxílicos de la superficie del nanotubo, forman una fuerte interfase CNT-matriz que aumentando el efecto de refuerzo. En cambio, en los materiales nanocompuestos reforzados directamente con CNTs, los resultados caen por debajo de las predicciones para concentraciones superiores a 0,1 % en peso, atribuido a la aparición de pequeños agregados y una pobre transferencia de carga. The results of the tensile tests at room temperature carried out according to the UNE-EN ISO 527-1 standard for PEEK and the different nanocomposite materials depending on the content in CNTs are shown in Fig. 5. The Young (E) module of the PEEK is 4.1 GPa, and in PEEK / HPEEK-CNT-1 systems it increases by -18, 37 and 58% for CNT concentrations of 0.1, 0.5 and 1.0% by weight, respectively. In the case of composite materials prepared by direct inclusion of SWCNTs, module improvements are less spectacular, only about 9, 16 and 20% for the concentrations indicated above. The exceptional increase in modulus in covalently grafted systems is probably the result of a very efficient transfer of charge from the polymer to the nanotube due to optimal dispersion and strong interfacial adhesion. The theoretical E values for the different concentrations have been calculated according to the mixture rule (see straight straight lines in Fig. 5). The experimental data of composite materials containing HPEEK-CNT-1 exceed the theoretical predictions over the entire concentration range studied, following an almost linear growth. HPEEK grafting in CNTs, combined with non-covalent interactions between polar groups of the polymer and carboxylic acids on the surface of the nanotube, form a strong CNT-matrix interface that increases the reinforcing effect. In contrast, in nanocomposite materials reinforced directly with CNTs, the results fall below the predictions for concentrations greater than 0.1% by weight, attributed to the appearance of small aggregates and poor load transfer.
La resistencia a la tracción ay presenta tendencias similares a las descritas para el módulo, aunque las variaciones respecto a la matriz pura son considerablemente menores, lo que sugiere que los CNTs son más eficaces en aumentar la rigidez que la resistencia de la matriz. HPEEK-CNT-1 presenta -27% mayor resistencia que PEEK. En los materiales compuestos de PEEK/HPEEK-CNT-1 , ay aumenta en 6, 15 y 23% para 0,1 , 0,5 y 1 ,0% en peso de CNTs, respectivamente, valores ligeramente superiores a las predicciones teóricas, mientras que para muestras reforzadas directamente con CNTs, los incrementos para las mismas concentraciones son de ~4, 8 y 1 1 %. Por otro lado, el alargamiento a rotura (£b) de los materiales nanocompuestos reforzados directamente con CNTs disminuye desde 12,3% para el PEEK hasta 1 1 ,2, 9,1 y 6,6% para concentraciones de 0,1 , 0,5 y 1 ,0% en peso, respectivamente. Por el contrario, los que incluyen enlaces covalentes presentan una ductilidad mayor que PEEK para una concentración de 0,1 % en peso, similar para 0,5% en peso y ligeramente menor para contenidos mayores. Generalmente, la incorporación de refuerzos reduce drásticamente el alargamiento a rotura de la matriz. Sin embargo, en estos materiales nanocompuestos, la uniforme dispersión de los CNTs disminuye la concentración de tensiones en la interfase polímero-refuerzo, lo que contribuye a mantener la ductilidad. The tensile strength a and presents similar trends to those described for the module, although the variations with respect to the pure matrix are considerably smaller, which suggests that the CNTs are more effective in increasing the stiffness than the matrix resistance. HPEEK-CNT-1 has -27% greater resistance than PEEK. In PEEK / HPEEK-CNT-1 composites, a and increases by 6, 15 and 23% for 0.1, 0.5 and 1.0% by weight of CNTs, respectively, values slightly higher than the theoretical predictions , while for samples directly reinforced with CNTs, the increases for the same concentrations are ~ 4, 8 and 1 1%. On the other hand, the elongation at break (£ b ) of nanocomposite materials reinforced directly with CNTs decreases from 12.3% for PEEK to 1 1, 2, 9.1 and 6.6% for concentrations of 0.1, 0.5 and 1.0% by weight, respectively. On the contrary, those that include covalent bonds have a ductility greater than PEEK for a concentration of 0.1% by weight, similar for 0.5% by weight and slightly lower for higher contents. Generally, the incorporation of reinforcements drastically reduces the elongation at breakage of the matrix. However, in these nanocomposite materials, the uniform dispersion of CNTs decreases the concentration of stresses in the polymer-reinforcement interface, which contributes to maintaining ductility.
La tenacidad de los materiales compuestos de PEEK/CNT, medida como el área bajo la curva de deformación por tensión, se reduce también progresivamente con el contenido de refuerzo. Sin embargo, en aquellos que incorporan HPEEK-CNT, la adición de 0,1 , 0,5 y 1 ,0% en peso de CNTs causa un incremento medio de tenacidad de 18, 9 y 7%, respectivamente. El injerto de HPEEK en los CNTs mejora considerablemente la tenacidad de estos materiales, debido a la mejor adhesión interíacial que proporciona una barrera eficaz para la propagación de grietas. The toughness of PEEK / CNT composites, measured as the area under the stress strain curve, is also progressively reduced with the reinforcement content. However, in those incorporating HPEEK-CNT, the addition of 0.1, 0.5 and 1.0% by weight of CNTs causes an average increase in toughness of 18, 9 and 7%, respectively. HPEEK grafting in CNTs considerably improves the toughness of these materials, due to the better inter-adhesion that provides an effective barrier to crack propagation.

Claims

REIVINDICACIONES
1. Material nanocompuesto que comprende: 1. Nanocomposite material comprising:
a. una matriz que comprende un polímero que posee grupos  to. a matrix comprising a polymer that has groups
C=0, y  C = 0, and
b. un refuerzo de nanomaterial de carbono que comprende grupos - COOH y -CO-RrZ, donde Ri se selecciona entre O ó NH, y Z es un olímero formado por monómeros de fórmula (I):  b. a carbon nanomaterial reinforcement comprising groups - COOH and -CO-RrZ, where Ri is selected from O or NH, and Z is an olymer formed by monomers of formula (I):
Figure imgf000018_0001
Figure imgf000018_0001
Fórmula (I)  Formula (I)
2. Material según la reivindicación 1 , donde la matriz polimérica es de la familia de las poli(aril éter cetonas). 2. Material according to claim 1, wherein the polymer matrix is from the family of poly (aryl ether ketones).
3. Material según la reivindicación 2, donde la poli{aril éter cetona) se selecciona entre poli(éter cetona), poli(éter éter cetona) y poli(éter cetona cetona). 3. Material according to claim 2, wherein the poly {aryl ether ketone) is selected from poly (ether ketone), poly (ether ether ketone) and poly (ether ketone ketone).
4. Material según la reivindicación 3, donde la poli(aril éter cetona) es poli(eter éter cetona). 4. Material according to claim 3, wherein the poly (aryl ether ketone) is poly (ether ether ketone).
5. Material según cualquiera de las reivindicaciones 1 a 4, donde Ri es O. 5. Material according to any of claims 1 to 4, wherein Ri is O.
6. Material según cualquiera de las reivindicaciones 1 a 5, donde el nanomaterial de carbono se selecciona entre nanotubos de carbono, nanofibras de carbono, nanoespirales de carbono, fullerenos o cualquiera de sus combinaciones. 6. Material according to any one of claims 1 to 5, wherein the carbon nanomaterial is selected from carbon nanotubes, carbon nanofibers, carbon nanospeels, fullerenes or any combination thereof.
7. Material según la reivindicación 6, donde los nanotubos de carbono son de pared simple o múltiple. 7. Material according to claim 6, wherein the carbon nanotubes are single or multiple wall.
8. Material según la reivindicación 7, donde el nanotubo de carbono es de pared simple. 8. Material according to claim 7, wherein the carbon nanotube is single wall.
9. Material según cualquiera de las reivindicaciones 1 a 8, donde el nanomaterial de carbono está en una proporción menor de un 10% en peso de la composición final. 9. Material according to any of claims 1 to 8, wherein the carbon nanomaterial is in a proportion less than 10% by weight of the final composition.
10. Material según la reivindicación 9, donde el nanomaterial de carbono está en una proporción menor de un 5% en peso de la composición final. 10. Material according to claim 9, wherein the carbon nanomaterial is in a proportion less than 5% by weight of the final composition.
1 1. Procedimiento de obtención de un material nanocompuesto según cualquiera de las reivindicaciones 1 a 10, que comprende las etapas: 1 1. Procedure for obtaining a nanocomposite material according to any of claims 1 to 10, comprising the steps:
a. reducción de la polí(éter éter cetona) para la obtención de un olímero formado por monómeros de fórmula (II),  to. reduction of the poly (ether ether ketone) to obtain an olymer formed by monomers of formula (II),
Figure imgf000019_0001
Figure imgf000019_0001
Fórmula (II)  Formula (II)
b. mezclado del nanomaterial de carbono carboxilado con el polímero obtenido en (a), y  b. mixing the carboxylated carbon nanomaterial with the polymer obtained in (a), and
c. mezclado en fundido del producto obtenido en la etapa (b) con la matriz poliméríca.  C. melt mixing of the product obtained in step (b) with the polymer matrix.
12. Procedimiento según la reivindicación 11 , caracterizado por comprender además una etapa (d) de procesado del material nanocompuesto obtenido en (c). 12. Method according to claim 11, characterized in that it further comprises a step (d) for processing the nanocomposite material obtained in (c).
13. Procedimiento según cualquiera de las reivindicaciones 1 1 ó 12, donde la reducción de la etapa (a) se realiza con NaBH4. 13. Method according to any of claims 1 1 or 12, wherein the reduction of step (a) is performed with NaBH 4 .
14. Procedimiento según cualquiera de las reivindicaciones 11 a 13, donde la reducción de la etapa (a) se lleva a cabo a una temperatura entre 80 y 1505C. 14. Method according to any of claims 11 to 13, wherein the reduction of step (a) is carried out at a temperature between 80 and 150 5 C.
15. Procedimiento según cualquiera de las reivindicaciones 13 ó 14, donde la etapa (a) se realiza durante 2 a 50 horas. 15. Method according to any of claims 13 or 14, wherein step (a) is performed for 2 to 50 hours.
16. Procedimiento según cualquiera de las reivindicaciones 11 a 15, que comprende además una etapa (a') que consiste en la aminación del polímero obtenido en la etapa (a) para la obtención del polímero formado por monómeros de fórmula III). 16. Method according to any of claims 11 to 15, further comprising a step (a ' ) consisting of the amination of the polymer obtained in step (a) for obtaining the polymer formed by monomers of formula III).
Figure imgf000020_0001
Figure imgf000020_0001
Fórmula (III)  Formula (III)
17. Procedimiento según la reivindicación 16, donde la aminación se realiza con un reactivo del tipo HOOC-F¡2-NH2, donde F¡2 es un alquilo C1 -C10. 17. The process of claim 16 wherein the amination is performed with a reactive HOOC-F¡2-NH 2 type, where F¡2 is C1 -C10.
18. Procedimiento según cualquiera de las reivindicaciones 11 a 17, donde el mezclado de la etapa (b) se realiza en atmósfera inerte. 18. Method according to any of claims 11 to 17, wherein the mixing of step (b) is carried out in an inert atmosphere.
19. Procedimiento según cualquiera de las reivindicaciones 11 a 18, donde en el mezclado de la etapa (b) se produce una reacción de amidación o esterificación que se realiza mediante activación o mediante acilación. 19. Method according to any of claims 11 to 18, wherein in the mixing of step (b) an amidation or esterification reaction is carried out which is carried out by activation or by acylation.
20. Procedimiento según la reivindicación 19, donde la esterificación se activa con N,N-dicíclohexilcarbodiimida. 20. The method according to claim 19, wherein the esterification is activated with N, N-dicyclohexylcarbodiimide.
21. Procedimiento según la reivindicación 19, donde la acilación se realiza con SOCI2. 21. Method according to claim 19, wherein the acylation is performed with SOCI 2 .
22. Procedimiento según cualquiera de las reivindicaciones 11 a 21 , donde el disolvente empleado en la etapa (b) es polar. 22. Method according to any of claims 11 to 21, wherein the solvent employed in step (b) is polar.
23. Procedimiento según la reivindicación 22, donde el disolvente polar se selecciona entre ty/V-dimetilformamida, Λ/,/V-dimetílacetamida, 1 -metíl-2- pirrolidona, hexametilenfosfotriamida, dimetilsulfóxido o cualquiera de sus combinaciones. 23. The method according to claim 22, wherein the polar solvent is selected from ty / V-dimethylformamide, Λ /, / V-dimethyllacetamide, 1-methyl-2-pyrrolidone, hexamethylene phosphotriamide, dimethyl sulfoxide or any combination thereof.
24. Procedimiento según cualquiera de las reivindicaciones 11 a 23, donde la etapa (b) de mezclado se realiza a una temperatura entre 30 y 100QC. 24. Method according to any of claims 11 to 23, wherein the mixing stage (b) is carried out at a temperature between 30 and 100 QC .
25. Procedimiento según cualquiera de las reivindicaciones 11 a 24, donde la etapa (b) de mezclado se realiza durante 10 a 100 horas. 25. Method according to any of claims 11 to 24, wherein the mixing step (b) is performed for 10 to 100 hours.
26. Procedimiento según cualquiera de las reivindicaciones 11 a 25, donde la etapa (c) de mezclado en fundido se realiza a una temperatura entre 350 y 400SC. 26. Method according to any of claims 11 to 25, wherein the step (c) of melt mixing is carried out at a temperature between 350 and 400 S C.
27. Uso del material nanocompuesto según cualquiera de las reivindicaciones 1 a 10, para la fabricación de materiales de alta resistencia mecánica y/o estabilidad térmica. 27. Use of the nanocomposite material according to any of claims 1 to 10, for the manufacture of materials of high mechanical strength and / or thermal stability.
28. Uso del material nanocompuesto según cualquiera de las reivindicaciones 1 a 10, para la fabricación de materiales de alta conductividad eléctrica y/o térmica. 28. Use of the nanocomposite material according to any of claims 1 to 10, for the manufacture of materials of high electrical and / or thermal conductivity.
29. Uso del material nanocompuesto según cualquiera de las reivindicaciones 1 a 10, para la fabricación de estructuras de la industria aeronáutica, aeroespacial o de transporte. 29. Use of the nanocomposite material according to any of claims 1 to 10, for the manufacture of structures of the aeronautical, aerospace or transport industry.
30. Uso del material nanocompuesto según cualquiera de las reivindicaciones 1 a 10, para la fabricación de recubrimientos antiestáticos y de apantallamíento de señales electromagnéticas. 30. Use of the nanocomposite material according to any one of claims 1 to 10, for the manufacture of antistatic coatings and shielding of electromagnetic signals.
PCT/ES2011/070443 2010-06-21 2011-06-20 Nanocomposite material reinforced with a polymer derivative grafted onto a carbon nanomaterial WO2011161294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030947A ES2372339B1 (en) 2010-06-21 2010-06-21 REINFORCED NANOCOMPOSITE MATERIAL WITH A POLYMERIC DERIVATIVE INTEGRATED IN A CARBON NANOMATERIAL.
ESP201030947 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011161294A1 true WO2011161294A1 (en) 2011-12-29

Family

ID=45370885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070443 WO2011161294A1 (en) 2010-06-21 2011-06-20 Nanocomposite material reinforced with a polymer derivative grafted onto a carbon nanomaterial

Country Status (2)

Country Link
ES (1) ES2372339B1 (en)
WO (1) WO2011161294A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105838086A (en) * 2016-06-20 2016-08-10 太原理工大学 Preparation method of sulfonated carbon nano tube grafted hydroxylated polyether-ether-ketone/polyether-ether-ketone composite material
CN108503877A (en) * 2018-04-13 2018-09-07 中国科学院上海硅酸盐研究所 A method of the surfaces PEEK are modified
US10415127B2 (en) * 2013-09-05 2019-09-17 Dresser-Rand Company Turbomachine components manufactured with carbon nanotube composites
CN112940332A (en) * 2021-04-13 2021-06-11 吉林大学 Polyaryletherketone containing amino side chain and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426134B1 (en) * 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
US20050186378A1 (en) * 2004-02-23 2005-08-25 Bhatt Sanjiv M. Compositions comprising carbon nanotubes and articles formed therefrom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426134B1 (en) * 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
US20050186378A1 (en) * 2004-02-23 2005-08-25 Bhatt Sanjiv M. Compositions comprising carbon nanotubes and articles formed therefrom

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. M. DIEZ-PASCUAL ET AL.: "Grafting of a hydroxylated poly(ether ether ketone) to the surface of single-walled carbon nanotubes", J. MATER. CHEM., vol. 20, 2010, pages 8285 - 8296 *
A. M. DIEZ-PASCUAL ET AL.: "Synthesis and characterization of poly(ether ether ketone) derivatives obtained by carbonyl reduction", MACROMOLECULES, vol. 42, 2009, pages 6885 - 6892 *
D. HILL ET AL.: "Functionalization of carbon nanotubes with derivatized polyimide", MACROMOLECULES, vol. 38, 2005, pages 7670 - 7675 *
I.-Y. JEON ET AL.: "Nanocomposites derived from in situ grafting of linear and hyperbranched poly(ether-ketone)s containing flexible oxyethylene spacers onto the surface of multiwalled carbon nanotubes", J. POLYM. SCI. A: POLYM. CHEM., vol. 46, 2008, pages 3471 - 3481 *
S.-J. OH ET AL.: "Multiwalled carbon nanotubes and nanofibers grafted with polyetherketones in a mild and viscous polymeric acid", POLYMER, vol. 47, 2006, pages 1132 - 1140 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415127B2 (en) * 2013-09-05 2019-09-17 Dresser-Rand Company Turbomachine components manufactured with carbon nanotube composites
CN105838086A (en) * 2016-06-20 2016-08-10 太原理工大学 Preparation method of sulfonated carbon nano tube grafted hydroxylated polyether-ether-ketone/polyether-ether-ketone composite material
CN105838086B (en) * 2016-06-20 2020-06-05 太原理工大学 Preparation method of sulfonated carbon nanotube grafted hydroxylated polyether-ether-ketone/polyether-ether-ketone composite material
CN108503877A (en) * 2018-04-13 2018-09-07 中国科学院上海硅酸盐研究所 A method of the surfaces PEEK are modified
CN108503877B (en) * 2018-04-13 2020-12-11 中国科学院上海硅酸盐研究所 Method for modifying PEEK surface
CN112940332A (en) * 2021-04-13 2021-06-11 吉林大学 Polyaryletherketone containing amino side chain and preparation method and application thereof
CN112940332B (en) * 2021-04-13 2022-07-22 吉林大学 Polyaryletherketone containing amino side chain as well as preparation method and application thereof

Also Published As

Publication number Publication date
ES2372339B1 (en) 2012-11-27
ES2372339A1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
Cho et al. Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization
Jiang et al. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites
Li et al. Control of the functionality of graphene oxide for its application in epoxy nanocomposites
Kang et al. Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites
Mallakpour et al. The production of functionalized multiwall carbon nanotube/amino acid-based poly (amide–imide) composites containing a pendant dopamine moiety
Amr et al. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites
Sahoo et al. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods
Mallakpour et al. One-pot synthesis of glucose functionalized multi-walled carbon nanotubes: dispersion in hydroxylated poly (amide-imide) composites and their thermo-mechanical properties
Jagtap et al. Preparation and characterization of rubbery epoxy/multiwall carbon nanotubes composites using amino acid salt assisted dispersion technique.
Konnola et al. Effect of side-wall functionalisation of multi-walled carbon nanotubes on the thermo-mechanical properties of epoxy composites
Jo et al. Development of nanocomposite with epoxidized natural rubber and functionalized multiwalled carbon nanotubes for enhanced thermal conductivity and gas barrier property
Mallakpour et al. Effect of amino acid-functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly (amide-imide) nanocomposites containing thiazole side unit
Han et al. Effect of click coupled hybrids of graphene oxide and thin-walled carbon nanotubes on the mechanical properties of polyurethane nanocomposites
Begum et al. Investigation of morphology, crystallinity, thermal stability, piezoelectricity and conductivity of PVDF nanocomposites reinforced with epoxy functionalized MWCNTs
Layek et al. Graphene sulphonic acid/chitosan nano biocomposites with tunable mechanical and conductivity properties
Guezzout et al. Effect of graphene oxide on the properties of compatibilized polypropylene/ethylene-propylene-rubber blend
Ding et al. Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons
Ben Doudou et al. Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation
Xiong et al. Microstructure and properties of polyurethane nanocomposites reinforced with methylene-bis-ortho-chloroanilline-grafted multi-walled carbon nanotubes
WO2011161294A1 (en) Nanocomposite material reinforced with a polymer derivative grafted onto a carbon nanomaterial
Bindu Sharmila et al. A comparative investigation of aminosilane/ethylene diamine–functionalized graphene epoxy nanocomposites with commercial and chemically reduced graphene: static and dynamic mechanical properties
Wu et al. One step fabrication of multi-walled carbon nanotubes/graphene nanoplatelets hybrid materials with excellent mechanical property
Chen et al. Preparation, properties and application of polyamide/carbon nanotube nanocomposites
Yazdani-Pedram et al. Mechanical and thermal properties of multiwalled carbon nanotube/polypropylene composites using itaconic acid as compatibilizer and coupling agent
Mahapatra et al. Nanodiamond-grafted hyperbranched polymers anchored with carbon nanotubes: Mechanical, thermal, and photothermal shape-recovery properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797655

Country of ref document: EP

Kind code of ref document: A1