WO2012004979A1 - Rotational vibration gyro - Google Patents

Rotational vibration gyro Download PDF

Info

Publication number
WO2012004979A1
WO2012004979A1 PCT/JP2011/003829 JP2011003829W WO2012004979A1 WO 2012004979 A1 WO2012004979 A1 WO 2012004979A1 JP 2011003829 W JP2011003829 W JP 2011003829W WO 2012004979 A1 WO2012004979 A1 WO 2012004979A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
movable weight
axis
anchor
weight
Prior art date
Application number
PCT/JP2011/003829
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 杉田
三朗 伊藤
大介 平山
山村 雄一
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Publication of WO2012004979A1 publication Critical patent/WO2012004979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure

Definitions

  • the present invention relates to a rotational vibration gyro that detects angular velocity in one axis.
  • an annular drive weight released on a silicon substrate and a disc-shaped detection weight arranged concentrically on the inside of the drive weight are provided, and the drive weight is rotated and oscillated around the Z axis passing through its center of gravity.
  • a rotary vibration type gyro that swings a detection weight by a Coriolis force generated when an angular velocity is applied about an axis orthogonal to the Z axis, and detects the angular velocity from a change in capacitance due to the swing.
  • a pair of detection springs are spanned on an axis (detection axis) that is the center of vibration caused by Coriolis force from a pair of anchors protruding from both sides of the detection weight to the substrate.
  • the detection weight swings by the spring functioning as a hinge of the detection weight.
  • drive springs that span between the drive weight and the detection weight and absorb the rotational vibration of the drive weight and transmit only the Coriolis force to the detection weight are arranged in four directions inclined by 45 ° with respect to the detection shaft. Has been.
  • a movable weight (vibration mass) released on the substrate and having an opening in the center, a drive electrode (comb structure) for rotating the movable weight around the Z axis passing through its center of gravity, and a detection axis (X A detection electrode for detecting the displacement of the movable weight that swings around the axis) by the Coriolis force, and an anchor that protrudes from the substrate and is inserted concentrically with the center of gravity and through the opening of the movable weight to support the movable weight
  • a support spring that is spanned between the (support point), the anchor, and the movable weight, is parallel to the direction of the detection axis (X-axis), and is arranged in line symmetry about the detection axis.
  • a rotational vibration type gyro is known (see Patent Document 2).
  • this rotational vibration type gyro when the movable weight is rotating and oscillating around the Z axis, when the angular velocity around the Y axis is received, the movable weight is minutely oscillated around the detection axis (X axis) by the generated Coriolis force. To do. At this time, the capacitance of the detection electrode changes periodically, and the angular velocity received from this change can be detected.
  • the drive weight, the detection weight, the drive spring, the detection spring, and the like are formed by being subjected to an etching process in multiple stages with respect to the silicon substrate.
  • this etching process it is difficult to etch perpendicularly with respect to the surface of the substrate, and the cross-sections of the detection spring and the drive spring formed in an elongated shape may be formed in a parallelogram. is there.
  • upper and lower component forces act in addition to left and right bending forces due to rotational vibration.
  • the upper and lower component forces act in opposite directions in the two drive springs that are symmetric with respect to the center of gravity of the movable weight, so that a vibration different from the Coriolis force is generated in the detection weight.
  • This vibration is generated around an axis perpendicular to the extending direction of the drive spring. In the gyro described above, this vibration is generated in two directions inclined by 45 ° with respect to the detection axis due to the arrangement of the drive spring, so that it interferes with the swing to be detected as noise and cannot accurately detect the angular velocity. There is a problem.
  • such a rotational vibration type gyro arbitrarily changes characteristics and resonance gain (detection sensitivity) with respect to disturbance by changing resonance frequencies around the Z axis and around the detection axis (X axis). be able to.
  • detection frequency the resonance frequency around the X axis
  • drive frequency the resonance frequency around the Z axis
  • a rotary vibration gyro having characteristics that are not easily affected can be configured.
  • the movable weight is supported by one support spring provided between both sides of the anchor.
  • the width and thickness of the support spring In order to change the characteristics of the support spring and change the characteristics of the rotational vibration gyroscope by changing each resonance frequency, it is conceivable to change the width and thickness of the support spring.
  • the characteristic of the support spring cannot be changed greatly only by changing the design of one support spring, and it is difficult to arbitrarily set the drive frequency and the detection frequency.
  • the rotational vibration type gyro of the present invention is a movable weight that is released on a substrate and has a slit opening that passes through the center of gravity and extends in the axial direction of the detection shaft, and a drive that rotationally vibrates the movable weight about the Z axis that passes through the center of gravity.
  • An electrode a detection electrode for detecting the displacement of a movable weight that swings around the detection axis by a Coriolis force, an anchor that protrudes from the substrate and is inserted concentrically with the center of gravity and through the slit opening to support the movable weight; And two rows of support springs that are spanned between the anchor and the movable weight, are parallel to the detection axis direction, and are arranged symmetrically about the detection axis.
  • the support spring is stretched from at least one of both sides of the anchor to at least one of both opening edge portions constituting both ends of the slit opening in the axial direction of the detection shaft.
  • the support spring is preferably formed in a folded shape in an “S” shape.
  • the folded portion folded in an “S” shape is formed wider than the other portions.
  • the two rows of support springs are largely separated on the movable weight side and small on the anchor side.
  • the interval between the two rows of support springs must be increased.
  • widening the distance between the support springs on the anchor side requires that the anchor itself be made large, which increases the size of the rotary vibration gyro. Therefore, according to this configuration, the distance between the two rows of support springs is narrower on the anchor side, so that the anchor can be formed smaller. Thereby, size reduction of a rotational vibration type gyro can be achieved.
  • This rotational vibration type gyroscope is a uniaxial angular velocity sensor in a MEMS (micro-electro-mechanical system) sensor manufactured by microfabrication technology using silicon or the like as a material, and is driven by reciprocating reciprocal rotational vibration in a plane. And the thing of embodiment is packaged in about 1 mm square and is commercialized.
  • the left-right direction is the “X-axis direction”
  • the up-down direction is the “Y-axis direction”
  • the penetration (front-rear) direction is the “Z-axis direction”.
  • the rotational vibration gyro 1 includes a plurality of sets (eight sets in the present embodiment) of drive electrodes 3 and a plurality of sets positioned on the outermost periphery on the substrate 2.
  • the flat circular movable weight 4 disposed inside the drive electrode 3, the anchor 6 disposed at the center of the movable weight 4, and the movable weight 4.
  • a pair of extending support springs 7 and 7 and a pair of detection electrodes 9 and 9 for detecting the displacement of the movable weight 4 are provided.
  • the rotational vibration gyro 1 includes a sealing member 12 that seals the above-described constituent elements on a substrate 2.
  • the movable weight 4 and the support spring 7 constitute a movable part of the rotary vibration gyro 1 and are supported on the substrate 2 via the anchor 6.
  • This movable part is formed by etching the substrate 2 made of silicon.
  • a fixed detection electrode 32 to be described later is supported on the substrate 2 and above the movable weight 4.
  • the movable weight 4 (same as the support spring 7) is composed of a conductive member, and the movable drive electrode 22 and the movable detection electrode 31 described later are composed of a part of the movable weight 4.
  • the plurality of drive electrodes 3 are arranged at equal intervals in the circumferential direction outside the movable weight 4.
  • Each drive electrode 3 includes a fixed drive electrode 21 integrally formed on the substrate 2 and a movable drive electrode 22 provided as a part of the movable weight 4 so as to extend radially outward from the outer peripheral end of the movable weight 4. And is composed of.
  • the fixed drive electrode 21 and the movable drive electrode 22 are opposed to each other in the form of comb teeth, and by applying an AC voltage thereto, a movable weight is generated by an electrostatic force generated between the electrodes 21 and 22. 4 rotates and vibrates around the Z-axis (around the center of gravity).
  • the movable weight 4 is formed in a flat plate shape centered on the Z axis. Needless to say, the movable weight 4 is formed vertically and symmetrically (in the Y-axis direction) with respect to the X-axis (detection axis) serving as the center of vibration due to the Coriolis force.
  • the anchor 6 is disposed so as to pass through a slit 8 having a rectangular shape in plan view formed at the center position of the movable weight 4, and is erected integrally on the substrate 2 so as to be slightly higher than the movable weight 4. .
  • the anchor 6 is formed in a columnar shape, and the pair of support springs 7 and 7 extend linearly on the X axis from both side surfaces thereof. Each support spring 7 is stretched between the anchor 6 and the edges 11 and 11 (opening edge edges) of the slit 8 to support the movable weight 4 in a state of being lifted from the substrate 2.
  • Each support spring 7 is formed in a narrow cross-sectional rectangle, allows rotation of the movable weight 4 and functions as a hinge shaft of the movable weight 4 that vibrates due to Coriolis force. That is, the support spring 7 functions as a so-called torsion spring.
  • the movable weight 4 receiving the Coriolis force vibrates like a seesaw around the pair of support springs 7 and 7 with one half and the other half in the Y-axis direction. That is, the movable weight 4 swings around the X axis (detection axis) by Coriolis force.
  • the pair of detection electrodes 9 includes a pair of movable detection electrodes 31 and 31 formed of one half and the other half of the movable weight 4 made of a conductive material in the Y-axis direction, and a pair of movable detection.
  • the capacitance between the movable detection electrode 31 and the fixed detection electrode 32 changes, and the angular velocity is detected based on this change.
  • the movable weight 4 when the movable weight 4 is in a state of rotational vibration and receives an angular velocity around the Y axis, the movable weight 4 slightly vibrates around the X axis due to the generated Coriolis force. Thereby, the electrostatic capacitance of a pair of detection electrodes 9 and 9 changes, and the received angular velocity is detected.
  • Each fixed detection electrode 32 is formed in a plane shape that is substantially the same shape as the movable detection electrode 31 constituted by a half of the movable weight 4, and is substantially at the same position in the X-axis direction and the Y-axis direction with respect to the corresponding movable detection electrode 31. They are arranged in parallel.
  • Each fixed detection electrode 32 is made of polysilicon or the like formed on the sacrificial layer, and is supported by a plurality of electrode support portions (not shown) spaced apart on the substrate 2. That is, the pair of fixed detection electrodes 32 and 32 and the pair of electrode support portions are produced by removing the sacrificial layer by etching or the like.
  • Each fixed detection electrode 32 may be formed on the sealing member 12.
  • the sealing member 12 is made of a so-called glass plate and is anodically bonded to the edge of the substrate 2. Inside the sealing member 12, an extraction wiring connected to the upper surface of the anchor 6 (movable detection electrode 31) and an extraction wiring connected to each fixed detection electrode 32 are formed (both not shown). In addition, you may comprise the sealing member 12 with a silicon substrate or a drive IC chip.
  • the pair of support springs 7 and 7 are formed by etching the substrate 2. However, in the actual etching process, it is difficult to etch perpendicularly with respect to the surface of the substrate 2.
  • the cross section of the spring 7 may not be an ideal rectangle but a parallelogram.
  • a vertical component force acts on the pair of support springs 7 and 7 in addition to the left and right bending forces due to the rotational vibration of the movable weight 4, and the vertical component forces are a pair of support springs at symmetrical positions. 7 and 7 work in the opposite direction.
  • the vibration of the movable weight 4 generated by the upper and lower component forces is a vibration generated under the influence different from the Coriolis force, and becomes a noise of a vibration to be detected.
  • the vibration of the movable weight 4 due to the vertical component force. Occurs around the Y axis. That is, the vibration of the movable weight 4 as noise is generated orthogonal to the vibration to be detected.
  • the detection electrode 9 detects a change in capacitance due to vibration centered on the X axis, the vibration centered on the Y axis that becomes noise is canceled capacitively, and only the vibration of the detection target is detected. Is done. With such a configuration, the rotational vibration gyro 1 of the present invention can accurately detect the angular velocity.
  • the rotational vibration gyro 1 is provided with two pairs (two rows) so that a pair of support springs 7 and 7 extending in the X-axis direction are parallel to each other. ing. That is, the two rows of support springs 7 are parallel to the X-axis (detection axis) direction, and are arranged symmetrically about the X-axis.
  • the pair of two-row support springs 7 and 7 extend linearly from both side surfaces of the anchor 6 formed in a prismatic shape, and span the edge portions 11 and 11 (opening edge portions) of the slit 8. Has been.
  • the rotational vibration type gyro 1 can arbitrarily change characteristics and resonance gain (detection sensitivity) with respect to disturbance by changing resonance frequencies around the Z axis and around the X axis. For example, when the resonance frequency (detection frequency) around the X axis is higher than the resonance frequency (drive frequency) around the Z axis, the rotational vibration gyro 1 having characteristics that are not easily affected by disturbances such as temperature changes and impacts is provided. If it is configured and reversed (driving frequency> detection frequency), the rotational vibration gyro 1 with good detection sensitivity is configured.
  • the support springs 7 of the rotational vibration gyro 1 are provided in two rows so as to be parallel to each other, the movable weight 4 can be stably supported on the substrate 2. Further, by adjusting the shape (cross-sectional shape, planar shape, etc.) of the support spring 7 for each row and adjusting the distance between the rows, the characteristics (for example, spring constant, bending rigidity and twist) of each support spring 7 are adjusted. Stiffness etc.) can be arbitrarily changed.
  • FIG. 3 is a graph showing the relationship between the spacing between the two rows of support springs 7 (spring spacing S) and each frequency.
  • the value of the drive frequency is substantially constant, whereas the value of the detected frequency is less than the value of the drive frequency.
  • the spring interval S can be designed freely within a range where the relationship of “drive frequency> detection frequency” is satisfied.
  • the black squares and triangles in the graph of FIG. 3 are the drive frequency and the detection frequency when the support spring 7 is in one row (one).
  • the rotational vibration gyro 1 having a frequency characteristic different from the case where the support springs 7 are in one row (one) can be configured. Thereby, the design freedom of the rotational vibration type gyro 1 is improved.
  • the rotational vibration gyroscope 1 includes a pair of semicircular movable weights 41, 41 in which a disk-shaped movable weight 4 is divided into two on the X axis. It consists of In this case, the pair of semicircular movable weights 41, 41 have cutout portions 42, 42 at the center of the opposite sides, respectively, and the anchor 6 is located between the cutout portions 42, 42 at the center of the movable weight 4. Is inserted.
  • the two pairs of support springs 7 and 7 are arranged so as to be parallel to each other in the X-axis direction of the detection axis, from the both side surfaces of the anchor 6 to the edge portions 43 and 43 (notch ends) (Over the edge).
  • the pair of semicircular movable weights 41, 41 are coupled at positions outside the cutout portions 42, 42, and the pair of movable semicircular weights 41, 41 are kept constant with respect to each other.
  • Weight connection springs 44, 44 are provided.
  • Each movable weight coupling spring 44 couples a pair of semicircular movable weights 41 and 41 via a pair of spring support portions 45 and 45 disposed on opposite sides of the pair of semicircular movable weights 41 and 41.
  • the detection weight 102 can move in the same direction with respect to the external force from the Z-axis direction, and by taking the difference between the vibrations of the two detection weights 102.
  • the excess noise component can be canceled, the movable weight 4 can be prevented from being damaged, and the durability of the movable part can be improved.
  • the pair of connecting springs 44 and 44 can be oscillated in the same phase with respect to the external force of the Z-axis rotation by the movable weight connecting springs 44 and 44.
  • FIGS. 1 a rotational vibration gyro 1 according to another embodiment of the present invention will be described with reference to FIGS.
  • detailed description of the same configuration as in the first embodiment is omitted, and the same reference numerals are used.
  • the following other embodiments can also be applied to the various modifications according to the first embodiment.
  • FIG. 5 shows a rotational vibration gyro 1 according to a second embodiment of the present invention.
  • the rotational vibration gyro 1 according to the present embodiment has two slits 8 formed on the movable weight 4 so as to be symmetrical with respect to the X axis and the Y axis.
  • Each of the anchors 6 is inserted through the.
  • Each anchor 6 is disposed in each slit 8 on the X axis and at a position away from the center of the movable weight 4, and a support spring 7 is stretched from the inner surface of each anchor 6 to the edge 11 of the slit 8. ing. That is, the anchors 6 and 6 and the support springs 7 and 7 disposed in each slit 8 are arranged symmetrically about the X axis and the Y axis.
  • each anchor 6 is disposed in a position near the center of the movable weight 4 in each slit 8, and the support spring 7 is connected to the edge of the slit 8 from the outer surface of the anchor 6. It may be configured to span over the section 11. Further, as shown in FIG. 6B, each anchor 6 is disposed in the center of the slit 8, and a pair of support springs 7 and 7 are provided for each anchor 6 from each side of the anchor 6 to each edge of the slit 8. 11 may be used.
  • FIG. 7 shows a rotational vibration gyro 1 according to a third embodiment of the present invention.
  • the rotational vibration gyro 1 according to the present embodiment has three slits 8 formed on the movable weight 4 so as to be symmetrical about the X axis and the Y axis.
  • Each of the anchors 6 is inserted through the.
  • the anchor 6 is disposed in the center of the slit 8, and a pair of support springs 7, 7 are spanned from both side surfaces of the anchor 6 to both edges 11, 11 of the slit 8. ing.
  • each anchor 6 is disposed on the X axis and at a position away from the center of the movable weight 4, and the slit 8 is formed from the inner surface of each anchor 6.
  • the support springs 7 are stretched over the edge 11 of each. That is, the anchors 6 and 6 and the support springs 7 and 7 disposed in each slit 8 are arranged symmetrically about the X axis and the Y axis.
  • the present embodiment is configured by combining the first embodiment and the second embodiment.
  • FIG. 8 shows a rotational vibration gyro 1 according to a fourth embodiment of the present invention.
  • the rotational vibration gyro 1 according to the present embodiment does not have the slit 8 in the movable weight 4 and has a pair of anchors 6 and 6 outside the movable weight 4.
  • the pair of anchors 6, 6 are arranged on the X axis, and a pair of support springs 7, 7 are spanned from the inner surface of each anchor 6 to each outer peripheral end 51, 51 of the movable weight 4.
  • the pair of anchors 6 and 6 and the pair of support springs 7 and 7 are arranged in line symmetry with respect to the X axis and the Y axis as a center.
  • the anchor 6 provided outside the movable weight 4 may be formed in a frame shape so as to surround the movable weight 4.
  • a pair of spring coupling portions 52, 52 are formed on the inner surface of the anchor 6 on the X axis, and a pair of support springs 7 extends from the spring coupling portions 52, 52 to the respective outer peripheral end portions 51, 51 of the movable weight 4. , 7 are spanned.
  • the anchor 6 has a rectangular frame shape in the drawing, it may have any shape as long as the shape surrounds the movable weight 4.
  • the movable weight 4 has a function of a so-called drive weight 101 and a detection weight 102, and the support spring 7 has a function of a so-called drive spring and detection spring. Therefore, the structure of the movable part can be simplified and the manufacture of the device can be simplified.
  • FIG. 10 shows a rotational vibration gyro 1 according to a fifth embodiment of the present invention.
  • the rotational vibration gyro 1 according to the present embodiment has a configuration in which the movable weight 4 in the above embodiment is separated into a drive weight 101 and a detection weight 102.
  • the drive weight 101 is formed in an annular shape, and a large number of drive electrodes 3 are arranged at equal intervals around the drive weight 101.
  • the detection weight 102 is formed in a disc shape and is disposed inside and concentrically with the drive weight 101.
  • a pair of movable detection electrodes 31, 31 constituted by one half and the other half of the detection weight 102 in the X-axis direction, and a fixed disposed directly above the pair of movable detection electrodes 31, 31.
  • the detection electrode 9 is configured by the detection electrodes 32 and 32.
  • a slit 8 is formed at the center position of the detection weight 102, and a pair of notches 111, 111 are formed at both ends on the X axis. Further, an anchor 6 erected from the substrate 2 is inserted into the slit 8. In each notch 111, a connecting spring 114 is stretched from the inner edge 112 of the drive weight 101 to the edge 113 of the notch 111. Further, in the slit 8, a pair of support springs 7 and 7 (detection springs) are spanned between both side surfaces of the anchor 6 and each edge 11 of the slit 8.
  • connection spring 114 absorbs the rotational vibration of the drive weight 101 by the drive electrode 3 and transmits Coriolis force to the detection weight 102. Further, the coupling spring 114 and the support spring 7 function as a hinge of the detection weight 102 that vibrates due to Coriolis force. In this case, the coupling spring 114 and the support spring 7 are disposed so as to extend in parallel with the X-axis direction.
  • the detection weight 102 may be formed in an annular shape, and the drive weight 101 formed in a disk shape may be disposed inside the detection weight 102 and concentrically.
  • the connection spring 114 that connects the detection weight 102 and the drive weight 101 extends so as to be parallel to the axial direction of the X axis.
  • the support spring 7 (the coupling spring 114 and the support spring 7) functioning as a hinge of the movable weight 4 (detection weight 102) that vibrates about the X axis is provided. Since it extends in parallel with the axial direction of the X axis, which is the detection axis of the movable weight 4, it is possible to limit the vibration that becomes noise to a direction orthogonal to the vibration that is the detection target. Therefore, it is possible to accurately detect the vibration and accurately detect the angular velocity without causing the vibration as noise to interfere with the vibration to be detected.
  • FIG. 11 shows a rotational vibration gyro 1 according to a sixth embodiment of the present invention.
  • the rotational vibration gyro 1 of the present embodiment is similar to that according to the first modification of the first embodiment described above, with a pair of two rows of support springs 7 extending in the X-axis direction. 7.
  • Each support spring 7 is folded in an “S” shape toward the outside near the center in the Y-axis direction. That is, the two rows of support springs are spaced farther apart on the movable weight 4 side than on the anchor 6 side.
  • Each support spring 7 has a folded portion 13 folded in an “S” shape so as to be wider (thicker) than the other portions.
  • FIG. 12 is a graph showing the relationship between the folded portion 13 of each support spring 7 and the amount of displacement in the Z-axis direction per 1 ⁇ m of drive displacement.
  • the width of the folded portion 13 of each support spring 7 is increased, the amount of displacement in the Z-axis direction that occurs during drive rotation (“longitudinal displacement / rotational displacement around the Z-axis (drive Displacement) ”) is decreasing.
  • the degree of freedom in setting the detection frequency and the drive frequency is improved as the design flexibility of each support spring 7 is improved, and the Z-axis direction vibration (vertical displacement), which becomes noise during angular velocity detection, is suppressed. can do.
  • the applicant of the present application confirms that the longitudinal displacement is suppressed to about 1 ⁇ 2 to 3 compared to the straight support spring 7 by making each support spring 7 into an “S” shape. is doing.
  • FIG. 13 is a graph and a table showing the relationship between the interval between the two rows of support springs 7 and each frequency.
  • the drive frequency slightly increases but shows a substantially constant value.
  • the detection frequency is a value less than or equal to the drive frequency when the spring interval S is 20 ⁇ m, but as the spring interval S increases, the value increases in a range greater than or equal to the drive frequency value. That is, as the detection frequency changes, the difference from the drive frequency relatively changes.
  • the spring interval S can be designed freely within a range where the relationship of “drive frequency ⁇ detection frequency” is satisfied.
  • the interval between the two rows of support springs 7 (spring interval S). Need to be larger.
  • the anchor 6 itself must be formed large so as to correspond to the spring distance S.
  • the slit 8 and the movable weight 4 are also increased in size, and as a result, the rotary vibration gyro 1 cannot be reduced in size. Further, if the slit 8 is opened larger than necessary with respect to the size of the movable weight 4, there is a possibility that the strength of the movable weight 4 is reduced.
  • the two rows of support springs 7 passed between the anchor 6 and the movable weight 4 are movable compared to the interval (spring interval) on the anchor 6 side.
  • the intervals on the weight 4 side are increased.
  • the straight support spring 7 similar to that according to the first embodiment has been described, but instead, “S” similar to that according to the sixth embodiment is used.
  • a letter-shaped support spring 7 may be used.
  • the characteristics of the support springs 7 are adjusted by adjusting the shape and the spring interval S for each row of the pair of support springs 7 spanned between the anchor 6 and the movable weight 4. Any changes can be made. Thereby, the design freedom of the support spring 7 can be improved, and the rotational vibration gyro 1 in which a desired drive frequency and detection frequency are arbitrarily set can be configured.
  • this invention is not limited to each embodiment mentioned above at all, In the range which does not deviate from the summary, it can implement with a various form.

Abstract

Provided is a rotational vibration gyro which achieves improvement in the degree of freedom of design regarding flexural and torsional characteristics of a support spring. Disclosed is a rotational vibration gyro (1) characterized by being provided with a movable weight (4) which is released above a substrate (2) and has a slit (8) passing the center of gravity and extending in the axial direction of a detection axis, a drive electrode (3) which rotationally vibrates the movable weight (4) around the Z axis that passes the center of gravity thereof, a detection electrode (9) which detects the displacement of the movable weight (4) that is swung around the detection axis by Coriolis force, an anchor (6) which is provided so as to project from the substrate (2) and inserted into the slit (8) concentrically with center of gravity and supports the movable weight (4), and two rows of support springs (7) which are hung between the anchor (6) and the movable weight (4), are parallel in the detection axis direction, and are disposed line-symmetrically with respect to the detection axis.

Description

回転振動型ジャイロRotating vibration gyro
 本発明は、1軸における角速度を検出する回転振動型ジャイロに関する。 The present invention relates to a rotational vibration gyro that detects angular velocity in one axis.
 従来、シリコン基板にリリース形成された環状の駆動錘と、駆動錘の内側に同心上に配設された円盤状の検出錘と、を備え、駆動錘をその重心を通るZ軸周りに回転振動させて、Z軸に直交する軸回りに角速度が加わったときに発生したコリオリ力により検出錘を揺動させ、この揺動による静電容量の変化から当該角速度を検出する回転振動型ジャイロが知られている(特許文献1参照)。
 このジャイロは、検出錘の両側から基板上に突設された一対のアンカーにかけてコリオリ力による振動の中心となる軸(検出軸)上に一対の検出ばねが掛け渡されており、この一対の検出ばねが検出錘のヒンジとして機能することにより、検出錘が揺動する。一方、駆動錘および検出錘の間に掛け渡されると共に、駆動錘の回転振動を吸収しコリオリ力のみを検出錘に伝達する駆動ばねが、検出軸に対して45°傾いた4方向に配設されている。
Conventionally, an annular drive weight released on a silicon substrate and a disc-shaped detection weight arranged concentrically on the inside of the drive weight are provided, and the drive weight is rotated and oscillated around the Z axis passing through its center of gravity. Thus, there is known a rotary vibration type gyro that swings a detection weight by a Coriolis force generated when an angular velocity is applied about an axis orthogonal to the Z axis, and detects the angular velocity from a change in capacitance due to the swing. (See Patent Document 1).
In this gyro, a pair of detection springs are spanned on an axis (detection axis) that is the center of vibration caused by Coriolis force from a pair of anchors protruding from both sides of the detection weight to the substrate. The detection weight swings by the spring functioning as a hinge of the detection weight. On the other hand, drive springs that span between the drive weight and the detection weight and absorb the rotational vibration of the drive weight and transmit only the Coriolis force to the detection weight are arranged in four directions inclined by 45 ° with respect to the detection shaft. Has been.
 また従来、基板上にリリースされ、中央に開口部を有する可動錘(振動質量)と、可動錘をその重心を通るZ軸回りに回転振動させる駆動電極(コーム構造体)と、検出軸(X軸)を中心にコリオリ力により揺動する可動錘の変位を検出する検出電極と、基板に突設されると共に、重心と同心上において可動錘の開口部に挿通し、可動錘を支持するアンカー(支承点)とアンカーと可動錘との間に掛け渡され、検出軸(X軸)方向に平行であって、検出軸を中心に線対称に一対配設された支持ばねと、を備えた回転振動型ジャイロが知られている(特許文献2参照)。
 この回転振動型ジャイロは、可動錘がZ軸回りの回転振動している状態で、Y軸回りの角速度を受けると、発生したコリオリ力により可動錘が検出軸(X軸)を中心に微小振動する。このとき、検出電極の静電容量は周期的に変化し、この変化から受けた角速度を検出することができるようになっている。
Conventionally, a movable weight (vibration mass) released on the substrate and having an opening in the center, a drive electrode (comb structure) for rotating the movable weight around the Z axis passing through its center of gravity, and a detection axis (X A detection electrode for detecting the displacement of the movable weight that swings around the axis) by the Coriolis force, and an anchor that protrudes from the substrate and is inserted concentrically with the center of gravity and through the opening of the movable weight to support the movable weight A support spring that is spanned between the (support point), the anchor, and the movable weight, is parallel to the direction of the detection axis (X-axis), and is arranged in line symmetry about the detection axis. A rotational vibration type gyro is known (see Patent Document 2).
In this rotational vibration type gyro, when the movable weight is rotating and oscillating around the Z axis, when the angular velocity around the Y axis is received, the movable weight is minutely oscillated around the detection axis (X axis) by the generated Coriolis force. To do. At this time, the capacitance of the detection electrode changes periodically, and the angular velocity received from this change can be detected.
国際公開2010-016094号公報International Publication No. 2010-016094 特表平11-513111号公報Japanese National Patent Publication No. 11-513111
 ところで、この種のジャイロにおいて、駆動錘、検出錘、駆動ばねおよび検出ばね等は、シリコン基板に対する何段階にも亘るエッチングプロセスを経てリリース形成される。実際には、このエッチングプロセスにおいて基板の表面に対して精度よく垂直にエッチングすることは困難であり、細長形状に形成される検出ばねおよび駆動ばねの断面が平行四辺形に形成されてしまうことがある。かかる場合、特に、各駆動ばねにおいては、回転振動による左右の曲げ力の他に上下の分力が作用する。上下の分力は、可動錘の重心に対して対称位置にある2つの駆動ばねにおいて逆方向に作用するため、検出錘にコリオリ力とは別の振動を発生させる。この振動は、駆動ばねの延在方向に直交する軸を中心として発生する。上記のジャイロでは、駆動ばねの配置からこの振動が検出軸に対して45°傾いた2方向に発生するため、検出されるべき揺動にノイズとして干渉し、精度よく角速度を検出することができないという問題がある。 By the way, in this type of gyro, the drive weight, the detection weight, the drive spring, the detection spring, and the like are formed by being subjected to an etching process in multiple stages with respect to the silicon substrate. Actually, in this etching process, it is difficult to etch perpendicularly with respect to the surface of the substrate, and the cross-sections of the detection spring and the drive spring formed in an elongated shape may be formed in a parallelogram. is there. In such a case, in particular, in each drive spring, upper and lower component forces act in addition to left and right bending forces due to rotational vibration. The upper and lower component forces act in opposite directions in the two drive springs that are symmetric with respect to the center of gravity of the movable weight, so that a vibration different from the Coriolis force is generated in the detection weight. This vibration is generated around an axis perpendicular to the extending direction of the drive spring. In the gyro described above, this vibration is generated in two directions inclined by 45 ° with respect to the detection axis due to the arrangement of the drive spring, so that it interferes with the swing to be detected as noise and cannot accurately detect the angular velocity. There is a problem.
 また、ここで、このような回転振動型ジャイロは、Z軸回りと検出軸(X軸)回りとの共振周波数をそれぞれ変えることにより、外乱に対する特性や共振ゲイン(検出感度)を任意の変更することができる。例えば、X軸回りの共振周波数(以降「検出周波数」と呼ぶ。)が、Z軸回りの共振周波数(以降、「駆動周波数」と呼ぶ。)よりも大きい場合、温度変化や衝撃などの外乱の影響を受けにくい特性を有する回転振動型ジャイロを構成することができる。 In addition, here, such a rotational vibration type gyro arbitrarily changes characteristics and resonance gain (detection sensitivity) with respect to disturbance by changing resonance frequencies around the Z axis and around the detection axis (X axis). be able to. For example, when the resonance frequency around the X axis (hereinafter referred to as “detection frequency”) is higher than the resonance frequency around the Z axis (hereinafter referred to as “drive frequency”), disturbances such as temperature changes and shocks are caused. A rotary vibration gyro having characteristics that are not easily affected can be configured.
 特許文献2に記載の回転振動型ジャイロでは、可動錘は、アンカーの両側との間にそれぞれ設けられた1本の支持ばねにより支持されている。支持ばねの特性を変更し、各共振周波数を変えて回転振動型ジャイロの特性を変更するには、支持ばねの幅や厚みを変えることが考えられる。しかし、1本の支持ばねの設計変更のみでは、支持ばねの特性を大きく変更することはできず、駆動周波数と検出周波数とを任意に設定することが困難であった。 In the rotational vibration type gyro described in Patent Document 2, the movable weight is supported by one support spring provided between both sides of the anchor. In order to change the characteristics of the support spring and change the characteristics of the rotational vibration gyroscope by changing each resonance frequency, it is conceivable to change the width and thickness of the support spring. However, the characteristic of the support spring cannot be changed greatly only by changing the design of one support spring, and it is difficult to arbitrarily set the drive frequency and the detection frequency.
 本発明は、精度よく角速度検出することのできる回転振動型ジャイロを提供することを課題とする。また、本発明は、支持ばねの曲げや捻りの特性に関し、設計の自由度を向上させ得る回転振動型ジャイロを提供することを課題とする。 An object of the present invention is to provide a rotational vibration gyro capable of accurately detecting an angular velocity. Another object of the present invention is to provide a rotary vibration type gyro that can improve the degree of freedom in design with respect to the bending and twisting characteristics of the support spring.
 本発明の回転振動型ジャイロは、基板上にリリースされ、重心を通り検出軸の軸方向に延在するスリット開口を有する可動錘と、可動錘をその重心を通るZ軸回りに回転振動させる駆動電極と、検出軸を中心にコリオリ力により揺動する可動錘の変位を検出する検出電極と、基板に突設されると共に重心と同心上においてスリット開口に挿通し、可動錘を支持するアンカーと、アンカーと可動錘との間に掛け渡され、検出軸方向に平行であって、検出軸を中心に線対称に配設された2列の支持ばねと、を備えたことを特徴とする。 The rotational vibration type gyro of the present invention is a movable weight that is released on a substrate and has a slit opening that passes through the center of gravity and extends in the axial direction of the detection shaft, and a drive that rotationally vibrates the movable weight about the Z axis that passes through the center of gravity. An electrode, a detection electrode for detecting the displacement of a movable weight that swings around the detection axis by a Coriolis force, an anchor that protrudes from the substrate and is inserted concentrically with the center of gravity and through the slit opening to support the movable weight; And two rows of support springs that are spanned between the anchor and the movable weight, are parallel to the detection axis direction, and are arranged symmetrically about the detection axis.
 この場合、支持ばねは、検出軸の軸方向において、アンカーの両側の少なくとも一方から、スリット開口の両端を構成する両開口端縁部の少なくとも一方に掛け渡されていることが好ましい。 In this case, it is preferable that the support spring is stretched from at least one of both sides of the anchor to at least one of both opening edge portions constituting both ends of the slit opening in the axial direction of the detection shaft.
 これらの構成によれば、アンカーと可動錘との間には、2列の支持ばねが掛け渡されている。このため、列毎の支持ばねの形状(断面形状、平面形状等)の調整や、列と列との間隔を調整することで、支持ばねの特性(例えば、ばね定数、曲げ剛性および捻り剛性など)を任意の変更することができる。これにより、支持ばねの設計自由度が向上し、駆動周波数(Z軸回り)および検出周波数(検出軸(X軸)回り)を任意に設定することができるため、所望の特性を有する回転振動型ジャイロを構成することができる。 According to these configurations, two rows of support springs are stretched between the anchor and the movable weight. For this reason, characteristics of the support spring (for example, spring constant, bending rigidity, torsional rigidity, etc.) are adjusted by adjusting the shape (cross-sectional shape, planar shape, etc.) of the support spring for each row and adjusting the distance between the rows. ) Can be changed arbitrarily. As a result, the design flexibility of the support spring is improved, and the drive frequency (around the Z axis) and the detection frequency (around the detection axis (X axis)) can be arbitrarily set. A gyro can be constructed.
 この場合、支持ばねは、「S」字状に折返し形状に形成されていることが好ましい。 In this case, the support spring is preferably formed in a folded shape in an “S” shape.
 また、この場合、「S」字状に折り返された折返し部が、他の部分に比して幅広に形成されていることが好ましい。 In this case, it is preferable that the folded portion folded in an “S” shape is formed wider than the other portions.
 これらの構成によれば、支持ばねの設計自由度向上に伴い各共振周波数の設定自由度が向上するだけでなく、角速度検出時のノイズとなるZ軸方向の揺れ(縦揺れ)を抑制することができる。特に、「S」字状に折り返された折返し部を、他の部分よりも幅広に形成することにより、Z軸方向の揺れを更に効果的に抑制することができる。本願出願人は、支持ばねを「S」字状にすることで、ストレート状の支持ばねと比較して、非共振状態における「縦変位/Z軸回りの回転変位(駆動変位)」が1/2から1/3程度に抑制されることを確認している。 According to these configurations, not only the degree of freedom in setting each resonance frequency is improved with the improvement in the degree of freedom in design of the support spring, but also the vibration in the Z-axis direction (pitch) that becomes noise during angular velocity detection is suppressed. Can do. In particular, by forming the folded portion folded back in an “S” shape wider than the other portions, it is possible to more effectively suppress the swing in the Z-axis direction. The applicant of the present application makes the “S” shape of the support spring, so that “vertical displacement / rotational displacement around the Z axis (drive displacement)” in the non-resonant state is 1 / compared to the straight support spring. It is confirmed that it is suppressed to about 2 to 1/3.
 この場合、2列の支持ばねは、可動錘側が大きく離間し、アンカー側が小さく離間していることが好ましい。 In this case, it is preferable that the two rows of support springs are largely separated on the movable weight side and small on the anchor side.
 ここで、駆動周波数と検出周波数との差(駆動周波数<検出周波数)を大きくするためには、2列の支持ばねの間隔を大きくしなければならない。しかしながら、各支持ばねのアンカー側の間隔を広くするということは、アンカー自体を大きく形成しなければならず、回転振動型ジャイロが大型化してしまう。
 そこで、この構成によれば、2列の支持ばねの間隔はアンカー側の方が狭くなっているため、アンカーを小さく形成することができる。これにより、回転振動型ジャイロの小型化を図ることができる。
Here, in order to increase the difference between the drive frequency and the detection frequency (drive frequency <detection frequency), the interval between the two rows of support springs must be increased. However, widening the distance between the support springs on the anchor side requires that the anchor itself be made large, which increases the size of the rotary vibration gyro.
Therefore, according to this configuration, the distance between the two rows of support springs is narrower on the anchor side, so that the anchor can be formed smaller. Thereby, size reduction of a rotational vibration type gyro can be achieved.
第1実施形態に係る回転振動型ジャイロの平面図(a)および断面図(b)である。It is the top view (a) and sectional drawing (b) of the rotational vibration gyroscope which concern on 1st Embodiment. 第1実施形態の第1変形例に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro which concerns on the 1st modification of 1st Embodiment. 第1実施形態の第1変形例に係る回転振動型ジャイロにおけるばね間隔と各周波数との関係を示したグラフである。It is the graph which showed the relationship between the spring space | interval and each frequency in the rotational vibration gyroscope which concerns on the 1st modification of 1st Embodiment. 第1実施形態の第2変形例に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro which concerns on the 2nd modification of 1st Embodiment. 第2実施形態に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro according to a second embodiment. 第2実施形態の変形例に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro which concerns on the modification of 2nd Embodiment. 第3実施形態に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro according to a third embodiment. 第4実施形態に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro which concerns on 4th Embodiment. 第4実施形態の変形例に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro which concerns on the modification of 4th Embodiment. 第5実施形態に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration type gyro according to a fifth embodiment. 第6実施形態に係る回転振動型ジャイロの平面図である。It is a top view of the rotational vibration gyroscope concerning 6th Embodiment. 第6実施形態に係る回転振動型ジャイロにおける各支持ばねの折返し部と駆動変位1μmあたりのZ軸方向変位量との関係を示したグラフである。It is the graph which showed the relationship between the folding | turning part of each support spring and the Z-axis direction displacement amount per 1 micrometer of drive displacements in the rotational vibration gyroscope which concerns on 6th Embodiment. 第6実施形態に係る回転振動型ジャイロにおけるばね間隔と各周波数との関係を示したグラフおよび表である。It is the graph and table | surface which showed the relationship between the spring space | interval and each frequency in the rotational vibration type gyro which concerns on 6th Embodiment.
 以下、添付図面を参照して、本発明の一実施形態に係る回転振動型ジャイロについて説明する。この回転振動型ジャイロは、シリコン等を材料として微細加工技術により製造されるMEMS(micro electro mechanical system)センサにおける1軸の角速度センサであり、平面内において正逆の往復回転振動により駆動する。そして、実施形態のものは、1mm角程度にパッケージングされ製品化されるようになっている。なお、ここでは、平面図において左右方向を「X軸方向」、上下方向を「Y軸方向」、貫通(前後)方向を「Z軸方向」として説明を進める。 Hereinafter, a rotational vibration gyro according to an embodiment of the present invention will be described with reference to the accompanying drawings. This rotational vibration type gyroscope is a uniaxial angular velocity sensor in a MEMS (micro-electro-mechanical system) sensor manufactured by microfabrication technology using silicon or the like as a material, and is driven by reciprocating reciprocal rotational vibration in a plane. And the thing of embodiment is packaged in about 1 mm square and is commercialized. Here, in the plan view, the description will be made assuming that the left-right direction is the “X-axis direction”, the up-down direction is the “Y-axis direction”, and the penetration (front-rear) direction is the “Z-axis direction”.
 図1に示すように、第1実施形態に係る回転振動型ジャイロ1は、基板2上において、最外周に位置する複数組(本実施形態のものは8組)の駆動電極3と、複数組の駆動電極3の内側に配設した平板円状の可動錘4と、可動錘4の中央位置に配設されたアンカー6と、アンカー6と可動錘4との間に渡したX軸方向に延びる一対の支持ばね7,7と、可動錘4の変位を検出する一対の検出電極9,9と、を備えて構成されている。また、この回転振動型ジャイロ1は、基板2上に上記の構成素子を封止する封止部材12を備えている。 As shown in FIG. 1, the rotational vibration gyro 1 according to the first embodiment includes a plurality of sets (eight sets in the present embodiment) of drive electrodes 3 and a plurality of sets positioned on the outermost periphery on the substrate 2. In the X-axis direction between the anchor 6 and the movable weight 4, the flat circular movable weight 4 disposed inside the drive electrode 3, the anchor 6 disposed at the center of the movable weight 4, and the movable weight 4. A pair of extending support springs 7 and 7 and a pair of detection electrodes 9 and 9 for detecting the displacement of the movable weight 4 are provided. The rotational vibration gyro 1 includes a sealing member 12 that seals the above-described constituent elements on a substrate 2.
 この場合、可動錘4および支持ばね7は、回転振動型ジャイロ1の可動部を構成しており、アンカー6を介して基板2上に支持されている。この可動部は、シリコンで構成された基板2をエッチングして形成されている。同様に、後述する固定検出電極32は、基板2上であって、可動錘4の上側に支持されている。そして、可動錘4(支持ばね7も同じ)は、導電性の部材で構成され、後述する可動駆動電極22および可動検出電極31は、可動錘4の一部で構成される。 In this case, the movable weight 4 and the support spring 7 constitute a movable part of the rotary vibration gyro 1 and are supported on the substrate 2 via the anchor 6. This movable part is formed by etching the substrate 2 made of silicon. Similarly, a fixed detection electrode 32 to be described later is supported on the substrate 2 and above the movable weight 4. The movable weight 4 (same as the support spring 7) is composed of a conductive member, and the movable drive electrode 22 and the movable detection electrode 31 described later are composed of a part of the movable weight 4.
 複数の駆動電極3は、可動錘4の外側において周方向に均等間隔で配置されている。各駆動電極3は、基板2上に一体に形成した固定駆動電極21と、可動錘4の一部として可動錘4の外周端から径方向外方に延在するように設けた可動駆動電極22と、で構成されている。固定駆動電極21と可動駆動電極22とは、相互にくし歯の形態を有して対峙しており、これに交流電圧を印加することで、両電極21,22間に生ずる静電気力により可動錘4がZ軸回り(重心回り)に回転振動する。 The plurality of drive electrodes 3 are arranged at equal intervals in the circumferential direction outside the movable weight 4. Each drive electrode 3 includes a fixed drive electrode 21 integrally formed on the substrate 2 and a movable drive electrode 22 provided as a part of the movable weight 4 so as to extend radially outward from the outer peripheral end of the movable weight 4. And is composed of. The fixed drive electrode 21 and the movable drive electrode 22 are opposed to each other in the form of comb teeth, and by applying an AC voltage thereto, a movable weight is generated by an electrostatic force generated between the electrodes 21 and 22. 4 rotates and vibrates around the Z-axis (around the center of gravity).
 可動錘4はZ軸を中心とする平板円状に形成されている。言うまでもないが、可動錘4は、コリオリ力による振動の中心となるX軸(検出軸)に対し上下(Y軸方向において)対称に形成されている。 The movable weight 4 is formed in a flat plate shape centered on the Z axis. Needless to say, the movable weight 4 is formed vertically and symmetrically (in the Y-axis direction) with respect to the X-axis (detection axis) serving as the center of vibration due to the Coriolis force.
 アンカー6は、可動錘4の中央位置に形成した平面視矩形状のスリット8に挿通するように配設され、可動錘4より僅かに高くなるように基板2上に一体に立設されている。この場合、アンカー6は柱状に形成されており、その両側面から上記の一対の支持ばね7,7が、X軸上において直線状に延在している。各支持ばね7は、アンカー6とスリット8の縁部11,11(開口端縁部)との間に掛け渡され、可動錘4を基板2から浮き上がった状態に支持している。 The anchor 6 is disposed so as to pass through a slit 8 having a rectangular shape in plan view formed at the center position of the movable weight 4, and is erected integrally on the substrate 2 so as to be slightly higher than the movable weight 4. . In this case, the anchor 6 is formed in a columnar shape, and the pair of support springs 7 and 7 extend linearly on the X axis from both side surfaces thereof. Each support spring 7 is stretched between the anchor 6 and the edges 11 and 11 (opening edge edges) of the slit 8 to support the movable weight 4 in a state of being lifted from the substrate 2.
 各支持ばね7は、幅狭の断面矩形に形成され、可動錘4の回転振動を許容すると共に、コリオリ力により振動する可動錘4のヒンジ軸として機能する。すなわち、支持ばね7は、いわゆるトーションばねとして機能する。これにより、コリオリ力を受けた可動錘4は、Y軸方向の一方の半部と他方の半部とが、一対の支持ばね7,7を中心にシーソー様に振動する。すなわち、可動錘4は、コリオリ力によりX軸(検出軸)を中心として揺動する。 Each support spring 7 is formed in a narrow cross-sectional rectangle, allows rotation of the movable weight 4 and functions as a hinge shaft of the movable weight 4 that vibrates due to Coriolis force. That is, the support spring 7 functions as a so-called torsion spring. As a result, the movable weight 4 receiving the Coriolis force vibrates like a seesaw around the pair of support springs 7 and 7 with one half and the other half in the Y-axis direction. That is, the movable weight 4 swings around the X axis (detection axis) by Coriolis force.
 一対の検出電極9は、導電性材料で形成された可動錘4のY軸方向の一方の半部と他方の半部とにより構成された一対の可動検出電極31,31と、一対の可動検出電極31,31に対し微小間隙である静電容量ギャップ(但し、可動錘4の振幅より大きい)33を存して上側に対面する一対の固定検出電極(固定検出電極部)32,32と、で構成されている。コリオリ力により可動錘4がシーソー様に振動すると、可動検出電極31と固定検出電極32との間の静電容量が変化し、この変化に基づいて角速度が検出される。本実施形態のものでは、可動錘4が回転振動している状態で、Y軸回りの角速度を受けると、発生するコリオリ力により可動錘4がX軸を中心に微小振動する。これにより、一対の検出電極9,9の静電容量が変化し、受けた角速度が検出される。 The pair of detection electrodes 9 includes a pair of movable detection electrodes 31 and 31 formed of one half and the other half of the movable weight 4 made of a conductive material in the Y-axis direction, and a pair of movable detection. A pair of fixed detection electrodes (fixed detection electrode portions) 32, 32 facing the upper side with a capacitance gap 33 (which is larger than the amplitude of the movable weight 4) 33 being a minute gap with respect to the electrodes 31, 31; It consists of When the movable weight 4 vibrates like a seesaw due to the Coriolis force, the capacitance between the movable detection electrode 31 and the fixed detection electrode 32 changes, and the angular velocity is detected based on this change. In the embodiment, when the movable weight 4 is in a state of rotational vibration and receives an angular velocity around the Y axis, the movable weight 4 slightly vibrates around the X axis due to the generated Coriolis force. Thereby, the electrostatic capacitance of a pair of detection electrodes 9 and 9 changes, and the received angular velocity is detected.
 各固定検出電極32は、可動錘4の半部で構成した可動検出電極31と略同形の平面形状に形成され、対応する可動検出電極31対しX軸方向およびY軸方向において略同位置に且つ平行に配設されている。また、各固定検出電極32は、犠牲層上に成膜したポリシリコン等で構成され、基板2上に離間して配置した複数の電極支持部(図示省略)に支持されている。すなわち、一対の固定検出電極32,32および一対の電極支持部は、上記の犠牲層をエッチング等により除去することで作製される。なお、各固定検出電極32を封止部材12上に形成してもよい。 Each fixed detection electrode 32 is formed in a plane shape that is substantially the same shape as the movable detection electrode 31 constituted by a half of the movable weight 4, and is substantially at the same position in the X-axis direction and the Y-axis direction with respect to the corresponding movable detection electrode 31. They are arranged in parallel. Each fixed detection electrode 32 is made of polysilicon or the like formed on the sacrificial layer, and is supported by a plurality of electrode support portions (not shown) spaced apart on the substrate 2. That is, the pair of fixed detection electrodes 32 and 32 and the pair of electrode support portions are produced by removing the sacrificial layer by etching or the like. Each fixed detection electrode 32 may be formed on the sealing member 12.
 封止部材12は、いわゆるガラス板で構成されており、基板2の縁部に陽極接合されている。封止部材12の内側には、アンカー6(可動検出電極31)の上面に接続される取出し配線、および各固定検出電極32に接続される取出し配線が形成されている(いずれも図示省略)。なお、封止部材12をシリコン基板や駆動ICチップにより構成しても良い。 The sealing member 12 is made of a so-called glass plate and is anodically bonded to the edge of the substrate 2. Inside the sealing member 12, an extraction wiring connected to the upper surface of the anchor 6 (movable detection electrode 31) and an extraction wiring connected to each fixed detection electrode 32 are formed (both not shown). In addition, you may comprise the sealing member 12 with a silicon substrate or a drive IC chip.
 上記のように、一対の支持ばね7,7は、基板2をエッチングして形成されるが、実際のエッチングプロセスにおいて、基板2の表面に対して高精度に垂直にエッチングすることが難しく、支持ばね7の断面が理想的な矩形とならず平行四辺形となってしまうことがある。かかる場合、一対の支持ばね7,7には、可動錘4の回転振動による左右の曲げ力の他に上下の分力が作用し、この上下の分力は、対称位置にある一対の支持ばね7,7において逆方向に作用する。この上下の分力により発生した可動錘4の振動は、コリオリ力とは別の影響下で発生する振動であり、検出対象である振動のノイズとなる。 As described above, the pair of support springs 7 and 7 are formed by etching the substrate 2. However, in the actual etching process, it is difficult to etch perpendicularly with respect to the surface of the substrate 2. The cross section of the spring 7 may not be an ideal rectangle but a parallelogram. In this case, a vertical component force acts on the pair of support springs 7 and 7 in addition to the left and right bending forces due to the rotational vibration of the movable weight 4, and the vertical component forces are a pair of support springs at symmetrical positions. 7 and 7 work in the opposite direction. The vibration of the movable weight 4 generated by the upper and lower component forces is a vibration generated under the influence different from the Coriolis force, and becomes a noise of a vibration to be detected.
 しかし、本発明の回転振動型ジャイロ1は、一対の支持ばね7,7がX軸方向(検出軸の軸方向)に平行に延在しているため、上下の分力による可動錘4の振動は、Y軸を中心に発生する。すなわち、ノイズとなる可動錘4の振動が、検出対象である振動に対して直交して発生する。検出電極9では、X軸を中心とした振動による静電容量の変化を検出するため、ノイズとなるY軸を中心とした振動が静電容量的にキャンセルされて、検出対象の振動のみが検出される。このような構成により、本発明の回転振動型ジャイロ1は、精度よく角速度を検出することができる。 However, in the rotational vibration gyro 1 of the present invention, since the pair of support springs 7 and 7 extend in parallel to the X-axis direction (the axial direction of the detection shaft), the vibration of the movable weight 4 due to the vertical component force. Occurs around the Y axis. That is, the vibration of the movable weight 4 as noise is generated orthogonal to the vibration to be detected. Since the detection electrode 9 detects a change in capacitance due to vibration centered on the X axis, the vibration centered on the Y axis that becomes noise is canceled capacitively, and only the vibration of the detection target is detected. Is done. With such a configuration, the rotational vibration gyro 1 of the present invention can accurately detect the angular velocity.
 次に、図2を参照して、第1実施形態の第1変形例に係る回転振動型ジャイロ1について説明する。なお、上述した第1実施形態に係るものと同様の説明は省略する。 Next, with reference to FIG. 2, a rotational vibration gyro 1 according to a first modification of the first embodiment will be described. In addition, the description similar to what concerns on 1st Embodiment mentioned above is abbreviate | omitted.
 図2に示すように、第1変形例に係る回転振動型ジャイロ1は、X軸方向に渡した一対の支持ばね7,7が、相互に平行となるように2組(2列)設けられている。すなわち、2列の支持ばね7は、X軸(検出軸)方向に平行であって、X軸を中心に線対称に配設されている。一対2列の支持ばね7,7は、角柱状に形成されたアンカー6の両側面から、それぞれ直線状に延在し、スリット8の各縁部11,11(開口端縁部)に掛け渡されている。 As shown in FIG. 2, the rotational vibration gyro 1 according to the first modification is provided with two pairs (two rows) so that a pair of support springs 7 and 7 extending in the X-axis direction are parallel to each other. ing. That is, the two rows of support springs 7 are parallel to the X-axis (detection axis) direction, and are arranged symmetrically about the X-axis. The pair of two-row support springs 7 and 7 extend linearly from both side surfaces of the anchor 6 formed in a prismatic shape, and span the edge portions 11 and 11 (opening edge portions) of the slit 8. Has been.
 ここで、回転振動型ジャイロ1は、Z軸回りとX軸回りとの共振周波数をそれぞれ変えることにより、外乱に対する特性や共振ゲイン(検出感度)を任意の変更することができる。例えば、X軸回りの共振周波数(検出周波数)が、Z軸回りの共振周波数(駆動周波数)よりも大きい場合、温度変化や衝撃などの外乱の影響を受けにくい特性を有する回転振動型ジャイロ1が構成され、これを逆にする(駆動周波数>検出周波数)と検出感度の良い回転振動型ジャイロ1が構成される。 Here, the rotational vibration type gyro 1 can arbitrarily change characteristics and resonance gain (detection sensitivity) with respect to disturbance by changing resonance frequencies around the Z axis and around the X axis. For example, when the resonance frequency (detection frequency) around the X axis is higher than the resonance frequency (drive frequency) around the Z axis, the rotational vibration gyro 1 having characteristics that are not easily affected by disturbances such as temperature changes and impacts is provided. If it is configured and reversed (driving frequency> detection frequency), the rotational vibration gyro 1 with good detection sensitivity is configured.
 本変形例に係る回転振動型ジャイロ1の支持ばね7は、相互に平行となるように2列設けられているため、可動錘4を基板2上に安定して支持することができる。また、列毎の支持ばね7の形状(断面形状、平面形状等)の調整や、列と列との間隔を調整することで、各支持ばね7の特性(例えば、ばね定数、曲げ剛性および捻り剛性など)を任意の変更することができる。 Since the support springs 7 of the rotational vibration gyro 1 according to this modification are provided in two rows so as to be parallel to each other, the movable weight 4 can be stably supported on the substrate 2. Further, by adjusting the shape (cross-sectional shape, planar shape, etc.) of the support spring 7 for each row and adjusting the distance between the rows, the characteristics (for example, spring constant, bending rigidity and twist) of each support spring 7 are adjusted. Stiffness etc.) can be arbitrarily changed.
 図3は、2列の支持ばね7の間隔(ばね間隔S)と各周波数との関係を示したグラフである。図3に示すように、2列の支持ばね7の間隔(ばね間隔S)を広げて行くと、駆動周波数の値は略一定であるのに対し、検出周波数の値は、駆動周波数の値以下の範囲において、大きくなって行く。つまり、検出周波数が変化することで、相対的に駆動周波数との差が変化する。この場合、「駆動周波数>検出周波数」の関係が成り立つ範囲で自由にばね間隔Sを設計することができる。これにより、駆動周波数(Z軸回り)に対して、検出周波数(X軸回り)の値を任意に設定することができるため、所望の特性を有する回転振動型ジャイロ1を構成することができる。 FIG. 3 is a graph showing the relationship between the spacing between the two rows of support springs 7 (spring spacing S) and each frequency. As shown in FIG. 3, when the interval between the two rows of support springs 7 (spring interval S) is increased, the value of the drive frequency is substantially constant, whereas the value of the detected frequency is less than the value of the drive frequency. In the range of That is, as the detection frequency changes, the difference from the drive frequency relatively changes. In this case, the spring interval S can be designed freely within a range where the relationship of “drive frequency> detection frequency” is satisfied. Thus, since the value of the detection frequency (around the X axis) can be arbitrarily set with respect to the drive frequency (around the Z axis), the rotational vibration gyro 1 having desired characteristics can be configured.
 なお、図3のグラフ中の黒塗りの四角形および三角形は、支持ばね7が1列(1本)の場合の駆動周波数および検出周波数である。このように、支持ばね7を2列にすることで、支持ばね7が1列(1本)の場合とは異なる周波数特性を有する回転振動型ジャイロ1を構成することができる。これにより、回転振動型ジャイロ1の設計自由度が向上する。 In addition, the black squares and triangles in the graph of FIG. 3 are the drive frequency and the detection frequency when the support spring 7 is in one row (one). Thus, by arranging the support springs 7 in two rows, the rotational vibration gyro 1 having a frequency characteristic different from the case where the support springs 7 are in one row (one) can be configured. Thereby, the design freedom of the rotational vibration type gyro 1 is improved.
 次に、図4を参照して、第1実施形態の第2変形例に係る回転振動型ジャイロ1について説明する。なお、上述した第1実施形態に係るものと同様の説明は省略する。 Next, the rotational vibration gyro 1 according to the second modification of the first embodiment will be described with reference to FIG. In addition, the description similar to what concerns on 1st Embodiment mentioned above is abbreviate | omitted.
 図4(a)に示すように、第2変形例に係る回転振動型ジャイロ1は、円板状の可動錘4が、X軸上において2つに分割した一対の半円可動錘41,41で構成されている。この場合、一対の半円可動錘41,41は、相互の対向辺の中央に、それぞれ切り欠き部42,42を有し、アンカー6は、可動錘4の中央において切り欠き部42,42間に挿通している。一方、2組の一対の支持ばね7,7は、検出軸のX軸方向において相互に平行となるように、アンカー6の両側面から各切り欠き部42の縁部43,43(切り欠き端縁部)に掛け渡されている。また、一対の半円可動錘41,41を、切り欠き部42,42から外側に外れた位置で連結すると共に、一対の半円可動錘41,41の相互間隙を一定に維持する一対の可動錘連結ばね44,44を、備えている。各可動錘連結ばね44は、一対の半円可動錘41,41の対向辺に配設された一対のばね支持部45,45を介して一対の半円可動錘41,41を連結している。なお、図4(b)に示すように、アンカー6を、各切り欠き部42,42に挿通し、検出軸を中心として線対称に配置された一対のもので構成しても良い。 As shown in FIG. 4A, the rotational vibration gyroscope 1 according to the second modification includes a pair of semicircular movable weights 41, 41 in which a disk-shaped movable weight 4 is divided into two on the X axis. It consists of In this case, the pair of semicircular movable weights 41, 41 have cutout portions 42, 42 at the center of the opposite sides, respectively, and the anchor 6 is located between the cutout portions 42, 42 at the center of the movable weight 4. Is inserted. On the other hand, the two pairs of support springs 7 and 7 are arranged so as to be parallel to each other in the X-axis direction of the detection axis, from the both side surfaces of the anchor 6 to the edge portions 43 and 43 (notch ends) (Over the edge). In addition, the pair of semicircular movable weights 41, 41 are coupled at positions outside the cutout portions 42, 42, and the pair of movable semicircular weights 41, 41 are kept constant with respect to each other. Weight connection springs 44, 44 are provided. Each movable weight coupling spring 44 couples a pair of semicircular movable weights 41 and 41 via a pair of spring support portions 45 and 45 disposed on opposite sides of the pair of semicircular movable weights 41 and 41. . In addition, as shown in FIG.4 (b), you may comprise the anchor 6 by inserting into each notch part 42 and 42, and comprising a pair of things arrange | positioned line-symmetrically centering on the detection axis.
 この構成によれば、可動錘4を分割することにより、Z軸方向からの外力に対して、検出錘102が同一方向に動くことができ、2つの検出錘102の振動の差分を取る事により余分なノイズ成分をキャンセルできると共に、可動錘4の破損を防ぎ、可動部の耐久性を向上させることができる。また、可動錘連結ばね44,44によりZ軸回転の外力に対し、一対の連結ばね44,44を同相に回転振動させることができる。 According to this configuration, by dividing the movable weight 4, the detection weight 102 can move in the same direction with respect to the external force from the Z-axis direction, and by taking the difference between the vibrations of the two detection weights 102. The excess noise component can be canceled, the movable weight 4 can be prevented from being damaged, and the durability of the movable part can be improved. Further, the pair of connecting springs 44 and 44 can be oscillated in the same phase with respect to the external force of the Z-axis rotation by the movable weight connecting springs 44 and 44.
 続いて、図5ないし図13を参照して、本発明の他の実施形態に係る回転振動型ジャイロ1について説明する。なお、以下の説明では、上記した第1実施形態と同様の構成については詳細な説明を省略し、同一の符号を使用するものとする。また、第1実施形態に係る諸変形例についても、以下の他の実施形態を相互に適用可能である。 Subsequently, a rotational vibration gyro 1 according to another embodiment of the present invention will be described with reference to FIGS. In the following description, detailed description of the same configuration as in the first embodiment is omitted, and the same reference numerals are used. The following other embodiments can also be applied to the various modifications according to the first embodiment.
 図5は、本発明の第2実施形態に係る回転振動型ジャイロ1を示している。図示のように、本実施形態に係る回転振動型ジャイロ1は、可動錘4に、X軸上且つY軸を中心として線対称となるよう形成されたスリット8を2つ有し、各スリット8には、アンカー6がそれぞれ挿通している。各アンカー6は、各スリット8内においてX軸上且つ可動錘4の中心から離れた位置に配設され、各アンカー6の内側面からスリット8の縁部11にかけて、支持ばね7が掛け渡されている。すなわち、各スリット8内に配設されたアンカー6,6および支持ばね7,7は、X軸上且つY軸を中心として線対称に配置されている。 FIG. 5 shows a rotational vibration gyro 1 according to a second embodiment of the present invention. As shown in the figure, the rotational vibration gyro 1 according to the present embodiment has two slits 8 formed on the movable weight 4 so as to be symmetrical with respect to the X axis and the Y axis. Each of the anchors 6 is inserted through the. Each anchor 6 is disposed in each slit 8 on the X axis and at a position away from the center of the movable weight 4, and a support spring 7 is stretched from the inner surface of each anchor 6 to the edge 11 of the slit 8. ing. That is, the anchors 6 and 6 and the support springs 7 and 7 disposed in each slit 8 are arranged symmetrically about the X axis and the Y axis.
 なお、図6(a)に示すように、各アンカー6を、各スリット8内において可動錘4の中心に近い位置に配設し、支持ばね7を、アンカー6の外側面からスリット8の縁部11にかけて、掛け渡して構成してもよい。また、図6(b)に示すように、各アンカー6をスリット8の中央に配設し、各アンカー6毎に一対の支持ばね7,7をアンカー6の両側面からスリット8の各縁部11まで掛け渡して構成してもよい。 As shown in FIG. 6A, each anchor 6 is disposed in a position near the center of the movable weight 4 in each slit 8, and the support spring 7 is connected to the edge of the slit 8 from the outer surface of the anchor 6. It may be configured to span over the section 11. Further, as shown in FIG. 6B, each anchor 6 is disposed in the center of the slit 8, and a pair of support springs 7 and 7 are provided for each anchor 6 from each side of the anchor 6 to each edge of the slit 8. 11 may be used.
 図7は、本発明の第3実施形態に係る回転振動型ジャイロ1を示している。図示のように、本実施形態に係る回転振動型ジャイロ1は、可動錘4に、X軸上且つY軸を中心として線対称となるよう形成されたスリット8を3つ有し、各スリット8には、アンカー6がそれぞれ挿通している。中央に形成されたスリット8においては、アンカー6がスリット8の中央に配設され、アンカー6の両側面からスリット8の両縁部11,11にかけて、一対の支持ばね7,7が掛け渡されている。一方、中央から外れた位置に形成されたスリット8,8においては、各アンカー6は、X軸上且つ可動錘4の中心から離れた位置に配設され、各アンカー6の内側面からスリット8の縁部11にかけて、各支持ばね7が掛け渡されている。すなわち、各スリット8内に配設されたアンカー6,6および支持ばね7,7は、X軸上且つY軸を中心として線対称に配置されている。このように、本実施形態は、第1実施形態および第2実施形態を組み合わせた構成となっている。 FIG. 7 shows a rotational vibration gyro 1 according to a third embodiment of the present invention. As shown in the figure, the rotational vibration gyro 1 according to the present embodiment has three slits 8 formed on the movable weight 4 so as to be symmetrical about the X axis and the Y axis. Each of the anchors 6 is inserted through the. In the slit 8 formed in the center, the anchor 6 is disposed in the center of the slit 8, and a pair of support springs 7, 7 are spanned from both side surfaces of the anchor 6 to both edges 11, 11 of the slit 8. ing. On the other hand, in the slits 8 and 8 formed at positions away from the center, each anchor 6 is disposed on the X axis and at a position away from the center of the movable weight 4, and the slit 8 is formed from the inner surface of each anchor 6. The support springs 7 are stretched over the edge 11 of each. That is, the anchors 6 and 6 and the support springs 7 and 7 disposed in each slit 8 are arranged symmetrically about the X axis and the Y axis. As described above, the present embodiment is configured by combining the first embodiment and the second embodiment.
 図8は、本発明の第4実施形態に係る回転振動型ジャイロ1を示している。図示のように、本実施形態に係る回転振動型ジャイロ1は、可動錘4にスリット8を有さず、可動錘4の外側に一対のアンカー6,6を有している。一対のアンカー6,6は、X軸上に配設され、各アンカー6の内側面から可動錘4の各外周端部51,51にかけて、一対の支持ばね7,7が掛け渡されている。一対のアンカー6,6および一対の支持ばね7,7は、X軸上且つ、Y軸を中心として線対称に配置されている。 FIG. 8 shows a rotational vibration gyro 1 according to a fourth embodiment of the present invention. As shown in the figure, the rotational vibration gyro 1 according to the present embodiment does not have the slit 8 in the movable weight 4 and has a pair of anchors 6 and 6 outside the movable weight 4. The pair of anchors 6, 6 are arranged on the X axis, and a pair of support springs 7, 7 are spanned from the inner surface of each anchor 6 to each outer peripheral end 51, 51 of the movable weight 4. The pair of anchors 6 and 6 and the pair of support springs 7 and 7 are arranged in line symmetry with respect to the X axis and the Y axis as a center.
 なお、図9に示すように、可動錘4の外側に設けたアンカー6を枠状に形成し、可動錘4を囲繞する構成としても良い。この場合、X軸上においてアンカー6の内側面に一対のばね連結部52,52が形成され、このばね連結部52,52から可動錘4の各外周端部51,51にかけて一対の支持ばね7,7が掛け渡されている。なお、図示においてアンカー6を矩形枠状のものとしたが、可動錘4を囲繞する形状であれば、どのような形状としてもよい。 In addition, as shown in FIG. 9, the anchor 6 provided outside the movable weight 4 may be formed in a frame shape so as to surround the movable weight 4. In this case, a pair of spring coupling portions 52, 52 are formed on the inner surface of the anchor 6 on the X axis, and a pair of support springs 7 extends from the spring coupling portions 52, 52 to the respective outer peripheral end portions 51, 51 of the movable weight 4. , 7 are spanned. Although the anchor 6 has a rectangular frame shape in the drawing, it may have any shape as long as the shape surrounds the movable weight 4.
 これまで説明してきた、回転振動型ジャイロ1によれば、可動錘4が、いわゆる駆動錘101および検出錘102の機能を有し、支持ばね7が、いわゆる駆動ばねおよび検出ばねの機能を有しているため、可動部の構成を単純化し、装置の製造を簡略化することができる。 According to the rotational vibration gyro 1 described so far, the movable weight 4 has a function of a so-called drive weight 101 and a detection weight 102, and the support spring 7 has a function of a so-called drive spring and detection spring. Therefore, the structure of the movable part can be simplified and the manufacture of the device can be simplified.
 図10は、本発明の第5実施形態に係る回転振動型ジャイロ1を示している。本実施形態に係る回転振動型ジャイロ1は、上記の実施形態における可動錘4を、駆動錘101と検出錘102とに分離した構成となっている。駆動錘101は、円板環状に形成され、周囲には多数の駆動電極3が等間隔に配設されている。一方、検出錘102は、円板状に形成され駆動錘101の内側且つ同心上に配設されている。また、検出錘102のX軸方向の一方の半部と他方の半部とにより構成された一対の可動検出電極31,31と、一対の可動検出電極31,31の直上に配設された固定検出電極32,32と、により検出電極9が構成されている。 FIG. 10 shows a rotational vibration gyro 1 according to a fifth embodiment of the present invention. The rotational vibration gyro 1 according to the present embodiment has a configuration in which the movable weight 4 in the above embodiment is separated into a drive weight 101 and a detection weight 102. The drive weight 101 is formed in an annular shape, and a large number of drive electrodes 3 are arranged at equal intervals around the drive weight 101. On the other hand, the detection weight 102 is formed in a disc shape and is disposed inside and concentrically with the drive weight 101. Further, a pair of movable detection electrodes 31, 31 constituted by one half and the other half of the detection weight 102 in the X-axis direction, and a fixed disposed directly above the pair of movable detection electrodes 31, 31. The detection electrode 9 is configured by the detection electrodes 32 and 32.
 検出錘102の中央位置にはスリット8が形成され、X軸上の両端には一対の切り欠き部111,111が形成されている。また、スリット8には、基板2から立設されたアンカー6が挿通されている。各切り欠き部111においては、駆動錘101の内側縁部112から切り欠き部111の縁部113にかけて、連結ばね114が掛け渡されている。また、スリット8においては、アンカー6の両側面とスリット8の各縁部11との間に、一対の支持ばね7,7(検出ばね)が掛け渡されている。 A slit 8 is formed at the center position of the detection weight 102, and a pair of notches 111, 111 are formed at both ends on the X axis. Further, an anchor 6 erected from the substrate 2 is inserted into the slit 8. In each notch 111, a connecting spring 114 is stretched from the inner edge 112 of the drive weight 101 to the edge 113 of the notch 111. Further, in the slit 8, a pair of support springs 7 and 7 (detection springs) are spanned between both side surfaces of the anchor 6 and each edge 11 of the slit 8.
 連結ばね114は、駆動電極3による駆動錘101の回転振動を吸収すると共に、コリオリ力を検出錘102に伝達する。また、連結ばね114および支持ばね7は、コリオリ力によって振動する検出錘102のヒンジとして機能する。この場合、連結ばね114および支持ばね7は、X軸方向に平行に延在するように配設されている。 The connection spring 114 absorbs the rotational vibration of the drive weight 101 by the drive electrode 3 and transmits Coriolis force to the detection weight 102. Further, the coupling spring 114 and the support spring 7 function as a hinge of the detection weight 102 that vibrates due to Coriolis force. In this case, the coupling spring 114 and the support spring 7 are disposed so as to extend in parallel with the X-axis direction.
 なお、検出錘102を円板環状に形成し、円板状に形成した駆動錘101を検出錘102の内側且つ同心上に配設して形成してもよい。この場合、検出錘102および駆動錘101を連結する連結ばね114は、X軸の軸方向に平行となるように延在させることが好ましい。 Note that the detection weight 102 may be formed in an annular shape, and the drive weight 101 formed in a disk shape may be disposed inside the detection weight 102 and concentrically. In this case, it is preferable that the connection spring 114 that connects the detection weight 102 and the drive weight 101 extends so as to be parallel to the axial direction of the X axis.
 これまで説明した本発明の回転振動型ジャイロ1によれば、X軸を中心として振動する可動錘4(検出錘102)のヒンジとして機能する支持ばね7(連結ばね114および支持ばね7)が、可動錘4の検出軸であるX軸の軸方向に平行に延在しているため、ノイズとなる振動を検出対象である振動に対して直交した方向に限定させることができる。よって、ノイズとなる振動が検出対象である振動に干渉することなく、正確に振動を検出し、精度よく角速度を検出することができる。 According to the rotational vibration type gyro 1 of the present invention described so far, the support spring 7 (the coupling spring 114 and the support spring 7) functioning as a hinge of the movable weight 4 (detection weight 102) that vibrates about the X axis is provided. Since it extends in parallel with the axial direction of the X axis, which is the detection axis of the movable weight 4, it is possible to limit the vibration that becomes noise to a direction orthogonal to the vibration that is the detection target. Therefore, it is possible to accurately detect the vibration and accurately detect the angular velocity without causing the vibration as noise to interfere with the vibration to be detected.
 図11は、本発明の第6実施形態に係る回転振動型ジャイロ1を示している。図11に示すように、本実施形態の回転振動型ジャイロ1は、上述した第1実施形態の第1変形例に係るものと同様に、X軸方向に渡した一対2列の支持ばね7,7を有している。各支持ばね7は、Y軸方向中央付近において外側に向かって「S」字状に折り返されている。すなわち、2列の支持ばねは、アンカー6側よりも可動錘4側が大きく離間している。また、各支持ばね7は、「S」字状に折り返された折返し部13が、他の部分に比して幅広(太く)に形成されている。 FIG. 11 shows a rotational vibration gyro 1 according to a sixth embodiment of the present invention. As shown in FIG. 11, the rotational vibration gyro 1 of the present embodiment is similar to that according to the first modification of the first embodiment described above, with a pair of two rows of support springs 7 extending in the X-axis direction. 7. Each support spring 7 is folded in an “S” shape toward the outside near the center in the Y-axis direction. That is, the two rows of support springs are spaced farther apart on the movable weight 4 side than on the anchor 6 side. Each support spring 7 has a folded portion 13 folded in an “S” shape so as to be wider (thicker) than the other portions.
 図12は、各支持ばね7の折返し部13と駆動変位1μmあたりのZ軸方向変位量との関係を示したグラフである。図12に示すように、各支持ばね7の折返し部13の幅を大きくするに従って、駆動回転時に発生するZ軸方向の変位量(非共振状態における「縦変位/Z軸回りの回転変位(駆動変位)」)が減少している。これにより、各支持ばね7の設計自由度向上に伴い、検出周波数および駆動周波数の設定自由度が向上するだけでなく、角速度検出時のノイズとなるZ軸方向の揺れ(縦変位量)を抑制することができる。なお。本願出願人は、各支持ばね7を「S」字状にすることで、ストレート状の支持ばね7と比較して、縦変位量が1/2から1/3程度に抑制されることを確認している。 FIG. 12 is a graph showing the relationship between the folded portion 13 of each support spring 7 and the amount of displacement in the Z-axis direction per 1 μm of drive displacement. As shown in FIG. 12, as the width of the folded portion 13 of each support spring 7 is increased, the amount of displacement in the Z-axis direction that occurs during drive rotation ("longitudinal displacement / rotational displacement around the Z-axis (drive Displacement) ”) is decreasing. As a result, the degree of freedom in setting the detection frequency and the drive frequency is improved as the design flexibility of each support spring 7 is improved, and the Z-axis direction vibration (vertical displacement), which becomes noise during angular velocity detection, is suppressed. can do. Note that. The applicant of the present application confirms that the longitudinal displacement is suppressed to about ½ to 3 compared to the straight support spring 7 by making each support spring 7 into an “S” shape. is doing.
 図13は、2列の支持ばね7の間隔と各周波数との関係を示したグラフおよび表である。図13に示すように、2列の支持ばね7の間隔(ばね間隔S)を広げて行くと、駆動周波数は、僅かに上昇するものの略一定の値を示す。これに対し、検出周波数は、ばね間隔Sが20μmのときには駆動周波数以下の値であるが、ばね間隔Sの拡大に伴って、駆動周波数の値以上の範囲において、その値が上昇して行く。つまり、検出周波数が変化することで、相対的に駆動周波数との差が変化する。この場合、「駆動周波数<検出周波数」の関係が成り立つ範囲で自由にばね間隔Sを設計することができる。 FIG. 13 is a graph and a table showing the relationship between the interval between the two rows of support springs 7 and each frequency. As shown in FIG. 13, when the interval between the two rows of support springs 7 (spring interval S) is increased, the drive frequency slightly increases but shows a substantially constant value. On the other hand, the detection frequency is a value less than or equal to the drive frequency when the spring interval S is 20 μm, but as the spring interval S increases, the value increases in a range greater than or equal to the drive frequency value. That is, as the detection frequency changes, the difference from the drive frequency relatively changes. In this case, the spring interval S can be designed freely within a range where the relationship of “drive frequency <detection frequency” is satisfied.
 以上のように、駆動周波数(Z軸回り)と検出周波数(X軸回り)との差(駆動周波数<検出周波数)を大きくするためには、2列の支持ばね7の間隔(ばね間隔S)を大きくする必要がある。しかしながら、各支持ばね7のアンカー6側の間隔(ばね間隔S)を広くするということは、ばね間隔Sに対応するようにアンカー6自体を大きく形成しなければならない。アンカー6が大型化した場合、スリット8や可動錘4等も大型化し、ひいては回転振動型ジャイロ1の小型化を図ることができない。また、可動錘4の大きさに対しスリット8を必要以上に大きく開口させると、可動錘4の強度低下につながる虞もある。 As described above, in order to increase the difference (drive frequency <detection frequency) between the drive frequency (around the Z axis) and the detection frequency (around the X axis), the interval between the two rows of support springs 7 (spring interval S). Need to be larger. However, to increase the distance between the support springs 7 on the anchor 6 side (spring distance S), the anchor 6 itself must be formed large so as to correspond to the spring distance S. When the anchor 6 is increased in size, the slit 8 and the movable weight 4 are also increased in size, and as a result, the rotary vibration gyro 1 cannot be reduced in size. Further, if the slit 8 is opened larger than necessary with respect to the size of the movable weight 4, there is a possibility that the strength of the movable weight 4 is reduced.
 そこで、本実施形態に係る回転振動型ジャイロ1では、アンカー6と可動錘4との間に渡された各2列の支持ばね7は、アンカー6側の間隔(ばね間隔)に比べて、可動錘4側の間隔が大きくなるように配設されている。これにより、可動錘4の強度を適切に維持しつつ、回転振動型ジャイロ1の小型化を図ることができる。 Therefore, in the rotational vibration gyroscope 1 according to the present embodiment, the two rows of support springs 7 passed between the anchor 6 and the movable weight 4 are movable compared to the interval (spring interval) on the anchor 6 side. The intervals on the weight 4 side are increased. Thereby, size reduction of the rotational vibration type gyro 1 can be achieved, maintaining the intensity | strength of the movable weight 4 appropriately.
 なお、第2ないし第5実施形態では、第1実施形態に係るものと同様のストレート形状の支持ばね7について説明したが、これに代えて、第6実施形態に係るものと同様な「S」字形状の支持ばね7を用いてもよい。 In the second to fifth embodiments, the straight support spring 7 similar to that according to the first embodiment has been described, but instead, “S” similar to that according to the sixth embodiment is used. A letter-shaped support spring 7 may be used.
 以上の構成によれば、アンカー6と可動錘4との間に掛け渡された一対2列の支持ばね7について、形状やばね間隔Sを列毎に調整することで、各支持ばね7の特性を任意の変更することができる。これにより、支持ばね7の設計自由度を向上させることができ、所望の駆動周波数および検出周波数を任意に設定した回転振動型ジャイロ1を構成することができる。 According to the above configuration, the characteristics of the support springs 7 are adjusted by adjusting the shape and the spring interval S for each row of the pair of support springs 7 spanned between the anchor 6 and the movable weight 4. Any changes can be made. Thereby, the design freedom of the support spring 7 can be improved, and the rotational vibration gyro 1 in which a desired drive frequency and detection frequency are arbitrarily set can be configured.
 なお、本発明は、上述したそれぞれの実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。 In addition, this invention is not limited to each embodiment mentioned above at all, In the range which does not deviate from the summary, it can implement with a various form.
 1:回転振動型ジャイロ 2:基板 3:駆動電極 4:可動錘 6:アンカー 7:支持ばね 8:スリット 9:検出電極 13:折返し部 41:半円可動錘 42:切り欠き部 44:可動錘連結ばね 51:外周端部 52:連結部 101:駆動錘 102:検出錘 114:連結ばね 1: Rotating vibration type gyro 2: Substrate 3: Drive electrode 4: Movable weight 6: Anchor 7: Support spring 8: Slit 9: Detection electrode 13: Folded part 41: Semicircular movable weight 42: Notch part 44: Movable weight Connection spring 51: outer peripheral end 52: connection 101: drive weight 102: detection weight 114: connection spring

Claims (5)

  1.  基板上にリリースされ、重心を通り検出軸の軸方向に延在するスリット開口を有する可動錘と、
     前記可動錘をその重心を通るZ軸回りに回転振動させる駆動電極と、
     前記検出軸を中心にコリオリ力により揺動する前記可動錘の変位を検出する検出電極と、
     前記基板に突設されると共に前記重心と同心上において前記スリット開口に挿通し、前記可動錘を支持するアンカーと、
     前記アンカーと前記可動錘との間に掛け渡され、前記検出軸方向に平行であって、前記検出軸を中心に線対称に配設された2列の支持ばねと、を備えたことを特徴とする回転振動型ジャイロ。
    A movable weight having a slit opening that is released on the substrate and extends in the axial direction of the detection axis through the center of gravity;
    A drive electrode for rotating and vibrating the movable weight around the Z-axis passing through its center of gravity;
    A detection electrode for detecting a displacement of the movable weight that swings by a Coriolis force around the detection axis;
    An anchor that protrudes from the substrate and is concentric with the center of gravity and is inserted into the slit opening to support the movable weight;
    Two rows of support springs that are spanned between the anchor and the movable weight, are parallel to the detection axis direction, and are arranged symmetrically about the detection axis. Rotating vibration type gyro.
  2.  前記支持ばねは、前記検出軸の軸方向において、前記アンカーの両側の少なくとも一方から、前記スリット開口の両端を構成する両開口端縁部の少なくとも一方に掛け渡されていることを特徴とする請求項1に記載の回転振動型ジャイロ。 The support spring is stretched from at least one of both sides of the anchor to at least one of both opening edge portions constituting both ends of the slit opening in the axial direction of the detection shaft. Item 2. The rotational vibration gyroscope according to Item 1.
  3.  前記支持ばねは、「S」字状に折返し形状に形成されていることを特徴とする請求項1に記載の回転振動型ジャイロ。 The rotary vibration gyro according to claim 1, wherein the support spring is formed in a folded shape in an "S" shape.
  4.  前記「S」字状に折り返された折返し部が、他の部分に比して幅広に形成されていることを特徴とする請求項3に記載の回転振動型ジャイロ。 The rotary vibration gyro according to claim 3, wherein the folded portion folded back in the "S" shape is formed wider than the other portions.
  5.  前記2列の支持ばねは、
     前記可動錘側が大きく離間し、前記アンカー側が小さく離間していることを特徴とする請求項3に記載の回転振動型ジャイロ。
    The two rows of support springs are:
    4. The rotational vibration gyro according to claim 3, wherein the movable weight side is largely separated and the anchor side is slightly separated.
PCT/JP2011/003829 2010-07-05 2011-07-05 Rotational vibration gyro WO2012004979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/004379 WO2012004825A1 (en) 2010-07-05 2010-07-05 Rotational vibration gyro
JPPCT/JP2010/004379 2010-07-05

Publications (1)

Publication Number Publication Date
WO2012004979A1 true WO2012004979A1 (en) 2012-01-12

Family

ID=45440830

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/004379 WO2012004825A1 (en) 2010-07-05 2010-07-05 Rotational vibration gyro
PCT/JP2011/003829 WO2012004979A1 (en) 2010-07-05 2011-07-05 Rotational vibration gyro

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004379 WO2012004825A1 (en) 2010-07-05 2010-07-05 Rotational vibration gyro

Country Status (2)

Country Link
JP (1) JP4939671B2 (en)
WO (2) WO2012004825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696158B2 (en) 2012-11-29 2017-07-04 Denso Corporation Gyro sensor and composite sensor comprising gyro sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955668A (en) * 1997-01-28 1999-09-21 Irvine Sensors Corporation Multi-element micro gyro
JPH11513111A (en) * 1995-06-30 1999-11-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Acceleration sensor
JPH11325905A (en) * 1998-05-08 1999-11-26 Fuji Electric Co Ltd Vibration gyro
WO2001023837A1 (en) * 1999-09-24 2001-04-05 Robert Bosch Gmbh Micromechanical rotation rate sensor
US20030000305A1 (en) * 2001-06-26 2003-01-02 Tracy Michael J. Method of designing a flexure system for tuning the modal response of a decoupled micromachined gyroscope and a gyroscoped designed according to the method
WO2009016240A1 (en) * 2007-07-31 2009-02-05 Sd Sensordynamics Ag Micromechanical rate-of-rotation sensor
WO2009059639A1 (en) * 2007-11-08 2009-05-14 Robert Bosch Gmbh Yaw rate sensor having two sensitive axes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443008B1 (en) * 2000-02-19 2002-09-03 Robert Bosch Gmbh Decoupled multi-disk gyroscope
GB2377494B (en) * 2001-07-09 2004-07-28 Autoliv Dev "Improvements in or relating to an off-set elimination system for a vibrating gyroscope"
WO2010016094A1 (en) * 2008-08-06 2010-02-11 パイオニア株式会社 Capacitance detection type sensor
US20110185829A1 (en) * 2008-08-06 2011-08-04 Pioneer Corporation Rotational vibration gyro

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513111A (en) * 1995-06-30 1999-11-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Acceleration sensor
US5955668A (en) * 1997-01-28 1999-09-21 Irvine Sensors Corporation Multi-element micro gyro
JPH11325905A (en) * 1998-05-08 1999-11-26 Fuji Electric Co Ltd Vibration gyro
WO2001023837A1 (en) * 1999-09-24 2001-04-05 Robert Bosch Gmbh Micromechanical rotation rate sensor
US20030000305A1 (en) * 2001-06-26 2003-01-02 Tracy Michael J. Method of designing a flexure system for tuning the modal response of a decoupled micromachined gyroscope and a gyroscoped designed according to the method
WO2009016240A1 (en) * 2007-07-31 2009-02-05 Sd Sensordynamics Ag Micromechanical rate-of-rotation sensor
WO2009059639A1 (en) * 2007-11-08 2009-05-14 Robert Bosch Gmbh Yaw rate sensor having two sensitive axes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696158B2 (en) 2012-11-29 2017-07-04 Denso Corporation Gyro sensor and composite sensor comprising gyro sensor

Also Published As

Publication number Publication date
JP4939671B2 (en) 2012-05-30
WO2012004825A1 (en) 2012-01-12
JPWO2012004825A1 (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP6190586B2 (en) Micro rotational speed sensor and operation method thereof
JP4368116B2 (en) Rotating decoupled MEMS gyroscope
JP5138772B2 (en) Coriolis Gyro
JP5052674B2 (en) Rotating vibration gyro
USRE45855E1 (en) Microelectromechanical sensor with improved mechanical decoupling of sensing and driving modes
US6513380B2 (en) MEMS sensor with single central anchor and motion-limiting connection geometry
EP1832841B1 (en) Microelectromechanical integrated sensor structure with rotary driving motion
JP5159062B2 (en) Angular velocity sensor
JP5930265B2 (en) Rotational speed sensor
JP2014112085A (en) Spring for micro electro-mechanical systems (mems) device
JP6514790B2 (en) Gyroscope
JP2013092525A (en) Inertial sensor with off-axis spring system
JP6973522B2 (en) Multi-axis gyroscope resistant to vibration
JP6237917B2 (en) Improved ring gyroscope structure and gyroscope
TWI711803B (en) Zweiachsiger ultrarobuster drehratensensor fuer automotive anwendungen
KR20160013887A (en) MEMS-Sensor
JP2020112545A (en) Synchronous multi-axis gyroscope
US20190033075A1 (en) Gyroscope devices and methods for fabricating gyroscope devices
JP2020091280A (en) Micro-electric machine device for rotation motion detection
JP2005241500A (en) Angular velocity sensor
JP6832934B2 (en) Movable mass suspension system with means to connect movable masses with optimized linearity
US9383205B2 (en) Vibrator and vibrating gyroscope
JP2010054263A (en) Rotation oscillation gyroscope
WO2012004979A1 (en) Rotational vibration gyro
JP5816320B2 (en) MEMS element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP