WO2012018332A1 - Method and system for encoding data, and method and system for reading encoded data - Google Patents

Method and system for encoding data, and method and system for reading encoded data Download PDF

Info

Publication number
WO2012018332A1
WO2012018332A1 PCT/US2010/044435 US2010044435W WO2012018332A1 WO 2012018332 A1 WO2012018332 A1 WO 2012018332A1 US 2010044435 W US2010044435 W US 2010044435W WO 2012018332 A1 WO2012018332 A1 WO 2012018332A1
Authority
WO
WIPO (PCT)
Prior art keywords
indicium
numerical value
encoding
decoding
sensor
Prior art date
Application number
PCT/US2010/044435
Other languages
French (fr)
Inventor
Philip T. Odom
Michael Wallace
Original Assignee
Pure Imagination Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pure Imagination Llc filed Critical Pure Imagination Llc
Priority to PCT/US2010/044435 priority Critical patent/WO2012018332A1/en
Publication of WO2012018332A1 publication Critical patent/WO2012018332A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06018Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C21/00Systems for transmitting the position of an object with respect to a predetermined reference system, e.g. tele-autographic system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/84Measuring functions
    • H04Q2209/845Measuring functions where the measuring is synchronized between sensing devices

Abstract

A method and system for encoding a numeric value by the placement of indicia at fixed sensing locations on a substrate, each indicium chosen from two or more sets of indicia, each set producing different responses in a sensor, and for decoding the numeric value by sensing the presence and character of the indicia with a set of sensors apposed to the fixed sensing locations.

Description

METHOD AND SYSTEM FOR ENCODING DATA, AND METHOD AND SYSTEM
FOR READING ENCODED DATA
FIELD OF THE INVENTION
[0001] The, present Invention relates, to the coding of a record and sensing of the coded record, using a particular sensor structure.
BACKGROUND
[0002] Modern computers are based on binary logic, in which any given bit of information is in one of two exclusive states, typically desig nated as 0 and 1. Binary coding schemes have long been used to allow marking and recognition of objects; early computers used punched paper cards to store information, with the holes being read by means of electrical, mechanical or optical sensing,
[0003] A more contemporary example of the use of binary coding with remote sensing is described by Weber in U. S. Patent 4,355,300, whore a series of sensing elements reads conductive indicia In fixed positions upon a substrate, each sensing position signaling the presence or absence of an indicium and the resulting binary bits forming a complete code value, U. S. Patent 5, 159, 181 , by Battels et al , describes a similar sensing system wherein a single sensor moves past a series of multiple sensing locations on a substrate, or multiple sensing locations on a substrate are moved past a single sensor, with each sensing location producing a indication of one of two states, resulting in a binary code. The Bartels et al. system requires a means to move the sensor and the substrate relative to one another, and complex temporal analysis of the sensor waveform to extract the values corresponding to each sensing location. These exemplary systems rely on binary encoding to convey a value, thus reducing the range of code values that can be encoded by a given number of sensors or sensing locations.
[0004] A number of systems have been described for taking simultaneous or serial measurements from a series of sensors and analyzing the pattern of measurements to deduce information about an object in the vicinity of the sensors. U. S. Patent 5,374,787 by Miller et al. describes the use of a parallel series of touch sensors, where the response of each sensor is compared to the no-touch condition, and the centroid of the response curve is determined to detect the position of touch along the series of sensors. U. S. Patent 4,999,462 by Purcell describes a collinear series of triangular sensors and a circular exciter, where the pattern of response of the sensors is compared with a look up table to determine the location of the cursor. These exemplary systems use multiple sensor levels, but serve only to determine the location but not the identity of an object.
[0005] Commercially available MICR (magnetic ink character recognition) systems read indicia encoded on checks using magnetic ink and a specific character set designed so that a magnetic sensor produces a temporal signal pattern unique to each character when the check is moved past the sensor. The temporal signals are converted into the corresponding digits to determine the coded number/character sequence. While this system encodes more than one value per sensed position, the system requires special inks and printers to encode the numerical value on the substrate, a means to move the check past the sensor to create the signal, and sophisticated temporal processing and pattern recognition to decode the value.
[0006] None of the above inventions and patents, taken either singularly or in combination, is seen to describe the instant invention.
[0007] What is required is a system that overcomes the limitations of binary encoding to increase the range of values that can be encoded in with a fixed number of sensing locations on a substrate, but does not require complex and expensive means for moving the sensor and substrate relative to one another, nor complex temporal processing circuitry to extract the encoded value from the sensor readings.
SUMMARY AND ADVANTAGES
[0008] A method and system are described for encoding a numerical value on a substrate by utilizing a fixed number of sensing locations on the substrate, associated with an equal number of sensors disposed in a fixed relationship to the sensing locations, such that an indicium is overlaid on at least one of the sensing locations, where each indicium possesses one of at least two different characters and where each of the different characters produces a different response in a sensor. The numerical value is encoded by the number, characters and positions of indicia ovedaid on the substrate. [0009] In one embodiment of the invention, the indicia are pieces of conductive material of at least two different combinations of size and conductance, and the sensors are capacitive sensors.
[0010] In another embodiment of the invention, the indicia are pieces of magnetic material of at least two different combinations of size and flux, and the sensors are magnetic sensors.
[0011] In yet another embodiment of the invention, materials are chosen in two different characters and the code is a ternary code, with each sensing location producing one of three values and the encoded numerical value is the combination of the ternary codes of each sensing position.
[0012] In yet another embodiment of the invention, materials are chosen in N different characters and the code is a (A/+1)-ary code, with each of k sensing locations producing one of (Λ/+1 ) codes and the complete numerical value being one of the (A/+1) c different possible values.
[0013] In yet another embodiment of the invention, materials are chosen in N different characters and k sensing locations are used, with an indicium having the highest sensor response being overlaid on at least one of the sensing locations, so that the sensors can be recalibrated during the sensing process.
[0014] In yet another embodiment of the invention, materials are chosen in N different characters and k sensing locations are used, with an indicium having the highest sensor response being overlaid on at least one of the sensing locations and no indicium being overlaid on at least one of the sensing locations, so that the sensors can be recalibrated during the sensing process. [0015] Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims. Further benefits and advantages of the embodiments of the invention will become apparent from consideration of the following detailed description given with reference to the accompanying drawings, which specify and show preferred embodiments of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present invention and, together with the detailed description, serve to explain the principles and implementations of the invention.
[0017] FIG. 1 depicts the component parts of an exemplary system incorporating the features of the invention.
[0018] FIG. 2 shows a substrate upon which a value can be encoded.
[0019] FIG. 3 shows two example code patterns in an exemplary embodiment of the system.
[0020] FIG. 4 shows a flow chart for processing the signals of an exemplary embodiment of the system.
[0021] FIG. 5 shows allowed and disallowed code patterns in an alternative embodiment of the system. [0022] FIG. 6 shows a flow chart for calibrating the sensors in an alternative embodiment of the system.
[0023] FIG. 7 shows allowed and disallowed code patterns in a further alternative embodiment of the system.
[0024] FIG. 8 shows a flow chart for calibrating the sensors in a further alternative embodiment of the system.
[0025] FIG. 9 depicts an alternative configuration for a sensor assembly.
DETAILED DESCRIPTION
[0026] Before beginning a detailed description of the subject invention, mention of the following is in order. When appropriate, like reference materials and characters are used to designate identical, corresponding, or similar components in differing figure drawings. The figure drawings associated with this disclosure typically are not drawn with dimensional accuracy to scale, i.e., such drawings have been drafted with a focus on clarity of viewing and understanding rather than dimensional accuracy.
[0027] In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation- specific decisions must be made in order to achieve the developer's specific . goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
[0028] FIG. 1 depicts the component parts of an exemplary system 100 for reading an encoded value using the method of the current invention. Two or more sensors 1 10 are connected to a processor 120, which also connects to a program memory 130 and a data memory 140. Under control of program instructions stored in program memory 130, processor 120 reads sensors 1 10 in sequence, and converts the sensor readings, using calibration data stored in data memory 140, into an output value which is reported to an external device through communication channel 150. One skilled in the art will recognize that program memory 130 and data memory 140 can be any type of memory including solid state, optical, magnetic, or other memory means; furthermore, program memory 130 and data memory 140 could be logical divisions of physical memory locating within a single memory system.
[0029] In an exemplary embodiment of the invention, a substrate 200, shown in FIG. 2, carries a numerical value encoded by means of indicia placed at sensing locations 210, each sensing location 210 corresponding to the position of a sensor 1 10. Substrate 200 is brought into proximity to sensors 1 10, and processor 120 reads the values for each of the sensors 1 10 and decodes the readings to determine the numerical value.
[0030] FIG. 3 shows two examples of encodings using an embodiment of the invention in which indicia of two different sizes are used to encode a numerical value. Substrate 300 contains an indicium of the larger size at sensing location 301 , no indicium at sensing location 302, and an indicium of the smaller size at sensing location 303. Preferentially in this example the larger size indicium produces twice as much change in sensor reading as does the smaller size indicium, compared to the sensor reading with no indicium. In this example, a large indicium is assigned the value two (2), a small indicium is assigned the value one (1), and no indicium is assigned the value zero (0). Thus, the numerical value encoded on substrate 300 is 201 base-3, or 19 base-10. In similar fashion, the numerical value encoded on substrate 310 is one in sensor location 3 , two in sensor location 312, and one in sensor location 313, yielding an encoded value of 121 base-3, or 16 base-10.
[0031] FIG. 4 depicts a flowchart 400 of the processing steps required to read and decode a numerical value encoded using the method of the current invention. At a step 410, the decoded value is set to zero, and the first sensor is selected. At a further step 420, the value of the sensor is read.
[0032] At a further step 430, the sensor reading is converted to a number in the range between 0 and the number of characters, inclusive. The conversion is performed by comparing the sensor reading with calibration values stored in data memory 140 of the decoding system 100, using any of several conversion means well known to those skilled in the art. Preferentially, each different character for the indicia is chosen to produce a sensor reading that is easily distinguishable from the reading produced by indicia with the other characters.
[0033] At a further step 440, the number determined at a step 430 is added to the decoded value. At a further decision step 450, if more sensors remain to be read processing continues at a step 460, where the decoded value is multiplied by (number of character levels + 1). At a further step 470, the next sensor is selected, and processing continues at a step 420.
[0034] At a decision step 450, if all sensors have been read, the decoded value is output at a step 480.
[0035] In an exemplary system with k sensing locations and N different material characters, a total of (A/+1)/ different encoded values can be represented. However, preferentially values are encoded with at least one indicium on the substrate, which eliminates the single case where no indicium is overlaid on the substrate, leaving a total of (A/+1 )/c-7 values that can be represented with this system. For the exemplary system shown in FIG. 3, a total of 26 values can be represented, compared to the seven values that could be represented with the binary system of Weber.
[0036] In an exemplary system with k sensing locations and N different material characters, a given numerical value between 1 and (A/+1) c-7 is encoded by the following procedure. The value of V modulo (N +1) is computed, where the modulo operator yields the remainder after integer division. The result is between 0 and N. If the result is 0, then no indicium is overlaid on the first sensing location; if the result is non-zero, then an indicium from the set of pieces giving the A h level sensor response is overlaid on the first sensing location. The value of V is then divided by (Λ/+1 ) with the result truncated. The process is repeated, with each successive value of the modulus determining the indicium overlaid on successive sensing locations until all locations are considered.
[0037] Sensor noise and variation, variability of substrate and material composition, and uncertainty of positioning and alignment between substrate and sensors can all impact the reliability of the inventive system. For these reasons, in the preferred embodiment of the system, no more than four different material character values are used.
[0038] In an alternative embodiment of the inventive system, reliability is improved by calibrating the sensor response at the time the encoded value is read. In this alternative embodiment, an encoded value must include at least one sensing location at which an indicium is overlaid which produces the maximum variation in sensor output. For this alternative embodiment, FIG. 5 shows an example of an allowed code and an example of a disallowed code. In the latter case, no sensing location is overlaid with an indicium producing the maximum sensor variation.
[0039] For this alternative embodiment, FIG. 6 shows a flowchart 600 of the steps required to calibrate the maximum sensor output when reading an encoded value. At a first step 610, all sensors are read. At a further step 620, the maximum sensor reading is determined. Since in this alternative embodiment, at least one sensing location must have an indicium with the maximum response character, the maximum sensor reading corresponds to this case. Accordingly, at a further step 630, the maximum sensor reading is assigned to the maximum value N, where N is the number of different material sets. At a further step 640, the quiescent sensor value, measured when there is no object overlaid on the sensors, is assigned to the minimum value 0. At a further step 650, intermediate values between 0 and N are interpolated, using any several interpolation techniques common in the art. At a further step 660 the calibration values are stored for use in the decoding step 430. In the preferential implementation of this alternative embodiment, the character of the various sets of material is chosen to produce a linearly increasing response for each different character of material, and the interpolation is performed by subdividing the range of values between the quiescent sensor reading and the maximum sensor reading, assigning the sub-ranges thus determined to the various levels from 0 to N.
[0040] While an algorithm can be specified the encoding of a given numerical value in this alternative embodiment, in practice encoding and decoding are performed by reference to a table of code values constructed prior to encoding as follows. The set of all (A/+1)/f values is generated in (A/+1 )-ary form. Each value is examined in sequence, and the value is eliminated from the set if there is not at least one digit position with the value N. The resulting set of code values is ordered from smallest to largest, and assigned numerical indexes from 1 to , where M is the total number of remaining values in the set. Thereafter, a numerical value in the range from 1 to M inclusive is encoded by selecting the corresponding entry in the set of code values, and the digit positions of the code value determine the placement of indicia on the sensing location as before. Decoding proceeds by means of the same table, comparing the decoded (A/+1 )-ary value with the code list, and outputting the corresponding index as the decoded numeric result.
[0041] In a further alternative embodiment of the inventive system, reliability is further improved by calibrating the sensor response at the time the encoded value is read. In this alternative embodiment, an encoded value must include at least one sensing location at which an indicium is overlaid which produces the maximum variation in sensor output, and at least one sensing location with no indicium overlaid. For this alternative embodiment, FIG. 7 shows an example of an allowed code and an example of a disallowed code. In the latter case, no sensing location is overlaid with an indicium producing the maximum sensor variation.
[0042] For this further alternative embodiment, FIG. 8 shows a flowchart 800 of the steps required to calibrate the sensors when reading an encoded value. At a first step 810, all sensors are read. At a further step 820, the minimum sensor reading is determined. Since in this alternative embodiment, at least one sensing location must have no indicium overlaid, the minimum sensor reading corresponds to this case. Accordingly, at a further step 830 the minimum sensor reading is assigned to the minimum value zero (0). At a further step 840, the maximum sensor reading is determined. Since in this alternative embodiment, at least one sensing location must have an indicium with the maximum response character, the maximum sensor reading corresponds to this case. Accordingly, at a further step 850, the maximum sensor reading is assigned to the maximum value N, where N is the number of different material sets. At a further step 860, intermediate values between 0 and N are interpolated, using any several interpolation techniques common in the art. At a further step 870 the calibration values are stored for use in the decoding step 430. In the preferential implementation of this further alternative embodiment, the character of the various sets of material is chosen to produce a linearly increasing response for each different character of material, and the interpolation is performed by subdividing the range of values between the minimum sensor reading and the maximum sensor reading, assigning the sub-ranges thus determined to the various levels from 0 to N.
[0043] While an algorithm can be specified the encoding of a given numerical value in this further alternative embodiment, in practice encoding and decoding are performed by reference to a table of code values constructed prior to encoding as follows. The set of all (A/+1) c values is generated in (A/+1)-ary form. Each value is examined in sequence, and the value is eliminated from the set if there is not at least one digit position with the value 0 and at least one digit position with the value N. The resulting set of code values is ordered from smallest to largest, and assigned numerical indexes from 1 to M, where M is the total number of remaining values in the set. Thereafter, a numerical value in the range from 1 to M inclusive is encoded by selecting the corresponding entry in the set of code values, and the digit positions of the code value determine the placement of indicia on the sensing location as before. Decoding proceeds by means of the same table, comparing the decoded (/V+ 1)-ary value with the code list, and outputting the corresponding index as the decoded numeric result.
[0044] The sensor configuration depicted in FIG. 2 has the limitation that the substrate must be placed in a fixed location and orientation with respect to the sensors to be read properly. The alternative sensor configuration depicted in FIG. 9 provides a method of partially overcoming these limitations. A sensor configuration 900 comprises a series of angular sensor segments 910, 91 1 , 912, 913, 914, 915. In this exemplary depiction, the sensor segments 910, 911 , 912, 913, 914, 915, comprise capacitive sensors that are measured relative to central ground segment 920. In this alternative embodiment, one or more indicia 930, 931 , 932, are emplaced on a substrate so as to oveday the angular sensor segments, with the number, size and position of the indicia encoding the numerical value. FIG. 9 shows the substrate oriented such that indicium 930 overlays sensor segment 914, indicium 931 overlays sensor segment 915, and indicium 932 overlays sensor segment 912. If the substrate were rotated 60 degrees to the left, indicium 930 would overlay sensor segment 915, indicium 931 would overlay sensor segment 910, and indicium 932 would overlay sensor segment 913. The relative pattern of values measured in the sensor segments would be the same in these two orientations, and similarly in the other four possible orientations of the substrate with respect to the six sensor segments shown in FIG. 9. In this alternative configuration, the encoded numeric value is determined by analyzing the relative pattern of readings from the multiplicity of sensor segments, taking into account the symmetry of the sensor configuration. With k angular sensor segments, the patterns of number, size and position of indicia could be chosen so as to be unique with respect to the k-fold symmetry of the sensor segments, allowing the substrate to be placed in any of k angular orientations while still yielding a unique decoded value.
[0045] It will be apparent to one skilled in the art that the foregoing description of exemplary implementations is intended only to provide examples of the use of the invention, and is not a limitation upon the possible uses of the invention. Other similar embodiments could be designed or modified to utilize the features of this description without departing from the spirit and intention of this invention. Those skilled in the art will recognize that numerous modifications and changes may be made to the preferred embodiment without departing from the scope of the claimed invention. It will, of course, be understood that modifications of the invention, in its various aspects, will be apparent to those skilled in the art, some being apparent only after study, others being matters of routine mechanical, chemical and electronic design. No single feature, function or property of the preferred embodiment is essential. Other embodiments are possible, their specific designs depending upon the particular application. As such, the scope of the invention should not be limited by the particular embodiments herein described but should be defined only by the appended claims and equivalents thereof.

Claims

I CLAIM
1. A method for encoding and decoding a numerical value of an object comprising:
defining at least two fixed positions on the object; and
placing an indicium over at least one of the at least two fixed positions, each indicium having one of at least two different material characters, the pattern of material character and placement being representative of the encoded numerical value.
2. The method for encoding and decoding the numerical value of the object of claim 1 further comprising:
measuring, by sensors placed adjacent to the at least two fixed positions on the object, the numerical value of the object whereby each of the at least two different material characters produces a different sensor reading, the pattern of sensor readings being representative of the encoded numerical value.
3. The method for encoding and decoding the numerical values of the object of claim 2, the sensors further comprising capacitance sensors.
4. The method for encoding and decoding the numerical values of the object of claim 3, each indicium further comprising a conductive material wherein at least one of the size, the conductivity, or a combination thereof of the indicium determines the capacitance of the indicium and wherein the capacitance of the indicium determines the encoded numerical value of the object.
5. The method for encoding and decoding the numerical values of the object of claim 2, the sensors further comprising magnetic field sensors.
6. The method for encoding and decoding the numerical values of the object of claim 5, each indicium further comprising a magnetic material, and at least one of the size and magnetic flux of each indicium determines the characteristic magnetic field of the indicium and wherein the magnetic field of the indicium determines the encoded numerical value of the object.
7. The method for encoding and decoding the numerical value of the object of claim 2 wherein the fixed positions on the object are substantially equidistant from a central point and are substantially equally spaced about a circumference.
8. A system for encoding and decoding a numerical value of an object comprising:
an object including at least two fixed positions; and
one or more indicia coupled to at least one of the at least two fixed positions, each indicium having one of at least two different material characters, the pattern of material character and placement to represent the encoded numerical value.
9. The system for encoding and decoding the numerical value of the object of claim 8, each indicium further comprising a conductive material.
10. The system for encoding and decoding the numerical value of the object of claim 9 further comprising:
a sensor assembly including at least one capacitance sensor to determine the numerical value of the object based at least on the capacitance of at least one indicium.
11. The system for encoding and decoding the numerical value of the object of claim 9 further comprising: an angular sensor assembly including at least one angular capacitance sensor to determine the numerical value of the object based at least on the capacitance of at least one indicium at one of a plurality of rotational orientations of the object.
12. The system for encoding and decoding the numerical value of the object of claim 8, each indicium further comprising a magnetic material.
13. The system for encoding and decoding the numerical value of the object of claim 12 further comprising:
a sensor assembly including at least one magnetic sensor to determine the numerical value of the object based at least on the magnetic field of at least one indicium.
14. The system for encoding and decoding the numerical value of the object of claim 12 further comprising:
an angular sensor assembly including at least one angular magnetic sensor to determine the numerical value of the object based at least on the magnetic field of at least one indicium at one of a plurality of rotational orientations of the object.
PCT/US2010/044435 2010-08-04 2010-08-04 Method and system for encoding data, and method and system for reading encoded data WO2012018332A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2010/044435 WO2012018332A1 (en) 2010-08-04 2010-08-04 Method and system for encoding data, and method and system for reading encoded data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/044435 WO2012018332A1 (en) 2010-08-04 2010-08-04 Method and system for encoding data, and method and system for reading encoded data

Publications (1)

Publication Number Publication Date
WO2012018332A1 true WO2012018332A1 (en) 2012-02-09

Family

ID=45559707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/044435 WO2012018332A1 (en) 2010-08-04 2010-08-04 Method and system for encoding data, and method and system for reading encoded data

Country Status (1)

Country Link
WO (1) WO2012018332A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355300A (en) * 1980-02-14 1982-10-19 Coulter Systems Corporation Indicia recognition apparatus
US20090309303A1 (en) * 2008-06-16 2009-12-17 Pure Imagination Method and system for identifying a game piece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355300A (en) * 1980-02-14 1982-10-19 Coulter Systems Corporation Indicia recognition apparatus
US20090309303A1 (en) * 2008-06-16 2009-12-17 Pure Imagination Method and system for identifying a game piece
US20090308924A1 (en) * 2008-06-16 2009-12-17 Pure Imagination Method and system for encoding data, and method and system for reading encoded data

Similar Documents

Publication Publication Date Title
US8210432B2 (en) Method and system for encoding data, and method and system for reading encoded data
US9244438B2 (en) Angular and axial position sensor arrangement
EP2438402B1 (en) Position measurement encoder and method of operation
CN1314947C (en) Encoder with reference marks
US8129985B2 (en) Position encoder
US5825307A (en) Absolute linear encoder and method of production utilizing index and counter channels
EP3575749B1 (en) Optical measuring instrument
CN112166303B (en) Absolute value encoder
CN105740930A (en) Photo-magnetically readable barcode coding method
JPH0331980A (en) Method and equipment for error correction
CN109115253A (en) A kind of single-code channel rotary encoder
CN101846529A (en) Decoding circuit of spaceborne absolute type photoelectric axial angle encoder based on DSP (Digital Signal processor)
WO2012018332A1 (en) Method and system for encoding data, and method and system for reading encoded data
CN108627182A (en) Electric machine control system, control method, encoder and motor control assembly
CN219265348U (en) High-precision hybrid coding device
JP2012065124A (en) Image processing apparatus, identification apparatus and program
CN107356273A (en) A kind of method for improving code detection device reliability
CN100514864C (en) Array absolute coders
US6817536B1 (en) Coded label information extraction method
GB2405247A (en) Position sensing method with window of detector elements providing a unique logic output
JPS5955548A (en) Recognition coding and decoding system
JPH0861982A (en) Encoder
EP1860407A2 (en) Optoelectronic measuring device
RU2516031C2 (en) Code rack for electronic level
CN113566855A (en) Coding disc, encoder, motor and encoder working method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855701

Country of ref document: EP

Kind code of ref document: A1