WO2012043396A1 - Backlight panel and reflection plate for backlight panel - Google Patents

Backlight panel and reflection plate for backlight panel Download PDF

Info

Publication number
WO2012043396A1
WO2012043396A1 PCT/JP2011/071665 JP2011071665W WO2012043396A1 WO 2012043396 A1 WO2012043396 A1 WO 2012043396A1 JP 2011071665 W JP2011071665 W JP 2011071665W WO 2012043396 A1 WO2012043396 A1 WO 2012043396A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
backlight panel
light guide
beads
Prior art date
Application number
PCT/JP2011/071665
Other languages
French (fr)
Japanese (ja)
Inventor
英行 池田
稲森 康次郎
充 倉田
健介 溝渕
伸吾 野村
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2012043396A1 publication Critical patent/WO2012043396A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a light guide plate type backlight panel used in a liquid crystal panel and a reflector used in the backlight panel.
  • a backlight panel that emits light by illuminating light from the back side of a liquid crystal layer is used.
  • a backlight panel for example, a light source is arranged on the edge side of the light guide plate, light is incident on the light guide plate by a linear light source, and light is reflected as a surface light source on the front surface of the light guide plate by reflection inside the light guide plate.
  • a light guide plate type backlight panel that emits light is used.
  • a light guide plate type backlight panel is required to have uniform luminance throughout the light guide plate.
  • a reflection plate that reflects light is provided on the back side of the light guide plate.
  • the light emitted to the back side of the light guide plate is reflected by the reflecting plate, returns to the inside of the light guide plate, and is emitted from the front side of the light guide plate. Therefore, high brightness can be obtained by reflection of light on the reflecting plate.
  • Such a backlight panel includes, for example, a light guide plate, a lamp unit that is disposed on a side surface of the light guide plate and irradiates light toward the light guide plate, and a reflective plate that is disposed behind the light guide plate. Then, a plurality of prism ridges are formed on the surface of the light guide plate facing the reflecting plate, and a protrusion provided on the base film facing the prism ridge is formed on the surface of the reflecting plate.
  • Patent Document 1 There is a backlight assembly in which the formed reflective layer is formed.
  • Patent Document 2 there is a reflective plate for a backlight in which a large number of protective dots formed of resin are formed on the reflective surface along the concavo-convex surface of the light guide plate.
  • the backlight panel it is necessary to make the light (luminance) emitted to the front surface of the light guide plate uniform.
  • the side closer to the light source is formed coarsely and densely formed with increasing distance from the light source.
  • spacer processing is performed on the reflector side in order to keep the distance from the light guide plate constant.
  • spacer processing is performed on the reflector side in order to keep the distance from the light guide plate constant.
  • light absorption occurs in the dot pattern formed on the back surface of the light guide plate, which may reduce the brightness of the entire backlight panel.
  • the present invention has been made in view of such a problem, and provides a backlight panel or the like that can achieve uniform brightness and cost reduction without unevenness while ensuring the same brightness uniformity as before. With the goal.
  • a first invention is a light guide plate type backlight panel, wherein a light guide plate, a reflection plate provided on a back surface of the light guide plate, and light from a side end portion of the light guide plate.
  • a light source to be incident, and a convex pattern processing is performed on the surface of the reflection plate facing the light guide plate, and the pattern processing is densely formed as the distance from the light source increases. It is a backlight panel.
  • the pattern treatment is a bead coating comprising beads and a coating film for holding the beads on the reflector, and it is desirable that the arrangement density of the beads increases as the distance from the light source increases.
  • the pattern treatment may be formed by applying a paint containing beads, and the pattern treatment may be formed by applying a paint containing beads by an inkjet method.
  • a paint containing beads may be formed by being applied by a screen printing method.
  • the coating film covering the beads may be formed so as not to be continuous between the adjacent beads.
  • the convex pattern processing is performed on the surface facing the light guide plate, there is no need to perform dot mask processing or the like on the back surface side of the light guide plate. For this reason, it is excellent in manufacturability.
  • the convex pattern is densely formed as the distance from the light source increases, uniform brightness can be obtained over the entire front surface of the light guide plate as in the related art.
  • the pattern processing is bead coating, it is excellent in workability, and a reflector that reliably reflects light uniformly can be obtained.
  • a paint containing beads may be applied by gravure printing or the like, or a paint containing beads may be formed by applying an ink jet method, and a paint containing beads is a screen printing method. It may be formed by coating. In either case, the density of the beads may be adjusted according to the distance from the light source.
  • the coating film covering the beads is formed so as not to be continuous between adjacent beads, the cost can be reduced by reducing the amount of paint used, and the coating area with light absorption As a result, the reflection efficiency increases.
  • 2nd invention is a reflecting plate used for the light-guide-plate-type backlight panel, Comprising: It is provided on the base material and the said base material, The coating film for hold
  • the second invention it is possible to obtain a reflector for a backlight panel that can be used in combination with a light guide plate that does not require special processing and can obtain uniform luminance.
  • FIG. 1 is a schematic diagram showing a configuration of a backlight panel 1.
  • FIG. 2A and 2B are views showing the vicinity of a boundary portion between the light guide plate 3 and the reflection plate 5, wherein FIG. 1A is an enlarged view of a portion A in FIG. 1, FIG. 1B is an enlarged view of a portion B in FIG. Enlarged view.
  • FIG. 1A is an enlarged view of a portion A in FIG. 1
  • FIG. 1B is an enlarged view of a portion B in FIG. Enlarged view.
  • It is a figure which shows other embodiment about the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5, (a) is the A section enlarged view of FIG. 1, (b) is the B section enlarged view of FIG. Is an enlarged view of a portion C in FIG.
  • FIG. 1 The figure which shows the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5 of the backlight panel 1a which is a comparative example.
  • the figure which shows the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5 of the backlight panel 1d which is a prior art example.
  • FIG. 1 is a diagram showing a backlight panel 1 used in a liquid crystal display device or the like.
  • the backlight panel 1 is a so-called light guide plate type backlight panel, and mainly includes a light guide plate 3, a reflection plate 5, a light source 9, and the like.
  • the light source 9 which is a line light source is disposed on the side (edge) of the light guide plate 3 and surrounded by a reflector or the like (not shown).
  • a reflector or the like not shown.
  • LED Light Emitting Diode
  • CCFL Cold Cathode Fluorescent Lamp
  • EEFL Extra Electrode Fluorescent Lamp
  • HCFL Hot Cathode Fluorescent, etc.
  • the light guide plate 3 has a flat plate shape, and the light emission surface (the side on which the liquid crystal panel not shown is arranged on the upper surface side in FIG. 1) is configured to be smooth.
  • the back side of the light guide plate 3 (the side facing the reflecting plate 5) may be subjected to dot mask processing, etc., as in the past, but in the present invention, the back side of the light guide plate 3 is improved in order to improve processing costs and brightness. It is desirable that the side be used as smooth.
  • (meth) acrylic resin polycarbonate resin, quartz glass or the like can be used. In view of low absorbance, low refractive index, material cost, etc., it is desirable to employ a (meth) acrylic resin.
  • the reflection plate 5 is formed by performing a spacer treatment 7 on the substrate 6.
  • the spacer treatment 7 keeps the distance between the opposing surfaces of the light guide plate 3 and the reflection plate 5 constant, and efficiently reflects light to the light guide plate 3 side on the surface of the reflection plate 5. Details of the spacer processing 7 will be described later.
  • the reflecting plate 5 may be diffusive or specular, but in consideration of the uniformity of luminance, the diffusive reflecting plate 5 (base material 6). ) Is more desirable.
  • the diffusive reflector 5 base material 6
  • a resin stretched film, a fine foam reflector, or the like can be used, and it is desirable to use a fine foam reflector having a higher reflectance.
  • a thickness of about several tens of ⁇ m to several mm can be used, but it is not limited.
  • the light emitted from the light source 9 enters the light guide plate 3 by a reflector or the like.
  • the light beam incident on the inside of the light guide plate 3 is reflected inside the light guide plate 3, or the light beam emitted from the back side of the light guide plate 3 is reflected by the reflection plate 5 and emitted to the front surface of the light guide plate 3 as a surface light source.
  • the light beam reflected by the reflecting plate 5 is diffused by the spacer treatment 7 or the like, but the degree of diffusion varies depending on the distance from the light source 9. That is, substantially uniform luminance can be obtained on the front side of the light guide plate 3.
  • FIG. 2 is an enlarged schematic view in the vicinity of the boundary between the light guide plate 3 and the reflecting plate 5
  • FIG. 2 (a) is an enlarged view in the vicinity of the portion A (side closer to the light source 9) in FIG. ) Is an enlarged view of the vicinity of the portion B in FIG. 1 (near the middle from the light source 9)
  • FIG. 2C is an enlarged view of the vicinity of the portion C in FIG.
  • the spacer treatment 7 includes a bead 11 and a coating film 13 for holding the bead 11 on the substrate 6.
  • the beads 11 have a substantially grain shape, and the surface is covered with the coating film 13 and is adhered to the surface of the substrate 6 by the coating film 13.
  • the beads 11 have substantially the same particle diameter and have a refractive index different from the refractive index of light in the air.
  • the above-mentioned bead coating is desirable from a viewpoint of processing cost.
  • the beads 11 synthetic resin, glass, or the like is used.
  • synthetic resin, glass, or the like synthetic resin, glass, or the like
  • (meth) acrylic resin, glass, silicon resin, fluororesin, and polycarbonate resin can be used, but elastomeric acrylic beads are particularly preferably used from the viewpoint of cost and transparency.
  • the diameter of the beads 11 is preferably 3 to 100 ⁇ m.
  • the thickness is 100 ⁇ m or more, the backlight becomes thick, and it is necessary to increase the thickness of the coating film for fixing the beads, and not only the cost but also the reflection efficiency decreases due to light absorption of the coating film. Further, when the thickness is 3 ⁇ m or less, a sufficient buffering effect cannot be obtained, and uneven brightness of the screen cannot be suppressed.
  • Examples of the material of the coating film 13 include phenol resin, alkyd resin, melamine urea resin, epoxy resin, polyurethane resin, silicon resin, chlorinated rubber resin, vinyl acetate resin, (meth) acrylic resin, vinyl chloride resin, fluorine. Resins, cellulose resins, and the like can be used, but acrylic urethane resins are particularly preferably used from the viewpoint of transparency, heat resistance, cost, and the like.
  • the spacer treatment 7 on the surface of the reflector 5 is subjected to a pattern treatment according to the distance from the light source 9. That is, a pattern is applied in which the arrangement density of the beads 11 serving as the light diffusion portions is changed according to the distance from the light source 9.
  • the distance between the beads 11 is wide (that is, the density of the beads 11 as the light diffusion portion is small), and FIG. As the distance between c) and the light source 9 increases, the distance between the beads 11 becomes narrower (that is, the density of the beads 11 as the light diffusion portion increases).
  • changing the bead arrangement density from the light source side means that, for example, when the bead density is 10 / cm 2 on the light source 9 side, the bead density is 100 (greater than 10) / It refers to the cm 2.
  • beads 11 are formed at substantially the same density in the depth direction of the drawing.
  • the light beam emitted from the back side of the light guide plate 3 to the reflection plate 5 side is diffused on the surface or inside of the beads 11 and reflected to the light guide plate 3 side.
  • the light source 9 side where the density of the beads 11 is small causes little diffusion, and the density of the beads 11 increases as the distance from the light source 9 increases. For this reason, light diffusion occurs more on the side farther from the light source 9 where the density of the beads 11 is larger, and the emitted light toward the front surface side of the light guide plate 3 at that portion becomes stronger. For this reason, it is possible to suppress a decrease in luminance due to being away from the light source 9 and to obtain a surface light source having a constant luminance regardless of the distance from the light source 9.
  • FIG. 3 is a view showing another embodiment of the spacer treatment 7, and is an enlarged schematic view in the vicinity of the boundary portion between the light guide plate 3 and the reflection plate 5 similarly to FIG. 3A is an enlarged view of the vicinity of the portion A (side near the light source 9) in FIG. 1, FIG. 3B is an enlarged view of the vicinity of the portion B of FIG. 1 (near the middle from the light source 9), FIG. FIG. 2C is an enlarged view of the vicinity of the portion C in FIG. 1 (the side far from the light source 9).
  • the coating film 13 is not formed so as to straddle the adjacent beads 11 but the coating film 13 is applied to each bead 11. Accordingly, a hollow portion of the coating film 13 is formed at a portion where the beads 11 are not arranged. That is, as shown in FIG. 2, the coating film 13 may be continuously formed so as to straddle the adjacent beads 11, or as shown in FIG. Good.
  • a paint containing beads may be applied to the substrate by various printing methods. For example, it may be formed by being applied by gravure printing or the like, a paint containing beads may be formed by being applied by an inkjet method, or a paint containing beads may be formed by being applied by a screen printing method. Good.
  • a screen printing or ink jet printing method is desirable, but not limited thereto. In this case, screen printing is desirable in view of mass productivity, processing cost, etc., and an inkjet method is desirable in consideration of small-lot production and large area.
  • the density of the beads may be increased by enlarging one opening of the mesh or the hole of the printing plate to facilitate the removal of the beads.
  • the bead density may be increased by decreasing the pitch of the printed dot pattern from the head as it goes to one side.
  • the pattern for uniformizing the brightness is applied to the spacer processing 7, uniform brightness can be obtained without performing the pattern processing on the light guide plate 3 side. Further, when dot mask processing or the like is performed on the light guide plate 3, light absorption occurs in the mask processing unit, so that the brightness of the entire light guide plate 3 is reduced. Does not occur, and the overall luminance can be improved.
  • the light guide plate 3 can be smooth on both sides, dot mask processing or the like on the light guide plate 3 is not required, and the manufacturing cost can be reduced. Examples are shown below, but are not intended to be limiting.
  • a paint was prepared from AR650MX (particle size 40 ⁇ m) manufactured by Toyobo Co., Ltd., FD-R01 manufactured by Sumitomo Osaka Cement Co., and propylene glycol monopropyl ether. Then, MCPET manufactured by Furukawa Electric was set as a reflector on the suction table of a screen printing machine (manufactured by Sakurai Graphic Systems). Using a Tetron printing plate with a circular dot missing pattern, the above-mentioned paint is printed using a screen printer, then dried and heat-cured. A bead-coated film having a thickness of about 5 to 10 ⁇ m was formed in a portion having no beads at 50 ⁇ m. The density of the beads was 10-15 wt%.
  • FIG. 4 is a schematic diagram of the backlight panel 1 used for the evaluation.
  • the light source side is denoted by D and the side away from the light source is denoted by E, and the same functions as those described above are denoted by the same reference numerals as in FIGS. Is omitted.
  • the present invention is not limited to the following examples.
  • the backlight unit (not shown) was a 40-inch TV manufactured by SAMSUNG: model number UN40B5500VF.
  • 5 to 8 are diagrams showing backlight panels 1a, 1b, 1c, and 1d as comparative examples.
  • the density of the beads 11 in the spacer processing 7 does not change depending on the distance from the light source 9 (no pattern) compared to the backlight panel 1, and the spacer processing is substantially uniform. Is given.
  • the backlight panel 1b shown in FIG. 6 is substantially uniform with respect to the backlight panel 1 in that the density of the beads 11 of the spacer treatment 7 does not change depending on the distance from the light source 9 (no pattern). Spacer treatment is performed.
  • a dot mask 15 is also formed on the back side of the light guide plate 3. In the drawing, the dot mask 15 indicated by the recesses is applied with a white pigment by screen printing. In the backlight panel 1b, the dot mask 15 is also formed substantially uniformly regardless of the distance from the light source.
  • a dot mask 15 is formed on the back side of the light guide plate 3 in the same manner as the backlight panel 1b. Are formed substantially uniformly regardless of the distance from the light source.
  • the spacer processing 7 is formed by pattern processing according to the distance from the light source, similarly to the backlight panel 1.
  • the backlight panel 1d shown in FIG. 8 is such that a dot mask 15 is formed on the back side of the light guide plate 3 in the same manner as the backlight panel 1b.
  • the dot mask 15 is formed so that the mask processing density increases as the distance from the light source increases.
  • the density of the beads 11 in the spacer treatment 7 does not change depending on the distance from the light source 9 (there is no pattern), and the spacer treatment is performed substantially uniformly. That is, the backlight panel 1d is a conventional backlight panel. For each of the above backlight panels, the average luminance and the luminance uniformity on the front surface of the light guide plate 3 were evaluated.
  • CA-2000w wide-angle lens manufactured by Konica Minolta was used, and the average luminance in the area of the screen center 84 ⁇ 45 cm was measured at a measurement distance of 1.0 m. The uniformity of brightness was evaluated visually.
  • Example 1 The backlight panel 1 according to the present invention had a high average luminance on the front surface of the light guide plate 3 (3350 cd / m 2 ), and the luminance was substantially uniform (visually) throughout.
  • the backlight panel 1b had an average brightness of the front surface of the light guide plate 3 as a whole (3180 cd / m 2 ), and the brightness decreased with increasing distance from the light source, and the brightness was uneven (visually).
  • the backlight panel 1 of the present invention does not need to perform mask processing or the like on the flat surface side of the light guide plate 3 and performs pattern processing for uniforming luminance on the conventional spacer processing side. Can be secured.
  • each dot in the spacer process includes one bead.
  • each dot includes a plurality of beads as in the backlight panel 1e shown in FIG. It may be.

Abstract

Provided is a backlight panel, wherein a light guiding plate (3) is made to be tabular, and a light exiting face thereof is configured to be smooth. A reflection plate (5) is formed by having spacer treatment (7) executed on a base material (6). The spacer treatment (7) is executed using beads (11), and a coating film (13) or the like for fixing the beads (11) onto the base material (6). Pattern processing in accordance with the distance from a light source (9) is implemented for the spacer treatment (7) to be executed on the surface of the reflection plate (5). Light emitted from the light source (9) enters inside the light guiding plate (3). Light beams entering the light guiding plate (3) are reflected inside the light guiding plate (3), or light beams exiting from the back-face side of the light guiding plate (3) are reflected by the reflection plate (5), and the light beams exit from the front face of the light guiding plate (3) forming a surface light-source. At this juncture, the light beams reflected by the reflection plate (5) are diffused by the spacer treatment (7) and other factors, and the degree of diffusion is varied in accordance with the distance from the light source (9).

Description

バックライトパネル、バックライトパネル用反射板Backlight panel, reflector for backlight panel
 本発明は液晶パネルに用いられる、導光板式のバックライトパネルおよびバックライトパネルに用いられる反射板に関するものである。 The present invention relates to a light guide plate type backlight panel used in a liquid crystal panel and a reflector used in the backlight panel.
 従来、液晶表示装置等において、液晶層の背面側から光を照らして発光させるバックライトパネルが用いられる。バックライトパネルとしては、例えば、導光板のエッジ側に光源を配置し、線光源により光を導光板内に入射させ、導光板内部での反射等により、導光板の前面へ面光源として光を出射させる導光板方式バックライトパネルが採用されている。導光板方式のバックライトパネルにおいては、導光板全体における均一な輝度が要求される。 Conventionally, in a liquid crystal display device or the like, a backlight panel that emits light by illuminating light from the back side of a liquid crystal layer is used. As the backlight panel, for example, a light source is arranged on the edge side of the light guide plate, light is incident on the light guide plate by a linear light source, and light is reflected as a surface light source on the front surface of the light guide plate by reflection inside the light guide plate. A light guide plate type backlight panel that emits light is used. A light guide plate type backlight panel is required to have uniform luminance throughout the light guide plate.
 導光板方式のバックライトパネルでは、導光板の背面側にドットマスク処理などが施され、導光板内部において乱反射(光拡散)を起こさせ、導光板の前面側に光を出射する。この際、導光板の背面側には、光を反射させる反射板が設けられる。 In a light guide plate type backlight panel, dot mask processing or the like is applied to the back side of the light guide plate, causing irregular reflection (light diffusion) inside the light guide plate, and emitting light to the front side of the light guide plate. At this time, a reflection plate that reflects light is provided on the back side of the light guide plate.
 導光板の背面側に出射する光は、反射板で反射されて導光板内部に戻り、導光板の前面側から出射される。したがって、反射板での光の反射により高い輝度を得ることができる。 The light emitted to the back side of the light guide plate is reflected by the reflecting plate, returns to the inside of the light guide plate, and is emitted from the front side of the light guide plate. Therefore, high brightness can be obtained by reflection of light on the reflecting plate.
 このような、バックライトパネルとしては、例えば、導光板と、導光板の側面に配置されて導光板に向かって光を照射するランプユニットと、導光板の後方に配置された反射板とを有し、反射板と相対する導光板の表面には複数のプリズム山を形成し、反射板の表面には、プリズム山を相対するベースフィルムに設けられた突起部が形成され、突起部の表層に形成された反射層が形成されるバックライトアッセンブリがある(特許文献1)。 Such a backlight panel includes, for example, a light guide plate, a lamp unit that is disposed on a side surface of the light guide plate and irradiates light toward the light guide plate, and a reflective plate that is disposed behind the light guide plate. Then, a plurality of prism ridges are formed on the surface of the light guide plate facing the reflecting plate, and a protrusion provided on the base film facing the prism ridge is formed on the surface of the reflecting plate. There is a backlight assembly in which the formed reflective layer is formed (Patent Document 1).
 また、導光板の背面の凹凸面に沿って配設される反射板において、導光板の凹凸面に沿う反射面に樹脂にて形成される保護ドットが多数形成されるバックライト用反射板がある(特許文献2)。 In addition, there is a reflective plate for a backlight in which a large number of protective dots formed of resin are formed on the reflective surface along the concavo-convex surface of the light guide plate. (Patent Document 2).
特開2007-258170号公報JP 2007-258170 A 特開2002-324421号公報JP 2002-324421 A
 バックライトパネルにおいては、導光板の前面に出射する光(輝度)を均一にする必要がある。たとえば、導光板の背面に形成されるドットパターン等としては、導光板の前面全体において出射光を均一にするため、光源から近い側は粗に形成され、光源から離れるにつれて密に形成される。このようなパターンを形成することで導光板全体にわたり、略均一な出射光(輝度)を得ることができる。 In the backlight panel, it is necessary to make the light (luminance) emitted to the front surface of the light guide plate uniform. For example, as a dot pattern or the like formed on the back surface of the light guide plate, in order to make the emitted light uniform over the entire front surface of the light guide plate, the side closer to the light source is formed coarsely and densely formed with increasing distance from the light source. By forming such a pattern, substantially uniform emitted light (luminance) can be obtained over the entire light guide plate.
 一方、反射板側には、導光板との距離を一定に保つためのスペーサ処理が施される。スペーサ処理を反射板の表面側(導光板側)に均一に形成することで、導光板と反射板との距離が一定に保たれ、導光板背面側に出射した光は、反射板表面で導光板側に確実に反射され、ムラのない均一な輝度を得ることができる。 On the other hand, spacer processing is performed on the reflector side in order to keep the distance from the light guide plate constant. By uniformly forming the spacer treatment on the surface side (light guide plate side) of the reflector, the distance between the light guide plate and the reflector is kept constant, and the light emitted to the back side of the light guide plate is guided on the surface of the reflector. It is reliably reflected to the light plate side, and uniform brightness without unevenness can be obtained.
 しかしながら、このように構成すると、導光板のドットマスクパターン処理および反射板のスペーサ処理の両方が必要となり、コスト増を招くという問題がある。 However, when configured in this way, both the dot mask pattern processing of the light guide plate and the spacer processing of the reflection plate are required, which causes a problem of increasing costs.
 また、導光板の背面に形成されるドットパターン等において、吸光が生じ、バックライトパネル全体の輝度を低下させる恐れがある。 Also, light absorption occurs in the dot pattern formed on the back surface of the light guide plate, which may reduce the brightness of the entire backlight panel.
 本発明は、このような問題に鑑みてなされたもので、従来と同様の輝度の均一性を確保しつつ、ムラのない均一な輝度とコスト減を達成可能なバックライトパネル等を提供することを目的とする。 The present invention has been made in view of such a problem, and provides a backlight panel or the like that can achieve uniform brightness and cost reduction without unevenness while ensuring the same brightness uniformity as before. With the goal.
 前述した目的を達するために第1の発明は、導光板方式のバックライトパネルであって、導光板と、前記導光板の背面に設けられる反射板と、前記導光板の側端部から光を入射させる光源と、を具備し、前記導光板と対向する前記反射板表面に凸状のパターン処理が施され、前記パターン処理は、前記光源から遠くなるにつれて密に形成されることを特徴とするバックライトパネルである。 In order to achieve the above-described object, a first invention is a light guide plate type backlight panel, wherein a light guide plate, a reflection plate provided on a back surface of the light guide plate, and light from a side end portion of the light guide plate. A light source to be incident, and a convex pattern processing is performed on the surface of the reflection plate facing the light guide plate, and the pattern processing is densely formed as the distance from the light source increases. It is a backlight panel.
 前記パターン処理は、ビーズと、前記ビーズを前記反射板に保持させるための塗膜とからなるビーズコーティングであり、前記光源から遠くなるにつれて、前記ビーズの配置密度が大きくなることが望ましい。 The pattern treatment is a bead coating comprising beads and a coating film for holding the beads on the reflector, and it is desirable that the arrangement density of the beads increases as the distance from the light source increases.
 前記パターン処理は、ビーズを含有する塗料が塗布されて形成されてもよく、前記パターン処理は、ビーズを含有する塗料がインクジェット方式で塗布されて形成されてもよく、また、前記パターン処理は、ビーズを含有する塗料がスクリーン印刷方式で塗布されて形成されてもよい。 The pattern treatment may be formed by applying a paint containing beads, and the pattern treatment may be formed by applying a paint containing beads by an inkjet method. A paint containing beads may be formed by being applied by a screen printing method.
 また、前記ビーズを覆う前記塗膜が、隣り合う前記ビーズ同士の間で連続しないように形成されてもよい。 Further, the coating film covering the beads may be formed so as not to be continuous between the adjacent beads.
 第1の発明によれば、導光板との対向面に対して凸状のパターン処理が施されるため、導光板の裏面側にドットマスク処理等を施す必要がない。このため、製造性に優れる。また、凸状のパターンが、光源から離れるにつれて密に形成されるため、従来同様に導光板前面全体にわたって均一な輝度を得ることができる。 According to the first invention, since the convex pattern processing is performed on the surface facing the light guide plate, there is no need to perform dot mask processing or the like on the back surface side of the light guide plate. For this reason, it is excellent in manufacturability. In addition, since the convex pattern is densely formed as the distance from the light source increases, uniform brightness can be obtained over the entire front surface of the light guide plate as in the related art.
 特に、パターン処理がビーズコーティングであれば、作業性にも優れ、確実に光を均一に反射させる反射板を得ることができる。なお、ビーズコーティングとしては、ビーズを含有する塗料をグラビア印刷等で塗布してもよく、ビーズを含有する塗料がインクジェット方式で塗布されて形成されてもよく、ビーズを含有する塗料がスクリーン印刷方式で塗布されて形成されてもよい。いずれの場合でも、ビーズの密度を光源からの距離に応じて調整すれば良い。 Especially, if the pattern processing is bead coating, it is excellent in workability, and a reflector that reliably reflects light uniformly can be obtained. In addition, as the bead coating, a paint containing beads may be applied by gravure printing or the like, or a paint containing beads may be formed by applying an ink jet method, and a paint containing beads is a screen printing method. It may be formed by coating. In either case, the density of the beads may be adjusted according to the distance from the light source.
 また、前記ビーズを覆う前記塗膜が、隣り合う前記ビーズ同士の間で連続しないように形成されれば、塗料の使用量を抑えることでコストが削減できるほか、光の吸収がある塗膜面積が減ることによって反射効率が上昇する効果がある。 In addition, if the coating film covering the beads is formed so as not to be continuous between adjacent beads, the cost can be reduced by reducing the amount of paint used, and the coating area with light absorption As a result, the reflection efficiency increases.
 第2の発明は、導光板方式のバックライトパネルに用いられる反射板であって、基材と、前記基材上に設けられ、ビーズと、前記ビーズを前記反射板に保持させるための塗膜とからなるビーズコーティングと、を具備し、前記基材の一方の側から、他方の側にいくにつれて、前記ビーズの配置密度が大きくなることを特徴するバックライトパネル用の反射板である。 2nd invention is a reflecting plate used for the light-guide-plate-type backlight panel, Comprising: It is provided on the base material and the said base material, The coating film for hold | maintaining the bead and the said bead on the said reflecting plate A reflector for a backlight panel, wherein the density of the beads increases from one side of the substrate to the other side.
 第2の発明によれば、特殊な処理が必要ない導光板と組み合わせて使用が可能あり、均一な輝度を得ることが可能なバックライトパネル用の反射板を得ることができる。 According to the second invention, it is possible to obtain a reflector for a backlight panel that can be used in combination with a light guide plate that does not require special processing and can obtain uniform luminance.
 本発明によれば、従来と同様の輝度の均一性を確保しつつ、コスト減を達成可能なバックライトパネル等を提供することができる。 According to the present invention, it is possible to provide a backlight panel or the like that can achieve a reduction in cost while ensuring the same luminance uniformity as before.
バックライトパネル1の構成を示す模式図。1 is a schematic diagram showing a configuration of a backlight panel 1. FIG. 導光板3と反射板5との境界部近傍を示す図で、(a)は図1のA部拡大図、(b)は図1のB部拡大図、(c)は図1のC部拡大図。2A and 2B are views showing the vicinity of a boundary portion between the light guide plate 3 and the reflection plate 5, wherein FIG. 1A is an enlarged view of a portion A in FIG. 1, FIG. 1B is an enlarged view of a portion B in FIG. Enlarged view. 導光板3と反射板5との境界部近傍について、他の実施形態を示す図で、(a)は図1のA部拡大図、(b)は図1のB部拡大図、(c)は図1のC部拡大図。It is a figure which shows other embodiment about the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5, (a) is the A section enlarged view of FIG. 1, (b) is the B section enlarged view of FIG. Is an enlarged view of a portion C in FIG. 本発明にかかるバックライトパネル1の導光板3と反射板5との境界部近傍を示す図。The figure which shows the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5 of the backlight panel 1 concerning this invention. 比較例であるバックライトパネル1aの導光板3と反射板5との境界部近傍を示す図。The figure which shows the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5 of the backlight panel 1a which is a comparative example. 比較例であるバックライトパネル1bの導光板3と反射板5との境界部近傍を示す図。The figure which shows the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5 of the backlight panel 1b which is a comparative example. 比較例であるバックライトパネル1cの導光板3と反射板5との境界部近傍を示す図。The figure which shows the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5 of the backlight panel 1c which is a comparative example. 従来例であるバックライトパネル1dの導光板3と反射板5との境界部近傍を示す図。The figure which shows the boundary part vicinity of the light-guide plate 3 and the reflecting plate 5 of the backlight panel 1d which is a prior art example. バックライトパネル1の導光板3と反射板5との境界部近傍の他の形態を示す図。The figure which shows the other form of the boundary part vicinity of the light-guide plate 3 of the backlight panel 1, and the reflecting plate 5. FIG.
 以下、図面を参照しながら、本発明の実施形態について説明する。図1は液晶表示装置等に用いられるバックライトパネル1を示す図である。バックライトパネル1は、いわゆる導光板方式のバックライトパネルであり、主に、導光板3、反射板5、光源9等から構成される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a backlight panel 1 used in a liquid crystal display device or the like. The backlight panel 1 is a so-called light guide plate type backlight panel, and mainly includes a light guide plate 3, a reflection plate 5, a light source 9, and the like.
 線光源である光源9は、導光板3の側部(エッジ)に配置され、図示を省略したリフレクタ等により包囲される。光源9としては、例えば、LED(Light Emitting Diode)、CCFL(Cold Cathode Fluorescent Lamp)、EEFL(External Electrode Fluorescent Lamp)、HCFL(Hot Cathode  Fluorescent Lamp)等を用いることができる。 The light source 9 which is a line light source is disposed on the side (edge) of the light guide plate 3 and surrounded by a reflector or the like (not shown). As the light source 9, for example, LED (Light Emitting Diode), CCFL (Cold Cathode Fluorescent Lamp), EEFL (External Electrode Fluorescent Lamp), HCFL (Hot Cathode Fluorescent, etc.) can be used.
 導光板3は、平板状であり、光の出射面(図1の上面側で図示を省略した液晶パネルが配置される側)は、平滑に構成される。導光板3の背面側(反射板5との対向面側)には、従来どおり、ドットマスク処理などを施してもよいが、本発明では、加工コストや輝度向上のため、導光板3の背面側は、平滑のまま使用されることが望ましい。 The light guide plate 3 has a flat plate shape, and the light emission surface (the side on which the liquid crystal panel not shown is arranged on the upper surface side in FIG. 1) is configured to be smooth. The back side of the light guide plate 3 (the side facing the reflecting plate 5) may be subjected to dot mask processing, etc., as in the past, but in the present invention, the back side of the light guide plate 3 is improved in order to improve processing costs and brightness. It is desirable that the side be used as smooth.
 導光板3としては、(メタ)アクリル樹脂、ポリカーボネート樹脂、石英ガラス等を用いることができる。吸光度の低さと屈折率の低さ、および、材料コスト等を考慮すると、(メタ)アクリル樹脂を採用することが望ましい。 As the light guide plate 3, (meth) acrylic resin, polycarbonate resin, quartz glass or the like can be used. In view of low absorbance, low refractive index, material cost, etc., it is desirable to employ a (meth) acrylic resin.
 反射板5は、基材6上にスペーサ処理7が施されて形成される。スペーサ処理7は、導光板3と反射板5の対向面同士の距離を一定に保ち、効率良く反射板5の表面で導光板3側に光を反射させるものである。スペーサ処理7については詳細を後述する。 The reflection plate 5 is formed by performing a spacer treatment 7 on the substrate 6. The spacer treatment 7 keeps the distance between the opposing surfaces of the light guide plate 3 and the reflection plate 5 constant, and efficiently reflects light to the light guide plate 3 side on the surface of the reflection plate 5. Details of the spacer processing 7 will be described later.
 反射板5(基材6)としては、拡散性のものであってもよく、鏡面性のものであってもよいが、輝度の均一性を考慮すると、拡散性の反射板5(基材6)がより望ましい。拡散性の反射板5(基材6)としては、樹脂延伸フィルム、微細発泡反射板等が使用でき、反射率がより高い、微細発泡反射板を用いることが望ましい。なお、反射板としては、数十μm~数mm程度の厚みのものが使用できるが、限定するものではない。 The reflecting plate 5 (base material 6) may be diffusive or specular, but in consideration of the uniformity of luminance, the diffusive reflecting plate 5 (base material 6). ) Is more desirable. As the diffusive reflector 5 (base material 6), a resin stretched film, a fine foam reflector, or the like can be used, and it is desirable to use a fine foam reflector having a higher reflectance. In addition, as the reflection plate, a thickness of about several tens of μm to several mm can be used, but it is not limited.
 光源9から発せられた光は、リフレクタ等により導光板3内部に入射する。導光板3内部へ入射した光線は、導光板3内部で反射し、または、導光板3の背面側から出射した光線が反射板5により反射されて、導光板3の前面に面光源として出射する。この際、反射板5により反射される光線は、スペーサ処理7等によって拡散されるが、光源9からの距離に応じて、拡散の度合が異なる。すなわち、導光板3の前面側において、略均一な輝度を得ることができる。 The light emitted from the light source 9 enters the light guide plate 3 by a reflector or the like. The light beam incident on the inside of the light guide plate 3 is reflected inside the light guide plate 3, or the light beam emitted from the back side of the light guide plate 3 is reflected by the reflection plate 5 and emitted to the front surface of the light guide plate 3 as a surface light source. . At this time, the light beam reflected by the reflecting plate 5 is diffused by the spacer treatment 7 or the like, but the degree of diffusion varies depending on the distance from the light source 9. That is, substantially uniform luminance can be obtained on the front side of the light guide plate 3.
 次に、このような効果を得ることが可能なスペーサ処理7について説明する。図2は、導光板3と反射板5との境界部近傍の拡大模式図であり、図2(a)は図1のA部近傍(光源9に近い側)の拡大図、図2(b)は図1のB部近傍(光源9から中間近く)の拡大図、図2(c)は図1のC部近傍(光源9から遠い側)の拡大図である。 Next, the spacer treatment 7 capable of obtaining such an effect will be described. FIG. 2 is an enlarged schematic view in the vicinity of the boundary between the light guide plate 3 and the reflecting plate 5, and FIG. 2 (a) is an enlarged view in the vicinity of the portion A (side closer to the light source 9) in FIG. ) Is an enlarged view of the vicinity of the portion B in FIG. 1 (near the middle from the light source 9), and FIG. 2C is an enlarged view of the vicinity of the portion C in FIG.
 スペーサ処理7は、ビーズ11とビーズ11を基材6に保持するための塗膜13等から構成される。ビーズ11は、略粒形状を有し、表面を塗膜13で覆われるとともに、塗膜13によって基材6の表面に接着される。ビーズ11は、略同様の粒径を有し、空気中の光の屈折率とは異なる屈折率を有する。なお、ビーズ11に代えて、反射板5(基材6)表面に切削処理等により拡散部を形成してもよいが、加工コストの観点からは、上述したビーズコーティングが望ましい。 The spacer treatment 7 includes a bead 11 and a coating film 13 for holding the bead 11 on the substrate 6. The beads 11 have a substantially grain shape, and the surface is covered with the coating film 13 and is adhered to the surface of the substrate 6 by the coating film 13. The beads 11 have substantially the same particle diameter and have a refractive index different from the refractive index of light in the air. In addition, although it replaces with the bead 11 and a diffused part may be formed by the cutting process etc. on the reflector 5 (base material 6) surface, the above-mentioned bead coating is desirable from a viewpoint of processing cost.
 なお、ビーズ11の材質としては、合成樹脂、ガラス等が用いられる。例えば(メタ)アクリル樹脂、ガラス、シリコン樹脂、フッ素樹脂、ポリカーボネート樹脂が使用できるが、コスト、透明性の観点からエラストマー系アクリルビーズが特に好適に用いられる。また、ビーズ11の径としては、3~100μmが良い。100μm以上では、バックライトが厚くなるほか、ビーズを固定する塗膜を厚くする必要が生じコスト面だけでなく塗膜の光吸収により反射効率が低下する。また3μm以下では十分な緩衝効果が得られなく画面の輝度ムラを抑制できないためである。 In addition, as a material of the beads 11, synthetic resin, glass, or the like is used. For example, (meth) acrylic resin, glass, silicon resin, fluororesin, and polycarbonate resin can be used, but elastomeric acrylic beads are particularly preferably used from the viewpoint of cost and transparency. The diameter of the beads 11 is preferably 3 to 100 μm. When the thickness is 100 μm or more, the backlight becomes thick, and it is necessary to increase the thickness of the coating film for fixing the beads, and not only the cost but also the reflection efficiency decreases due to light absorption of the coating film. Further, when the thickness is 3 μm or less, a sufficient buffering effect cannot be obtained, and uneven brightness of the screen cannot be suppressed.
 また、塗膜13の材質としては、例えばフェノール樹脂、アルキド樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコン樹脂、塩化ゴム系樹脂、酢酸ビニル樹脂、(メタ)アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、セルロース系樹脂等を用いることができるが、透明性、耐熱性、コスト等の観点から特にアクリルウレタン系樹脂が好適に用いられる。 Examples of the material of the coating film 13 include phenol resin, alkyd resin, melamine urea resin, epoxy resin, polyurethane resin, silicon resin, chlorinated rubber resin, vinyl acetate resin, (meth) acrylic resin, vinyl chloride resin, fluorine. Resins, cellulose resins, and the like can be used, but acrylic urethane resins are particularly preferably used from the viewpoint of transparency, heat resistance, cost, and the like.
 反射板5表面のスペーサ処理7は、光源9からの距離に応じたパターン処理が施される。すなわち、光の拡散部であるビーズ11の配置密度が、光源9からの距離に応じて変化させたパターンが施される。 The spacer treatment 7 on the surface of the reflector 5 is subjected to a pattern treatment according to the distance from the light source 9. That is, a pattern is applied in which the arrangement density of the beads 11 serving as the light diffusion portions is changed according to the distance from the light source 9.
 図2(a)に示すように、光源9に近い側では、ビーズ11同士の間隔が広く(すなわち、光の拡散部であるビーズ11の密度が小さく)、図2(b)、図2(c)と光源9からの距離が離れるにつれて、ビーズ11同士の間隔が狭く(すなわち、光の拡散部であるビーズ11の密度が大きく)なるように形成される。ここで、ビーズの配置密度を光源側から変化させるとは、たとえば、光源9側ではビーズ密度を10個/cmとした場合、反対側ではビーズ密度を100個(10個よりも大きく)/cmとすることをいう。なお、図の紙面奥行き方向には、略同密度でビーズ11が形成されるものとする。 As shown in FIG. 2 (a), on the side closer to the light source 9, the distance between the beads 11 is wide (that is, the density of the beads 11 as the light diffusion portion is small), and FIG. As the distance between c) and the light source 9 increases, the distance between the beads 11 becomes narrower (that is, the density of the beads 11 as the light diffusion portion increases). Here, changing the bead arrangement density from the light source side means that, for example, when the bead density is 10 / cm 2 on the light source 9 side, the bead density is 100 (greater than 10) / It refers to the cm 2. In addition, it is assumed that beads 11 are formed at substantially the same density in the depth direction of the drawing.
 導光板3の背面側から反射板5側に出射した光線は、ビーズ11の表面または内部で拡散され、導光板3側に反射される。この際、ビーズ11の密度の小さい光源9側では拡散が少なく、光源9から離れるに連れてビーズ11の密度が大きくなる。このため、よりビーズ11の密度が大きい光源9から遠い側の方が、より光の拡散が起こり、当該部位における導光板3の前面側への出射光が強くなる。このため、光源9から離れることによる輝度の低下を抑え、光源9からの距離によらず、一定の輝度の面光源を得ることができる。 The light beam emitted from the back side of the light guide plate 3 to the reflection plate 5 side is diffused on the surface or inside of the beads 11 and reflected to the light guide plate 3 side. At this time, the light source 9 side where the density of the beads 11 is small causes little diffusion, and the density of the beads 11 increases as the distance from the light source 9 increases. For this reason, light diffusion occurs more on the side farther from the light source 9 where the density of the beads 11 is larger, and the emitted light toward the front surface side of the light guide plate 3 at that portion becomes stronger. For this reason, it is possible to suppress a decrease in luminance due to being away from the light source 9 and to obtain a surface light source having a constant luminance regardless of the distance from the light source 9.
 図3は、スペーサ処理7の他の実施形態を示す図であり、図2と同様に導光板3と反射板5との境界部近傍の拡大模式図である。なお、図3(a)は図1のA部近傍(光源9に近い側)の拡大図、図3(b)は図1のB部近傍(光源9から中間近く)の拡大図、図3(c)は図1のC部近傍(光源9から遠い側)の拡大図である。 FIG. 3 is a view showing another embodiment of the spacer treatment 7, and is an enlarged schematic view in the vicinity of the boundary portion between the light guide plate 3 and the reflection plate 5 similarly to FIG. 3A is an enlarged view of the vicinity of the portion A (side near the light source 9) in FIG. 1, FIG. 3B is an enlarged view of the vicinity of the portion B of FIG. 1 (near the middle from the light source 9), FIG. FIG. 2C is an enlarged view of the vicinity of the portion C in FIG. 1 (the side far from the light source 9).
 図3に示すように、塗膜13は、それぞれの隣り合うビーズ11同士にまたがるように形成されず、個々のビーズ11に対して塗膜13が施される。したがって、ビーズ11の配置されない部位には、塗膜13の中抜き部が形成される。すなわち、図2に示すように、隣り合うビーズ11同士にまたがるように塗膜13が連続して形成されてもよく、図3に示すように、塗膜13の中抜き部を形成してもよい。 As shown in FIG. 3, the coating film 13 is not formed so as to straddle the adjacent beads 11 but the coating film 13 is applied to each bead 11. Accordingly, a hollow portion of the coating film 13 is formed at a portion where the beads 11 are not arranged. That is, as shown in FIG. 2, the coating film 13 may be continuously formed so as to straddle the adjacent beads 11, or as shown in FIG. Good.
 なお、本発明のスペーサ処理7(ビーズコーティング)は、ビーズを含有する塗料を各種印刷手法により基材上に塗布すればよい。例えば、グラビア印刷等により塗布されて形成されてもよく、ビーズを含有する塗料がインクジェット方式で塗布されて形成されてもよく、ビーズを含有する塗料がスクリーン印刷方式で塗布されて形成されてもよい。図3に示すような、塗膜13の中抜き部を形成し、塗材の消費量を抑えることを考慮すると、スクリーン印刷またはインクジェット印刷による方式が望ましいがこれに限定するものではない。この場合、量産性、加工コスト等を考慮すると、スクリーン印刷が望ましく、小ロット生産、大面積化を考慮すれば、インクジェット方式が望ましい。印刷方法としては、例えば、スクリーン印刷の場合は、印刷版のメッシュあるいは孔の一方の開口を大きくしてビーズの抜けやすくすることでビーズの密度を大きくすればよい。インクジェット方式での塗布はヘッドからの印刷ドットパターンのピッチを一方に行くほど小さくすることでビーズ密度を大きくすればよい。 In the spacer treatment 7 (bead coating) of the present invention, a paint containing beads may be applied to the substrate by various printing methods. For example, it may be formed by being applied by gravure printing or the like, a paint containing beads may be formed by being applied by an inkjet method, or a paint containing beads may be formed by being applied by a screen printing method. Good. In consideration of forming a hollow portion of the coating film 13 as shown in FIG. 3 and suppressing consumption of the coating material, a screen printing or ink jet printing method is desirable, but not limited thereto. In this case, screen printing is desirable in view of mass productivity, processing cost, etc., and an inkjet method is desirable in consideration of small-lot production and large area. As a printing method, for example, in the case of screen printing, the density of the beads may be increased by enlarging one opening of the mesh or the hole of the printing plate to facilitate the removal of the beads. In the application by the ink jet system, the bead density may be increased by decreasing the pitch of the printed dot pattern from the head as it goes to one side.
 本発明によれば、スペーサ処理7に輝度均一化のためのパターンを施したため、導光板3側にパターン処理を施すことなく、均一な輝度を得ることができる。また、導光板3にドットマスク処理等を施すとマスク処理部において吸光が生じるため、導光板3全体の輝度が低下するが、本発明では、導光板3の背面が平滑であるため、かかる吸光が生じず、全体的な輝度を向上させることができる。 According to the present invention, since the pattern for uniformizing the brightness is applied to the spacer processing 7, uniform brightness can be obtained without performing the pattern processing on the light guide plate 3 side. Further, when dot mask processing or the like is performed on the light guide plate 3, light absorption occurs in the mask processing unit, so that the brightness of the entire light guide plate 3 is reduced. Does not occur, and the overall luminance can be improved.
 また、導光板3は、両面ともに平滑なものを使用できるため、導光板3に対するドットマスク処理等が不要となり、製造コストを低減することができる。以下に実施例を示すが、限定するものではない。 Further, since the light guide plate 3 can be smooth on both sides, dot mask processing or the like on the light guide plate 3 is not required, and the manufacturing cost can be reduced. Examples are shown below, but are not intended to be limiting.
 東洋紡績社製のAR650MX(粒径40μm)と、住友大阪セメント社製のFD-R01と、プロピレングリコールモノプロピルエーテルから塗料を用意した。そして、スクリーン印刷機(サクライグラフィックシステムズ製)の吸着テーブルに反射板として古河電気工業製 MCPETをセットした。円形状のドット抜けパターンのあるテトロン印刷版を用い、前述した塗料をスクリーン印刷機を使って印刷し、その後、乾燥、熱硬化することで、塗膜厚さとして、ビーズがある部分で40~50μm、ビーズがない部分で約5~10μmのビーズコーティング塗膜を形成した。ビーズの密度は10~15wt%であった。 A paint was prepared from AR650MX (particle size 40 μm) manufactured by Toyobo Co., Ltd., FD-R01 manufactured by Sumitomo Osaka Cement Co., and propylene glycol monopropyl ether. Then, MCPET manufactured by Furukawa Electric was set as a reflector on the suction table of a screen printing machine (manufactured by Sakurai Graphic Systems). Using a Tetron printing plate with a circular dot missing pattern, the above-mentioned paint is printed using a screen printer, then dried and heat-cured. A bead-coated film having a thickness of about 5 to 10 μm was formed in a portion having no beads at 50 μm. The density of the beads was 10-15 wt%.
 本願発明にかかるバックライトパネル1について評価した。図4は、評価に用いたバックライトパネル1の模式図である。なお、以下の図において、光源側をD、光源から離れる側をEとして示し、前述した構成と同様の機能を奏する構成には、図1~図3と同様の符号を付し、重複する説明を省略する。また、本発明は以下の実施例に限定されるものではない。 The backlight panel 1 according to the present invention was evaluated. FIG. 4 is a schematic diagram of the backlight panel 1 used for the evaluation. In the following drawings, the light source side is denoted by D and the side away from the light source is denoted by E, and the same functions as those described above are denoted by the same reference numerals as in FIGS. Is omitted. The present invention is not limited to the following examples.
 図示を省略したバックライトユニットは、SAMSUNG社の40インチTV:型番UN40B5500VFを用いた。 The backlight unit (not shown) was a 40-inch TV manufactured by SAMSUNG: model number UN40B5500VF.
 図5~図8は、比較例であるバックライトパネル1a、1b、1c、1dを示す図である。図5に示すバックライトパネル1aは、バックライトパネル1に対して、スペーサ処理7のビーズ11の密度が、光源9からの距離によって変化せず(パターンを有さず)、略均一にスペーサ処理が施されたものである。 5 to 8 are diagrams showing backlight panels 1a, 1b, 1c, and 1d as comparative examples. In the backlight panel 1a shown in FIG. 5, the density of the beads 11 in the spacer processing 7 does not change depending on the distance from the light source 9 (no pattern) compared to the backlight panel 1, and the spacer processing is substantially uniform. Is given.
 また、図6に示すバックライトパネル1bは、バックライトパネル1に対して、スペーサ処理7のビーズ11の密度が、光源9からの距離によって変化せず(パターンを有さず)、略均一にスペーサ処理が施される。また、導光板3の背面側にもドットマスク15を形成される。図中、凹部で示したドットマスク15は、白色顔料をスクリーン印刷により施される。なお、バックライトパネル1bにおいては、ドットマスク15も、光源からの距離によらず略均一に形成される。 Further, the backlight panel 1b shown in FIG. 6 is substantially uniform with respect to the backlight panel 1 in that the density of the beads 11 of the spacer treatment 7 does not change depending on the distance from the light source 9 (no pattern). Spacer treatment is performed. A dot mask 15 is also formed on the back side of the light guide plate 3. In the drawing, the dot mask 15 indicated by the recesses is applied with a white pigment by screen printing. In the backlight panel 1b, the dot mask 15 is also formed substantially uniformly regardless of the distance from the light source.
 また、図7に示すバックライトパネル1cは、バックライトパネル1に対して、バックライトパネル1bと同様に、導光板3の背面側にもドットマスク15が形成されたものであり、ドットマスク15は、光源からの距離によらず略均一に形成される。なお、スペーサ処理7は、バックライトパネル1と同様に、光源からの距離に応じてパターン処理されて形成される。 Further, in the backlight panel 1c shown in FIG. 7, a dot mask 15 is formed on the back side of the light guide plate 3 in the same manner as the backlight panel 1b. Are formed substantially uniformly regardless of the distance from the light source. The spacer processing 7 is formed by pattern processing according to the distance from the light source, similarly to the backlight panel 1.
 また、図8に示すバックライトパネル1dは、バックライトパネル1に対して、バックライトパネル1bと同様に、導光板3の背面側にもドットマスク15が形成されるものであり、バックライトパネル1dにおいては、ドットマスク15は、光源からの距離が離れるに連れて、マスク処理の密度が高くなるように形成される。なお、スペーサ処理7のビーズ11の密度は、光源9からの距離によって変化せず(パターンを有さず)、略均一にスペーサ処理が施される。すなわち、バックライトパネル1dは、従来のバックライトパネルである。
 以上のそれぞれのバックライトパネルについて、導光板3前面における平均輝度と、輝度の均一性を評価した。輝度については、コニカミノルタ製CA-2000w(広角レンズ)を用い、測定距離1.0mにて画面中心部84×45cmの領域の平均輝度を測定した。輝度の均一性は目視で評価した。
Further, the backlight panel 1d shown in FIG. 8 is such that a dot mask 15 is formed on the back side of the light guide plate 3 in the same manner as the backlight panel 1b. In 1d, the dot mask 15 is formed so that the mask processing density increases as the distance from the light source increases. Note that the density of the beads 11 in the spacer treatment 7 does not change depending on the distance from the light source 9 (there is no pattern), and the spacer treatment is performed substantially uniformly. That is, the backlight panel 1d is a conventional backlight panel.
For each of the above backlight panels, the average luminance and the luminance uniformity on the front surface of the light guide plate 3 were evaluated. As for the luminance, CA-2000w (wide-angle lens) manufactured by Konica Minolta was used, and the average luminance in the area of the screen center 84 × 45 cm was measured at a measurement distance of 1.0 m. The uniformity of brightness was evaluated visually.
(実施例1)
 本発明にかかるバックライトパネル1は、導光板3前面の平均輝度が高く(3350cd/m)、輝度は全体にわたって略均一(目視)であった。
Example 1
The backlight panel 1 according to the present invention had a high average luminance on the front surface of the light guide plate 3 (3350 cd / m 2 ), and the luminance was substantially uniform (visually) throughout.
(比較例1)
 一方、バックライトパネル1aは、導光板3前面の平均輝度が高いものの(3360cd/m)、光源から離れるにつれて輝度が低くなり、輝度は不均一(目視)であった。
(Comparative Example 1)
On the other hand, although the backlight panel 1a had a high average luminance on the front surface of the light guide plate 3 (3360 cd / m 2 ), the luminance decreased with increasing distance from the light source, and the luminance was uneven (visually).
(比較例2)
 また、バックライトパネル1bは、導光板3前面の平均輝度が全体的に低く(3180cd/m)、さらに光源から離れるにつれて輝度が低くなり、輝度は不均一(目視)であった。
(Comparative Example 2)
In addition, the backlight panel 1b had an average brightness of the front surface of the light guide plate 3 as a whole (3180 cd / m 2 ), and the brightness decreased with increasing distance from the light source, and the brightness was uneven (visually).
(比較例3)
 また、バックライトパネル1cは、導光板3前面の平均輝度が全体的に低いものの(3150cd/m)、輝度は全体にわたって略均一(目視)であった。
(Comparative Example 3)
Moreover, although the backlight panel 1c had a generally low average brightness on the front surface of the light guide plate 3 (3150 cd / m 2 ), the brightness was substantially uniform (visually) throughout.
(比較例4)
 また、バックライトパネル1dは、導光板3前面の平均輝度が全体的に低いものの(3130cd/m)、輝度は全体にわたって略均一(目視)であった。
(Comparative Example 4)
Moreover, although the backlight panel 1d had a low average overall brightness on the front surface of the light guide plate 3 (3130 cd / m 2 ), the brightness was substantially uniform (visually) throughout.
 以上により、本発明のバックライトパネル1は、導光板3の平面側にマスク処理等を施す必要がなく、従来のスペーサ処理側に輝度を均一化するパターン処理を施したため、高い輝度および均一性を確保することができる。 As described above, the backlight panel 1 of the present invention does not need to perform mask processing or the like on the flat surface side of the light guide plate 3 and performs pattern processing for uniforming luminance on the conventional spacer processing side. Can be secured.
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The embodiment of the present invention has been described above with reference to the accompanying drawings, but the technical scope of the present invention is not affected by the above-described embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
 例えば、前述した実施形態においては、スペーサ処理の各ドットには、それぞれ一つのビーズが含まれる例を示したが、図9に示すバックライトパネル1eのように、各ドットに複数のビーズが含まれていてもよい。 For example, in the above-described embodiment, an example in which each dot in the spacer process includes one bead is shown. However, each dot includes a plurality of beads as in the backlight panel 1e shown in FIG. It may be.
1、1a、1b、1c、1d、1e………バックライトパネル
3………導光板
5………反射板
6………基材
7………スペーサ処理
9………光源
11………ビーズ
13………塗膜
15………ドットマスク
1, 1a, 1b, 1c, 1d, 1e ... Backlight panel 3 ... Light guide plate 5 ... Reflector plate 6 ... Base material 7 ... Spacer treatment 9 ... Light source 11 ... Bead 13 ……… Coating film 15 ………… Dot mask

Claims (7)

  1.  導光板方式のバックライトパネルであって、
     導光板と、
     前記導光板の背面に設けられる反射板と、
     前記導光板の側端部から光を入射させる光源と、
     を具備し、
     前記導光板と対向する前記反射板の表面に凸状のパターン処理が施され、
     前記パターン処理は、前記光源から遠くなるにつれて密に形成されることを特徴とするバックライトパネル。
    A light guide plate type backlight panel,
    A light guide plate;
    A reflector provided on the back surface of the light guide plate;
    A light source that makes light incident from a side end of the light guide plate;
    Comprising
    A convex pattern treatment is applied to the surface of the reflection plate facing the light guide plate,
    The backlight panel is characterized in that the pattern processing is densely formed as the distance from the light source increases.
  2.  前記パターン処理は、ビーズと、前記ビーズを前記反射板に保持させるための塗膜とからなるビーズコーティングであり、前記光源から遠くなるにつれて、前記ビーズの配置密度が大きくなることを特徴する請求項1記載のバックライトパネル。 The pattern processing is a bead coating comprising a bead and a coating film for holding the bead on the reflector, and the disposition density of the beads increases as the distance from the light source increases. The backlight panel according to 1.
  3.  前記パターン処理は、ビーズを含有する塗料が塗布されて形成されることを特徴する請求項2記載のバックライトパネル。 3. The backlight panel according to claim 2, wherein the pattern treatment is formed by applying a paint containing beads.
  4.  前記パターン処理は、ビーズを含有する塗料がインクジェット方式で塗布されて形成されることを特徴する請求項3記載のバックライトパネル。 4. The backlight panel according to claim 3, wherein the pattern treatment is formed by applying a paint containing beads by an inkjet method.
  5.  前記パターン処理は、ビーズを含有する塗料がスクリーン印刷方式で塗布されて形成されることを特徴する請求項3記載のバックライトパネル。 4. The backlight panel according to claim 3, wherein the pattern treatment is formed by applying a paint containing beads by a screen printing method.
  6.  前記ビーズを覆う前記塗膜が、隣り合う前記ビーズ同士の間で連続しないように形成されることを特徴する請求項3記載のバックライトパネル。 4. The backlight panel according to claim 3, wherein the coating film covering the beads is formed so as not to be continuous between the adjacent beads.
  7.  導光板方式のバックライトパネルに用いられる反射板であって、
     基材と、前記基材上に設けられ、ビーズと、前記ビーズを前記反射板に保持させるための塗膜とからなるビーズコーティングと、を具備し、
     前記基材の一方の側から、他方の側にいくにつれて、前記ビーズの配置密度が大きくなることを特徴するバックライトパネル用の反射板。
     
    A reflector used in a light guide plate type backlight panel,
    Comprising a base material, a bead coating provided on the base material, and comprising a bead and a coating film for holding the bead on the reflector;
    A reflector for a backlight panel, wherein the arrangement density of the beads increases from one side of the substrate to the other side.
PCT/JP2011/071665 2010-09-27 2011-09-22 Backlight panel and reflection plate for backlight panel WO2012043396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-215711 2010-09-27
JP2010215711 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012043396A1 true WO2012043396A1 (en) 2012-04-05

Family

ID=45892847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071665 WO2012043396A1 (en) 2010-09-27 2011-09-22 Backlight panel and reflection plate for backlight panel

Country Status (2)

Country Link
TW (1) TW201215969A (en)
WO (1) WO2012043396A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013188109A1 (en) * 2012-06-12 2013-12-19 Qualcomm Mems Technologies, Inc. Display with diffuser for different color display elements
WO2013188110A1 (en) * 2012-06-12 2013-12-19 Qualcomm Mems Technologies, Inc. Diffuser including particles and binder
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
WO2014196266A1 (en) * 2013-06-07 2014-12-11 古河電気工業株式会社 Reflecting frame and backlight unit
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US20160299285A1 (en) * 2015-04-13 2016-10-13 Young Lighting Technology Inc. Light source module
KR20170118610A (en) * 2016-04-15 2017-10-25 주식회사 엘지화학 Light guide plate unit, back light unit and liquid crystal display comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173134A (en) * 1991-12-26 1993-07-13 Sekisui Chem Co Ltd Dimming sheet
JPH09113902A (en) * 1995-10-19 1997-05-02 Dainippon Printing Co Ltd Light diffusion film and display device
JP2010135297A (en) * 2008-11-04 2010-06-17 Fujifilm Corp Surface lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173134A (en) * 1991-12-26 1993-07-13 Sekisui Chem Co Ltd Dimming sheet
JPH09113902A (en) * 1995-10-19 1997-05-02 Dainippon Printing Co Ltd Light diffusion film and display device
JP2010135297A (en) * 2008-11-04 2010-06-17 Fujifilm Corp Surface lighting device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
WO2013188110A1 (en) * 2012-06-12 2013-12-19 Qualcomm Mems Technologies, Inc. Diffuser including particles and binder
WO2013188109A1 (en) * 2012-06-12 2013-12-19 Qualcomm Mems Technologies, Inc. Display with diffuser for different color display elements
WO2014196266A1 (en) * 2013-06-07 2014-12-11 古河電気工業株式会社 Reflecting frame and backlight unit
JP2014238968A (en) * 2013-06-07 2014-12-18 古河電気工業株式会社 Reflection frame and backlight unit
US20160299285A1 (en) * 2015-04-13 2016-10-13 Young Lighting Technology Inc. Light source module
US9958598B2 (en) * 2015-04-13 2018-05-01 Young Lighting Technology Inc. Light source module
KR20170118610A (en) * 2016-04-15 2017-10-25 주식회사 엘지화학 Light guide plate unit, back light unit and liquid crystal display comprising the same
CN108885370A (en) * 2016-04-15 2018-11-23 株式会社Lg化学 Guide-lighting plate unit, back light unit and liquid crystal display device including it
EP3444659A4 (en) * 2016-04-15 2019-02-27 LG Chem, Ltd. Light guide plate unit, backlight unit comprising same, and liquid crystal display device
US20190094455A1 (en) * 2016-04-15 2019-03-28 Lg Chem, Ltd. Light guide plate unit, backlight unit comprising same, and liquid crystal display device
JP2019511092A (en) * 2016-04-15 2019-04-18 エルジー・ケム・リミテッド Light guide plate unit, backlight unit provided with the same, and liquid crystal display device
US10591663B2 (en) 2016-04-15 2020-03-17 Lg Chem, Ltd. Light guide plate unit, backlight unit comprising same, and liquid crystal display device
KR102155405B1 (en) 2016-04-15 2020-09-14 주식회사 엘지화학 Light guide plate unit, back light unit and liquid crystal display comprising the same

Also Published As

Publication number Publication date
TW201215969A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
WO2012043396A1 (en) Backlight panel and reflection plate for backlight panel
JP4593120B2 (en) Light guide plate, manufacturing method thereof, backlight assembly using the same, and liquid crystal display device using the same
JP5168813B2 (en) Optical sheet, backlight device and liquid crystal display device
US7690811B2 (en) System for improved backlight illumination uniformity
JP5236291B2 (en) Lens sheet, surface light source device and liquid crystal display device
JP4716754B2 (en) Surface light source device, light guide used therefor, and manufacturing method thereof
JP2009164101A (en) Backlight
JP5315406B2 (en) Light guide plate, surface light source device, and transmissive image display device
JP4580805B2 (en) Light converging sheet, surface light source device, transmissive display device
JP2000171641A (en) Back light device and liquid crystal display device as well as production of light transmission plate
JP4680635B2 (en) Surface light source device, light guide used therefor, and manufacturing method thereof
JP2000231103A (en) Lens sheet and back light and liquid crystal display device using the same
JP2009176512A (en) Surface light source device and image display apparatus
JP2008218418A (en) Surface light source and light guide used for same
JPWO2005026612A1 (en) Surface light source device, light guide used therefor, and manufacturing method thereof
JP2008134631A (en) Lens sheet, surface light source device and liquid crystal display device
WO2006098127A1 (en) Planar light source device, light guide used for the same, and manufacturing method thereof
JP2002157911A (en) Light guide body, and surface light source device and liquid crystal display device using it
JP5948128B2 (en) Light guide plate
JP2009164100A (en) Backlight
JP5984363B2 (en) Light guide plate, surface light source device, and transmissive image display device
JP2001093316A (en) Planar light source device and liquid crystal display using it
JP5442313B2 (en) Surface light source element and image display device using the same
JP2009244846A (en) Diffusion sheet
JPH06317796A (en) Surface light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP