WO2012044418A1 - Level shifter with shoot-through current isolation - Google Patents

Level shifter with shoot-through current isolation Download PDF

Info

Publication number
WO2012044418A1
WO2012044418A1 PCT/US2011/049109 US2011049109W WO2012044418A1 WO 2012044418 A1 WO2012044418 A1 WO 2012044418A1 US 2011049109 W US2011049109 W US 2011049109W WO 2012044418 A1 WO2012044418 A1 WO 2012044418A1
Authority
WO
WIPO (PCT)
Prior art keywords
enable signal
asserted
node
level shifter
shifter circuit
Prior art date
Application number
PCT/US2011/049109
Other languages
French (fr)
Inventor
Jonathan Hoang Huynh
Feng Pan
Qui Vi Nguyen
Trung Pham
Original Assignee
Sandisk Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandisk Technologies Inc. filed Critical Sandisk Technologies Inc.
Priority to CN2011800476027A priority Critical patent/CN103155043A/en
Priority to KR1020137008111A priority patent/KR101692102B1/en
Publication of WO2012044418A1 publication Critical patent/WO2012044418A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS

Definitions

  • This application relates generally to integrated circuit semiconductor devices, and, more specifically, to high voltage switches.
  • a circuit to provide a voltage from a source to an output in response to an input signal.
  • An example is a word line select circuit of in a non-volatile memory.
  • a relatively high programming voltage is supplied to a word line in response to an input signal at the device to device logic level.
  • 10-30V is provided on a word line in response to an input going from ground to "high" value of 3-5 V.
  • level shifters that are capable of handling such high voltages find use in multiple places in the peripheral circuitry of programmable non- volatile memories. To improve the operation of the circuit, it is important that the voltage on the output reaches its full value quickly when enabled and also that level shifter turns off quickly when disabled.
  • a level shifter circuit is presented.
  • the level shifter is connected to receive an input voltage at a first node, to receive a first enable signal, and to supply an output voltage at a second node.
  • the output voltage is provided from the input voltage in response to the first enable signal being asserted and to a low voltage value when the first enable signal is de-asserted.
  • the level shifting circuit includes a depletion type NMOS transistor, having a gate connected to the second node, and a PMOS transistor, having a gate connected to the first enable signal. It also includes a first resistive element that is distinct from the NMOS and PMOS transistors.
  • the NMOS transistor, the PMOS transistor and the first resistive elements are connected in series between the first and second nodes, with the NMOS transistor being connected to the first node.
  • the level shifter further includes a discharge circuit connected to the second node and to receive a second enable signal.
  • the second enable signal is asserted when the first enable signal is de-asserted and is asserted when the first enable signal is de-asserted, and the discharge circuit connects the second node to the low voltage value when the second enable signal is asserted and isolates the second node from ground when the second enable signal is de- asserted.
  • a level shifter circuit connected between an input node and an output node and includes a first current path and a second current path.
  • the first current path is between the input node and the output node and is connected to receive a first enable signal.
  • the first current path includes a depletion type NMOS transistor, connected to the input node and having a gate connected to the output node, and a PMOS transistor that is connected in series with the depletion type NMOS transistor between the input and output nodes.
  • the PMOS transistor has a gate connected to receive the first enable signal, whereby the PMOS transistor is turned on when the first enable signal is asserted.
  • the second current path is between the output node and ground is connected to receive a second enable signal, whereby the output node is connected to ground when the second enable signal is asserted.
  • the level shifter circuit is enabled when the first enable circuit is asserted and the second enable signal is not asserted, and the level shifter circuit is disabled when the second enable circuit is asserted and the first enable signal is not asserted.
  • the first current path also includes one or more resistive elements, distinct from the depletion type NMOS and PMOS transistors, connected in series with the PMOS transistor between the depletion type NMOS transistor and the output node.
  • Figure 1 is a circuit diagram of a level shifter.
  • Figure 2 is a set of waveforms illustrating the operation of the circuit of Figure 1.
  • Figure 3 is a detail of Figures 1 and 4.
  • Figure 4 is an exemplary embodiment of a level shifter employing aspects described herein.
  • Figure 5 is a set of waveforms illustrating the operation of the circuit of Figure 4.
  • Level shifters find many applications in integrated circuits when there is a need to provide a particular voltage at a given node in response to an enable signal. For example, they frequently occur as part of the peripheral circuitry on non-volatile memory devices where they may need to supply some of the fairly high voltage levels, such as in the 10-30 volt range, used in such devices. Examples of such nonvolatile memory devices are described in United States patent nos. 5,570,315, 5,903,495, and 6,046,935, for example, a specific example of a switch where such a level shifter can be used is presented in the US patent application entitled "High Voltage Switch Suitable for use in Flash Memory" of Jonathan Hoang Huynh and Feng Pan, filed concurrently with the present application. It is typically important that such a level shifter circuit respond quickly to the enable signal, both for turning on and turning off.
  • the level-shifter uses a depletion 101 device and p- channel device 103 as a switch to pass a high voltage from input (TG IN) to output (TG OUT) without the need of using a charge pump.
  • TG IN input
  • TG OUT output
  • shoot-through current occurs as the current II continues to try to charge up the node Y while the current Idis tries to take it to ground.
  • the duration of the current will depend on the input voltage level.
  • exemplary embodiments of a level shifter circuit add a resistance in the charging path, creating an isolation during the discharge phase to minimize the input power lost.
  • the level shifter In response to an enable signal EN, the level shifter supplies a voltage TG OUT derived from the input voltage source TG IN to, in this case, the gate of a transistor 121, allowing it to pass the voltage Vin to Vout.
  • the switch supplies the input voltage TG IN from node X to the output node Y through a depletion type NMOS transistor NFETD 101 and PMOS transistor HPFET 103 connected in series.
  • the gate of HPFET 103 is connected to the enable signal EN and the gate of NFETD is connected to receive the voltage level TG OUT.
  • a discharge circuit 110 is also connected to the node Y to discharge this node when the level shifted is disabled.
  • the discharge block 110 receives, in this embodiment, a second, discharge enable signal EN DIS, whose relation to the first enable signal EN will be described below.
  • the devices NFETD 101 and HPFET 103 may need be high voltage devices formed to handle the voltages expected in the particular application.
  • the low voltage level on the circuit, Vss will be taken as ground and the high value Vdd is typically 1.8 to 2.2V.
  • the function of the level shifter circuit of Figure 1 can be described with reference to the waveforms of Figure 2.
  • the circuit is disabled, with EN de- asserted and EN_DIS asserted.
  • the EN_DIS signal is at Vdd when asserted and at Vss when de-asserted.
  • the EN signal is at the low value (Vss) when asserted and at a value VA.
  • VA is chosen to be sufficient to effectively turn off HPFET 103.
  • EN and EN DIS are both high and both low at the same time, differing only in their amplitude.
  • EN and EN DIS can be considered the same enable signal (or, depending on definitions, inverses of each other), but the EN signal may differ in its high value (as here) due to the need for it to effectively turn off the p- type device HPFET 103.
  • the definition of when each of EN and EN DIS is high or low, and when they are considered asserted or de-asserted can be reversed as these signals can just as easily be defined in terms of their inverted versions.
  • the EN signal can be considered to control when the level shifter is enabled to pass the input voltage from the node X to the output node Y and the EN DIS signal can be considered to control when the discharge block 110 (or 210 in Figure 4, discussed below) is enabled to discharge the node Y to Vss.
  • the discharge block 110 (and similarly 210 of Figure 4, discussed below) includes an inverter 111 connected to receive EN DIS as an input and with its output connected to the output node.
  • an inverter circuit is shown Figure 3. As illustrated in Figure 3, the lower transistor will provide the path to ground (or, more generally, Vss) for the current Idis when this transistor is turned on by EN DIS being high.
  • Vss voltage-to-ground
  • one or more transistors can be placed between the output of the inverter 111 and node Y.
  • a pair of transistors 113 and 115 are used to protect the inverter 111 from VHIGH when the level shifter is enabled (and EN DIS is low).
  • EN_DIS When disabled and EN_DIS is asserted (at Vdd here), the transistors will pass the discharge current Idis to the inverter 111 and on to ground/Vss.
  • VA may need to differ Vdd to effect this, as in this case where it is somewhat higher than Vdd.
  • resistive divider circuit used to bring down the gate of NFETD 101 (by discharging the node Y) and to raise the voltage on the gate of HPFET 103 to VTD is to increase the effective impedance on the path between nodes X and Y to reduce the on level of the current II .
  • the supply voltage (TG IN) of the level shifter will effect the duration of switching time and amplitude of shoot-through current (the II contribution to the Idis current) lost during discharging phase between t 2 and t 3 .
  • Figure 5 is the equivalent for Figure 4 of Figure 2 for the circuit of Figure 1.
  • the waveforms for the inputs of the circuit of Figure 4 are the same, with TG IN being taken from Vdd to VHIGH at t' 0 and EN and EN DIS being respectively enabled and disabled at t .

Abstract

A level shifter circuit suitable for high voltage applications with shoot-through current isolation is presented. The level shifter receives a first enable signal and receives an input voltage at a first node and supplies an output voltage at a second node. The circuit provides the output voltage from the input voltage in response to the first enable signal being asserted and sets the output node to a low voltage value when the first enable signal is de-asserted. The level shifting circuit includes a depletion type NMOS transistor, having a gate connected to the output node, and a PMOS transistor, having a gate connected to the first enable signal. It also includes a first resistive element that is distinct from the NMOS and PMOS transistors. The NMOS transistor, the PMOS transistor and the first resistive elements are connected in series between the first and second nodes, with the NMOS transistor being connected to the first node. The level shifter further includes a discharge circuit connected to the second node and to receive a second enable signal. The second enable signal is asserted when the first enable signal is de-asserted and is asserted when the first enable signal is de-asserted, and the discharge circuit connects the second node to the low voltage value when the second enable signal is asserted and isolates the second node from ground when the second enable signal is de-asserted.

Description

LEVEL SHIFTER WITH SHOOT-THROUGH CURRENT ISOLATION
BACKGROUND
Field of the Invention
[0001] This application relates generally to integrated circuit semiconductor devices, and, more specifically, to high voltage switches.
Background Information
[0002] In an integrated circuit, it is common to need a circuit to provide a voltage from a source to an output in response to an input signal. An example is a word line select circuit of in a non-volatile memory. In such a circuit, a relatively high programming voltage is supplied to a word line in response to an input signal at the device to device logic level. For example, in fairly typical values for a NAND type FLASH memory, 10-30V is provided on a word line in response to an input going from ground to "high" value of 3-5 V. Such level shifters that are capable of handling such high voltages find use in multiple places in the peripheral circuitry of programmable non- volatile memories. To improve the operation of the circuit, it is important that the voltage on the output reaches its full value quickly when enabled and also that level shifter turns off quickly when disabled.
[0003] Many designs exist for such switches. A number of common designs use an NMOS transistors and a local charge pump to raise the gate voltage values used to turn on the transistor and pass the high voltage from the source to the output. Due to the body bias of the NMOS transistors and charge pump ramping speed, these switches generally take a relatively long time to reach the passing voltage level need to pass the full high voltage. These problems are aggravated by both higher programming voltage level needed and lower device supply voltages as these combine to make it harder to pump efficiently and timely due to body effects of NMOS transistors in the charge pump. Consequently, there is an ongoing need for level shifter circuits capable of handling high voltages and having a quick response when enabled and disabled. SUMMARY OF THE INVENTION
[0004] According to a general set of aspects, a level shifter circuit is presented. The level shifter is connected to receive an input voltage at a first node, to receive a first enable signal, and to supply an output voltage at a second node. The output voltage is provided from the input voltage in response to the first enable signal being asserted and to a low voltage value when the first enable signal is de-asserted. The level shifting circuit includes a depletion type NMOS transistor, having a gate connected to the second node, and a PMOS transistor, having a gate connected to the first enable signal. It also includes a first resistive element that is distinct from the NMOS and PMOS transistors. The NMOS transistor, the PMOS transistor and the first resistive elements are connected in series between the first and second nodes, with the NMOS transistor being connected to the first node. The level shifter further includes a discharge circuit connected to the second node and to receive a second enable signal. The second enable signal is asserted when the first enable signal is de-asserted and is asserted when the first enable signal is de-asserted, and the discharge circuit connects the second node to the low voltage value when the second enable signal is asserted and isolates the second node from ground when the second enable signal is de- asserted.
[0005] In further aspects, a level shifter circuit connected between an input node and an output node and includes a first current path and a second current path. The first current path is between the input node and the output node and is connected to receive a first enable signal. The first current path includes a depletion type NMOS transistor, connected to the input node and having a gate connected to the output node, and a PMOS transistor that is connected in series with the depletion type NMOS transistor between the input and output nodes. The PMOS transistor has a gate connected to receive the first enable signal, whereby the PMOS transistor is turned on when the first enable signal is asserted. The second current path is between the output node and ground is connected to receive a second enable signal, whereby the output node is connected to ground when the second enable signal is asserted. The level shifter circuit is enabled when the first enable circuit is asserted and the second enable signal is not asserted, and the level shifter circuit is disabled when the second enable circuit is asserted and the first enable signal is not asserted. The first current path also includes one or more resistive elements, distinct from the depletion type NMOS and PMOS transistors, connected in series with the PMOS transistor between the depletion type NMOS transistor and the output node.
[0006] Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Figure 1 is a circuit diagram of a level shifter.
[0008] Figure 2 is a set of waveforms illustrating the operation of the circuit of Figure 1.
[0009] Figure 3 is a detail of Figures 1 and 4.
[0010] Figure 4 is an exemplary embodiment of a level shifter employing aspects described herein.
[0011] Figure 5 is a set of waveforms illustrating the operation of the circuit of Figure 4.
DETAILED DESCRIPTION
[0012] Level shifters find many applications in integrated circuits when there is a need to provide a particular voltage at a given node in response to an enable signal. For example, they frequently occur as part of the peripheral circuitry on non-volatile memory devices where they may need to supply some of the fairly high voltage levels, such as in the 10-30 volt range, used in such devices. Examples of such nonvolatile memory devices are described in United States patent nos. 5,570,315, 5,903,495, and 6,046,935, for example, a specific example of a switch where such a level shifter can be used is presented in the US patent application entitled "High Voltage Switch Suitable for use in Flash Memory" of Jonathan Hoang Huynh and Feng Pan, filed concurrently with the present application. It is typically important that such a level shifter circuit respond quickly to the enable signal, both for turning on and turning off.
[0013] The situation can be briefly illustrated with reference to Figure 1. The idea is to be able to supply the input voltage (TG IN at node X) to the circuit's output (TG OUT at node Y) in response to an enable signal (EN). Here, the output is being supplied to the pass gate 121. When enabled, the current II is used charge up node Y. When disabled, a current Idis is used to take the node Y to ground.
[0014] In the example of Figure 1, the level-shifter uses a depletion 101 device and p- channel device 103 as a switch to pass a high voltage from input (TG IN) to output (TG OUT) without the need of using a charge pump. During the reset, when input is still high and the output is being discharged to ground, shoot-through current, with a corresponding power loss, occurs as the current II continues to try to charge up the node Y while the current Idis tries to take it to ground. The duration of the current will depend on the input voltage level. In order to reduce the amount of this shoot- through current, exemplary embodiments of a level shifter circuit add a resistance in the charging path, creating an isolation during the discharge phase to minimize the input power lost.
[0015] Considering Figure 1 further, this shows one design that overcomes many of the problems described in the Background section. In response to an enable signal EN, the level shifter supplies a voltage TG OUT derived from the input voltage source TG IN to, in this case, the gate of a transistor 121, allowing it to pass the voltage Vin to Vout. The switch supplies the input voltage TG IN from node X to the output node Y through a depletion type NMOS transistor NFETD 101 and PMOS transistor HPFET 103 connected in series. The gate of HPFET 103 is connected to the enable signal EN and the gate of NFETD is connected to receive the voltage level TG OUT. A discharge circuit 110 is also connected to the node Y to discharge this node when the level shifted is disabled. The discharge block 110 receives, in this embodiment, a second, discharge enable signal EN DIS, whose relation to the first enable signal EN will be described below.
[0016] Since the voltage level TG IN at node X may have a values of 10-30 volts in the case of a NAND memory structure, the devices NFETD 101 and HPFET 103 may need be high voltage devices formed to handle the voltages expected in the particular application. In the exemplary embodiments present here, the low voltage level on the circuit, Vss, will be taken as ground and the high value Vdd is typically 1.8 to 2.2V.
[0017] The function of the level shifter circuit of Figure 1 can be described with reference to the waveforms of Figure 2. Initially, the circuit is disabled, with EN de- asserted and EN_DIS asserted. As arranged here, the EN_DIS signal is at Vdd when asserted and at Vss when de-asserted. The EN signal is at the low value (Vss) when asserted and at a value VA. The value of VA is chosen to be sufficient to effectively turn off HPFET 103. As can be seen from Figure 2 (and similarly for Figure 5, discussed below), EN and EN DIS are both high and both low at the same time, differing only in their amplitude. To some extent, they can be considered the same enable signal (or, depending on definitions, inverses of each other), but the EN signal may differ in its high value (as here) due to the need for it to effectively turn off the p- type device HPFET 103. As will be understood, the definition of when each of EN and EN DIS is high or low, and when they are considered asserted or de-asserted can be reversed as these signals can just as easily be defined in terms of their inverted versions. For this discussion, the EN signal can be considered to control when the level shifter is enabled to pass the input voltage from the node X to the output node Y and the EN DIS signal can be considered to control when the discharge block 110 (or 210 in Figure 4, discussed below) is enabled to discharge the node Y to Vss.
[0018] Returning to Figure 2, initially the input voltage TG IN is at Vdd, EN is at VA, and EN DIS is at Vdd. Consequently, the node Y is connected to Vss through the block 110 and the output level TG OUT is also at Vss. As EN is at VA, HPFET 103 is turned off, so that even though NFETD 101 is a depletion type device whose gate is at Vss, the current II is zero.
[0019] To enable the level shifter, at t0 TG IN is taken to the high value of VHIGH. At ti, EN is asserted and EN_DIS de-asserted; that is, under the arrangement used here, EN and EN DIS are brought down to Vss. This closes off the path to ground through discharge block 110 for node Y. As EN goes to Vss, HPFET 103 is turned on and TG OUT begins to rise; and as the gate of NFETD 101 is also connected to node Y, this further increases the current II . This effectively reduces the impedance between nodes X and Y and allows a current path, II, to charge TG OUT = TG_IN= VHIGH, resulting in Vin = Vout through the pass gate 121.
[0020] In the exemplary embodiments, the discharge block 110 (and similarly 210 of Figure 4, discussed below) includes an inverter 111 connected to receive EN DIS as an input and with its output connected to the output node. A simple example of an inverter circuit is shown Figure 3. As illustrated in Figure 3, the lower transistor will provide the path to ground (or, more generally, Vss) for the current Idis when this transistor is turned on by EN DIS being high. To protect the inverter 111 from the high voltage values that may be on node Y, one or more transistors can be placed between the output of the inverter 111 and node Y. In the exemplary embodiment, a pair of transistors 113 and 115, each with their gate connected to EN DIS, are used to protect the inverter 111 from VHIGH when the level shifter is enabled (and EN DIS is low). When disabled and EN_DIS is asserted (at Vdd here), the transistors will pass the discharge current Idis to the inverter 111 and on to ground/Vss.
[0021] Returning to Figures 1 and 2 and considering the disabling of the level shifter, this is begun at time t2where EN DIS is enabled (taken to Vdd in the example) to discharge TG OUT to Vss in order to lower VTD to the threshold voltage of NFETD 101. To discharge the node Y and turn off pass gate 121, the current Idis being discharge through block 110 will include 12, from the gate of NFETD 101, the current 13 from the pass gate 121, and any residual current II still flowing into the level shifter from node X. At the same time EN_DIS is raised, EN is raised to a voltage, VA, which is about the same as VTD to completely shut off the path. (As discussed above, VA may need to differ Vdd to effect this, as in this case where it is somewhat higher than Vdd.) In other words, to disable the level shifter, it is something like resistive divider circuit used to bring down the gate of NFETD 101 (by discharging the node Y) and to raise the voltage on the gate of HPFET 103 to VTD is to increase the effective impedance on the path between nodes X and Y to reduce the on level of the current II . The supply voltage (TG IN) of the level shifter will effect the duration of switching time and amplitude of shoot-through current (the II contribution to the Idis current) lost during discharging phase between t2 and t3. Eventually, at t3, the level of TG OUT is down to Vss, the level shifter is disabled, and the supply level TG IN is taken back down to Vdd. (Circuitry similar to that of Figure 1 is discussed in US patent number 6,696,880, which also provides further discussion relevant to its operation and details on variations that can incorporated into the circuits of both Figure 1 and Figure 4, including techniques for more quickly enabling the level shifter.)
[0022] In the operation of a level shifter, it is desirable that in addition to transitioning quickly from the disabled to enabled state, that the circuit can also quickly transition back to the disabled state. How quickly the level shifter is disabled (the time from t2 to t3) is something of a contest to see how quickly the device NFETD 101 can be turned off, with the current Idis trying to sink the currents 12 and I 3, while current II continues to try to charge up the node Y. In a principle aspect presented here, one or more resistances are added to the level shifter circuit of Figure 1 to isolate the charging path (II) from paths 12 and 13 during discharge. An embodiment is illustrated in Figure 4, where the resistors Rl 231, R2 233, or both (used in any combination) are added. The value of these resistances can vary with the design, but could be something in the range of 10-100kΩ, for example, in a typical application. With the added resistance, there is little impact on the level shifter's turn on speed since the capacitance of pass gate 221 is small. (For instance, is one typical implementation the capacitance at the TG OUT node is something like lOOfF, although this will of course vary from design to design.)
[0023] Considering the exemplary embodiment of Figure 4 further, aside from elements Rl 231 and R2 233, the elements can be taken largely the same as in Figure 1 and are similarly numbered (i.e., 201 for 101, 203 for 103, and so on). Figure 5 is the equivalent for Figure 4 of Figure 2 for the circuit of Figure 1. As shown in Figure 5, the waveforms for the inputs of the circuit of Figure 4 are the same, with TG IN being taken from Vdd to VHIGH at t'0 and EN and EN DIS being respectively enabled and disabled at t . Due to the presence Rl 231, R2 233, or both, the rise time for TG OUT will be some slower than Figures 1 and 2, but as noted, the capacitance involved are typically small, so that the relative RC constant is small, and in the applications under consideration here the small cost in speed for enablement is made up for in the improved discharge behavior.
[0024] During discharge, at t'2 EN and EN DIS are taken to their high values. With the added resistor or resistors, the effective resistive divider allows for a lower dividing point for gate of NFETD, and reducing the on level of the current II . Consequently, the technique allows a faster turn off for NFETD 201. This allows the time to t'3, when TG OUT is again at Vss, to come more quickly. In addition to the fast turn off timing of NFETD 203 improving the disable response of the level shifter, and the reduced level of II lessens the amount of shoot-through current and power saving is achieved.
[0025] The foregoing detailed description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.

Claims

IT IS CLAIMED:
1. A level shifter circuit connected to receive an input voltage at a first node, to receive a first enable signal, and to supply an output voltage at a second node, where the output voltage is provided from the input voltage in response to the first enable signal being asserted and to a low voltage value when the first enable signal is de-asserted, the level shifting circuit comprising:
a depletion type NMOS transistor, having a gate connected to the second node;
a PMOS transistor, having a gate connected to the first enable signal;
a first resistive element distinct from the NMOS and PMOS transistors, where the NMOS transistor, the PMOS transistor and the first resistive elements are connected in series between the first and second nodes, the NMOS transistor being connected to the first node; and
a discharge circuit connected to the second node and to receive a second enable signal, where the second enable signal is asserted when the first enable signal is de-asserted and is asserted when the first enable signal is de-asserted, and where the discharge circuit connects the second node to the low voltage value when the second enable signal is asserted and isolates the second node from ground when the second enable signal is de-asserted.
2. The level shifter circuit of claim 1, wherein the first resistive element is connected between the PMOS transistor and the second node.
3. The level shifter circuit of claim 2, further comprising a second resistive element distinct from the NMOS and PMOS transistors and connected between the NMOS transistor and the PMOS transistor.
4. The level shifter circuit of claim 1, wherein the first resistive element is connected between the NMOS transistor and the PMOS transistor.
5. The level shifter circuit of claim 1, wherein the discharge circuit comprises: an inverter having as input the second enable signal and having an output connected to the second node through one or more depletion type NMOS transistors whose gates are connected to the second enable signal.
6. The level shifter circuit of claim 1, wherein the low voltage level is ground.
7. The level shifter circuit of claim 1, wherein the voltage difference between the asserted and de-asserted levels of the first enable signal differs from the voltage difference between the asserted and de-asserted levels of the second enable signal.
8. The level shifter circuit of claim 1, wherein when the first enable signal has the low voltage level when asserted.
9. The level shifter circuit of claim 1, wherein the difference in level between the asserted and de-asserted values of the first enable signal is in the range of 1.8 to 2.2 volts.
10. The level shifter circuit of claim 1, wherein when the second enable signal has the low voltage level when de-asserted.
11. The level shifter circuit of claim 1, wherein the difference in level between the asserted and de-asserted values of the second enable signal is in the range of 2.5 to 2.7 volts.
12. The level shifter circuit of claim 1, wherein the input voltage is in the range of from 10 to 30 volts.
13. The level shifter circuit of claim 12, wherein the PMOS transistor is a high voltage device.
14. A level shifter circuit connected between an input node and an output node, comprising: a first current path between the input node and the output node that is connected to receive a first enable signal, the first current path including:
a depletion type NMOS transistor connected to the input node and having a gate connected to the output node; and
a PMOS transistor connected in series with the depletion type NMOS transistor between the input and output nodes and having a gate connected to receive the first enable signal, whereby the PMOS transistor is turned on when the first enable signal is asserted; and
a second current path between the output node and ground that connected to receive a second enable signal, whereby the output node is connected to ground when the second enable signal is asserted,
wherein the level shifter circuit is enabled when the first enable circuit is asserted and the second enable signal is not asserted and the level shifter circuit is disabled when the second enable circuit is asserted and the first enable signal is not asserted, and
wherein the first current path further includes one or more resistive elements, distinct from the depletion type NMOS and PMOS transistors, connected in series with the PMOS transistor between the depletion type NMOS transistor and the output node.
15. The level shifter circuit of claim 14, wherein the second path includes: an inverter having an input connected to receive the second enable signal and an output connected to the output node.
16. The level shifter circuit of claim 15, wherein the inverter is connected to the output node by one or more series connected transistors having control gates connected to receive the second enable signal.
17. The level shifter circuit of claim 14, wherein the PMOS transistor is a high voltage device.
18. The level shifter circuit of claim 14, wherein the one or more resistive elements includes a first resistor connected between the PMOS transistor and the output node.
19. The level shifter circuit of claim 18, wherein the one or more resistive elements further includes a second resistor connected between the depletion type NMOS transistor and the PMOS transistor.
20. The level shifter circuit of claim 1, wherein the one or more resistive elements includes a first resistor connected between the depletion type NMOS transistor and the PMOS transistor.
PCT/US2011/049109 2010-09-30 2011-08-25 Level shifter with shoot-through current isolation WO2012044418A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800476027A CN103155043A (en) 2010-09-30 2011-08-25 Level shifter with shoot-through current isolation
KR1020137008111A KR101692102B1 (en) 2010-09-30 2011-08-25 Level shifter with shoot-through current isolation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/895,457 2010-09-30
US12/895,457 US8106701B1 (en) 2010-09-30 2010-09-30 Level shifter with shoot-through current isolation

Publications (1)

Publication Number Publication Date
WO2012044418A1 true WO2012044418A1 (en) 2012-04-05

Family

ID=44584667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/049109 WO2012044418A1 (en) 2010-09-30 2011-08-25 Level shifter with shoot-through current isolation

Country Status (5)

Country Link
US (1) US8106701B1 (en)
KR (1) KR101692102B1 (en)
CN (1) CN103155043A (en)
TW (1) TW201230044A (en)
WO (1) WO2012044418A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8537593B2 (en) 2011-04-28 2013-09-17 Sandisk Technologies Inc. Variable resistance switch suitable for supplying high voltage to drive load
JP2013030622A (en) * 2011-07-28 2013-02-07 Ricoh Co Ltd Standard cell circuit, semiconductor integrated circuit, and semiconductor integrated circuit device
US8395434B1 (en) * 2011-10-05 2013-03-12 Sandisk Technologies Inc. Level shifter with negative voltage capability
US8531229B2 (en) * 2012-01-31 2013-09-10 Macronix International Co., Ltd. Level shifting circuit
US9589642B2 (en) 2014-08-07 2017-03-07 Macronix International Co., Ltd. Level shifter and decoder for memory
US9330776B2 (en) 2014-08-14 2016-05-03 Sandisk Technologies Inc. High voltage step down regulator with breakdown protection
US9361995B1 (en) 2015-01-21 2016-06-07 Silicon Storage Technology, Inc. Flash memory system using complementary voltage supplies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570315A (en) 1993-09-21 1996-10-29 Kabushiki Kaisha Toshiba Multi-state EEPROM having write-verify control circuit
US5903495A (en) 1996-03-18 1999-05-11 Kabushiki Kaisha Toshiba Semiconductor device and memory system
US6696880B2 (en) 2001-11-09 2004-02-24 Sandisk Corporation High voltage switch suitable for non-volatile memories
US20070139077A1 (en) * 2005-12-06 2007-06-21 Ki Tae Park Level shifter with reduced leakage current and block driver for nonvolatile semiconductor memory device
US20080198667A1 (en) * 2007-02-15 2008-08-21 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US20100067300A1 (en) * 2008-09-17 2010-03-18 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580067A (en) 1982-12-28 1986-04-01 Mostek Corporation MOS dynamic load circuit for switching high voltages and adapted for use with high threshold transistors
US4678941A (en) 1985-04-25 1987-07-07 International Business Machines Corporation Boost word-line clock and decoder-driver circuits in semiconductor memories
JPH0234022A (en) 1988-07-25 1990-02-05 Hitachi Ltd Pulse output circuit
US4954731A (en) 1989-04-26 1990-09-04 International Business Machines Corporation Wordline voltage boosting circuits for complementary MOSFET dynamic memories
JPH0341694A (en) 1989-07-07 1991-02-22 Oki Electric Ind Co Ltd Word line drive circuit
JP3253389B2 (en) 1992-03-31 2002-02-04 株式会社東芝 Semiconductor integrated circuit device
US5436587A (en) 1993-11-24 1995-07-25 Sundisk Corporation Charge pump circuit with exponetral multiplication
KR960013861B1 (en) 1994-02-16 1996-10-10 현대전자산업 주식회사 Bootstrap circuit for high speed data transmission
JP3284036B2 (en) 1995-11-15 2002-05-20 株式会社東芝 Semiconductor integrated circuit device
US5723985A (en) 1995-11-21 1998-03-03 Information Storage Devices, Inc. Clocked high voltage switch
US6078518A (en) 1998-02-25 2000-06-20 Micron Technology, Inc. Apparatus and method for reading state of multistate non-volatile memory cells
US5790453A (en) 1996-10-24 1998-08-04 Micron Quantum Devices, Inc. Apparatus and method for reading state of multistate non-volatile memory cells
JPH11126478A (en) 1997-10-21 1999-05-11 Toshiba Corp Semiconductor integrated circuit device
US6166982A (en) 1998-06-25 2000-12-26 Cypress Semiconductor Corp. High voltage switch for eeprom/flash memories
US6208542B1 (en) 1998-06-30 2001-03-27 Sandisk Corporation Techniques for storing digital data in an analog or multilevel memory
US5940333A (en) 1998-07-08 1999-08-17 Advanced Micro Devices, Inc. Recursive voltage boosting technique
US6169432B1 (en) 1998-11-09 2001-01-02 Vantis Corporation High voltage switch for providing voltages higher than 2.5 volts with transistors made using a 2.5 volt process
US6044012A (en) 1999-03-05 2000-03-28 Xilinx, Inc. Non-volatile memory array using gate breakdown structure in standard sub 0.35 micron CMOS process
US6717851B2 (en) 2000-10-31 2004-04-06 Sandisk Corporation Method of reducing disturbs in non-volatile memory
US7218425B2 (en) 2000-12-15 2007-05-15 Canon Kabushiki Kaisha Dust and/or dirt detection in image reading apparatus having read-while-feed function
US6861894B2 (en) 2002-09-27 2005-03-01 Sandisk Corporation Charge pump with Fibonacci number multiplication
US6922096B2 (en) 2003-08-07 2005-07-26 Sandisk Corporation Area efficient charge pump
KR100554841B1 (en) * 2003-12-05 2006-03-03 주식회사 하이닉스반도체 High voltage switch circuit
US7030683B2 (en) 2004-05-10 2006-04-18 Sandisk Corporation Four phase charge pump operable without phase overlap with improved efficiency
US20070126494A1 (en) 2005-12-06 2007-06-07 Sandisk Corporation Charge pump having shunt diode for improved operating efficiency
US20070139099A1 (en) 2005-12-16 2007-06-21 Sandisk Corporation Charge pump regulation control for improved power efficiency
KR100778082B1 (en) 2006-05-18 2007-11-21 삼성전자주식회사 Multi-bit flash memory device with single latch structure, program method thereof, and memory card including the same
US7554311B2 (en) 2006-07-31 2009-06-30 Sandisk Corporation Hybrid charge pump regulation
US7368979B2 (en) 2006-09-19 2008-05-06 Sandisk Corporation Implementation of output floating scheme for hv charge pumps
US7446596B1 (en) 2007-05-25 2008-11-04 Atmel Corporation Low voltage charge pump
US20090058507A1 (en) 2007-08-28 2009-03-05 Prajit Nandi Bottom Plate Regulated Charge Pump
US8044705B2 (en) 2007-08-28 2011-10-25 Sandisk Technologies Inc. Bottom plate regulation of charge pumps
US7586362B2 (en) 2007-12-12 2009-09-08 Sandisk Corporation Low voltage charge pump with regulation
US7592858B1 (en) * 2008-04-15 2009-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit and method for a gate control circuit with reduced voltage stress
US20090302930A1 (en) 2008-06-09 2009-12-10 Feng Pan Charge Pump with Vt Cancellation Through Parallel Structure
US7969235B2 (en) 2008-06-09 2011-06-28 Sandisk Corporation Self-adaptive multi-stage charge pump
US8710907B2 (en) 2008-06-24 2014-04-29 Sandisk Technologies Inc. Clock generator circuit for a charge pump
US7683700B2 (en) 2008-06-25 2010-03-23 Sandisk Corporation Techniques of ripple reduction for charge pumps
US7795952B2 (en) 2008-12-17 2010-09-14 Sandisk Corporation Regulation of recovery rates in charge pumps
US8102705B2 (en) 2009-06-05 2012-01-24 Sandisk Technologies Inc. Structure and method for shuffling data within non-volatile memory devices
US7973592B2 (en) 2009-07-21 2011-07-05 Sandisk Corporation Charge pump with current based regulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570315A (en) 1993-09-21 1996-10-29 Kabushiki Kaisha Toshiba Multi-state EEPROM having write-verify control circuit
US5903495A (en) 1996-03-18 1999-05-11 Kabushiki Kaisha Toshiba Semiconductor device and memory system
US6046935A (en) 1996-03-18 2000-04-04 Kabushiki Kaisha Toshiba Semiconductor device and memory system
US6696880B2 (en) 2001-11-09 2004-02-24 Sandisk Corporation High voltage switch suitable for non-volatile memories
US20070139077A1 (en) * 2005-12-06 2007-06-21 Ki Tae Park Level shifter with reduced leakage current and block driver for nonvolatile semiconductor memory device
US20080198667A1 (en) * 2007-02-15 2008-08-21 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US20100067300A1 (en) * 2008-09-17 2010-03-18 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
KR20130125755A (en) 2013-11-19
US8106701B1 (en) 2012-01-31
TW201230044A (en) 2012-07-16
CN103155043A (en) 2013-06-12
KR101692102B1 (en) 2017-01-02

Similar Documents

Publication Publication Date Title
US8106701B1 (en) Level shifter with shoot-through current isolation
KR100908550B1 (en) Power-on reset circuit
US10490263B2 (en) Dual rail device with power detector
US7746154B2 (en) Multi-voltage multiplexer system
US20070188194A1 (en) Level shifter circuit and method thereof
TWI693792B (en) Biasing circuit for level shifter with isolation
US20130113542A1 (en) Output buffer, operating method thereof and devices including the same
US20090230994A1 (en) Domino logic circuit and pipelined domino logic circuit
KR101868199B1 (en) Level shifter with negative voltage capability
US7831845B2 (en) Power-up circuit and semiconductor memory apparatus with the same
US8362806B2 (en) Keeper circuit
US9729138B1 (en) Circuits and systems having low power power-on-reset and/or brown out detection
US5610542A (en) Power-up detection circuit
US8476924B2 (en) Majority decision circuit
US9921598B1 (en) Analog boost circuit for fast recovery of mirrored current
WO2012044424A1 (en) High voltage switch suitable for use in flash memory
US8619482B1 (en) Programmable precharge circuitry
CN113963728A (en) Semiconductor device and semiconductor memory device
US7576575B2 (en) Reset signal generator in semiconductor device
US9257903B2 (en) Pumping circuit
US10855261B2 (en) Level shifter with deterministic output during power-up sequence
US7830170B2 (en) Logic gate
US9893612B2 (en) Voltage generation circuit
JP2012186332A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047602.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11754791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137008111

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11754791

Country of ref document: EP

Kind code of ref document: A1