WO2012060620A2 - Anti-biofouling ssq/peg network and preparation method thereof - Google Patents

Anti-biofouling ssq/peg network and preparation method thereof Download PDF

Info

Publication number
WO2012060620A2
WO2012060620A2 PCT/KR2011/008278 KR2011008278W WO2012060620A2 WO 2012060620 A2 WO2012060620 A2 WO 2012060620A2 KR 2011008278 W KR2011008278 W KR 2011008278W WO 2012060620 A2 WO2012060620 A2 WO 2012060620A2
Authority
WO
WIPO (PCT)
Prior art keywords
ssq
peg
network
peg network
polyethylene glycol
Prior art date
Application number
PCT/KR2011/008278
Other languages
French (fr)
Korean (ko)
Other versions
WO2012060620A3 (en
Inventor
정봉현
이봉국
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2012060620A2 publication Critical patent/WO2012060620A2/en
Publication of WO2012060620A3 publication Critical patent/WO2012060620A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Definitions

  • the present invention relates to an anti-bioadhesive SSQ / PEG network and a method for manufacturing the same, and more specifically, polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ) are mixed and prepared by UV curing, and a solid substrate.
  • PEG polyethylene glycol
  • SSQ photocurable silsesquioxane
  • the present invention relates to an SSQ / PEG network having high resistance to non-specific adsorption used for coating a film and capable of direct nano-patterning and a method of manufacturing the same.
  • the problem of nonspecific adsorption can be prevented by precoating the surface with a material that is resistant to the adsorption of biomaterials, and can be avoided by poly (vinylalcohol), polyethylene glycol (PEG, poly (ethyleneglycol)), poly Various polymeric materials, such as acrylamide, dextran, and methacrylated phosphatidylcholine, have been used as coatings for the prevention or minimization of nonspecific adsorption (Amanda A. etal. Mallapragada, Biotechnol. Prog. , 17: 917, 2001; Harris J. M. et al., Poly (ethyleneglycol) chemistry. Biotechnicaland Biomedical Applications, 1992; Park S.
  • the coating material was used in the form of self-assembled monolayer (SAM), polymer brush, hydrogel, and immobilized on the solid surface by covalent bonds such as physical adsorption and chemical coupling.
  • SAM self-assembled monolayer
  • Poly (ethyleneglycol) chemistry Biotechnicaland Biomedical Applications, 1992; Park S. etal., J. Biomed. Mater. Res. 53: 568 , 2000; Masson J. F. et al., Talanta , 67: 918 , 2005; Ishihara K., Sci. Technol. Adv. Mater.
  • precoatings such as antimicrobial self-assembled monolayers, polymer brushes, or hydrogels on the solid surface
  • precoatings there is a disadvantage to stability.
  • PEG based SAMs are unstable and have been reported to oxidize rapidly, especially in the presence of oxygen and transition metal ions (Ostuni et al., Langmuir , 17: 5605,2001; Chen S. et al., J. Am. Chem. Soc. , 127: 14473,2005; Crouzet C. et al., Makromol. Chem .
  • biomedical devices, biosensors, and lab-on-a-chips is important because the instability of antimicrobial materials is directly related to accuracy, sensitivity, and reproducibility in biosensing. This requires the development of stable antimicrobial materials.
  • stable anti-bioadhesive materials should be made of nanostructures by appropriate patterning methods with high productivity, low cost and high reproducibility for the production and production of biomedical devices, nanobiosensors, and lab-on-a-chips.
  • direct nanopatterning of antimicrobial materials is much more efficient than indirect patterning methods (Revzin A et al., Langmuir , 19: 9855,2003; Lee B.K. etal., Small , 4: 342, 2008; Lee B. K. et al., Lab Chip , 9: 132 , 2009; Kim P. et al., Adv. Mater. , 20:31 , 2008).
  • a sufficiently hard material with a tensile modulus of 100 MPa or more is required (Palmieri F. et al., ACSNano , 1: 307, 2007).
  • the ideal anti-bioadhesive material for advanced performance in a wide range of biomedical applications is not only high anti-biofouling property (Revzin A et al., Langmuir , 19: 9855,2003; Lee B.K. et al., Small , 4: 342, 2008; Lee B. K. etal., LabChip , 9: 132, 2009; Kim P. et al., Adv. Mater. , 20:31, 2008), low viscosity, high optical transparency , High hydrophilicity (Jeong HE et al., Small , 3: 778,2007), high resistance to swelling in organic / aqueous solutions (Kim P.
  • the present inventors have made intensive efforts to develop an ideal anti-bioadhesive material having various properties for the above-mentioned wide range of biomedical applications, and thus photocurable silsesquioxane in photocurable PEG that can be directly patterned into an anti-bioadhesive material.
  • SSQ low viscosity photocurable SSQ / PEG mixture with improved PEG's unstable thermal stability, mechanical strength, insulation, swelling, and the like
  • 2 wt% UV initiator added to the mixture
  • simple UV Irradiation crosslinks the low viscosity photocurable SSQ / PEG mixture to produce an SSQ / PEG network, wherein the prepared SSQ / PEG network has a high anti-biofouling of less than 4.6%.
  • UV embossing enables the fabrication of direct micropatterns of 25 nm or less.
  • the present invention comprises the steps of (a) mixing polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ); And (b) curing the mixture (a) by irradiating UV in the presence of a UV initiator to obtain an SSQ / PEG network.
  • PEG polyethylene glycol
  • SSQ photocurable silsesquioxane
  • the present invention also provides an SSQ / PEG network produced by the above method.
  • the present invention also provides a method of manufacturing a nanopattern, characterized in that using the SSQ / PEG network.
  • the present invention also provides nanodevices having high resistance to nonspecific adsorption including nanopatterns prepared by the above method.
  • Figure 1 shows the anti-bioadhesive SSQ / PEG network components and reaction schemes capable of free radical polymerization.
  • FIG. 3 shows UV-Vis transmission spectra of SSQ / PEG networks polymerized by free radical polymerization on a quartz substrate.
  • Figure 5 graphically shows the expansion rate of SSQ / PEG network for toluene and PBS.
  • FIG. 7 is a schematic diagram of a nanostructure fabrication process of SSQ / PEG mixture using UV embossing (a), Si master (b) with 50 nm features, Si master (c) with 25 nm features, 50 nm FE-SEM images of 50SSQMA / 50PEGDMA330 (d) nano patterned with features and 50SSQMA / 50PEGDMA330 (e) nano patterned with 25 nm features are shown.
  • Figure 8 shows the AFM height images and shrinkage of NIM-80L master mold (a), UV-embossed 50SSQMA / 50PEGDMA330 (b), UV-embossed 50SSQMA / 50PEGDMA550 (c) and UV-embossed 50SSQMA / 50PEGDMA750 (d). .
  • Figure 9 shows the optical image of the glass (a), 50SSQMA / 50PEGDMA330 network (b) and 50SSQOG / PEGGDG526 network (c) and component (d) of the 50SSQOG / 50PEGDG526 network capable of cationic polymerization.
  • FIG. 10 shows liposomes (ac) and EGFP (optionally adsorbed on 50SSQMA / 50PEGDMA330 (b, e) and 50SSQOG / 50PEGDG526 (c, f) prepared on glass (a, d), PET film) df) fluorescence image.
  • FIG. 11 shows a non-adhesive SSQ / PEG network prepared by free radical polymerization for biomedical applications up to 25 nm in size.
  • the present invention in order to increase the crosslinking density of the PEG network, a photocurable SSQ was mixed and a photoinitiator was added to prepare an SSQ / PEG network using free radical polymerization.
  • a photocurable SSQ was mixed and a photoinitiator was added to prepare an SSQ / PEG network using free radical polymerization.
  • the present invention in one aspect, (a) mixing polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ); And (b) curing the mixture (a) by irradiating UV in the presence of a UV initiator to obtain an SSQ / PEG network.
  • PEG polyethylene glycol
  • SSQ photocurable silsesquioxane
  • the polyethylene glycol may be selected from the group consisting of polyethylene glycol dimethacrylate (PEGDMA) and polyethylene glycol diacrylate (PEGDA), the photocurable silsesquioxane (SSQ) can be characterized as functionalized with methacrylate or acrylate.
  • PEGDMA polyethylene glycol dimethacrylate
  • PEGDA polyethylene glycol diacrylate
  • SSQ photocurable silsesquioxane
  • the UV initiator is 2,2'-dimethoxy-2-phenylacetophenone (DMPA, 2,2'-dimethoxy-2-phenylacetophenone), 2-hydroxy-2-methyl-1-phenyl- Propane-1-one (HMPP, 2-hydroxy-2-methyl-1-phenyl-propane-1-one), 2,4,6-trimethylbenzoyl diphenylphosphine oxide (2,4,6-Trimethylbenzoyl-diphenylphosphine Oxide) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Diphenyl 2,4,6-trimethylbenzoyl phosphine oxide) may be selected from the group consisting of.
  • DMPA 2,2'-dimethoxy-2-phenylacetophenone
  • HMPP 2-hydroxy-2-methyl-1-phenyl- Propane-1-one
  • HMPP 2-hydroxy-2-methyl-1-phenyl-propane-1-one
  • the present invention confirmed the UV-Vis permeability, surface hydrophilicity, swelling and mechanical properties of the SSQ / PEG network.
  • the present invention relates to an SSQ / PEG network produced by the above method.
  • the SSQ / PEG network is (a) at least 90% UV transmission at a wavelength of 365nm or more; (b) a positive contact angle of 42.2-54.5 °; (c) mechanical strength of 1.898 to 2.815GPa; (d) an expansion ratio of 1.3 to 20.5 wt% based on the organic solvent and the aqueous solution; (e) shrinkage of 3% or less; And (f) less than 4.6% antimicrobial adhesion.
  • the SSQ / PEG network may be characterized by direct nanopatterning, direct nanopatterning is UV nanoimprint (UV nanoimprint), UV embossing (UV embossing) and UV replica molding (UV replica molding) It may be characterized in that it is performed by any one method selected from the group consisting of.
  • the present invention provides an SSQ / PEG mixture using a UV embossing method from a master mold to a high line-to-space density (1: 1), high aspect ratio (4: 1) and low shrinkage ( ⁇ SSQ / PEG networks were patterned with relief nanostructures of 25-nm or smaller features with 3%).
  • the present invention confirmed the anti-bioadhesion of the nano patterned SSQ / PEG network using a fluorescence method.
  • the SSQ / PEG network strongly prevented the adsorption of negatively charged liposomes and confirmed that they have long-term stability against chemical stress, thermal stress and biological stress.
  • the present invention relates to a method of manufacturing a nanopattern, which uses an SSQ / PEG network.
  • the size of the nanopattern may be characterized in that less than 25nm.
  • the present invention relates to a nanodevice having high resistance to nonspecific adsorption including a nanopattern produced by the above method.
  • the nanodevice may be selected from the group consisting of biomedical devices, biosensors, diagnostic arrays, implantation and delivery systems, and lab-on-a-chips.
  • SSQ multifunctionalized with methacrylate a mixture of various SSQMAs [(C 7 H 11 O 2 ) n (SiO 1.5 ) n ], where n is 8, 10 or 12: the weight ratio of PEG is 2: 8 and 5: 5
  • SSQ SSQMA, Methacrylate multi-functionalized SSQ; Hybrid Plastics
  • PEGDMA330 Sigma Aldrich
  • PEGDMA550 Sigma Aldrich
  • PEGDMA750 Sigma Aldrich
  • PEGDA575 Sigma Aldrich
  • the SSQ / PEG network was prepared by curing the SSQ / PEG mixture by irradiating 365 nm of UV (ultraviolet dose: 1000 mJ / cm 2 ) for 30 minutes using a UV lamp (Toscure251; Toshiba) in a vacuum state ( 1).
  • the viscosity of the SSQ / PEG mixture was measured using a Brookfield viscometer Model DV-II Pro (Brookfield Engineering Labs Inc.) at 25 ° C., as shown in FIG. 2, depending on the SSQ / PEG mixture, ranging from 20.8 to 175 cP. Low viscosity.
  • UV-Vis transmittance of the 50SSQ / 50PEG network was measured in a wavelength range of 200 to 800 nm using a spectrophotometer (UVmini-1420; Shimadzu). Measured.
  • Surface hydrophilicity is a desirable property for preventing nonspecific adsorption of biomolecules, especially in micro / nanofluid channel applications, which allows for the introduction of biological reagents without a pump (Jeong HE et al., Small , 3: 778, 2007).
  • the surface hydrophilic static contact angle of SSQ / PEG network was measured and confirmed.
  • the SSQ / PEG mixture was dispensed into small droplets on a Si wafer modified with PFOS (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane; Sigma Aldrich).
  • PFOS trichloro (1H, 1H, 2H, 2H-perfluorooctyl
  • the transparent support made of 188 ⁇ m thick PET (poly (ethylene terephthalate) film was placed on the surface and a 1 ⁇ m thick SSQ / PEG mixture was placed under vacuum using a UV lamp (Toscure251; Toshiba) for 30 minutes.
  • UV ultraviolet (ultraviolet dose: 1000 mJ / cm 2 ) was irradiated to cure the SSQ / PEG mixture to prepare a flat SSQ / PEG network
  • a 5 ⁇ l drop of distilled water was placed on a flat SSQ / PEG network using a contact angle analyzer (Mouse-X; SurfaceTech Co.).
  • SCA initial static contact angle
  • the equilibrium static contact angle of all networks was measured from 42.2 to 54.5 °, and the equilibrium static contact angle of all networks was slightly smaller than the initial static contact angle by surface hydration by continuous exposure to water. Lowered.
  • the positive contact angle of PEGDMA330 decreased as the ratio of SSQMA increased, whereas the positive contact angle of PEGDMA550, PEGDMA575 and PEGDMA750 increased as the ratio of SSQMA increased.
  • the static contact angle values of all kinds of SSQ / PEG networks were smaller than the static contact angle values of PEGDMA330 homopolymers, which means that all kinds of SSQ / PEG networks remain hydrophilic.
  • the expansion ratio of the PEG / SSQ network in toluene and PBS was measured to be 1.3 ⁇ 20.5 wt%, the expansion ratio of the PEG homopolymer increased with increasing the molecular weight of the PEG, PEG expansion rate of the homopolymer It was confirmed that the relative concentration of the SSQ increases, and decreases as the molecular weight of the PEG homopolymer decreases. This result is due to the increased crosslinking density of the network by SSQMA.
  • the 50SSQMA / 50PEGDMA330 network exhibited negligible water expansion (1.3 wt .-%).
  • Non-swellable 50SSQMA / 50PEGDMA330 networks can be used as insulating films for electrochemical biosensors because redox agents, such as ferricyanide compounds dissolved in buffer solutions, cannot pass through non-swellable films.
  • Nanopatterning up to 25 nm with high line-to-space ratio (1: 1) and high aspect ratio (4: 1) is possible when the polymer network has sufficient mechanical strength to maintain the structure.
  • the Young's modulus of the crosslinked PEGDMA330 is 1GPa
  • the Young's modulus of the PEGDMA550 is 40.3 MPa
  • the PEGDMA750 Young's modulus is 16.5 MPa.
  • the smallest Young's modulus for the 50SSQMA / 50PEGDMA330, 50SSQMA / 50PEGDMA550 and 50SSQMA / 50PEGDMA750 networks were measured to be 2.815, 2.038 and 1.898 GPa, respectively. These results are significantly higher than the Young's modulus of PEG homopolymers and higher than the Young's modulus values of previously studied polymer materials used as anti-bioadhesive materials (Amanda A. etal., Biotechnol. Prog. , 17: 917,2001; Kim A. et al., Lab Chip , 6: 1432,2006; HuZ. Et al., J. Am. Chem. Soc. , 130: 14244, 2008).
  • SSQ / PEG networks with high Young's modulus are capable of direct nanopatterning up to 25nm.
  • UV embossing method with high productivity, low cost and high reproducibility was used for direct nanopatterning of the 50SSQ / 50PEG mixture (FIG. 7A).
  • SSQ / PEG mixture was dispensed drop by drop onto a silicone master modified with PFOS as a release agent.
  • the silicon master mold was used by purchasing NIM25L / 100, NIM-80L, and NIM-100H having a line-to-space ratio of 1: 1 and a height of 100 nm in a size of 25-200 nm in NTT-AT Coporation.
  • a transparent support such as glass or PET film modified with TMSPM was carefully transferred onto the surface and in vacuum the support was compressed at an imprinting pressure of 0.1 MPa for 10 seconds.
  • the 50SSQ / 50PEG mixture was UV irradiated for 3 minutes from the top of the transparent substrate while the pressure was maintained by a nanoimprinter system (NM-401; Meisyo Kiko Co., Ltd) equipped with a UV lamp (Toscure251; Toshiba) under vacuum. UV dose: 200 mJ / cm 2 ), and then the mold was separated from the substrate.
  • NM-401 Meisyo Kiko Co., Ltd
  • UV lamp Toscure251; Toshiba
  • FE-SEM Field emission scanning electron microscopy, S-4300 type microscope; Hitachi Co.
  • the 50SSQ / 50PEG network was coated with a 10 nm gold layer before analysis using the Quick Coater SC-701HMC (Sanyu Electron Co., Ltd.), and the patterned nanostructures were vibrated at ambient temperature (tapping mode). Photographs were taken with a Digital Instruments NanoScope III atomic force microscope (Veeco Instruments). Data was processed using SPIP V3.3.7.0 software.
  • the low viscosity 50SSQMA / 50PEGDMA330 mixture was replicated from the silicon master to the nanostructures using UV embossing at a relatively short time of 190 seconds at room temperature and low pressure of 0.1 MPa.
  • the pattern of uniformly replicated parallel lines with half-pitches of 50 nm and 25 nm did not differ from the silicon master and no defects were found at smaller sizes.
  • the same results as for the 50SSMQA / 50PEGDMA330 were confirmed for nanopatterning of other 50SSQ / 50PEG mixtures.
  • the shrinkage of the nano-patterned 50SSQ / 50PEG network showed a low shrinkage of less than 3% as shown in FIG. 8, which improves the accuracy of the nanopattern and extends the life of the master mold. .
  • SSQMA / PEGDMA having an 800 nm dot pattern and SSQOG / PEGDG having an 800 nm dot pattern were prepared as a comparative group (FIG. 9).
  • SSQOG / PEGDG having the 800 nm dot pattern is a 50:50 wt .-% glycidyl ether octa-functionalized SSQ (Toagosei Co., Ltd.) / PEGDG (PEG) which is a cationic polymerizable mixture for UV embossing.
  • liposomes containing texas-red 1,2-dihexadecanoyl-sn-glycero-phosphoethanolamine (molecular probes) and enhanced green fluorescence protein (EGFP) are modeled. Used as a biomolecule.
  • POPC phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; Avanti Polar Lipids Inc.
  • SA stearic acid; Sigma Aldrich
  • with a molar ratio of 80: 20: 1 of 50 nm diameter 10 mM liposome suspensions of TR-DHPE were prepared using an extrusion method in PBS at pH 7.4.
  • 3 mM EGFP purified from E. coli was suspended in 10 mM PBS.
  • the liposomes and protein solution were dropped on a glass, SSQMA / PEGDMA having an 800 nm dot pattern and an SSQOG / PEGDG substrate having an 800 nm dot pattern, incubated at room temperature for 1 hour, and washed with PBS, followed by fluorescence addition apparatus (IX-FLA; Fluorescence images for each substrate were obtained using an Olympus BX51 inverted research microscope with Olympus and a high resolution digital camera (DP70; Olympus) for image acquisition. Red luminescence of 590 nm and more and green light emission of 480-550 nm were filtered using U-MWG and U-MSWG Olympus filter cubes, respectively.
  • SSQMA / PEGDMA having an 800 nm dot pattern strongly prevented nonspecific adsorption of liposomes compared to SSQOG / PEGDG having a glass and 800 nm dot pattern.
  • the fluorescence intensity of TR-DHPE and EGFP on the surface was systematically measured, and when compared with the glass at 100%, all SSQMA / PEGDMA networks were liposome and It was confirmed to prevent the adsorption of EGFP to less than 4.6%.
  • the prevention of biomolecule adsorption is due to the heavy hydration of PEG, good structural flexibility and high chain mobility.
  • hydrated PEGs with flexibility and mobility in SSQ / PEG networks can prevent nonspecific adsorption of organisms
  • SSQOG / PEGDG networks prepared by cationic polymerization react with liposomes containing negatively charged SAs and Electrostatic interactions between the EGFP and the positively charged SSQOG / PEGDG surface resulted in uniform and high adsorption of biomolecules.
  • the free radical polymerization step is more appropriate than the cationic polymerization step.
  • the pattern of the 50SSQMA / 50PEGDMA network did not degrade even after long standing for 12 hours at a high concentration of 10 mM liposomes in 10 mM PBS at pH 7.4.
  • SSQ / PEG networks with high optical transmission, low viscosity, non-swellability, hydrophilicity, high mechanical strength and high stability against chemical stress, thermal stress and biological stress can be free radical polymerized and directly nanopatterned. It can be used in a variety of biomedical applications such as nanobiodevices, nanobiosensors and lab-on-a-chips.
  • the anti-bioadhesive SSQ / PEG network according to the present invention not only has high anti-biofouling, but also low viscosity, high optical transparency, high hydrophilicity, high resistance to swelling in organic / aqueous solutions, biological and chemical And it has high stability against thermal stress and high mechanical strength, it is possible to manufacture direct micropattern up to 25nm can be easily used for advanced performance of a wide range of biomedical applications.

Abstract

The present invention relates to an anti-biofouling SSQ/PEG network and a preparation method thereof. More particularly, the present invention relates to an SSQ/PEG network, and a preparation method thereof, wherein the network is prepared by curing a mixture of polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ) with UV rays, has high resistance to non-specific adsorption that is used for coating a solid substrate, and can be directly nano-patterned. The anti-biofouling SSQ/PEG network according to the present invention not only has an anti-biofouling property but also has low viscosity, high optical transparency, high hydrophilicity, an anti-swelling property in organic/aqueous solution, high stabilities against biological, chemical and thermal stresses, and high mechanical strength, and can also be finely patterned into sub-25 nm-scale directly to be easily used for high-tech performance in a wide range of biomedical applications.

Description

항생물부착성 SSQ/PEG 네트워크 및 그 제조방법Antibiotic Adhesion SV / PEB Network and Manufacturing Method Thereof
본 발명은 항생물부착성 SSQ/PEG 네트워크 및 그 제조방법에 관한 것으로, 보다 구체적으로, 폴리에틸렌글리콜(PEG)과 광경화성 실세스퀴옥산(SSQ)을 혼합하여 UV로 경화시켜 제조되고, 고상 기질을 코팅하는데 이용되는 비특이적 흡착에 대해 높은 저항성을 가지며, 동시에 직접적인 나노 패터닝이 가능한 SSQ/PEG 네트워크 및 그 제조방법에 관한 것이다.The present invention relates to an anti-bioadhesive SSQ / PEG network and a method for manufacturing the same, and more specifically, polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ) are mixed and prepared by UV curing, and a solid substrate. The present invention relates to an SSQ / PEG network having high resistance to non-specific adsorption used for coating a film and capable of direct nano-patterning and a method of manufacturing the same.
바이오메디컬 디바이스(biomedical devices), 바이오센서(biosenseors), 진단 배열(diagnostic arrays), 이식(implants) 및 약물 전달 시스템(drug delivery systems)의 제조에 있어서, 고체표면의 생체고분자의 비특이적 흡착의 방지는 대단히 중요하다 (Senaratne W.etal.,Biomacromolecules,6:2427,2005; CooperS.L.etal.,Biomaterials.Interfacialphenomenaandapplications,1982).In the manufacture of biomedical devices, biosenseors, diagnostic arrays, implants and drug delivery systems, the prevention of nonspecific adsorption of biopolymers on solid surfaces Of great importance (Senaratne W. et al., Biomacromolecules , 6: 2427, 2005; Cooper S. L. et al., Biomaterials. Interfacial phenomenaand applications, 1982).
비특이적 흡착의 문제는 생체물질의 흡착에 저항력이 있는 물질로 표면을 프리코팅(precoating)함으로써 방지할 수 있으며, 폴리비닐알코올(poly(vinylalcohol)), 폴리에틸렌글리콜(PEG, poly(ethyleneglycol)), 폴리아크릴아미드(poly(acrylamide)), 덱스트란(dextran), 및 메타크릴산포스파티딜콜린(methacrylated phosphatidylcholine) 등과 같은 다양한 폴리머 물질들이 비특이적 흡착의 방지 또는 최소화를 위한 코팅물질로 사용되어 왔다 (Amanda A. etal.,Mallapragada,Biotechnol.Prog.,17:917,2001; HarrisJ.M.etal.,Poly(ethyleneglycol)chemistry.BiotechnicalandBiomedicalApplications,1992; ParkS.etal.,J.Biomed.Mater.Res.,53:568,2000; MassonJ.F.etal.,Talanta,67:918,2005; IshiharaK.,Sci.Technol.Adv.Mater.,1:131,2000).The problem of nonspecific adsorption can be prevented by precoating the surface with a material that is resistant to the adsorption of biomaterials, and can be avoided by poly (vinylalcohol), polyethylene glycol (PEG, poly (ethyleneglycol)), poly Various polymeric materials, such as acrylamide, dextran, and methacrylated phosphatidylcholine, have been used as coatings for the prevention or minimization of nonspecific adsorption (Amanda A. etal. Mallapragada, Biotechnol. Prog. , 17: 917, 2001; Harris J. M. et al., Poly (ethyleneglycol) chemistry. Biotechnicaland Biomedical Applications, 1992; Park S. et al., J. Biomed. Mater. Res., 53: 568,2000 Masson J. F. et al., Taralan , 67: 918 , 2005; Ishihara K., Sci . Technol . Adv . Mater ., 1: 131, 2000).
상기 코팅물질은 자기조립단분자막(SAM, Self-assembled monolayer), 폴리머브러시(Polymer brush), 하이드로겔(hydrogel)의 형태로 이용되었으며, 물리적 흡착과 화학 커플링과 같은 공유결합으로 고체표면에 고정화되고(Amanda A. etal.,Mallapragada,Biotechnol.Prog.,17:917,2001; HarrisJ.M.etal.,Poly(ethyleneglycol)chemistry.BiotechnicalandBiomedicalApplications,1992; ParkS.etal.,J.Biomed.Mater.Res.,53:568,2000; MassonJ.F.etal.,Talanta,67:918,2005; IshiharaK.,Sci.Technol.Adv.Mater.,1:131,2000; DulceyC.S.etal.,Science,252:551,1991; MilnerS.T.,Science,251:905,1991; SpargoB.J.etal.,Proc.Natl.Acad.Sci.U.S.A.,91:11070,1994; RuheJ.etal.,J.Biomater.Sci.,Polym.Ed.,10:859,1999; RatnerB.D.etal.,Annu.Rev.Biomed.Eng.,6:41,2004; SibaraniJ.etal.,ColloidsSurf.,B,54:88,2007),이러한 물질들은 소형화된 바이오메디컬디바이스와 바이오센서를 제작하기 위하여 딥자외선리소그래피(deep-ultraviolet lithography, Dulcey C. S. etal.,Science,252:551,1991),표준석판술(standard photolithography, Revzin A etal.,Langmuir,19:9855,2003),딥-펜리소그래피(dip-penlithography, Lee K. B. etal.,NanoLett.,4:1869,2004),전자-빔리소그래피(electron-beam lithography, Smith J. C. etal.,NanoLett.,3:883,2003),소프트리소그래피(soft lithography, Whitesides G. M. etal.,Annu.Rev.Biomed.Eng.,3:335,2001; MendesP.M.etal.,NanoscaleRes.Lett.,2:373,2007),그리고 나노임프린트리소그래피(nanoimprint lithography, Falconnet D. etal.,NanoLett.,4:1909,2004; LeeB.K.etal.,Small,4:342,2008; LeeB.K.etal.,LabChip,9:132,2009)등과 같은 다양한 석판기법을 통하여 고체기판 상에 마이크로/나노스케일의 형상으로 직/간접적으로 제작되었다.The coating material was used in the form of self-assembled monolayer (SAM), polymer brush, hydrogel, and immobilized on the solid surface by covalent bonds such as physical adsorption and chemical coupling. (Amanda A. et al., Mallapragada, Biotechnol. Prog., 17: 917 , 2001; Harris J. M. et al., Poly (ethyleneglycol) chemistry. Biotechnicaland Biomedical Applications, 1992; Park S. etal., J. Biomed. Mater. Res. 53: 568 , 2000; Masson J. F. et al., Talanta , 67: 918 , 2005; Ishihara K., Sci. Technol. Adv. Mater. , 1: 131, 2000; Dulcey C. S. et al., Science , 252 : 551,1991; Milner S. T., Science , 251: 905,1991; Spargo B. J. et al., Proc . Natl . Acad . Sci . USA., 91: 11070, 1994; Ruhe J. et al., J. Biomater Sci., Polym. Ed. , 10: 859, 1999; Ratner B. D. etal., Annu. Rev. Biomed. Eng., 6:41, 2004; Sibarani J. etal., Colloids Surf ., B , 54:88. (2007), these materials are used for deep-ultraviolet lith to fabricate miniaturized biomedical devices and biosensors. ography, Dulcey CS et al., Science , 252: 551,1991), standard photolithography, Revzin A et al., Langmuir , 19: 9855,2003), dip-penlithography, Lee KB etal. , Nano Lett ., 4: 1869, 2004), electron-beam lithography, Smith JC et al., Nano Lett . , 3: 883, 2003), soft lithography, Whitesides GM et al., Annu. Rev. Biomed. Eng. , 3: 335, 2001; Mendes P. M. et al., Nanoscale Res. Lett . , 2: 373, 2007), and nanoimprint lithography, Falconnet D. et al., Nano Lett . , 4: 1909, 2004; Lee B. K. et al., Small , 4: 342, 2008; Lee B. K. et al., Lab Chip , 9: 132,2009), etc., were fabricated directly / indirectly in the form of micro / nanoscale on a solid substrate.
그러나, 상기 고체 표면에서의 항생물부착성 자기조립 단분자막, 폴리머 브러시, 또는 하이드로겔 등의 프리코팅의 이용은 생체물질의 비특이적 흡착을 방지하기 위해 잘 정립된 방법이지만, 이러한 프리코팅은 재료의 장기적인 안정성에 대한 단점이 있다. PEG에 기초한 SAM은 불안정하며, 특히 산소와 전이금속이온의 존재하에서 급속하게 산화한다고 보고되었으며(Ostuni etal.,Langmuir,17:5605,2001; ChenS.etal.,J.Am.Chem.Soc.,127:14473,2005; CrouzetC.etal.,Makromol.Chem.,177:145,1976),PEG브러시는 35℃ 이상에서 그들의 단백질에 대한 반발특성을 점차적으로 잃는다고 보고되어 있다 (Leckband D. et al., J. Phys. Chem. B, 10:1125, 1998). 또한, 하이드로겔은 수용액 중에서 너무 불안정하며(Priola A. etal.,Polymer,34:3653,1993),수용액에 의한 현저한 팽윤(swelling)으로 인해 그들의 3차원 구조가 붕괴한다고 보고되었다 (Kim P. etal.,LabChip,6:1432,2006).However, the use of precoatings such as antimicrobial self-assembled monolayers, polymer brushes, or hydrogels on the solid surface is well established to prevent nonspecific adsorption of biomaterials, but such precoatings There is a disadvantage to stability. PEG based SAMs are unstable and have been reported to oxidize rapidly, especially in the presence of oxygen and transition metal ions (Ostuni et al., Langmuir , 17: 5605,2001; Chen S. et al., J. Am. Chem. Soc. , 127: 14473,2005; Crouzet C. et al., Makromol. Chem . , 177: 145,1976), PEG brushes have been reported to gradually lose their repulsive properties to their proteins above 35 ° C (Leckband D. et al. , J. Phys. Chem. B, 10: 1125, 1998). Hydrogels are also reported to be too unstable in aqueous solutions (Priola A. et al., Polymer , 34: 3653,1993), and their three-dimensional structures collapse due to significant swelling by aqueous solutions (Kim P. etal). , LabChip , 6: 1432,2006).
따라서, 항생물부착성 물질의 불안정성이 바이오센싱에 있어서 정확성, 감도, 그리고 재현성과 직접적으로 연관되어 있기 때문에 바이오메디컬디바이스, 바이오센서 그리고 랩온어칩(lab-on-a-chip) 등의 제작을 위해서는 안정한 항생물부착성 재료의 개발이 요구되어 진다.Therefore, the fabrication of biomedical devices, biosensors, and lab-on-a-chips is important because the instability of antimicrobial materials is directly related to accuracy, sensitivity, and reproducibility in biosensing. This requires the development of stable antimicrobial materials.
한편, 안정한 항생물부착성 물질은 바이오메디컬디바이스, 나노바이오센서, 그리고 랩온어칩 등의 생산 및 제작을 위해 고생산성, 저렴한 비용 그리고 높은 재현성을 가지는 적절한 패터닝 방법으로 나노구조체를 만들어야 한다. 또한, 이들의 제작공정을 단순화하기 위해서는, 항생물부착성 재료의 직접적인 나노패터닝이 간접적인 패터닝 방법보다는 훨씬 효율적이다 (Revzin A etal.,Langmuir,19:9855,2003; LeeB.K.etal.,Small,4:342,2008; LeeB.K.etal.,LabChip,9:132,2009; KimP.etal.,Adv.Mater.,20:31,2008).더욱이, 50nm 이하에서 나노구조의 붕괴 없이 패턴을 제작하기 위해서는 100MPa 이상의 인장탄성율을 가지는 충분히 단단한 재료가 요구되어 진다 (Palmieri F. etal.,ACSNano,1:307,2007).On the other hand, stable anti-bioadhesive materials should be made of nanostructures by appropriate patterning methods with high productivity, low cost and high reproducibility for the production and production of biomedical devices, nanobiosensors, and lab-on-a-chips. In addition, to simplify their fabrication process, direct nanopatterning of antimicrobial materials is much more efficient than indirect patterning methods (Revzin A et al., Langmuir , 19: 9855,2003; Lee B.K. etal., Small , 4: 342, 2008; Lee B. K. et al., Lab Chip , 9: 132 , 2009; Kim P. et al., Adv. Mater. , 20:31 , 2008). To produce a pattern, a sufficiently hard material with a tensile modulus of 100 MPa or more is required (Palmieri F. et al., ACSNano , 1: 307, 2007).
이러한 관점에서, 광범위한 생물의학 응용의 첨단성능을 위한 이상적인 항생물부착성 재료는 높은 항생물부착성(anti-biofouling property)뿐만 아니라(Revzin A etal.,Langmuir,19:9855,2003; LeeB.K.etal.,Small,4:342,2008; LeeB.K.etal.,LabChip,9:132,2009; KimP.etal.,Adv.Mater.,20:31,2008),낮은 점도, 높은 광학 투명성, 높은 친수성(Jeong H. E. etal.,Small,3:778,2007),유기/수용액 중에서의 팽윤에 대한 높은 저항성(Kim P. etal.,LabChip,6:1432,2006),생물학적, 화학적, 열 스트레스에 대한 높은 안정성, 높은 기계적 강도, 그리고 직접적인 패턴제작 가능성 등과 같은 다양한 특성들이 요구된다. 그러나, 상기 언급한 다양한 특성들을 모두 만족하는 항생물부착성 재료는 아직 개발되지 않은 실정이다.In this respect, the ideal anti-bioadhesive material for advanced performance in a wide range of biomedical applications is not only high anti-biofouling property (Revzin A et al., Langmuir , 19: 9855,2003; Lee B.K. et al., Small , 4: 342, 2008; Lee B. K. etal., LabChip , 9: 132, 2009; Kim P. et al., Adv. Mater. , 20:31, 2008), low viscosity, high optical transparency , High hydrophilicity (Jeong HE et al., Small , 3: 778,2007), high resistance to swelling in organic / aqueous solutions (Kim P. etal., LabChip , 6: 1432,2006), biological, chemical, thermal stress Various properties are required such as high stability, high mechanical strength, and direct patterning possibility. However, antimicrobial materials that satisfy all of the above-mentioned various properties have not been developed yet.
이에, 본 발명자들은 상기 언급된 광범위한 생물의학 응용을 위한 다양한 특성을 갖춘 이상적인 항생물부착성 재료를 개발하고자 예의 노력한 결과, 항생물부착성 재료로 직접적으로 패터닝할 수 있는 광경화성 PEG에 광경화성 silsesquioxane(SSQ)을 첨가하여 PEG의 불안정한 열적 안정성, 기계적 강도, 절연성, 팽창 등이 개선된 저점도의 광경화성 SSQ/PEG 혼합물을 제조하고, 상기 혼합물에 2wt%의 UV 개시제를 첨가한 후, 간단한 UV 조사를 통해 저점도의 광경화성 SSQ/PEG 혼합물을 경화(crosslinking)시켜, SSQ/PEG 네트워크를 제조하고, 상기 제조된 SSQ/PEG 네트워크가 4.6% 미만의 높은 항생물부착성(anti-biofouling)뿐만 아니라, 20.8~175cP의 낮은 점도, 90% 이상의 높은 광학 투명성, 높은 친수성(물접촉각 = 42.2~54.5°), 유기/수용액 중에서의 팽윤에 대한 높은 저항성(1.3~20.5 wt%), 생물학적, 화학적 및 열 스트레스에 대한 높은 안정성, 1.898~2.815 GPa 영율의 높은 기계적 강도를 가지는 것을 확인함과 아울러, UV 엠보싱을 이용하여 25nm 이하의 직접적인 미세패턴의 제작이 가능하다는 것을 확인하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have made intensive efforts to develop an ideal anti-bioadhesive material having various properties for the above-mentioned wide range of biomedical applications, and thus photocurable silsesquioxane in photocurable PEG that can be directly patterned into an anti-bioadhesive material. (SSQ) was added to prepare a low viscosity photocurable SSQ / PEG mixture with improved PEG's unstable thermal stability, mechanical strength, insulation, swelling, and the like, followed by addition of 2 wt% UV initiator to the mixture, followed by simple UV Irradiation crosslinks the low viscosity photocurable SSQ / PEG mixture to produce an SSQ / PEG network, wherein the prepared SSQ / PEG network has a high anti-biofouling of less than 4.6%. Low viscosity of 20.8 to 175 cP, high optical transparency of 90% or more, high hydrophilicity (water contact angle = 42.2 to 54.5 °), high resistance to swelling in organic / aqueous solution (1.3 to 20.5 wt%), In addition to confirming that it has high stability against physical, chemical and thermal stress, and high mechanical strength of 1.898 to 2.815 GPa Young's modulus, UV embossing enables the fabrication of direct micropatterns of 25 nm or less. To complete.
발명의 요약Summary of the Invention
본 발명의 목적은 광범위한 생물 의학 애플리케이션을 위한 항생물부착성 재료 및 그 제조방법을 제공하는데 있다.It is an object of the present invention to provide an anti-bioadhesive material for a wide range of biomedical applications and methods of making the same.
상기 목적을 달성하기 위하여, 본 발명은 (a) 폴리에틸렌글리콜(PEG)과 광경화성 실세스퀴옥산(SSQ)을 혼합하는 단계; 및 (b) 상기 (a) 혼합물을 UV 개시제의 존재하에 UV를 조사하여 경화시켜 SSQ/PEG 네트워크를 수득하는 단계를 포함하는 항생물부착성 SSQ/PEG 네트워크의 제조방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of (a) mixing polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ); And (b) curing the mixture (a) by irradiating UV in the presence of a UV initiator to obtain an SSQ / PEG network.
본 발명은 또한, 상기 방법에 의해 제조된 SSQ/PEG 네트워크를 제공한다. The present invention also provides an SSQ / PEG network produced by the above method.
본 발명은 또한, SSQ/PEG 네트워크를 이용하는 것을 특징으로 하는 나노패턴의 제작방법을 제공한다. The present invention also provides a method of manufacturing a nanopattern, characterized in that using the SSQ / PEG network.
본 발명은 또한, 상기 방법에 의해 제작된 나노패턴을 포함하는 비특이적 흡착에 대해 높은 저항성을 가지는 나노디바이스를 제공한다.The present invention also provides nanodevices having high resistance to nonspecific adsorption including nanopatterns prepared by the above method.
도 1은 프리 라디칼 중합반응이 가능한 항생물부착성 SSQ/PEG 네트워크 구성성분 및 반응식을 나타낸 것이다. Figure 1 shows the anti-bioadhesive SSQ / PEG network components and reaction schemes capable of free radical polymerization.
도 2는 SSQ/PEG 혼합물의 점도 측정값을 그래프로 나타낸 것이다. 2 graphically shows the viscosity measurements of the SSQ / PEG mixture.
도 3은 석영 기판 위에 프리 라디칼 중합반응에 의해 중합된 SSQ/PEG 네트워크의 UV-Vis 투과스펙트라를 나타낸 것이다. FIG. 3 shows UV-Vis transmission spectra of SSQ / PEG networks polymerized by free radical polymerization on a quartz substrate.
도 4는 SSQ/PEG 네트워크의 초기의 정접촉각 및 20분 후의 평형 정접촉각을 나타낸 것이다. 4 shows the initial static contact angle of the SSQ / PEG network and the equilibrium static contact angle after 20 minutes.
도 5는 톨루엔 및 PBS에 대한 SSQ/PEG 네트워크의 팽창율을 그래프로 나타낸 것이다. Figure 5 graphically shows the expansion rate of SSQ / PEG network for toluene and PBS.
도 6은 SSQ/PEG 네트워크에 대한 영률을 그래프로 나타낸 것이다.6 graphically shows the Young's modulus for an SSQ / PEG network.
도 7은 UV 엠보싱(embossing)을 이용한 SSQ/PEG 혼합물의 나노구조 제작공정에 대한 모식도(a), 50nm 피처(feature)를 가지는 Si 마스터(b), 25nm 피처를 가지는 Si 마스터(c), 50nm 피처로 나노 패터닝된 50SSQMA/50PEGDMA330(d) 및 25nm 피처로 나노 패터닝된 50SSQMA/50PEGDMA330(e)의 FE-SEM 이미지를 나타낸 것이다. 7 is a schematic diagram of a nanostructure fabrication process of SSQ / PEG mixture using UV embossing (a), Si master (b) with 50 nm features, Si master (c) with 25 nm features, 50 nm FE-SEM images of 50SSQMA / 50PEGDMA330 (d) nano patterned with features and 50SSQMA / 50PEGDMA330 (e) nano patterned with 25 nm features are shown.
도 8은 NIM-80L 마스터 몰드(a), UV-embossed 50SSQMA/50PEGDMA330(b), UV-embossed 50SSQMA/50PEGDMA550(c) 및 UV-embossed 50SSQMA/50PEGDMA750(d)의 AFM height 이미지 및 수축율을 나타낸 것이다.Figure 8 shows the AFM height images and shrinkage of NIM-80L master mold (a), UV-embossed 50SSQMA / 50PEGDMA330 (b), UV-embossed 50SSQMA / 50PEGDMA550 (c) and UV-embossed 50SSQMA / 50PEGDMA750 (d). .
도 9는 glass(a), 50SSQMA/50PEGDMA330 네트워크(b) 및 50SSQOG/PEGDG526 네트워크(c)의 광학 이미지 및 양이온 중합반응이 가능한 50SSQOG/50PEGDG526 네트워크의 구성성분(d)을 나타낸 것이다. Figure 9 shows the optical image of the glass (a), 50SSQMA / 50PEGDMA330 network (b) and 50SSQOG / PEGGDG526 network (c) and component (d) of the 50SSQOG / 50PEGDG526 network capable of cationic polymerization.
도 10은 glass(a,d), PET 필름 위에 제조된 50SSQMA/50PEGDMA330(b,e) 및 50SSQOG/50PEGDG526(c,f) 위에 선택적으로 흡착된 TR-DHPE를 함유하는 리포솜(a-c) 및 EGFP(d-f)의 형광 이미지를 나타낸 것이다. FIG. 10 shows liposomes (ac) and EGFP (optionally adsorbed on 50SSQMA / 50PEGDMA330 (b, e) and 50SSQOG / 50PEGDG526 (c, f) prepared on glass (a, d), PET film) df) fluorescence image.
도 11은 25nm 크기 이하의 바이오메디컬 애플리케이션을 위한 프리 라디칼 중합반응에 의해 제조된 비부착성 SSQ/PEG 네트워크를 나타낸 것이다.FIG. 11 shows a non-adhesive SSQ / PEG network prepared by free radical polymerization for biomedical applications up to 25 nm in size.
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명은 일 양태에서, PEG 네트워크의 크로스링킹 밀도를 증가시키기 위해, 광경화성 SSQ를 혼합하고, 광개시제를 첨가하여 프리 라디칼 중합반응을 이용하여 SSQ/PEG 네트워크를 제조하였다. 상기 PEG와 SSQ를 혼합한 SSQ/PEG 혼합물의 점도를 측정한 결과, 20.8~175cP 범위의 낮은 점도를 나타내었다. In one aspect, the present invention, in order to increase the crosslinking density of the PEG network, a photocurable SSQ was mixed and a photoinitiator was added to prepare an SSQ / PEG network using free radical polymerization. As a result of measuring the viscosity of the SSQ / PEG mixture mixed with the PEG and SSQ, it showed a low viscosity in the range of 20.8 ~ 175 cP.
본 발명은 일 관점에서, (a) 폴리에틸렌글리콜(PEG)과 광경화성 실세스퀴옥산(SSQ)을 혼합하는 단계; 및 (b) 상기 (a) 혼합물을 UV 개시제의 존재하에 UV를 조사하여 경화시켜 SSQ/PEG 네트워크를 수득하는 단계를 포함하는 항생물부착성 SSQ/PEG 네트워크의 제조방법에 관한 것이다. The present invention in one aspect, (a) mixing polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ); And (b) curing the mixture (a) by irradiating UV in the presence of a UV initiator to obtain an SSQ / PEG network.
본 발명에 있어서, 상기 폴리에틸렌글리콜(PEG)은 폴리에틸렌글리콜 디메타크릴게이트(PEGDMA) 및 폴리에틸렌글리콜디아크릴레이트(PEGDA)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 광경화성 실세스퀴옥산(SSQ)은 메타크릴레이트 또는 아크릴레이트로 기능화된 것을 특징으로 할 수 있다. In the present invention, the polyethylene glycol (PEG) may be selected from the group consisting of polyethylene glycol dimethacrylate (PEGDMA) and polyethylene glycol diacrylate (PEGDA), the photocurable silsesquioxane (SSQ) can be characterized as functionalized with methacrylate or acrylate.
본 발명에 있어서, 상기 UV 개시제는 2,2'-디메톡시-2-페닐아세토페논(DMPA, 2,2'-dimethoxy-2-phenylacetophenone), 2-하이드록시-2-메틸-1-페닐-프로판-1-온(HMPP, 2-hydroxy-2-methyl-1-phenyl-propane-1-one), 2,4,6-트리메틸벤조일 디페닐포스핀 옥사이드(2,4,6-Trimethylbenzoyl-diphenylphosphine Oxide) 및 디페닐 2,4,6-트리메틸벤조일 포스핀 옥사이드(Diphenyl 2,4,6 - trimethylbenzoyl phosphine oxide)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. In the present invention, the UV initiator is 2,2'-dimethoxy-2-phenylacetophenone (DMPA, 2,2'-dimethoxy-2-phenylacetophenone), 2-hydroxy-2-methyl-1-phenyl- Propane-1-one (HMPP, 2-hydroxy-2-methyl-1-phenyl-propane-1-one), 2,4,6-trimethylbenzoyl diphenylphosphine oxide (2,4,6-Trimethylbenzoyl-diphenylphosphine Oxide) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Diphenyl 2,4,6-trimethylbenzoyl phosphine oxide) may be selected from the group consisting of.
본 발명은 다른 양태에서, SSQ/PEG 네트워크의 UV-Vis 투과성, 표면 친수성, 팽윤성 및 기계적 특성을 확인하였다. 그 결과, SSQ/PEG 네트워크는 높은 UV 투과성(365nm에서 >90%), 높은 친수성(물접촉각 = 42.2~54.5°) 및 톨루엔과 PBS 용액 모두에서 비팽윤성이거나 매우 작은 팽창율을 나타내었고, 훌륭한 기계적 특성(영율 = 1.898~2.815GPa)을 나타내었다. In another aspect, the present invention confirmed the UV-Vis permeability, surface hydrophilicity, swelling and mechanical properties of the SSQ / PEG network. As a result, the SSQ / PEG network showed high UV transmission (> 90% at 365 nm), high hydrophilicity (water contact angle = 42.2-54.5 °), and non-swelling or very small expansion rate in both toluene and PBS solutions, and excellent mechanical properties (Young's modulus = 1.898 ~ 2.815GPa).
본 발명은 다른 관점에서, 상기 방법에 의해 제조된 SSQ/PEG 네트워크에 관한 것이다. In another aspect, the present invention relates to an SSQ / PEG network produced by the above method.
본 발명에 있어서, 상기 SSQ/PEG 네트워크는 (a) 365nm 이상의 파장에서 90% 이상의 UV 투과성; (b) 42.2~54.5°의 정접촉각; (c) 1.898~2.815GPa의 기계적 강도; (d) 유기용매 및 수용액에 대한 팽창율 1.3~20.5 wt%; (e) 3% 이하의 수축율; 및 (f) 4.6% 미만의 항생물부착성을 가지는 것을 특징으로 할 수 있다. In the present invention, the SSQ / PEG network is (a) at least 90% UV transmission at a wavelength of 365nm or more; (b) a positive contact angle of 42.2-54.5 °; (c) mechanical strength of 1.898 to 2.815GPa; (d) an expansion ratio of 1.3 to 20.5 wt% based on the organic solvent and the aqueous solution; (e) shrinkage of 3% or less; And (f) less than 4.6% antimicrobial adhesion.
본 발명에 있어서, 상기 SSQ/PEG 네트워크는 직접적인 나노패터닝이 가능한 것을 특징으로 할 수 있으며, 직접적인 나노패터닝은 UV 나노임프린트(UV nanoimprint), UV 엠보싱(UV embossing) 및 UV 레플리카 몰딩(UV replica molding)으로 구성된 군에서 선택되는 어느 하나의 방법으로 수행되는 것을 특징으로 할 수 있다. In the present invention, the SSQ / PEG network may be characterized by direct nanopatterning, direct nanopatterning is UV nanoimprint (UV nanoimprint), UV embossing (UV embossing) and UV replica molding (UV replica molding) It may be characterized in that it is performed by any one method selected from the group consisting of.
본 발명은 또 다른 양태에서, SSQ/PEG 혼합물을 UV 엠보싱 방법을 이용하여 마스터 몰드로부터 투명한 기판 위에 높은 line-to-space 밀도(1:1), 높은 종횡비(4:1) 및 낮은 수축율(<3%)을 가지는 25-nm 이하 피처의 릴리프 나노구조로 패터닝된 SSQ/PEG 네트워크를 제조하였다. In another aspect, the present invention provides an SSQ / PEG mixture using a UV embossing method from a master mold to a high line-to-space density (1: 1), high aspect ratio (4: 1) and low shrinkage (< SSQ / PEG networks were patterned with relief nanostructures of 25-nm or smaller features with 3%).
본 발명은 또 다른 양태에서, 형광 방법을 이용하여 상기 나노 패터닝된 SSQ/PEG 네트워크의 항생물부착성을 확인하였다. 그 결과, SSQ/PEG 네트워크는 음전하의 리포솜이 비특이적으로 흡착되는 것을 강하게 방지하였고, 화학적 스트레스, 열적 스트레스 및 생물학적 스트레스에 대해 장기간 안정성을 가지는 것을 확인하였다. In another aspect, the present invention confirmed the anti-bioadhesion of the nano patterned SSQ / PEG network using a fluorescence method. As a result, the SSQ / PEG network strongly prevented the adsorption of negatively charged liposomes and confirmed that they have long-term stability against chemical stress, thermal stress and biological stress.
본 발명은 또 다른 관점에서, SSQ/PEG 네트워크를 이용하는 것을 특징으로 하는 나노패턴의 제작방법에 관한 것이다. In still another aspect, the present invention relates to a method of manufacturing a nanopattern, which uses an SSQ / PEG network.
본 발명에 있어서, 상기 나노패턴의 크기는 25nm 이하인 것을 특징으로 할 수 있다. In the present invention, the size of the nanopattern may be characterized in that less than 25nm.
본 발명은 또 다른 관점에서, 상기 방법에 의해 제작된 나노패턴을 포함하는 비특이적 흡착에 대해 높은 저항성을 가지는 나노디바이스에 관한 것이다. In still another aspect, the present invention relates to a nanodevice having high resistance to nonspecific adsorption including a nanopattern produced by the above method.
본 발명에 있어서, 상기 나노디바이스는 바이오메디컬 디바이스, 바이오센서, 진단배열, 이식 및 전달 시스템 및 랩온어칩으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. In the present invention, the nanodevice may be selected from the group consisting of biomedical devices, biosensors, diagnostic arrays, implantation and delivery systems, and lab-on-a-chips.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only to illustrate the invention, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예 1: SSQ/PEG 네트워크 제조Example 1 SSQ / PEG Network Fabrication
n이 8, 10 또는 12인 다양한 SSQMAs[(C7H11O2)n(SiO1.5)n]의 혼합물인 메타크릴레이트로 다기능화된 SSQ: PEG의 중량비가 2:8 및 5:5인 20SSQ/80PEG 네트워크 및 50SSQ/50PEG 네트워크를 제조하기 위하여, SSQ(SSQMA, Methacrylate multi-functionalized SSQ; Hybrid Plastics)를 PEGDMA330(Sigma Aldrich), PEGDMA550(Sigma Aldrich), PEGDMA750(Sigma Aldrich) 및 PEGDA575(Sigma Aldrich)와 중량비에 따라 각각 5분 동안 혼합하여 모든 중량비에 대해 맑은 액체 혼합물을 수득하였다.SSQ multifunctionalized with methacrylate, a mixture of various SSQMAs [(C 7 H 11 O 2 ) n (SiO 1.5 ) n ], where n is 8, 10 or 12: the weight ratio of PEG is 2: 8 and 5: 5 In order to fabricate 20SSQ / 80PEG network and 50SSQ / 50PEG network, SSQ (SSQMA, Methacrylate multi-functionalized SSQ; Hybrid Plastics) was used for PEGDMA330 (Sigma Aldrich), PEGDMA550 (Sigma Aldrich), PEGDMA750 (Sigma Aldrich) and PEGDA575 (Sigma Aldrich). ) And the weight ratio was mixed for 5 minutes each to obtain a clear liquid mixture for all weight ratios.
SSQ/PEG 혼합물인 상기 수득된 맑은 액체 혼합물에 2%(w/w)의 UV 개시제 DMPA(2,2'-dimethoxy-2-phenylacetophenone; Sigma Aldrich)를 첨가하고, 2%(w/w)의 DMPA를 함유하는 SSQ/PEG 혼합물을 500nm 두께의 필름 형태로 TMSPM(3-(trimethoxysilyl)propyl methacrylate; Sigma Aldrich)으로 개질된 석영 기판 위에 스핀코팅하였다. 그 다음, 진공상태에서 UV 램프(Toscure251; Toshiba)를 이용하여 30분 동안 365nm의 UV(자외선 조사량: 1000mJ/cm2)를 조사하여 상기 SSQ/PEG 혼합물을 경화시켜 SSQ/PEG 네트워크를 제조하였다 (도 1). 2% (w / w) of UV initiator DMPA (2,2'-dimethoxy-2-phenylacetophenone; Sigma Aldrich) was added to the clear liquid mixture obtained as a mixture of SSQ / PEG, and 2% (w / w) of SSPA / PEG mixtures containing DMPA were spin coated onto quartz substrates modified with TMSPM (3- (trimethoxysilyl) propyl methacrylate; Sigma Aldrich) in the form of a 500 nm thick film. Then, the SSQ / PEG network was prepared by curing the SSQ / PEG mixture by irradiating 365 nm of UV (ultraviolet dose: 1000 mJ / cm 2 ) for 30 minutes using a UV lamp (Toscure251; Toshiba) in a vacuum state ( 1).
또한, 25℃에서 Brookfield viscometer Model DV-Ⅱ Pro(Brookfield Engineering Labs Inc.)를 이용하여 SSQ/PEG 혼합물의 점도를 측정한 결과, 도 2에 나타난 바와 같이, SSQ/PEG 혼합물에 따라 20.8~175cP 범위의 낮은 점도를 나타내었다.In addition, the viscosity of the SSQ / PEG mixture was measured using a Brookfield viscometer Model DV-II Pro (Brookfield Engineering Labs Inc.) at 25 ° C., as shown in FIG. 2, depending on the SSQ / PEG mixture, ranging from 20.8 to 175 cP. Low viscosity.
실시예 2: SSQ/PEG 네트워크의 특성Example 2: Characteristics of SSQ / PEG Network
(1) UV-Vis 투과율(1) UV-Vis transmittance
상기 실시예 1에서 제조된 SSQ/PEG 네트워크의 UV-Vis 투과율을 확인하기 위하여, 분광광도계(UVmini-1420; Shimadzu)를 이용하여 200~800nm 파장 범위에서 상기 50SSQ/50PEG 네트워크의 UV-Vis 투과율을 측정하였다. In order to confirm UV-Vis transmittance of the SSQ / PEG network prepared in Example 1, UV-Vis transmittance of the 50SSQ / 50PEG network was measured in a wavelength range of 200 to 800 nm using a spectrophotometer (UVmini-1420; Shimadzu). Measured.
그 결과, 도 3에 나타난 바와 같이, 365nm보다 더 큰 파장에서 90% 이상의 UV 투과성을 확인하였다. 이러한 높은 투과성을 가지는 네트워크는 광학 애플리케이션의 구성요소로 사용될 수 있다. As a result, as shown in Figure 3, it was confirmed that the UV transmittance of more than 90% at a wavelength larger than 365nm. Such highly transmissive networks can be used as components in optical applications.
또한, 1시간 동안 170℃에서 열처리를 한 SSQ/PEG 네트워크와 열처리를 하지 않은 SSQ/PEG의 무게를 각각 측정한 결과, 열처리 전과 후의 무게차이는 나타나지 않았다. 이는, SSQ/PEG 네트워크가 높은 열적 안정성을 가지는 것을 의미하며, 이러한 결과값은 PEG-8개의 메타크릴레이트로 기능화된 SSQ(OMPS)의 첫 번째 분해 온도가 180℃ 이상이라는 이전 연구의 논문 결과(Pielichowski K. etal.,Adv.Polym.Sci.,201:225,2006)와 일치한다. In addition, as a result of measuring the weight of SSQ / PEG network heat treated at 170 ° C. and SSQ / PEG not heat treated for 1 hour, there was no difference in weight before and after heat treatment. This means that the SSQ / PEG network has high thermal stability, and this result indicates that the first decomposition temperature of SSQ (OMPS) functionalized with PEG-8 methacrylate is 180 ° C or higher ( Pielichowski K. et al., Adv. Polym. Sci., 201: 225, 2006).
(2) 표면 친수성(2) surface hydrophilicity
표면 친수성은 생체분자의 비특이적 흡착을 방지하기 위한 바람직한 특성으로, 특히, 마이크로/나노유체 채널 애플리케이션에서 표면 친수성은 펌프없이도 생물학적 시약의 투입을 가능하게 한다 (Jeong H. E. etal.,Small,3:778,2007).Surface hydrophilicity is a desirable property for preventing nonspecific adsorption of biomolecules, especially in micro / nanofluid channel applications, which allows for the introduction of biological reagents without a pump (Jeong HE et al., Small , 3: 778, 2007).
따라서, SSQ/PEG 네트워크의 표면 친수성 정접촉각을 측정하여 확인하였다. 평평한 SSQ/PEG 네트워크를 제조하기 위하여, SSQ/PEG 혼합물을 PFOS(trichloro(1H,1H,2H,2H-perfluorooctyl) silane; Sigma Aldrich)로 개질된 Si 웨이퍼 위에 작은 방울로 디스펜싱(dispensing)한 다음, 188㎛ 두께의 PET(poly(ethylene terephthalate) 필름으로 제조된 투명 지지체를 표면 위에 올려놓고 진공상태에서 1㎛ 두께의 SSQ/PEG 혼합물을 UV 램프(Toscure251; Toshiba)를 이용하여 30분 동안 365nm의 UV(자외선 조사량:1000mJ/cm2)를 조사하여 상기 SSQ/PEG 혼합물을 경화시켜 평평한 SSQ/PEG 네트워크를 제조하였다. 평평한 SSQ/PEG 네트워크 위에 5㎕ 증류수 방울을 접촉각 분석기(Mouse-X; SurfaceTech Co., Ltd.)를 이용하여 자동으로 디스펜싱(dispensing)하고, 정접촉각을 측정하여 PEG 호모폴리머(homopolymer) 네트워크와 SSQ/PEG 네트워크의 초기의 정접촉각(SCA, static contact angle)과 20분 후의 평형 정접촉각을 비교하였다. 정접촉각은 적어도 6번 이상에 대한 평균값이다.Therefore, the surface hydrophilic static contact angle of SSQ / PEG network was measured and confirmed. To produce a flat SSQ / PEG network, the SSQ / PEG mixture was dispensed into small droplets on a Si wafer modified with PFOS (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane; Sigma Aldrich). The transparent support made of 188 μm thick PET (poly (ethylene terephthalate) film was placed on the surface and a 1 μm thick SSQ / PEG mixture was placed under vacuum using a UV lamp (Toscure251; Toshiba) for 30 minutes. UV (ultraviolet dose: 1000 mJ / cm 2 ) was irradiated to cure the SSQ / PEG mixture to prepare a flat SSQ / PEG network A 5 μl drop of distilled water was placed on a flat SSQ / PEG network using a contact angle analyzer (Mouse-X; SurfaceTech Co.). , Dispensing automatically and measuring the static contact angle to determine the initial static contact angle (SCA) of PEG homopolymer and SSQ / PEG networks after 20 minutes. The equilibrium static contact angle was compared Jung contact angle is the average value for at least 6 times.
그 결과, 도 4에 나타난 바와 같이, 모든 네트워크의 평형 정접촉각은 42.2~54.5°로 측정되었으며, 모든 네트워크의 평형 정접촉각은 물에 연속적인 노출에 의한 표면 수화에 의해 초기의 정접촉각보다 약간씩 낮아졌다. PEGDMA330의 정접촉각은 SSQMA의 비율이 증가할수록 감소하는 반면, PEGDMA550, PEGDMA575 및 PEGDMA750의 정접촉각은 SSQMA의 비율이 증가할수록 증가하는 것을 확인하였다. 그러나, 모든 종류의 SSQ/PEG 네트워크의 정접촉각 값은 PEGDMA330 호모폴리머의 정접촉각 값보다는 작았으며, 이는, 모든 종류의 SSQ/PEG 네트워크가 친수성이 유지되는 것을 의미한다.As a result, as shown in FIG. 4, the equilibrium static contact angle of all networks was measured from 42.2 to 54.5 °, and the equilibrium static contact angle of all networks was slightly smaller than the initial static contact angle by surface hydration by continuous exposure to water. Lowered. The positive contact angle of PEGDMA330 decreased as the ratio of SSQMA increased, whereas the positive contact angle of PEGDMA550, PEGDMA575 and PEGDMA750 increased as the ratio of SSQMA increased. However, the static contact angle values of all kinds of SSQ / PEG networks were smaller than the static contact angle values of PEGDMA330 homopolymers, which means that all kinds of SSQ / PEG networks remain hydrophilic.
(3) 팽윤성(3) swellability
PEG 호모폴리머의 팽창에서 SSQMA의 영향을 확인하기 위하여, 톨루엔 및 PBS를 이용하였다. Toluene and PBS were used to confirm the effect of SSQMA on the expansion of the PEG homopolymer.
PFOS로 개질된 Si 웨이퍼로부터 분리된 독립된 SSQ/PEG 네트워크를 톨루엔 및 pH 7.4의 10mM PBS(phosphate-buffered saline)에 담그고, 특정 시간간격마다 SSQ/PEG 네트워크를 꺼내 표면에 남아있는 톨루엔 및 PBS를 필터페이퍼를 이용하여 건조시켰다. 팽창 질량(Ws)은 30초 동안 일정한 무게가 될 때 측정하였고, 실온의 건조기에서 48시간 동안 건조시킨 다음 다시 건조 중량(Wd)을 측정하였다. SSQ/PEG의 팽창율(Qr)은 하기 수학식에 의해 계산하였다.Independent SSQ / PEG networks isolated from Si wafers modified with PFOS were immersed in 10 mM PBS (phosphate-buffered saline) at toluene and pH 7.4, and the SSQ / PEG networks were taken out at specific intervals to filter the remaining toluene and PBS on the surface. It was dried using paper. The expansion mass (Ws) was measured at a constant weight for 30 seconds, dried for 48 hours in a dryer at room temperature, and then again measured for the dry weight (Wd). The expansion rate (Qr) of SSQ / PEG was calculated by the following equation.
수학식 1
Figure PCTKR2011008278-appb-M000001
Equation 1
Figure PCTKR2011008278-appb-M000001
그 결과, 도 5에 나타난 바와 같이, 톨루엔 및 PBS에서 PEG/SSQ 네트워크의 팽창율은 1.3~20.5 wt%로 측정되었으며, PEG 호모폴리머의 팽창율은 PEG의 분자량이 증가할수록 증가하였으며, PEG 호모폴리머의 팽창율은 SSQ의 상대적인 농도가 증가하고, PEG 호모폴리머의 분자량이 감소할수록 작아지는 것을 확인하였다. 이러한 결과는, SSQMA에 의해 네트워크의 크로스링킹(crosslinking) 밀도가 증가한 것에 기인한다. 특히, 50SSQMA/50PEGDMA330 네트워크의 경우, 무시할 수 있을 만큼 작은 물 팽창율(1.3wt.-%)을 나타내었다. 버퍼솔루션에 녹아있는 페리시안 화합물과 같은 산화환원제는 비팽윤성 필름을 통과할 수 없기 때문에 비팽윤성 50SSQMA/50PEGDMA330 네트워크는 전기화학 바이오센서를 위한 절연막으로 사용할 수 있다.As a result, as shown in Figure 5, the expansion ratio of the PEG / SSQ network in toluene and PBS was measured to be 1.3 ~ 20.5 wt%, the expansion ratio of the PEG homopolymer increased with increasing the molecular weight of the PEG, PEG expansion rate of the homopolymer It was confirmed that the relative concentration of the SSQ increases, and decreases as the molecular weight of the PEG homopolymer decreases. This result is due to the increased crosslinking density of the network by SSQMA. In particular, the 50SSQMA / 50PEGDMA330 network exhibited negligible water expansion (1.3 wt .-%). Non-swellable 50SSQMA / 50PEGDMA330 networks can be used as insulating films for electrochemical biosensors because redox agents, such as ferricyanide compounds dissolved in buffer solutions, cannot pass through non-swellable films.
또한, 모든 50SSQ/50PEG 네트워크에 대한 팽창율은 톨루엔과 PBS 용액에서 1달 이상 유지되어 소수성 및 친수성 환경에서 안정하다는 것을 확인하였다.In addition, it was confirmed that the expansion rate for all 50SSQ / 50PEG networks was maintained for more than 1 month in toluene and PBS solution, which is stable in hydrophobic and hydrophilic environments.
따라서, 소수성 및 친수성 환경에서 비팽윤성이면서 안정한 소수성 필름의 개발을 위해, 높은 비율의 SSQ와 상대적으로 낮은 팽창율을 가지는 낮은 분자량의 PEG의 네트워크를 사용할 수 있다.Thus, for the development of non-swellable and stable hydrophobic films in hydrophobic and hydrophilic environments, a network of low molecular weight PEGs with high ratios of SSQ and relatively low expansion rates can be used.
(4) 기계적 강도(4) mechanical strength
높은 line-to-space ratio(1:1) 및 높은 종횡비(4:1)를 가지는 25nm 이하의 나노패터닝은 폴리머 네트워크가 구조를 유지하기 위한 충분한 기계적 강도를 가질때 가능하다. 일반적으로, 크로스링크된 PEGDMA330의 영율은 1GPa, PEGDMA550의 영율은 40.3MPa 및 PEGDMA750의 영율은 16.5MPa로 PEG의 분자량이 증가할수록 크로스링크된 PEG 호모폴리머의 영율은 감소한다 (Kim P.etal.,LabChip,6:1432,2006;HuZ.etal.,J.Am.Chem.Soc.,130:14244,2008).SSQ의 첨가에 의한 PEG 네트워크의 기계적 강도가 강화되는 것을 증명하기 위하여, 50SSQ/50PEG 네트워크의 각 영율을 실온에서 통상적인 나노인덴테이션 시스템(Nanoindenter XP; MTS Nano Instruments)을 이용하여 측정하였다. 기판의 영향을 제거하기 위하여, 대략 5㎛ 두께의 50SSQ/50PEG 네트워크 필름을 SiO2웨이퍼 위에 제조하였고, 위치-의존적 요소를 최소화하기 위하여, 최소 10회 이상 영율을 측정하여 통계학적 평균값을 계산하였다. 모든 50SSQ/50PEG 네트워크의 푸아송 비(Posson's ratio)는 0.35로 하였다.Nanopatterning up to 25 nm with high line-to-space ratio (1: 1) and high aspect ratio (4: 1) is possible when the polymer network has sufficient mechanical strength to maintain the structure. In general, the Young's modulus of the crosslinked PEGDMA330 is 1GPa, the Young's modulus of the PEGDMA550 is 40.3 MPa and the PEGDMA750 Young's modulus is 16.5 MPa. LabChip , 6: 1432,2006; HuZ. Et al., J. Am. Chem. Soc. , 130: 14244, 2008) . To demonstrate that the mechanical strength of PEG networks is enhanced by the addition of SSQ, 50SSQ / 50PEG Each Young's modulus of the network was measured using a conventional Nanoindentation System (Nanoindenter XP; MTS Nano Instruments) at room temperature. In order to eliminate the influence of the substrate, a 50SSQ / 50PEG network film of approximately 5 μm thickness was prepared on a SiO 2 wafer, and the Young's modulus was calculated at least 10 times to calculate the statistical mean value to minimize the position-dependent factor. The Posson's ratio of all 50SSQ / 50PEG networks was 0.35.
그 결과, 도 6에 나타난 바와 같이, 50SSQMA/50PEGDMA330, 50SSQMA/50PEGDMA550 및 50SSQMA/50PEGDMA750 네트워크에 대한 가장 작은 영율값은 각각 2.815, 2.038 및 1.898 GPa로 측정되었다. 이러한 결과는 PEG 호모폴리머의 영율과 비교하여 확연하게 높은 값이며, 항생물부착성 물질로 사용된 이전에 연구된 폴리머 재료들의 영율 값보다 높은 값이다 (Amanda A. etal.,Biotechnol.Prog.,17:917,2001;KimA.etal.,LabChip,6:1432,2006;HuZ.etal.,J.Am.Chem.Soc.,130:14244,2008).As a result, as shown in FIG. 6, the smallest Young's modulus for the 50SSQMA / 50PEGDMA330, 50SSQMA / 50PEGDMA550 and 50SSQMA / 50PEGDMA750 networks were measured to be 2.815, 2.038 and 1.898 GPa, respectively. These results are significantly higher than the Young's modulus of PEG homopolymers and higher than the Young's modulus values of previously studied polymer materials used as anti-bioadhesive materials (Amanda A. etal., Biotechnol. Prog. , 17: 917,2001; Kim A. et al., Lab Chip , 6: 1432,2006; HuZ. Et al., J. Am. Chem. Soc. , 130: 14244, 2008).
따라서, 높은 영율을 가지는 SSQ/PEG 네트워크는 25nm 이하의 직접적인 나노패터닝이 가능하다.Thus, SSQ / PEG networks with high Young's modulus are capable of direct nanopatterning up to 25nm.
실시예 3: SSQ/PEG 혼합물의 직접적인 나노패터닝 Example 3: Direct Nanopatterning of SSQ / PEG Mixtures
50SSQ/50PEG 혼합물의 직접적인 나노패터닝을 위해 고생산성, 저렴한 비용 및 높은 재현성을 가지는 UV 엠보싱(embossing) 방법을 이용하였다(도 7a).UV embossing method with high productivity, low cost and high reproducibility was used for direct nanopatterning of the 50SSQ / 50PEG mixture (FIG. 7A).
약 1㎕의 SSQ/PEG 혼합물을 이형제로서 PFOS로 개질된 실리콘 마스터 위에 한 방울씩 떨어뜨려 디스펜싱(dispensing)하였다. 실리콘 마스터 몰드는 NTT-AT Coporation에서 25-200nm 사이즈로 1:1의 line-to-space ratio 및 100nm의 높이를 가지는 NIM25L/100, NIM-80L 및 NIM-100H를 구입하여 사용하였다. TMSPM으로 개질된 유리 또는 PET 필름과 같은 투명 지지체를 조심스럽게 표면 위로 옮기고, 진공상태에서 지지체는 10초 동안 0.1MPa의 임프린팅 압력에서 압축되었다. 진공하에서 UV 램프(Toscure251; Toshiba)를 갖춘 나노임프린터 시스템(NM-401; Meisyo Kiko Co., Ltd)에 의해 압력이 유지되는 동안 50SSQ/50PEG 혼합물을 투명한 기판의 윗부분부터 3분동안 UV 조사(UV 조사량: 200mJ/cm2)로 처리한 다음, 기판으로부터 몰드를 분리하였다. About 1 μl of SSQ / PEG mixture was dispensed drop by drop onto a silicone master modified with PFOS as a release agent. The silicon master mold was used by purchasing NIM25L / 100, NIM-80L, and NIM-100H having a line-to-space ratio of 1: 1 and a height of 100 nm in a size of 25-200 nm in NTT-AT Coporation. A transparent support such as glass or PET film modified with TMSPM was carefully transferred onto the surface and in vacuum the support was compressed at an imprinting pressure of 0.1 MPa for 10 seconds. The 50SSQ / 50PEG mixture was UV irradiated for 3 minutes from the top of the transparent substrate while the pressure was maintained by a nanoimprinter system (NM-401; Meisyo Kiko Co., Ltd) equipped with a UV lamp (Toscure251; Toshiba) under vacuum. UV dose: 200 mJ / cm 2 ), and then the mold was separated from the substrate.
상기 실리콘 마스터 몰드 및 나노패터닝된 50SSQ/50PEG의 네트워크의 표면 형태를 확인하기 위해, FE-SEM(Field emission scanning electron microscopy, S-4300 type microscope; Hitachi Co.)을 이용하였다. Charging을 방지하기 위하여 50SSQ/50PEG 네트워크는 Quick Coater SC-701HMC(Sanyu Electron Co., Ltd.)를 이용하여 분석하기 전 10nm 금 층으로 코팅하였고, 패턴 나노구조는 주변 온도에서 진동방식(태핑모드)으로 Digital Instruments NanoScope Ⅲ atomic force microscope(Veeco Instruments)를 가지고 촬영하였다. 데이터는 SPIP V3.3.7.0 소프트웨어를 이용하여 처리하였다. In order to confirm the surface morphology of the silicon master mold and the nanopatterned 50SSQ / 50PEG network, FE-SEM (Field emission scanning electron microscopy, S-4300 type microscope; Hitachi Co.) was used. To prevent charging, the 50SSQ / 50PEG network was coated with a 10 nm gold layer before analysis using the Quick Coater SC-701HMC (Sanyu Electron Co., Ltd.), and the patterned nanostructures were vibrated at ambient temperature (tapping mode). Photographs were taken with a Digital Instruments NanoScope III atomic force microscope (Veeco Instruments). Data was processed using SPIP V3.3.7.0 software.
그 결과, 도 7에 나타난 바와 같이, 낮은 점도를 가지는 50SSQMA/50PEGDMA330 혼합물은 실온 및 0.1MPa의 낮은 압력에서 190초의 상대적으로 짧은 시간에 UV 엠보싱을 이용하여 실리콘 마스터로부터 나노구조물로 복제되었다. 50nm 및 25nm의 half-pitches를 가지는 균일하게 복제된 평행선의 패턴은 실리콘 마스터와 차이가 없었으며, 더 작은 사이즈에서도 결점이 발견되지 않았다. 또한, 다른 50SSQ/50PEG 혼합물의 나노패터닝에 대해서도 50SSMQA/50PEGDMA330과 같은 결과를 확인하였다. As a result, as shown in FIG. 7, the low viscosity 50SSQMA / 50PEGDMA330 mixture was replicated from the silicon master to the nanostructures using UV embossing at a relatively short time of 190 seconds at room temperature and low pressure of 0.1 MPa. The pattern of uniformly replicated parallel lines with half-pitches of 50 nm and 25 nm did not differ from the silicon master and no defects were found at smaller sizes. In addition, the same results as for the 50SSMQA / 50PEGDMA330 were confirmed for nanopatterning of other 50SSQ / 50PEG mixtures.
추가적으로, 나노 패터닝된 50SSQ/50PEG 네트워크의 수축율을 확인한 결과, 도 8에 나타난 바와 같이, 3% 이하의 낮은 수축율을 보였으며, 이러한 낮은 수축율은 나노패턴의 정확성을 향상시키고 마스터 몰드의 수명을 연장시킨다.In addition, the shrinkage of the nano-patterned 50SSQ / 50PEG network showed a low shrinkage of less than 3% as shown in FIG. 8, which improves the accuracy of the nanopattern and extends the life of the master mold. .
실시예 4: SSQ/PEG 네트워크의 항생물부착성Example 4: Antibiotic Adhesion of SSQ / PEG Network
SSQ/PEG 네트워크가 생체분자의 비특이적 흡착을 방지하는 것을 확인하기 위해, 800nm dot 패턴을 가지는 SSQMA/PEGDMA 및 비교군으로 800nm dot 패턴을 가지는 SSQOG/PEGDG를 제조하였다(도 9). 상기 800nm dot 패턴을 가지는 SSQOG/PEGDG는 UV 엠보싱(embossing)을 위해 양이온 중합성 혼합물인 50:50 wt.-%의 SSQOG(Glycidyl ether octa-functionalized SSQ; Toagosei Co., Ltd.)/PEGDG(PEG diglycidyl ether; Sigma Aldrich) 혼합물에 양이온 광개시제(cationic photoinitiator)로 작용하는 3wt.-%의 Irgacure 250(Ciba Special Chemicals) 및 광감작제(photosensitizer)로 작용하는 1.5 wt.-%의 Darocur ITX(Ciba Special Chemicals)를 혼합하여 제조되었다.In order to confirm that the SSQ / PEG network prevents non-specific adsorption of biomolecules, SSQMA / PEGDMA having an 800 nm dot pattern and SSQOG / PEGDG having an 800 nm dot pattern were prepared as a comparative group (FIG. 9). SSQOG / PEGDG having the 800 nm dot pattern is a 50:50 wt .-% glycidyl ether octa-functionalized SSQ (Toagosei Co., Ltd.) / PEGDG (PEG) which is a cationic polymerizable mixture for UV embossing. 3 wt .-% Irgacure 250 (Ciba Special Chemicals) acting as a cationic photoinitiator and 1.5 wt .-% Darocur ITX (Ciba Special) acting as a cationic photoinitiator in a diglycidyl ether (Sigma Aldrich) mixture Chemicals) was prepared by mixing.
생체분자의 흡착을 형광방법을 이용하여 측정하기 위해, TR-DHPE(Texas-Red 1,2-dihexadecanoyl-sn-glycero-phosphoethanolamine; Molecular Probes)를 함유하는 리포솜 및 EGFP(enhanced green fluorescence protein)를 모델 생체분자로 사용하였다. 50nm 직경의 몰비(molar ratio)가 80:20:1인 POPC(phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; Avanti Polar Lipids Inc.)/SA(stearic acid; Sigma Aldrich)/TR-DHPE의 10mM 리포솜 서스펜션(suspensions)을 pH 7.4의 PBS에서 압출방법(extrusion method)을 이용하여 제조하였다. E.coli로부터 정제된 3mM EGFP는 10mM PBS에 서스펜딩(suspending)하였다. 리포솜 및 단백질 용액을 glass, 800nm dot 패턴을 가지는 SSQMA/PEGDMA 및 800nm dot 패턴을 가지는 SSQOG/PEGDG 기판 위에 떨어뜨리고, 실온에서 1시간 incubation 후, PBS로 세척한 다음, 형광 부가장치(IX-FLA; Olympus)를 갖춘 Olympus BX51 도립 현미경(inverted research microscope) 및 이미지 획득을 위한 고해상 디지털 카메라(DP70; Olympus)를 사용하여 각 기판에 대한 형광 이미지를 얻었다. 590nm 이상의 Red 및 480~550nm의 Green 발광은 각각 U-MWG 및 U-MSWG Olympus 필터 큐브를 이용하여 필터하였다.To measure the adsorption of biomolecules using a fluorescence method, liposomes containing texas-red 1,2-dihexadecanoyl-sn-glycero-phosphoethanolamine (molecular probes) and enhanced green fluorescence protein (EGFP) are modeled. Used as a biomolecule. POPC (phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; Avanti Polar Lipids Inc.) / SA (stearic acid; Sigma Aldrich) / with a molar ratio of 80: 20: 1 of 50 nm diameter 10 mM liposome suspensions of TR-DHPE were prepared using an extrusion method in PBS at pH 7.4. 3 mM EGFP purified from E. coli was suspended in 10 mM PBS. The liposomes and protein solution were dropped on a glass, SSQMA / PEGDMA having an 800 nm dot pattern and an SSQOG / PEGDG substrate having an 800 nm dot pattern, incubated at room temperature for 1 hour, and washed with PBS, followed by fluorescence addition apparatus (IX-FLA; Fluorescence images for each substrate were obtained using an Olympus BX51 inverted research microscope with Olympus and a high resolution digital camera (DP70; Olympus) for image acquisition. Red luminescence of 590 nm and more and green light emission of 480-550 nm were filtered using U-MWG and U-MSWG Olympus filter cubes, respectively.
그 결과, 도 10에 나타난 바와 같이, 800nm dot 패턴을 가지는 SSQMA/PEGDMA는 glass 및 800nm dot 패턴을 가지는 SSQOG/PEGDG와 비교하여 리포솜의 비특이적 흡착을 강하게 방지하였다. 각 표면 위에 리포솜 및 EGFP의 흡착량을 측정하기 위해, 표면의 TR-DHPE 및 EGFP의 형광세기를 체계적으로 측정하였으며, glass를 100%로 하여 상대적으로 비교하였을 때, 모든 SSQMA/PEGDMA 네트워크는 리포솜 및 EGFP의 흡착을 4.6% 미만으로 방지하는 것을 확인하였다. 생체분자 흡착의 방지는 PEG의 중수화(heavy hydration), 좋은 구조적 유연성 및 높은 체인 이동성 때문이다. 이러한 관점에서, SSQ/PEG 네트워크에서 유연성 및 이동성을 가지는 수화된 PEGs는 생물의 비특이적 흡착을 방지할 수 있는 반면, 양이온성 중합반응에 의해 제조된 SSQOG/PEGDG 네트워크는 음전하의 SA를 함유하는 리포솜 및 EGFP와 양전하를 띠는 SSQOG/PEGDG 표면사이의 정전기적 상호작용 때문에 균일하고 높은 생체분자의 흡착이 일어났다. 이는, 프리 라디칼 중합반응 단계가 양이온성 중합 단계보다 더 적절하다는 것을 의미한다. 또한, 50SSQMA/50PEGDMA 네트워크의 패턴은 pH 7.4의 10mM PBS에 있는 10mM 리포솜의 높은 농도에서 12시간 동안 오래 방치되어도 분해되지 않았다. 이러한 결과는 프리 라디칼에 의해 중합된 SSQMA/PEGDMA 네트워크는 생물학적 환경에서 좋은 안정성을 가질 뿐만 아니라, 생체분자의 비특이적 흡착에 대해 강한 저항성을 가지는 것을 의미한다 (도 11).As a result, as shown in FIG. 10, SSQMA / PEGDMA having an 800 nm dot pattern strongly prevented nonspecific adsorption of liposomes compared to SSQOG / PEGDG having a glass and 800 nm dot pattern. In order to measure the adsorption amount of liposomes and EGFP on each surface, the fluorescence intensity of TR-DHPE and EGFP on the surface was systematically measured, and when compared with the glass at 100%, all SSQMA / PEGDMA networks were liposome and It was confirmed to prevent the adsorption of EGFP to less than 4.6%. The prevention of biomolecule adsorption is due to the heavy hydration of PEG, good structural flexibility and high chain mobility. In this regard, hydrated PEGs with flexibility and mobility in SSQ / PEG networks can prevent nonspecific adsorption of organisms, whereas SSQOG / PEGDG networks prepared by cationic polymerization react with liposomes containing negatively charged SAs and Electrostatic interactions between the EGFP and the positively charged SSQOG / PEGDG surface resulted in uniform and high adsorption of biomolecules. This means that the free radical polymerization step is more appropriate than the cationic polymerization step. In addition, the pattern of the 50SSQMA / 50PEGDMA network did not degrade even after long standing for 12 hours at a high concentration of 10 mM liposomes in 10 mM PBS at pH 7.4. These results indicate that the SSQMA / PEGDMA network polymerized by free radicals not only has good stability in the biological environment, but also has strong resistance to nonspecific adsorption of biomolecules (FIG. 11).
따라서, 높은 광학 투과성, 낮은 점도, 비팽윤성, 친수성, 높은 기계적 강도 및 화학적 스트레스, 열적 스트레스 및 생물학적 스트레스에 대해 높은 안정성을 가지는 SSQ/PEG 네트워크는 프리 라디칼 중합반응이 가능하고, 직접적인 나노패터닝이 가능하기 때문에 나노바이오디바이스, 나노바이오센서 및 랩온어칩 등과 같은 다양한 바이오메디컬 애플리케이션에 사용될 수 있다. Thus, SSQ / PEG networks with high optical transmission, low viscosity, non-swellability, hydrophilicity, high mechanical strength and high stability against chemical stress, thermal stress and biological stress can be free radical polymerized and directly nanopatterned. It can be used in a variety of biomedical applications such as nanobiodevices, nanobiosensors and lab-on-a-chips.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명에 따른 항생물부착성 SSQ/PEG 네트워크는 높은 항생물부착성(anti-biofouling)뿐만 아니라, 낮은 점도, 높은 광학 투명성, 높은 친수성, 유기/수용액 중에서의 팽윤에 대한 높은 저항성, 생물학적, 화학적 및 열 스트레스에 대한 높은 안정성 및 높은 기계적 강도를 가지며, 25nm 이하의 직접적인 미세패턴 제작이 가능하여 광범위한 생물의학 응용의 첨단 성능을 위해 용이하게 사용될 수 있다.The anti-bioadhesive SSQ / PEG network according to the present invention not only has high anti-biofouling, but also low viscosity, high optical transparency, high hydrophilicity, high resistance to swelling in organic / aqueous solutions, biological and chemical And it has high stability against thermal stress and high mechanical strength, it is possible to manufacture direct micropattern up to 25nm can be easily used for advanced performance of a wide range of biomedical applications.

Claims (12)

  1. 다음 단계를 포함하는 항생물부착성 SSQ/PEG 네트워크의 제조방법:Method for preparing an anti-bioadhesive SSQ / PEG network comprising the following steps:
    (a) 폴리에틸렌글리콜(PEG)과 광경화성 실세스퀴옥산(SSQ)을 혼합하는 단계; 및(a) mixing polyethylene glycol (PEG) and photocurable silsesquioxane (SSQ); And
    (b) 상기 (a) 혼합물을 UV 개시제의 존재하에 UV를 조사하여 경화시켜 SSQ/PEG 네트워크를 수득하는 단계.(b) curing the mixture (a) by irradiation with UV in the presence of a UV initiator to obtain an SSQ / PEG network.
  2. 제1항에 있어서, 상기 폴리에틸렌글리콜(PEG)은 폴리에틸렌글리콜 디메타크릴게이트(PEGDMA) 및 폴리에틸렌글리콜디아크릴레이트(PEGDA)로 구성된 군에서 선택되는 것을 특징으로 하는 항생물부착성 SSQ/PEG 네트워크의 제조방법.The method of claim 1, wherein the polyethylene glycol (PEG) is selected from the group consisting of polyethylene glycol dimethacrylate (PEGDMA) and polyethylene glycol diacrylate (PEGDA) of the anti-bioadhesive SSQ / PEG network Manufacturing method.
  3. 제1항에 있어서, 상기 광경화성 실세스퀴옥산(SSQ)은 메타크릴레이트 또는 아크릴레이트로 기능화된 것을 특징으로 하는 항생물부착성 SSQ/PEG 네트워크의 제조방법.The method of claim 1, wherein the photocurable silsesquioxane (SSQ) is functionalized with methacrylate or acrylate.
  4. 제1항에 있어서, 상기 UV 개시제는 2,2'-디메톡시-2-페닐아세토페논(DMPA, 2,2'-dimethoxy-2-phenylacetophenone), 2-하이드록시-2-메틸-1-페닐-프로판-1-온(HMPP, 2-hydroxy-2-methyl-1-phenyl-propane-1-one), 2,4,6-트리메틸벤조일 디페닐포스핀 옥사이드(2,4,6-Trimethylbenzoyl-diphenylphosphine Oxide) 및 디페닐 2,4,6-트리메틸벤조일 포스핀 옥사이드(Diphenyl 2,4,6 - trimethylbenzoyl phosphine oxide)로 구성된 군에서 선택되는 것을 특징으로 하는 항생물부착성 SSQ/PEG 네트워크의 제조방법.The method of claim 1, wherein the UV initiator is 2,2'-dimethoxy-2-phenylacetophenone (DMPA, 2,2'-dimethoxy-2-phenylacetophenone), 2-hydroxy-2-methyl-1-phenyl Propane-1-one (HMPP, 2-hydroxy-2-methyl-1-phenyl-propane-1-one), 2,4,6-trimethylbenzoyl diphenylphosphine oxide (2,4,6-Trimethylbenzoyl- Diphenylphosphine Oxide) and diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (Diphenyl 2,4,6-trimethylbenzoyl phosphine oxide) method for producing an anti-bioadhesive SSQ / PEG network characterized in that selected from the group consisting of .
  5. 제1항 내지 제4항 중 어느 한 항의 방법에 의해 제조된 SSQ/PEG 네트워크.SSQ / PEG network prepared by the method of any one of claims 1 to 4.
  6. 제5항에 있어서, 상기 SSQ/PEG 네트워크는 직접적인 나노패터닝이 가능한 것을 특징으로 하는 SSQ/PEG 네트워크.6. The SSQ / PEG network of claim 5, wherein the SSQ / PEG network is capable of direct nanopatterning.
  7. 제6항에 있어서, 직접적인 나노패터닝은 UV 나노임프린트(UV nanoimprint), UV 엠보싱(UV embossing) 및 UV 레플리카 몰딩(UV replica molding)으로 구성된 군에서 선택되는 어느 하나의 방법으로 수행되는 것을 특징으로 하는 SSQ/PEG 네트워크. The method of claim 6, wherein the direct nanopatterning is performed by any one method selected from the group consisting of UV nanoimprint, UV embossing, and UV replica molding. SSQ / PEG network.
  8. 제5항에 있어서, 상기 SSQ/PEG 네트워크는 다음과 같은 물성을 가지는 것을 특징으로 하는 SSQ/PEG 네트워크:6. The SSQ / PEG network of claim 5, wherein the SSQ / PEG network has the following physical properties:
    (a) 365nm 이상의 파장에서 90% 이상의 UV 투과성;(a) at least 90% UV transmission at wavelengths of at least 365 nm;
    (b) 42.2~54.5°의 정접촉각;(b) a positive contact angle of 42.2-54.5 °;
    (c) 1.898~2.815GPa의 기계적 강도;(c) mechanical strength of 1.898 to 2.815GPa;
    (d) 유기용매 및 수용액에 대한 팽창율 1.3~20.5 wt%;(d) an expansion ratio of 1.3 to 20.5 wt% based on the organic solvent and the aqueous solution;
    (e) 3% 이하의 수축율; 및 (e) shrinkage of 3% or less; And
    (f) 4.6% 미만의 항생물부착성.(f) less than 4.6% antimicrobial adhesion.
  9. 제5항의 SSQ/PEG 네트워크를 이용하는 것을 특징으로 하는 나노패턴의 제작방법.The method of manufacturing a nanopattern characterized by using the SSQ / PEG network of claim 5.
  10. 제9항에 있어서, 상기 나노패턴의 크기는 25nm 이하인 것을 특징으로 하는 나노패턴의 제작방법.10. The method of claim 9, wherein the size of the nanopattern is 25nm or less.
  11. 제9항의 방법에 의해 제작된 나노패턴을 포함하는 비특이적 흡착에 대해 높은 저항성을 가지는 나노디바이스.Nanodevice having a high resistance to non-specific adsorption including the nanopattern produced by the method of claim 9.
  12. 제11항에 있어서, 상기 나노디바이스는 바이오메디컬 디바이스, 바이오센서, 진단배열, 이식 및 전달 시스템 및 랩온어칩으로 구성된 군에서 선택되는 것을 특징으로 하는 나노디바이스.The nanodevice of claim 11, wherein the nanodevice is selected from the group consisting of a biomedical device, a biosensor, a diagnostic array, an implantation and delivery system, and a lab-on-a-chip.
PCT/KR2011/008278 2010-11-02 2011-11-02 Anti-biofouling ssq/peg network and preparation method thereof WO2012060620A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100108233A KR20120046532A (en) 2010-11-02 2010-11-02 Anti-biofouling ssq/peg network and method for preparing the same
KR10-2010-0108233 2010-11-02

Publications (2)

Publication Number Publication Date
WO2012060620A2 true WO2012060620A2 (en) 2012-05-10
WO2012060620A3 WO2012060620A3 (en) 2012-08-02

Family

ID=46024946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008278 WO2012060620A2 (en) 2010-11-02 2011-11-02 Anti-biofouling ssq/peg network and preparation method thereof

Country Status (2)

Country Link
KR (1) KR20120046532A (en)
WO (1) WO2012060620A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540786A1 (en) * 2010-02-26 2013-01-02 Nippon Steel Chemical Co., Ltd. Coating agent composition
CN103642043A (en) * 2013-11-04 2014-03-19 西南石油大学 Trapezoidal ether chain polysilsesquioxane polymer and preparation method thereof
WO2018118932A1 (en) 2016-12-22 2018-06-28 Illumina, Inc. Imprinting apparatus
US10018867B2 (en) 2015-11-30 2018-07-10 Lg Display Co., Ltd. Nano capsule liquid crystal layer and liquid crystal display device including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043789A (en) * 1990-03-15 1991-08-27 International Business Machines Corporation Planarizing silsesquioxane copolymer coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043789A (en) * 1990-03-15 1991-08-27 International Business Machines Corporation Planarizing silsesquioxane copolymer coating

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE, BONG KUK ET AL.: 'Photocurable Silsesquioxane-Based Formulations as Versatile Resins for Nanoimprint Lithography' LANGMUIR vol. 26, no. 18, 23 August 2010, pages 14915 - 14922 *
MYA, K.YI ET AL.: 'Core-Corona Structure of Cubic Silsesquioxane-Poly(Ethylene Oxide) in Aqueous Solution: Fluorescence, Light Scattering and TEM Studies' J.PHYS.CHEM. B vol. 109, no. 19, 16 April 2005, pages 9455 - 9462 *
WU, CHI ET AL.: 'Novel Nanoparticles Formed via Self-Assembly ofPoly(ethylene glycol-b- sebacic anhydride) and Their Degradation in Water' MACROMOLECULES vol. 33, no. 24, 31 October 2000, pages 9040 - 9043 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540786A1 (en) * 2010-02-26 2013-01-02 Nippon Steel Chemical Co., Ltd. Coating agent composition
EP2540786A4 (en) * 2010-02-26 2013-08-07 Nippon Steel & Sumikin Chem Co Coating agent composition
CN103642043A (en) * 2013-11-04 2014-03-19 西南石油大学 Trapezoidal ether chain polysilsesquioxane polymer and preparation method thereof
CN103642043B (en) * 2013-11-04 2016-01-20 西南石油大学 A kind of Trapezoidal ether chain polysilsesquioxane polymer and preparation method thereof
US10018867B2 (en) 2015-11-30 2018-07-10 Lg Display Co., Ltd. Nano capsule liquid crystal layer and liquid crystal display device including the same
WO2018118932A1 (en) 2016-12-22 2018-06-28 Illumina, Inc. Imprinting apparatus
CN110226128A (en) * 2016-12-22 2019-09-10 伊鲁米那股份有限公司 Embosser
EP3559745A4 (en) * 2016-12-22 2020-11-11 Illumina, Inc. Imprinting apparatus
US11213976B2 (en) 2016-12-22 2022-01-04 Illumina, Inc. Imprinting apparatus
AU2017382163B2 (en) * 2016-12-22 2022-06-09 Illumina Cambridge Limited Imprinting apparatus

Also Published As

Publication number Publication date
WO2012060620A3 (en) 2012-08-02
KR20120046532A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2012070833A2 (en) Radiation curable resin composition, and method for producing self-replicatable mold using same
US20140010970A1 (en) Photocurable polyethylene glycol silsesquioxane, polyethylene glycol silsesquioxane network prepared therefrom, anti-biofouling device including the polyethylene glycol silsesquioxane network, and method of preparing nano-pattern
Ingall et al. Surface functionalization and imaging using monolayers and surface-grafted polymer layers
AU2006251389B2 (en) Hydrophobic coating
Fu et al. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations
US7220452B2 (en) Multilayer transfer patterning using polymer-on-polymer stamping
Lee et al. Free-standing nanocomposite multilayers with various length scales, adjustable internal structures, and functionalities
TWI823844B (en) An imprinting apparatus, a method of forming a working stamp, and a method of using such working stamp
KR101582384B1 (en) Encoded polymeric microparticles
WO2012060620A2 (en) Anti-biofouling ssq/peg network and preparation method thereof
JP2007503120A (en) Submicron scale patterning method and system
US20090274842A1 (en) Organic-inorganic hybrid free standing film, and its production method
JPH0792695A (en) Forming method of thin film pattern
KR101468817B1 (en) a method of fabricating superhydrophobic surface coatings
JP2010069730A (en) Highly durable replica mold for nanoimprint lithography and method for fabricating the same
WO2013060087A1 (en) Polyhedral oligomeric silsesquioxane compound containing mercapto polyfunctional group, its composition, and soft template for imprinting
US20220155211A1 (en) Altering flow cell signals
Lee et al. Direct nanopatterning of silsesquioxane/poly (ethylene glycol) blends with high stability and nonfouling properties
JP2012169434A (en) Method of producing molding having fine pattern
Kohli et al. Nanostructured crosslinkable micropatterns by amphiphilic dendrimer stamping
Yang et al. Stimuli‐Responsive Hybrid Coatings of Polyelectrolyte Multilayers and Nano‐Patterned Polymer Brushes
WO2016200227A1 (en) Laminate
KR100817619B1 (en) Photosensitive resin, photosensitive composition and photocrosslinked item
Fozdar et al. Flash imprint lithography using a mask aligner: a method for printing nanostructures in photosensitive hydrogels
JP5584872B2 (en) Substrate having polymer nanostructure on its surface and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838225

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838225

Country of ref document: EP

Kind code of ref document: A2