WO2012087173A1 - Hybrid nanocomposite for aquatic media remediation and respective production method - Google Patents

Hybrid nanocomposite for aquatic media remediation and respective production method Download PDF

Info

Publication number
WO2012087173A1
WO2012087173A1 PCT/PT2011/000044 PT2011000044W WO2012087173A1 WO 2012087173 A1 WO2012087173 A1 WO 2012087173A1 PT 2011000044 W PT2011000044 W PT 2011000044W WO 2012087173 A1 WO2012087173 A1 WO 2012087173A1
Authority
WO
WIPO (PCT)
Prior art keywords
aquatic
remediation
polymeric material
pnh
nanocomposite
Prior art date
Application number
PCT/PT2011/000044
Other languages
French (fr)
Portuguese (pt)
Inventor
Ana Vera ALVES MACHADO NÓBREGA
Regina Maria DE OLIVEIRA BARROS NOGUEIRA
Manuel António DE SOUSA CORTEZ GONÇALVES OLIVEIRA
Original Assignee
Universidade Do Minho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Do Minho filed Critical Universidade Do Minho
Priority to CN201180067983.5A priority Critical patent/CN103492430A/en
Priority to BR112013015694A priority patent/BR112013015694A2/en
Publication of WO2012087173A1 publication Critical patent/WO2012087173A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Catching Or Destruction (AREA)

Abstract

The present invention relates to a polymeric hybrid nanocomposite composed of inorganic nanoparticles dispersed in an organic matrix, for remediation of aquatic media contaminated by anions, such as phosphates, nitrates, sulphates and polyphosphates. The nanocomposite is based on polypropylene grafted with maleic anhydride and aluminium isopropoxide and creates strong (covalent or ionic) chemical bonds between the organic and inorganic components, imparting high mechanical strength associated with indissolubility of the components in the body of water. The hybrid nanocomposite can be applied in situ, in which case the material is used to prepare a permeable reactive barrier to be introduced into the aquatic medium, and through which the water to be treated flows; or ex situ, in which case the water to be treated is pumped, is made to pass through a filter that contains the hybrid nanocomposite and is then returned to the aquatic medium. The hybrid nanocomposite can be moulded according to the type of use and application site. Several characterization techniques, such as spectroscopic methods and analysis of rheological properties, zero point charge and kinetics of phosphate ion removal, demonstrate that the product does not change the pH of or contaminates the aquatic medium.

Description

DESCRIÇÃO  DESCRIPTION
NANOCOMPÓSITO HÍBRIDO PARA REMEDIACÃO DE MEIOS AQUÁTICOS E RESPECTIVO MÉTODO DE PRODUÇÃO HYBRID NANOCOMPOSIT FOR WATER MEDIA REMEDIATION AND THEIR PRODUCTION METHOD
Domínio da Invenção Field of the Invention
A presente invenção insere-se no domínio do tratamento e recuperação de recursos hídricos. Nomeadamente, a invenção consiste num polímero nanocompósito híbrido (PNH) para remediação de meios aquáticos contaminados com fosfato, sulfato, nitrato e polifosfato, sendo a capacidade de remoção para o fosfato superior às restantes, através da fixação deste na superfície do nanocompósito.  The present invention is in the field of treatment and recovery of water resources. In particular, the invention is a hybrid nanocomposite polymer (PNH) for the remediation of phosphate, sulfate, nitrate and polyphosphate contaminated aquatic media, the phosphate removal ability being superior to the others by fixing it to the nanocomposite surface.
Antecedentes da invenção Background of the invention
O uso intensivo de fertilizantes em explorações agrícolas e a exploração animal intensiva conduziram ao aumento da concentração em azoto e fósforo no meio aquático circundante. 0 excesso de fósforo conduz, em geral, à eutrofização dos meios aquáticos (US725790 e US5893978), resultando em problemas estéticos, mau odor, cor e sabor (US3499837). Em casos mais graves de eutrofização podem estar presentes toxinas na água resultantes do crescimento excessivo de determinados tipos de algas. Intensive use of fertilizers on farms and intensive animal farming has led to increased concentration of nitrogen and phosphorus in the surrounding aquatic environment. Excess phosphorus generally leads to eutrophication of aquatic media (US725790 and US5893978), resulting in aesthetic problems, bad odor, color and taste (US3499837). In more severe cases of eutrophication, toxins may be present in the water resulting from the overgrowth of certain types of algae.
Vários processos têm vindo a ser usados para remover o excesso de iões fosfato de águas contaminadas. A precipitação química com alumínio, ferro, cálcio e resíduos industriais e a adsorção em argila estão bem descritas na literatura. Tais abordagens apresentam, no entanto, várias desvantagens. A precipitação química com alumínio, ferro e resíduos industriais contamina com metais e provoca oscilações no valor de pH que podem não ser compatíveis com o meio aquático. Durante a precipitação química ocorrem reações paralelas que consomem grande parte dos agentes de remoção, sendo necessário aplicar sobredosagens de modo a garantir os níveis de remoção desejados. A necessidade de usar grandes quantidades de produtos químicos leva à produção de grandes quantidades de lamas, o que levanta problemas de deposição das mesmas (US4183808). As argilas naturais têm tendência para se dispersarem em partículas muito finas, o que pode causar um aumento de turbidez do meio aquático por períodos de tempo prolongados. Adicionalmente, a aplicação de materiais dispersantes em meios aquáticos para a remoção do ião fosfato não é o método ideal, uma vez que quando saturados podem libertar novamente o ião fosfato sequestrado (Hano e colaboradores, 1997; Donnert e Salecker, 1999; iller, 2005; Zeng e colaboradores, 2004). Several processes have been used to remove excess phosphate ions from contaminated waters. Chemical precipitation with aluminum, iron, calcium and industrial waste and clay adsorption are well described in the literature. Such approaches, however, have several disadvantages. Chemical precipitation with aluminum, iron and industrial waste contaminates with metals and causes fluctuations in pH value that may not be compatible with the aquatic environment. During chemical precipitation, parallel reactions occur that consume most of the removal agents, and overdoses need to be applied to ensure the desired removal levels. The need to use large quantities of chemicals leads to the production of large amounts of sludge, which raises problems with their disposal (US4183808). Natural clays have a tendency to disperse into very fine particles, which may cause increased turbidity of the aquatic environment for extended periods of time. Additionally, the application of dispersing materials in aquatic media for phosphate ion removal is not the ideal method, since when saturated they can release the sequestered phosphate ion again (Hano et al., 1997; Donnert and Salecker, 1999; iller, 2005 Zeng et al., 2004).
O documento de patente US5039427 refere o uso de hidróxido sulfato de alumínio (Aln (OH) x (S04) y.mH20) para remoção de partículas sólidas suspensas e precipitação do ião fosfato em lagos. Este processo apresenta contudo algumas desvantagens. A pH igual ou inferior a 5.5 ocorre solubilização do ião alumínio, com a consequente libertação do ião fosfato para o meio aquático. A pH superior a 8.0 forma-se hidróxido de alumínio (Al(OH)4 ~), que é igualmente solúvel. Os resultados de testes toxicológicos demonstraram que uma concentração do ião alumínio superior a 50 g/L é potencialmente tóxica para os peixes e organismos aquáticos (Rabe e colaboradores, 1984; Thomas e colaboradores, 2002) . US5039427 discloses the use of aluminum hydroxide sulfate (Al n (OH) x (SO 4 ) y .mH 20 ) for removal of suspended solid particles and precipitation of phosphate ion in lakes. However, this process has some disadvantages. At pH 5.5 or less, solubilization of the aluminum ion occurs, with the consequent release of the phosphate ion into the aquatic environment. At pH greater than 8.0 aluminum (Al (OH) 4 - ) hydroxide is formed, which is also soluble. Toxicological test results have shown that an aluminum ion concentration greater than 50 g / L is potentially toxic to fish and aquatic organisms (Rabe et al., 1984; Thomas et al., 2002).
Outro inconveniente ligado à aplicação de produtos químicos prende- se com a correta e eficaz aplicação dos mesmos. Um exemplo é o caso do lago Rockwell em Ohio relatado por Cooke e colaboradores (1993), onde foi adicionado sulfato de alumínio (Al2(S04)3) entre os meses de julho a setembro. Durante este período, formou-se hidróxido de alumínio, que interferiu com o fluxo do rio; simultaneamente foram registados um aumento da concentração de Al3+ para valores entre 1 e 2 mg/L, e uma diminuição do pH para valores cerca de 4 no local da aplicação. Assistiu-se também a uma significante mortalidade de invertebrados aquáticos em tais áreas. Another drawback associated with the application of chemicals is their correct and effective application. An example is the case of Rockwell Lake in Ohio reported by Cooke et al. (1993), where aluminum sulfate (Al 2 (S0 4 ) 3 ) was added between July and September. During this period, aluminum hydroxide formed, which interfered with the flow of the river; At the same time, an increase in Al 3+ concentration and 2 mg / L, and a decrease in pH to about 4 at the site of application. There was also a significant mortality of aquatic invertebrates in such areas.
No documento de patente US 6350381 recorreram à aplicação de Phoslock™ como barreira reativa para precipitar o ião fosfato libertado pelos sedimentos de rios na Austrália. O Phoslock™ é um produto comercial desenvolvido pela Common ealth Scientific and Industrial Research Organization, que consiste numa bentonite com superfície modificada, na qual os iões sódio (Na) e cálcio (Ca) foram substituídos pelo lantânio (La) . O mecanismo de remoção do ião fosfato consiste na precipitação deste com o La, sob a forma de fosfato de lantânio, que é uma espécie insolúvel. O material granular, com diâmetro entre 1 a 3 mm, foi adicionado diretamente ao leito do rio formando uma barreira com cerca de 1 mm de espessura. Apesar de ser eficiente na precipitação e controlo do ião fosfato, este material provoca o aumento de turbidez aquando da sua aplicação e a parcial repressão dos bentos (Hickey e Gibbs 2009) . Adicionalmente, requer um período de restrição no uso de água para consumo humano, rega e armazenamento. In US patent 6,350,381, Phoslock ™ was applied as a reactive barrier to precipitate the phosphate ion released from river sediments in Australia. Phoslock ™ is a commercial product developed by the Common Scientific and Industrial Research Organization consisting of a surface modified bentonite in which sodium (Na) and calcium (Ca) ions have been replaced by lanthanum (La). The mechanism of removal of the phosphate ion is its precipitation with La in the form of lanthanum phosphate, which is an insoluble species. The granular material, with a diameter between 1 and 3 mm, was added directly to the riverbed forming a barrier about 1 mm thick. Although it is efficient in phosphate ion precipitation and control, this material causes turbidity increase upon application and partial repression of benthos (Hickey and Gibbs 2009). Additionally, it requires a restriction period on the use of water for human consumption, irrigation and storage.
O documento de patente US 0213753 Al revela o Baraclear™, produto comercial baseado numa esmectite modificada com sulfato de alumínio, para a remoção de sólidos dissolvidos, matéria orgânica dissolvida, aniões, tais como fluoreto, cloreto e fósforo total. Este produto contém na sua composição biocidas e agentes tamponizadores de pH. O Baraclear™ pode ser produzido em várias formas, tais como granulado, briquetes ou placas, sendo este desenhado para libertar alumínio quando aplicado num meio aquático. No entanto, segundo Miller (2005) nada sugere que o alumínio se ligue permanentemente ou por longos períodos de tempo ao substrato mineral, o que pode provocar contaminações e alterações do valor de pH. Gibbs e Õzkundakci (2011) aplicaram 350 g/m2 do zeólito Z2G1 em grânulos de 1 a 3 mm como barreira reativa no leito do lago Okaro na Nova Zelândia. Hickey e Gibbs (2009) indicam que doses superiores a 350 g/m2 podem ser potencialmente tóxicas e potenciam uma diminuição do valor de pH. US 0213753 A1 discloses Baraclear ™, a commercial product based on an aluminum sulfate modified smectite, for the removal of dissolved solids, dissolved organic matter, anions such as fluoride, chloride and total phosphorus. This product contains in its composition biocides and pH buffering agents. Baraclear ™ can be produced in various forms such as granules, briquettes or plates, which are designed to release aluminum when applied in an aquatic environment. However, according to Miller (2005) nothing suggests that aluminum binds permanently or for long periods of time to the mineral substrate, which can cause contamination and changes in the pH value. Gibbs and Õzkundakci (2011) applied 350 g / m 2 of Z2G1 zeolite to 1 to 3 mm granules as a reactive barrier on the Okaro Lake bed in New Zealand. Hickey and Gibbs (2009) indicate that doses above 350 g / m 2 can be potentially toxic and potentiate a decrease in pH value.
O documento de patente US7514002 BI refere cinzas volantes para remover o ião fosfato de meios aquáticos eutrofizados . Estas cinzas possuem óxido de cálcio (no mínimo 3%) na sua composição que reage com o ião fosfato solúvel e precipita sob a forma de fosfato de cálcio (Ca3(P04)2). O fosfato de cálcio fica retido nas cavidades porosas presentes nas partículas de cinza. Apesar de eficiente, a aplicação deste produto exige métodos de aplicação cuidadosos devido ao seu elevado teor em metais pesados, por forma a não provocar um aumento excessivo da turbidez do meio aquático (Deborah e colaboradores, 2010) . US7514002 BI discloses fly ash to remove phosphate ion from eutrophic aquatic media. These ashes contain calcium oxide (at least 3%) in their composition which reacts with the soluble phosphate ion and precipitates as calcium phosphate (Ca 3 (P0 4 ) 2 ). Calcium phosphate is trapped in the porous cavities present in the ash particles. Although efficient, the application of this product requires careful application methods due to its high content in heavy metals, so as not to cause an excessive increase in the turbidity of the aquatic environment (Deborah et al., 2010).
O uso de materiais granulados como barreiras reativas, tem de ser acompanhado de outras formas de remoção do ião fosfato para garantir a longevidade do tratamento, visto a barreira ser rapidamente coberta por novo sedimento perdendo desta forma grande parte da sua eficiência. The use of granular materials as reactive barriers must be accompanied by other forms of phosphate ion removal to ensure longevity of treatment as the barrier is rapidly covered by new sediment thus losing much of its efficiency.
A presente invenção apresenta-se como a solução ideal e consiste na produção e utilização de um polímero nanocompósito híbrido, doravante denominado de PNH, para remoção de iões, como o fosfato, da água. A utilização deste material caracteriza-se por não introduzir contaminantes na água nem provocar variações significativas de pH. The present invention is the ideal solution and consists in the production and use of a hybrid nanocomposite polymer, hereinafter referred to as PNH, for the removal of ions such as phosphate from water. The use of this material is characterized by not introducing contaminants into the water or causing significant pH variations.
Descrição Geral General description
A presente invenção consiste num polímero nanocompósito híbrido, doravante designado por PNH, e respetivo método de produção, para a remediação de meios aquáticos contaminados com o ião fosfato, podendo ainda ser utilizado para a remoção de águas contaminadas com nitrato, sulfato e/ou polisfostato . The present invention is a hybrid nanocomposite polymer, hereinafter referred to as PNH, and its production method for Remediation of aquatic media contaminated with phosphate ion and may also be used for the removal of water contaminated with nitrate, sulphate and / or polysphostate.
O PNH é um material obtido a partir de dois componentes, um orgânico e outro inorgânico, sendo este último o agente de remoção do ião fosfato. A combinação a nível molecular de uma estrutura orgânica com outra inorgânica permite a formação de um nanocompósito com propriedades específicas, que não são possíveis de obter com outros tipos de materiais, tais como resultantes de misturas físicas, nos quais as propriedades resultam da soma da cada componente em particular e não na criação de novas capacidades como resultado da reação química entre dois ou mais componentes. PNH is a material obtained from two components, one organic and one inorganic, the latter being the phosphate ion removal agent. The molecular combination of an organic and an inorganic structure allows the formation of a nanocomposite with specific properties that are not possible to obtain with other types of materials, such as resulting from physical mixtures, where the properties result from the sum of each particular component and not in creating new capabilities as a result of the chemical reaction between two or more components.
Na presente invenção, o componente orgânico, polipropileno enxertado com anidrido maleico (PP-g-MA) , reage com o componente inorgânico, o isopropoxido de alumínio (Al ( Pr-i-O) 3) um precursor à base de alumínio. In the present invention, the organic component, maleic anhydride grafted polypropylene (PP-g-MA), reacts with the inorganic component, aluminum isopropoxide (Al (Pr-10) 3 ) an aluminum-based precursor.
0 PP-g-MA é usado como matriz polimérica uma vez que possui na sua cadeia polimérica grupos anidrido maleico (MA) , que lhe conferem grande reatividade. Para além desta característica, possui elevado interesse industrial, permite uma larga gama de utilização e o seu custo é baixo. PP-g-MA is used as a polymeric matrix as it has maleic anhydride (MA) groups in its polymeric chain, which give it great reactivity. Apart from this feature, it has high industrial interest, allows a wide range of use and its cost is low.
Por sua vez, os precursores metálicos são utilizados por conterem elevada reatividade, o que permite reações mais extensas em tempos mais curtos. A utilização de isopropoxido de alumínio promove a formação de óxido de alumínio disperso a nível molecular na matriz polimérica, permitindo a complexação dos iões fosfato presentes na água pois possui uma elevada densidade de cargas positivas à superfície . In turn, metal precursors are used because they contain high reactivity, which allows longer reactions in shorter times. The use of aluminum isopropoxide promotes the formation of molecularly dispersed aluminum oxide in the polymeric matrix, allowing the complexation of phosphate ions present in water as it has a high density of positive surface charges.
O PNH é produzido por reação sol-gel, por extrusão reativa, sendo possível obter o material extrudido com a geometria adequada ao tipo de aplicação pretendida. O nanocomposito poderá ter diferentes formas, como granulado, briquetes, placas ou malha; e diferentes geometrias, dimensões e estruturas que poderão ser 2D ou 3D. O PNH desenvolvido na presente invenção caracteriza-se por possuir ligações químicas fortes covalentes ou iónicas, entre o componente orgânico e o inorgânico, o que lhe confere elevada resistência mecânica associada à impossibilidade de dissolução dos seus componentes no corpo aquático. A aplicação do PNH in situ pressupõe a colocação de uma barreira reativa permeável no leito do meio aquático sob a forma de filme ou bloco polimérico, que é atravessada pela água contaminada com o ião fosfato, sendo este removido na superfície do material. Na aplicação ex situ é necessário bombear a água a tratar, fazê-la passar por um filtro contendo o PNH e finalmente devolvê-la ao meio aquático. The PNH is produced by sol-gel reaction, by reactive extrusion, being possible to obtain the extruded material with the appropriate geometry to intended application type. The nanocomposite may have different shapes, such as granules, briquettes, plates or mesh; and different geometries, dimensions and structures that can be 2D or 3D. The PNH developed in the present invention is characterized by having strong covalent or ionic chemical bonds between the organic and inorganic component, which gives it high mechanical resistance associated with the impossibility of dissolution of its components in the aquatic body. The application of PNH in situ presupposes the placement of a permeable reactive barrier in the aquatic bed in the form of film or polymeric block, which is crossed by water contaminated with phosphate ion, which is removed on the surface of the material. In ex situ application it is necessary to pump the water to be treated, pass it through a filter containing the PNH and finally return it to the aquatic environment.
O PNH também é eficiente na remoção de nitrato (NC>3~) , sulfato (S04 2~) e polifosfato. Os testes realizados demonstram não existir competição entre os vários iões contaminantes, não sendo afetado deste modo o nível de remoção do ião fosfato. PNH is also efficient at removing nitrate (NC> 3 ~), sulfate (S0 4 2 ~ ) and polyphosphate. The tests carried out show that there is no competition between the various contaminating ions, thus not affecting the level of phosphate ion removal.
O PNH pode ser reutilizado sucessivamente, observando-se uma diminuição na capacidade de remoção de 10 a 15% entre cada ciclo regenerativo. Verifica-se ainda que o PNH mantém uma boa capacidade regenerativa por um período de 5 ciclos. PNH can be reused successively, with a decrease in removal capacity of 10-15% between each regenerative cycle. It is also verified that the PNH maintains a good regenerative capacity for a period of 5 cycles.
A quantidade de PNH a usar no tratamento, tem sempre que ser ajustada à concentração de ião fosfato presente no meio aquático e ao volume da coluna de água. The amount of PNH to be used for treatment must always be adjusted to the phosphate ion concentration present in the aquatic environment and the volume of the water column.
0 PNH possui uma capacidade de remoção do ião fosfato superior a Breve descrição das figuras PNH has a phosphate ion removal capacity greater than Brief Description of the Figures
Figura 1 - Espectro de FT-IR do polímero nanocompósito híbrido após processamento no Haake. Figure 1 - FT-IR spectrum of hybrid nanocomposite polymer after Haake processing.
Figura 2 - Avaliação das propriedades reológicas do polímero nanocompósito híbrido. Figure 2 - Evaluation of rheological properties of hybrid nanocomposite polymer.
Figura 3 - Influência do pH na remoção do ião fosfato pelo polímero nanocompósito híbrido em sistema fechado. Figure 3 - Influence of pH on phosphate ion removal by hybrid nanocomposite polymer in closed system.
Figura 4 - Avaliação do ponto de carga zero para o polímero nanocompósito híbrido. Figure 4 - Zero charge point evaluation for hybrid nanocomposite polymer.
Figura 5 - Cinética de remoção do ião fosfato pelo polímero nanocompósito híbrido. Figure 5 - Phosphate ion removal kinetics by hybrid nanocomposite polymer.
Figura 6 - Concentração de fósforo na saída de uma coluna de leito fixo em função do tempo. Figure 6 - Phosphorus concentration at the output of a fixed bed column as a function of time.
Descrição detalhada da invenção Detailed Description of the Invention
A preparação do PNH para remediação de meios aquáticos contaminados com aniões como fosfatos, nitratos, sulfatos, polifostatos, é efetuado de forma a se obter um compósito reutilizável de acordo com o seguinte: The preparation of PNH for the remediation of anion-contaminated aquatic media such as phosphates, nitrates, sulphates, polyphostates is made to obtain a reusable composite according to the following:
1. Preparação do polímero nanocompósito híbrido (PNH) e respetiva caracterização : 1. Preparation of hybrid nanocomposite polymer (PNH) and its characterization:
Os componentes orgânico e inorgânico do PNH, polipropileno enxertado com anidrido maleico (PP-g-MA) e isopropoxido de alumínio (Al (Pr-i-0) 3) , são misturados na proporção de 50/50 a 90/10 em massa. 0 PP-g-MA foi introduzido num misturador intensivo (Haake Rheomixer) e processado entre 180 - 200 °C com uma velocidade de rotação dos rotores entre 50 100 rpm, por um período de minutos. Após fusão do PP-g-MA, o precursor foi adicionado e reação decorreu entre 5 a 10 min. The organic and inorganic components of PNH, maleic anhydride grafted polypropylene (PP-g-MA) and aluminum isopropoxide (Al (Pr-i-0) 3 ), are mixed in a proportion of 50/50 to 90/10 by mass. . PP-g-MA was introduced into an intensive mixer (Haake Rheomixer) and processed at 180 - 200 ° C with a speed of rotor speed between 50 100 rpm for a period of minutes. After fusion of PP-g-MA, the precursor was added and reaction took 5 to 10 min.
Uma vez processado o PNH, avaliou-se a extensão da reação através de uma exaustiva caracterização físico/química. Os resultados obtidos mostraram a existência de uma ligação química entre o PP-g- MA e o óxido de alumínio. A Figura 1, onde consta o espectro de FT- IR, demonstra a formação de uma banda larga entre 400 e 1000 cm"1 correspondente à presença da ligação Al-0 no nanocompósito final, resultante da reação entre o anidrido maleico e o Al(Pr-i-0) 3 . A Figura 2, que demonstra os ensaios reológicos, comprovam a formação de reticulações entre os componentes orgânico e inorgânico do polímero. Verifica-se que o material final apresenta o comportamento típico de um sólido, caracterizado por uma elevada estabilidade estrutural associada à impossibilidade de dissolução das partículas de Al3+. Once the PNH was processed, the extent of the reaction was evaluated by exhaustive physical / chemical characterization. The results obtained showed the existence of a chemical bond between PP-g-MA and aluminum oxide. Figure 1, showing the FT-IR spectrum, shows the formation of a wide band between 400 and 1000 cm- 1 corresponding to the presence of Al-0 bond in the final nanocomposite resulting from the reaction between maleic anhydride and Al ( Pr-i-0) 3. Figure 2, which shows the rheological tests, shows the formation of cross-links between the organic and inorganic components of the polymer, showing that the final material exhibits the typical behavior of a solid, characterized by a high structural stability associated with the inability to dissolve Al 3+ particles.
2. Avaliação da remoção do ião fosfato pelo PNH 2. Evaluation of phosphate ion removal by PNH
O PNH apresenta uma remoção do ião fosfato, determinada em ensaios realizados em sistema fechado a 22 ± 1 °C durante 5 dias, usando partículas com diâmetro entre 100-300 ]im e uma concentração inicial de fósforo de 1 mg/L proveniente do ião fosfato, superior a 90% num intervalo de pH compreendido entre 2.0 e 6.5, conforme demonstra a Figura 3. A Figura 4 demonstra que o valor de pH obtido para o ponto de carga zero (pHZPC) realizado nas mesmas condições foi de 7.0, o que indica que para valores de pH inferiores a este valor o PNH apresenta uma elevada densidade de cargas positivas na sua superfície, permitindo assim uma capacidade de remoção de iões fosfato. A aplicação deste material é compatível com o pH dos meios aquáticos (6.0 - 8.0) . Os testes de remoção do ião fosfato efetuados em sistema fechado a 22 ± 1 °C durante 5 dias, a pH 6, usando partículas com diâmetro entre 100-300 μπι e uma concentração inicial de fósforo de 1 mg/L, indicaram uma remoção de 0.80±0.01 g de fósforo por kg de PNH, conforme demonstra a Figura 5. PNH has a phosphate ion removal determined in closed system tests at 22 ± 1 ° C for 5 days using particles with a diameter of 100-300 µm and an initial phosphorus concentration of 1 mg / L from the ion. phosphate greater than 90% over a pH range from 2.0 to 6.5 as shown in Figure 3. Figure 4 shows that the pH value obtained for the zero charge point (pH ZPC ) performed under the same conditions was 7.0, This indicates that for pH values below this value, PNH has a high density of positive charges on its surface, thus allowing a phosphate ion removal capacity. The application of this material is compatible with the pH of aquatic media (6.0 - 8.0). Phosphate ion removal tests performed in a closed system at 22 ± 1 ° C for 5 days at pH 6 using particles with a diameter between 100-300 μπι and an initial phosphorus concentration of 1 mg / L indicated a removal of 0.80 ± 0.01 g of phosphorus per kg of PNH, as shown in Figure 5.
O teste de remoção em coluna, Figura 6, realizado com partículas de diâmetro entre 100-300 μιτι, concentração inicial de fósforo de 1 mg/L, caudal de 1 mL/min a 22 ± 1 °C durante 30 dias, permitiu verificar o desempenho do PNH na remoção do ião fosfato. A capacidade de remoção da coluna foi de 0.67 g de fósforo por kg de PNH. O nanocompósito no período inicial de 40 h removeu todo o fósforo proveniente do ião fosfato, apresentando o material um tempo de meia vida de 134 h, atingindo a saturação decorridas 500 h de ensaio. The column removal test, Figure 6, performed with particles diameter 100-300 μιτι, initial phosphorus concentration of 1 mg / L, flow rate of 1 mL / min at 22 ± 1 ° C for 30 days, allowed to verify the performance of PNH in phosphate ion removal. The column removal capacity was 0.67 g of phosphorus per kg of PNH. The nanocomposite in the initial 40 h period removed all phosphorus from the phosphate ion, with the material having a half-life of 134 h, reaching saturation after 500 h test.
Os testes de remoção dos iões nitrato (N03 ~) , sulfato (S04 2~) e polifosfato efetuados em sistema fechado usando concentrações iniciais equivalentes às encontradas em meios aquáticos naturais, indicaram remoções de 3.1010.07, 1.1410.27 e 0.5210.01 g de nitrato, sulfato e polifosfato por kg de PNH, respetivamente . O teste de competição realizado para a mistura de iões nitrato/fosfato mostrou que o PNH é seletivo pela remoção de iões fosfato, visto a presença de iões nitrato não afetar na remoção destes. No entanto observou-se uma diminuição na remoção de iões nitrato, passando a quantidade removida para 1.8210.44 g de nitrato por kg de PNH quando os iões fosfato estão presentes. Nitrate (N0 3 ~ ), sulfate (S0 4 2 ~ ) and polyphosphate ions removal tests performed in closed system using initial concentrations equivalent to those found in natural aquatic environments indicated removal of 3.1010.07, 1.1410.27 and 0.5210. 01 g nitrate, sulphate and polyphosphate per kg of PNH respectively. The competition test performed for the nitrate / phosphate ion mixture showed that PNH is selective by the removal of phosphate ions, since the presence of nitrate ions does not affect their removal. However, a decrease in nitrate ion removal was observed, passing the amount removed to 1.8210.44 g nitrate per kg of PNH when phosphate ions are present.
3. Regeneração da membrana 3. Membrane Regeneration
Teste de regeneração foi efetuado com uma solução diluída de HC1 (0.5 M) , consistindo numa lavagem do PNH durante 10 segundos, após este ter estado em contacto com uma solução de fósforo de 1 mg/L por um período de 5 dias. Após a regeneração o PNH foi lavado com água ultra pura e colocado novamente em equilíbrio com nova solução de ião fosfato de 1 mg/L. Em cinco ciclos sucessivos de regeneração, observou-se uma diminuição entre 10 e 15% na eficiência do PNH. Regeneration test was carried out with a dilute HCl solution (0.5 M) consisting of a wash of the PNH for 10 seconds after it had been in contact with a 1 mg / L phosphorus solution for a period of 5 days. After regeneration the PNH was washed with ultra pure water and equilibrated with a new 1 mg / L phosphate ion solution. In five successive cycles of regeneration, there was a 10-15% decrease in PNH efficiency.
REFERÊNCIAS REFERENCES
Patentes Patents
US0213753 Al 11/2003 Landis et al. 10/278955  US0213753 Al 11/2003 Landis et al. 10/278955
US 3499837 3/1970 Karlis et al. 210/59  US 3499837 3/1970 Karlis et al. 210/59
US 4183808 1/1980 Raymond et al. 854320  US 4183808 1/1980 Raymond et al. 854320
US 5039427 8/1991 Brett Conover 540361  US 5039427 8/1991 Brett Conover 540361
US 5893978 4/1999 Hiroaki et al. 210/747  US 5893978 4/1999 Hiroaki et al. 210/747
US 6350381 2/2002 Grant Douglas 09/381383  US 6350381 2/2002 Grant Douglas 09/381383
US 7258790 8/2007 David et al . 210/602  US 7258790 8/2007 David et al. 210/602
US 7335307 2/2008 Kirk et al. 10/698358  US 7,335,307 2/2008 Kirk et al. 10/698358
US 7514002 BI 4/2009 Keiichi et al. 11/979906  US 7514002 BI 4/2009 Keiichi et al. 11/979906
Artigos Articles
Hano, T.; Takanashi, H.; Hirata, M . Urano, K.; Eto, S. (1997) Removal of phosphorus from astewater by activated alumina adsorbent. Water Science Technology, 35, 39 - 46. Hano, T .; Takanashi, H .; Hirata, M. Uranus, K .; Eto, S. (1997) Removal of phosphorus from astewater by activated adsorbent alumina. Water Science Technology, 35, 39-46.
Donnert, D. and Salecker, M. (1999) Elimination of phosphorus from municipal and industrial waste water. Water Science Technology, 40, 195 - 202. Donnert, D. and Salecker, M. (1999) Elimination of phosphorus from municipal and industrial waste water. Water Science Technology, 40, 195-202.
Miller, N. (2005) Locally available adsorbing materiais, sediment sealing and flocculants for chemical remediation of lake and stream. Analytical & Environmental Consultants . Zeng, L.; Li, X.; Liu, J. (2004) Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38, 1318 - 1326. Miller, N. (2005) Locally available adsorbing materials, sediment sealing and flocculants for chemical remediation of lake and stream. Analytical & Environmental Consultants. Zeng, L .; Li, X .; Liu, J. (2004) Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38, 1318-1326.
Rabe, F. W. and Gibson, F. (1984) The Effect of Macrophyte Removal on the Distribution of Selected Invertebrates in a Littoral Environment . Journal of Freshwater Ecology, 2, 393 - 404. Rabe, F. W. and Gibson, F. (1984) The Effect of Macrophyte Removal on the Distribution of Selected Invertebrates in a Littoral Environment. Journal of Freshwater Ecology, 2, 393 - 404.
Thomas, D. and Jurgen, B. (2002) Phosphorus reduction in a shallow hypereutrophic reservoir by in-lake dosage of ferrous iron. Water Research, 36, 4525 - 4534. Thomas, D. and Jurgen, B. (2002) Phosphorus reduction in a shallow hypereutrophic reservoir by in-lake dosage of ferrous iron. Water Research, 36, 4525-4534.
Cooke, G. D . ; Welch, E. B . ; Peterson, S. A . ; Newroth, P. R. (1993) "Lake Protection" in Restoration and management of lakes and reservoirs. CRC Press LLC, Boca Raton, Florida. Cooke, G. D. ; Welch, E.B. ; Peterson, S.A. ; Newroth, P. R. (1993) "Lake Protection" in Restoration and Management of Lakes and Reservoirs. CRC Press LLC, Boca Raton, Florida.
Robb, M.; Greenop, B.; Goss, Z.; Douglas, G.; Adeney, J. (2003) Application of Phoslock™, an innovative phosphorus binding clay to two Western Australian waterways: preliminary findings. Hydrobiologia , 494, 237 - 243. Robb, M .; Greenop, B .; Goss, Z .; Douglas, G .; Adeney, J. (2003) Application of Phoslock ™, an innovative phosphorus binding clay to two Western Australian waterways: preliminary findings. Hydrobiology, 494, 237-243.
Hickey, C. W. and Gibbs, M. M. (2009) Lake sediment phosphorus release management - Decision support and risk assessment framework. New Zeland Journal of Marine and Freshwater Research, 43, 819 - 856. Hickey, C.W. and Gibbs, M.M. (2009) Lake sediment phosphorus release management - Decision support and risk assessment framework. New Zealand Journal of Marine and Freshwater Research, 43, 819 - 856.
Gibbs, M. and Õzkundakci, D. (2011) Effects of a modified zeolite on P and N processes and fluxes across the lake sediment-water interface using core incubations. Hydrobiologia, 661, 21 - 35. Deborah, J. B. and Chris, C. T. (2010) Substrate and filter matrials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review. New Zeland Journal of agricultural Research, 53, 71 - 95. Gibbs, M. and Õzkundakci, D. (2011) Effects of a modified zeolite on P and N processes and fluxes across the lake sediment-water interface using core incubations. Hydrobiology, 661, 21-35. Deborah, JB and Chris, CT (2010) Substrate and filter matrices to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review. New Zealand Journal of Agricultural Research, 53, 71-95.
Ribeiro, D. C; Martins, G.; Nogueira, R.; Cruz, J. V.; Brito A. G. (2008) Lake fractionation in volcanic lake sediments (Azores-Portugal) . Chemosphere, 70, 1256 - 1263. Ribeiro, D. C; Martins, G .; Nogueira, R .; Cruz, J. V .; Brito A. G. (2008) Lake fractionation in volcanic lake sediments (Azores-Portugal). Chemosphere, 70, 1256-1263.
Lisboa, 16 de Dezembro de 2011. Lisbon, December 16, 2011.

Claims

REIVINDICAÇÕES
1 - Material polimérico para remediação de meios aquáticos, caracterizado por consistir num polímero nanocompósito híbrido que possui como componente orgânico polipropileno enxertado com anidrido maleico e como componente inorgânico isopropóxido de alumínio . 1 - Polymeric material for the remediation of aquatic media, characterized in that it consists of a hybrid nanocomposite polymer that has as its organic component grafted polypropylene with maleic anhydride and as inorganic component aluminum isopropoxide.
2 - Material polimérico, de acordo com a reivindicação anterior, caracterizado por o óxido de alumínio resultante da combinação do componente orgânico com o componente inorgânico, se encontrar disperso na matriz. Polymeric material according to the preceding claim, characterized in that the aluminum oxide resulting from the combination of the organic component and the inorganic component is dispersed in the matrix.
3 - Material polimérico, de acordo com a reivindicação anterior, caracterizado por ter uma capacidade de remoção do ião fosfato superior a 90%. Polymeric material according to the preceding claim, characterized in that it has a phosphate ion removal capacity greater than 90%.
4 - Método de produção do material polimérico, conforme descrito na reivindicação 1, caracterizado por ser reação sol-gel e compreender os seguintes passos: Method of producing the polymeric material as described in claim 1, characterized in that it is a sol-gel reaction and comprises the following steps:
a) proceder à fusão do polipropileno enxertado com anidrido maleico a uma temperatura entre 180 - 200°C e a uma velocidade de rotação entre 50 - 100 rpm;  (a) melt the grafted polypropylene with maleic anhydride at a temperature between 180 - 200 ° C and a rotational speed between 50 - 100 rpm;
b) adicionar o isopropóxido de alumínio.  b) add aluminum isopropoxide.
5- Método, de acordo com a reivindicação anterior, caracterizado por se misturar (PP-g-MA) e (Al (Pr-i-O) 3) numa proporção de 50/50 a 90/10 em massa. Method according to the preceding claim, characterized in that it mixes (PP-g-MA) and (Al (Pr-10) 3 ) in a ratio of 50/50 to 90/10 by mass.
1 6 - Método, de acordo com a reivindicação anterior, caracterizada por a ligação guimica entre PP-g-MA e o óxido de alumínio impossibilitar a dissolução das partícula Al3+. 1 Method according to the preceding claim, characterized in that the chemical bond between PP-g-MA and aluminum oxide makes it impossible to dissolve the Al 3+ particles.
7- Método de regeneração do nanocompósito conforme descrito na reivindicação 1, caracterizado por compreender os seguintes passos: a) lavagem do PNH com uma solução de HCl 0.5M durante 10 segundos; b) lavagem com água ultra pura e colocação do PNH em equilíbrio com nova solução de ião fosfato 1 mg/L. Nanocomposite regeneration method as described in claim 1, characterized in that it comprises the following steps: a) washing the PNH with a 0.5M HCl solution for 10 seconds; b) washing with ultra pure water and equilibrating the PNH with a new 1 mg / L phosphate ion solution.
8 - Utilização do material polimérico, conforme descrito na reivindicação 1, caracterizado por ser aplicável à remediação de meios aquáticos contaminados com iões fosfato, sulfatos, nitratos e polifosfatos . Use of the polymeric material as described in claim 1, which is applicable to the remediation of aquatic media contaminated with phosphate ions, sulfates, nitrates and polyphosphates.
9 - Utilização do material polimérico, de acordo com a reivindicação anterior, caracterizada por ser aplicável, preferencialmente à remediação de meios contaminados com fosfato. Use of the polymeric material according to the preceding claim, characterized in that it is applicable, preferably to the remediation of phosphate contaminated media.
Lisboa, 16 de Dezembro de 2011. Lisbon, December 16, 2011.
2 2
PCT/PT2011/000044 2010-12-20 2011-12-16 Hybrid nanocomposite for aquatic media remediation and respective production method WO2012087173A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180067983.5A CN103492430A (en) 2010-12-20 2011-12-16 Hybrid nanocomposite for aquatic media remediation and respective production method
BR112013015694A BR112013015694A2 (en) 2010-12-20 2011-12-16 polymeric material, method for producing polymeric material, method of regenerating polymeric material and use of polymeric material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT105441 2010-12-20
PT105441A PT105441B (en) 2010-12-20 2010-12-20 HYBRID NANOCOMPOSY FOR REMEDIATION OF AQUATIC MEDIA AND RESPECT PRODUCTION METHOD

Publications (1)

Publication Number Publication Date
WO2012087173A1 true WO2012087173A1 (en) 2012-06-28

Family

ID=45563483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PT2011/000044 WO2012087173A1 (en) 2010-12-20 2011-12-16 Hybrid nanocomposite for aquatic media remediation and respective production method

Country Status (4)

Country Link
CN (1) CN103492430A (en)
BR (1) BR112013015694A2 (en)
PT (1) PT105441B (en)
WO (1) WO2012087173A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US725790A (en) 1903-02-02 1903-04-21 Draper Co Filling-replenishing mechanism for looms.
US3499837A (en) 1967-11-20 1970-03-10 Johns Manville Waste water treatment phosphate removal by iron oxide
US3579486A (en) * 1967-12-22 1971-05-18 Eastman Kodak Co Maleated polyolefins
US4183808A (en) 1977-11-23 1980-01-15 Union Carbide Corporation Phosphate removal from wastewater
US5039427A (en) 1990-06-19 1991-08-13 General Chemical Corporation Method of treating lake water with aluminum hydroxide sulfate
US5893978A (en) 1996-02-09 1999-04-13 Hitachi, Ltd. Purifying method and purification system for lakes and marshes
US6350381B2 (en) 1998-10-27 2002-02-26 Kinder Morgan Energy Partners, L.P. Biodegradation of ethers using fatty acid enhanced microbes
US20030213753A1 (en) 2002-05-16 2003-11-20 Landis Charles R. Methods for making water treatment compositions and compositions thereof
US7084199B1 (en) * 1999-12-29 2006-08-01 The Dow Chemical Company Thermoplastic olefin nanocomposite
US7258790B2 (en) 2003-09-19 2007-08-21 Clemson University Controlled eutrophication system and process
US7335307B2 (en) 2003-11-03 2008-02-26 U.S. Epa Method for removing contaminants from water using ruthenium based contaminant sorbents and oxidizers
US7514002B1 (en) 2007-11-09 2009-04-07 Hokuriku Electric Power Company Method for removing phosphorus and method for reutilizing recovered phosphorus
KR20100044312A (en) * 2008-10-22 2010-04-30 서울대학교산학협력단 Adsorption and removal of heavy metal ions using mesoporous carbon/polymer nanocomposite-based filter system
CN101760959A (en) * 2009-12-23 2010-06-30 湖南大学 Compound modified biomass fibrilia and preparation method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US725790A (en) 1903-02-02 1903-04-21 Draper Co Filling-replenishing mechanism for looms.
US3499837A (en) 1967-11-20 1970-03-10 Johns Manville Waste water treatment phosphate removal by iron oxide
US3579486A (en) * 1967-12-22 1971-05-18 Eastman Kodak Co Maleated polyolefins
US4183808A (en) 1977-11-23 1980-01-15 Union Carbide Corporation Phosphate removal from wastewater
US5039427A (en) 1990-06-19 1991-08-13 General Chemical Corporation Method of treating lake water with aluminum hydroxide sulfate
US5893978A (en) 1996-02-09 1999-04-13 Hitachi, Ltd. Purifying method and purification system for lakes and marshes
US6350381B2 (en) 1998-10-27 2002-02-26 Kinder Morgan Energy Partners, L.P. Biodegradation of ethers using fatty acid enhanced microbes
US7084199B1 (en) * 1999-12-29 2006-08-01 The Dow Chemical Company Thermoplastic olefin nanocomposite
US20030213753A1 (en) 2002-05-16 2003-11-20 Landis Charles R. Methods for making water treatment compositions and compositions thereof
US7258790B2 (en) 2003-09-19 2007-08-21 Clemson University Controlled eutrophication system and process
US7335307B2 (en) 2003-11-03 2008-02-26 U.S. Epa Method for removing contaminants from water using ruthenium based contaminant sorbents and oxidizers
US7514002B1 (en) 2007-11-09 2009-04-07 Hokuriku Electric Power Company Method for removing phosphorus and method for reutilizing recovered phosphorus
KR20100044312A (en) * 2008-10-22 2010-04-30 서울대학교산학협력단 Adsorption and removal of heavy metal ions using mesoporous carbon/polymer nanocomposite-based filter system
CN101760959A (en) * 2009-12-23 2010-06-30 湖南大学 Compound modified biomass fibrilia and preparation method thereof

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
COOKE, G. D.; WELCH, E. B.; PETERSON, S. A.; NEWROTH, P. R.: "Restoration and management of lakes and reservoirs", 1993, CRC PRESS LLC, article "Lake Protection"
DATABASE WPI Week 201056, Derwent World Patents Index; AN 2010-J97689 *
DEBORAH, J. B.; CHRIS, C. T.: "Substrate and filter matrials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review", NEW ZELAND JOURNAL OF AGRICULTURAL RESEARCH, vol. 53, 2010, pages 71 - 95
DONNERT, D.; SALECKER, M.: "Elimination of phosphorus from municipal and industrial waste water", WATER SCIENCE TECHNOLOGY, vol. 40, 1999, pages 195 - 202
GIBBS, M.; OZKUNDAKCI, D.: "Effects of a modified zeolite on P and N processes and fluxes across the lake sediment-water interface using core incubations", HYDROBIOLOGIA, vol. 661, 2011, pages 21 - 35, XP019867304, DOI: doi:10.1007/s10750-009-0071-8
HANO, T.; TAKANASHI, H.; HIRATA, M.; URANO, K.; ETO, S.: "Removal of phosphorus from wastewater by activated alumina adsorbent", WATER SCIENCE TECHNOLOGY, vol. 35, 1997, pages 39 - 46
HICKEY, C. W.; GIBBS, M. M.: "Lake sediment phosphorus release management - Decision support and risk assessment framework", NEW ZELAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, vol. 43, 2009, pages 819 - 856
MILLER, N.: "Locally available adsorbing materials, sediment sealing and flocculants for chemical remediation of lake and stream", ANALYTICAL & ENVIRONMENTAL CONSULTANTS, 2005
RABE, F. W.; GIBSON, F.: "The Effect of Macrophyte Removal on the Distribution of Selected Invertebrates in a Littoral Environment", JOURNAL OF FRESHWATER ECOLOGY, vol. 2, 1984, pages 393 - 404
RIBEIRO, D. C.; MARTINS, G.; NOGUEIRA, R.; CRUZ, J. V.; BRITO A. G.: "Lake fractionation in volcanic lake sediments (Azores-Portugal", CHEMOSPHERE, vol. 70, 2008, pages 1256 - 1263, XP022409446, DOI: doi:10.1016/j.chemosphere.2007.07.064
ROBB, M.; GREENOP, B.; GOSS, Z.; DOUGLAS, G.; ADENEY, J.: "Application of PhoslockTm, an innovative phosphorus binding clay to two Western Australian waterways: preliminary findings", HYDROBIOLOGIA, vol. 494, 2003, pages 237 - 243, XP019244348, DOI: doi:10.1023/A:1025478618611
THOMAS, D.; JURGEN, B.: "Phosphorus reduction in a shallow hypereutrophic reservoir by in-lake dosage of ferrous iron", WATER RESEARCH, vol. 36, 2002, pages 4525 - 4534, XP004380736, DOI: doi:10.1016/S0043-1354(02)00193-8
ZENG, L.; LI, X.; LIU, J.: "Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings", WATER RESEARCH, vol. 38, 2004, pages 1318 - 1326, XP004490051, DOI: doi:10.1016/j.watres.2003.12.009

Also Published As

Publication number Publication date
BR112013015694A2 (en) 2016-10-11
PT105441B (en) 2013-01-30
CN103492430A (en) 2014-01-01
PT105441A (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Islam et al. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review
Pandey A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment
Koshy et al. Fly ash zeolites for water treatment applications
Singh et al. Fluoride ions vs removal technologies: A study
Kumar et al. Treatment of fluoride-contaminated water. A review
Fan et al. Application of zeolite/hydrous zirconia composite as a novel sediment capping material to immobilize phosphorus
PT1012123E (en) Remediation material and remediation process for sediments
EP2771105A2 (en) Porous composite media for removing phosphorus from water
CN105148833A (en) Modified compound kieselguhr adsorbing agent for treating industrial wastewater and preparation method
Dong et al. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite
Al-Sakkari et al. New alginate-based interpenetrating polymer networks for water treatment: a response surface methodology based optimization study
Wan et al. The adsorption study of copper removal by chitosan-coated sludge derived from water treatment plant
Mahmoud et al. Engineering nanocomposite of graphene quantum dots/carbon foam/alginate/zinc oxide beads for efficacious removal of lead and methylene
EP2733119A1 (en) Agent for removing dissolved phosphorus compounds from water
Filippidis Environmental, industrial and agricultural applications of Hellenic Natural Zeolite
Ordonez et al. Color removal for large-scale interbasin water transfer: Experimental comparison of five sorption media
Koliyabandara et al. Hydroxyapatite for environmental remediation of water/wastewater
Wu et al. Succinic acid-assisted modification of a natural zeolite and preparation of its porous pellet for enhanced removal of ammonium in wastewater via fixed-bed continuous flow column
Zeng et al. The model and mechanism of adsorptive technologies for wastewater containing fluoride: A review
JP3227517B2 (en) Treatment method for phosphorus-containing wastewater
JPS646838B2 (en)
Srivastava et al. Adsorptive behavior of L-Arginine-silica micro-particles against arsenic and fluoride in aqueous solution
WO2012087173A1 (en) Hybrid nanocomposite for aquatic media remediation and respective production method
JP2001029951A (en) Cleaning of sea area by artificial coal ash zeolite
CN112844304A (en) Sodium pyrophosphate modified water purification sludge/zeolite composite adsorbent and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11815809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015694

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 11815809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013015694

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130620