WO2012093192A1 - Coly-mycin derivatives - Google Patents

Coly-mycin derivatives Download PDF

Info

Publication number
WO2012093192A1
WO2012093192A1 PCT/ES2012/070003 ES2012070003W WO2012093192A1 WO 2012093192 A1 WO2012093192 A1 WO 2012093192A1 ES 2012070003 W ES2012070003 W ES 2012070003W WO 2012093192 A1 WO2012093192 A1 WO 2012093192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
colismicin
formula
compound
ketone
Prior art date
Application number
PCT/ES2012/070003
Other languages
Spanish (es)
French (fr)
Inventor
Ignacio GARCÍA LLORENTE
Natalia MIGUEL VIOR
Carlos Alberto SIALER GUERRERO
Javier GONZÁLEZ SABIN
Alfredo FERNÁNDEZ BRAÑA
Carmen MÉNDEZ FERNÁNDEZ
José Antonio SALAS FERNÁNDEZ
Francisco MORÍS VARAS
Original Assignee
Universidad De Oviedo
Entrechem, S.L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Oviedo, Entrechem, S.L filed Critical Universidad De Oviedo
Publication of WO2012093192A1 publication Critical patent/WO2012093192A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/16Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing two or more hetero rings
    • C12P17/165Heterorings having nitrogen atoms as the only ring heteroatoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces

Definitions

  • the present invention is comprised within the field of biology, pharmacy and medicine. STATE OF THE TECHNIQUE
  • the molecules that have a 2,2'-bipyridyl group in their structure are compounds with a large number of biological activities described (Cristalli et al., 1986); (Gomi et al., 1994); (Tsuge et al. 1999).
  • One of these molecules is colismicin produced by Streptomyces spp. CS40 (FIG. 1A), which presents antibiotic activity against Gram-positive and Gram-negative bacteria, antifungal against a broad spectrum of fungi and cytotoxic against P388 leukemia cells (Gomi et al. 1994); (Tsuge et al., 1999).
  • colismicin is described as a binding inhibitor between dexamethasone and glucocorticoid receptors (Shindo et al, 1994) and in patent WO / 2007/017146 the ability of colismicin to inhibit oxidative stress in cells is described.
  • Recombinant DNA technology has made it possible to isolate clusters of complete genes for the biosynthesis of different bioactive compounds using, among other strategies, the cloning, selection or analysis of libraries of microorganisms producing molecules with pharmacological interest by probes of DNA This strategy is based on the existence of previous genetic information on the biosynthesis route or biosynthetically related routes, which allows to use or Design genetic probes from the total or partial sequence of a biosynthesis enzyme.
  • Caerulomycin is a molecule with a structure similar to that of colismicin (FIG. IB) produced by Streptomyces caeruleus (Funk and Divekar, 1959).
  • the precursor for the biosynthesis of picolinic acid or 3-hydroxypicolinic acid in the case of virginiamycin biosynthesis is the amino acid lysine and the enzymes responsible for the generation of this compound have been identified, being the first of them an enzyme with lysine activity 2-aminotransferase (Bruntner and Bormann, 1998; Namwat et al., 2002).
  • the present invention describes the cloning and sequencing of the colismicin biosynthesis gene cluster in the Streptomyces sp. CS40
  • the genetic information available on enzymes of the lysine-2-aminotransferase type has been used to design oligonucleotides and construct a genetic probe that has allowed the isolation and cloning of the colismicin biosynthesis gene cluster. From the genetic point of view, there are no previous descriptions in the literature related to the isolation and sequencing of the biosynthesis gene cluster of colismicin or another molecule of the 2,2'-bipyridyl family produced by Streptomyces species.
  • the invention provides an important tool for the genetic manipulation of this gene cluster in the sense of increasing the production of colismicin and / or obtain new derivatives of this molecule or structurally related molecules with improved properties.
  • the present invention relates to the isolation and identification of a cluster of genes that participate in the biosynthesis of colismicin by Streptomyces spp. CS40, and provides a tool for the genetic manipulation of this gene pool to increase the production of colismicin and obtain new derivatives with improved properties for their isolation and use, among others, in the pharmaceutical or chemical sector.
  • This invention describes a DNA sequence containing 24 genes involved in the biosynthesis of colismicin and its precursors, including those involved in the regulation of gene pooling.
  • the gene pool includes genes that code for a non-ribosomal polyketide synthase-peptide synthetase (PCS-NRPS) hybrid system responsible for synthesizing the central structure of colismicin, genes that encode enzymes involved in the biosynthesis of the picolinic acid precursor of colismicin, genes which encode enzymes involved in modifications of the molecule such as dehydrogenases, aminotransferases and methyltransferases.
  • PCS-NRPS non-ribosomal polyketide synthase-peptide synthetase
  • the invention therefore relates to new genes and nucleic acid molecules that encode proteins / polypeptides that show functional activities involved in the biosynthesis of colismicin, and its potential application in increasing the levels of colismicin production in Streptomyces spp. CS40 and in the production of new derivatives of colismicin.
  • a Streptomyces spp. Chromosomal DNA library was constructed.
  • CS40 in Escherichia coli using the cosmid pWE15 (see example 2).
  • a genetic probe consisting of a 412 bp PCR fragment from the partial amplification of the gene encoding a 2-aminotransferase lysine involved in the biosynthesis of colismicin was used.
  • L2ATsonl SEQ ID NO: 31
  • L2ATson2 SEQ. ID NO: 32
  • L2ATFW2 SEQ. ID NO: 29
  • L2ATRV2 SEQ ID NO: 30
  • CS40 allowed to isolate a cosmid (coslC3) that defines a region of approximately 41 kb on the chromosome.
  • coslC3 cosmid The participation of the cloned DNA in the coslC3 cosmid in the biosynthesis of colismicin was determined using a BamHl fragment of 3128 bp, which contained an internal fragment to a gene encoding an NRPS. This fragment was cloned into plasmid pOJ260 (Bierman et al., 1992). The resulting construct was used for gene disruption in Streptomyces spp. CS40 generating a non-producing colismicin mutant (see example 4) as evidence of the involvement of cloned DNA in the biosynthesis of colismicin.
  • CS40 isolating a new cosmid overlapping with the cosmid coslC3, cos3Bl 1, used to complete the 46672 bp sequence of the region that contains the gene pool involved in colismicin biosynthesis (FIG. 2).
  • the antitumor activity of the new compounds generated by manipulation of the colismicin biosynthesis pathway has been assessed by in vitro cytotoxicity assays against different tumor cell lines (see example 9).
  • the neuroprotective activity of the new compounds has been assessed in trials using the zebrafish model (see example 10).
  • Not all genes identified in the DNA region presented in this invention are part of the gene pool involved in the biosynthesis of colismicin.
  • the establishment of the limits of gene clustering was performed by disruption of the orfl and orf27 genes and replacement of the orf25 gene (see example 5).
  • the present invention describes methods for the manipulation of biosynthesis genes, aimed at obtaining new derivatives of colismicin by disruption and / or gene replacement techniques generating mutants in colismicin biosynthesis that accumulate different intermediates.
  • Streptomyces spp. CLM-A The new strains generated, producing analogs of colismicin by genetic manipulation are called Streptomyces spp. CLM-A, Streptomyces spp. CLM-L, Streptomyces spp. CLM-M2 and have been deposited in the Spanish Type Culture Collection (CECT), with deposit numbers 7755, 7754, 7756 and 7757 respectively.
  • Streptomyces spp. CLM-M, Streptomyces spp. CLM-M1, Streptomyces spp. CLM-AH have been deposited in the Spanish Type Crops Collection (CECT) with deposit numbers 8069, 8070 and 8071, respectively.
  • the present invention also provides analogous compounds of colismicin A and colismicin C obtained by enzymatic acylation catalyzed by a lipase of the oxime or hydroxyl group, respectively.
  • enzymatic acylation is understood as the transformation of a substrate into an acylated derivative from its reaction with an acylating agent catalyzed by lipase.
  • Lipases useful for acylation can be found in Tetrahedron 2004, 60, 501-519; Chem. Soc. Rev. 2004, 33, 201-209; or Adv. Synth Catal. 2006, 348, 797-812. More specifically, in the present invention Burkholderia cepacia lipase (PS-C) is used to obtain acylated colismicin A and colismicin C derivatives.
  • PS-C Burkholderia cepacia lipase
  • lipases are presented in different forms of immobilization on hydrophobic and mechanically resistant supports or on acrylic resins, such as an epoxyacrylic resin activated with deca-octyl groups.
  • Acylating agents useful for the present invention are those that can act as substrates of the lipase used resulting in the acylation of colismicin A and colismicin C, and may be esters, carbonates and anhydrides.
  • the reaction can be carried out in a wide variety of organic solvents. More specifically, in the present invention methyl tertbutyl ether (MTBE) is used. In general, the temperature must keep the enzyme structure intact without denaturing phenomena.
  • the reaction can be carried out between 5 and 60 ° C, preferably between 10 and 60 ° C, more preferably between 20 and 50 ° C.
  • the present invention provides compounds characterized by the following formula (I):
  • Ri, R 2 , R 3 and R4 are, each and independently, hydrogen or a protecting group.
  • the protecting group may consist of an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, a alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a oxime group, a nitrile group, a urethane group, a silyl group, a sulfo group combining them; Except for compounds with the following formulas:
  • the present invention provides, among others, the compounds of Formula II to XVI comprised in Formula I:
  • Formula X 4-hydroxy-4'-methyl-5- (methylthio) - [2,2'-bipyridin-6-yl] -carbonitrile.
  • Formula XI 5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -methyl acetate.
  • Formula XII 5- (methylthio) -4-methoxy- [2,2'-bipyridin6-yl] -methyl butanoate.
  • Formula XIII 5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -methyl benzoate.
  • Formula XIV (E) -5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -carbaldehyde O-acetyl oxime.
  • the present invention also provides the compounds of Formula XVII, XVIII, XIX and XX: Formula XVII: 6- [N- (1-Carboxy-3-methylbutyl) carbamoyl] -5-methylthio [2,2 'bipyridine] -4-ol.
  • the compounds of formula XI, XII and XIII are esters derived from colismicin C and the compounds of formula XIV, XV and XVI are oxime esters derived from colismicin A.
  • compounds XVII and XVIII are precursors of colismicin with a residue Additional leucine and compounds XIX and XX are analogous compounds with the characteristic 2,2'-bipyridyl unit and an amide functional group.
  • the present invention also describes the use of the new compounds as antibiotics, antitumor or neuroprotective.
  • the compounds of the invention are tumor growth inhibitors and are therefore useful in the treatment of cancer.
  • the compounds of the invention are inhibitors of lysis or neuronal apoptosis induced by oxidative stress and therefore useful in the treatment of those neurodegenerative diseases caused by oxidizing agents, both exogenous and endogenous, to the patient.
  • compositions comprising a therapeutically effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament are object of the present invention.
  • a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof to inhibit the growth of a tumor or neuronal lysis or apoptosis caused by oxidative stress.
  • inhibit means decrease, slow down, or stop. Therefore, a compound of this invention can decrease, slow down, or stop the growth of a tumor cell or decrease slow down, or stop lysis or neuronal apoptosis under conditions of oxidative stress.
  • tumor cell is a cell that constitutes a neoplasm (new growth), which can be cancerous (malignant) or non-cancerous (benign).
  • a cancerous tumor cell can invade normal surrounding tissues and blood / lymphatic vessels and metastasize in tissues away from the original tumor.
  • a non-cancerous tumor cell can grow and compress adjacent normal tissues but cannot invade normal tissues and blood / lymphatic vessels, nor can it metastasize in tissues away from the original tumor.
  • neurodegenerative disease means that type of disease whose symptoms are the result of death from lysis or apoptosis of neurons.
  • Oxidative stress in the context of neurodegenerative disease refers to that anomalous situation in which the cytoplasm of neurons shows an increase in the amount of reactive oxygen species (H 2 0 2 , H0 2 , O 2 and OH " ).
  • reactive oxygen species can be generated by the diseased neuron's own metabolism, by other organs of the individual or be exogenous to the individual.
  • a neuroprotective compound against oxidative stress is that compound capable of stopping, minimizing or slowing down lysis or neuronal apoptosis caused by oxidizing agents.
  • a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof to treat cancer or neurodegenerative diseases caused or aggravated by lysis or neuronal apoptosis induced by oxidative stress. It is also the object of the present invention to use a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament with antitumor or neuroprotective activity against oxidative stress.
  • the subject of the present invention is also a method of treating a subject, including a human being, diagnosed with cancer or with a neurodegenerative disease, which consists in treating said subject with a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
  • a "subject” may include domesticated animals (for example, cats, dogs, etc.), livestock (for example, cows, horses, pigs, sheep, goats, etc.), laboratory animals (for for example, mice, rabbits, guinea pigs, etc.) and birds. From preferably, the subject is a mammal such as a primate and, more preferably, a human being.
  • a "therapeutically effective amount" of a compound is that amount necessary to achieve the desired result.
  • the effective amount of a compound of the present invention treats cancer by inhibiting the growth of the cells that constitute the tumor, thereby preventing the invasion of normal tissues and blood / lymphatic vessels by tumor cells and Therefore, it prevents metastasis, or an effective amount of a compound of the present invention is one capable of slowing down or inhibiting neuronal apoptosis under conditions of oxidative stress.
  • acceptable pharmaceutical composition refers to a biologically suitable material, that is, that the material can be administered to the subject without causing substantially harmful biological effects.
  • the doses or amounts of the compounds of the invention must be large enough to produce the desired effect. However, the dose should not be so high that it causes adverse side effects, for example, unwanted cross reactions, anaphylactic reactions, and the like. Generally, the dose will vary with the age, condition, sex and degree of the subject's disease, and can be determined by any person skilled in the art. The dose can be adjusted by each doctor, based on the clinical condition of the subject involved. The dose, dosage regimen and route of administration may be varied.
  • the compounds of the invention may be useful for research in biochemistry or cell biology.
  • Any of the compounds of the invention can be used therapeutically as part of an acceptable pharmaceutical composition.
  • Acceptable pharmaceutical compositions may consist of sterile solutions in water, saline solutions, or buffered solutions at physiological pH. Any of the compounds of the invention can be prepared in the form of a pharmaceutical composition.
  • the pharmaceutical compositions may include various transport agents, thickeners, diluents, buffers, preservatives, surfactants, and others, in addition to the compound of the invention.
  • Pharmaceutical compositions may also include active ingredients such as antimicrobial agents, anti-inflammatories, anesthetics, etc.
  • a compound of the present invention can be administered in the form of an ophthalmic solution, for application on the surface of the eye.
  • a compound can be administered to a subject vaginally, rectally, intranasally, orally, by inhalation, or parenterally, either intradermally, subcutaneously, intramuscularly, intraperitoneally, intrarectally, intraarterially, intralymphatically, intravenously, intrathecally and intratracheally. .
  • Parenteral administration if used, is generally performed by injection.
  • Injectables can be prepared in various forms, such as liquid solutions or suspensions, solid forms suitable to be dissolved or suspended before injection, or as emulsions.
  • Other forms of parenteral administration employ slow or sustained release systems, so that a constant dose is maintained (see, for example, US Patent 3,710,795).
  • Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions, which may also contain buffers and diluent additives and others.
  • non-aqueous solvents are: propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl ethyl acetate.
  • aqueous solvents examples include water, alcoholic-aqueous solutions, emulsions or suspensions, including saline and buffered solutions.
  • parenteral vehicles examples include: sodium chloride solution, Ringer's dextrose, sodium chloride and dextrose, etc.
  • Preservatives and other additives may also be present, such as, for example, antimicrobial agents, antioxidants, chelators, inert gases, etc.
  • Formulations for topical administration may include creams, lotions, gels, drops, suppositories, sprays, liquids and powders. Certain conventional pharmaceutical carriers, aqueous, oily, or powdered bases, thickeners, etc. may also be necessary or desirable.
  • Compositions for oral administration may include powders or granules, suspensions or solutions in water or non-aqueous medium, capsules, or tablets. It may be desirable to include thickeners, flavorings, diluents, emulsifiers, dispersants, etc.
  • the term "derivative" or “analog” of colismicin should be construed as a compound covered by the general Formula (I) that should not necessarily be derived from colismicin but may be synthesized de novo .
  • the present invention is described in detail below with a series of examples without being in any case examples that limit its use to those mentioned.
  • Figure 2 Diagram showing a schematic representation of the restriction map, using the restriction enzyme BamHI (numbered positions in the scheme), of the gene pool for biosynthesis of colismicin in Streptomyces spp. CS40 contained in the nucleotide sequence described as SEQ IN NO: 1.
  • the scale is shown in kilobases (kb).
  • coslC3 and cos3Bl l represent the cosmids in which the nucleotide sequence described as SEQ IN NO has been isolated: 1.
  • the genes present in the gene pool are represented by numbers under the arrows.
  • the genes that have been inactivated within the gene cluster are shown as gray arrows and the rest as black arrows.
  • the genes not involved in the biosynthesis of colismicin are shown as white arrows.
  • FIG. 3A shows the production of colismicin A (peak at 3,259 min) in the wild strain Streptomyces spp. CS40 analyzed by UPLC. The ordinates represent the time in minutes (min.) And the abscissa as arbitrary units (AU).
  • FIG. 3B shows the absorption spectrum of colismicin A. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units.
  • FIG 3C shows purified colismicin A produced in the wild strain Streptomyces spp. CS40 and analyzed by HPLC / MS. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 3D shows the mass spectrum of colismicin A, marking the mass value at each peak (without units).
  • FIG. 4A UPLC analysis of the wild strain Streptomyces spp. CS40 producing colismicin A is shown in FIG. 4A.
  • the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 4B shows the UPLC analysis of the CLM-L mutant obtained by gene replacement, not producing colismicin A.
  • the time is represented in minutes (min.) And in those ordered as arbitrary units (AU).
  • FIG. 4C shows the UPLC analysis of the CLM-12 mutant, obtained by gene disruption, not producing colismicin A.
  • the time is represented in minutes (min.) And in those ordered as arbitrary units (AU).
  • FIG. 5A UPLC analysis of the mutant strain CLM-22D producing colismicin A is shown in FIG. 5A. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). In FIG. 5B shows the analysis by UPLC of the mutant strain CLM-24, producing colismicin A. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 6 Schematic of the initial steps in the biosynthesis route of colismicin A.
  • the amino acid lysine in a reaction catalyzed by the gene product of the orfl9 and orf20 genes, is transformed into picolinic acid. Subsequently, the rest of the genes involved in biosynthesis will continue modifying this compound until producing colismicin A.
  • FIG. 7 A shows a scheme of the genetic organization of the CLM-L mutant (strain deposited as CECT 7754) that has interrupted the orfl 9 gene that codes for a lysine 2-aminotransferase.
  • FIG. 7B The liquid chromatography (UPLC) analysis of the extract of the non-producing colismicin A mutant strain is shown. In the abscissa the time is represented in minutes (min.) and in the ordinates as arbitrary units (AU).
  • FIG. 7C shows the analysis by very high resolution liquid chromatography (UPLC) of the extract of the non-producing strain of colismicin A supplemented with picolinic acid, compound capable of rescue the production of colismicin A. In the abscissa the time is represented in minutes (min.) and in the ordinates as arbitrary units (AU).
  • FIG. 8A shows the scheme of the genetic organization of the CLM-A mutant, which has an interrupted orfl 1 gene, which codes for an aminotransferase.
  • FIG. 8B shows the UPLC analysis of the CLM-A mutant extract, the peak at 2.86 min corresponds to the compound of formula II and the peak at 1989 to Colismicin C. In the abscissa the time is represented in minutes (min.) And in those ordered as arbitrary units (AU).
  • FIG. 8C shows the absorption spectrum of the compound of formula II.
  • the abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG 8D shows the absorption spectrum of Colismicin C. In the abscissa the wavelength is represented in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG. 8E shows the MS profile corresponding to the compound of formula II with the mass value being marked at each peak (without units).
  • FIG. 8F shows the MS profile corresponding to Colismicin C, marking the mass value at each peak (without units).
  • FIG. 9A shows the scheme of the genetic organization of the CLM-M2 mutant, which has an interrupted orf9 gene, which codes for a methyltransferase.
  • FIG. 9B shows the UPLC analysis of the CLM-M2 mutant extract, indicating the compounds of formula III and formula IV.
  • the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 9C shows the absorption spectrum of the compound of formula III.
  • the abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG 9D shows the absorption spectrum of the compound of formula IV.
  • the abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG. 9E shows the MS profile of the compound of formula III with the mass value being marked at each peak (without units).
  • the FIG. 9F shows the MS profile of the compound of formula IV with the mass value being marked at each peak (without units).
  • FIG. 10A shows the scheme of the genetic organization of the CLM-G mutant, which has uninterrupted genes orfl3 and orfl4, which encode similar GriD (YP 001825756) and GriC (YP 001825755) proteins.
  • FIG. 10B shows the HPCL / MS analysis of the excision of the silves ⁇ re S ⁇ rep ⁇ omyces spp. CS40 In the abscissa the time was repressed in minutiae (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 10C shows the HPCL / MS analysis of the excision of the mumanie strain CLM-G.
  • FIG. 10D shows the absorption specimen of the compound of formula V.
  • the wavelength was represented in nanomer (nm) and in the ordinates as arbitrary units.
  • FIG. 10E shows the MS profile of the compound of formula V, marking at each peak the mass value (without units).
  • FIG. 1 1 A UPLC analysis of the excision of the CLM-L muierie supplemented with 6-methyl picolinic acid is shown, indicating the compound of formula VI.
  • the time was repressed in minutiae (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 1 IB shows the absorption specimen of the compound of formula VI.
  • FIG. 1 1C shows the MS profile of the compound of formula VI, marking at each peak the mass value (without units).
  • FIG. 1 ID shows the analysis by UPLC of the excision of the CLM-L muierie supplemented with 4-methylpyridine-2-carboxylic acid, indicating the compound of formula VIL
  • FIG. 11E shows the absorption specimen of the VIL compound.
  • the wavelength was represented in nanomer (nm) and in the ordinates as arboreal units.
  • FIG. 11F shows the MS profile of the compound of formula VII with the mass value being marked at each peak (without units).
  • FIG. 12A shows the UPLC analysis of the CLM-A mutant extract supplemented with 4-methylpyridine-2-carboxylic acid, indicating the compound of formula VIII.
  • the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 12B shows the absorption spectrum of the compound of formula VIII.
  • the abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG. 12C shows the MS profile of the compound of formula VIII with the mass value being marked at each peak (without units).
  • FIG. 13A the UPLC analysis of the excision of the CLM-M2 muierie supplemented with 4-methylpyridine-2-carboxylic acid is shown showing the compounds of formula IX and formula X.
  • the time is represented in minutes (min.) And in those ordered as arbitrary units (AU).
  • FIG. 13B shows the absorption spectrum of the compound of formula IX. The abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG. 13A the UPLC analysis of the excision of the CLM-M2 muierie supplemented with 4-methylpyridine-2-carboxylic acid is shown showing the compounds of formula IX and formula X.
  • the time is represented in minutes (min.) And in those ordered as arbitrary units (AU).
  • FIG. 13B shows the absorption spectrum of the compound of formula IX.
  • the abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG. 13C shows the absorption spectrum of the compound of formula X. In the abscissa the wavelength is represented in nanometer (nm) and in the ordinates as arbitrary units.
  • FIG. 13D shows the MS profile of the compound of formula IX with the mass value being marked at each peak (without units).
  • FIG. 13E shows the MS profile of the compound of formula X with the mass value being marked at each peak (without units).
  • FIG 14 Neuroprotective capacity of colismicin A and the compounds of formula VI and VIL
  • FIG 14A shows the brain of untreated zebrafish embryos.
  • FIG 14B shows the brain of zebrafish embryos treated with retinoic acid 10 ⁇ .
  • FIG 14C shows the brain of zebrafish embryos treated with 10 ⁇ retinoic acid and 1 ⁇ colismicin.
  • FIG 14D shows the brain of zebrafish embryos treated with 10 ⁇ retinoic acid and the compound of formula VI 1 ⁇ .
  • FIG 14E shows the brain of zebrafish embryos treated with 10 ⁇ retinoic acid and the compound of formula VII 1 ⁇ .
  • FIG 14F shows the brain of zebrafish embryos treated with 10 ⁇ retinoic acid and lipoic acid
  • FIG 14G A graphical representation of the neuroprotective capacity of colismicin A and the compounds of formula II, XI, VI and VII respectively is shown in FIG 14G.
  • the ordinate axis shows the percentage of apoptosis in the brain of zebrafish embryos. 0% of apoptosis was considered as the level of basal apoptosis of untreated embryonic brains (EW) and 100% of apoptosis as the level of apoptosis present in the brains of embryos treated with 10 ⁇ tino retinoic acid (RA).
  • Neuroprotection assays were performed by treating zebrafish embryos with retinoic acid in the presence of the various compounds to be tested. As a neuroprotection control, lipoic acid (AR + LP) was used. The compounds tested as neuroprotectors were colismicin A (AR + Col.A), the compound of formula
  • the compound of formula VII has an improved neuroprotective activity with respect to colismicin A and colismicin C.
  • FIG. 15A shows the scheme of the genetic organization of the CLM-Ml mutant, which has an interrupted orfl2 gene, which codes for a methyltransferase.
  • FIG. 15B shows the UPLC analysis of the CLM-Ml mutant extract, the peak at 3.84 minutes corresponds to the compound of formula XVIII. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 15C shows the absorption spectrum of the compound of formula XVIII.
  • FIG 15D shows the MS profile corresponding to the compound of formula XVIII with the mass value being marked at each peak (without units).
  • Figure 16 Analysis of the production of the compound of formula XIX by the mutant strain CLM-M (deposited as CECT 8069).
  • FIG. 16A shows the scheme of the genetic organization of the CLM-M mutant, which has an interrupted orfl5 gene, which codes for a monooxygenase.
  • FIG. 16B shows the HPLC analysis of the CLM-M mutant extract, the peak at 12.62 min corresponds to the compound of formula XIX.
  • FIG. 16C shows the absorption spectrum of the compound of formula XIX.
  • the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units.
  • FIG 16D shows the MS profile corresponding to the compound of formula XIX with the mass value being marked at each peak (without units).
  • FIG. 17A shows the scheme of the genetic organization of the CLM-AH mutant, which has an interrupted orfl6 gene, which codes for an amidohydrolase.
  • FIG. 17B shows the UPLC analysis of the CLM-AH mutant extract, the peak at 3.67 min corresponds to the compound of formula XVII. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG. 17C shows the absorption spectrum of the compound of formula XVII. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units.
  • FIG 17D shows the MS profile corresponding to the compound of formula XVII with the mass value being marked at each peak (without units).
  • FIG. 18A shows the UPLC analysis of the CLM-M2 mutant extract, the peak at 2.22 min corresponds to the compound of formula XX.
  • the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
  • FIG 18B shows the MS profile corresponding to the compound of formula XX with the mass value being marked at each peak (without units).
  • FIG. 18C shows the absorption spectrum of the compound of formula XX. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units.
  • a first aspect of the present invention refers to a method of isolation and purification of a DNA fragment, which contains the gene pooling of the colismicin biosynthesis pathway of the Streptomyces spp. CS40, which is included in a 46672 bp fragment of the genome of Streptomyces spp.
  • the process comprises the following steps: (a) obtaining a genomic DNA library from a colismicin-producing microorganism; (b) transfection of clones of said library into host cells; (c) oligonucleotide design for the isolation of the colismicin biosynthesis gene cluster; (d) construction of a probe comprising a nucleotide sequence of a cluster of colismicin biosynthesis genes; (e) use of heterologous probes for the isolation of the group of colismicin biosynthesis genes; (f) hybridization of said probe with a genomic DNA library obtained from said microorganism and (g) isolation of said gene pool from clones with positive hybridization.
  • the second aspect of the present invention refers to a nucleic acid molecule consisting of a nucleotide sequence described as SEQ ID NO: 1; or a nucleotide sequence complementary to SEQ ID NO: 1; or a degenerated nucleotide sequence with respect to SEQ ID NO: 1; or a nucleotide sequence capable of hybridizing under restrictive conditions with SEQ ID NO: 1, with the complementary strand of SEQ ID NO: 1, or with a hybridization probe derived from SEQ ID NO: 1 or its complementary strand; or a nucleotide sequence that has at least 80% sequence identity with SED ID NO: l; or a nucleotide sequence that has at least 65% sequence identity with SEQ ID NO: l and that preferably encodes or is complementary to a sequence that encodes at least one biosynthetic colismicin enzyme or a part thereof.
  • the nucleic acid molecule is characterized in that it is at least 15 nucleotides in length.
  • the nucleic acid molecule encodes one or more polypeptides, or that includes one or more genetic elements, which possess a functional activity in the synthesis of a 2,2'-bipyridyl antibiotic or a precursor of a 2 , 2'-bipyridyl.
  • said 2,2'-bipyridyl antibiotic is colismicin or a precursor of colismicin.
  • the nucleic acid molecule encodes one or more polypeptides, or includes one or more genes and / or one or more sequences.
  • the nucleic acid molecule is characterized in that said 2,2'-bipyridyl antibiotic or precursor of a 2,2'-bipyridyl is colismicin or a precursor of colismicin.
  • the nucleic acid molecule is characterized by including a nucleotide sequence encoding one or more amino acid sequences of those described in SEQ ID NOs: 2 to 28, or a nucleotide sequence that is complementary or degenerate. with respect to a nucleotide sequence encoding one or more amino acid sequences that have at least 60% sequence identity with any of SEQ ID NOs: 2 to 28. In another preferred embodiment of the invention the nucleic acid molecule encodes one or more amino acid sequences that have at least 85% sequence identity with any of SEQ ID NOs: 2 to 28.
  • the third aspect of the present invention refers to a polypeptide encoded by the nucleic acid molecule described above.
  • the polypeptide includes: one or more complete amino acid sequences, or parts thereof, described in SEQ ID NOs: 2 to 28; or one or more complete amino acid sequences, or parts thereof, that have at least 60%> sequence identity with any of SEQ ID NOs: 2 to 28.
  • the polypeptide is characterized in that the amino acid sequences mentioned above possess at least 85% sequence identity with any of SEQ ID NOs: 2 to 28.
  • the polypeptide has a functional activity in the synthesis of a 2,2'-bipyridyl antibiotic .
  • the fourth aspect of the present invention refers to a recombinant DNA molecule, which includes the aforementioned DNA fragment, or a part with similar characteristics, cloned into a vector that replicates in Streptomyces or in E. coli.
  • the recombinant DNA is the coslc3 cosmid or the cos3bl l cosmid.
  • the fifth aspect of the present invention refers to a host cell or a non-human transgenic organism that contains a nucleic acid molecule mentioned above.
  • the genes encoded by the aforementioned DNA fragment, and host cells or transgenic organisms comprising said DNA fragment can be used in the production of 2,2'-bipyridyl metabolites, particularly in the production of colismicin, derived from colismicin or colismicin precursors; to increase the production of 2,2'-bipyridyl metabolites; to increase the production of colismicin, colismicin derivatives or colismicin precursors; in the inactivation of genes involved in the biosynthesis of colismicin; in PCR amplification techniques aimed at the isolation and / or use of genes involved in the biosynthesis of colismicin.
  • the sixth aspect of the present invention refers to a process to increase the production of 2,2'-bipyridyls in a bacterial host, which comprises the transfer of the above-mentioned DNA fragment to a Streptomyces host, culture of the recombinant strain obtained , and isolation of the 2,2'-bipyridyl produced.
  • the host is of the genus Streptomyces is Streptomyces spp. CS40
  • the host Streptomyces spp. CS40 is a mutant derived from Streptomyces spp. CS40
  • the 2,2'-bipyridyl compound is colismicin, a derivative of colismicin or a precursor of colismicin.
  • the seventh aspect of the present invention refers to a process for generating colismicin derivatives or colismicin precursors by inactivating genes encoded by the aforementioned DNA fragment.
  • the process focuses on the use of colismicin intermediates or colismicin derivatives as starting compounds in the chemical synthesis of 2,2'-bipyridyl products.
  • the eighth aspect of the present invention refers to a process for generating derivatives or analogs of colismicin A and colismicin C by enzymatic acylation catalyzed by a lipase.
  • the ninth aspect of the present invention refers to the mutant strain Streptomyces spp. CLM-A deposited in the Spanish Type Crops Collection with identification number 7755 and the products accumulated by it.
  • the tenth aspect of the present invention refers to the mutant strain Streptomyces spp. CLM-M deposited in the Spanish Type Crops Collection with the identification number 7756 and the products accumulated by it.
  • the eleventh aspect of the present invention refers to a compound of Formula (I), except for compounds of formula:
  • Ri, R 2 , R 3 and R4 are, each and independently, hydrogen or a protecting group.
  • the protecting group may consist of an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, a alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or a combination from them.
  • the compound of Formula (I) is selected from the compounds of Formula II to XX.
  • the twelfth aspect of the present invention refers to the use of the compounds of Formula I for the preparation of a pharmaceutical composition intended for the treatment of cancer, the treatment of neurodegenerative diseases, or their use as a neuroprotector, or the treatment of infectious diseases, or their use as an antibiotic
  • this aspect also refers to the compounds of Formula I for use in the treatment of cancer, in the treatment of neurodegenerative diseases, or as a neuroprotector, or in the treatment of infectious diseases, or as an antibiotic.
  • the thirteenth aspect of the present invention refers to a pharmaceutical composition comprising at least one of the compounds of Formula I and at least one pharmaceutically acceptable excipient.
  • the last aspect of the present invention refers to a method for the treatment of cancer, for the treatment of neurodegenerative diseases or for the treatment of infectious diseases comprising the administration to the patient of a therapeutically effective amount of a compound of Formula I or of a pharmaceutical composition comprising at least one compound of Formula I.
  • Example 1 Isolation of the Streptomyces spp. Colismicin producing strain.
  • CS40 Streptomyces spp. CS40 was isolated from some leaf-cutting ants of Acromyrmex octospinosus species collected in the Lambayeque department in Peru. The sequencing and analysis of its 16SrDNA showed its location within the genus Streptomyces without conclusive identity levels at the species level. Streptomyces spp. CS40 is deposited in the Spanish Type Crops Collection with deposit number 7757.
  • microorganisms, plasmids and culture conditions The microorganisms and plasmids used are described in Table 1. Streptomyces spp. CS40 and the mutants generated from it were cultured for sporulation in medium A (Fernández et al, J. Bacteriol, 180, 4929-4937, 1998); for the production of antibiotic, R5A was grown in liquid medium (Fernández et al, J. Bacteriol, 180, 4929-4937, 1998); using an inoculum previously cultured in liquid medium TSB (Tryptone Soya Broth, Merck).
  • medium A Fernández et al, J. Bacteriol, 180, 4929-4937, 1998
  • R5A was grown in liquid medium (Fernández et al, J. Bacteriol, 180, 4929-4937, 1998); using an inoculum previously cultured in liquid medium TSB (Tryptone Soya Broth, Mer
  • Culture media were supplemented with appropriate antibiotics to each resistance marker at the following concentrations: 100 ⁇ g / ml ampicillin, 20 ⁇ g / ml tobramycin, 25 ⁇ g / ml apramycin, 50 ⁇ g / ml thiostreptone, 25 ⁇ g / ml kanamycin 10 ⁇ g / ml tetracycline, 25 ⁇ g / ml chloramphenicol and 50 ⁇ g / ml nalidixic acid.
  • Table 1 Bacterial strains and plasmids used in this study.
  • pHZ1358 Plasmid for gene replacement Sun et al.,
  • Colismicin A production was routinely performed in 1.5 mL of solid R5A medium (Fernández et al., J. Bacteriol, 180, 4929-4937, 1998) in 25-well plates . For its inoculum, spores of Streptomyces spp. CS40 and the cultures were maintained for 7 days at 30 ° C, extracted after that time with 1 ml of ethyl acetate. Colismicin A production was also performed in liquid cultures of 5 to 7 days grown in an orbital shaker at 30 ° C and 250 rpm. Flasks were used for this.
  • the identification and quantitative analysis of colismicin A was carried out by reverse phase chromatography in an Acquity UPLC equipment using a BEH C18 column (2.1 x 100 mm Waters) and using acetonitrile and 0.1% TFA in water as solvents. The samples were eluted with 10% acetronitrile for 1 min followed by a linear gradient of acetonitrile from 10% to 80% for 7 min. The flow used was 0.5 ml / min and the column temperature was 35 ° C.
  • HPLC-coupled mass analysis HPLC-coupled mass analysis (HPLC / MS) an Alliance chromatographic system coupled to a ZQ4000 mass spectrometer and a Symmetry C18 column (2.1 x 150 mm, Waters) was used.
  • the solvents used were the same as those described above and elution was performed initially maintaining 10% acetonitrile for 4 min, followed by a linear gradient from 10%> to 88% acetonitrile for 26 min, using a flow 0.25 ml / min.
  • the mass analysis was performed by electrospray ionization in positive mode, with a capillary voltage of 3 kV and a cone voltage of 20 V.
  • the detection of the peaks and the characterization of their absorption spectrum was performed in both cases with a online photodiode system and using Waters Empower software, extracting two-dimensional chromatograms at a wavelength of 332 nm.
  • the columns used were an XTerra PrepRP18 (19 x 300 mm, Waters) and a Symmetry C18 (7.8 x 300 mm, Waters).
  • the solutions with the purified peaks were partially evaporated in a rotary evaporator to reduce their organic solvent content and subsequently loaded into a solid phase extraction cartridge (Sep-Pak C18, Waters).
  • the retained compounds were washed successively with water, 0.1% ammonia in water and again water, to completely eliminate TFA. Finally, they were eluted with methanol, dried in vacuo and finally lyophilized.
  • the solvents used were the same as those described above and the elution was performed with an initial isocratic gradient of 10% acetonitrile maintained for 4 min and followed by a linear gradient of acetonitrile from 10% to 88% for 26 min, using for it a flow of 0.25 ml / min.
  • the mass analysis was performed by electrospray ionization in positive mode, with a capillary voltage of 3 kV and a cone voltage of 20 V.
  • the detection of the peaks and the characterization of their absorption spectrum were performed in both cases with a online photodiode system and using Waters Empower software, extracting two-dimensional chromatograms at a wavelength of 360 nm.
  • the colismicin A analyzed in UPLC has a retention of 3.30 min and an absorption spectrum with maximums at 250 and 332 nm.
  • Colismicin A analyzed in HPLC / MS has a retention of 15.13 min and shows a molecular ion with a mass of 276 m / z [M + H] +.
  • FIG. 3 For the structural characterization of the colismicin derivatives mentioned in this invention, cultures of the Streptomyces spp. Corresponding CS40 and the extracts were dissolved in 5 ml of a mixture of DMSO and methanol in equal parts. They were then centrifuged and the upper layer corresponding to the lipid fraction was removed.
  • the first purification step was performed by chromatography on an XTerra PrepRP18 column (19 x 300 mm, Waters) using acetonitrile and 0.05% acetic acid trifluoro (TFA) as solvents dissolved in water. A linear gradient from 30% to 100% acetonitrile was used for 7 min followed by 3 min of 100% acetonitrile. The flow used was 15 ml / min. The peaks of interest were collected on 0.1 M phosphate buffer, pH 7.0.
  • Sequencing was performed on double stranded DNA using the method described by Sanger et al, Proc. Nati Acad. Sci. USA. 74, 5463-5467 (1977) and the Cy5 Autocycle Sequencing Kit sequencing kit (Pharmacia Biotech). The electrophoresis of the samples was performed in an automatic Alf-express sequencer (Pharmacia Biotech). The sequences obtained were analyzed using the GCG software package, from the Genetics Computer Group of the University of Wisconsin (Devereux et al, Nucleic Acids Res. 12, 387-395, 1984) and the BLAST program (Altschul et al, J Mol. Biol. 215, 403-410, 1990).
  • the analysis of the transmembrane regions of possible transmembrane proteins was performed using the TMHMM v program. 2.0 (Krogh et al, J. Mol. Biol. 305, 567-580, 2001).
  • the analysis of PCS and NRPS was performed using the ASMPKS programs (Tae et al, BMC Bioinformatics. 8, 327-335, 2007) and NRPSpredictor (Rausch et al, Nucleic Acids Res. 33, 5799-5808, 2005).
  • CS40 the microorganism was cultured in TSB liquid medium and the total DNA was isolated as described by Kieser et al, (2000). Total DNA of Streptomyces spp. CS40 was used as a template for the polymerase chain reaction using oligonucleotides L2ATFW2 (SEQ ID NO: 29) and L2ATRV2 (SEQ ID NO: 30). It was assumed that, as a consequence of the amplification, a DNA fragment of approximately 0.6 kb would be obtained which It would contain the inner part of the gene that codes for a lysine 2-aminotransferase.
  • the polymerase chain reaction was carried out in a total volume of 50 ⁇ and the reaction mixture contained 0.1 ⁇ g of total Streptomyces spp. DNA. CS40, 2.5% dimethylsulfoxide (DMSO), 200 pmoles of each primer, dNTPs (final concentration 200 ⁇ ), lxPCR of the enzyme Taq DNA polymerase (Invitrogen).
  • DMSO dimethylsulfoxide
  • the chain reaction was carried out in an Applied Biosystems GeneAmp ® PCR System9700 thermocycler with the following program: 1 cycle of denaturation at 98 ° C (5 min), 30 cycles of denaturation / ringing / synthesis at 94 ° C (1 min) / 55 ° C (1 min) / 72 ° C (1 min) and 1 final extension cycle at 72 ° C (10 min).
  • the DNA fragment obtained with this procedure was cloned into the E. coli pGemT vector using the procedure recommended by the manufacturer and was subjected to sequencing using standardized techniques.
  • oligonucleotides were designed to construct a genetic probe.
  • the synthetic oligonucleotides L2ATsonl (SEQ ID NO: 31) and L2ATson2 (SEQ ID NO: 32) were used as primers for the amplification of the genetic probe by means of the polymerase chain reaction (PCR) and using as template DNA the Streptomyces spp. Chromosomal DNA CS40
  • the polymerase chain reaction was carried out in a total volume of 50 ⁇ and the reaction mixture contained 0.1 ⁇ g of total Streptomyces spp. DNA.
  • CS40 2.5% dimethylsulfoxide (DMSO), 200 pmoles of each primer, dNTPs (final concentration 200 ⁇ ), lxPCR of the enzyme pfx DNA polymerase (Invitrogen).
  • the chain reaction was carried out in an Applied Biosystems GeneAmp ® PCR System9700 thermocycler with the following program: 1 cycle of denaturation at 98 ° C (5 min), 30 cycles of denaturation / ringing / synthesis at 94 ° C (1 min) / 60 ° C (1 min) / 68 ° C (1 min) and 1 final extension cycle at 68 ° C (10 min).
  • the DNA fragment obtained with this procedure was cloned into the Escherichia coli pCR-Blunt vector and subjected to sequencing using standardized techniques. Once confirmed that the amplified fragment was part of the coding region of lysine 2-aminotransferase, this fragment was used as a genetic probe for the analysis of a Streptomyces spp chromosomal DNA library.
  • CS40 2.5 Construction and analysis of the Streptomyces spp. Chromosomal DNA library. CS40
  • the chromosomal DNA library of Streptomyces spp. CS40 was built on the cosmid pWE15 that is able to replicate in E. coli.
  • the genomic DNA of Streptomyces spp. CS40 was isolated as described above, partially digested with Sau3AI and the fragments obtained, approximately 35-40 kb in size, were dephosphorylated by treatment with alkaline phosphatase (Roche Diagnostics, Mannheim).
  • the cosmid pWE15, used as a vector was linearized with BamHI.
  • the DNA fragments and the vector were ligated and packaged in vitro using a commercial packaging kit Gigapack III Gold packaging Extract kit following the instructions of the commercial house (Stratagene).
  • the recombinant DNA particles were used to infect E.coli XLI Blue MR cells and the transductants were selected on plates with LA medium (Luria-Bertani agar) containing as an ampicillin selection antibiotic. Approximately 1000 transducer colonies were cultured in microtiter plates containing LB medium (Luria-Bertani broth) and the selection antibiotic. After incubation at 37 ° C for 24 h, they were maintained in the presence of 25% glycerol at -70 ° C for preservation.
  • LA medium Lia-Bertani agar
  • LB medium Lia-Bertani broth
  • coslC3 cosmid and the 7.7 kb EcoRV / HindIII fragment from the cos3B l l cosmid subcloned into the same sites in the pBluescriptSK + vector were sequenced in their entirety. Sequencing was performed on double stranded DNA using the method described by Sanger et al, (1977) and using the Cy5 Autocycle Sequencing Kit (Pharmacia Biotech).
  • the electrophoresis of the samples was performed in an automatic Alf-express sequencer (Pharmacia Biotech) and the data obtained were analyzed using the GCG software package, from the Genetics Computer Group of the University of Wisconsin (Devereux et al, 1984) and the BLAST program (Altschul et al., 1990).
  • the analysis of the transmembrane regions of possible transmembrane proteins was performed using the TMHMM v program. 2.0 (Krogh et al, J. Mol. Biol. 305, 567-580, 2001).
  • the analysis of PCS and NRPS was performed using the ASMPKS (Tae et al, 2007) and NRPSpredictor (Rausch et al, 2005).
  • ORFs probably not involved in the biosynthesis of colismicin (blank in FIG. 2).
  • ORFs orfl, showed great similarity with a possible S. viridochromogenes DSM 40736 helicase (ZP_05534927) and a possible S. scabiei 87.22 kinase, (YP 003487313).
  • ORFs involved in the biosynthesis of colismicin A 16 ORFs are involved in the biosynthesis of the structural part of colismicin, 5 of them ⁇ orfl -7) are involved in the transport of colismicin, 2 ORFs ⁇ orfl and orfó) are probably involved in regulatory processes. Table 2. Genes identified in the chromosome region of Streptomyces spp. CS40 involved in the biosynthesis of colismicin.
  • Example 4 Inactivation of the colismicin biosynthesis gene cluster by gene disruption.
  • inactivation of the orf21 gene was carried out.
  • a BamHI fragment of the coslC3 cosmid was isolated. This 3128 bp fragment is internal to orfll (BamHI sites 13 and 14, FIG. 2) and was cloned into plasmid pOJ260 digested with BamHI.
  • the resulting construct, pOJB12 was introduced in Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-12 that was selected for its apramycin resistance.
  • the mutation in the orfll gene was checked by Southern analysis.
  • the mutant was shown not to produce colismicin A by UPLC analysis of culture samples from Streptomyces spp. CS40 and CLM-12 extracted with ethyl acetate (FIG. 4), thereby confirming the implication of gene clustering in colismicin biosynthesis.
  • Example 5 Establishment of the limits of the clustering of colismicin biosynthesis genes by gene replacement.
  • a region of 910 bp corresponding to a fragment internal to the orfl was amplified with the oligonucleotides HelDisrl (SEQ ID NO: 34) and HelDisr2 (SEQ ID NO: 35). Said fragment was cloned into the pCR-Blunt vector to generate plasmid pCRBH and subjected to sequencing using standardized techniques. Subsequently, this fragment was obtained from plasmid pCRBH by digesting it with EcoRI and was cloned into the same restriction site of vector pOJ260, thus generating plasmid pOJBH that was used for gene disruption in Streptomyces spp.
  • a Clal-BamHI fragment of 2271 bp was obtained, from the coslC3 cosmid corresponding to a fragment internal to orf27. Said fragment became blunt and was cloned into vector pOJ260 at the EcoRV site thereby generating plasmid pOJB23P that was used for gene disruption in Streptomyces spp. CS40 generating the CLM-24 mutant.
  • the gene replacement technique was used to obtain the CLM-22D muierie.
  • a 1526 bp fragment that is flanking upstream to the orf25 gene was amplified by PCR.
  • the oligonucleotides ORF22dell (SEQ ID NO: 36) and ORF22del2 (SEQ ID NO: 37) were used to which the EcoRI and HindIII restriction targets were introduced respectively, said fragment was cloned into the pCR-Blun ⁇ neighbor and was subjected to sequencing using standardized techniques. Subsequently, said fragment was cloned into the neighbor pUO9090 at the EcoRI and HindIII resiriction sites generating plasmid pUO909022A.
  • a second 1496 bp fragment that is flanking runs down to the orf25 gene was amplified by PCR.
  • oligonucleotides ORF22del3 (SEQ ID NO: 38) and ORF22del4 (SEQ ID NO: 39) were used, which were inroduced with the EcoRV target, which fragment was cloned into the pCR-Blun ⁇ neighbor and subjected to sequencing using techniques They are standardized. Subsequently, said fragment was cloned into the neighbor pUO909022A using the EcoRV resync site to generate the neighbor pUO909022AB.
  • the replacement case was obtained from the neighbor pUO909022AB digested with Spel and was cloned into the neighboring pHZ1358.
  • the resulting construction, pHZ22AB was used for gene replacement in Streptomyces spp. CS40 generating the CLM-22D muierie.
  • the integration of the apramycin resistance gene in the case of mutants generated by disruption as well as the replacement on the chromosome of the wild copy of the gene by the mutated was confirmed in the transconjugants by Southern analysis. Each of the mutants was analyzed to determine the production of colismicin A, in parallel with the parental strain Streptomyces spp. CS40 via UPLC.
  • the CLM-22D and CLM-24 mutants were shown as producers of colismicin A (FIG. 5), indicating that the mutated genes do not participate in the biosynthesis of colismicin and thus confirming the limits of the gene pooling involved in the biosynthesis of colismicin
  • Example 6 Generation of a mutant in the initial steps of the biosynthesis of colismicin.
  • the first of the proposed steps for biosynthesis of colismicin (FIG 6) consists of the formation of picolinic acid from lysine and the first gene involved in this process would be a lysine 2-aminotransferase encoded by orfl9. To confirm this data, the orfl9 gene was inactivated.
  • the gene replacement technique was used to inactivate orfl9.
  • a 1589 bp fragment that is flanking upstream to the orfl9 gene was amplified by PCR.
  • the oligonucleotides ORFlódell (SEQ ID NO: 40) and ORF16del2 (SEQ ID NO: 41) were used to which the EcoRI and HindIII restriction targets were introduced respectively, said fragment was cloned into the pCR-Blunt vector and was Sequenced using standardized techniques. Subsequently, said fragment was cloned into the vector pUO9090 at the EcoRI and HindIII restriction sites generating plasmid pUO909016A.
  • a second 1559 bp fragment that is flanking downstream to the orfl9 gene was amplified by PCR.
  • oligonucleotides ORF16del3 (SEQ ID NO: 43) and ORF16del4 (SEQ ID NO: 44) were used to which the BamHI and EcoRV restriction targets were introduced respectively, this fragment was cloned into the pCR-Blunt vector and was subjected to sequencing using techniques Standardized Subsequently said fragment was cloned into the vector pUO909016A using the EcoRV and BamHI restriction sites to generate the vector pUO909016AB.
  • the replacement cassette was obtained from the vector pUO909016AB digested with Spel and was cloned into the vector pHZ1358.
  • the resulting construct, pHZ16AB was introduced in Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-L.
  • the strain CLM-L is deposited in the Spanish Type Culture Collection with deposit number 7754.
  • the mutant was shown not to produce colismicin through UPLC analysis of culinary samples of Streptomyces spp. CS40 and CLM-L exirated with eyl oily (FIG. 7B), thereby confirming the involvement of this gene in the biosynthesis of colismicin.
  • Example 7 Generation of mutants producing new derivatives of colismicin by gene replacement.
  • the replacement cassette was extracted from plasmid pU08AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ8AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-A.
  • the strain CLM-A is deposited in the Spanish Type Culture Collection with deposit number 7755.
  • a 1504 bp fragment was amplified by PCR to the region above the orf9 gene.
  • the oligonucleotides orfódell (SEQ ID NO: 49) and orf6del2b (SEQ ID NO: 50) that carried the EcoRI and HindIII resyriction sites were used respectively.
  • This fragment was cloned into the pCR-Blun ⁇ neighbor thus generating the plasmid pCRB6A that was sequenced using standard techniques.
  • the fragment was obtained by digesting the plasmid pCRB6A with EcoRI and HindIII and was cloned into the same sites of the neighbor pUO9090 generating the neighbor pU06A.
  • a 1504 bp fragment belonging to the downstream region of the orf9 gene was then amplified by PCR.
  • the orfódeB oligonucleotides (SEQ ID NO: 51) and orf6del4 (SEQ ID NO: 52) were used. This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB6B that was sequenced using standardized techniques.
  • the replacement cassette was extracted from plasmid pU06AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ6AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E.coli ET12567 (pUB307) to generate the mutant strain CLM-M2.
  • the strain CLM-M2 is deposited in the Spanish Type Culture Collection with deposit number 7756.
  • a 1496 bp fragment was amplified by PCR from the region running above the orfl4 gene.
  • the oligonucleotides orflOldell (SEQ ID NO: 53) and orfl01del2 (SEQ ID NO: 54) were used, which carried the EcoRI and HindIII restriction sites respectively (underlined sequence). This fragment was cloned into the pCR-Blun ⁇ vector thus generating the plasmid pCRBIOlA that was sequenced using standard techniques.
  • the fragment was obtained by digesting the plasmid pCRBIO lA with EcoRI and HindIII and cloned into the same sites of the vector pUO9090 generating the vector pUOlOlA.
  • a 1522 bp fragment was then amplified by PCR to the region running down the orfl3 gene.
  • the oligonucleotides orflOldeB (SEQ ID NO: 55) and orflOldeM (SEQ ID NO: 56) were used which bore the EcoRV resyriction site (underlined sequence). This fragment was cloned into the pCR-Blun ⁇ neighbor thus generating the plasmid pCRBlOlB that was sequenced using standardized techniques.
  • the fragment was obtained by digesting the plasmid pCRBlOlB with EcoRV and was cloned into the same site of the plasmid pUOlOlA thus generating the plasmid pUOlOlAB.
  • the replacement cassette was extracted from plasmid pUOlOlAB using Spel restriction sites and cloned into vector pHZ1358 to generate plasmid ⁇ that was introduced into Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-G.
  • the strain CLM-G is deposited in the Spanish Type Culture Collection with deposit number CECT7861.
  • transconjugants in which a double overcrossing event had occurred were selected for their resistance to apramycin and their sensitivity to thioestreptone. Chromosome replacement was confirmed in transconjugants by Southern analysis.
  • 6-methyl picolinic acid and 4-methylpyridine-2-carboxylic acid were added at a final concentration of 0.7 mM to the R5A medium in which the CLM-L, CLM-A and CLM-M2 mutants were inoculated. After 6 days of growth at 30 ° C, the new compounds generated with ethyl acetate were extracted.
  • Example 9 Generation of new derivatives of colismicin by enzymatic acylation catalyzed by a lipase.
  • Enzymatic acylations of colismicin A and colismicin C catalyzed by PS-C were carried out by incubating at 45 ° C and 250 rpm a suspension of 20 mg of lipase in a solution of 5 mg of colismicin A or colismicin C in 2 ml of ether methyl tertbutyl and 1 ml of the corresponding acylating agent.
  • the biotransformation conversion was monitored by HPLC, using an Agilent Technologies 1200 Series chromatographic equipment, using acetonitrile and water (without TFA) as solvents and a reverse phase column (Zorbax Eclipse XDB-C18, RR, 1 .8 ⁇ , 4.6 x 50 mm, Agilent).
  • the samples were eluted using a method of three linear gradients, the first from 10% to 60% acetonitrile over 5.7 minutes, then another gradient from 60% to 100% acetonitrile for 0.4 minutes, then 0.55 minutes in isocratic at 100% acetonitrile and a final gradient from 100% to 10% acetonitrile for 0.35 minutes, at a flow of 2 ml / min.
  • the wavelength at which the chromatograms were obtained was 332 nm.
  • colismicin A and colismicin C have a mobility of 2.29 and 1.90 min respectively.
  • the enzyme was filtered under vacuum in a filter plate and washed with abundant methyl tertbutyl ether and methanol.
  • the filtrate was concentrated in vacuo and the resulting residue, previously dissolved in 1 ml of methanol, was chromatographed on an XBridge Prep C18 column (30x150 mm, Waters), using acetonitrile mixtures as the mobile phase. water at a flow of 20 ml / min.
  • reaction time 10 hours and a conversion of 95% was achieved.
  • Example 10 Antitumor activity of the new compounds generated.
  • tumor cell lines were used for antitumor activity tests: A549 (lung), HT29 (colon), MDA-MB-231 (breast) and HCT116 (colon), as well as the non-tumor control line of NIH373 fibroblasts.
  • the cells were distributed in 96-well plates at a rate of 5,000 cells / well in 100 mL per well of DMEM medium supplemented with 10% FBS and 2 mM glutamine. They were then pre-incubated for 24 h without drug assay so that the cells adhered to the plaque. The following day the appropriate concentrations of the various compounds diluted in DMEM medium and always in a volume of 10 mL were added.
  • Table 9 Antitumor activity (IC50) of the different compounds against different cell lines.
  • Some compounds tested against certain cell lines showed IC50 values of micromolar order, as is the case of compounds of formula VI and formula VII against HCT116. However, some compounds showed less elevated cytotoxicity values, of an order greater than 100 micromolar against certain cell lines.
  • Example 11 Neuroprotective activity of the new compounds generated.
  • Neuroprotective activity tests were carried out using the zebrafish model. Embryo management, maintenance and breeding was carried out following standardized procedures (Westerfield, 1993; Kimmel et al., 1995). Once collected, they were kept in embryo water (135 ⁇ CaCl 2 , 623 ⁇ MgS04, 1.14mM NaHC0 3 , 402.41 ⁇ KC1, 10.7 mM NaCl, 348.5 ⁇ CaS0 4 .2H20, Scharlau Chemie, SA, 08016 Barcelona, Spain).
  • the embryos were treated after 3 days postfertilization for 24 hours with 10 ⁇ retinoic acid (CAS # 302-79-4, Sigma-Aldrich) (Selderslaghs et al, 2009) in the presence of each of the neuroprotective compounds to be tested and used as positive control ⁇ -lipoic acid (CAS 1077-28-7, Sigma-Aldrich) at 1 ⁇ .
  • Dimethyl sulfoxide (DMSO; 1%) was incorporated into the tests as it was the solvent in which the compounds to be tested were dissolved.
  • Retinoic acid and potentially neuroprotective compounds were added to the embryo water described above, using 15 zebrafish embryos.
  • the neuroprotectors were tested at the NOEC (Non-observed effect concentration) concentration. This NOEC, after a previous study, was determined as 1 ⁇ for all the compounds tested.
  • the control without treatment with retinoic acid showed few or no apoptotic cells (FIG. 14A). In contrast, embryos treated with retinoic acid showed a significant increase in brain apoptosis (FIG. 14B).
  • FIG 14C, D and E) are examples of co-treatment with retinoic acid and each of the compounds tested, including lipoic acid as a positive control (Packer et al., 1997. Free Radie Biol Med. ; 22 (1-2): 359-78.) (FIG. 20F) and using the NOEC concentration.
  • a 1542 bp fragment belonging to the downstream region of the orfl2 gene was amplified by PCR.
  • the oligonucleotides orf9del3 (SEQ ID NO: 57) and orf9del4 (SEQ ID NO: 58) were used.
  • This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB9B that was sequenced using standardized techniques.
  • the fragment was then obtained by digesting plasmid pCRB9B with EcoRI and cloned into the same site of vector pUO9090 to generate plasmid pU09B.
  • a 1598 bp fragment belonging to the upstream region of the orfl2 gene was then amplified by PCR.
  • the oligonucleotides orf9dell SEQ ID NO: 59
  • orf9del2 SEQ ID NO: 60
  • This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB9B that was sequenced using standardized techniques.
  • the fragment was obtained by digesting plasmid pCRB9A with EcoRI, became blunt and cloned into the EcoRV site of plasmid pU09A thereby generating plasmid pU09AB.
  • the replacement cassette was extracted from plasmid pU09AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ9AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E.coli ET 12567 (pUB307) to generate the mutant strain CLM-M1.
  • the strain CLM-M1 is deposited in the Spanish Type Culture Collection with deposit number 8070.
  • a 1564 bp fragment belonging to the upstream region of the orfl5 gene was amplified by PCR.
  • the oligonucleotides orfl2dell (SEQ ID NO: 61) and orfl2del2 (SEQ ID NO: 62) were used.
  • This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB12A that was sequenced using standardized techniques.
  • the fragment was obtained by digesting plasmid pCRB9B with HindIII and cloned into the same site of vector pUO9090 to generate plasmid pU012A.
  • a 2250 bp fragment belonging to the downstream region of the orfl2 gene (sites 10 and 11 in FIG. 2) was obtained by digestion of the coslC3 cosmid with BamHI. Said fragment was cloned into the EcoRV site of plasmid pU06A thereby generating plasmid pU012AB.
  • the replacement cassette was extracted from plasmid pU012AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ6AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E.coli ET12567 (pUB307) to generate the CLM-M mutant strain.
  • the strain CLM-M is deposited in the Spanish Type Culture Collection with deposit number 8069.
  • a 1488 bp fragment run down the gene was amplified by PCR, using the oligonucleó ⁇ idos orfl 3dell alt (SEQ ID NO: 63) and orfl 3del2 (SEQ ID NO: 64).
  • This fragment was introduced in the neighboring pCR-Blun ⁇ to give rise to plasmid pCRB13A which was sequenced following standard techniques.
  • the fragmenio was obtained by digesting the plasmid pCRB13A with EcoRI and was cloned into the same site of the neighbor pUO9090 generating the neighbor pU013A.
  • the replacement cassette was excised from plasmid pU013AB using the Spel restriction sites and cloned into the neighboring pHZ1358 to generate the plasmid pHZ13AB, which was introduced in Streptomyces spp. CS40 by inertomeric conjugation from E.coli ET12567 (pUB307) to generate the mumanie strain CLM-AH.
  • the strain CLM-AH is deposited in the Spanish Type Culinary Collection with deposit number 8071. In all cases the transconjugants in which a double overcrossing event had occurred were selected for their resistance to apramycin and their sensitivity to thioestreptone. Chromosome replacement was confirmed in transconjugants by Southern analysis.
  • NRPS nonribosomal peptide synthetases
  • TSVMs transductive support vector machines
  • ASMPKS an analysis system for modular polyketide synthases. BMC Bioinformatics 8, 327.

Abstract

The present invention relates to the isolation, cloning and sequencing of the group of genes involved in the biosynthesis of coly-mycin by Streptomyces spp. CS40, and to the use of said genes to increase the production of coly-mycin and/or associated analogous compounds or derivatives by means of productive strains. Said compounds produced in the present invention can be used to treat several diseases, such as cancer, neuro-degenerative diseases and infectious diseases.

Description

DERIVADOS DE COLISMICINA  COLISMYCIN DERIVATIVES
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está comprendida dentro del campo de la biología, la farmacia y la medicina. ESTADO DE LA TÉCNICA The present invention is comprised within the field of biology, pharmacy and medicine. STATE OF THE TECHNIQUE
Dentro de la naturaleza las moléculas que presentan en su estructura un grupo 2,2'- bipiridil son compuestos con un gran número de actividades biológicas descritas (Cristalli et al., 1986); (Gomi et al., 1994); (Tsuge et al. 1999). Una de estas moléculas es la colismicina producida por Streptomyces spp. CS40 (FIG. 1A), que presenta actividad antibiótica frente a bacterias Gram-positivas y Gram-negativas, antifúngica frente a un amplio espectro de hongos y citotóxica frente a células de leucemia P388 (Gomi et al. 1994); (Tsuge et al., 1999). Adicionalmente la colismicina está descrita como un inhibidor de la unión entre la dexametasona y los receptores de glucocorticoides (Shindo et al, 1994) y en la patente WO/2007/017146 se describe la capacidad de la colismicina para inhibir el estrés oxidativo en células. Within nature, the molecules that have a 2,2'-bipyridyl group in their structure are compounds with a large number of biological activities described (Cristalli et al., 1986); (Gomi et al., 1994); (Tsuge et al. 1999). One of these molecules is colismicin produced by Streptomyces spp. CS40 (FIG. 1A), which presents antibiotic activity against Gram-positive and Gram-negative bacteria, antifungal against a broad spectrum of fungi and cytotoxic against P388 leukemia cells (Gomi et al. 1994); (Tsuge et al., 1999). Additionally, colismicin is described as a binding inhibitor between dexamethasone and glucocorticoid receptors (Shindo et al, 1994) and in patent WO / 2007/017146 the ability of colismicin to inhibit oxidative stress in cells is described.
El desarrollo de la tecnología de ADN recombinante se está convirtiendo en una poderosa herramienta a la hora de incrementar nuestro conocimiento sobre los genes que participan en la biosíntesis de compuestos bioactivos. Esta tecnología puede hoy en día ser aplicada a la mejora en los niveles de producción de distintos compuestos bioactivos y a la obtención de nuevas moléculas derivadas con mejores propiedades clínicas a través de la combinación de genes de distintas rutas de biosíntesis de moléculas bioactivas y su expresión en microorganismos productores de estos compuestos, en lo que se ha denominado biosíntesis combinatoria. The development of recombinant DNA technology is becoming a powerful tool when it comes to increasing our knowledge about the genes involved in the biosynthesis of bioactive compounds. This technology can nowadays be applied to the improvement in the production levels of different bioactive compounds and to obtain new derived molecules with better clinical properties through the combination of genes of different bioactive molecule biosynthesis pathways and their expression in microorganisms producing these compounds, in what has been called combinatorial biosynthesis.
La tecnología de ADN recombinante ha hecho posible el aislamiento de agrupaciones de genes completas para la biosíntesis de distintos compuestos bioactivos utilizando, entre otras estrategias, la clonación, la selección o el análisis de genotecas de los microorganismos productores de moléculas con interés farmacológico mediante sondas de ADN. Esta estrategia se basa en la existencia de información genética previa sobre la ruta de biosíntesis o rutas relacionadas biosintéticamente, lo que permite utilizar o diseñar sondas genéticas a partir de la secuencia total o parcial de un enzima de biosíntesis. Recombinant DNA technology has made it possible to isolate clusters of complete genes for the biosynthesis of different bioactive compounds using, among other strategies, the cloning, selection or analysis of libraries of microorganisms producing molecules with pharmacological interest by probes of DNA This strategy is based on the existence of previous genetic information on the biosynthesis route or biosynthetically related routes, which allows to use or Design genetic probes from the total or partial sequence of a biosynthesis enzyme.
En la literatura científica no existe apenas información acerca de la maquinaria celular encargada de la biosíntesis de compuestos del tipo 2,2'- bipiridil. Tan sólo se han realizado estudios sobre la biosíntesis de una molécula de la familia 2-2 '-bipiridil, la caerulomicina. La caerulomicina es una molécula con una estructura similar a la de la colismicina (FIG. IB) producida por Streptomyces caeruleus (Funk y Divekar, 1959). In the scientific literature there is hardly any information about the cellular machinery responsible for the biosynthesis of compounds of the 2,2'-bipyridil type. Only studies have been carried out on the biosynthesis of a molecule of the 2-2'-bipyridil family, caerulomycin. Caerulomycin is a molecule with a structure similar to that of colismicin (FIG. IB) produced by Streptomyces caeruleus (Funk and Divekar, 1959).
A través de experimentos de incorporación de precursores marcados radiactivamente se identificaron algunas de las moléculas intermediarias durante la biosíntesis de caerulomicina, una de estas moléculas es el ácido picolínico (Vining et al., 1988). Este compuesto ha sido descrito, además, como un metabolito intermediario en la biosíntesis de otras moléculas bioactivas por parte de algunas especies de Streptomyces como es el caso de la nikomicina D (Bruntner y Bormann, 1998). En todos los casos descritos en la literatura el precursor para la biosíntesis del ácido picolínico ó 3-hidroxipicolínico (en el caso de la biosíntesis de virginiamicina) es el aminoácido lisina y las enzimas encargadas de la generación de este compuesto han sido identificadas, siendo la primera de ellas un enzima con actividad lisina 2-aminotransferasa (Bruntner y Bormann,. 1998; Namwat et al., 2002). Through experiments of incorporation of radioactively labeled precursors, some of the intermediary molecules were identified during the biosynthesis of caerulomycin, one of these molecules is picolinic acid (Vining et al., 1988). This compound has also been described as an intermediate metabolite in the biosynthesis of other bioactive molecules by some Streptomyces species such as nikomycin D (Bruntner and Bormann, 1998). In all cases described in the literature, the precursor for the biosynthesis of picolinic acid or 3-hydroxypicolinic acid (in the case of virginiamycin biosynthesis) is the amino acid lysine and the enzymes responsible for the generation of this compound have been identified, being the first of them an enzyme with lysine activity 2-aminotransferase (Bruntner and Bormann, 1998; Namwat et al., 2002).
La presente invención describe la clonación y secuenciación de la agrupación de genes de biosíntesis de colismicina en el microorganismo productor Streptomyces sp. CS40. La información genética disponible sobre enzimas del tipo lisina-2-aminotransferasa, ha sido usada para diseñar oligonucleótidos y construir una sonda genética que ha permitido el aislamiento y clonación de la agrupación de genes de biosíntesis de colismicina. Desde el punto de vista genético, no hay descripciones previas en la literatura relativas al aislamiento y secuenciación de la agrupación de genes de biosíntesis de colismicina u otra molécula de la familia 2,2'-bipiridil producida por especies de Streptomyces. The present invention describes the cloning and sequencing of the colismicin biosynthesis gene cluster in the Streptomyces sp. CS40 The genetic information available on enzymes of the lysine-2-aminotransferase type has been used to design oligonucleotides and construct a genetic probe that has allowed the isolation and cloning of the colismicin biosynthesis gene cluster. From the genetic point of view, there are no previous descriptions in the literature related to the isolation and sequencing of the biosynthesis gene cluster of colismicin or another molecule of the 2,2'-bipyridyl family produced by Streptomyces species.
La invención proporciona una importante herramienta para la manipulación genética de esta agrupación de genes en el sentido de aumentar la producción de colismicina y/o obtener nuevos derivados de esta molécula o moléculas estructuralmente relacionadas con propiedades mejoradas. The invention provides an important tool for the genetic manipulation of this gene cluster in the sense of increasing the production of colismicin and / or obtain new derivatives of this molecule or structurally related molecules with improved properties.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se relaciona con el aislamiento e identificación de una agrupación de genes que participan en la biosíntesis de colismicina por Streptomyces spp. CS40, y proporciona una herramienta para la manipulación genética de esta agrupación génica para aumentar la producción de colismicina y obtener nuevos derivados con propiedades mejoradas para su aislamiento y utilización, entre otros, en el sector farmacéutico o químico. The present invention relates to the isolation and identification of a cluster of genes that participate in the biosynthesis of colismicin by Streptomyces spp. CS40, and provides a tool for the genetic manipulation of this gene pool to increase the production of colismicin and obtain new derivatives with improved properties for their isolation and use, among others, in the pharmaceutical or chemical sector.
Esta invención describe una secuencia de ADN que contiene 24 genes implicados en la biosíntesis de colismicina y sus precursores, incluyendo aquellos implicados en la regulación del agrupamiento génico. El agrupamiento génico incluye genes que codifican para un sistema híbrido policétido sintasa-péptido sintetasa no ribosomal (PCS-NRPS) encargado de sintetizar la estructura central de la colismicina, genes que codifican enzimas implicados en la biosíntesis del precursor ácido picolínico de la colismicina, genes que codifican enzimas implicados en modificaciones de la molécula tales como deshidrogenasas, aminotransferasas y metiltransferasas. La invención por tanto se refiere a nuevos genes y moléculas de ácidos nucleicos que codifican proteínas/polipéptidos que muestran actividades funcionales implicadas en la biosíntesis de colismicina, y su potencial aplicación en el incremento de los niveles de producción de colismicina en Streptomyces spp. CS40 y en la producción de nuevos derivados de colismicina. This invention describes a DNA sequence containing 24 genes involved in the biosynthesis of colismicin and its precursors, including those involved in the regulation of gene pooling. The gene pool includes genes that code for a non-ribosomal polyketide synthase-peptide synthetase (PCS-NRPS) hybrid system responsible for synthesizing the central structure of colismicin, genes that encode enzymes involved in the biosynthesis of the picolinic acid precursor of colismicin, genes which encode enzymes involved in modifications of the molecule such as dehydrogenases, aminotransferases and methyltransferases. The invention therefore relates to new genes and nucleic acid molecules that encode proteins / polypeptides that show functional activities involved in the biosynthesis of colismicin, and its potential application in increasing the levels of colismicin production in Streptomyces spp. CS40 and in the production of new derivatives of colismicin.
Los procedimientos experimentales aplicados a la presente invención incluyen métodos de biología molecular convencionales. Una descripción detallada de los métodos utilizados y no detallados aquí se puede obtener de Hopwood et al. (1985); Sambrook et al. (1989) y Kieser et al, (2000). Experimental procedures applied to the present invention include conventional molecular biology methods. A detailed description of the methods used and not detailed here can be obtained from Hopwood et al. (1985); Sambrook et al. (1989) and Kieser et al, (2000).
Con el fin de clonar la agrupación de genes de biosíntesis de colismicina, se construyó una genoteca de ADN cromosómico de Streptomyces spp. CS40 en Escherichia coli, utilizando el cósmido pWE15 (ver ejemplo 2). Para el aislamiento de la agrupación de genes de biosíntesis de colismicina se utilizó una sonda genética consistente en un fragmento de PCR de 412 bp procedente de la amplificación parcial del gen que codifica para una lisina 2-aminotransferasa implicada en la biosíntesis de colismicina. Para su amplificación se utilizó como molde el ADN cromosómico de la cepa CS40 y dos oligonucleótidos: L2ATsonl (SEQ ID NO: 31) y L2ATson2 (SEQ. ID NO: 32) diseñados en base a la secuencia nucleotídica de una lisina 2-aminotransferasa cuya secuencia, de aproximadamente 500 bp, se identificó previamente usando los oligonucleótidos degenerados L2ATFW2 (SEQ. ID NO: 29) y L2ATRV2 (SEQ ID NO: 30). La utilización de esta sonda en la hibridación de la genoteca de ADN cromosómico de Streptomyces spp. CS40 permitió aislar un cósmido (coslC3) que define una región de aproximadamente 41 kb en el cromosoma. La participación del ADN clonado en el cósmido coslC3 en la biosíntesis de colismicina se determinó utilizando un fragmento BamHl de 3128 bp, que contenía un fragmento interno a un gen que codifica para una NRPS. Este fragmento fue clonado en el plásmido pOJ260 (Bierman et al., 1992). La construcción resultante se usó para la disrupción génica en Streptomyces spp. CS40 generando un muíante no productor de colismicina (ver ejemplo 4) como prueba de la implicación del ADN clonado en la biosíntesis de colismicina. In order to clone the colismicin biosynthesis gene cluster, a Streptomyces spp. Chromosomal DNA library was constructed. CS40 in Escherichia coli, using the cosmid pWE15 (see example 2). For the isolation of the colismicin biosynthesis gene cluster, a genetic probe consisting of a 412 bp PCR fragment from the partial amplification of the gene encoding a 2-aminotransferase lysine involved in the biosynthesis of colismicin was used. For its amplification, the chromosomal DNA of strain CS40 and two oligonucleotides were used as template: L2ATsonl (SEQ ID NO: 31) and L2ATson2 (SEQ. ID NO: 32) designed based on the nucleotide sequence of a lysine 2-aminotransferase whose sequence, of approximately 500 bp, was previously identified using degenerate oligonucleotides L2ATFW2 (SEQ. ID NO: 29) and L2ATRV2 (SEQ ID NO: 30). The use of this probe in the hybridization of the Streptomyces spp. Chromosomal DNA library. CS40 allowed to isolate a cosmid (coslC3) that defines a region of approximately 41 kb on the chromosome. The participation of the cloned DNA in the coslC3 cosmid in the biosynthesis of colismicin was determined using a BamHl fragment of 3128 bp, which contained an internal fragment to a gene encoding an NRPS. This fragment was cloned into plasmid pOJ260 (Bierman et al., 1992). The resulting construct was used for gene disruption in Streptomyces spp. CS40 generating a non-producing colismicin mutant (see example 4) as evidence of the involvement of cloned DNA in the biosynthesis of colismicin.
No obstante, el análisis de la secuencia del cósmido coslc3 mostró la necesidad de extender la región hacia la izquierda para buscar otros genes no presentes en el cósmido coslC3, posiblemente implicados en la biosíntesis de colismicina. Un fragmento amplificado por PCR usando los oligonucleótidos Ic3-5FW (SEQ ID NO: 33) y l c3- 5RV (SEQ ID NO: 42) de 1,9 kb del extremo del cósmido coslC3 se usó como sonda para analizar de nuevo la genoteca de Streptomyces spp. CS40 aislándose un nuevo cósmido solapante con el cósmido coslC3, cos3Bl 1, usado para completar la secuencia de 46672 bp de la región que contiene el agrupamiento génico implicado en la biosíntesis de colismicina (FIG. 2). However, analysis of the coslc3 cosmid sequence showed the need to extend the region to the left to look for other genes not present in the coslC3 cosmid, possibly involved in the biosynthesis of colismicin. A PCR amplified fragment using the oligonucleotides Ic3-5FW (SEQ ID NO: 33) and the c3-5RV (SEQ ID NO: 42) of 1.9 kb from the end of the coslC3 cosmid was used as a probe to re-analyze the library of Streptomyces spp. CS40 isolating a new cosmid overlapping with the cosmid coslC3, cos3Bl 1, used to complete the 46672 bp sequence of the region that contains the gene pool involved in colismicin biosynthesis (FIG. 2).
La asignación de funciones en la biosíntesis a los distintos productos génicos se realizó mediante comparación de sus secuencias aminoacídicas con las de otras proteínas presentes en bases de datos (ver ejemplo 3). Algunos genes codifican enzimas biosintéticos estructurales (incluyendo PCSs, NRPSs, etc.), activadores transcripcionales, proteínas implicadas en la exportación al exterior de la célula, y proteínas implicadas en el aporte de precursores para la biosíntesis de colismicina. La participación de esta agrupación génica en la biosíntesis de colismicina se demostró mediante inactivaciones de diferentes genes tanto por disrupción como por reemplazamiento génico (ver ejemplos 4, 6 y 8), generándose en algunos de ellos nuevos derivados de colismicina (ver ejemplos 7 y 8). La actividad antitumoral de los nuevos compuestos generados por manipulación de la ruta de biosíntesis de colismicina se ha valorado mediante ensayos de citotoxicidad in vitro frente a distintas líneas celulares tumorales (ver ejemplo 9). La actividad neuroprotectora de los nuevos compuestos se ha valorado en ensayos utilizando el modelo del pez cebra (ver ejemplo 10). No todos los genes identificados en la región de ADN presentada en esta invención forman parte del agrupamiento génico implicado en la biosíntesis de colismicina. El establecimiento de los límites del agrupamiento génico se realizó mediante disrupción de los genes orfl y orf27 y reemplazamiento del gen orf25 (ver ejemplo 5). La presente invención describe procedimientos para la manipulación de los genes de biosíntesis, encaminados a obtener nuevos derivados de la colismicina por técnicas de disrupción y/o reemplazamiento génico generando mutantes en la biosíntesis de colismicina que acumulen distintos intermediarios. Las nuevas cepas generadas, productoras de análogos de colismicina por manipulación genética son las denominadas Streptomyces spp. CLM-A, Streptomyces spp. CLM-L, Streptomyces spp. CLM-M2 y han sido depositadas en la Colección Española de Cultivos Tipo (CECT), con números de depósito 7755, 7754, 7756 y 7757 respectivamente. Igualmente, las cepas Streptomyces spp. CLM-M, Streptomyces spp. CLM-M1, Streptomyces spp. CLM-AH han sido depositadas en la Colección Española de Cultivos Tipo (CECT) con números de depósito 8069, 8070 y 8071, respectivamente. The assignment of functions in biosynthesis to the different gene products was done by comparing their amino acid sequences with those of other proteins present in databases (see example 3). Some genes encode structural biosynthetic enzymes (including PCSs, NRPSs, etc.), activators transcriptional, proteins involved in the export abroad of the cell, and proteins involved in the contribution of precursors for the biosynthesis of colismicin. The participation of this gene pool in the biosynthesis of colismicin was demonstrated by inactivations of different genes both by disruption and by gene replacement (see examples 4, 6 and 8), generating in some of them new derivatives of colismicin (see examples 7 and 8 ). The antitumor activity of the new compounds generated by manipulation of the colismicin biosynthesis pathway has been assessed by in vitro cytotoxicity assays against different tumor cell lines (see example 9). The neuroprotective activity of the new compounds has been assessed in trials using the zebrafish model (see example 10). Not all genes identified in the DNA region presented in this invention are part of the gene pool involved in the biosynthesis of colismicin. The establishment of the limits of gene clustering was performed by disruption of the orfl and orf27 genes and replacement of the orf25 gene (see example 5). The present invention describes methods for the manipulation of biosynthesis genes, aimed at obtaining new derivatives of colismicin by disruption and / or gene replacement techniques generating mutants in colismicin biosynthesis that accumulate different intermediates. The new strains generated, producing analogs of colismicin by genetic manipulation are called Streptomyces spp. CLM-A, Streptomyces spp. CLM-L, Streptomyces spp. CLM-M2 and have been deposited in the Spanish Type Culture Collection (CECT), with deposit numbers 7755, 7754, 7756 and 7757 respectively. Similarly, Streptomyces spp. CLM-M, Streptomyces spp. CLM-M1, Streptomyces spp. CLM-AH have been deposited in the Spanish Type Crops Collection (CECT) with deposit numbers 8069, 8070 and 8071, respectively.
La presente invención proporciona asimismo compuestos análogos de colismicina A y colismicina C obtenidos mediante acilación enzimática catalizada por una lipasa del grupo oxima o hidroxilo, respectivamente. The present invention also provides analogous compounds of colismicin A and colismicin C obtained by enzymatic acylation catalyzed by a lipase of the oxime or hydroxyl group, respectively.
En el sentido de la presente invención se entiende por acilación enzimática la transformación de un sustrato en un derivado acilado a partir de su reacción con un agente acilante catalizada por lipasa. Lipasas útiles para la acilación pueden encontrarse en Tetrahedron 2004, 60, 501-519; Chem. Soc. Rev. 2004, 33, 201-209; o Adv. Synth. Catal. 2006, 348, 797-812. Más concretamente, en la presente invención se utiliza la lipasa de Burkholderia cepacia (PS-C), para obtener derivados de colismicina A y colismicina C acilados. Estas lipasas se presentan en diferentes formas de inmovilización sobre soportes hidrófobos y mecánicamente resistentes o sobre resinas acrílicas, como puede ser una resina epoxiacrílica activada con grupos deca-octilo. Agentes acilantes útiles para la presente invención son aquellos que pueden actuar como sustratos de la lipasa utilizada dando lugar a la acilación de la colismicina A y colismicina C, y pueden ser ésteres, carbonatos y anhídridos. La reacción puede llevarse a cabo en una gran variedad de disolventes orgánicos. Más concretamente, en la presente invención se utiliza el éter metil tertbutílico (MTBE). En general la temperatura debe mantener la estructura de la enzima intacta sin que se produzcan fenómenos de desnaturalización. La reacción puede llevarse a cabo entre 5 y 60°C, preferiblemente entre 10 y 60°C, más preferiblemente entre 20 y 50°C. Asimismo, la presente invención proporciona compuestos caracterizados por la siguiente fórmula (I): Within the meaning of the present invention, enzymatic acylation is understood as the transformation of a substrate into an acylated derivative from its reaction with an acylating agent catalyzed by lipase. Lipases useful for acylation can be found in Tetrahedron 2004, 60, 501-519; Chem. Soc. Rev. 2004, 33, 201-209; or Adv. Synth Catal. 2006, 348, 797-812. More specifically, in the present invention Burkholderia cepacia lipase (PS-C) is used to obtain acylated colismicin A and colismicin C derivatives. These lipases are presented in different forms of immobilization on hydrophobic and mechanically resistant supports or on acrylic resins, such as an epoxyacrylic resin activated with deca-octyl groups. Acylating agents useful for the present invention are those that can act as substrates of the lipase used resulting in the acylation of colismicin A and colismicin C, and may be esters, carbonates and anhydrides. The reaction can be carried out in a wide variety of organic solvents. More specifically, in the present invention methyl tertbutyl ether (MTBE) is used. In general, the temperature must keep the enzyme structure intact without denaturing phenomena. The reaction can be carried out between 5 and 60 ° C, preferably between 10 and 60 ° C, more preferably between 20 and 50 ° C. Also, the present invention provides compounds characterized by the following formula (I):
Figure imgf000007_0001
Figure imgf000007_0001
(I) donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector. El grupo protector puede consistir en un grupo alquilo, un grupo cicloalquilo, un grupo cicloalquilo heterocíclico, un grupo hidroxialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfo combinación de ellos; exceptuando los compuestos con las siguientes fórmulas: (I) where Ri, R 2 , R 3 and R4 are, each and independently, hydrogen or a protecting group. The protecting group may consist of an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, a alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a oxime group, a nitrile group, a urethane group, a silyl group, a sulfo group combining them; Except for compounds with the following formulas:
Figure imgf000008_0001
, también conocido como Colismicina A y como (E)-5- (metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-carbaldehido oxima,
Figure imgf000008_0001
, also known as Colismicin A and as (E) -5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -carbaldehyde oxime,
Figure imgf000008_0002
, también conocido como Colismicina B, y como (Z)-5- (metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-carbaldehido oxima, y
Figure imgf000008_0002
, also known as Colismicin B, and as (Z) -5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -carbaldehyde oxime, and
Figure imgf000008_0003
, también conocido como Colismicina C y como 5-(metiltio)- 4-metoxi-[2,2'-bipiridin-6-il]-metanol.
Figure imgf000008_0003
, also known as Colismicin C and as 5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -methanol.
En particular, la presente invención proporciona, entre otros, los compuestos de Fórmula II a XVI comprendidos en la Fórmula I: In particular, the present invention provides, among others, the compounds of Formula II to XVI comprised in Formula I:
• Fórmula II: 6-(hidroximetil)-5-(metiltio)-[2,2'-bipiridin-4-ol]. • Formula II: 6- (hydroxymethyl) -5- (methylthio) - [2,2'-bipyridin-4-ol].
• Fórmula III: (E)-4-hidroxi-5-(metiltio)-[2,2'-bipiridin-6-il]-carbaldehido oxima. • Formula III: (E) -4-hydroxy-5- (methylthio) - [2,2'-bipyridin-6-yl] -carbaldehyde oxime.
• Fórmula IV: 4-hidroxi-5-(metiltio)-[2,2'-bipiridinil-6-il]-carbonitrilo. • Formula IV: 4-hydroxy-5- (methylthio) - [2,2'-bipyridinyl-6-yl] -carbonitrile.
• Fórmula V: ácido 4-hidroxi-5-(metiltio)-[2,2'-bipiridin-6-il]-carboxílico.  • Formula V: 4-hydroxy-5- (methylthio) - [2,2'-bipyridin-6-yl] -carboxylic acid.
• Fórmula VI: (E)-6'-metil-5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]- carbaldehido oxima.  • Formula VI: (E) -6'-methyl-5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] - carbaldehyde oxime.
• Fórmula VII: (E)-4'-metil-5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]- carbaldehido oxima.  • Formula VII: (E) -4'-methyl-5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] - carbaldehyde oxime.
• Fórmula VIII: 4'-metil-5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-metanol. Fórmula IX: (E)-4-hidroxi-4 '-metil-5-(metiltio)-[2,2'-bipiridin-6-il]- carbaldehido oxima. • Formula VIII: 4'-methyl-5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -methanol. Formula IX: (E) -4-hydroxy-4'-methyl-5- (methylthio) - [2,2'-bipyridin-6-yl] - carbaldehyde oxime.
Fórmula X: 4-hidroxi-4'-metil-5-(metiltio)-[2,2'-bipiridin-6-il]-carbonitrilo. Fórmula XI: acetato de 5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-metilo.  Formula X: 4-hydroxy-4'-methyl-5- (methylthio) - [2,2'-bipyridin-6-yl] -carbonitrile. Formula XI: 5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -methyl acetate.
Fórmula XII: butanoato de 5-(metiltio)-4-metoxi-[2,2'-bipiridin6-il]-metilo. Fórmula XIII: benzoato de 5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-metilo. Fórmula XIV: (E)-5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-carbaldehido O- acetil oxima. Formula XII: 5- (methylthio) -4-methoxy- [2,2'-bipyridin6-yl] -methyl butanoate. Formula XIII: 5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -methyl benzoate. Formula XIV: (E) -5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -carbaldehyde O-acetyl oxime.
Fórmula XV: (E)-5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-carbaldehido O- cloroacetil oxima.  Formula XV: (E) -5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -carbaldehyde O-chloroacetyl oxime.
Fórmula XVI: (E)-5-(metiltio)-4-metoxi-[2,2'-bipiridin-6-il]-carbaldehido O- butanoil oxima. Formula XVI: (E) -5- (methylthio) -4-methoxy- [2,2'-bipyridin-6-yl] -carbaldehyde O-butanoyl oxime.
Figure imgf000010_0001
Figure imgf000010_0001
La presente invención proporciona asimismo los compuestos de Fórmula XVII, XVIII, XIX y XX: Fórmula XVII : 6- [N-( 1 -Carboxi-3 -metilbutil)carbamoil] -5 -metiltio [2,2 ' bipiridina]-4-ol. The present invention also provides the compounds of Formula XVII, XVIII, XIX and XX: Formula XVII: 6- [N- (1-Carboxy-3-methylbutyl) carbamoyl] -5-methylthio [2,2 'bipyridine] -4-ol.
Fórmula XVIII: 2-(l-Carboxi-3-metilbutil)-5-(2-piridil)-2,3-dihidro-l ,2 tiazo lo [4,5 -b]piridin-3 -ona.  Formula XVIII: 2- (1-Carboxy-3-methylbutyl) -5- (2-pyridyl) -2,3-dihydro-1, 2 thiazo lo [4,5-b] pyridin-3-one.
Fórmula XIX: N-((4-hidroxi-5-(metiltio)-[2,2'-bipiridin]-6-il)metil)acetamida. Fór -hidroxi-5-(metilsulfinil)-[2,2'-bipiridina]-6-carboxamida.  Formula XIX: N - ((4-hydroxy-5- (methylthio) - [2,2'-bipyridin] -6-yl) methyl) acetamide. For -hydroxy-5- (methylsulfinyl) - [2,2'-bipyridine] -6-carboxamide.
Figure imgf000011_0001
Figure imgf000011_0001
(XIX) (XX)  (XIX) (XX)
Estos compuestos son derivados o análogos de colismicina A con un grupo metilo en posiciones 4' o 6' (compuestos de fórmula VI y VII, respectivamente), colismicina A desmetilada en 4 (compuesto de fórmula III), colismicina A desmetilada en 4 y con un grupo metilo en 4' (compuesto de fórmula IX), colismicina C desmetilada en 4 (compuesto de fórmula II), colismicina C metilada en 4' (compuesto de fórmula VIII), o bien compuestos análogos con la unidad 2,2'-bipiridil característica y un grupo funcional nitrilo o ácido carboxílico en posición 6 (compuestos de fórmula IV, V y X). Asimismo, los compuestos de fórmula XI, XII y XIII son ésteres derivados de colismicina C y los compuestos de fórmula XIV, XV y XVI son ésteres de oxima derivados de colismicina A. Asimismo, los compuestos XVII y XVIII son precursores de colismicina con un resto leucina adicional y los compuestos XIX y XX son compuestos análogos con la unidad 2,2'-bipiridil característica y un grupo funcional amida. La presente invención describe asimismo el uso de los nuevos compuestos como antibióticos, antitumorales o neuroprotectores. These compounds are derivatives or analogs of colismicin A with a methyl group at 4 'or 6' positions (compounds of formula VI and VII, respectively), colismicin A demethylated at 4 (compound of formula III), colismicin A demethylated at 4 and with a 4 'methyl group (compound of formula IX), 4-methylated colismicin C (compound of formula II), 4' methylated colismicin C (compound of formula VIII), or compounds similar to the 2,2'- unit characteristic bipyridyl and a nitrile or carboxylic acid functional group in position 6 (compounds of formula IV, V and X). Likewise, the compounds of formula XI, XII and XIII are esters derived from colismicin C and the compounds of formula XIV, XV and XVI are oxime esters derived from colismicin A. Also, compounds XVII and XVIII are precursors of colismicin with a residue Additional leucine and compounds XIX and XX are analogous compounds with the characteristic 2,2'-bipyridyl unit and an amide functional group. The present invention also describes the use of the new compounds as antibiotics, antitumor or neuroprotective.
Los compuestos de la invención son inhibidores del crecimiento de tumores y son por tanto útiles en el tratamiento del cáncer. Así mismo los compuestos de la invención son inhibidores de la lisis o la apoptosis neuronal inducida por estrés oxidativo y por tanto útiles en el tratamiento de aquellas enfermedades neurodegenerativas causadas por agentes oxidantes, tanto exógenos como endógenos, al paciente. The compounds of the invention are tumor growth inhibitors and are therefore useful in the treatment of cancer. Likewise, the compounds of the invention are inhibitors of lysis or neuronal apoptosis induced by oxidative stress and therefore useful in the treatment of those neurodegenerative diseases caused by oxidizing agents, both exogenous and endogenous, to the patient.
De esta forma, son objeto de la presente invención las composiciones farmacéuticas que comprenden una cantidad terapéuticamente efectiva de un compuesto de Fórmula (I) o una sal o solvato farmacéuticamente aceptable del mismo en la manufacturación de un medicamento. Thus, pharmaceutical compositions comprising a therapeutically effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament are object of the present invention.
Es también objeto de la presente invención el uso de un compuesto de Fórmula (I) o una sal o solvato farmacéuticamente aceptable del mismo para inhibir el crecimiento de un tumor o la lisis o apoptosis neuronal causada por estrés oxidativo. Tal como es usado aquí, "inhibir" significa disminuir, hacer más lento, o detener. Por tanto, un compuesto de esta invención puede disminuir, hacer más lento, o detener el crecimiento de una célula tumoral o bien disminuir hacer más lenta, o detener la lisis o la apoptosis neuronal en condiciones de estrés oxidativo. It is also the object of the present invention to use a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof to inhibit the growth of a tumor or neuronal lysis or apoptosis caused by oxidative stress. As used here, "inhibit" means decrease, slow down, or stop. Therefore, a compound of this invention can decrease, slow down, or stop the growth of a tumor cell or decrease slow down, or stop lysis or neuronal apoptosis under conditions of oxidative stress.
Tal como es usado aquí, "crecimiento" significa aumento en tamaño, o proliferación, o ambos. Por tanto, un compuesto de esta invención puede inhibir el aumento de tamaño de una célula tumoral y/o puede impedir que la célula tumoral se divida y aumente el número de células tumorales. Una "célula tumoral" es una célula que constituye un neoplasma (crecimiento nuevo), el cual puede ser canceroso (maligno) o no canceroso (benigno). Una célula tumoral cancerosa puede invadir los tejidos normales a su alrededor y los vasos sanguíneos/linfáticos y formar metástasis en tejidos alejados del tumor original. Por el contrario, una célula tumoral no cancerosa puede crecer y comprimir los tejidos normales adyacentes pero no puede invadir tejidos normales y vasos sanguíneos/linfáticos, y tampoco puede formar metástasis en tejidos alejados del tumor original. Tal como es usado aquí, enfermedad neurodegenerativa significa aquel tipo de enfermedad cuyos síntomas son el resultado de la muerte por lisis o apoptosis de neuronas. El estrés oxidativo en el contexto de enfermedad neurodegenerativa se refiere a aquella situación anómala en la que el citoplasma de las neuronas presenta un aumento de la cantidad de especies reactivas de oxígeno (H202, H02, O2 y OH"). Estas especies reactivas de oxígeno pueden ser generadas por el propio metabolismo de la neurona enferma, por otros órganos del individuo o ser exógenas al individuo. As used herein, "growth" means increase in size, or proliferation, or both. Thus, a compound of this invention may inhibit the increase in size of a tumor cell and / or may prevent the tumor cell from dividing and increase the number of tumor cells. A "tumor cell" is a cell that constitutes a neoplasm (new growth), which can be cancerous (malignant) or non-cancerous (benign). A cancerous tumor cell can invade normal surrounding tissues and blood / lymphatic vessels and metastasize in tissues away from the original tumor. In contrast, a non-cancerous tumor cell can grow and compress adjacent normal tissues but cannot invade normal tissues and blood / lymphatic vessels, nor can it metastasize in tissues away from the original tumor. As used herein, neurodegenerative disease means that type of disease whose symptoms are the result of death from lysis or apoptosis of neurons. Oxidative stress in the context of neurodegenerative disease refers to that anomalous situation in which the cytoplasm of neurons shows an increase in the amount of reactive oxygen species (H 2 0 2 , H0 2 , O 2 and OH " ). These reactive oxygen species can be generated by the diseased neuron's own metabolism, by other organs of the individual or be exogenous to the individual.
Tal como es usado aquí, un compuesto neuroprotector frente al estrés oxidativo es aquel compuesto capaz de detener, minimizar o ralentizar la lisis o la apoptosis neuronal causada por agentes oxidantes. As used herein, a neuroprotective compound against oxidative stress is that compound capable of stopping, minimizing or slowing down lysis or neuronal apoptosis caused by oxidizing agents.
Es también objeto de la presente invención el uso de un compuesto de Fórmula (I) o una sal o solvato farmacéuticamente aceptable del mismo para tratar el cáncer o enfermedades neurodegenerativas causadas o agravadas por la lisis o apoptosis neuronal inducida por estrés oxidativo. Es también objeto de la presente invención el uso de un compuesto de Fórmula (I) o una sal o solvato farmacéuticamente aceptable del mismo en la manufacturación de un medicamento con actividad antitumoral o neuroprotectora frente a estrés oxidativo. It is also the object of the present invention to use a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof to treat cancer or neurodegenerative diseases caused or aggravated by lysis or neuronal apoptosis induced by oxidative stress. It is also the object of the present invention to use a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a medicament with antitumor or neuroprotective activity against oxidative stress.
Es también objeto de la presente invención el uso de un compuesto de Fórmula (I) o una sal o solvato farmacéuticamente aceptable del mismo en la manufacturación de un me dic amento p ara e l tratami ento de l cánc er o de ci ertas enfermedades neuro degenerativas . It is also the object of the present invention to use a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof in the manufacture of a drug for the treatment of cancer or neurodegenerative diseases. .
Es también objeto de la presente invención un método de tratamiento de un sujeto, incluyendo un ser humano, diagnosticado con cáncer o con una enfermedad neurodegenerativa, que consiste en tratar a dicho sujeto con una cantidad terapéuticamente efectiva de un compuesto de fórmula (I) o una sal o solvato farmacéuticamente aceptable del mismo. The subject of the present invention is also a method of treating a subject, including a human being, diagnosed with cancer or with a neurodegenerative disease, which consists in treating said subject with a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
Tal como es usado aquí, un "sujeto" puede incluir animales domesticados (por ejemplo, gatos, perros, etc.), ganado (por ejemplo, vacas, caballos, cerdos, ovejas, cabras, etc.), animales de laboratorio (por ejemplo, ratones, conejos, cobayas, etc.) y pájaros. De manera preferente, el sujeto es un mamífero tal como un primate y, con mayor preferencia, un ser humano. As used herein, a "subject" may include domesticated animals (for example, cats, dogs, etc.), livestock (for example, cows, horses, pigs, sheep, goats, etc.), laboratory animals (for for example, mice, rabbits, guinea pigs, etc.) and birds. From preferably, the subject is a mammal such as a primate and, more preferably, a human being.
En general, una "cantidad terapéuticamente eficaz" de un compuesto es aquella cantidad necesaria para conseguir el resultado deseado. Por ejemplo, la cantidad eficaz de un compuesto de la presente invención trata el cáncer mediante la inhibición del crecimiento de las células que constituyen el tumor, con lo que previene la invasión de tejidos normales y vasos sanguíneos/linfáticos por parte de las células tumorales y, por tanto, previene metástasis, o bien cantidad efectiva de un compuesto de la presente invención es aquella capaz de ralentizar o inhibir la apoptosis neuronal en condiciones de estrés oxidativo. La expresión "composición farmacéutica aceptable" se refiere a un material adecuado biológicamente, es decir, que el material puede ser administrado al sujeto sin causarle efectos biológicos sustancialmente dañinos. In general, a "therapeutically effective amount" of a compound is that amount necessary to achieve the desired result. For example, the effective amount of a compound of the present invention treats cancer by inhibiting the growth of the cells that constitute the tumor, thereby preventing the invasion of normal tissues and blood / lymphatic vessels by tumor cells and Therefore, it prevents metastasis, or an effective amount of a compound of the present invention is one capable of slowing down or inhibiting neuronal apoptosis under conditions of oxidative stress. The term "acceptable pharmaceutical composition" refers to a biologically suitable material, that is, that the material can be administered to the subject without causing substantially harmful biological effects.
Las dosis o cantidades de los compuestos de la invención deben ser suficientemente grandes para producir el efecto deseado. Sin embargo, la dosis no debe ser tan alta que cause efectos secundarios adversos, por ejemplo reacciones cruzadas indeseadas, reacciones anafilácticas, y similares. Generalmente, la dosis variará con la edad, condición, sexo y el grado de la enfermedad del sujeto, y puede ser determinada por cualquier experto en la materia. La dosis puede ser ajustada por cada médico, en base a la condición clínica del sujeto implicado. La dosis, régimen de dosificación y ruta de la administración pueden variarse. The doses or amounts of the compounds of the invention must be large enough to produce the desired effect. However, the dose should not be so high that it causes adverse side effects, for example, unwanted cross reactions, anaphylactic reactions, and the like. Generally, the dose will vary with the age, condition, sex and degree of the subject's disease, and can be determined by any person skilled in the art. The dose can be adjusted by each doctor, based on the clinical condition of the subject involved. The dose, dosage regimen and route of administration may be varied.
Los compuestos de la invención pueden ser útiles para la investigación en bioquímica o biología celular. The compounds of the invention may be useful for research in biochemistry or cell biology.
Cualquiera de los compuestos de la invención puede ser utilizado terapéuticamente formando parte de una composición farmacéutica aceptable. Las composiciones farmacéuticas aceptables pueden consistir en soluciones estériles en agua, soluciones salinas, o soluciones tamponadas a pH fisiológico. Cualquiera de los compuestos de la invención puede ser preparado en forma de composición farmacéutica. Las composiciones farmacéuticas pueden incluir diversos agentes transportadores, espesantes, diluentes, tamponantes, conservantes, tensoactivos, y otros, además del compuesto de la invención. Las composiciones farmacéuticas pueden incluir también ingredientes activos tales como agentes antimicrobianos, antiinflamatorios, anestésicos, etc. Any of the compounds of the invention can be used therapeutically as part of an acceptable pharmaceutical composition. Acceptable pharmaceutical compositions may consist of sterile solutions in water, saline solutions, or buffered solutions at physiological pH. Any of the compounds of the invention can be prepared in the form of a pharmaceutical composition. The pharmaceutical compositions may include various transport agents, thickeners, diluents, buffers, preservatives, surfactants, and others, in addition to the compound of the invention. Pharmaceutical compositions may also include active ingredients such as antimicrobial agents, anti-inflammatories, anesthetics, etc.
Los compuestos de la invención pueden ser administrados al sujeto de varias maneras distintas, dependiendo de si se desea que el tratamiento sea local o sistémico, y dependiendo del área a ser tratada. Así por ejemplo, un compuesto de la presente invención puede ser administrado en forma de solución oftálmica, de aplicación en la superficie del ojo. Además un compuesto puede ser administrado a un sujeto por vía vaginal, rectal, intranasal, oral, por inhalación, o por vía parenteral, ya sea por ruta intradermal, subcutánea, intramuscular, intraperitoneal, intrarrectal, intraarterial, intralinfática, intravenosa, intratecal e intratraqueal. La administración parenteral, si se emplea, se realiza generalmente mediante inyección. Los inyectables pueden ser preparados de diversas formas, tales como soluciones o suspensiones líquidas, formas sólidas adecuadas para ser disueltas o puestas en suspensión antes de la inyección, o como emulsiones. Otras formas de administración parenteral emplean sistemas de liberación lenta o sostenida, de tal forma que se consigue mantener una dosis constante (ver, por ejemplo, patente US 3,710,795). Las preparaciones para la administración parenteral incluyen soluciones estériles acuosas o no acuosas, suspensiones, y emulsiones, que además pueden contener tampones y aditivos diluentes y otros. Ejemplos de solventes no acuosos son: propilenglicol, polietilenglicol, aceites vegetales tales como el aceite de oliva, y ésteres orgánicos inyectables tales como etiloleato. Ejemplos de solventes acuosos son: agua, soluciones alcohólico-acuosas, emulsiones o suspensiones, incluyendo soluciones salinas y tamponadas. Ejemplos de vehículos parenterales son: solución de cloruro sódico, dextrosa de Ringer, cloruro de sodio y dextrosa, etc. También pueden estar presentes conservantes y otros aditivos, tales como, por ejemplo, agentes antimicrobianos, antioxidantes, quelantes, gases inertes, etc. Las formulaciones para administración tópica pueden incluir cremas, lociones, geles, gotas, supositorios, sprays, líquidos y polvos. También pueden ser necesarios o deseables ciertos transportadores farmacéuticos convencionales, bases acuosas, oleosas, o en polvo, espesantes, etc. Las composiciones para administración oral pueden incluir polvos o gránulos, suspensiones o soluciones en agua o medio no acuoso, cápsulas, o tabletas. Puede ser deseable la inclusión de agentes espesantes, saborizantes, diluentes, emulsionantes, dispersantes, etc. A los efectos de la presente invención y su descripción, el término "derivado" o "análogo" de colismicina debe interpretarse como un compuesto cubierto por la Fórmula general (I) que no necesariamente debe derivar de la colismicina sino que puede ser sintetizado de novo. La presente invención se describe en detalle a continuación con una serie de ejemplos sin que en ningún caso sean ejemplos que limiten su utilización a los que se mencionan. The compounds of the invention can be administered to the subject in several different ways, depending on whether it is desired that the treatment be local or systemic, and depending on the area to be treated. Thus, for example, a compound of the present invention can be administered in the form of an ophthalmic solution, for application on the surface of the eye. In addition, a compound can be administered to a subject vaginally, rectally, intranasally, orally, by inhalation, or parenterally, either intradermally, subcutaneously, intramuscularly, intraperitoneally, intrarectally, intraarterially, intralymphatically, intravenously, intrathecally and intratracheally. . Parenteral administration, if used, is generally performed by injection. Injectables can be prepared in various forms, such as liquid solutions or suspensions, solid forms suitable to be dissolved or suspended before injection, or as emulsions. Other forms of parenteral administration employ slow or sustained release systems, so that a constant dose is maintained (see, for example, US Patent 3,710,795). Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions, which may also contain buffers and diluent additives and others. Examples of non-aqueous solvents are: propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl ethyl acetate. Examples of aqueous solvents are: water, alcoholic-aqueous solutions, emulsions or suspensions, including saline and buffered solutions. Examples of parenteral vehicles are: sodium chloride solution, Ringer's dextrose, sodium chloride and dextrose, etc. Preservatives and other additives may also be present, such as, for example, antimicrobial agents, antioxidants, chelators, inert gases, etc. Formulations for topical administration may include creams, lotions, gels, drops, suppositories, sprays, liquids and powders. Certain conventional pharmaceutical carriers, aqueous, oily, or powdered bases, thickeners, etc. may also be necessary or desirable. Compositions for oral administration may include powders or granules, suspensions or solutions in water or non-aqueous medium, capsules, or tablets. It may be desirable to include thickeners, flavorings, diluents, emulsifiers, dispersants, etc. For the purposes of the present invention and its description, the term "derivative" or "analog" of colismicin should be construed as a compound covered by the general Formula (I) that should not necessarily be derived from colismicin but may be synthesized de novo . The present invention is described in detail below with a series of examples without being in any case examples that limit its use to those mentioned.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Figure 1.
A. Estructura de la colismicina A producida por Streptomyces spp CS40. A. Structure of colismicin A produced by Streptomyces spp CS40.
B. Estructura de la caerulomicina producida por Streptomyces caeruleus. B. Structure of caerulomycin produced by Streptomyces caeruleus.
Figura 2. Diagrama en el que se muestra una representación esquemática del mapa de restricción, utilizando el enzima de restricción BamHI (posiciones numeradas en el esquema), de la agrupación génica para la biosíntesis de colismicina en Streptomyces spp. CS40 contenida en la secuencia de nucleótidos descrita como SEQ IN NO: 1. La escala se muestra en kilobases (kb). coslC3 y cos3Bl l representan los cósmidos en los cuales se ha aislado la secuencia de nucleótidos descrita como SEQ IN NO: 1. Los genes presentes en la agrupación génica se representan por números bajo las flechas. Los genes que se han inactivado dentro del agrupamiento génico se muestran como flechas grises y el resto como flechas negras. Los genes no implicados en la biosíntesis de colismicina se muestran como flechas blancas. Figure 2. Diagram showing a schematic representation of the restriction map, using the restriction enzyme BamHI (numbered positions in the scheme), of the gene pool for biosynthesis of colismicin in Streptomyces spp. CS40 contained in the nucleotide sequence described as SEQ IN NO: 1. The scale is shown in kilobases (kb). coslC3 and cos3Bl l represent the cosmids in which the nucleotide sequence described as SEQ IN NO has been isolated: 1. The genes present in the gene pool are represented by numbers under the arrows. The genes that have been inactivated within the gene cluster are shown as gray arrows and the rest as black arrows. The genes not involved in the biosynthesis of colismicin are shown as white arrows.
Figura 3. Análisis por cromatografía líquida (UPLC) y cromatografía liquida acoplada a espectrometría de masas (HPLC/MS). La FIG. 3A muestra la producción de colismicina A (pico a 3.259 min) en la cepa silvestre Streptomyces spp. CS40 analizado por UPLC. En las ordenadas se representa el tiempo en minutos (min.) y en las abscisas como unidades arbitrarias (AU). La FIG. 3B muestra el espectro de absorción de colismicina A. En las abscisas se representa la longitud de onda en nanómetros (nm) y en las ordenadas como unidades arbitrarias. La FIG 3C muestra colismicina A purificada producida en la cepa silvestre Streptomyces spp. CS40 y analizada por HPLC/MS. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 3D muestra el espectro de masas de la colismicina A marcándose en cada pico el valor de masas (sin unidades). Figure 3. Analysis by liquid chromatography (UPLC) and liquid chromatography coupled to mass spectrometry (HPLC / MS). FIG. 3A shows the production of colismicin A (peak at 3,259 min) in the wild strain Streptomyces spp. CS40 analyzed by UPLC. The ordinates represent the time in minutes (min.) And the abscissa as arbitrary units (AU). FIG. 3B shows the absorption spectrum of colismicin A. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units. FIG 3C shows purified colismicin A produced in the wild strain Streptomyces spp. CS40 and analyzed by HPLC / MS. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). FIG. 3D shows the mass spectrum of colismicin A, marking the mass value at each peak (without units).
Figura 4. El análisis por UPLC de la cepa silvestre Streptomyces spp. CS40 productora de colismicina A se muestra en la FIG. 4A. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). En la FIG. 4B se muestra el análisis por UPLC del mutante CLM-L obtenido por reemplazamiento génico, no productor de colismicina A. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). En la FIG. 4C se muestra el análisis por UPLC del mutante CLM-12, obtenido por disrupción génica, no productor de colismicina A. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). Figure 4. UPLC analysis of the wild strain Streptomyces spp. CS40 producing colismicin A is shown in FIG. 4A. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). In FIG. 4B shows the UPLC analysis of the CLM-L mutant obtained by gene replacement, not producing colismicin A. In the abscissa the time is represented in minutes (min.) And in those ordered as arbitrary units (AU). In FIG. 4C shows the UPLC analysis of the CLM-12 mutant, obtained by gene disruption, not producing colismicin A. In the abscissa the time is represented in minutes (min.) And in those ordered as arbitrary units (AU).
Figura 5. El análisis por UPLC de la cepa mutante CLM-22D productora de colismicina A se muestra en la FIG. 5A. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). En la FIG. 5B se muestra el análisis por UPLC de la cepa mutante CLM-24, productora de colismicina A. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). Figure 5. UPLC analysis of the mutant strain CLM-22D producing colismicin A is shown in FIG. 5A. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). In FIG. 5B shows the analysis by UPLC of the mutant strain CLM-24, producing colismicin A. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU).
Figura 6. Esquema de los pasos iniciales en la ruta de biosíntesis de colismicina A. El aminoácido lisina, en una reacción catalizada por el producto génico de los genes orfl9 y orf20, se transforma en ácido picolínico. Posteriormente el resto de genes implicados en la biosíntesis continuaran modificando este compuesto hasta producir colismicina A. Figure 6. Schematic of the initial steps in the biosynthesis route of colismicin A. The amino acid lysine, in a reaction catalyzed by the gene product of the orfl9 and orf20 genes, is transformed into picolinic acid. Subsequently, the rest of the genes involved in biosynthesis will continue modifying this compound until producing colismicin A.
Figura 7. La FIG. 7 A muestra un esquema de la organización genética del mutante CLM-L (cepa depositada como CECT 7754) que presenta interrumpido el gen orfl 9 que codifica para una lisina 2-aminotransferasa. En la FIG. 7B. se muestra el análisis por cromatografía líquida (UPLC) del extracto de la cepa mutante no productora de colismicina A. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 7C muestra el análisis por cromatografía líquida de muy alta resolución (UPLC) del extracto de la cepa mutante no productora de colismicina A suplementada con ácido picolínico, compuesto capaz de rescatar la producción de colismicina A. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). Figure 7. FIG. 7 A shows a scheme of the genetic organization of the CLM-L mutant (strain deposited as CECT 7754) that has interrupted the orfl 9 gene that codes for a lysine 2-aminotransferase. In FIG. 7B. The liquid chromatography (UPLC) analysis of the extract of the non-producing colismicin A mutant strain is shown. In the abscissa the time is represented in minutes (min.) and in the ordinates as arbitrary units (AU). FIG. 7C shows the analysis by very high resolution liquid chromatography (UPLC) of the extract of the non-producing strain of colismicin A supplemented with picolinic acid, compound capable of rescue the production of colismicin A. In the abscissa the time is represented in minutes (min.) and in the ordinates as arbitrary units (AU).
Figura 8. Análisis de la producción de colismicina C y del compuesto de fórmula II por la cepa mutante CLM-A (depositada como CECT 7755). En la FIG. 8A se muestra el esquema de la organización genética del mutante CLM-A, que presenta interrumpido el gen orfl 1 , que codifica para una aminotransferasa. La FIG. 8B muestra el análisis por UPLC del extracto del mutante CLM-A, el pico a 2.86 min corresponde al compuesto de fórmula II y el pico a 2.987 a la Colismicina C. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 8C muestra el espectro de absorción del compuesto de fórmula II. En las abscisas se representa la longitud de onda en nanómetro (nm) y en las ordenadas como unidades arbitrarias. La FIG 8D muestra el espectro de absorción de Colismicina C. En las abscisas se representa la longitud de onda en nanómetro (nm) y en las ordenadas como unidades arbitrarias. La FIG. 8E muestra el perfil de MS correspondiente al compuesto de fórmula II marcándose en cada pico el valor de masas (sin unidades). La FIG. 8F muestra el perfil de MS correspondiente a la Colismicina C marcándose en cada pico el valor de masas (sin unidades). Figure 8. Analysis of the production of colismicin C and the compound of formula II by the mutant strain CLM-A (deposited as CECT 7755). In FIG. 8A shows the scheme of the genetic organization of the CLM-A mutant, which has an interrupted orfl 1 gene, which codes for an aminotransferase. FIG. 8B shows the UPLC analysis of the CLM-A mutant extract, the peak at 2.86 min corresponds to the compound of formula II and the peak at 1989 to Colismicin C. In the abscissa the time is represented in minutes (min.) And in those ordered as arbitrary units (AU). FIG. 8C shows the absorption spectrum of the compound of formula II. The abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units. FIG 8D shows the absorption spectrum of Colismicin C. In the abscissa the wavelength is represented in nanometer (nm) and in the ordinates as arbitrary units. FIG. 8E shows the MS profile corresponding to the compound of formula II with the mass value being marked at each peak (without units). FIG. 8F shows the MS profile corresponding to Colismicin C, marking the mass value at each peak (without units).
Figura 9. Análisis de la producción de colismicinas modificadas, compuestos de fórmula III y de fórmula IV por la cepa mutante CLM-M2 (depositada como CECT 7756). En la FIG. 9A se muestra el esquema de la organización genético del mutante CLM-M2 , que presenta interrumpido el gen orf9 , que codifica para una metiltransferasa. La FIG. 9B muestra el análisis por UPLC del extracto del mutante CLM-M2, señalando los compuestos de fórmula III y de fórmula IV. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 9C muestra el espectro de absorción del compuesto de fórmula III. En las abscisas se representa la longitud de onda en nanómetro (nm) y en las ordenadas como unidades arbitrarias. La FIG 9D muestra el espectro de absorción del compuesto de fórmula IV. En las abscisas se representa la longitud de onda en nanómetro (nm) y en las ordenadas como unidades arbitrarias. La FIG. 9E muestra el perfil de MS del compuesto de fórmula III marcándose en cada pico el valor de masas (sin unidades). La FIG. 9F muestra el perfil de MS del compuesto de fórmula IV marcándose en cada pico el valor de masas (sin unidades). Figure 9. Analysis of the production of modified colismicins, compounds of formula III and formula IV by the mutant strain CLM-M2 (deposited as CECT 7756). In FIG. 9A shows the scheme of the genetic organization of the CLM-M2 mutant, which has an interrupted orf9 gene, which codes for a methyltransferase. FIG. 9B shows the UPLC analysis of the CLM-M2 mutant extract, indicating the compounds of formula III and formula IV. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). FIG. 9C shows the absorption spectrum of the compound of formula III. The abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units. FIG 9D shows the absorption spectrum of the compound of formula IV. The abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units. FIG. 9E shows the MS profile of the compound of formula III with the mass value being marked at each peak (without units). The FIG. 9F shows the MS profile of the compound of formula IV with the mass value being marked at each peak (without units).
Figura 10. Análisis de la producción de colismicina modificada, compuesto de fórmula V por la cepa muíante CLM-G. En la FIG. 10A se muestra el esquema de la organización genético del muíante CLM-G, que presenta iníerrumpidos los genes orfl3 y orfl4, que codifican para proíeínas similares GriD (YP 001825756) y GriC (YP 001825755). La FIG. 10B muesíra el análisis por HPCL/MS del exíracío de la cepa silvesíre Sírepíomyces spp. CS40. En las abscisas se represenía el tiempo en minuíos (min.) y en las ordenadas como unidades arbiírarias (AU). La FIG. 10C muesíra el análisis por HPCL/MS del exíracío de la cepa muíaníe CLM-G. En las abscisas se represenía el tiempo en minuíos (min.) y en las ordenadas como unidades arbiírarias (AU). La FIG. 10D muesíra el especíro de absorción del compuesío de fórmula V. En las abscisas se represenía la longiíud de onda en nanómeíro (nm) y en las ordenadas como unidades arbiírarias. La FIG. 10E muesíra el perfil de MS del compuesío de fórmula V marcándose en cada pico el valor de masas (sin unidades). Figure 10. Analysis of the production of modified colismicin, compound of formula V by the mutant strain CLM-G. In FIG. 10A shows the scheme of the genetic organization of the CLM-G mutant, which has uninterrupted genes orfl3 and orfl4, which encode similar GriD (YP 001825756) and GriC (YP 001825755) proteins. FIG. 10B shows the HPCL / MS analysis of the excision of the silvesíre Sírepíomyces spp. CS40 In the abscissa the time was repressed in minutiae (min.) And in the ordinates as arbitrary units (AU). FIG. 10C shows the HPCL / MS analysis of the excision of the mumanie strain CLM-G. In the abscissa the time was repressed in minutiae (min.) And in the ordinates as arbitrary units (AU). FIG. 10D shows the absorption specimen of the compound of formula V. In the abscissa the wavelength was represented in nanomer (nm) and in the ordinates as arbitrary units. FIG. 10E shows the MS profile of the compound of formula V, marking at each peak the mass value (without units).
Figura 11. Análisis de la producción de colismicinas modificadas, compuestos de fórmula VI y de fórmula VII, producidos por la cepa muíaníe CLM-L (deposiíada como CECT 7754) suplemeníada con ácido 6-meíil picolínico y ácido 4-meíilpiridina-2- carboxílico respecíivameníe. En la FIG. 1 1 A se muesíra el análisis por UPLC del exíracío del muíaníe CLM-L suplemeníado con ácido 6-meíil picolínico, señalando el compuesío de fórmula VI. En las abscisas se represenía el tiempo en minuíos (min.) y en las ordenadas como unidades arbiírarias (AU). La FIG. 1 IB muesíra el especíro de absorción del compuesío de fórmula VI. En las abscisas se represenía la longiíud de onda en nanómeíro (nm) y en las ordenadas como unidades arbiírarias. La FIG. 1 1C muesíra el perfil de MS del compuesío de fórmula VI marcándose en cada pico el valor de masas (sin unidades). En la FIG. 1 ID se muesíra el análisis por UPLC del exíracío del muíaníe CLM-L suplemeníado con ácido 4-meíilpiridina-2-carboxílico, señalando el compuesío de fórmula VIL En las abscisas se represenía el íiempo en minuíos (min.) y en las ordenadas como unidades arbiírarias (AU). La FIG. 11E muesíra el especíro de absorción del compuesío VIL En las abscisas se represenía la longiíud de onda en nanómeíro (nm) y en las ordenadas como unidades arbiírarias. La FIG. 11F muesíra el perfil de MS del compuesto de fórmula VII marcándose en cada pico el valor de masas (sin unidades). Figure 11. Analysis of the production of modified colismicins, compounds of formula VI and formula VII, produced by the CLM-L muieie strain (deposited as CECT 7754) supplemented with 6-methyl picolinic acid and 4-methylpyridine-2-carboxylic acid respectfully. In FIG. 1 1 A UPLC analysis of the excision of the CLM-L muierie supplemented with 6-methyl picolinic acid is shown, indicating the compound of formula VI. In the abscissa the time was repressed in minutiae (min.) And in the ordinates as arbitrary units (AU). FIG. 1 IB shows the absorption specimen of the compound of formula VI. In the abscissa, the wavelength was represented in nanomer (nm) and in the ordinates as arboreal units. FIG. 1 1C shows the MS profile of the compound of formula VI, marking at each peak the mass value (without units). In FIG. 1 ID shows the analysis by UPLC of the excision of the CLM-L muierie supplemented with 4-methylpyridine-2-carboxylic acid, indicating the compound of formula VIL In the abscissa the time was represented in minutes (min.) And in the ordinates as Arbitrary units (AU). FIG. 11E shows the absorption specimen of the VIL compound. In the abscissa, the wavelength was represented in nanomer (nm) and in the ordinates as arboreal units. FIG. 11F shows the MS profile of the compound of formula VII with the mass value being marked at each peak (without units).
Figura 12. Análisis de la producción de colismicina modificada, compuesto de fórmula VIII, producido por la cepa muíante CLM-A (depositada como CECT 7755) suplementada con ácido 4-metilpiridina-2-carboxílico. En la FIG. 12A se muestra el análisis por UPLC del extracto del muíante CLM-A suplementado con ácido 4- meíilpiridina-2-carboxílico, señalando el compuesto de fórmula VIII. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 12B muestra el espectro de absorción del compuesto de fórmula VIII. En las abscisas se representa la longitud de onda en nanómetro (nm) y en las ordenadas como unidades arbitrarias. La FIG. 12C muestra el perfil de MS del compuesto de fórmula VIII marcándose en cada pico el valor de masas (sin unidades). Figure 12. Analysis of the production of modified colismicin, compound of formula VIII, produced by the mutant strain CLM-A (deposited as CECT 7755) supplemented with 4-methylpyridine-2-carboxylic acid. In FIG. 12A shows the UPLC analysis of the CLM-A mutant extract supplemented with 4-methylpyridine-2-carboxylic acid, indicating the compound of formula VIII. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). FIG. 12B shows the absorption spectrum of the compound of formula VIII. The abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units. FIG. 12C shows the MS profile of the compound of formula VIII with the mass value being marked at each peak (without units).
Figura 13. Análisis de la producción de colismicinas modificadas, compuestos de fórmula IX y X, producidos por la cepa muíante CLM-M2 (depositada como CECT 7756) suplemeníada con ácido 4-meíilpiridina-2-carboxílico. En la FIG. 13A se muesíra el análisis por UPLC del exíracío del muíaníe CLM-M2 suplemeníado con ácido 4- meíilpiridina-2-carboxílico señalando los compuestos de fórmula IX y de fórmula X. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 13B muestra el espectro de absorción del compuesto de fórmula IX. En las abscisas se representa la longitud de onda en nanómetro (nm) y en las ordenadas como unidades arbitrarias. La FIG. 13C muestra el espectro de absorción del compuesto de fórmula X. En las abscisas se representa la longitud de onda en nanómetro (nm) y en las ordenadas como unidades arbitrarias. La FIG. 13D muestra el perfil de MS del compuesto de fórmula IX marcándose en cada pico el valor de masas (sin unidades). La FIG. 13E muestra el perfil de MS del compuesto de fórmula X marcándose en cada pico el valor de masas (sin unidades). Figure 13. Analysis of the production of modified colismicins, compounds of formula IX and X, produced by the mutant strain CLM-M2 (deposited as CECT 7756) supplemented with 4-methylpyridine-2-carboxylic acid. In FIG. 13A, the UPLC analysis of the excision of the CLM-M2 muierie supplemented with 4-methylpyridine-2-carboxylic acid is shown showing the compounds of formula IX and formula X. In the abscissa the time is represented in minutes (min.) And in those ordered as arbitrary units (AU). FIG. 13B shows the absorption spectrum of the compound of formula IX. The abscissa represents the wavelength in nanometer (nm) and in the ordinates as arbitrary units. FIG. 13C shows the absorption spectrum of the compound of formula X. In the abscissa the wavelength is represented in nanometer (nm) and in the ordinates as arbitrary units. FIG. 13D shows the MS profile of the compound of formula IX with the mass value being marked at each peak (without units). FIG. 13E shows the MS profile of the compound of formula X with the mass value being marked at each peak (without units).
Figura 14. Capacidad neuroprotectora de la colismicina A y de los compuestos de fórmula VI y VIL En todos los casos de la FIG 14 la presencia de células apoptóticas se muestra por los puntos teñidos intensamente en el cerebro de embriones de pez cebra. En la FIG 14A se muestra el cerebro de embriones de pez cebra sin tratar. En la FIG 14B se muestra el cerebro de embriones de pez cebra tratados con ácido retinoico 10 μΜ. En la FIG 14C se muestra el cerebro de embriones de pez cebra tratados con ácido retinoico 10 μΜ y con colismicina A 1 μΜ. En la FIG 14D se muestra el cerebro de embriones de pez cebra tratados con ácido retinoico 10 μΜ y el compuesto de fórmula VI 1 μΜ. En la FIG 14E se muestra el cerebro de embriones de pez cebra tratados con ácido retinoico 10 μΜ y el compuesto de fórmula VII 1 μΜ. En la FIG 14F se muestra el cerebro de embriones de pez cebra tratados con ácido retinoico 10 μΜ y ácido lipoicoFigure 14. Neuroprotective capacity of colismicin A and the compounds of formula VI and VIL In all cases of FIG 14 the presence of apoptotic cells is shown by intensely stained spots in the brain of zebrafish embryos. FIG 14A shows the brain of untreated zebrafish embryos. FIG 14B shows the brain of zebrafish embryos treated with retinoic acid 10 μΜ. FIG 14C shows the brain of zebrafish embryos treated with 10 μΜ retinoic acid and 1 μΜ colismicin. FIG 14D shows the brain of zebrafish embryos treated with 10 μΜ retinoic acid and the compound of formula VI 1 μΜ. FIG 14E shows the brain of zebrafish embryos treated with 10 μΜ retinoic acid and the compound of formula VII 1 μΜ. FIG 14F shows the brain of zebrafish embryos treated with 10 μΜ retinoic acid and lipoic acid
I μΜ. En la FIG 14G se muestra una representación gráfica de la capacidad neuroprotectora de la colismicina A y los compuestos de fórmula II, XI, VI y VII respectivamente. El eje de ordenadas muestra el porcentaje de apoptosis en el cerebro de los embriones de pez cebra. Se consideró el 0% de apoptosis como el nivel de apoptosis basal de los cerebros de embriones no tratados (EW) y el 100% de apoptosis como el nivel de apoptosis presente en los cerebros de embriones tratados con ácido retinoico 10 μΜ (AR). Los ensayos de neuroprotección se realizaron tratando los embriones de pez cebra con ácido retinoico en presencia de los distintos compuestos a ensayar. Como control de neuroprotección se usó ácido lipoico (AR+LP). Los compuestos ensayados como neuroprotectores fueron la colismicina A (AR+Col.A), el compuesto de fórmulaI μΜ. A graphical representation of the neuroprotective capacity of colismicin A and the compounds of formula II, XI, VI and VII respectively is shown in FIG 14G. The ordinate axis shows the percentage of apoptosis in the brain of zebrafish embryos. 0% of apoptosis was considered as the level of basal apoptosis of untreated embryonic brains (EW) and 100% of apoptosis as the level of apoptosis present in the brains of embryos treated with 10 μtino retinoic acid (RA). Neuroprotection assays were performed by treating zebrafish embryos with retinoic acid in the presence of the various compounds to be tested. As a neuroprotection control, lipoic acid (AR + LP) was used. The compounds tested as neuroprotectors were colismicin A (AR + Col.A), the compound of formula
II (AR + II), la colismicina C (AR+Col.C), el compuesto de fórmula VI (AR + VI) y el compuesto de fórmula VII (AR + VII). Como puede comprobarse en la gráfica, el compuesto de fórmula VII presenta una actividad neuroprotectora mejorada respecto a la colismicina A y a la colismicina C. II (AR + II), colismicin C (AR + Col.C), the compound of formula VI (AR + VI) and the compound of formula VII (AR + VII). As can be seen in the graph, the compound of formula VII has an improved neuroprotective activity with respect to colismicin A and colismicin C.
Figura 15. Análisis de la producción del compuesto de fórmula XVIII por la cepa mutante CLM-Ml (depositada como CECT 8070). En la FIG. 15A se muestra el esquema de la organización genética del mutante CLM-Ml, que presenta interrumpido el gen orfl2, que codifica para una metiltransferasa. La FIG. 15B muestra el análisis por UPLC del extracto del mutante CLM-Ml, el pico a 3.84 minutos corresponde al compuesto de fórmula XVIII. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 15C muestra el espectro de absorción del compuesto de fórmula XVIII. En las abscisas se representa la longitud de onda en nanométros (nm) y en las ordenadas como unidades arbitrarias. La FIG 15D muestra el perfil de MS correspondiente al compuesto de fórmula XVIII marcándose en cada pico el valor de masas (sin unidades). Figura 16. Análisis de la producción del compuesto de fórmula XIX por la cepa mutante CLM-M (depositada como CECT 8069). En la FIG. 16A se muestra el esquema de la organización genética del mutante CLM-M, que presenta interrumpido el gen orfl5, que codifica para una monooxigenasa. La FIG. 16B muestra el análisis por HPLC del extracto del mutante CLM-M, el pico a 12.62 min corresponde al compuesto de fórmula XIX. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 16C muestra el espectro de absorción del compuesto de fórmula XIX. En las abscisas se representa la longitud de onda en nanométros (nm) y en las ordenadas como unidades arbitrarias. La FIG 16D muestra el perfil de MS correspondiente al compuesto de fórmula XIX marcándose en cada pico el valor de masas (sin unidades). Figure 15. Analysis of the production of the compound of formula XVIII by the mutant strain CLM-Ml (deposited as CECT 8070). In FIG. 15A shows the scheme of the genetic organization of the CLM-Ml mutant, which has an interrupted orfl2 gene, which codes for a methyltransferase. FIG. 15B shows the UPLC analysis of the CLM-Ml mutant extract, the peak at 3.84 minutes corresponds to the compound of formula XVIII. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). FIG. 15C shows the absorption spectrum of the compound of formula XVIII. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units. FIG 15D shows the MS profile corresponding to the compound of formula XVIII with the mass value being marked at each peak (without units). Figure 16. Analysis of the production of the compound of formula XIX by the mutant strain CLM-M (deposited as CECT 8069). In FIG. 16A shows the scheme of the genetic organization of the CLM-M mutant, which has an interrupted orfl5 gene, which codes for a monooxygenase. FIG. 16B shows the HPLC analysis of the CLM-M mutant extract, the peak at 12.62 min corresponds to the compound of formula XIX. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). FIG. 16C shows the absorption spectrum of the compound of formula XIX. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units. FIG 16D shows the MS profile corresponding to the compound of formula XIX with the mass value being marked at each peak (without units).
Figura 17. Análisis de la producción del compuesto de fórmula XVII por la cepa mutante CLM-AH (depositada como CECT 8071). En la FIG. 17A se muestra el esquema de la organización genética del mutante CLM-AH, que presenta interrumpido el gen orfl6, que codifica para una amidohidrolasa. La FIG. 17B muestra el análisis por UPLC del extracto del mutante CLM-AH, el pico a 3.67 min corresponde al compuesto de fórmula XVII. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG. 17C muestra el espectro de absorción del compuesto de fórmula XVII. En las abscisas se representa la longitud de onda en nanométros (nm) y en las ordenadas como unidades arbitrarias. La FIG 17D muestra el perfil de MS correspondiente al compuesto de fórmula XVII marcándose en cada pico el valor de masas (sin unidades). Figure 17. Analysis of the production of the compound of formula XVII by the mutant strain CLM-AH (deposited as CECT 8071). In FIG. 17A shows the scheme of the genetic organization of the CLM-AH mutant, which has an interrupted orfl6 gene, which codes for an amidohydrolase. FIG. 17B shows the UPLC analysis of the CLM-AH mutant extract, the peak at 3.67 min corresponds to the compound of formula XVII. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). FIG. 17C shows the absorption spectrum of the compound of formula XVII. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units. FIG 17D shows the MS profile corresponding to the compound of formula XVII with the mass value being marked at each peak (without units).
Figura 18. Análisis de la producción del compuesto de fórmula XX por la cepa mutante CLM-M2 (depositada como CECT 7756). En la FIG. 18A se muestra el análisis por UPLC del extracto del mutante CLM-M2, el pico a 2.22 min corresponde al compuesto de fórmula XX. En las abscisas se representa el tiempo en minutos (min.) y en las ordenadas como unidades arbitrarias (AU). La FIG 18B muestra el perfil de MS correspondiente al compuesto de fórmula XX marcándose en cada pico el valor de masas (sin unidades). La FIG. 18C muestra el espectro de absorción del compuesto de fórmula XX. En las abscisas se representa la longitud de onda en nanométros (nm) y en las ordenadas como unidades arbitrarias. Por lo tanto, un primer aspecto de la presente invención hace referencia a un procedimiento de aislamiento y purificación de un fragmento de ADN, que contiene la agrupación de genes de la ruta de biosíntesis de colismicina de la bacteria Streptomyces spp. CS40, que se incluye en un fragmento de 46672 bp del genoma de Streptomyces spp. CS40. El proceso comprende las siguientes etapas: (a) obtención de una genoteca de ADN genómico de un microorganismo productor de colismicina; (b) transfección de clones de dicha genoteca en células hospedadoras; (c) diseño de oligonucleótidos para el aislamiento de la agrupación de genes de biosíntesis de colismicina; (d) construcción de una sonda que comprende una secuencia nucleotídica de una agrupación de genes de biosíntesis de colismicina; (e) utilización de sondas heterólogas para el aislamiento de la agrupación de genes de biosíntesis de colismicina; (f) hibridación de dichas sonda con una genoteca de ADN genómico obtenida de dicho microorganismo y (g) aislamiento de dicha agrupación génica a partir de los clones con hibridación positiva. Figure 18. Analysis of the production of the compound of formula XX by the mutant strain CLM-M2 (deposited as CECT 7756). In FIG. 18A shows the UPLC analysis of the CLM-M2 mutant extract, the peak at 2.22 min corresponds to the compound of formula XX. In the abscissa the time is represented in minutes (min.) And in the ordinates as arbitrary units (AU). FIG 18B shows the MS profile corresponding to the compound of formula XX with the mass value being marked at each peak (without units). FIG. 18C shows the absorption spectrum of the compound of formula XX. In the abscissa the wavelength is represented in nanometers (nm) and in the ordinates as arbitrary units. Therefore, a first aspect of the present invention refers to a method of isolation and purification of a DNA fragment, which contains the gene pooling of the colismicin biosynthesis pathway of the Streptomyces spp. CS40, which is included in a 46672 bp fragment of the genome of Streptomyces spp. CS40 The process comprises the following steps: (a) obtaining a genomic DNA library from a colismicin-producing microorganism; (b) transfection of clones of said library into host cells; (c) oligonucleotide design for the isolation of the colismicin biosynthesis gene cluster; (d) construction of a probe comprising a nucleotide sequence of a cluster of colismicin biosynthesis genes; (e) use of heterologous probes for the isolation of the group of colismicin biosynthesis genes; (f) hybridization of said probe with a genomic DNA library obtained from said microorganism and (g) isolation of said gene pool from clones with positive hybridization.
El segundo aspecto de la presente invención hace referencia a una molécula de ácido nucleico que consiste en una secuencia de nucleótidos descrita como SEQ ID NO: 1; o una secuencia de nucleótidos complementaria a SEQ ID NO: 1; o una secuencia de nucleótidos degenerada respecto a SEQ ID NO: 1; o una secuencia de nucleótidos capaz de hibridar bajo condiciones restrictivas con SEQ ID NO: 1, con la hebra complementaria de SEQ ID NO: 1, o con una sonda de hibridación derivada de SEQ ID NO: 1 o de su hebra complementaria; o una secuencia de nucleótidos que posee al menos un 80 % de identidad de secuencia con SED ID NO: l; o una secuencia de nucleótidos que posee al menos 65 % de identidad de secuencia con SEQ ID NO: l y que preferiblemente codifica o es complementaria a una secuencia que codifica al menos un enzima biosintético de colismicina o una parte de él. En una realización preferida de la invención la molécula de ácido nucleico se caracteriza porque tiene al menos 15 nucleótidos de longitud. En otra realización preferida de la invención la molécula de ácido nucleico codifica uno o más polipéptidos, o que incluye uno o más elementos genéticos, que poseen una actividad funcional en la síntesis de un antibiótico 2,2'-bipiridílico o un precursor de un 2,2'-bipiridilo. En otra realización preferida de la invención dicho antibiótico 2,2'-bipiridílico es colismicina o un precursor de colismicina. En otra realización preferida de la invención la molécula de ácido nucleico codifica uno o más polipéptidos, o incluye uno o más genes y/o una o más secuencias reguladoras, y/o uno o más elementos genéticos codificadores o no codificadores, que tienen actividad funcional en la síntesis de un 2,2'-bipiridilo o un precursor de un 2,2'- bipiridilo. En otra realización preferida de la invención la molécula de ácido nucleico se caracterizada porque dicho antibiótico 2,2'-bipiridílico o precursor de un 2,2'-bipiridilo es colismicina o un precursor de colismicina. En otra realización preferida de la invención la molécula de ácido nucleico se caracteriza por incluir una secuencia de nucleótidos que codifica una o más secuencias de aminoácidos de las descritas en SEQ ID NOs: 2 a 28, o una secuencia de nucleótidos que es complementaria o degenerada con respecto a una secuencia de nucleótidos que codifica una o más secuencias de aminoácidos que poseen al menos un 60% de identidad de secuencia con cualquiera de SEQ ID NOs: 2 a 28. En otra realización preferida de la invención la molécula de ácido nucleico codifica una o más secuencias aminoacídicas que poseen al menos un 85% de identidad de secuencia con cualquiera de SEQ ID NOs: 2 a 28. The second aspect of the present invention refers to a nucleic acid molecule consisting of a nucleotide sequence described as SEQ ID NO: 1; or a nucleotide sequence complementary to SEQ ID NO: 1; or a degenerated nucleotide sequence with respect to SEQ ID NO: 1; or a nucleotide sequence capable of hybridizing under restrictive conditions with SEQ ID NO: 1, with the complementary strand of SEQ ID NO: 1, or with a hybridization probe derived from SEQ ID NO: 1 or its complementary strand; or a nucleotide sequence that has at least 80% sequence identity with SED ID NO: l; or a nucleotide sequence that has at least 65% sequence identity with SEQ ID NO: l and that preferably encodes or is complementary to a sequence that encodes at least one biosynthetic colismicin enzyme or a part thereof. In a preferred embodiment of the invention the nucleic acid molecule is characterized in that it is at least 15 nucleotides in length. In another preferred embodiment of the invention the nucleic acid molecule encodes one or more polypeptides, or that includes one or more genetic elements, which possess a functional activity in the synthesis of a 2,2'-bipyridyl antibiotic or a precursor of a 2 , 2'-bipyridyl. In another preferred embodiment of the invention said 2,2'-bipyridyl antibiotic is colismicin or a precursor of colismicin. In another preferred embodiment of the invention the nucleic acid molecule encodes one or more polypeptides, or includes one or more genes and / or one or more sequences. regulators, and / or one or more coding or non-coding genetic elements, which have functional activity in the synthesis of a 2,2'-bipyridyl or a precursor of a 2,2'-bipyridyl. In another preferred embodiment of the invention the nucleic acid molecule is characterized in that said 2,2'-bipyridyl antibiotic or precursor of a 2,2'-bipyridyl is colismicin or a precursor of colismicin. In another preferred embodiment of the invention, the nucleic acid molecule is characterized by including a nucleotide sequence encoding one or more amino acid sequences of those described in SEQ ID NOs: 2 to 28, or a nucleotide sequence that is complementary or degenerate. with respect to a nucleotide sequence encoding one or more amino acid sequences that have at least 60% sequence identity with any of SEQ ID NOs: 2 to 28. In another preferred embodiment of the invention the nucleic acid molecule encodes one or more amino acid sequences that have at least 85% sequence identity with any of SEQ ID NOs: 2 to 28.
El tercer aspecto de la presente invención hace referencia a un polipéptido codificado por la molécula de ácido nucleico arriba descrita. En una realización preferida de la invención el polipéptido incluye: una o más secuencias aminoacídicas completas, o partes de las mismas, descritas en SEQ ID NOs: 2 a 28; o una o más secuencias aminoacídicas completas, o partes de las mismas, que poseen al menos un 60%> de identidad de secuencia con cualquiera de SEQ ID NOs: 2 a 28. En otra realización preferida de la invención el polipéptido está caracterizado porque las secuencias aminoacídicas arriba mencionadas poseen al menos un 85% de identidad de secuencia con cualquiera de SEQ ID NOs: 2 a 28. En otra realización preferida de la invención el polipéptido posee una actividad funcional en la síntesis de un antibiótico 2,2'- bipiridílico. El cuarto aspecto de la presente invención hace referencia a una molécula de ADN recombinante, que incluye el fragmento de ADN arriba mencionado, o una parte con similares características, clonada en un vector que se replica en Streptomyces o en E. coli. En una realización preferida de la invención el ADN recombinante es el cósmido coslc3 o el cósmido cos3bl l . El quinto aspecto de la presente invención hace referencia a una célula hospedadora o un organismo transgénico no humano que contiene una molécula de ácido nucleico arriba mencionada. The third aspect of the present invention refers to a polypeptide encoded by the nucleic acid molecule described above. In a preferred embodiment of the invention the polypeptide includes: one or more complete amino acid sequences, or parts thereof, described in SEQ ID NOs: 2 to 28; or one or more complete amino acid sequences, or parts thereof, that have at least 60%> sequence identity with any of SEQ ID NOs: 2 to 28. In another preferred embodiment of the invention the polypeptide is characterized in that the amino acid sequences mentioned above possess at least 85% sequence identity with any of SEQ ID NOs: 2 to 28. In another preferred embodiment of the invention the polypeptide has a functional activity in the synthesis of a 2,2'-bipyridyl antibiotic . The fourth aspect of the present invention refers to a recombinant DNA molecule, which includes the aforementioned DNA fragment, or a part with similar characteristics, cloned into a vector that replicates in Streptomyces or in E. coli. In a preferred embodiment of the invention the recombinant DNA is the coslc3 cosmid or the cos3bl l cosmid. The fifth aspect of the present invention refers to a host cell or a non-human transgenic organism that contains a nucleic acid molecule mentioned above.
Así, los genes codificados por el fragmento de ADN arriba citado, y las células hospedadoras u organismos transgénicos que comprenden dicho fragmento de ADN, pueden usarse en la producción de metabolitos 2,2'-bipiridílicos, particularmente en la producción de colismicina, derivados de colismicina o precursores de colismicina; para incrementar la producción de metabolitos 2,2'-bipiridílicos; para incrementar la producción de colismicina, derivados de colismicina o precursores de colismicina; en la inactivación de genes implicados en la biosíntesis de colismicina; en técnicas de amplificación por PCR encaminadas al aislamiento y/o utilización de genes implicados en la biosíntesis de colismicina. Thus, the genes encoded by the aforementioned DNA fragment, and host cells or transgenic organisms comprising said DNA fragment, can be used in the production of 2,2'-bipyridyl metabolites, particularly in the production of colismicin, derived from colismicin or colismicin precursors; to increase the production of 2,2'-bipyridyl metabolites; to increase the production of colismicin, colismicin derivatives or colismicin precursors; in the inactivation of genes involved in the biosynthesis of colismicin; in PCR amplification techniques aimed at the isolation and / or use of genes involved in the biosynthesis of colismicin.
El sexto aspecto de la presente invención hace referencia a un proceso para incrementar la producción de 2,2'-bipiridilos en un hospedador bacteriano, que comprende la transferencia del fragmento de ADN arriba mencionado a un hospedador de Streptomyces, cultivo de la cepa recombinante obtenida, y aislamiento del 2,2'- bipiridilo producido. En una realización preferida de la invención el hospedador es del género Streptomyces es Streptomyces spp. CS40. En otra realización preferida de la invención el hospedador Streptomyces spp. CS40 es un muíante derivado de Streptomyces spp. CS40. En otra realización preferida de la invención el compuesto 2,2'-bipiridílico es colismicina, un derivado de colismicina o un precursor de colismicina. The sixth aspect of the present invention refers to a process to increase the production of 2,2'-bipyridyls in a bacterial host, which comprises the transfer of the above-mentioned DNA fragment to a Streptomyces host, culture of the recombinant strain obtained , and isolation of the 2,2'-bipyridyl produced. In a preferred embodiment of the invention the host is of the genus Streptomyces is Streptomyces spp. CS40 In another preferred embodiment of the invention the host Streptomyces spp. CS40 is a mutant derived from Streptomyces spp. CS40 In another preferred embodiment of the invention, the 2,2'-bipyridyl compound is colismicin, a derivative of colismicin or a precursor of colismicin.
El séptimo aspecto de la presente invención hace referencia a un proceso para generar derivados de colismicina o precursores de colismicina por inactivación de genes codificados por el fragmento de ADN arriba mencionado. En una realización preferida de la invención el proceso se focaliza en la utilización de intermediarios de colismicina o derivados de colismicina como compuestos de partida en la síntesis química de productos 2,2'-bipiridílicos. El octavo aspecto de la presente invención hace referencia a un proceso para generar derivados o análogos de colismicina A y colismicina C mediante acilación enzimática catalizada por una lipasa. The seventh aspect of the present invention refers to a process for generating colismicin derivatives or colismicin precursors by inactivating genes encoded by the aforementioned DNA fragment. In a preferred embodiment of the invention, the process focuses on the use of colismicin intermediates or colismicin derivatives as starting compounds in the chemical synthesis of 2,2'-bipyridyl products. The eighth aspect of the present invention refers to a process for generating derivatives or analogs of colismicin A and colismicin C by enzymatic acylation catalyzed by a lipase.
El noveno aspecto de la presente invención hace referencia a la cepa muíante Streptomyces spp. CLM-A depositada en la Colección Española de Cultivos Tipo con el número de identificación 7755 y a los productos acumulados por la misma. The ninth aspect of the present invention refers to the mutant strain Streptomyces spp. CLM-A deposited in the Spanish Type Crops Collection with identification number 7755 and the products accumulated by it.
El décimo aspecto de la presente invención hace referencia a la cepa muíante Streptomyces spp. CLM-M deposiíada en la Colección Española de Cultivos Tipo con el número de identificación 7756 y a los producios acumulados por la misma. El undécimo aspecto de la presente invención hace referencia a un compuesto de Fórmula (I), exceptuando a los compuestos de fórmula: The tenth aspect of the present invention refers to the mutant strain Streptomyces spp. CLM-M deposited in the Spanish Type Crops Collection with the identification number 7756 and the products accumulated by it. The eleventh aspect of the present invention refers to a compound of Formula (I), except for compounds of formula:
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector. El grupo protector puede consistir en un grupo alquilo, un grupo cicloalquilo, un grupo cicloalquilo heterocíclico, un grupo hidroxialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfoxi o una combinación de ellos. En una realización preferida de la presente invención el compuesto de Fórmula (I) se selecciona entre los compuestos de Fórmula II a XX. El duodécimo aspecto de la presente invención hace referencia al uso de los compuestos de Fórmula I para la elaboración de una composición farmacéutica destinada al tratamiento del cáncer, al tratamiento enfermedades neurodegenerativas, o su uso como neuroprotector, o al tratamiento enfermedades infecciosas, o a su uso como antibiótico. Además, este aspecto también hace referencia a los compuestos de Fórmula I para ser usados en el tratamiento del cáncer, en el tratamiento enfermedades neurodegenerativas, o como neuroprotector, o en el tratamiento enfermedades infecciosas, o como antibiótico.
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
where Ri, R 2 , R 3 and R4 are, each and independently, hydrogen or a protecting group. The protecting group may consist of an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, a alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or a combination from them. In a preferred embodiment of the present invention the compound of Formula (I) is selected from the compounds of Formula II to XX. The twelfth aspect of the present invention refers to the use of the compounds of Formula I for the preparation of a pharmaceutical composition intended for the treatment of cancer, the treatment of neurodegenerative diseases, or their use as a neuroprotector, or the treatment of infectious diseases, or their use as an antibiotic In addition, this aspect also refers to the compounds of Formula I for use in the treatment of cancer, in the treatment of neurodegenerative diseases, or as a neuroprotector, or in the treatment of infectious diseases, or as an antibiotic.
El décimo tercer aspecto de la presente invención hace referencia a una composición farmacéutica que comprende al menos uno de los compuestos de Fórmula I y al menos un excipiente farmacéuticamente aceptable. The thirteenth aspect of the present invention refers to a pharmaceutical composition comprising at least one of the compounds of Formula I and at least one pharmaceutically acceptable excipient.
El último aspecto de la presente invención hace referencia a un método para el tratamiento del cáncer, para el tratamiento de enfermedades neurodegenerativas o para el tratamiento de enfermedades infecciosas que comprende la administración al paciente de una cantidad terapéuticamente eficaz de un compuesto de Fórmula I o de una composición farmacéutica que comprenda al menos un compuesto de Fórmula I. The last aspect of the present invention refers to a method for the treatment of cancer, for the treatment of neurodegenerative diseases or for the treatment of infectious diseases comprising the administration to the patient of a therapeutically effective amount of a compound of Formula I or of a pharmaceutical composition comprising at least one compound of Formula I.
EJEMPLOS EXAMPLES
Ejemplo 1. Aislamiento de la cepa productora de colismicina Streptomyces spp. CS40 La cepa Streptomyces spp. CS40 fue aislada a partir de unas hormigas cortadoras de hojas de especie Acromyrmex octospinosus recolectadas en el departamento Lambayeque en Perú. La secuenciación y análisis de su 16SrDNA mostró su ubicación dentro del género Streptomyces sin niveles de identidad concluyentes a nivel de especie. La cepa Streptomyces spp. CS40 se encuentra depositada en la Colección Española de Cultivos Tipo con número de depósito 7757. Example 1. Isolation of the Streptomyces spp. Colismicin producing strain. CS40 Streptomyces spp. CS40 was isolated from some leaf-cutting ants of Acromyrmex octospinosus species collected in the Lambayeque department in Peru. The sequencing and analysis of its 16SrDNA showed its location within the genus Streptomyces without conclusive identity levels at the species level. Streptomyces spp. CS40 is deposited in the Spanish Type Crops Collection with deposit number 7757.
Ejemplo 2. Clonación de la agrupación génica implicada en la biosíntesis de colismicina. Example 2. Cloning of the gene pool involved in the biosynthesis of colismicin.
2.1. Microorganismos, plásmidos y condiciones de cultivo. Los microorganismos y plásmidos utilizados se describen en la Tabla 1. Streptomyces spp. CS40 y los mutantes generados a partir de él se cultivaron para su esporulación en medio A (Fernández et al, J. Bacteriol, 180, 4929-4937, 1998); para la producción de antibiótico se cultivó en medio líquido R5A (Fernández et al, J. Bacteriol, 180, 4929- 4937, 1998); utilizando un inoculo previamente cultivado en medio líquido TSB (Tryptone Soya Broth, Merck). La conjugación intergenérica desde Escherichia coli ET12567 (pUB307) a Streptomyces spp. CS40 se realizó según Sambrook et al, Molecular cloning: a laboratory manual. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory press (1989). Las cepas de E. coli se cultivaron y transformaron como se describe por Sambrook et al, (1989). Los medios de cultivo fueron suplementados con los antibióticos apropiados a cada marcador de resistencia en las concentraciones siguientes: 100 μg/ml ampicilina, 20 μg/ml tobramicina, 25 μg/ml apramicina, 50 μg/ml tiostreptona, 25 μg/ml kanamicina 10 μg/ml tetraciclina, 25 μg/ml cloramfenicol y 50 μg/ml ácido nalidíxico. Tabla 1. Cepas bacterianas y plásmidos usados en este estudio. 2.1. Microorganisms, plasmids and culture conditions. The microorganisms and plasmids used are described in Table 1. Streptomyces spp. CS40 and the mutants generated from it were cultured for sporulation in medium A (Fernández et al, J. Bacteriol, 180, 4929-4937, 1998); for the production of antibiotic, R5A was grown in liquid medium (Fernández et al, J. Bacteriol, 180, 4929-4937, 1998); using an inoculum previously cultured in liquid medium TSB (Tryptone Soya Broth, Merck). Intergeneric conjugation from Escherichia coli ET12567 (pUB307) to Streptomyces spp. CS40 was performed according to Sambrook et al, Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory press (1989). E. coli strains were grown and transformed as described by Sambrook et al, (1989). Culture media were supplemented with appropriate antibiotics to each resistance marker at the following concentrations: 100 μg / ml ampicillin, 20 μg / ml tobramycin, 25 μg / ml apramycin, 50 μg / ml thiostreptone, 25 μg / ml kanamycin 10 μg / ml tetracycline, 25 μg / ml chloramphenicol and 50 μg / ml nalidixic acid. Table 1. Bacterial strains and plasmids used in this study.
Cepa, plásmido Propiedades Fuente o referencia Strain, plasmid Properties Source or reference
E. coli DH10B Huésped general de clonación Invitrogen E. coli DH10B General Cloning Guest Invitrogen
E. coli XLI Blue Huésped para la construcción de la Stratagene  E. coli XLI Blue Guest for the construction of the Stratagene
MR genoteca  MR library
E. coli ET12567 Cepa para la conjugación Kieser et al., Practical E. coli ET12567 Strain for conjugation Kieser et al., Practical
(pUB307) intergenérica Streptomyces Genetics. (pUB307) intergeneric Streptomyces Genetics.
The John Innes  The John Innes
Foundation. Norwich, Foundation Norwich,
2000 2000
Streptomyces Productor de colismicina A Aislado en nuestro spp. CS40 laboratorio  Streptomyces Producer of colismicin A Isolated on our spp. CS40 laboratory
pWE15 Cósmido para la construcción Stratagene  pWE15 Cosmetic for construction Stratagene
de la genoteca pOJ260 Plásmido para la disrupción génica Bierman et al., Gene 116,  from the pOJ260 library Plasmid for gene disruption Bierman et al., Gene 116,
43-49, 1992  43-49, 1992
pEM4T Plásmido para la expresión de genes en Menéndez et al., Appl.  pEM4T Plasmid for gene expression in Menéndez et al., Appl.
Streptomyces Environ. Microbiol. 72,  Streptomyces Environ. Microbiol 72,
167-177, 2006 pCR-BLUNT Plásmido para la clonación de productos Invitrogen  167-177, 2006 pCR-BLUNT Plasmid for the cloning of Invitrogen products
de PCR  PCR
pU09090 Plásmido fuente del gen de resistencia a Prado et al., Mol Gen apramicina Genet. 201 , 216-225,  pU09090 Plasmid source of the resistance gene to Prado et al., Mol Gen apramycin Genet. 201, 216-225,
1999  1999
pBluescript SK+ Vector de clonación en E. coli Stratagene  pBluescript SK + Cloning vector in E. coli Stratagene
pHZ1358 Plásmido para el reemplazamiento génico Sun et al.,  pHZ1358 Plasmid for gene replacement Sun et al.,
Appl. Microbiol. Biotech nol 82, 303-310, 2009 pGemT Plásmido para la clonación de productos Promega  Appl. Microbiol Biotech nol 82, 303-310, 2009 pGemT Plasmid for the cloning of Promega products
de PCR  PCR
2.2. Análisis de la producción de colismicina A. La producción de colismicina A se realizó de forma rutinaria en 1,5 mL de medio R5A sólido (Fernández et al., J. Bacteriol, 180, 4929-4937, 1998) en placas de 25 pocilios. Para su inoculo se utilizaron esporas de Streptomyces spp. CS40 y los cultivos se mantuvieron durante 7 días a 30°C, extrayéndose tras ese tiempo con 1 mi de acetato de etilo. La producción de colismicina A se realizó también en cultivos líquidos de 5 a 7 días crecidos en un agitador orbital a 30 °C y 250 rpm. Para ello se utilizaron matraces Erlenmeyer de 250 mi conteniendo 50 mi de medio R5A líquido (Fernández et al., J Bacteriol, 180: 4929-4937, 1998). Para su inoculo se utilizó un volumen del 2% de un preinóculo de Streptomyces spp. CS40 realizado en medio TSB (50 mi en matraces de 250 mi) que se recogió después de dos días de incubación en un agitador orbital a 30°C y 250 rpm. La colismicina A presente en los cultivos líquidos se extrajo con volúmenes variables de acetato de etilo. Los extractos de acetato de etilo se evaporaron utilizando una centrifuga acoplada a vacio (Speed-Vac) y una vez evaporadas las muestras se resuspendieron en metanol para su análisis. 2.2. Analysis of colismicin A production. Colismicin A production was routinely performed in 1.5 mL of solid R5A medium (Fernández et al., J. Bacteriol, 180, 4929-4937, 1998) in 25-well plates . For its inoculum, spores of Streptomyces spp. CS40 and the cultures were maintained for 7 days at 30 ° C, extracted after that time with 1 ml of ethyl acetate. Colismicin A production was also performed in liquid cultures of 5 to 7 days grown in an orbital shaker at 30 ° C and 250 rpm. Flasks were used for this. 250 ml Erlenmeyer containing 50 ml of liquid R5A medium (Fernández et al., J Bacteriol, 180: 4929-4937, 1998). For its inoculum a volume of 2% of a pre-circle of Streptomyces spp. CS40 performed on TSB medium (50 ml in 250 ml flasks) that was collected after two days of incubation in an orbital shaker at 30 ° C and 250 rpm. The colismicin A present in the liquid cultures was extracted with varying volumes of ethyl acetate. The ethyl acetate extracts were evaporated using a vacuum coupled centrifuge (Speed-Vac) and once evaporated the samples were resuspended in methanol for analysis.
La identificación y análisis cuantitativo de colismicina A se llevó a cabo mediante cromatografía en fase reversa en un equipo Acquity UPLC utilizando una columna BEH C18 (2,1 x 100 mm Waters) y utilizando acetonitrilo y 0,1% TFA en agua como solventes. Las muestras fueron eluídas con acetronitrilo al 10% durante 1 min seguido por un gradiente lineal de acetonitrilo desde el 10% al 80% durante 7 min. El flujo utilizado fue de 0,5 ml/min y la temperatura de la columna de 35°C. Para el análisis de masas acoplado a HPLC (HPLC/MS) se uso un sistema cromatográfico Alliance acoplado a un espectrómetro de masas ZQ4000 y a una columna Symmetry C18 (2.1 x 150 mm, Waters). Los solventes utilizados fueron los mismos que los descritos anteriormente y la elución se realizó manteniendo inicialmente un 10% de acetonitrilo durante 4 min, seguido de un gradiente lineal desde el 10%> al 88% de acetonitrilo durante 26 min, utilizando para ello un flujo de 0,25 ml/min. El análisis de masas se realizó por ionización electrospray en modo positivo, con un voltaje de capilar de 3 kV y un voltaje de cono de 20 V. La detección de los picos y la caracterización de su espectro de absorción se realizó en ambos casos con un sistema de fotodiodos en línea y utilizando el software Empower de Waters, extrayéndose cromatogramas bidimensionales a una longitud de onda de 332 nm. The identification and quantitative analysis of colismicin A was carried out by reverse phase chromatography in an Acquity UPLC equipment using a BEH C18 column (2.1 x 100 mm Waters) and using acetonitrile and 0.1% TFA in water as solvents. The samples were eluted with 10% acetronitrile for 1 min followed by a linear gradient of acetonitrile from 10% to 80% for 7 min. The flow used was 0.5 ml / min and the column temperature was 35 ° C. For the HPLC-coupled mass analysis (HPLC / MS) an Alliance chromatographic system coupled to a ZQ4000 mass spectrometer and a Symmetry C18 column (2.1 x 150 mm, Waters) was used. The solvents used were the same as those described above and elution was performed initially maintaining 10% acetonitrile for 4 min, followed by a linear gradient from 10%> to 88% acetonitrile for 26 min, using a flow 0.25 ml / min. The mass analysis was performed by electrospray ionization in positive mode, with a capillary voltage of 3 kV and a cone voltage of 20 V. The detection of the peaks and the characterization of their absorption spectrum was performed in both cases with a online photodiode system and using Waters Empower software, extracting two-dimensional chromatograms at a wavelength of 332 nm.
Para la caracterización estructural de los derivados de colismicina A mencionados en esta invención se realizaron cultivos de las cepas de Streptomyces spp. CS40 correspondientes. Tras centrifugación para eliminar las células, los caldos resultantes se sometieron a extracción en fase sólida en cartuchos de extracción con relleno C18 (Sep- Pak Vac, Waters). Los compuestos buscados se purificaron a partir de los extractos resultantes utilizando HPLC preparativa en fase reversa. Todas las purificaciones se hicieron en condiciones isocráticas con mezclas de acetonitrilo o metanol y 0.05% TFA en agua, en proporciones optimizadas para cada compuesto. Las columnas empleadas fueron una XTerra PrepRP18 (19 x 300 mm, Waters) y una Symmetry C18 (7,8 x 300 mm, Waters). Las soluciones con los picos purificados se evaporaron parcialmente en rotavapor para reducir su contenido en solvente orgánico y posteriormente se cargaron en un cartucho de extracción en fase sólida (Sep-Pak C18, Waters). Los compuestos retenidos se lavaron sucesivamente con agua, 0.1 % amoníaco en agua y de nuevo agua, para eliminar totalmente el TFA. Finalmente se eluyeron con metanol, se secaron en vacio y por último se liofilizaron La identificación y análisis cuantitativo de colismicina A se llevó a cabo mediante cromatografía en fase reversa en un equipo Acquity UPLC utilizando una columna BEH C18 (2.1 x 100 mm, Waters) y utilizando acetonitrilo y 0.05% TFA como solventes. Las muestras fueron eluídas con acetronitrilo al 10%) durante 1 min seguido por un gradiente lineal de acetonitrilo desde el 10%> al 80% durante 7 min. El flujo utilizado fue de 0,5 ml/min y la temperatura de la columna de 30°C. Para el análisis de masas acoplado a HPLC (HPLC/MS) se uso un sistema cromatográfico Alliance acoplado a un espectrómetro de masas ZQ4000 y a una columna Symmetry C18 (2.1 x 150 mm, Waters). Los solventes utilizados fueron los mismos que los descritos anteriormente y la elución se realizó con un gradiente isocrático inicial de acetonitrilo al 10% mantenido durante 4 min y seguido por un gradiente lineal de acetonitrilo desde el 10% al 88% durante 26 min, utilizando para ello un flujo de 0,25 ml/min. El análisis de masas se realizó por ionización electrospray en modo positivo, con un voltaje de capilar de 3 kV y un voltaje de cono de 20 V. La detección de los picos y la caracterización de su espectro de absorción se realizaron en ambos casos con un sistema de fotodiodos en línea y utilizando el software Empower de Waters, extrayéndose cromatogramas bidimensionales a una longitud de onda de 360 nm. For the structural characterization of the derivatives of colismicin A mentioned in this invention, cultures of the Streptomyces spp. Corresponding CS40. After centrifugation to remove the cells, the resulting broths were subjected to solid phase extraction in extraction cartridges with C18 filler (Sep-Pak Vac, Waters). The compounds sought were purified from the resulting extracts using preparative reverse phase HPLC. All purifications are they were made under isocratic conditions with mixtures of acetonitrile or methanol and 0.05% TFA in water, in optimized proportions for each compound. The columns used were an XTerra PrepRP18 (19 x 300 mm, Waters) and a Symmetry C18 (7.8 x 300 mm, Waters). The solutions with the purified peaks were partially evaporated in a rotary evaporator to reduce their organic solvent content and subsequently loaded into a solid phase extraction cartridge (Sep-Pak C18, Waters). The retained compounds were washed successively with water, 0.1% ammonia in water and again water, to completely eliminate TFA. Finally, they were eluted with methanol, dried in vacuo and finally lyophilized. The identification and quantitative analysis of colismicin A was carried out by reverse phase chromatography in an Acquity UPLC equipment using a BEH C18 column (2.1 x 100 mm, Waters) and using acetonitrile and 0.05% TFA as solvents. The samples were eluted with 10% acetronitrile) for 1 min followed by a linear gradient of acetonitrile from 10%> to 80% for 7 min. The flow used was 0.5 ml / min and the column temperature 30 ° C. For the HPLC-coupled mass analysis (HPLC / MS) an Alliance chromatographic system coupled to a ZQ4000 mass spectrometer and a Symmetry C18 column (2.1 x 150 mm, Waters) was used. The solvents used were the same as those described above and the elution was performed with an initial isocratic gradient of 10% acetonitrile maintained for 4 min and followed by a linear gradient of acetonitrile from 10% to 88% for 26 min, using for it a flow of 0.25 ml / min. The mass analysis was performed by electrospray ionization in positive mode, with a capillary voltage of 3 kV and a cone voltage of 20 V. The detection of the peaks and the characterization of their absorption spectrum were performed in both cases with a online photodiode system and using Waters Empower software, extracting two-dimensional chromatograms at a wavelength of 360 nm.
La colismicina A analizada en UPLC presenta una retención de 3.30 min y un espectro de absorción con máximos a 250 y 332 nm. La colismicina A analizada en HPLC/MS presenta una retención de 15.13 min y muestra un ión molecular con una masa de 276 m/z [M+H]+. (FIG. 3) Para la caracterización estructural de los derivados de colismicina mencionados en esta invención se realizaron cultivos de las cepas de Streptomyces spp. CS40 correspondientes y los extractos fueron disueltos en 5 mi de una mezcla de DMSO y metanol a partes iguales. Posteriormente se centrifugaron y se eliminó la capa superior correspondiente a la fracción lipídica. El primer paso de purificación se realizó por cromatografía en una columna XTerra PrepRP18 (19 x 300 mm, Waters) usando como solventes acetonitrilo y ácido trifluoro acético (TFA) al 0,05% disuelto en agua. Se utilizó un gradiente lineal desde el 30% al 100% de acetonitrilo durante 7 min seguido por 3 min de acetonitrilo al 100%. El flujo utilizado fue de 15 ml/min. Los picos de interés fueron recolectados sobre tampón fosfato 0, 1 M, pH 7,0. Las soluciones obtenidas fueron parcialmente evaporadas en un rotavapor para reducir la concentración de acetonitrilo y posteriormente se aplicaron a un cartucho de extracción en fase sólida (Sep-Pak C18, Waters), se lavaron posteriormente con agua para eliminar las sales y se eluyeron con metanol. Las purificaciones posteriores se realizaron en condiciones isocráticas, optimizadas para cada pico, utilizando una columna Symmetry C18 (7,8 x 300 mm, Waters) y mezclas de acetonitrilo y TFA al 0,05%> disuelto en agua, usando un flujo de 7 ml/min. Tal como se mencionó anteriormente, los picos se recogieron siempre sobre tampón fosfato 0,1 M, pH 7,0, se desalaron utilizando extracción en fase sólida y finalmente se liofilizaron. 2.3. Manipulación de ADN. The colismicin A analyzed in UPLC has a retention of 3.30 min and an absorption spectrum with maximums at 250 and 332 nm. Colismicin A analyzed in HPLC / MS has a retention of 15.13 min and shows a molecular ion with a mass of 276 m / z [M + H] +. (FIG. 3) For the structural characterization of the colismicin derivatives mentioned in this invention, cultures of the Streptomyces spp. Corresponding CS40 and the extracts were dissolved in 5 ml of a mixture of DMSO and methanol in equal parts. They were then centrifuged and the upper layer corresponding to the lipid fraction was removed. The first purification step was performed by chromatography on an XTerra PrepRP18 column (19 x 300 mm, Waters) using acetonitrile and 0.05% acetic acid trifluoro (TFA) as solvents dissolved in water. A linear gradient from 30% to 100% acetonitrile was used for 7 min followed by 3 min of 100% acetonitrile. The flow used was 15 ml / min. The peaks of interest were collected on 0.1 M phosphate buffer, pH 7.0. The solutions obtained were partially evaporated in a rotary evaporator to reduce the concentration of acetonitrile and subsequently applied to a solid phase extraction cartridge (Sep-Pak C18, Waters), subsequently washed with water to remove salts and eluted with methanol . Subsequent purifications were performed under isocratic conditions, optimized for each peak, using a Symmetry C18 column (7.8 x 300 mm, Waters) and mixtures of acetonitrile and 0.05% TFA> dissolved in water, using a flow of 7 ml / min As mentioned above, the peaks were always collected on 0.1 M phosphate buffer, pH 7.0, desalted using solid phase extraction and finally lyophilized. 2.3. DNA manipulation.
La preparación de plásmidos, ADN total, digestiones con enzimas de restricción, ligaciones de ADN, etc., se llevó a cabo siguiendo métodos estandarizados previamente descritos (Sambrook et al., Molecular cloning: a laboratory manual. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory press, 1989; Kieser et al, Practical Streptomyces Genetics. The John Innes Foundation. Norwich, 2000). Los fragmentos de ADN fueron aislados de geles de agarosa utilizando el kit de extracción QUIAquick Gel Extraction Kit de QIAGEN (Hilden, Germany) y marcados usando el kit de detección y mareaje DIG DNA Labelling and Detection Kit de Roche Diagnostics (Manheim, Germany) utilizado para el análisis por Southern de acuerdo a las instrucciones del fabricante. La secuenciación fue realizada sobre ADN de doble cadena utilizando el método de descrito por Sanger et al, Proc. Nati. Acad. Sci. USA. 74, 5463-5467 (1977) y el kit de secuenciación Cy5 Autocycle Sequencing Kit (Pharmacia Biotech). La electroforesis de las muestras fue realizada en un secuenciador automático Alf-express (Pharmacia Biotech). Las secuencias obtenidas se analizaron usando el paquete informático de programas del GCG, del Genetics Computer Group de la Universidad de Wisconsin (Devereux et al, Nucleic Acids Res. 12, 387-395, 1984) y el programa BLAST (Altschul et al, J. Mol. Biol. 215, 403-410, 1990). El análisis de las regiones transmembrana de posibles proteínas transmembranales se realizó utilizando el programa TMHMM v. 2.0 (Krogh et al, J. Mol. Biol. 305, 567-580, 2001). El análisis de PCS y NRPS se realizó utilizando los programas ASMPKS (Tae et al, BMC Bioinformatics. 8, 327-335, 2007) y NRPSpredictor (Rausch et al, Nucleic Acids Res. 33, 5799-5808, 2005). The preparation of plasmids, total DNA, restriction enzyme digestions, DNA linkages, etc., was carried out following standardized methods previously described (Sambrook et al., Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory press, 1989; Kieser et al, Practical Streptomyces Genetics. The John Innes Foundation. Norwich, 2000). The DNA fragments were isolated from agarose gels using the QIAGEN QUIAquick Gel Extraction Kit (Hilden, Germany) and labeled using the DIG DNA Labelling and Detection Kit from Roche Diagnostics (Manheim, Germany) used for Southern analysis according to the manufacturer's instructions. Sequencing was performed on double stranded DNA using the method described by Sanger et al, Proc. Nati Acad. Sci. USA. 74, 5463-5467 (1977) and the Cy5 Autocycle Sequencing Kit sequencing kit (Pharmacia Biotech). The electrophoresis of the samples was performed in an automatic Alf-express sequencer (Pharmacia Biotech). The sequences obtained were analyzed using the GCG software package, from the Genetics Computer Group of the University of Wisconsin (Devereux et al, Nucleic Acids Res. 12, 387-395, 1984) and the BLAST program (Altschul et al, J Mol. Biol. 215, 403-410, 1990). The analysis of the transmembrane regions of possible transmembrane proteins was performed using the TMHMM v program. 2.0 (Krogh et al, J. Mol. Biol. 305, 567-580, 2001). The analysis of PCS and NRPS was performed using the ASMPKS programs (Tae et al, BMC Bioinformatics. 8, 327-335, 2007) and NRPSpredictor (Rausch et al, Nucleic Acids Res. 33, 5799-5808, 2005).
2.4. Amplificación de fragmentos de ADN por PCR y clonación de un fragmento de ADN que codifica parte de una Usina 2-aminotransferasa del genoma de Streptomyces spp. CS40. La estrategia empleada para la clonación de la agrupación de genes de biosíntesis de colismicina fue la utilización de la homología genética con algunas proteínas codificadas por genes previamente caracterizados y para los cuales debería existir un homólogo en la ruta de biosíntesis de colismicina. 2.4. Amplification of DNA fragments by PCR and cloning of a DNA fragment encoding part of a 2-aminotransferase plant of the genome of Streptomyces spp. CS40 The strategy used for cloning the colismicin biosynthesis gene cluster was the use of genetic homology with some proteins encoded by previously characterized genes and for which there should be a homologue in the colismicin biosynthesis pathway.
La información disponible sobre la biosíntesis de ácido picolínico (Bruntner y Bormann, 1998; Namwat et al, 2002), un intermediario en la ruta de biosíntesis de caerulomicina (Vining et al, 1988) y posiblemente también en la de colismicina fue usada para diseñar los oligonucleótidos degenerados L2ATFW2 (SEQ ID NO: 29) y L2ATRV2 (SEQ ID NO: 30) y tratar de amplificar una secuencia perteneciente a un gen homólogo a lisina 2-aminotransferasas. Para la obtención del ADN total de Streptomyces spp. CS40 el microorganismo se cultivó en medio líquido TSB y el ADN total se aisló como ha sido descrito por Kieser et al, (2000). El ADN total de Streptomyces spp. CS40 fue utilizado como molde para la reacción en cadena de la polimerasa utilizando los oligonucleótidos L2ATFW2 (SEQ ID NO: 29) y L2ATRV2 (SEQ ID NO: 30). Se asumió que, como consecuencia de la amplificación se obtendría un fragmento de ADN de aproximadamente 0.6 kb que contendría la parte interna del gen que codifica para una lisina 2-aminotransferasa. La reacción en cadena de la polimerasa se llevó a cabo en un volumen total de 50 μΐ y la mezcla de reacción contenía 0,1 μg de ADN total de Streptomyces spp. CS40, 2.5% de dimetilsulfóxido (DMSO), 200 pmoles de cada cebador, dNTPs (concentración final 200 μΜ), lxPCR del enzima Taq DNA polimerasa (Invitrogen). La reacción en cadena se realizó en un termociclador GeneAmp® PCR System9700 de Applied Biosystems con el siguiente programa: 1 ciclo de desnaturalización a 98°C (5 min), 30 ciclos de desnaturalización/ anillamiento/ síntesis a 94°C (1 min) / 55°C (1 min) / 72°C (1 min) y 1 ciclo de extensión final a 72°C (10 min). El fragmento de ADN obtenido con este procedimiento fue clonado en el vector de E. coli pGemT usando el procedimiento recomendado por el fabricante y fue sometido a secuenciación utilizando técnicas estandarizadas. El análisis de la secuencia del fragmento amplificado por PCR reveló que contenía parte de una proteína que presentaba claras similitudes a nivel de aminoácidos con varias lisina 2-aminotransferasas previamente caracterizadas: NikC de Streptomyces tendae, número de acceso CAA75797 (Bruntner y Bormann, 1998) y VisA de Streptomyces virginiae, número de acceso BAB83671 (Namwat et al, 2002). The information available on the biosynthesis of picolinic acid (Bruntner and Bormann, 1998; Namwat et al, 2002), an intermediary in the biosynthesis pathway of caerulomycin (Vining et al, 1988) and possibly also in that of colismicin was used to design degenerate oligonucleotides L2ATFW2 (SEQ ID NO: 29) and L2ATRV2 (SEQ ID NO: 30) and try to amplify a sequence belonging to a gene homologous to lysine 2-aminotransferases. To obtain the total DNA of Streptomyces spp. CS40 the microorganism was cultured in TSB liquid medium and the total DNA was isolated as described by Kieser et al, (2000). Total DNA of Streptomyces spp. CS40 was used as a template for the polymerase chain reaction using oligonucleotides L2ATFW2 (SEQ ID NO: 29) and L2ATRV2 (SEQ ID NO: 30). It was assumed that, as a consequence of the amplification, a DNA fragment of approximately 0.6 kb would be obtained which It would contain the inner part of the gene that codes for a lysine 2-aminotransferase. The polymerase chain reaction was carried out in a total volume of 50 μΐ and the reaction mixture contained 0.1 μg of total Streptomyces spp. DNA. CS40, 2.5% dimethylsulfoxide (DMSO), 200 pmoles of each primer, dNTPs (final concentration 200 μΜ), lxPCR of the enzyme Taq DNA polymerase (Invitrogen). The chain reaction was carried out in an Applied Biosystems GeneAmp ® PCR System9700 thermocycler with the following program: 1 cycle of denaturation at 98 ° C (5 min), 30 cycles of denaturation / ringing / synthesis at 94 ° C (1 min) / 55 ° C (1 min) / 72 ° C (1 min) and 1 final extension cycle at 72 ° C (10 min). The DNA fragment obtained with this procedure was cloned into the E. coli pGemT vector using the procedure recommended by the manufacturer and was subjected to sequencing using standardized techniques. Sequence analysis of the PCR amplified fragment revealed that it contained part of a protein that showed clear similarities at the amino acid level with several previously characterized lysine 2-aminotransferases: NikC of Streptomyces tendae, accession number CAA75797 (Bruntner and Bormann, 1998) and StAptomyces virginiae VisA, accession number BAB83671 (Namwat et al, 2002).
A partir de esta secuencia homologa a lisina 2-amino transferasas amplificada fueron diseñados dos oligonucleótidos para construir una sonda genética. Los oligonucleótidos sintéticos L2ATsonl (SEQ ID NO: 31) y L2ATson2 (SEQ ID NO: 32) fueron utilizados como cebadores para la amplificación de la sonda genética por medio de la reacción en cadena de la polimerasa (PCR) y usando como ADN molde el ADN cromosómico de Streptomyces spp. CS40. La reacción en cadena de la polimerasa se llevó a cabo en un volumen total de 50 μΐ y la mezcla de reacción contenía 0,1 μg de ADN total de Streptomyces spp. CS40, 2.5% de dimetilsulfóxido (DMSO), 200 pmoles de cada cebador, dNTPs (concentración final 200 μΜ), lxPCR del enzima pfx DNA polimerasa (Invitrogen). La reacción en cadena se realizó en un termociclador GeneAmp® PCR System9700 de Applied Biosystems con el siguiente programa: 1 ciclo de desnaturalización a 98°C (5 min), 30 ciclos de desnaturalización/ anillamiento/ síntesis a 94°C (1 min) / 60°C (1 min) / 68°C (1 min) y 1 ciclo de extensión final a 68°C (10 min). El fragmento de ADN obtenido con este procedimiento fue clonado en el vector de Escherichia coli pCR-Blunt y fue sometido a secuenciación utilizando técnicas estandarizadas. Una vez confirmado que el fragmento amplificado formaba parte de la región codificadora de la lisina 2-aminotransferasa este fragmento se utilizó como sonda genética para el análisis de una genoteca de ADN cromosómico de Streptomyces spp. CS40. 2.5. Construcción y análisis de la genoteca de ADN cromosómico de Streptomyces spp. CS40. From this sequence homologous to amplified lysine 2-amino transferases, two oligonucleotides were designed to construct a genetic probe. The synthetic oligonucleotides L2ATsonl (SEQ ID NO: 31) and L2ATson2 (SEQ ID NO: 32) were used as primers for the amplification of the genetic probe by means of the polymerase chain reaction (PCR) and using as template DNA the Streptomyces spp. Chromosomal DNA CS40 The polymerase chain reaction was carried out in a total volume of 50 μΐ and the reaction mixture contained 0.1 μg of total Streptomyces spp. DNA. CS40, 2.5% dimethylsulfoxide (DMSO), 200 pmoles of each primer, dNTPs (final concentration 200 μΜ), lxPCR of the enzyme pfx DNA polymerase (Invitrogen). The chain reaction was carried out in an Applied Biosystems GeneAmp ® PCR System9700 thermocycler with the following program: 1 cycle of denaturation at 98 ° C (5 min), 30 cycles of denaturation / ringing / synthesis at 94 ° C (1 min) / 60 ° C (1 min) / 68 ° C (1 min) and 1 final extension cycle at 68 ° C (10 min). The DNA fragment obtained with this procedure was cloned into the Escherichia coli pCR-Blunt vector and subjected to sequencing using standardized techniques. Once confirmed that the amplified fragment was part of the coding region of lysine 2-aminotransferase, this fragment was used as a genetic probe for the analysis of a Streptomyces spp chromosomal DNA library. CS40 2.5 Construction and analysis of the Streptomyces spp. Chromosomal DNA library. CS40
La genoteca de ADN cromosómico de Streptomyces spp. CS40 fue construida en el cósmido pWE15 que es capaz de replicarse en E. coli. El ADN genómico de Streptomyces spp. CS40 fue aislado como se ha descrito anteriormente, fue digerido parcialmente con Sau3AI y los fragmentos obtenidos, de un tamaño aproximado de 35- 40 kb, fueron desfosforilados por tratamiento con fosfatasa alcalina (Roche Diagnostics, Mannheim). El cósmido pWE15, utilizado como vector, fue linearizado con BamHI. Los fragmentos de ADN y el vector fueron ligados y empaquetados in vitro usando un kit comercial de empaquetamiento Gigapack III Gold packaging Extract kit siguiendo las instrucciones de la casa comercial (Stratagene) . Las partículas de ADN recombinante fueron utilizadas para infectar células de E.coli XLI Blue MR y los transductantes fueron seleccionados en placas con medio LA (Luria-Bertani agar) conteniendo como antibiótico de selección ampicilina. Aproximadamente 1000 colonias transductantes fueron cultivadas en placas de microtitulación conteniendo medio LB (Luria-Bertani broth) y el antibiótico de selección. Después de su incubación a 37°C durante 24 h, fueron mantenidas en presencia de glicerol al 25% a -70°C para su preservación. The chromosomal DNA library of Streptomyces spp. CS40 was built on the cosmid pWE15 that is able to replicate in E. coli. The genomic DNA of Streptomyces spp. CS40 was isolated as described above, partially digested with Sau3AI and the fragments obtained, approximately 35-40 kb in size, were dephosphorylated by treatment with alkaline phosphatase (Roche Diagnostics, Mannheim). The cosmid pWE15, used as a vector, was linearized with BamHI. The DNA fragments and the vector were ligated and packaged in vitro using a commercial packaging kit Gigapack III Gold packaging Extract kit following the instructions of the commercial house (Stratagene). The recombinant DNA particles were used to infect E.coli XLI Blue MR cells and the transductants were selected on plates with LA medium (Luria-Bertani agar) containing as an ampicillin selection antibiotic. Approximately 1000 transducer colonies were cultured in microtiter plates containing LB medium (Luria-Bertani broth) and the selection antibiotic. After incubation at 37 ° C for 24 h, they were maintained in the presence of 25% glycerol at -70 ° C for preservation.
Con objeto de clonar la agrupación de genes de biosíntesis de colismicina se llevó a cabo el análisis de la genoteca de Streptomyces spp. CS40 mediante hibridación in situ de colonias con la sonda mencionada anteriormente. Los transductantes fueron transferidos de las placas de microtitulación a placas de medio LA conteniendo como antibiótico de selección ampicilina y tras una noche de crecimiento a 37°C las colonias fueron transferidas a filtros de nylon para su hibridación in situ siguiendo los protocolos descritos por Sambrook et al, (1989). Los filtros fueron analizados con las sondas marcadas utilizando el kit comercial DIG DNA labeling and detection kit de Roche. De este modo (y como se detalló anteriormente) se aisló el cósmido coslC3. Ejemplo 3. Obtención y análisis de la secuencia nucleotídica del agrupamiento génico responsable de la biosíntesis de colismicina y deducción de las funciones de los genes. In order to clone the cluster of colismicin biosynthesis genes, the analysis of the Streptomyces spp library was carried out. CS40 by in situ hybridization of colonies with the probe mentioned above. The transductants were transferred from the microtiter plates to LA medium plates containing as an ampicillin selection antibiotic and after a night of growth at 37 ° C the colonies were transferred to nylon filters for in situ hybridization following the protocols described by Sambrook et al, (1989). The filters were analyzed with the probes labeled using the commercial DIG DNA labeling and detection kit from Roche. In this way (and as detailed above) the coslC3 cosmid was isolated. Example 3. Obtaining and analyzing the nucleotide sequence of the gene pool responsible for the biosynthesis of colismicin and deduction of gene functions.
El cósmido coslC3 y el fragmento EcoRV/HindIII de 7,7 kb procedente del cósmido cos3B l l subclonado en los mismos sitios en el vector pBluescriptSK+ fueron secuenciados en su totalidad. La secuenciación fue realizada sobre ADN de doble cadena utilizando el método de descrito por Sanger et al, (1977) y utilizando el kit de secuenciación Cy5 Autocycle Sequencing Kit (Pharmacia Biotech). La electroforesis de las muestras fue realizada en un secuenciador automático Alf-express (Pharmacia Biotech) y los datos obtenidos se analizaron usando el paquete informático de programas del GCG, del Genetics Computer Group de la Universidad de Wisconsin (Devereux et al, 1984) y el programa BLAST (Altschul et al., 1990). El análisis de las regiones transmembrana de posibles proteínas transmembranales se realizó utilizando el programa TMHMM v. 2.0 (Krogh et al, J. Mol. Biol. 305, 567-580, 2001).E1 análisis de PCS y NRPS se realizó utilizando los programas ASMPKS (Tae et al, 2007) y NRPSpredictor (Rausch et al, 2005). The coslC3 cosmid and the 7.7 kb EcoRV / HindIII fragment from the cos3B l l cosmid subcloned into the same sites in the pBluescriptSK + vector were sequenced in their entirety. Sequencing was performed on double stranded DNA using the method described by Sanger et al, (1977) and using the Cy5 Autocycle Sequencing Kit (Pharmacia Biotech). The electrophoresis of the samples was performed in an automatic Alf-express sequencer (Pharmacia Biotech) and the data obtained were analyzed using the GCG software package, from the Genetics Computer Group of the University of Wisconsin (Devereux et al, 1984) and the BLAST program (Altschul et al., 1990). The analysis of the transmembrane regions of possible transmembrane proteins was performed using the TMHMM v program. 2.0 (Krogh et al, J. Mol. Biol. 305, 567-580, 2001). The analysis of PCS and NRPS was performed using the ASMPKS (Tae et al, 2007) and NRPSpredictor (Rausch et al, 2005).
El análisis informático de la secuencia de ADN de 46668 bp (SEQ ID NO: 1) mostró la presencia de 27 pautas de lectura abierta (ORFs) (FIG. 2 y Tabla 2) con un alto contenido en G+C característico del ADN de Streptomyces . Además se muestra un contenido especialmente alto en G+C alto en la tercera posición de los codones característico de genes de Streptomyces. Las funciones de los genes fueron deducidas por comparación de las secuencias aminoacídicas, traducidas conceptualmente a partir de la secuencia nucleotídica, con secuencias conocidas disponibles en bases de datos. Los resultados obtenidos se muestran en la Tabla 2 referidos a los datos de secuencia que se incluyen en la solicitud. 23 de las 27 ORFS encontradas, que ocupan una región de 37,5 kb, están probablemente implicadas en la biosíntesis de colismicina. Esta región esta flanqueada por 4 ORFs probablemente no implicadas en la biosíntesis de colismicina (en blanco en la FIG. 2). De estas ORFs, orfl, mostró gran similitud con una posible helicasa de S. viridochromogenes DSM 40736 (ZP_05534927) y una posible kinasa de S. scabiei 87.22, (YP 003487313). De las 23 ORFs que se proponen implicadas en la biosíntesis de colismicina A, 16 ORFs están implicadas en la biosíntesis de la parte estructural de la colismicina, 5 de ellas {orfl -7) están implicadas en el transporte de colismicina, 2 ORFs {orfl y orfó) están probablemente implicadas en procesos de regulación. Tabla 2. Genes identificados en la región del cromosoma de Streptomyces spp. CS40 implicada en la biosíntesis de colismicina. Computer analysis of the 46668 bp DNA sequence (SEQ ID NO: 1) showed the presence of 27 open reading patterns (ORFs) (FIG. 2 and Table 2) with a high G + C content characteristic of the DNA of Streptomyces In addition, a particularly high content in high G + C is shown in the third position of the codons characteristic of Streptomyces genes. The gene functions were deduced by comparison of the amino acid sequences, conceptually translated from the nucleotide sequence, with known sequences available in databases. The results obtained are shown in Table 2 referring to the sequence data included in the application. 23 of the 27 ORFS found, which occupy a 37.5 kb region, are probably involved in the biosynthesis of colismicin. This region is flanked by 4 ORFs probably not involved in the biosynthesis of colismicin (blank in FIG. 2). Of these ORFs, orfl, showed great similarity with a possible S. viridochromogenes DSM 40736 helicase (ZP_05534927) and a possible S. scabiei 87.22 kinase, (YP 003487313). Of the 23 proposed ORFs involved in the biosynthesis of colismicin A, 16 ORFs are involved in the biosynthesis of the structural part of colismicin, 5 of them {orfl -7) are involved in the transport of colismicin, 2 ORFs {orfl and orfó) are probably involved in regulatory processes. Table 2. Genes identified in the chromosome region of Streptomyces spp. CS40 involved in the biosynthesis of colismicin.
Gen Posición Aminoácidos Función deducida Notas Gene Position Amino acids Function deducted Notes
549-2237 Desconocida  549-2237 Unknown
orfl 563 SeqID.NO:2 compl.  orfl 563 SeqID.NO:2 compl.
Regulador transcripcional homólogo  Homologous Transcriptional Regulator
orf2 2857-3414 186 SeqID.NO:3 a TetR  orf2 2857-3414 186 SeqID.NO:3 to TetR
3514-5247  3514-5247
orfl 578 Transportador SeqID.NO:4 compl.  orfl 578 Conveyor SeqID.NO:4 compl.
5256-7016  5256-7016
orf4 587 Transportador SeqID.NO:5 compl.  orf4 587 Conveyor SeqID.NO:5 compl.
orfl 7225-8193 323 Transportador SeqID.NO:6 orfó 8322-9305 328 Transportador SeqID.NO:7 orfl 9314-10099 262 Transportador SeqID.NO:8  orfl 7225-8193 323 Conveyor SeqID.NO:6 orfó 8322-9305 328 Conveyor SeqID.NO:7 orfl 9314-10099 262 Conveyor SeqID.NO:8
Regulador transcripcional homólogo  Homologous Transcriptional Regulator
orfl 10363-10869 169 SeqID.NO:9 a LuxR  orfl 10363-10869 169 SeqID.NO:9 to LuxR
11042-12070  11042-12070
orfl 343 Metil transferasa SeqID.NO: 10 compl.  orfl 343 Methyl transferase SeqID.NO: 10 compl.
12105-13703  1210-13-13703
orflO 533 Deshidrogenasa SeqID.NO: l l compl.  orflO 533 Dehydrogenase SeqID.NO: l l compl.
13861-15495  13861-15495
orfll 545 Aminotransferasa SeqID.NO: 12 compl.  Orfll 545 Aminotransferase SeqID.NO: 12 compl.
orfl 2 15620-16606 329 Metiltransferasa SeqID.NO: 13  orfl 2 15620-16606 329 Methyltransferase SeqID NO: 13
Proteína similar a GriD  GriD-like protein
16688-18076 (YP 001825756)  16688-18076 (YP 001825756)
orfl 3 463 SeqID.NO: 14 compl. Arylcarboxilato reductasa  orfl 3 463 SeqID.NO: 14 compl. Arylcarboxylate reductase
componente Gen Posición Aminoácidos Función deducida Notas component Gene Position Amino acids Function deducted Notes
Proteína similar a GriC GriC-like protein
18078-19109 (YP_001825755)  18078-19109 (YP_001825755)
orfl4 344 SeqID.NO: 15 compl. Arilcarboxilato reductasa  orfl4 344 SeqID.NO: 15 compl. Arylcarboxylate reductase
componente  component
orfl5 19405-20613 403 Monoxigenasa SeqID.NO: 16 orfl5 19405-20613 403 Monoxygenase SeqID NO: 16
20680-21921 20680-21921
orfló 414 Amidohidrolasa SeqID.NO: 17 compl.  Orphlous 414 Amidohydrolase SeqID.NO: 17 compl.
21926-23614  21926-23614
orfl 7 563 Enzima formadora de adenilato SeqID.NO: 18 compl.  orfl 7 563 Adenylate forming enzyme SeqID.NO: 18 compl.
23611-23871  23611-23871
orfl8 87 Proteína de unión a fosfopanteteína SeqID.NO: 19 compl. orfl9 24108-25484 459 Lisina 2-aminotransferasa SeqID.NO:20 orfiO 25481-26662 394 Sarcosina oxidasa monomérica SeqID.NO:21 orf21 26548-34206 2553 Proteína híbrida PCS/NRPS SeqID.NO:22 orf22 34203-37478 1092 NRPS SeqID.NO:23 orfi3 37475-38659 395 Deshidrogenasa SeqID.NO:24 orf24 38652-39380 243 Tioesterasa SeqID.NO:25 orfl8 87 Phosphopantetein binding protein SeqID.NO: 19 compl. orfl9 24108-25484 459 Lysine 2-aminotransferase SeqID.NO:20 orfiO 25481-26662 394 Sarcosine oxidase monomeric SeqID.NO:21 orf21 26548-34206 2553 PCS / NRPS hybrid protein SeqID.NO:22 orf22 34203-37478 1092 NRPSq SeqID. NO: 23 orfi3 37475-38659 395 Dehydrogenase SeqID NO: 24 orf24 38652-39380 243 Thioesterase SeqID NO: 25
39442-40665 39442-40665
orfi5 408 Desconocida SeqID.NO:26 compl.  orfi5 408 Unknown SeqID.NO:26 compl.
orf26 41103-41708 202 Desconocida SeqID.NO:27 orfi7 42017-46105 1363 Desconocida SeqID.NO:28  orf26 41103-41708 202 Unknown SeqID.NO:27 orfi7 42017-46105 1363 Unknown SeqID.NO:28
Ejemplo 4. Inactivación de la agrupación de genes de biosíntesis de colismicina mediante disrupción génica. Con objeto de demostrar la implicación de la agrupación de genes clonados en la biosíntesis de colismicina se llevó a cabo la inactivación del gen orf21. Para la inactivación de la orfll se aisló un fragmento BamHI del cósmido coslC3. Este fragmento de 3128 bp es interno a orfll (sitios BamHI 13 y 14, FIG. 2) y fue clonado en el plásmido pOJ260 digerido con BamHI. La construcción resultante, pOJB12 fue introducida en Streptomyces spp. CS40 mediante conjugación intergenérica desde E. coli ET12567 (pUB307) para generar la cepa mutante CLM-12 que fue seleccionada por su resistencia a apramicina. Example 4. Inactivation of the colismicin biosynthesis gene cluster by gene disruption. In order to demonstrate the involvement of cloned gene clustering in the biosynthesis of colismicin, inactivation of the orf21 gene was carried out. For the inactivation of the orfll a BamHI fragment of the coslC3 cosmid was isolated. This 3128 bp fragment is internal to orfll (BamHI sites 13 and 14, FIG. 2) and was cloned into plasmid pOJ260 digested with BamHI. The resulting construct, pOJB12 was introduced in Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-12 that was selected for its apramycin resistance.
La mutación en el gen orfll fue comprobada mediante análisis por Southern. El mutante se demostró no productor de colismicina A mediante análisis por UPLC de muestras de cultivos de Streptomyces spp. CS40 y CLM-12 extraídas con acetato de etilo (FIG. 4), confirmando de este modo la implicación de la agrupación de genes en la biosíntesis de colismicina. The mutation in the orfll gene was checked by Southern analysis. The mutant was shown not to produce colismicin A by UPLC analysis of culture samples from Streptomyces spp. CS40 and CLM-12 extracted with ethyl acetate (FIG. 4), thereby confirming the implication of gene clustering in colismicin biosynthesis.
Ejemplo 5. Establecimiento de los límites de la agrupación de genes de biosíntesis de colismicina mediante reemplazamiento génico. Example 5. Establishment of the limits of the clustering of colismicin biosynthesis genes by gene replacement.
Para establecer los límites del agrupamiento génico implicado en la biosíntesis de colismicina se realizaron dos mutantes por disrupción génica y un mutante por reemplazamiento génico en los genes orfl (mutante CLM-H) y orfl7 (mutante CLM- 24) y orfl5 (mutante CLM-22D) respectivamente En el caso de los mutantes CLM-H y CLM-24 las ORFs se interrumpen por introducción de un gen de resistencia a apramicina y en el caso del mutante CLM-22D la ORF se sustituye por el gen de resistencia a apramicina. To establish the limits of the gene pooling involved in the biosynthesis of colismicin, two mutants were made by gene disruption and one mutant by gene replacement in the genes orfl (mutant CLM-H) and orfl7 (mutant CLM-24) and orfl5 (mutant CLM- 22D) respectively In the case of the CLM-H and CLM-24 mutants the ORFs are interrupted by the introduction of an apramycin resistance gene and in the case of the CLM-22D mutant the ORF is replaced by the apramycin resistance gene.
Para la obtención del mutante en la orfl se amplificó una región de 910 pb correspondiente a un fragmento interno a la orfl con los oligonucleótidos HelDisrl (SEQ ID NO: 34) y HelDisr2 (SEQ ID NO: 35). Dicho fragmento se clonó en el vector pCR-Blunt para generar el plásmido pCRBH y se sometió a secuenciación utilizando técnicas estandarizadas. Posteriormente este fragmento se obtuvo del plásmido pCRBH digiriendo el mismo con EcoRI y se clonó en el mismo sitio de restricción del vector pOJ260, generando así el plásmido pOJBH que se usó para la disrupción génica en Streptomyces spp. CS40. En ningún caso fuimos capaces de obtener mutantes que llevaran interrumpida la orfl sugiriendo que este gen es esencial para la viabilidad celular. Este dato descarta la participación de la orfl en la biosíntesis de colismicina, puesto que los distintos mutantes (CLM-L, CLM-12) que presentan afectada la biosíntesis de colismicina son perfectamente viables, excluyendo así este gen del cluster de biosíntesis de colismicina. To obtain the mutant in the orfl a region of 910 bp corresponding to a fragment internal to the orfl was amplified with the oligonucleotides HelDisrl (SEQ ID NO: 34) and HelDisr2 (SEQ ID NO: 35). Said fragment was cloned into the pCR-Blunt vector to generate plasmid pCRBH and subjected to sequencing using standardized techniques. Subsequently, this fragment was obtained from plasmid pCRBH by digesting it with EcoRI and was cloned into the same restriction site of vector pOJ260, thus generating plasmid pOJBH that was used for gene disruption in Streptomyces spp. CS40 In no case were we able to obtain mutants that would interrupt the orfl suggesting that this gene is essential for cell viability. This data rules out the participation of orfl in colismicin biosynthesis, since the different mutants (CLM-L, CLM-12) that have affected colismicin biosynthesis are perfectly viable, thus excluding this gene from the colismicin biosynthesis cluster.
Para la obtención del muíante CLM-24 se obtuvo un fragmento Clal-BamHI de 2271 bp, procedente del cósmido coslC3 que corresponde a un fragmento interno a la orf27. Dicho fragmento se hizo romo y se clonó en el vector pOJ260 en el sitio EcoRV generando así el plásmido pOJB23P que se usó para la disrupción génica en Streptomyces spp. CS40 generando el muíante CLM-24. To obtain the CLM-24 mutant, a Clal-BamHI fragment of 2271 bp was obtained, from the coslC3 cosmid corresponding to a fragment internal to orf27. Said fragment became blunt and was cloned into vector pOJ260 at the EcoRV site thereby generating plasmid pOJB23P that was used for gene disruption in Streptomyces spp. CS40 generating the CLM-24 mutant.
Para la obíención del muíaníe CLM-22D se empleó la íécnica de reemplazamienío génico. Se amplificó medianíe PCR un fragmento de 1526 bp que se encueníra flanqueando corrieníe arriba al gen orf25. Para ello se usaron los oligonucleóíidos ORF22dell (SEQ ID NO: 36) y ORF22del2 (SEQ ID NO: 37) a los que se les introdujeron las dianas de restricción EcoRI y HindIII respecíivameníe, dicho fragmento se clonó en el vecíor pCR-Bluní y fue someíido a secuenciación uíilizando íécnicas esíandarizadas. Posíeriormeníe dicho fragmento se clonó en el vecíor pUO9090 en los siíios de resíricción EcoRI y HindIII generando el plásmido pUO909022A. Adicionalmeníe se amplificó medianíe PCR un segundo fragmento de 1496 bp que se encueníra flanqueando corrieníe abajo al gen orf25. Para ello se usaron los oligonucleóíidos ORF22del3 (SEQ ID NO: 38) y ORF22del4 (SEQ ID NO: 39) a los que se les inírodujo la diana EcoRV, esíe fragmento se clonó en el vecíor pCR-Bluní y fue someíido a secuenciación uíilizando íécnicas esíandarizadas. Posíeriormeníe dicho fragmento se clonó en el vecíor pUO909022A usando el sitio de resíricción EcoRV para generar el vecíor pUO909022AB. The gene replacement technique was used to obtain the CLM-22D muierie. A 1526 bp fragment that is flanking upstream to the orf25 gene was amplified by PCR. For this, the oligonucleotides ORF22dell (SEQ ID NO: 36) and ORF22del2 (SEQ ID NO: 37) were used to which the EcoRI and HindIII restriction targets were introduced respectively, said fragment was cloned into the pCR-Bluní neighbor and was subjected to sequencing using standardized techniques. Subsequently, said fragment was cloned into the neighbor pUO9090 at the EcoRI and HindIII resiriction sites generating plasmid pUO909022A. Additionally, a second 1496 bp fragment that is flanking runs down to the orf25 gene was amplified by PCR. To do this, oligonucleotides ORF22del3 (SEQ ID NO: 38) and ORF22del4 (SEQ ID NO: 39) were used, which were inroduced with the EcoRV target, which fragment was cloned into the pCR-Bluní neighbor and subjected to sequencing using techniques They are standardized. Subsequently, said fragment was cloned into the neighbor pUO909022A using the EcoRV resync site to generate the neighbor pUO909022AB.
Para el reemplazamienío génico el caseííe de reemplazamienío se obíuvo del vecíor pUO909022AB digerido con Spel y se clonó en el vecíor pHZ1358. La construcción resulíaníe, pHZ22AB, fue usada para el reemplazamienío génico en Streptomyces spp. CS40 generando el muíaníe CLM-22D. La integración del gen de resistencia a apramicina en el caso de los mutantes generados por disrupción así como el reemplazamiento en el cromosoma de la copia silvestre del gen por la mutada fue confirmado en los transconjugantes mediante análisis por Southern. Cada uno de los mutantes fue analizado para conocer la producción de colismicina A, en paralelo con la cepa parental Streptomyces spp. CS40 mediante UPLC. Los mutantes CLM-22D y CLM-24, se mostraron como productores de colismicina A (FIG. 5), indicando que los genes mutados no participan en la biosíntesis de colismicina y confirmando de este modo los límites del agrupamiento génico implicado en la biosíntesis de colismicina. For gene replacement the replacement case was obtained from the neighbor pUO909022AB digested with Spel and was cloned into the neighboring pHZ1358. The resulting construction, pHZ22AB, was used for gene replacement in Streptomyces spp. CS40 generating the CLM-22D muierie. The integration of the apramycin resistance gene in the case of mutants generated by disruption as well as the replacement on the chromosome of the wild copy of the gene by the mutated was confirmed in the transconjugants by Southern analysis. Each of the mutants was analyzed to determine the production of colismicin A, in parallel with the parental strain Streptomyces spp. CS40 via UPLC. The CLM-22D and CLM-24 mutants were shown as producers of colismicin A (FIG. 5), indicating that the mutated genes do not participate in the biosynthesis of colismicin and thus confirming the limits of the gene pooling involved in the biosynthesis of colismicin
Ejemplo 6. Generación de un mutante en los pasos iniciales de la biosíntesis de colismicina. Example 6. Generation of a mutant in the initial steps of the biosynthesis of colismicin.
El primero de los pasos propuestos para la biosíntesis de colismicina (FIG 6) consiste en la formación de ácido picolínico a partir de lisina y el primer gen implicado en este proceso sería una lisina 2-aminotransferasa codificada por la orfl9. Para confirmar este dato se inactivo el gen orfl9. The first of the proposed steps for biosynthesis of colismicin (FIG 6) consists of the formation of picolinic acid from lysine and the first gene involved in this process would be a lysine 2-aminotransferase encoded by orfl9. To confirm this data, the orfl9 gene was inactivated.
Para la inactivación de la orfl9 se empleó la técnica de reemplazamiento génico. Se amplificó mediante PCR un fragmento de 1589 bp que se encuentra flanqueando corriente arriba al gen orfl9. Para ello se usaron los oligonucleótidos ORFlódell (SEQ ID NO: 40) y ORF16del2 (SEQ ID NO: 41) a los que se les introdujeron las dianas de restricción EcoRI y HindIII respectivamente, dicho fragmento se clonó en el vector pCR-Blunt y fue sometido a secuenciación utilizando técnicas estandarizadas. Posteriormente dicho fragmento se clonó en el vector pUO9090 en los sitios de restricción EcoRI y HindIII generando el plásmido pUO909016A. Adicionalmente se amplificó mediante PCR un segundo fragmento de 1559 bp que se encuentra flanqueando corriente abajo al gen orfl9. Para ello se usaron los oligonucleótidos ORF16del3 (SEQ ID NO: 43) y ORF16del4 (SEQ ID NO: 44) a los que se les introdujeron las dianas de restricción BamHI y EcoRV respectivamente, este fragmento se clonó en el vector pCR-Blunt y fue sometido a secuenciación utilizando técnicas estandarizadas. Posteriormente dicho fragmento se clonó en el vector pUO909016A usando los sitios de restricción EcoRV y BamHI para generar el vector pUO909016AB. The gene replacement technique was used to inactivate orfl9. A 1589 bp fragment that is flanking upstream to the orfl9 gene was amplified by PCR. For this, the oligonucleotides ORFlódell (SEQ ID NO: 40) and ORF16del2 (SEQ ID NO: 41) were used to which the EcoRI and HindIII restriction targets were introduced respectively, said fragment was cloned into the pCR-Blunt vector and was Sequenced using standardized techniques. Subsequently, said fragment was cloned into the vector pUO9090 at the EcoRI and HindIII restriction sites generating plasmid pUO909016A. Additionally, a second 1559 bp fragment that is flanking downstream to the orfl9 gene was amplified by PCR. For this, oligonucleotides ORF16del3 (SEQ ID NO: 43) and ORF16del4 (SEQ ID NO: 44) were used to which the BamHI and EcoRV restriction targets were introduced respectively, this fragment was cloned into the pCR-Blunt vector and was subjected to sequencing using techniques Standardized Subsequently said fragment was cloned into the vector pUO909016A using the EcoRV and BamHI restriction sites to generate the vector pUO909016AB.
Para el reemplazamiento génico el casette de reemplazamiento se obtuvo del vector pUO909016AB digerido con Spel y se clonó en el vector pHZ1358. La construcción resultante, pHZ16AB, fue introducida en Streptomyces spp. CS40 mediante conjugación intergenérica desde E. coli ET12567 (pUB307) para generar la cepa muíante CLM-L. La cepa CLM-L se encuentra depositada en la Colección Española de Cultivos Tipo con número de depósito 7754. For gene replacement the replacement cassette was obtained from the vector pUO909016AB digested with Spel and was cloned into the vector pHZ1358. The resulting construct, pHZ16AB, was introduced in Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-L. The strain CLM-L is deposited in the Spanish Type Culture Collection with deposit number 7754.
El muíante se demostró no productor de colismicina medianíe análisis por UPLC de muesíras de culíivos de Streptomyces spp. CS40 y CLM-L exíraídas con aceíaío de eíilo (FIG. 7B), confirmando de esíe modo la implicación de esíe gen en la biosíníesis de colismicina. The mutant was shown not to produce colismicin through UPLC analysis of culinary samples of Streptomyces spp. CS40 and CLM-L exirated with eyl oily (FIG. 7B), thereby confirming the involvement of this gene in the biosynthesis of colismicin.
Con el fin de corroborar la participación del gen orfl9 en los pasos iniciales de biosíníesis se analizó por UPLC la producción de colismicina A por parle del muíaníe CLM-L en presencia de ácido picolínico (conceníración final 1 mM), un posible meíaboliío iníermediario, en el medio de culíivo. Las muesíras exíraídas con aceíaío de eíilo mosíraron que el muíaníe CLM-L en presencia de ácido picolínico recupera la capacidad para producir colismicina A (FIG 7C). Esíe dato confirma la participación de orfl9 en los pasos iniciales de biosíníesis y la exisíencia de ácido picolínico como meíaboliío iníermediario en la rula. In order to corroborate the participation of the orfl9 gene in the initial steps of biosinitis, the production of colismicin A per parle of the CLM-L muierie in the presence of picolinic acid (1 mM final concentration), a possible inbred meiabolium, was analyzed by UPLC The culinary medium. The exirated notches with eyl oily showed that the CLM-L muierie in the presence of picolinic acid regains the ability to produce colismicin A (FIG 7C). This data confirms the participation of orfl9 in the initial steps of biosinitis and the existence of picolinic acid as an inmedial meliaboliío in the roller.
Ejemplo 7. Generación de mutantes productores de nuevos derivados de colismicina mediante reemplazamiento génico. Example 7. Generation of mutants producing new derivatives of colismicin by gene replacement.
Para generar mulantes de Streptomyces spp. CS40 capaces de producir colismicinas químicamente modificadas se seleccionaron de manera individual los genes orfll y orfi) y de manera conjunta orf!3 y orfl4 (FIG. 2), todos ellos posiblemeníe implicados en pasos finales de la biosíníesis de colismicina. Para ello se construyeron los plásmidos plásmidos pHZ6AB, pHZ8AB y ρΗΖΙΟΙΑΒ. En primer lugar se amplificó mediante PCR, usando los oligonucleótidos sintéticos orfódeB (SEQ ID NO: 45) y orf del4 (SEQ ID NO: 46) un fragmento de 1499 bp correspondiente a la región corriente abajo del gen orfll, que se clonó en el vector pCR-Blunt para dar el plásmido pCRB8B que fue sometido a secuenciación utilizando técnicas estandarizadas. Este fragmento se extrajo del plásmido pCRB8B usando los sitios EcoRI existentes en el polilinker del vector pCRB-Blunt, se hizo romo y subclonó en el plásmido pU09090 para dar el plásmido pU08B. To generate mules of Streptomyces spp. CS40 capable of producing chemically modified colismicins, the genes orfll and orfi ) were selected individually and jointly orf! 3 and orfl4 (FIG. 2), all of them possibly involved in final steps of colismicin biosinitis. For this purpose, plasmids plasmids pHZ6AB, pHZ8AB and ρΗΖΙΟΙΑΒ were constructed. It was first amplified by PCR, using the synthetic oligonucleotides orfódeB (SEQ ID NO: 45) and orf del4 (SEQ ID NO: 46) a fragment of 1499 bp corresponding to the downstream region of the orfll gene, which was cloned into the pCR-Blunt vector to give plasmid pCRB8B that was subjected to sequencing using standardized techniques. This fragment was extracted from plasmid pCRB8B using the EcoRI sites existing in the polilinker of the pCRB-Blunt vector, made blunt and subcloned into plasmid pU09090 to give plasmid pU08B.
Posteriormente se amplificó por PCR usando los oligonucleótidos sintéticos orfódell (SEQ ID NO: 47) orf8del2 (SEQ ID NO: 48) que incluían sitios de restricción EcoRI y HindIII respectivamente para facilitar la subclonación, un fragmento de 1516 bp correspondiente a la región corriente arriba del gen orfll, que se clonó en el vector pCR-Blunt para dar el plásmido pCRB8A que fue sometido a secuenciación utilizando técnicas de secuenciación estandarizadas. Este fragmento se extrajo del plásmido pCRB8A usando los sitios de restricción EcoRI y HindIII y se subclonó en los mismos sitios del plásmido pU08B para generar el plásmido PU08AB. It was subsequently amplified by PCR using the synthetic oligonucleotides orfódell (SEQ ID NO: 47) orf8del2 (SEQ ID NO: 48) that included EcoRI and HindIII restriction sites respectively to facilitate subcloning, a fragment of 1516 bp corresponding to the upstream region of the orfll gene, which was cloned into the pCR-Blunt vector to give plasmid pCRB8A that was subjected to sequencing using standardized sequencing techniques. This fragment was extracted from plasmid pCRB8A using the EcoRI and HindIII restriction sites and subcloned into the same sites of plasmid pU08B to generate plasmid PU08AB.
El casette de reemplazamiento se extrajo del plásmido pU08AB usando los sitios de restricción Spel y se clonó en el vector pHZ1358 para generar el plásmido pHZ8AB que se introdujo en Streptomyces spp. CS40 por conjugación intergenérica desde E. coli ET12567 (pUB307) para generar la cepa muíante CLM-A. La cepa CLM-A se encuentra depositada en la Colección Española de Cultivos Tipo con número de depósito 7755. The replacement cassette was extracted from plasmid pU08AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ8AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-A. The strain CLM-A is deposited in the Spanish Type Culture Collection with deposit number 7755.
Para la generación de la cepa muíante CLM-M2 se amplificó mediante PCR un fragmento de 1504 bp períenecieníe a la región corrieníe arriba del gen orf9. Para ello se utilizaron los oligonucleótidos orfódell (SEQ ID NO: 49) y orf6del2b (SEQ ID NO: 50) que llevaban los sitios de resíricción EcoRI y HindIII respecíivameníe. Esíe fragmento se clonó en el vecíor pCR-Bluní generando así el plásmido pCRB6A que se secuenció usando íécnicas esíandarizadas. Posíeriormeníe se obíuvo el fragmento digiriendo el plásmido pCRB6A con EcoRI y HindIII y se clonó en los mismos sitios del vecíor pUO9090 generando el vecíor pU06A. Después se amplificó mediante PCR un fragmento de 1504 bp perteneciente a la región corriente abajo del gen orf9. Para ello se utilizaron los oligonucleótidos orfódeB (SEQ ID NO: 51) y orf6del4 (SEQ ID NO: 52). Este fragmento se clonó en el vector pCR- Blunt generando así el plásmido pCRB6B que se secuenció usando técnicas estandarizadas. Posteriormente se obtuvo el fragmento digiriendo el plásmido pCRB6A con EcoRI, se hizo romo y se clonó en el sitio EcoRV del plásmido pU06A generando así el plásmido pU06AB. For the generation of the CLM-M2 mutant strain, a 1504 bp fragment was amplified by PCR to the region above the orf9 gene. For this purpose, the oligonucleotides orfódell (SEQ ID NO: 49) and orf6del2b (SEQ ID NO: 50) that carried the EcoRI and HindIII resyriction sites were used respectively. This fragment was cloned into the pCR-Bluní neighbor thus generating the plasmid pCRB6A that was sequenced using standard techniques. Subsequently, the fragment was obtained by digesting the plasmid pCRB6A with EcoRI and HindIII and was cloned into the same sites of the neighbor pUO9090 generating the neighbor pU06A. A 1504 bp fragment belonging to the downstream region of the orf9 gene was then amplified by PCR. For this purpose, the orfódeB oligonucleotides (SEQ ID NO: 51) and orf6del4 (SEQ ID NO: 52) were used. This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB6B that was sequenced using standardized techniques. Subsequently, the fragment was obtained by digesting plasmid pCRB6A with EcoRI, became blunt and was cloned into the EcoRV site of plasmid pU06A thereby generating plasmid pU06AB.
El casette de reemplazamiento se extrajo del plásmido pU06AB usando los sitios de restricción Spel y se clonó en el vector pHZ1358 para generar el plásmido pHZ6AB que se introdujo en Streptomyces spp. CS40 por conjugación intergenérica desde E.coli ET12567 (pUB307) para generar la cepa muíante CLM-M2. La cepa CLM-M2 se encuentra depositada en la Colección Española de Cultivos Tipo con número de depósito 7756. The replacement cassette was extracted from plasmid pU06AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ6AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E.coli ET12567 (pUB307) to generate the mutant strain CLM-M2. The strain CLM-M2 is deposited in the Spanish Type Culture Collection with deposit number 7756.
Para la generación del doble muíante en los genes orfl3 y orfl4 se amplificó mediante PCR un fragmento de 1496 bp períenecieníe a la región corrieníe arriba del gen orfl4. Para ello se uíilizaron los oligonucleótidos orflOldell (SEQ ID NO: 53) y orfl01del2 (SEQ ID NO: 54) que llevaban los siíios de resíricción EcoRI y HindIII respecíivameníe (secuencia subrayada). Esíe fragmento se clonó en el vector pCR-Bluní generando así el plásmido pCRBIOlA que se secuenció usando íécnicas esíandarizadas. Posíeriormeníe se obíuvo el fragmento digiriendo el plásmido pCRBIO lA con EcoRI y HindIII y se clonó en los mismos siíios del vector pUO9090 generando el vector pUOlOlA. For the generation of the double mutant in the orfl3 and orfl4 genes, a 1496 bp fragment was amplified by PCR from the region running above the orfl4 gene. For this purpose, the oligonucleotides orflOldell (SEQ ID NO: 53) and orfl01del2 (SEQ ID NO: 54) were used, which carried the EcoRI and HindIII restriction sites respectively (underlined sequence). This fragment was cloned into the pCR-Bluní vector thus generating the plasmid pCRBIOlA that was sequenced using standard techniques. Subsequently, the fragment was obtained by digesting the plasmid pCRBIO lA with EcoRI and HindIII and cloned into the same sites of the vector pUO9090 generating the vector pUOlOlA.
Después se amplificó medianíe PCR un fragmento de 1522 bp períenecieníe a la región corrieníe abajo del gen orfl3. Para ello se uíilizaron los oligonucleótidos orflOldeB (SEQ ID NO: 55) y orflOldeM (SEQ ID NO: 56) que llevaban el siíio de resíricción EcoRV (secuencia subrayada). Esíe fragmento se clonó en el vecíor pCR-Bluní generando así el plásmido pCRBlOlB que se secuenció usando íécnicas esíandarizadas. Posíeriormeníe se obíuvo el fragmento digiriendo el plásmido pCRBlOlB con EcoRV y se clonó en el mismo siíio del plásmido pUOlOlA generando así el plásmido pUOlOlAB. El casette de reemplazamiento se extrajo del plásmido pUOlOlAB usando los sitios de restricción Spel y se clonó en el vector pHZ1358 para generar el plásmido ρΗΖΙΟΙΑΒ que se introdujo en Streptomyces spp. CS40 por conjugación intergenérica desde E. coli ET12567 (pUB307) para generar la cepa muíante CLM-G. La cepa CLM-G se encuentra depositada en la Colección Española de Cultivos Tipo con número de depósito CECT7861. A 1522 bp fragment was then amplified by PCR to the region running down the orfl3 gene. For this purpose, the oligonucleotides orflOldeB (SEQ ID NO: 55) and orflOldeM (SEQ ID NO: 56) were used which bore the EcoRV resyriction site (underlined sequence). This fragment was cloned into the pCR-Bluní neighbor thus generating the plasmid pCRBlOlB that was sequenced using standardized techniques. Subsequently, the fragment was obtained by digesting the plasmid pCRBlOlB with EcoRV and was cloned into the same site of the plasmid pUOlOlA thus generating the plasmid pUOlOlAB. The replacement cassette was extracted from plasmid pUOlOlAB using Spel restriction sites and cloned into vector pHZ1358 to generate plasmid ρΗΖΙΟΙΑΒ that was introduced into Streptomyces spp. CS40 by intergener conjugation from E. coli ET12567 (pUB307) to generate the mutant strain CLM-G. The strain CLM-G is deposited in the Spanish Type Culture Collection with deposit number CECT7861.
En todos los casos los transconjugantes en los que había ocurrido un acontecimiento de doble sobrecruzamiento fueron seleccionados por su resistencia a apramicina y su sensibilidad a tioestreptona. El reemplazamiento en el cromosoma fue confirmado en los transconjugantes mediante análisis por Southern. In all cases the transconjugants in which a double overcrossing event had occurred were selected for their resistance to apramycin and their sensitivity to thioestreptone. Chromosome replacement was confirmed in transconjugants by Southern analysis.
El análisis de cultivos de la cepa CLM-A por UPLC mostró dos picos con absorbancia característica de colismicina A pero con movilidades de 2,86 min y 2,99 min que corresponden a compuestos de fórmula II y a colismicina C (FIG. 8). El análisis posterior por HPLC/MS determinó que el compuesto de fórmula II presenta una movilidad de 13,42 min y un ión de 249 m/z [M+H]+. La colismicina C presenta una movilidad de 13,56 min y un ión de 263 m/z [M+H]+. The analysis of cultures of the CLM-A strain by UPLC showed two peaks with characteristic absorbance of colismicin A but with mobility of 2.86 min and 2.99 min corresponding to compounds of formula II and colismicin C (FIG. 8). Subsequent analysis by HPLC / MS determined that the compound of formula II has a mobility of 13.42 min and an ion of 249 m / z [M + H] + . Colismicin C has a mobility of 13.56 min and an ion of 263 m / z [M + H] + .
El análisis de cultivos de la cepa CLM-M2 por UPLC mostró dos picos con absorbancia característica de colismicina A pero con movilidades de 3,05 min y 4,1 min correspondientes a los compuestos de fórmula III y de fórmula IV (FIG. 9). El análisis posterior por HPLC/MS determinó que el compuesto de fórmula III presenta una movilidad de 15,16 min y un ión de 262 m/z [M+H]+. El compuesto de fórmula IV presenta una movilidad de 19,12 min y un ión de 244 m/z [M+H]+. The analysis of cultures of the CLM-M2 strain by UPLC showed two peaks with characteristic absorbance of colismicin A but with mobility of 3.05 min and 4.1 min corresponding to the compounds of formula III and formula IV (FIG. 9) . Subsequent analysis by HPLC / MS determined that the compound of formula III exhibits a mobility of 15.16 min and an ion of 262 m / z [M + H] + . The compound of formula IV has a mobility of 19.12 min and an ion of 244 m / z [M + H] + .
El análisis de cultivos de la cepa CLM-G por HPLC/MS mostró un pico con absorbancia característica de colismicina A ausente en la cepa silvestre (FIG 10A y B) correspondiente al compuesto de fórmula V y que presenta una movilidad de 6,15 min (FIG 10C) y un ión de 263 m/z [M+H]+. Ejemplo 8. Generación de nuevos derivados de colismicina mediante la adición de distintos precursores a las cepas mutantes CLM-L, CLM-A y CLM-M2. Culture analysis of the CLM-G strain by HPLC / MS showed a peak with characteristic absorbance of colismicin A absent in the wild strain (FIG 10A and B) corresponding to the compound of formula V and exhibiting a mobility of 6.15 min (FIG 10C) and an ion of 263 m / z [M + H] + . Example 8. Generation of new derivatives of colismicin by adding different precursors to the mutant strains CLM-L, CLM-A and CLM-M2.
Con el fin de generar nuevas moléculas derivadas de colismicina se suplementaron los medios de cultivo en los que se inocularon los mutantes CLM-L, CLM-A y CLM-M2 con dos análogos estructurales del ácido picolínico esperando que dichos compuestos fueran incorporados a la ruta de biosíntesis de colismicina. In order to generate new molecules derived from colismicin, the culture media in which the CLM-L, CLM-A and CLM-M2 mutants were inoculated were supplemented with two structural analogs of the picolinic acid waiting for said compounds to be incorporated into the pathway. of colismicin biosynthesis.
Para ello se añadieron ácido 6-metil picolínico y ácido 4-metilpiridina-2-carboxílico a concentración final 0,7 mM al medio R5A en el que se inocularon los mutantes CLM-L, CLM-A y CLM-M2. Tras 6 días de crecimiento a 30°C se extrajeron los nuevos compuestos generados con acetato de etilo. For this, 6-methyl picolinic acid and 4-methylpyridine-2-carboxylic acid were added at a final concentration of 0.7 mM to the R5A medium in which the CLM-L, CLM-A and CLM-M2 mutants were inoculated. After 6 days of growth at 30 ° C, the new compounds generated with ethyl acetate were extracted.
El análisis del cultivo de la cepa CLM-L al que se le añadió ácido 6-metil picolínico, por UPLC mostró un pico con absorbancia característica de colismicina pero con movilidad 3,06 min que corresponde con el compuesto de fórmula VI. El análisis posterior por HPLC/MS determinó que el compuesto VI presenta un ión de 290 m/z [M+H]+ (FIG. HA, B y C). The analysis of the culture of strain CLM-L to which 6-methyl picolinic acid was added, by UPLC showed a peak with characteristic absorbance of colismicin but with mobility 3.06 min corresponding to the compound of formula VI. Subsequent analysis by HPLC / MS determined that compound VI has an ion of 290 m / z [M + H] + (FIG. HA, B and C).
El análisis del cultivo de la cepa CLM-L al que se le añadió ácido 4-metilpiridina-2- carboxílico, por UPLC mostró un pico con absorbancia característica de colismicina pero con movilidad 3,14 min que corresponde con el compuesto de fórmula VIL El análisis posterior por HPLC/MS determinó que el compuesto de fórmula VII presenta un ión de 290 m/z [M+H]+ (FIG 1 ID, E y F). Analysis of the culture of strain CLM-L to which 4-methylpyridine-2-carboxylic acid was added, by UPLC showed a peak with characteristic absorbance of colismicin but with mobility 3.14 min corresponding to the compound of formula VIL. Further analysis by HPLC / MS determined that the compound of formula VII has an ion of 290 m / z [M + H] + (FIG 1 ID, E and F).
El análisis del cultivo por UPLC de la cepa CLM-A al que se le añadió ácido 4- metilpiridina-2-carboxílico, mostró un pico con absorbancia característica de colismicina pero con movilidad 3,14 min que corresponde con el compuesto de fórmula VIII (FIG. 12). El análisis posterior por HPLC/MS determinó que el compuesto de fórmula VIII presenta un ión de 277 m/z [M+H]+. UPLC culture analysis of strain CLM-A to which 4- methylpyridine-2-carboxylic acid was added, showed a peak with characteristic absorbance of colismicin but with mobility 3.14 min corresponding to the compound of formula VIII ( FIG. 12). Subsequent analysis by HPLC / MS determined that the compound of formula VIII has an ion of 277 m / z [M + H] + .
El análisis del cultivo de la cepa CLM-M2 al que se le añadió ácido 4-metilpiridina-2- carboxílico, por UPLC mostró dos picos con absorbancia característica de colismicina pero con movilidades 3,16 min y 3,51 min que corresponde con el compuesto de fórmula IX y fórmula X. El análisis posterior por HPLC/MS determinó que los compuestos de fórmula IX y fórmula X presentan un ión de 276 m/z [M+H] y 258 m/z [M+H]+ respectivamente (FIG. 13). The analysis of the culture of the strain CLM-M2 to which 4-methylpyridine-2-carboxylic acid was added, by UPLC showed two peaks with characteristic absorbance of colismicin but with mobility 3.16 min and 3.51 min corresponding to the compound of formula IX and formula X. Subsequent analysis by HPLC / MS determined that the Compounds of formula IX and formula X have an ion of 276 m / z [M + H] and 258 m / z [M + H] + respectively (FIG. 13).
Ejemplo 9. Generación de nuevos derivados de colismicina mediante acilación enzimática catalizada por una lipasa. Las acilaciones enzimáticas de colismicina A y colismicina C catalizadas por PS-C se llevaron a cabo incubando a 45 °C y 250 rpm una suspensión de 20 mg de lipasa en una disolución de 5 mg de colismicina A o colismicina C en 2 mi de éter metil tertbutílico y 1 mi del agente acilante correspondiente. La conversión de la biotransformación fue monitoreada mediante HPLC, empleando un equipo cromatográfico Agilent Technologies 1200 Series, usando como solventes acetonitrilo y agua (sin TFA) y una columna de fase reversa (Zorbax Eclipse XDB-C18, RR, 1 .8 μιη, 4.6 x 50 mm, Agilent). Las muestras fueron eluídas empleando un método de tres gradientes lineales, el primero del 10% al 60% de acetonitrilo a lo largo de 5.7 minutos, a continuación otro gradiente del 60% al 100% de acetonitrilo durante 0.4 minutos, a continuación 0.55 minutos en isocrático a 100% de acetonitrilo y un gradiente final del 100% al 10% de acetonitrilo durante 0.35 minutos, a un flujo de 2 ml/min. La longitud de onda a la que se obtuvieron los cromatogramas fue de 332 nm. En este método la colismicina A y la colismicina C presentan una movilidad de 2.29 y 1.90 min respectivamente. Cuando la conversión alcanzó un valor próximo al 90%, el enzima se filtró a vacío en placa filtrante y se lavó con abundante éter metil tertbutílico y metanol. Para el caso de la Colismicina C, el filtrado se concentró a vacío y el residuo resultante, previamente disuelto en 1 mi de metanol, fue cromatografiado en una columna XBridge Prep C18 (30x150 mm, Waters), utilizando como fase móvil mezclas de acetonitrilo y agua a un flujo de 20 ml/min. Los picos de interés se diluyeron cuatro veces con agua y posteriormente se concentraron mediante extracción en fase sólida. Para el caso de la Colismicina A, el filtrado se concentró a vacío y el residuo resultante se purificó mediante cromatografía de columna empleando mezclas de hexano: acetato de etilo. Por último, los compuestos obtenidos fueron liofilizados para su conservación. Los nuevos derivados acilados se identificaron inicialmente mediante análisis por HPLC, comparando el espectro de absorción y el tiempo de retención. A continuación, se caracterizaron mediante el análisis de MS y RMN de acuerdo con los ejemplos anteriores. Example 9. Generation of new derivatives of colismicin by enzymatic acylation catalyzed by a lipase. Enzymatic acylations of colismicin A and colismicin C catalyzed by PS-C were carried out by incubating at 45 ° C and 250 rpm a suspension of 20 mg of lipase in a solution of 5 mg of colismicin A or colismicin C in 2 ml of ether methyl tertbutyl and 1 ml of the corresponding acylating agent. The biotransformation conversion was monitored by HPLC, using an Agilent Technologies 1200 Series chromatographic equipment, using acetonitrile and water (without TFA) as solvents and a reverse phase column (Zorbax Eclipse XDB-C18, RR, 1 .8 μιη, 4.6 x 50 mm, Agilent). The samples were eluted using a method of three linear gradients, the first from 10% to 60% acetonitrile over 5.7 minutes, then another gradient from 60% to 100% acetonitrile for 0.4 minutes, then 0.55 minutes in isocratic at 100% acetonitrile and a final gradient from 100% to 10% acetonitrile for 0.35 minutes, at a flow of 2 ml / min. The wavelength at which the chromatograms were obtained was 332 nm. In this method, colismicin A and colismicin C have a mobility of 2.29 and 1.90 min respectively. When the conversion reached a value close to 90%, the enzyme was filtered under vacuum in a filter plate and washed with abundant methyl tertbutyl ether and methanol. In the case of Colismicin C, the filtrate was concentrated in vacuo and the resulting residue, previously dissolved in 1 ml of methanol, was chromatographed on an XBridge Prep C18 column (30x150 mm, Waters), using acetonitrile mixtures as the mobile phase. water at a flow of 20 ml / min. The peaks of interest were diluted four times with water and subsequently concentrated by solid phase extraction. In the case of Colismicin A, the filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography using hexane: ethyl acetate mixtures. Finally, the compounds obtained were lyophilized for preservation. The new acylated derivatives were initially identified by HPLC analysis, comparing the absorption spectrum and retention time. Then it characterized by analysis of MS and NMR according to the previous examples.
- Para el caso particular de emplear colismicina C y acetato de vinilo como agente acilante el tiempo de reacción fue de 6 horas y se alcanzó una conversión de 95%. Por HPLC se identificó un nuevo compuesto con tiempo de retención de 4.51 minutos el cual se purificó empleando como fase móvil una mezcla de acetonitrilo y agua (50:50) a un flujo de 20 ml/min. Una vez aislado, el análisis posterior por RMN confirmó la estructura del compuesto de acuerdo a la fórmula XI. - For the particular case of using colismicin C and vinyl acetate as the acylating agent, the reaction time was 6 hours and a conversion of 95% was achieved. A new compound with a retention time of 4.51 minutes was identified by HPLC which was purified using a mixture of acetonitrile and water (50:50) at a flow rate of 20 ml / min. Once isolated, subsequent NMR analysis confirmed the structure of the compound according to formula XI.
- Para el caso particular de emplear colismicina C y butanoato de vinilo como agente acilante el tiempo de reacción fue de 10 horas y se alcanzó una conversión de 95%. Por- For the particular case of using colismicin C and vinyl butanoate as the acylating agent, the reaction time was 10 hours and a conversion of 95% was achieved. By
HPLC se identificó un nuevo compuesto con tiempo de retención de 5.56 minutos el cual se purificó empleando como fase móvil una mezcla de acetonitrilo y agua (55:45) a un flujo de 20 ml/min. Una vez aislado, el análisis posterior por RMN confirmó la estructura del compuesto de acuerdo a la fórmula XII. - Para el caso particular de emplear colismicina C y benzoato de vinilo como agente acilante el tiempo de reacción fue de 14 horas y se alcanzó una conversión de 90%. Por HPLC se identificó un nuevo compuesto con tiempo de retención de 6.22 minutos el cual se purificó empleando como fase móvil una mezcla de acetonitrilo y agua (60:40) a un flujo de 20 ml/min. Una vez aislado, el análisis posterior por RMN confirmó la estructura del compuesto de acuerdo a la fórmula XIII. HPLC identified a new compound with a retention time of 5.56 minutes which was purified using a mixture of acetonitrile and water (55:45) at a flow rate of 20 ml / min. Once isolated, subsequent NMR analysis confirmed the structure of the compound according to formula XII. - For the particular case of using colismicin C and vinyl benzoate as the acylating agent, the reaction time was 14 hours and a conversion of 90% was achieved. A new compound with a retention time of 6.22 minutes was identified by HPLC which was purified using as a mobile phase a mixture of acetonitrile and water (60:40) at a flow of 20 ml / min. Once isolated, subsequent NMR analysis confirmed the structure of the compound according to formula XIII.
- Para el caso particular de emplear colismicina A y acetato de vinilo como agente acilante el tiempo de reacción fue de 5 horas y se alcanzó una conversión de 95%. Por HPLC se identificó un nuevo pico con absorbancia característica de colismicina y con movilidad de 2.72 minutos que corresponde con el compuesto de fórmula XIV. El análisis posterior por HPLC/MS determinó que el compuesto de fórmula XIV presenta un ión de 318 m z [M+H]+. - For the particular case of using colismicin A and vinyl acetate as the acylating agent, the reaction time was 5 hours and a conversion of 95% was achieved. A new peak with characteristic absorbance of colismicin and with mobility of 2.72 minutes corresponding to the compound of formula XIV was identified by HPLC. Subsequent analysis by HPLC / MS determined that the compound of formula XIV has an ion of 318 mz [M + H] + .
- Para el caso particular de emplear colismicina A y cloroacetato de vinilo como agente acilante el tiempo de reacción fue de 12 horas y se alcanzó una conversión de 90%. Por HPLC se identificó un nuevo pico con absorbancia característica de colismicina y con movilidad de 2.60 minutos que corresponde con el compuesto de fórmula XV. El análisis posterior por HPLC/MS determinó que el compuesto de fórmula XV presenta un ión de 352 m/z [M+H]+. - For the particular case of using colismicin A and vinyl chloroacetate as the acylating agent, the reaction time was 12 hours and a conversion of 90% was achieved. A new peak was identified by HPLC with characteristic absorbance of colismicin and with mobility of 2.60 minutes corresponding to the compound of formula XV. Subsequent analysis by HPLC / MS determined that the compound of formula XV has an ion of 352 m / z [M + H] + .
- Para el caso particular de emplear colismicina A y butanoato de vinilo como agente acilante el tiempo de reacción fue de 9 horas y se alcanzó una conversión de 95%. Por HPLC se identificó un nuevo pico con absorbancia característica de colismicina y con movilidad de 3.66 minutos que corresponde con el compuesto de fórmula XVI. El análisis posterior por HPLC/MS determinó que el compuesto de fórmula XVI presenta un ión de 346 m/z [M+H]+. Datos de espectros de RMN del compuesto de fórmula II: - For the particular case of using colismicin A and vinyl butanoate as the acylating agent, the reaction time was 9 hours and a conversion of 95% was achieved. A new peak with characteristic absorbance of colismicin and with mobility of 3.66 minutes corresponding to the compound of formula XVI was identified by HPLC. Subsequent analysis by HPLC / MS determined that the compound of formula XVI has an ion of 346 m / z [M + H] + . NMR spectra data of the compound of formula II:
1H RMN (DMSO-dg, 600 MHz): 2.35 (s), 4.75 (s), 6.30 (sa), 7.10 (s), 7.55 (sa), 8.00 (sa), 8.25 (sa), 8.80 (sa), 11.10 (sa)  1 H NMR (DMSO-dg, 600 MHz): 2.35 (s), 4.75 (s), 6.30 (sa), 7.10 (s), 7.55 (sa), 8.00 (sa), 8.25 (sa), 8.80 (sa) , 11.10 (sa)
13C RMN (DMSC /e, 150 MHz): 15.9, 59.1 , 1 12.1 , 1 17.9, 121.2, 125.8, 138.7, 142.2, 148.5, 149.7, 152.0, 177.2 13 C NMR (DMSC / e, 150 MHz): 15.9, 59.1, 1 12.1, 1 17.9, 121.2, 125.8, 138.7, 142.2, 148.5, 149.7, 152.0, 177.2
Datos de espectros de RMN del compuesto de fórmula III: NMR spectra data of the compound of formula III:
1H RMN (acetona-í/6, 600 MHz): 2.48 (s), 4.00 (s), 7.68 (dd, J= 7.6, 4.4 Hz), 7.89 (s), 8.16 (dt, J= 7.6, 1.6 Hz), 8.29 (d, J= 7.6 Hz), 8.82 (d, J= 4.4 Hz), 8.86 (s), 10.80 (s) 1 H NMR (acetone-í / 6 , 600 MHz): 2.48 (s), 4.00 (s), 7.68 (dd, J = 7.6, 4.4 Hz), 7.89 (s), 8.16 (dt, J = 7.6, 1.6 Hz ), 8.29 (d, J = 7.6 Hz), 8.82 (d, J = 4.4 Hz), 8.86 (s), 10.80 (s)
13C RMN (acetona-^, 150 MHz): 16.0, 110.0, 121.3, 122.9, 126.1, 138.6, 143.7, 145.9, 147.3, 149.5, 150.2, 174.1 1 3 C NMR (acetone- ^, 150 MHz): 16.0, 110.0, 121.3, 122.9, 126.1, 138.6, 143.7, 145.9, 147.3, 149.5, 150.2, 174.1
Datos de espectros de RMN del compuesto de fórmula IV: NMR spectra data of the compound of formula IV:
1H RMN (acetona-í/6, 600 MHz): 2.57 (s), 3.50 (s), 7.50 (dd, J= 7.6, 4.4 Hz), 7.99 (dt, J= 7.6, 1.6 Hz), 8.26 (s), 8.41 (d, J= 7.6 Hz), 8.70 (d, J= 4.4 Hz) 1 H NMR (acetone-í / 6 , 600 MHz): 2.57 (s), 3.50 (s), 7.50 (dd, J = 7.6, 4.4 Hz), 7.99 (dt, J = 7.6, 1.6 Hz), 8.26 (s ), 8.41 (d, J = 7.6 Hz), 8.70 (d, J = 4.4 Hz)
13C RMN (acetona-^, 150 MHz): 16.9, 110.2, 116.3, 121.0, 124.9, 125.3, 137.5, 137.8, 149.3, 153.6, 157.7, 166.3 13 C NMR (acetone- ^, 150 MHz): 16.9, 110.2, 116.3, 121.0, 124.9, 125.3, 137.5, 137.8, 149.3, 153.6, 157.7, 166.3
Datos de espectros de RMN del compuesto de fórmula V: NMR spectra data of the compound of formula V:
1H RMN (DMSO-dg, 600 MHz): 2.36 (s), 7.47 (dd, J = 7.8, 4.2 Hz), 7.94 (t, J = 7.8 Hz), 7.96 (s), 8.29 (d, J= 7.8 Hz), 8.68 (d, J= 4.2 Hz), 11.7 (sa) C RMN (OMSO-de, 150 MHz): 17.7, 108.4, 116.1, 121.2, 125.1, 137.9, 149.8,1 H NMR (DMSO-dg, 600 MHz): 2.36 (s), 7.47 (dd, J = 7.8, 4.2 Hz), 7.94 (t, J = 7.8 Hz), 7.96 (s), 8.29 (d, J = 7.8 Hz), 8.68 (d, J = 4.2 Hz), 11.7 (sa) NMR C (OMSO-de, 150 MHz): 17.7, 108.4, 116.1, 121.2, 125.1, 137.9, 149.8,
154.5, 156.0, 157.6, 166.7, 168.4 154.5, 156.0, 157.6, 166.7, 168.4
Datos de espectros de RMN del compuesto de fórmula VI: NMR spectra data of the compound of formula VI:
1H RMN (acetona-í/6, 600 MHz): 2.43 (s), 2.67 (s), 4.19 (s), 7.45 (d, J= 7.8 Hz), 7.96 (t, J= 7.8 Hz), 8.41 (d, J= 7.8 Hz), 8.18 (s), 8.88 (s), 10.70 (s) 1 H NMR (acetone-í / 6 , 600 MHz): 2.43 (s), 2.67 (s), 4.19 (s), 7.45 (d, J = 7.8 Hz), 7.96 (t, J = 7.8 Hz), 8.41 ( d, J = 7.8 Hz), 8.18 (s), 8.88 (s), 10.70 (s)
13C RMN (acetona-^, 150 MHz): 17.2, 23.0, 56.2, 103.3, 118.8, 122.5, 124.7, 138.5, 146.7, 152.3, 153.0, 155.1, 157.8, 168.1 Datos de espectros de RMN del compuesto de fórmula VII: 1 3 C NMR (acetone- ^, 150 MHz): 17.2, 23.0, 56.2, 103.3, 118.8, 122.5, 124.7, 138.5, 146.7, 152.3, 153.0, 155.1, 157.8, 168.1 NMR spectra data of the compound of formula VII :
1H RMN (DMSO-dg, 600 MHz): 2.36 (s), 2.47 (s), 4.08 (s), 7.45 (d, J= 4.8 Hz), 8.03 (s), 8.32 (s), 8.61 (d, J= 4.8 Hz), 8.73 (s), 10.70 (s)  1 H NMR (DMSO-dg, 600 MHz): 2.36 (s), 2.47 (s), 4.08 (s), 7.45 (d, J = 4.8 Hz), 8.03 (s), 8.32 (s), 8.61 (d, J = 4.8 Hz), 8.73 (s), 10.70 (s)
13C RMN (DMSO- e, 150 MHz): 17.3, 20.4, 56.1, 103.9, 121.9, 122.4, 126.2, 147.2, 13 C NMR (DMSO- e, 150 MHz): 17.3, 20.4, 56.1, 103.9, 121.9, 122.4, 126.2, 147.2,
148.6, 150.0, 153.0, 153.8, 155.4, 167.4 148.6, 150.0, 153.0, 153.8, 155.4, 167.4
Datos de espectros de RMN del compuesto de fórmula VIII: NMR spectra data of the compound of formula VIII:
1H RMN (acetona-^, 600 MHz):2.39 (s), 2.49 (s), 4.59 (s), 4.86 (s), 7.30 (d, J= 4.8 Hz), 8.12 (s), 8.48 (s), 8.56 (d, J= 4.8 Hz)  1 H NMR (acetone- ^, 600 MHz): 2.39 (s), 2.49 (s), 4.59 (s), 4.86 (s), 7.30 (d, J = 4.8 Hz), 8.12 (s), 8.48 (s) , 8.56 (d, J = 4.8 Hz)
13C RMN (acetona-^, 150 MHz): 16.5, 20.2, 62.3, 102.6, 117.9, 121.6, 125.1, 148.2, 149.0, 154.8, 155.7, 160.8, 167.2 13 C NMR (acetone- ^, 150 MHz): 16.5, 20.2, 62.3, 102.6, 117.9, 121.6, 125.1, 148.2, 149.0, 154.8, 155.7, 160.8, 167.2
Datos de espectros de RMN del compuesto de fórmula XI: NMR spectra data of the compound of formula XI:
1H RMN (DMSO-dg, 600 MHz): 2.14 (s), 2.35 (s), 4.06 (s), 5.40 (s), 7.49 (dd, J = 7.3, 4.6 Hz), 7.98 (dt, J= 7.3, 1.8 Hz), 8.02 (s), 8.35 (d, J= 7.3 Hz), 8.71 (dd, J = 4.6, 1.8 Hz)  1 H NMR (DMSO-dg, 600 MHz): 2.14 (s), 2.35 (s), 4.06 (s), 5.40 (s), 7.49 (dd, J = 7.3, 4.6 Hz), 7.98 (dt, J = 7.3 , 1.8 Hz), 8.02 (s), 8.35 (d, J = 7.3 Hz), 8.71 (dd, J = 4.6, 1.8 Hz)
13C RMN (DMSO- e, 150 MHz): 17.7, 21.1, 56.8, 65.8, 103.3, 120.3, 121.1, 125.1, 137.9, 149.7, 154.9, 156.1, 157.5, 167.3, 170.6 13 C NMR (DMSO- e, 150 MHz): 17.7, 21.1, 56.8, 65.8, 103.3, 120.3, 121.1, 125.1, 137.9, 149.7, 154.9, 156.1, 157.5, 167.3, 170.6
Datos de espectros de RMN del compuesto de fórmula XII: NMR spectra data of the compound of formula XII:
1H RMN (DMSO-dg, 600 MHz): 0.91 (t, J= 7.2 Hz), 1.60 (sext, J= 7.2 Hz), 2.351 H NMR (DMSO-dg, 600 MHz): 0.91 (t, J = 7.2 Hz), 1.60 (sext, J = 7.2 Hz), 2.35
(s), 2.40 (t, J= 7.2 Hz), 4.06 (s), 5.41 (s), 7.48 (dd, J= 7.8, 4.5 Hz), 7.97 (dt, J= 7.8, 1.8 Hz), 8.01 (s), 8.35 (d, J= 7.8 Hz), 8.71 (dd, J= 4.5, 1.8 Hz) 13C RMN (DMSO-dg, 150 MHz): 14.0, 17.7, 18.5, 35.8, 56.8, 65.8, 103.3, 120.4, 121.1, 125.1, 137.8, 149.7, 154.9, 156.1, 157.6, 167.2, 172.9 (s), 2.40 (t, J = 7.2 Hz), 4.06 (s), 5.41 (s), 7.48 (dd, J = 7.8, 4.5 Hz), 7.97 (dt, J = 7.8, 1.8 Hz), 8.01 ( s), 8.35 (d, J = 7.8 Hz), 8.71 (dd, J = 4.5, 1.8 Hz) 13 C NMR (DMSO-dg, 150 MHz): 14.0, 17.7, 18.5, 35.8, 56.8, 65.8, 103.3, 120.4, 121.1, 125.1, 137.8, 149.7, 154.9, 156.1, 157.6, 167.2, 172.9
Datos de espectros de RMN del compuesto de fórmula XIII: NMR spectra data of the compound of formula XIII:
1H RMN (DMSO-dg, 600 MHz): 2.38 (s), 4.08 (s), 5.68 (s), 7.44 (dd, J= 7.8, 4.4 Hz, 7.57 (t, J= 7.2 Hz), 7.70 (t, J= 7.2 Hz), 7.80 (dt, J= 7.8, 1,2 Hz), 8.03 (d solapado, J = 7.2 Hz), 8.02 (s), 8.18 (d, J= 7.8 Hz), 8.69 (dd, J= 4.4, 1.2 Hz)  1 H NMR (DMSO-dg, 600 MHz): 2.38 (s), 4.08 (s), 5.68 (s), 7.44 (dd, J = 7.8, 4.4 Hz, 7.57 (t, J = 7.2 Hz), 7.70 (t , J = 7.2 Hz), 7.80 (dt, J = 7.8, 1.2 Hz), 8.03 (overlapped d, J = 7.2 Hz), 8.02 (s), 8.18 (d, J = 7.8 Hz), 8.69 (dd , J = 4.4, 1.2 Hz)
13C RMN (DMSO- e, 150 MHz): 17.6, 56.8, 66.6, 103.4, 120.4, 121.0, 125.1, 129.3, 129.7, 130.2, 133.9, 137.7, 149.7, 154.9, 156.0, 157.3, 166.1, 167.3 1 3 C NMR (DMSO- e, 150 MHz): 17.6, 56.8, 66.6, 103.4, 120.4, 121.0, 125.1, 129.3, 129.7, 130.2, 133.9, 137.7, 149.7, 154.9, 156.0, 157.3, 166.1, 167.3
Ejemplo 10. Actividad antitumoral de los nuevos compuestos generados. Example 10. Antitumor activity of the new compounds generated.
Para los ensayos de actividad antitumoral se utilizaron varias líneas celulares tumorales: A549 (pulmón), HT29 (colon), MDA-MB-231 (mama) y HCT116 (colon), así como la línea control no tumoral de fibroblastos NIH373. Las células se repartieron en placas de 96 pocilios a razón de 5.000 células/pocilio en 100 mL por pocilio de medio DMEM suplementado con 10% FBS y 2 mM glutamina. A continuación se preincubaron durante 24 h sin fármaco ensayo para que las células se adhirieran a la placa. Al día siguiente se añadieron las concentraciones adecuadas de los distintos compuestos diluidos en medio DMEM y siempre en un volumen de 10 mL. Como controles se añadió medio sin compuesto para cuantificar la viabilidad de la línea celular y SDS al 0.1% como control de 100% de muerte. Transcurridas 24 h de incubación en presencia de cada compuesto se añadieron a cada pocilio 10 mL del reactivo WST-8 (Cell Counting Kit-8, Dojindo, Probior, Alemania) y se incubaron durante 2 h a 37°C tras lo que se determinó la absorbancia a 450 nm en un lector ELISA (ELx800, BioTek). La actividad de los distintos compuestos se muestra en la tabla 3. Several tumor cell lines were used for antitumor activity tests: A549 (lung), HT29 (colon), MDA-MB-231 (breast) and HCT116 (colon), as well as the non-tumor control line of NIH373 fibroblasts. The cells were distributed in 96-well plates at a rate of 5,000 cells / well in 100 mL per well of DMEM medium supplemented with 10% FBS and 2 mM glutamine. They were then pre-incubated for 24 h without drug assay so that the cells adhered to the plaque. The following day the appropriate concentrations of the various compounds diluted in DMEM medium and always in a volume of 10 mL were added. As controls, medium without compound was added to quantify the viability of the cell line and 0.1% SDS as a 100% control of death. After 24 h of incubation in the presence of each compound, 10 mL of the WST-8 reagent (Cell Counting Kit-8, Dojindo, Probior, Germany) was added to each well and incubated for 2 h at 37 ° C after which it was determined absorbance at 450 nm in an ELISA reader (ELx800, BioTek). The activity of the different compounds is shown in table 3.
Tabla 9: Actividad antitumoral (IC50) de los distintos compuestos frente a distintas líneas celulares.
Figure imgf000052_0001
Table 9: Antitumor activity (IC50) of the different compounds against different cell lines.
Figure imgf000052_0001
Algunos compuestos ensayados frente a determinadas líneas celulares mostraron valores de IC50 de orden micromolar, como es el caso de los compuestos de fórmula VI y de fórmula VII frente a HCT116. Sin embargo, algunos compuestos presentaron valores menos elevados de citotoxicidad, de un orden superior a 100 micromolar frente a determinadas líneas celulares. Some compounds tested against certain cell lines showed IC50 values of micromolar order, as is the case of compounds of formula VI and formula VII against HCT116. However, some compounds showed less elevated cytotoxicity values, of an order greater than 100 micromolar against certain cell lines.
Ejemplo 11. Actividad neuroprotectora de los nuevos compuestos generados. Example 11. Neuroprotective activity of the new compounds generated.
Los ensayos de actividad neuroprotectora se llevaron a cabo utilizando el modelo del pez cebra. El manejo de los embriones, su mantenimiento y cría se realizó siguiendo procedimientos estandarizados (Westerfield, 1993; Kimmel et al., 1995). Una vez recolectados fueron mantenidos en agua de embriones (135 μΜ CaCl2, 623 μΜ MgS04, 1.14mM NaHC03, 402.41 μΜ KC1, 10.7 mM NaCl, 348.5 μΜ CaS04.2H20, Scharlau Chemie, SA, 08016 Barcelona, Spain). Neuroprotective activity tests were carried out using the zebrafish model. Embryo management, maintenance and breeding was carried out following standardized procedures (Westerfield, 1993; Kimmel et al., 1995). Once collected, they were kept in embryo water (135 μΜ CaCl 2 , 623 μΜ MgS04, 1.14mM NaHC0 3 , 402.41 μΜ KC1, 10.7 mM NaCl, 348.5 μΜ CaS0 4 .2H20, Scharlau Chemie, SA, 08016 Barcelona, Spain).
Los embriones fueron tratados tras 3 días postfertilización durante 24 horas con 10 μΜ ácido retinoico (CAS #302-79-4, Sigma-Aldrich) (Selderslaghs et al, 2009) en presencia de cada uno de los compuestos neuroprotectores a ensayar y utilizando como control positivo ácido α-lipoico (CAS 1077-28-7, Sigma-Aldrich) a 1 μΜ. Dimetil sulfóxido (DMSO; 1%) fue incorporado a los ensayos al ser el solvente en el que iban disueltos los compuestos a ensayar. El ácido retinoico y los compuestos potencialmente neuroprotectores fueron añadidos al agua de embriones descrito anteriormente, utilizando 15 embriones de pez zebra. Al final del tratamiento embriones de 4 días postfertilización fueron lavados tres veces con agua y sumergidos en una solución de 2 μg/ml de cloruro de acridinio (Sigma-Aldrich) durante 60 min. A continuación se lavaron abundantemente tres veces (5 min por lavado) y se anestesiaron con anestésico MS222 (metanosulfonato de tricaina) Finalmente se posicionaron adecuadamente para su observación por microscopía de fluorescencia. Esta se llevó a cabo utilizando un microscopio de fluorescencia Leica DMIL LED (Leica Microsistemas, S.A., Barcelona), equipado con un filtro verde FITC (excitación: 488 nm, emisión: 515 nm), y una cámara digital EC3 (Leica Microsistemas, S.A., Barcelona). Las imágenes fueron procesadas con LAS EZ VI .6.0 (Leica Microsistemas, S.A., Barcelona) y Adobe Photoshop 7.0 software (Adobe, San José, CA). El análisis de partículas (Wasabi, Hamamatsu Photonics Germany GmbH) fue usado para cuantificar la fluorescencia. Para comparar la eficacia entre los distintos compuestos se utilizó el análisis de la varianza (ANO VA) para detectar si había diferencias significativas entre compuestos en los experimentos. El t-test de Dunnett fue usado para identificar compuestos que exhibían diferencias significativas en comparación al control (n=3). Todos los cálculos fueron hechos usando el software estadístico GraphPad Prism (GraphPad Software, Inc., San Diego, CA). Un P-value menor de 0,05 fue considerado estadísticamente significativo. The embryos were treated after 3 days postfertilization for 24 hours with 10 μΜ retinoic acid (CAS # 302-79-4, Sigma-Aldrich) (Selderslaghs et al, 2009) in the presence of each of the neuroprotective compounds to be tested and used as positive control α-lipoic acid (CAS 1077-28-7, Sigma-Aldrich) at 1 μΜ. Dimethyl sulfoxide (DMSO; 1%) was incorporated into the tests as it was the solvent in which the compounds to be tested were dissolved. Retinoic acid and potentially neuroprotective compounds were added to the embryo water described above, using 15 zebrafish embryos. At the end of treatment 4 day embryos Post-fertilization were washed three times with water and immersed in a solution of 2 μg / ml of acridinium chloride (Sigma-Aldrich) for 60 min. They were then washed thoroughly three times (5 min per wash) and anesthetized with MS222 anesthetic (tricaine methanesulfonate). They were finally properly positioned for observation by fluorescence microscopy. This was carried out using a Leica DMIL LED fluorescence microscope (Leica Microsistemas, SA, Barcelona), equipped with a green FITC filter (excitation: 488 nm, emission: 515 nm), and an EC3 digital camera (Leica Microsistemas, SA , Barcelona). The images were processed with LAS EZ VI .6.0 (Leica Microsistemas, SA, Barcelona) and Adobe Photoshop 7.0 software (Adobe, San José, CA). Particle analysis (Wasabi, Hamamatsu Photonics Germany GmbH) was used to quantify fluorescence. To compare the efficacy between the different compounds, the analysis of variance (ANO VA) was used to detect if there were significant differences between compounds in the experiments. Dunnett's t-test was used to identify compounds that exhibited significant differences compared to the control (n = 3). All calculations were made using the GraphPad Prism statistical software (GraphPad Software, Inc., San Diego, CA). A P-value less than 0.05 was considered statistically significant.
Los neuroprotectores fueron ensayados a la concentración NOEC (Non-observed effect concentration). Esta NOEC, tras un estudio previo, fue determinada como 1 μΜ para todos los compuestos ensayados. El control, sin tratamiento con ácido retinoico mostró pocas o ninguna célula apoptótica (FIG. 14A). Por el contrario, los embriones tratados con ácido retinoico mostraron un aumento significativo en las apoptosis cerebrales (FIG. 14B). Las imágenes que se muestran en las FIG 14C, D y E) son ejemplos del co- tratamiento con ácido retinoico y cada uno de los compuestos ensayados, incluyendo ácido lipoico como control positivo (Packer et al., 1997. Free Radie Biol Med.;22(l- 2):359-78.) (FIG. 20F) y usando la concentración NOEC. Los compuestos de fórmula VI y VII mostraron protección frente al ácido retinoico, siendo claramente significativo el efecto del compuesto de fórmula VII (FIG. 14E). Ejemplo 12. Generación adicional de mutantes productores de nuevos derivados de colismicina mediante reemplazamiento génico de los genes orfl2 orfl5 y orfló. The neuroprotectors were tested at the NOEC (Non-observed effect concentration) concentration. This NOEC, after a previous study, was determined as 1 μΜ for all the compounds tested. The control, without treatment with retinoic acid showed few or no apoptotic cells (FIG. 14A). In contrast, embryos treated with retinoic acid showed a significant increase in brain apoptosis (FIG. 14B). The images shown in FIG 14C, D and E) are examples of co-treatment with retinoic acid and each of the compounds tested, including lipoic acid as a positive control (Packer et al., 1997. Free Radie Biol Med. ; 22 (1-2): 359-78.) (FIG. 20F) and using the NOEC concentration. The compounds of formula VI and VII showed protection against retinoic acid, the effect of the compound of formula VII being clearly significant (FIG. 14E). Example 12. Additional generation of mutants producing new derivatives of colismicin by gene replacement of the orfl2 orfl5 and orphlo genes.
Para la inactivación de la orfl2 se amplificó mediante PCR un fragmento de 1542 bp perteneciente a la región corriente abajo del gen orfl2. Para ello se utilizaron los oligonucleótidos orf9del3 (SEQ ID NO : 57) y orf9del4 (SEQ ID NO : 58). Este fragmento se clonó en el vector pCR-Blunt generando así el plásmido pCRB9B que se secuenció usando técnicas estandarizadas. Posteriormente se obtuvo el fragmento digiriendo el plásmido pCRB9B con EcoRI y se clonó en el mismo sitio del vector pUO9090 para generar el plásmido pU09B. Después se amplificó mediante PCR un fragmento de 1598 bp perteneciente a la región corriente arriba del gen orfl2. Para ello se utilizaron los oligonucleótidos orf9dell (SEQ ID NO: 59) y orf9del2 (SEQ ID NO: 60). Este fragmento se clonó en el vector pCR- Blunt generando así el plásmido pCRB9B que se secuenció usando técnicas estandarizadas. Posteriormente se obtuvo el fragmento digiriendo el plásmido pCRB9A con EcoRI, se hizo romo y se clonó en el sitio EcoRV del plásmido pU09A generando así el plásmido pU09AB. For the inactivation of the orfl2, a 1542 bp fragment belonging to the downstream region of the orfl2 gene was amplified by PCR. For this purpose the oligonucleotides orf9del3 (SEQ ID NO: 57) and orf9del4 (SEQ ID NO: 58) were used. This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB9B that was sequenced using standardized techniques. The fragment was then obtained by digesting plasmid pCRB9B with EcoRI and cloned into the same site of vector pUO9090 to generate plasmid pU09B. A 1598 bp fragment belonging to the upstream region of the orfl2 gene was then amplified by PCR. For this purpose, the oligonucleotides orf9dell (SEQ ID NO: 59) and orf9del2 (SEQ ID NO: 60) were used. This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB9B that was sequenced using standardized techniques. Subsequently, the fragment was obtained by digesting plasmid pCRB9A with EcoRI, became blunt and cloned into the EcoRV site of plasmid pU09A thereby generating plasmid pU09AB.
El casette de reemplazamiento se extrajo del plásmido pU09AB usando los sitios de restricción Spel y se clonó en el vector pHZ1358 para generar el plásmido pHZ9AB que se introdujo en Streptomyces spp. CS40 por conjugación intergenérica desde E.coli ET 12567 (pUB307) para generar la cepa muíante CLM-M1. La cepa CLM-M1 se encuentra depositada en la Colección Española de Cultivos Tipo con número de depósito 8070. The replacement cassette was extracted from plasmid pU09AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ9AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E.coli ET 12567 (pUB307) to generate the mutant strain CLM-M1. The strain CLM-M1 is deposited in the Spanish Type Culture Collection with deposit number 8070.
Para la inactivación de la orfl5 se amplificó mediante PCR un fragmento de 1564 bp perteneciente a la región corriente arriba del gen orfl5. Para ello se utilizaron los oligonucleótidos orfl2dell (SEQ ID NO: 61) y orfl2del2 (SEQ ID NO: 62). Este fragmento se clonó en el vector pCR-Blunt generando así el plásmido pCRB12A que se secuenció usando técnicas estandarizadas. Posteriormente se obtuvo el fragmento digiriendo el plásmido pCRB9B con HindIII y se clonó en el mismo sitio del vector pUO9090 para genera el plásmido pU012A. Después se obtuvo por digestión del cósmido coslC3 con BamHI un fragmento de 2250 pb perteneciente a la región corriente abajo del gen orfl2 (sitios 10 y 11 en la FIG. 2). Dicho fragmento se clonó en el sitio EcoRV del plásmido pU06A generando así el plásmido pU012AB. El casette de reemplazamiento se extrajo del plásmido pU012AB usando los sitios de restricción Spel y se clonó en el vector pHZ1358 para generar el plásmido pHZ6AB que se introdujo en Streptomyces spp. CS40 por conjugación intergenérica desde E.coli ET12567 (pUB307) para generar la cepa muíante CLM-M. La cepa CLM-M se encuentra depositada en la Colección Española de Cultivos Tipo con número de depósito 8069. For the inactivation of the orfl5, a 1564 bp fragment belonging to the upstream region of the orfl5 gene was amplified by PCR. For this purpose, the oligonucleotides orfl2dell (SEQ ID NO: 61) and orfl2del2 (SEQ ID NO: 62) were used. This fragment was cloned into the pCR-Blunt vector thus generating plasmid pCRB12A that was sequenced using standardized techniques. Subsequently, the fragment was obtained by digesting plasmid pCRB9B with HindIII and cloned into the same site of vector pUO9090 to generate plasmid pU012A. Then, a 2250 bp fragment belonging to the downstream region of the orfl2 gene (sites 10 and 11 in FIG. 2) was obtained by digestion of the coslC3 cosmid with BamHI. Said fragment was cloned into the EcoRV site of plasmid pU06A thereby generating plasmid pU012AB. The replacement cassette was extracted from plasmid pU012AB using the Spel restriction sites and cloned into the pHZ1358 vector to generate the plasmid pHZ6AB that was introduced into Streptomyces spp. CS40 by intergener conjugation from E.coli ET12567 (pUB307) to generate the CLM-M mutant strain. The strain CLM-M is deposited in the Spanish Type Culture Collection with deposit number 8069.
Para generar la cepa muíante en el gen orfló se amplificó mediante PCR un fragmento de 1488 bp siíuado corrieníe abajo del gen, utilizando para ello los oligonucleóíidos orfl 3dell alt (SEQ ID NO : 63) y orfl 3del2 (SEQ ID NO: 64). Esíe fragmento se inírodujo en el vecíor pCR-Bluní para dar lugar al plásmido pCRB13A que fue secuenciado siguiendo íécnicas esíandarizadas. Posíeriormeníe se obíuvo el fragmenío digiriendo el plásmido pCRB13A con EcoRI y se clonó en el mismo siíio del vecíor pUO9090 generando el vecíor pU013A. To generate the mutant strain in the orphlous gene, a 1488 bp fragment run down the gene was amplified by PCR, using the oligonucleóíidos orfl 3dell alt (SEQ ID NO: 63) and orfl 3del2 (SEQ ID NO: 64). This fragment was introduced in the neighboring pCR-Bluní to give rise to plasmid pCRB13A which was sequenced following standard techniques. Subsequently, the fragmenio was obtained by digesting the plasmid pCRB13A with EcoRI and was cloned into the same site of the neighbor pUO9090 generating the neighbor pU013A.
Posíeriormeníe se obíuvo medianíe digesíión con enzimas de resíricción un fragmenío de 1975 bp corrieníe arriba del gen orfló al que se denominó B13B. Dicho fragmenío corresponde a la región del clusíer comprendida eníre un siíio EcoRI y un siíio Pvul (posiciones 19042 y 21016 de la SEQ ID NO: 1). Esíe fragmenío se hizo romo y se subclonó en el siíio EcoRV del plásmido pU013A para generar el plásmido PU013AB. Subsequently, digestion with resynthesis enzymes was obtained by a fragmentation of 1975 bp running above the orphloid gene called B13B. This fragmenio corresponds to the region of the cluster comprised of an EcoRI site and a Pvul site (positions 19042 and 21016 of SEQ ID NO: 1). Esmen fragmenio became blunt and was subcloned in the EcoRV site of plasmid pU013A to generate plasmid PU013AB.
El casette de reemplazamienío se exírajo del plásmido pU013AB usando los siíios de resíricción Spel y se clonó en el vecíor pHZ1358 para generar el plásmido pHZ13AB, que se inírodujo en Streptomyces spp. CS40 por conjugación iníergenérica desde E.coli ET12567 (pUB307) para generar la cepa muíaníe CLM-AH. La cepa CLM-AH se encueníra deposiíada en la Colección Española de Culíivos Tipo con número de depósito 8071. En todos los casos los transconjugantes en los que había ocurrido un acontecimiento de doble sobrecruzamiento fueron seleccionados por su resistencia a apramicina y su sensibilidad a tioestreptona. El reemplazamiento en el cromosoma fue confirmado en los transconjugantes mediante análisis por Southern. El análisis de cultivos de la cepa CLM-Ml por UPLC mostró un pico con absorbancia característica de colismicina A pero con movilidad 3,841 min que corresponde al compuesto de fórmula XVIII. El análisis posterior por HPLC/MS determinó que el compuesto de fórmula XVIII presenta una movilidad de 17,442 min y un ión de 360 m/z [M+H]+. (FIG. 15). El análisis de cultivos de la cepa CLM-M por UPLC mostró un pico con absorbancia característica de colismicina A pero con movilidad 2,249 min que corresponde al compuesto de fórmula XIX. El análisis posterior por HPLC/MS determinó que el compuesto de fórmula XIX presenta una movilidad de 12,617 min y un ión de 290 m/z [M+H]+. (FIG. 16). El análisis de cultivos de la cepa CLM-AH por UPLC mostró un pico con absorbancia característica de colismicina A pero con movilidad 3,673 min que corresponde al compuesto de fórmula XVII. El análisis posterior por HPLC/MS determinó que el compuesto de fórmula XVII presenta una movilidad de 16,626 min y un ión de 376 m/z [M+H]+. (FIG. 17) Datos de espectros de RMN del compuesto de fórmula XVII: The replacement cassette was excised from plasmid pU013AB using the Spel restriction sites and cloned into the neighboring pHZ1358 to generate the plasmid pHZ13AB, which was introduced in Streptomyces spp. CS40 by inertomeric conjugation from E.coli ET12567 (pUB307) to generate the mumanie strain CLM-AH. The strain CLM-AH is deposited in the Spanish Type Culinary Collection with deposit number 8071. In all cases the transconjugants in which a double overcrossing event had occurred were selected for their resistance to apramycin and their sensitivity to thioestreptone. Chromosome replacement was confirmed in transconjugants by Southern analysis. The analysis of cultures of the CLM-Ml strain by UPLC showed a peak with characteristic absorbance of colismicin A but with 3,841 min mobility corresponding to the compound of formula XVIII. Subsequent analysis by HPLC / MS determined that the compound of formula XVIII has a mobility of 17,442 min and an ion of 360 m / z [M + H] + . (FIG. 15). The analysis of cultures of the CLM-M strain by UPLC showed a peak with characteristic absorbance of colismicin A but with 2,249 min mobility corresponding to the compound of formula XIX. Subsequent analysis by HPLC / MS determined that the compound of formula XIX has a mobility of 12,617 min and an ion of 290 m / z [M + H] + . (FIG. 16). Culture analysis of the CLM-AH strain by UPLC showed a peak with characteristic absorbance of colismicin A but with 3,673 min mobility corresponding to the compound of formula XVII. Subsequent analysis by HPLC / MS determined that the compound of formula XVII exhibits a mobility of 16,626 min and an ion of 376 m / z [M + H] + . (FIG. 17) NMR spectra data of the compound of formula XVII:
1H RMN (DMSO-dg, 600 MHz): 0.94 (d, J = 6.0 Hz), 0.95 (d, J= 5.4 Hz), 1.60-1.85 (m), 2.34 (s), 4.48 (m), 7.49 (t, J= 5.4 Hz), 7.94 (s), 7.99 (t, J= 7.8 Hz), 8.34 (d, J = 7.8 Hz), 8.69 (d, J= 3.6 Hz), 8.70 (brs)  1 H NMR (DMSO-dg, 600 MHz): 0.94 (d, J = 6.0 Hz), 0.95 (d, J = 5.4 Hz), 1.60-1.85 (m), 2.34 (s), 4.48 (m), 7.49 ( t, J = 5.4 Hz), 7.94 (s), 7.99 (t, J = 7.8 Hz), 8.34 (d, J = 7.8 Hz), 8.69 (d, J = 3.6 Hz), 8.70 (brs)
13C RMN (DMSO- e, 150 MHz): 17.7, 21.9, 23.4, 24.8, 40.0, 50.8, 108.3, 1 18.0, 121.3, 125.0, 138.1, 149.5, 154.4, 154.5, 158.4, 166.6, 167.0, 174.3 13 C NMR (DMSO- e, 150 MHz): 17.7, 21.9, 23.4, 24.8, 40.0, 50.8, 108.3, 1 18.0, 121.3, 125.0, 138.1, 149.5, 154.4, 154.5, 158.4, 166.6, 167.0, 174.3
Datos de espectros de RMN del compuesto de fórmula XVIII: NMR spectra data of the compound of formula XVIII:
1H RMN (DMSO-dg, 600 MHz): 0.93 (d, J = 6.6 Hz), 0.94 (d, J = 6.6 Hz), 1.47 (m), -1.88 (m), 2.02 (m), 2.34 (s), 5.25 (dd, J = 11.4, 4.8 Hz), 7.52 (dd, J = 7.8, 4.8 Hz), 8.01 (dt, J= 7.8, 1.8 Hz), 8.06 (s), 8.43 (d, J= 7.8 Hz), 8.72 (dd, J= 4.8, 0.6 Hz) 13C RMN (DMSO- e, 150 MHz): 21.3, 23.3, 25.0, 39.8, 54.6, 107.9, 121.4, 125.3, 127.5, 138.1, 149.7, 154.4, 157.0, 158.5, 163.6, 167.0, 171.9 1 H NMR (DMSO-dg, 600 MHz): 0.93 (d, J = 6.6 Hz), 0.94 (d, J = 6.6 Hz), 1.47 (m), -1.88 (m), 2.02 (m), 2.34 (s ), 5.25 (dd, J = 11.4, 4.8 Hz), 7.52 (dd, J = 7.8, 4.8 Hz), 8.01 (dt, J = 7.8, 1.8 Hz), 8.06 (s), 8.43 (d, J = 7.8 Hz), 8.72 (dd, J = 4.8, 0.6 Hz) 13 C NMR (DMSO- e, 150 MHz): 21.3, 23.3, 25.0, 39.8, 54.6, 107.9, 121.4, 125.3, 127.5, 138.1, 149.7, 154.4, 157.0, 158.5, 163.6, 167.0, 171.9
Datos de espectros de RMN del compuesto de fórmula XIX: NMR spectra data of the compound of formula XIX:
1H RMN (DMSO-dg, 600 MHz): 1.95 (s), 2.35 (s), 4.64 (s), 7.53 (m), 7.66 (s), 8.02 (t, J= 7.8 Hz), 8.36 (brs), 8.39 (d, J= 7.8 Hz), 8.72 (d, J= 3.0 Hz)  1 H NMR (DMSO-dg, 600 MHz): 1.95 (s), 2.35 (s), 4.64 (s), 7.53 (m), 7.66 (s), 8.02 (t, J = 7.8 Hz), 8.36 (brs) , 8.39 (d, J = 7.8 Hz), 8.72 (d, J = 3.0 Hz)
13C RMN (DMSO- e, 150 MHz): 17.1, 23.0, 42.6, 108.5, 119.5, 121.6, 125.4, 138.5, 149.5, 152.5, 152.7, 158.4, 169.5, 170.34 Ejemplo 13. Identificación de un nuevo derivado de colismicina producido por la cepa CLM-M2. 1 3 C NMR (DMSO- e, 150 MHz): 17.1, 23.0, 42.6, 108.5, 119.5, 121.6, 125.4, 138.5, 149.5, 152.5, 152.7, 158.4, 169.5, 170.34 Example 13. Identification of a new colismicin derivative produced by strain CLM-M2.
El análisis detallado de los compuestos producidos por la cepa CLM-M nos permitió la identificación de un nuevo compuesto acumulado por esta cepa a mayores de los compuestos de fórmulas III y IV previamente descritos. El análisis por UPLC mostró un nuevo pico con absorbancia característica de colismicina A pero con movilidad 2,249 min que corresponde al compuesto de fórmula XX. El análisis posterior por HPLC/MS determinó que el compuesto de fórmula XX presenta una movilidad de 12,101 min y un ión de 278 m/z [M+H]+. (FIG. 18) Datos de espectros de RMN del compuesto de fórmula XX: The detailed analysis of the compounds produced by the CLM-M strain allowed us to identify a new compound accumulated by this strain to older than the compounds of formulas III and IV previously described. UPLC analysis showed a new peak with characteristic absorbance of colismicin A but with 2,249 min mobility corresponding to the compound of formula XX. Subsequent analysis by HPLC / MS determined that the compound of formula XX has a mobility of 12,101 min and an ion of 278 m / z [M + H] + . (FIG. 18) NMR spectra data of the compound of formula XX:
1H RMN (DMSO-dg, 600 MHz): 3.08 (s), 7.40 (brs), 7.59 (dd, J = 6.9, 4.8 Hz), 8.04 (dt, J= 7.8, 1,5 Hz), 8.35 (d, J= 7.8 Hz), 8.73 (d, J= 3.9 Hz), 9.0 (brs), 12.5 (brs) 13C RMN (DMSO- e, 150 MHz): 40.9, 111.6, 120.0, 121.7, 126.2, 138.6, 140.5, 149.9, 158.4, 158.5, 166.0, 174.1 1 H NMR (DMSO-dg, 600 MHz): 3.08 (s), 7.40 (brs), 7.59 (dd, J = 6.9, 4.8 Hz), 8.04 (dt, J = 7.8, 1.5 Hz), 8.35 (d , J = 7.8 Hz), 8.73 (d, J = 3.9 Hz), 9.0 (brs), 12.5 (brs) 1 3 C NMR (DMSO- e, 150 MHz): 40.9, 111.6, 120.0, 121.7, 126.2, 138.6 , 140.5, 149.9, 158.4, 158.5, 166.0, 174.1
Microorganismos depositados. Deposited microorganisms.
Los siguientes microorganismos fueron depositados en las fechas abajo indicadas en la Colección Española de Cultivos Tipo (CECT) / Universidad de Valencia / Pare Científic Universitat de Valencia / Catedrático Agustín Escardino, 9 / 46980 Paterna (Valencia), cumpliendo con el Tratado de Budapest: Microorganismo Número de Identificación Fecha de depósitoThe following microorganisms were deposited on the dates indicated below in the Spanish Type Culture Collection (CECT) / University of Valencia / Pare Científic Universitat de Valencia / Professor Agustín Escardino, 9/46980 Paterna (Valencia), complying with the Budapest Treaty: Microorganism Identification Number Deposit date
Streptomyces spp. CS40 7757 18.06.2010Streptomyces spp. CS40 7757 06-18-2010
Streptomyces spp. CLM-L 7754 18.06.2010Streptomyces spp. CLM-L 7754 06.18.2010
Streptomyces spp. CLM-A 7755 18.06.2010Streptomyces spp. CLM-A 7755 06.18.2010
Streptomyces spp. CLM-M2 7756 18.06.2010Streptomyces spp. CLM-M2 7756 06.18.2010
Streptomyces spp. CLM-G 7861 16.12.2010Streptomyces spp. CLM-G 7861 16.12.2010
Streptomyces spp. CLM-Ml 8070 28.12.2011Streptomyces spp. CLM-Ml 8070 28.12.2011
Streptomyces spp. CLM-M 8069 28.12.2011Streptomyces spp. CLM-M 8069 28.12.2011
Streptomyces spp. CLM-AH 8071 28.12.2011 Streptomyces spp. CLM-AH 8071 28.12.2011
BIBLIOGRAFIA BIBLIOGRAPHY
1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. y Lipman, D. J. (1990). 1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990).
Basic local alignment search tool. J Mol Biol 215, 403-10.  Basic local alignment search tool. J Mol Biol 215, 403-10.
2. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. y Schoner, B. E. 2. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. and Schoner, B. E.
(1992). Plasmid cloning vectors for the conjugal transfer of DNA from (1992). Plasmid cloning vectors for the conjugal transfer of DNA from
Escherichia coli to Streptomyces spp. Gene 116, 43-9. Escherichia coli to Streptomyces spp. Gene 116, 43-9.
3. Bruntner, C. y Bormann, C. (1998). The Streptomyces tendae Tu901 L-lysine 2- aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur J Biochem 254, 347-55. 4. Cristalli, G, Franchetti, P., Grifantini, M. y Ripa, S. (1986). 2,2*-Bipyridyl-6- carboxamidoximes with potential antitumor and antimicrobial properties. Fármaco [Sci] 41, 499-507. 3. Bruntner, C. and Bormann, C. (1998). The Streptomyces tendae Tu901 L-lysine 2- aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur J Biochem 254, 347-55. 4. Cristalli, G, Franchetti, P., Grifantini, M. and Ripa, S. (1986). 2,2 * -Bipyridyl-6- carboxamidoximes with potential antitumor and antimicrobial properties. Drug [Sci] 41, 499-507.
5. Devereux, J., Haeberli, P. y Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-95. 6. Fernandez, E., Weissbach, U., Sánchez Reillo, C, Brana, A. F., Méndez, C,5. Devereux, J., Haeberli, P. and Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-95. 6. Fernandez, E., Weissbach, U., Sánchez Reillo, C, Brana, A. F., Méndez, C,
Rohr, J. y Salas, J. A. (1998). Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180, 4929- 37. 7. Funk, A. y Divekar, P. V. (1959). Caerulomycin, a new antibiotic fromRohr, J. and Salas, J. A. (1998). Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180, 4929-37. 7. Funk, A. and Divekar, P. V. (1959). Caerulomycin, a new antibiotic from
Streptomyces caeruleus Baldacci. I. Production, isolation, assay, and biological properties. Can J Microbiol 5, 317-21. Streptomyces caeruleus Baldacci. I. Production, isolation, assay, and biological properties. Can J Microbiol 5, 317-21.
8. Gomi, S., Amano, S., Sato, E., Miyadoh, S. y Kodama, Y. (1994). Novel antibiotics SF2738A, B and C, and their analogs produced by Streptomyces sp. J Antibiot (Tokyo) 47, 1385-94. 8. Gomi, S., Amano, S., Sato, E., Miyadoh, S. and Kodama, Y. (1994). Novel antibiotics SF2738A, B and C, and their analogs produced by Streptomyces sp. J Antibiot (Tokyo) 47, 1385-94.
9. Hopwood, D., Bibb, M. y Chater, K. (1985). Genetic Manipulation of Streptomyces: a Laboratory Manual. The John Innes Foundation, Norwich, UK. 10. Kieser, T., Bibb, Μ., Chater, Κ., Butter, Μ. y Hopwood, D. (2000). Practical Streptomyces genetics: a laboratory manual. The John Innes Foundation, Norwich, UK. 9. Hopwood, D., Bibb, M. and Chater, K. (1985). Genetic Manipulation of Streptomyces: a Laboratory Manual. The John Innes Foundation, Norwich, UK. 10. Kieser, T., Bibb, Μ., Chater, Κ., Butter, Μ. and Hopwood, D. (2000). Practical Streptomyces genetics: a laboratory manual. The John Innes Foundation, Norwich, UK.
11. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. y Schilling, T. F. 11. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F.
(1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253- (nineteen ninety five). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-
310. 310.
12. Krogh, A., Larsson, B., von Heijne, G. y Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567-80. 13. Martínez Gil, A., Usan Egea, P., Medina Padilla, M., GARCÍA PALOMERO,12. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567-80. 13. Martínez Gil, A., Usan Egea, P., Medina Padilla, M., GARCÍA PALOMERO,
E., Pérez Baz, J., Fernández Chimero, R. I., Fernández Medarde, A., Cañedo Hernández, L. M., Romero Millán, F., Castro Morena, A. et al. (2007). Use of collismycin and derivatives as oxidative stress inhibitors. Spain. E., Pérez Baz, J., Fernández Chimero, R. I., Fernández Medarde, A., Cañedo Hernández, L. M., Romero Millán, F., Castro Morena, A. et al. (2007). Use of collismycin and derivatives as oxidative stress inhibitors. Spain.
14. Menendez, N., Nur-e-Alam, M., Fischer, C, Brana, A. F., Salas, J. A., Rohr, J. y Méndez, C. (2006). Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity. Appl Environ Microbio 1 72, 167-77. 14. Menendez, N., Nur-e-Alam, M., Fischer, C, Brana, A. F., Salas, J. A., Rohr, J. and Méndez, C. (2006). Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity. Appl Environ Microbe 1 72, 167-77.
15. Namwat, W., Kinoshita, H. y Nihira, T. (2002). Identification by heterologous expression and gene disruption of VisA as L-lysine 2-aminotransferase essential for virginiamycin S biosynthesis in Streptomyces virginiae. J Bacteriol 184,15. Namwat, W., Kinoshita, H. and Nihira, T. (2002). Identification by heterologous expression and gene disruption of VisA as L-lysine 2-aminotransferase essential for virginiamycin S biosynthesis in Streptomyces virginiae. J Bacteriol 184,
4811-8. 4811-8.
16. Prado, L., Lombo, F., Braña, A. F., Méndez, C, Rohr, J. y Salas, J. A. (1999). 16. Prado, L., Lombo, F., Braña, A. F., Méndez, C, Rohr, J. and Salas, J. A. (1999).
Analysis of two chromosomal regions djacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus. Mol Gen Genet 261, 216-25.  Analysis of two chromosomal regions djacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus. Mol Gen Genet 261, 216-25.
17. Rausch, C, Weber, T., Kohlbacher, O., Wohlleben, W. y Huson, D. H. (2005). 17. Rausch, C, Weber, T., Kohlbacher, O., Wohlleben, W. and Huson, D. H. (2005).
Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33, 5799-808. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33, 5799-808.
18. Sambrook, J., Fritsch, E. y Maniatis, T. (1989). Molecular cloning: A laboratory manual 1-3: cold spring harbor laboratory press. 19. Sanger, F., Nicklen, S. y Coulson, A. R. (1977). DNA sequencing with chain- terminating inhibitors. Proc Nati Acad Sci U S A 74, 5463-7. 18. Sambrook, J., Fritsch, E. and Maniatis, T. (1989). Molecular cloning: A laboratory manual 1-3: cold spring harbor laboratory press. 19. Sanger, F., Nicklen, S. and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Nati Acad Sci U S 74, 5463-7.
20. Selderslaghs, I. W., Van Rompay, A. R., De Coen, W. y Witters, H. E. (2009). 20. Selderslaghs, I. W., Van Rompay, A. R., De Coen, W. and Witters, H. E. (2009).
Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28, 308-20. 21. Shindo, K., Yamagishi, Y., Okada, Y. y Kawai, H. (1994). Collismycins A and Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28, 308-20. 21. Shindo, K., Yamagishi, Y., Okada, Y. and Kawai, H. (1994). Collismycins A and
B, novel non-steroidal inhibitors of dexamethasone-glucocorticoid receptor binding. J Antibiot (Tokyo) 47, 1072-4. B, novel non-steroidal inhibitors of dexamethasone-glucocorticoid receptor binding. J Antibiot (Tokyo) 47, 1072-4.
22. Sun, Y., He, X., Liang, J., Zhou, X. y Deng, Z. (2009). Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82, 303-10. 22. Sun, Y., He, X., Liang, J., Zhou, X. and Deng, Z. (2009). Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82, 303-10.
23. Tae, H., Kong, E. B. y Park, K. (2007). ASMPKS: an analysis system for modular polyketide synthases. BMC Bioinformatics 8, 327. 23. Tae, H., Kong, E. B. and Park, K. (2007). ASMPKS: an analysis system for modular polyketide synthases. BMC Bioinformatics 8, 327.
24. Tsuge, N., Furihata, K., Shin-Ya, K., Hayakawa, Y. y Seto, H. (1999). Novel antibiotics pyrisulfoxin A and B produced by Streptomyces californicus. J Antibiot (Tokyo) 52, 505-7. 24. Tsuge, N., Furihata, K., Shin-Ya, K., Hayakawa, Y. and Seto, H. (1999). Novel antibiotics pyrisulfoxin A and B produced by Streptomyces californicus. J Antibiot (Tokyo) 52, 505-7.
25. Vining, L. C, Mclnnes, A., McCulloch, A. W., Smith, D. G. y Walter, J. A. 25. Vining, L. C, Mclnnes, A., McCulloch, A. W., Smith, D. G. and Walter, J. A.
(1988). The biosynthesis of caerulomycins in Streptomyces caeruleus. Isolation of a new caerulomycin and incorporation of picolinic acid and glycerol into caerulomycin A. Canadian Journal of Chemistry 66(1), 191-194. 26. Westerfield, M. (1993). The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio): University of Oregon Press Eugene, OR.  (1988). The biosynthesis of caerulomycins in Streptomyces caeruleus. Isolation of a new caerulomycin and incorporation of picolinic acid and glycerol into caerulomycin A. Canadian Journal of Chemistry 66 (1), 191-194. 26. Westerfield, M. (1993). The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio): University of Oregon Press Eugene, OR.

Claims

REIVINDICACIONES
1. Molécula de ácido nucleico que consiste en al menos un fragmento de la SEQ ID NO: 1 capaz de codificar para al menos una de las secuencias SEQ ID NO: 2 a SEQ ID NO: 28. 2. Molécula de ácido nucleico, según la reivindicación 1 , que consiste en la SEQ ID NO: 1. 1. Nucleic acid molecule consisting of at least one fragment of SEQ ID NO: 1 capable of encoding at least one of the sequences SEQ ID NO: 2 to SEQ ID NO: 28. 2. Nucleic acid molecule, according to claim 1, consisting of SEQ ID NO: 1.
3. Vector de expresión que comprende la molécula de ácido nucleico de las reivindicaciones 1 ó 2. 3. Expression vector comprising the nucleic acid molecule of claims 1 or 2.
4. Vector de expresión, según la reivindicación 3, caracterizado por ser el cósmido coslc3 o cos3bl l . 4. Expression vector according to claim 3, characterized in that it is the cosmid coslc3 or cos3bl l.
5. Célula u organismo transgénico no humanos que comprende el vector de expresión de las reivindicaciones 3 ó 4. 5. Non-human transgenic cell or organism comprising the expression vector of claims 3 or 4.
6. Cepa de Streptomyces spp. con número de identificación CECT 7754, CECT 7755, CECT 7756, CECT 7757, CECT 7861 , CECT 8069, CECT 8070 o CECT 8071. 7. Compuesto de Fórmula (I): 6. Streptomyces spp. with identification number CECT 7754, CECT 7755, CECT 7756, CECT 7757, CECT 7861, CECT 8069, CECT 8070 or CECT 8071. 7. Compound of Formula (I):
Figure imgf000062_0001
donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector; donde el grupo protector comprende un grupo alquilo, un grupo ciclo alquilo, un grupo cicloalquilo heterocíclico, un grupo hidra xialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfo combinación de ellos; exceptuando los compuestos con las siguientes fórmulas:
Figure imgf000062_0001
where Ri, R 2 , R 3 and R4 are, each and independently, hydrogen or a protecting group; wherein the protecting group comprises an alkyl group, an alkyl cyclo group, a heterocyclic cycloalkyl group, a hydroxyalkyl hydro group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, a oxime group, a nitrile group, a urethane group, a silyl group, a sulfo group combining them; Except for compounds with the following formulas:
Figure imgf000063_0001
Figure imgf000063_0002
Figure imgf000063_0003
Figure imgf000063_0001
Figure imgf000063_0002
Figure imgf000063_0003
8. Compuesto, según la reivindicación 7, seleccionado entre los siguientes compuestos de Fórmula II a XVI: 8. Compound according to claim 7, selected from the following compounds of Formula II to XVI:
Figure imgf000064_0001
Figure imgf000064_0001
9. Compuesto, según la reivindicación 7, seleccionado entre los siguientes compuestos de Fórmula XVII a XX: 9. Compound according to claim 7, selected from the following compounds of Formula XVII to XX:
Figure imgf000065_0001
Figure imgf000065_0001
Figure imgf000065_0002
Figure imgf000065_0002
Figure imgf000065_0003
Figure imgf000065_0003
donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector; donde el grupo protector comprende un grupo alquilo, un grupo ciclo alquilo, un grupo cicloalquilo heterocíclico, un grupo hidra xialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfoxi o una combinación de ellos; para la elaboración de una composición farmacéutica destinada al tratamiento del cáncer. where Ri, R 2 , R 3 and R 4 are, each and independently, hydrogen or a protecting group; wherein the protecting group comprises an alkyl group, an alkyl cyclo group, a heterocyclic cycloalkyl group, a hydroxyalkyl hydro group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or a combination of them; for the preparation of a pharmaceutical composition for the treatment of cancer.
1 1. Uso, según la reivindicación 10, donde el tipo de cáncer se selecciona entre: cáncer de mama, cáncer de pulmón y cáncer de colon. 1 1. Use according to claim 10, wherein the type of cancer is selected from: breast cancer, lung cancer and colon cancer.
12. Uso de un compuesto según las reivindicaciones 7 a 9 para la elaboración de una composición farmacéutica destinada al tratamiento enfermedades neurodegenerativas. 13. Uso de un compuesto de Fórmula (I): 12. Use of a compound according to claims 7 to 9 for the preparation of a pharmaceutical composition for the treatment of neurodegenerative diseases. 13. Use of a compound of Formula (I):
Figure imgf000066_0001
donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector; donde el grupo protector comprende un grupo alquilo, un grupo ciclo alquilo, un grupo cicloalquilo heterocíclico, un grupo hidra xialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfoxi o una combinación de ellos; para la elaboración de una composición farmacéutica destinada al tratamiento de enfermedades infecciosas.
Figure imgf000066_0001
where Ri, R 2 , R 3 and R4 are, each and independently, hydrogen or a protecting group; wherein the protecting group comprises an alkyl group, an alkyl cyclo group, a heterocyclic cycloalkyl group, a hydroxyalkyl hydro group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or a combination of them; for the preparation of a pharmaceutical composition for the treatment of infectious diseases.
14. Composición farmacéutica que comprende al menos uno de los compuestos de las reivindicaciones 7 a 9 y al menos un excipiente farmacéuticamente aceptable. 14. Pharmaceutical composition comprising at least one of the compounds of claims 7 to 9 and at least one pharmaceutically acceptable excipient.
15. Método para el tratamiento del cáncer que comprende la administración al paciente de una cantidad terapéuticamente eficaz de un compuesto de Fórmula (I): 15. A method for the treatment of cancer comprising the administration to the patient of a therapeutically effective amount of a compound of Formula (I):
Figure imgf000067_0001
Figure imgf000067_0001
donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector; donde el grupo protector comprende un grupo alquilo, un grupo ciclo alquilo, un grupo cicloalquilo heterocíclico, un grupo hidra xialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfoxi o una combinación de ellos. 16. Método, según la reivindicación 14, donde el tipo de cáncer se selecciona entre: cáncer de mama, cáncer de pulmón y cáncer de colon. where Ri, R 2 , R 3 and R4 are, each and independently, hydrogen or a protecting group; wherein the protecting group comprises an alkyl group, an alkyl cyclo group, a heterocyclic cycloalkyl group, a hydroxyalkyl hydro group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, an alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or a combination of them. 16. Method according to claim 14, wherein the type of cancer is selected from: breast cancer, lung cancer and colon cancer.
17. Método para el tratamiento de enfermedades neurodegenerativas que comprende la administración al paciente de una cantidad terapéuticamente eficaz de un compuesto según las reivindicaciones 7 a 9 o de una composición farmacéutica según la reivindicación 14. 17. Method for the treatment of neurodegenerative diseases comprising the administration to the patient of a therapeutically effective amount of a compound according to claims 7 to 9 or of a pharmaceutical composition according to claim 14.
18. Método para el tratamiento de enfermedades infecciosas que comprende la administración al paciente de una cantidad terapéuticamente eficaz de un compuesto de Fórmula (I): 18. Method for the treatment of infectious diseases comprising the administration to the patient of a therapeutically effective amount of a compound of Formula (I):
Figure imgf000067_0002
donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector; donde el grupo protector puede consistir en un grupo alquilo, un grupo cicloalquilo, un grupo cicloalquilo heterocíclico, un grupo hidra xialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfoxi o una combinación de ellos.
Figure imgf000067_0002
where Ri, R 2 , R 3 and R 4 are, each and independently, hydrogen or a protecting group; where the protecting group may consist of an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl hydro group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group , an alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or A combination of them.
Figure imgf000068_0001
Figure imgf000068_0001
(l) donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector; donde el grupo protector comprende un grupo alquilo, un grupo cicloalquilo, un grupo cicloalquilo heterocíclico, un grupo hidroxialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfoxi o una combinación de ellos; para ser usado en el tratamiento del cáncer. (l) where Ri, R 2 , R 3 and R 4 are, each and independently, hydrogen or a protecting group; wherein the protecting group comprises an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group, a group alkylaryl, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or a combination of they; to be used in the treatment of cancer.
20. Compuesto, según la reivindicación 19, para ser usado en el tratamiento de un tipo de cáncer seleccionado entre: cáncer de mama, cáncer de pulmón y cáncer de colon. 20. A compound according to claim 19 for use in the treatment of a type of cancer selected from: breast cancer, lung cancer and colon cancer.
21. Compuesto según las reivindicaciones 7 a 9 para ser usado en el tratamiento de enfermedades neurodegenerativas. 21. Compound according to claims 7 to 9 for use in the treatment of neurodegenerative diseases.
22. Compuesto de Fórmula (I):
Figure imgf000069_0001
22. Compound of Formula (I):
Figure imgf000069_0001
(I) donde Ri, R2, R3 y R4 son, cada uno e independientemente, hidrógeno o un grupo protector; donde el grupo protector puede consistir en un grupo alquilo, un grupo cicloalquilo, un grupo cicloalquilo heterocíclico, un grupo hidra xialquílico, un grupo alquilo halogenado, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquinilo, un grupo arilo, un grupo arilo heterocíclico, un grupo alquilarilo, un grupo éster, un grupo cetona, un grupo carbonato, un grupo ácido carboxílico, un grupo aldehido, un grupo cetona, un grupo oxima, un grupo nitrilo, un grupo uretano, un grupo sililo, un grupo sulfoxi o una combinación de ellos; para ser usado en el tratamiento de enfermedades infecciosas. (I) where Ri, R 2 , R 3 and R 4 are, each and independently, hydrogen or a protecting group; where the protecting group may consist of an alkyl group, a cycloalkyl group, a heterocyclic cycloalkyl group, a hydroxyalkyl hydro group, a halogenated alkyl group, an alkoxyalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic aryl group , an alkylaryl group, an ester group, a ketone group, a carbonate group, a carboxylic acid group, an aldehyde group, a ketone group, an oxime group, a nitrile group, a urethane group, a silyl group, a sulfoxy group or a combination of them; to be used in the treatment of infectious diseases.
23. Procedimiento para la obtención de derivados acilados de colismicina A y/o colismicina C, que comprende reaccionar colismicina A y/o colismicina C con un agente acilante en presencia de una enzima hidrolasa. 23. Method for obtaining acylated derivatives of colismicin A and / or colismicin C, which comprises reacting colismicin A and / or colismicin C with an acylating agent in the presence of a hydrolase enzyme.
PCT/ES2012/070003 2011-01-05 2012-01-05 Coly-mycin derivatives WO2012093192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201130010 2011-01-05
ES201130010A ES2397885B1 (en) 2011-01-05 2011-01-05 COLISMYCIN DERIVATIVES

Publications (1)

Publication Number Publication Date
WO2012093192A1 true WO2012093192A1 (en) 2012-07-12

Family

ID=46457255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070003 WO2012093192A1 (en) 2011-01-05 2012-01-05 Coly-mycin derivatives

Country Status (2)

Country Link
ES (1) ES2397885B1 (en)
WO (1) WO2012093192A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308234B2 (en) 2012-10-29 2016-04-12 The University Of North Carolina At Chapel Hill Methods and compositions for treating mucosal tissue disorders
CN110799498A (en) * 2017-01-23 2020-02-14 深圳大学 Novel natural algicide with low toxicity to non-target organisms

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710795A (en) 1970-09-29 1973-01-16 Alza Corp Drug-delivery device with stretched, rate-controlling membrane
JPH0578322A (en) * 1991-09-20 1993-03-30 Meiji Seika Kaisha Ltd New antibiotic sf2738 substance, its production and carcinostatic agent
JPH0912550A (en) * 1995-06-30 1997-01-14 House Foods Corp 2,2'-bipyridine derivative, its production and antineoplastic agent containing the same
EP1749552A1 (en) * 2005-07-29 2007-02-07 Neuropharma S.A. Use of collismycin and derivatives thereof as oxidative stress inhibitors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710795A (en) 1970-09-29 1973-01-16 Alza Corp Drug-delivery device with stretched, rate-controlling membrane
JPH0578322A (en) * 1991-09-20 1993-03-30 Meiji Seika Kaisha Ltd New antibiotic sf2738 substance, its production and carcinostatic agent
JPH0912550A (en) * 1995-06-30 1997-01-14 House Foods Corp 2,2'-bipyridine derivative, its production and antineoplastic agent containing the same
EP1749552A1 (en) * 2005-07-29 2007-02-07 Neuropharma S.A. Use of collismycin and derivatives thereof as oxidative stress inhibitors
WO2007017146A2 (en) 2005-07-29 2007-02-15 Neuropharma, S.A. Use of collismycin and derivatives thereof as oxidative stress inhibitors

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
ADV. SYNTH. CATAL., vol. 348, 2006, pages 797 - 812
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ALTSCHUL, S. F.; GISH, W.; MILLER, W.; MYERS, E. W.; LIPMAN, D. J.: "Basic local alignment search tool", J MOL BIOL, vol. 215, 1990, pages 403 - 10, XP002949123, DOI: doi:10.1006/jmbi.1990.9999
BIERMAN, M.; LOGAN, R.; O'BRIEN, K.; SENO, E. T.; RAO, R. N.; SCHONER, B. E.: "Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp", GENE, vol. 116, 1992, pages 43 - 9, XP023542508, DOI: doi:10.1016/0378-1119(92)90627-2
BRUNTNER, C.; BORMANN, C.: "The Streptomyces tendae Tu901 L-lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis", EUR J BIOCHEM, vol. 254, 1998, pages 347 - 55
CHEM. SOC. REV., vol. 33, 2004, pages 201 - 209
CRISTALLI, G.; FRANCHETTI, P.; GRIFANTINI, M.; RIPA, S.: "2,2'-Bipyridyl-6-carboxamidoximes with potential antitumor and antimicrobial properties", FARMACO [SCI, vol. 41, 1986, pages 499 - 507, XP009056627
DEVEREUX ET AL., NUCLEIC ACIDS RES., vol. 12, 1984, pages 387 - 395
DEVEREUX, J.; HAEBERLI, P.; SMITHIES, O.: "A comprehensive set of sequence analysis programs for the VAX", NUCLEIC ACIDS RES, vol. 12, 1984, pages 387 - 95
FERNÁNDEZ ET AL., J BACTERIOL, vol. 180, 1998, pages 4929 - 4937
FERNÁNDEZ ET AL., J. BACTERIOL, vol. 180, 1998, pages 4929 - 4937
FERNÁNDEZ ET AL., J. BACTERIOL., vol. 180, 1998, pages 4929 - 4937
FERNANDEZ, E.; WEISSBACH, U.; SANCHEZ REILLO, C.; BRANA, A. F.; MENDEZ, C.; ROHR, J.; SALAS, J. A.: "Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin", J BACTERIOL, vol. 180, 1998, pages 4929 - 37
FUNK, A.; DIVEKAR, P. V.: "Caerulomycin, a new antibiotic from Streptomyces caeruleus Baldacci. I. Production, isolation, assay, and biological properties", CAN J MICROBIOL, vol. 5, 1959, pages 317 - 21, XP009078797
GOMI, S.; AMANO, S.; SATO, E.; MIYADOH, S.; KODAMA, Y.: "Novel antibiotics SF2738A, B and C, and their analogs produced by Streptomyces sp", J ANTIBIOT (TOKYO, vol. 47, 1994, pages 1385 - 94
HOPWOOD, D.; BIBB, M.; CHATER, K.: "Genetic Manipulation of Streptomyces: a Laboratory Manual", 1985, THE JOHN INNES FOUNDATION
KIESER ET AL.: "Practical Streptomyces genetics", 2000, THE JOHN INNES FOUNDATION
KIESER ET AL.: "Practical Streptomyces Genetics.", 2000, THE JOHN INNES FOUNDATION
KIESER, T.; BIBB, M.; CHATER, K.; BUTTER, M.; HOPWOOD, D.: "Practical Streptomyces genetics: a laboratory manual", 2000, THE JOHN INNES FOUNDATION
KIMMEL, C. B.; BALLARD, W. W.; KIMMEL, S. R.; ULLMANN, B.; SCHILLING, T. F.: "Stages of embryonic development of the zebrafish.", DEV DYN, vol. 203, 1995, pages 253 - 310, XP008047852
KROGH ET AL., J. MOL. BIOL., vol. 305, 2001, pages 567 - 580
KROGH, A.; LARSSON, B.; VON HEIJNE, G.; SONNHAMMER, E. L.: "Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes", J MOL BIOL, vol. 305, 2001, pages 567 - 80, XP004469188, DOI: doi:10.1006/jmbi.2000.4315
MARTINEZ GIL, A.; USAN EGEA, P.; MEDINA PADILLA, M.; GARCIA PALOMERO, E.; PEREZ BAZ, J.; FERNANDEZ CHIMERO, R. I.; FERNÁNDEZ MEDA, USE OF COLLISMYCIN AND DERIVATIVES AS OXIDATIVE STRESS INHIBITORS, 2007
MENENDEZ, N.; NUR-E-ALAM, M.; FISCHER, C.; BRANA, A. F.; SALAS, J. A.; ROHR, J.; MENDEZ, C.: "Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity", APPL ENVIRON MICROBIOL, vol. 72, 2006, pages 167 - 77
NAMWAT, W.; KINOSHITA, H.; NIHIRA, T.: "Identification by heterologous expression and gene disruption of VisA as L-lysine 2-aminotransferase essential for virginiamycin S biosynthesis in Streptomyces virginiae", J BACTERIOL, vol. 184, 2002, pages 4811 - 8, XP007922322, DOI: doi:10.1128/JB.184.17.4811-4818.2002
PACKER ET AL., FREE RADIC BIOL MED., vol. 22, no. 1-2, 1997, pages 359 - 78
PRADO, L.; LOMBO, F.; BRAFIA, A. F.; MENDEZ, C.; ROHR, J.; SALAS, J. A.: "Analysis of two chromosomal regions djacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus", MOL GEN GENET, vol. 261, 1999, pages 216 - 25
RAUSCH ET AL., NUCLEIC ACIDS RES., vol. 33, 2005, pages 5799 - 5808
RAUSCH, C.; WEBER, T.; KOHLBACHER, O.; WOHLLEBEN, W.; HUSON, D. H.: "Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs", NUCLEIC ACIDS RES, vol. 33, 2005, pages 5799 - 808, XP007901242, DOI: doi:10.1093/nar/gki885
SAMBROOK ET AL.: "Molecular Cloning, a Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK, J.; FRITSCH, E.; MANIATIS, T.: "Molecular cloning: A laboratory manual 1-3", 1989, COLD SPRING HARBOR LABORATORY PRESS
SANGER ET AL., PROC. NATL. ACAD. SCI. USA., vol. 74, 1977, pages 5463 - 5467
SANGER, F.; NICKLEN, S.; COULSON, A. R.: "DNA sequencing with chain- terminating inhibitors", PROC NATL ACAD SCI USA, vol. 74, 1977, pages 5463 - 7, XP008154983, DOI: doi:10.1073/pnas.74.12.5463
SELDERSLAGHS, I. W.; VAN ROMPAY, A. R.; DE COEN, W.; WITTERS, H. E.: "Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo", REPROD TOXICOL, vol. 28, 2009, pages 308 - 20, XP026698753, DOI: doi:10.1016/j.reprotox.2009.05.004
SHINDO, K.; YAMAGISHI, Y.; OKADA, Y.; KAWAI, H.: "Collismycins A and B, novel non-steroidal inhibitors of dexamethasone-glucocorticoid receptor binding", J ANTIBIOT (TOKYO, vol. 47, 1994, pages 1072 - 4
SUN, Y.; HE, X.; LIANG, J.; ZHOU, X.; DENG, Z.: "Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326", APPL MICROBIOL BIOTECHNOL, vol. 82, 2009, pages 303 - 10, XP019705439
TAE ET AL., BMC BIOINFORMATICS., vol. 8, 2007, pages 327 - 335
TAE, H.; KONG, E. B.; PARK, K.: "ASMPKS: an analysis system for modular polyketide synthases", BMC BIOINFORMATICS, vol. 8, 2007, pages 327, XP021027643, DOI: doi:10.1186/1471-2105-8-327
TETRAHEDRON, vol. 60, 2004, pages 501 - 519
TSUGE, N.; FURIHATA, K.; SHIN-YA, K.; HAYAKAWA, Y.; SETO, H.: "Novel antibiotics pyrisulfoxin A and B produced by Streptomyces californicus", J ANTIBIOT (TOKYO, vol. 52, 1999, pages 505 - 7
VINING, L. C.; MCINNES, A.; MCCULLOCH, A. W.; SMITH, D. G.; WALTER, J. A.: "The biosynthesis of caerulomycins in Streptomyces caeruleus. Isolation of a new caerulomycin and incorporation of picolinic acid and glycerol into caerulomycin A", CANADIAN JOURNAL OF CHEMISTRY, vol. 66, no. 1, 1988, pages 191 - 194
WESTERFIELD, M.: "The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio", 1993, UNIVERSITY OF OREGON PRESS EUGENE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308234B2 (en) 2012-10-29 2016-04-12 The University Of North Carolina At Chapel Hill Methods and compositions for treating mucosal tissue disorders
US10406200B2 (en) 2012-10-29 2019-09-10 The University Of North Carolina At Chapel Hill Methods and compositions for treating mucusal tissue disorders
US11058743B2 (en) 2012-10-29 2021-07-13 The University Of North Carolina At Chapel Hill Methods and compositions for treating mucosal tissue disorders
US11938166B2 (en) 2012-10-29 2024-03-26 The University Of North Carolina At Chapel Hill Methods and compositions for treating mucosal tissue disorders
CN110799498A (en) * 2017-01-23 2020-02-14 深圳大学 Novel natural algicide with low toxicity to non-target organisms
CN110799498B (en) * 2017-01-23 2023-10-27 深圳大学 Novel natural algicide with low toxicity to non-target organisms

Also Published As

Publication number Publication date
ES2397885A1 (en) 2013-03-12
ES2397885B1 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
Sakai et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107 I. Taxonomy, fermentation, isolation and screening
US7026352B1 (en) Physiologically active substances
CN102224242B (en) Novel gene cluster
Kizhakkekalam et al. Oxygenated elansolid-type of polyketide spanned macrolides from a marine heterotrophic Bacillus as prospective antimicrobial agents against multidrug-resistant pathogens
US20110136753A1 (en) Glycosylated indolecarbazoles, method for obtaining same and uses thereof
KR20050044898A (en) Novel physiologically active substances
JP4913588B2 (en) Process for producing farnesyl benzodiazepinone and its use as a drug
US20080182302A2 (en) The Gene Cluster Involved in Safracin Biosynthesis and Its Uses for Genetic Engineering
Huang et al. Heterologous expression and antitumor activity analysis of syringolin from Pseudomonas syringae pv. syringae B728a
US8980587B2 (en) Process for producing reveromycin A or a synthetic intermediate thereof, process for producing compounds containing a spiroketal ring and novel antineoplastics, fungicides and therapeutic agents for bone disorders
WO2012093192A1 (en) Coly-mycin derivatives
CN109195971B (en) Antimicrobial compounds
CN106794169A (en) FK506 derivatives of maintenance neuroregenerative activity without immunosuppressive activity and application thereof
US7423008B2 (en) Derivatives of mithramycin and methods of making and uses thereof
US20190127313A1 (en) Antimicrobial agents
EP2327789B1 (en) Signamycin, method for production thereof, and use thereof
KR20150035751A (en) Uk-2 biosynthetic genes and method for improving uk-2 productivity using the same
ES2255331B1 (en) PROCEDURE FOR OBTAINING INDOLOCARBAZOLS BY USING BIOSYNTHETIC GENES OF REBECAMYCIN.
ES2334755B2 (en) PROCEDURE TO ISOLATE GENES INVOLVED IN THE BIOSYNTHESIS OF STREPTOLIDIGINE, DNA MOLECULES, GENETIC HANDLING OF THE ROUTE AND ITS USES.
WO2015145152A1 (en) Antimicrobial agents
WO2013144894A1 (en) Nucleoside analogue as an anticancer compound
Zheng et al. Complete genome sequence analysis of a novel granaticin producer, Streptomyces sp. A1013Y
Zeng Exploring the biosynthetic potential of Cystobacter sp. SBCb004
ES2602255B1 (en) Compound argimycin alkaloids produced by Streptomyces argillaceus and its uses
ES2613746B2 (en) Bacterial strain of micromonospora matsumotoense producing paulomycin and paulomycin produced by it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732432

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12732432

Country of ref document: EP

Kind code of ref document: A1