WO2012099285A1 - Nano ceramic bone cement using animal bones and preparation method thereof - Google Patents

Nano ceramic bone cement using animal bones and preparation method thereof Download PDF

Info

Publication number
WO2012099285A1
WO2012099285A1 PCT/KR2011/000422 KR2011000422W WO2012099285A1 WO 2012099285 A1 WO2012099285 A1 WO 2012099285A1 KR 2011000422 W KR2011000422 W KR 2011000422W WO 2012099285 A1 WO2012099285 A1 WO 2012099285A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
bone cement
powder
nano
animal
Prior art date
Application number
PCT/KR2011/000422
Other languages
French (fr)
Korean (ko)
Other versions
WO2012099285A9 (en
Inventor
정종훈
백수정
정연훈
정필훈
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to PCT/KR2011/000422 priority Critical patent/WO2012099285A1/en
Publication of WO2012099285A1 publication Critical patent/WO2012099285A1/en
Publication of WO2012099285A9 publication Critical patent/WO2012099285A9/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0036Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/02Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • Tissue engineering is a multidisciplinary field of interdisciplinary life sciences, medicine, and engineering, in which the understanding of structure and function correlates in normal and pathologic abnormalities, and can repair or replace dead or damaged tissues, organs and parts of the body For the purpose of developing a biological substitute.
  • the most common implant for treating bone defects or for union of joints or bones is known as autogenous bone and allogeneic bone.
  • Tissue engineering studies have been performed extensively in search of implant materials.
  • Bone cement is used to fix tissues by fixing and stabilizing the fractures or bony defects that can be caused by traffic accidents, cancer, inflammation, and the like.
  • the treatment using conventional titanium and aluminum screw or concavo-convex structure has advantages of excellent durability and strength, but metal debris that is not suitable for the living body may cause osteolysis, There is a disadvantage that the damaged bone tissue is lost.
  • the treatment with bone cement is more biocompatible than conventional methods and maintains fluidity until it is completely cured. Therefore, it is easy to fix the tissue to the desired shape and fix the bone fragments without damaging other parts. I have.
  • Calcium phosphate bone cement exhibits a biocompatibility similar to that of bone tissue and has high biocompatibility. It has excellent bone conduction and induces bone formation.
  • the curing time is longer than 60 minutes, so that the curing time must be shortened to about 10 minutes in order to use it in actual practice.
  • the calcium phosphate-based bone cement has low mechanical strength (1 to 3 MPa) compared to the actual bone mechanical strength (10 MPa or more), and various methods for improving the mechanical strength have been studied.
  • the best material for bone cement is autogenous bone, but secondary surgery is necessary and it is difficult to obtain a large amount. In place of this, various calcium phosphate-based compounds of bone-substitute biomaterial currently in widespread use are disadvantageous in price.
  • the physical and mechanical properties should be similar to those of the actual bone, and the bonding strength with the bone at the application site should be excellent and permanent. It should also be biocompatible so that it does not involve an immune or inflammatory reaction.
  • animal bone was reworked to produce hydroxyapatite similar to human bone, thereby producing a biocompatible material for bone cement free from immune rejection.
  • horse bone has more calcium and phosphorus than other animals. It is the only animal that stands up for 24 hours and its bone powder is also used as food for bone strengthening. In order to improve the bioabsorbability and strength of animal bone powder, they were made into nanoceramics and powder for bone cement was prepared.
  • chitosan solution was prepared by using natural polymer chitosan in order to compensate the long curing time (60 min) and low mechanical strength of calcium phosphate - based cement.
  • Chitosan is a substance obtained by deacetylation of chitin, a natural polysaccharide present in the shell of crustaceans such as crabs and shrimp, and is a material that is featured in tissue engineering due to its biocompatibility, bioabsorbability and excellent bone conductivity.
  • the chitosan solution was prepared by dissolving chitosan in a biocompatible lactic acid solution. The chitosan solution was used to shorten the curing time of the calcium phosphate bone cement made from animal bone powder, and the nanocomposite cement having similar biocompatibility, mechanical strength and elasticity Bone Cement).
  • a bone scaffold block was prepared by directly sintering the animal bone, especially the horse bone, at high temperature to remove all the organic material and to use the porous cancellous bone as a bone substitute.
  • the nanoceramic bone cement containing the nano animal bone powder of the present invention is a hydroxyapatite component similar to a real bone and has excellent properties of promoting strong strength, fast curing time, biocompatibility and bone tissue regeneration.
  • the nanoceramic bone cement of the present invention may be used in various fields in the field of tissue engineering.
  • FIG 1 shows SEM images and particle size analysis results of micro-pig bone powder (left) and micro-horse bone powder (right).
  • FIG. 2 shows SEM images and particle size analysis results of nano pig bone powder (left) and nano horse bone powder (right).
  • Figure 3 shows the XRD patterns of animal (pig and horse) bones and hydroxyapatite. [ ⁇ : Characteristic peaks of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ].
  • Figure 4 is the FTIR spectrum for micro / nano animal bone powder.
  • Figure 5 shows a comparison of FTIR spectra between porcine / horse and micro / nano powder.
  • Figure 6 shows an EDX analysis of the chemical composition of animal bone powder and hydroxyapatite.
  • FIG. 11 shows the results of an experiment to evaluate the washing resistance of an animal bone cement after immersing in simulated body fluid (SBF) for 28 days (left: pig bone cement; right: horse bone cement).
  • SBF simulated body fluid
  • FIG. 12 is an SEM image of the bone cement according to the number of days dipped in a simulated body fluid (SBF). [(A): Nano powder ratio 0%; (B): nano powder ratio 50%; (C): nano powder ratio 75%].
  • FIG. 13 is an SEM image of pig bone cement according to the number of days immersed in a simulated body fluid (SBF). [(A): Nano powder ratio 0%; (B): nano powder ratio 50%; (C): nano powder ratio 75%].
  • Figure 19 shows a fluorescence image of MG63 cells on the surface of bone cement [(A): Micro-pig bone cement; (B): micro / nano (50/50 (w / w)) pig bone cement; (C) micro / nano (25/75 (w / w)) pig bone cement; (D): micro-bone cement; (E): micro / nano (50/50 (w / w)) horse bone cement; (F) micro / nano (25/75 (w / w)) horse bone cement.
  • FIG. 20 is an SEM image after cells are divided (arrowed) into pig bone cement [(A): Micro-pig bone cement; (B): micro / nano (50% / 50% (w / w)) pig bone cement; (C) Micro / nano (25% / 75% (w / w)) pig bone cement.
  • FIG. 21 is an SEM image after cells are divided (arrowed) into the bone cement [(A): micro-bone cement; (B): micro / nano (50% / 50% (w / w)) horse bone cement; (C) Micro / nano (25% / 75% (w / w)) horse bone cement.
  • Figure 22 is a CT image of a rat skull injury site [(A): Implantation of 100% microsomal bone cement; (B): 100% nasal bone cement implants; (C) 50% Micro + 50% Nano-horse bone cement (right arrow of red: transplantation of horse bone cement; left arrow of yellow:
  • Figure 23 is a histological comparison of horse bone cement 3 months after transplantation at the site of the rat skull [(A): control group; (B): 100% microbial bone cement; (C): 100% nano-horse bone cement; (D): 50% micro + 50% nano-horse bone cement (left: X12.5; right: X100;
  • Pigs and horses were collected and immersed in distilled water for 24 hours to remove pellicles. Then, they were immersed in hydrogen peroxide (77228481, Duksan chemicals, Korea) for 48 hours to remove organic substances such as flesh on the surface of bone. The animal bone with the flesh removed from the surface was dried to remove moisture and then sintered at 1200 ° C for 2 hours using an electric sintering furnace (UP350E, Yokogawa co, Japan). The sintered bones were put into a pulverizer (A10, IKA-WERKE, Japan) to make powder, and then sintered twice at 1200 ° C for 2 hours in the same manner as described above.
  • a pulverizer A10, IKA-WERKE, Japan
  • the sieved animal bone powder was sieved Scientific, Korea) was used to make animal bone with particle size below 100 ⁇ m.
  • Nano Sizer Fine Mill (Deaga Powder Systems Co., Ltd. Korea), which is an apparatus for crushing animal bone powder by friction between zirconia particles and rotating body, was used for making animal bone powder of nanoparticles.
  • Chitosan (molecular weight: 200,000, deacetylation degree:> 85%, Taehoon Co, Korea) was dissolved in a solution of 1-3% (v / v) lactic acid (# 50215, Duksan chemicals, % (w / v) chitosan solution.
  • Scanning electron microscopy (SEM; JSM-5410LV, JEOL, Japan) was used to observe the surface of sintered animal bone and bone cement.
  • SEM Scanning electron microscopy
  • a particle size analyzer (Mastersizer, Malvern Instruments Ltd, UK) was used.
  • 1 and 2 are SEM images and particle size analysis results of micro / nano animal bone powder.
  • Microparticles of animal bone powder produced by removal of organic matter and sintering showed particle sizes of 66-76 ⁇ m for pig bone and 56-83 ⁇ m for horse bone.
  • the particle size of the animal bone powder of nanoparticles was 150-270 nm for pig bone and 170-310 nm for horse bone, and the particle size was confirmed by SEM image.
  • X- ray diffraction to determine the crystallinity of the sintered animal bone powder was obtained an XRD graph using (# D5005, Bruker, Germany) , FTIR (Nicolet 6700, Termo Scientific, USA) for PO 4 3- by using And OH - were observed.
  • the chemical composition of sintered animal bone was measured using an energy dispersive X-ray spectroscope (Field Emission Scanning Electron Microscope, SUPRA 55VP, Carl Zeiss, Germany).
  • FIG. 3 shows the XRD patterns of pigs, horses and hydroxyapatite.
  • Hydrophilic apatite (239396, Sigma Aldrich Korea, Korea) commercially available for analysis of pig and horse bone powder was used as a control.
  • Both pig and horse bone showed similar crystallinity to hydroxyapatite. That is, the pig and horse bone powder were calcium phosphate type compounds similar to hydroxyapatite.
  • the height of the peak increased and the width decreased, indicating a more pointed shape than that of the hydroxyapatite.
  • pig and horse bone powder have higher crystallinity than commercially available hydroxyapatite.
  • the horse bone powder has a higher peak value and a sharp peak than the pig bone powder, which also shows that the horse bone powder exhibits higher crystallinity than the pig bone.
  • Figs. 4 and 5 show the FTIR spectra of pig and horse bone powder.
  • the peaks of all the powders were 3571-3572 cm -1 , 1411-1457 cm -1 , and 959-962 cm -1 , And a peak similar to that shown in FIG.
  • Figure 6 shows the EDX pattern of hydroxyapatite analyzed as animal bone powder and control. Both pig and horse bone powder were found to show peaks indicating calcium and phosphorus, and the EDX pattern was also similar to that of hydroxyapatite. However, as shown in Table 1, the ratio of calcium to phosphorus in horses and pig bone powder was 1.96 and higher than 1.55 in hydroxyapatite. The ratio of calcium to phosphorus is very important for the adhesion and growth of cells, and it is known that the higher the ratio of calcium to phosphorus, the better adhesion and growth of osteoblasts.
  • the hardening time of animal bone bone cement was measured using a vicat needle.
  • An appropriate amount of animal bone powder and chitosan solution was kneaded and filled into a Teflon mold having a diameter of 10 mm and a height of 5 mm.
  • the mixture was kept in a thermostatic chamber at a temperature of 37 ° C and a humidity of 98% or more for 90 seconds, mm was placed perpendicular to the surface of the bone cement to measure the curing time.
  • Curing time results were obtained by repeating the measurement of five samples at the time when the needles were dropped at intervals of 30 seconds and the moment when needle marks were not left on the surface of bone cement as the curing time of bone cement.
  • Fig. 7 shows the curing time according to the concentration of the chitosan solution in the micro-animal bone bone cement.
  • the microbial bone cement was kneaded at a solution / powder ratio of 0.35, 0.40 and 0.45 ml / g in a 2% (w / v) chitosan solution, respectively, with different solution and powder ratios
  • the curing time was 11 ⁇ 0.58 min, 15 ⁇ 0.58 min and 21 ⁇ 0.6 min, respectively.
  • 30 ⁇ 0.58 min, 41 ⁇ 1.2 min and 43 ⁇ 0.6 min were mixed with the same concentration of chitosan solution
  • the curing time increased as the ratio of solution to powder increased.
  • bone cement kneaded at a ratio of 0.35 ml / g the water content was too small and when the ratio was 0.45 ml / g, the water was too much to be kneaded. Therefore, in the subsequent test, bone cement kneaded at a ratio of 0.40 ml / g was used.
  • the hardening times of pig bone bone cement when kneaded with 2.0%, 3.0% and 3.5% (w / v) chitosan solution were 19 ⁇ 0.58 min, 14 ⁇ 0.60 min and 11 ⁇ 0.58 min, respectively, 30 ⁇ 0.6 min, 27 ⁇ 0.58 min and 23 ⁇ 0.6 min for cement, respectively.
  • the curing time of the pig bone cement was shorter than that of the horse bone cement. This is because the crystallization degree of the horse bone powder is higher than that of the pig bone, as in the XRD analysis described above, which can be explained by ionization and crystallization, which is one of the curing processes of the calcium phosphate-based bone cement. That is, the calcium phosphate-based material dissolves in water and dissociates into Ca 2+ , PO 4 3- , and OH - ions to form hydroxyapatite crystals having the structural formula Ca 10 (PO 4 ) 6 (OH) 2 . Pig bone powder with low crystallinity was more soluble than horse bone powder and ion dissociation was more active.
  • the curing time of bone cement without any nano powder was 15 ⁇ 0.96 min, 12 ⁇ 0.57 min with 25% (w / w) nanopowder, 50% (w / w) , 10 ⁇ 0.5 minutes, 8 ⁇ 0.5 minutes for 75% (w / w), and 7 ⁇ 0.58 minutes for pig bone cement made only with nano powder.
  • the bone cement it was 30 ⁇ 0.58 min, 22 ⁇ 1.53 min, 17 ⁇ 1.15 min, 7 ⁇ 0.5 min and 2 ⁇ 0.1 min, respectively, depending on the ratio of nano powder.
  • pig bone cement showed faster curing than that of horse bone cement.
  • the compressive strength of bone cement was measured using a texture analyzer (TAXT2i, Stable Microsystems Co, US) and the crosshead speed was set at 1 mm / min.
  • FIG. 9 is a graph showing compressive strength and Young's modulus of an animal bone bone cement having a diameter of 10 mm and a height of 5 mm.
  • the compressive strength of pig bone cement was 1.47 ⁇ 0.24 MPa, 2.0%, 3.0%, and 3.5% (w / v) for the control treated with water, and 1.66 ⁇ 0.32 and 2.33 ⁇ 0.28 and 3.10 ⁇ 0.13 MPa, respectively.
  • the Young's modulus was 6.89 ⁇ 1.27 MPa for the control group and 8.03 ⁇ 1.57, 11.81 ⁇ 1.32, and 12.60 ⁇ 0.66 MPa for the chitosan solution of each concentration, respectively.
  • the compressive strength of the control group was 2.75 ⁇ 0.31 MPa and 4.06 ⁇ 0.34, 4.21 ⁇ 0.18 and 9.25 ⁇ 1.30 MPa, respectively, for bone cement using 2.0%, 3.0% and 3.5% (w / v) chitosan solution .
  • the Young's modulus of the control group was 18.64 ⁇ 2.29 MPa, and the concentration of chitosan solution was 22.58 ⁇ 8.01, 29.15 ⁇ 6.94, and 41.54 ⁇ 9.63 MPa, respectively.
  • Both of the pig bone and the bone bone cement showed higher compressive strength than the control group treated with distilled water and the compressive strength was increased with increasing concentration of chitosan solution (p ⁇ 0.05).
  • the increase in the compressive strength of the bone cement using the chitosan solution is due to the fact that the curing time of the bone cement in the curing process is shorter than that of the alkaline bone powder and the acidic chitosan solution according to the solubility characteristics of the chitosan, .
  • the compressive strength of the horse bone cement is higher than that of the pig bone cement. This is because the crystallinity of the horse bone powder is higher as confirmed by the XRD analysis.
  • bone cement requires a value of 10 MPa or more, which is the compressive strength of bone.
  • Pig bone cement was initially inferior to expected value, but in case of bone cement 3.5% (w / v) chitosan solution Cement was 9.25 ⁇ 1.30 MPa, confirming the compressive strength approaching the required value.
  • FIG. 1 The graph of compressive strength and Young's modulus of bone cement including nano powder is shown in FIG.
  • Pig bone cement showed compressive strength of 8.62 ⁇ 1.38 MPa and 16.52 ⁇ 1.30 MPa, respectively, compared to 4.13 ⁇ 1.04 MPa of micro-bone cement with 50% and 75% (w / w) appear.
  • the bone cement showed the compressive strength of 8.18 ⁇ 2.78 MPa containing 50% (w / w) of nano powder and 24.88 ⁇ 1.97 MPa containing 75% (w / w) It was confirmed that the compressive strength of bone cement including nano powder increased more than 2.56 MPa (p ⁇ 0.05). It is thought that the nanopowder has a larger surface area than the micropowder and actively dissociates and crystallizes.
  • Porcine and horse bone cements using chitosan solution were found to be much less washed out than bone cements prepared using distilled water (FIG. 11). Bone cement kneaded with distilled water did not maintain its shape when placed in a similar solution, but the bone cement prepared with chitosan solution had the shape even after 28 days. It is known that this is related to the dissolution characteristics of chitosan which can shorten the curing time by pH change. It rapidly changed into a hard form due to the pH change. It could not be dissolved in the environment of pH 7 or more and could maintain its original shape.
  • Figs. 12 and 13 are SEM images showing changes in surface when the horse and pig bone cements were immersed in a simulated body fluid for 7, 14, 21, and 28 days, respectively.
  • the appearance of the surface of the bone cement before immersing it in the simulated fluid was rough and the shape of the hole could not be found, but after observing the surface of the bone cement after immersing it in the similar fluid, holes were found in various places, And the shape of the surface.
  • These crystals were formed in the image of high magnification (X5,000), and the crystal layer appeared.
  • the chemical composition of these crystals (points A to C) was confirmed using EDX and the ratio of calcium and phosphorus thereof was 1.61-1.65, confirming that it was a hydroxyapatite crystal (Table 2).
  • calcium phosphate bone cement which is a calcium phosphate compound, an animal bone powder dissociated into Ca 2+ , PO 4 3- , and OH - ions to form hydroxyapatite crystals.
  • FIG. 14 shows changes in compressive strength and Young's modulus with time in immersing the bone cement in a simulated body fluid.
  • the compressive strength and Young's modulus of micro-pig bone cement were 4.13 ⁇ 1.04, 8.14 ⁇ 1.80 MPa and 8.18 ⁇ 2.41 and 33.99 ⁇ 2.94 MPa respectively.
  • the compressive strength and Young's modulus of the pig bone cement after immersion in the simulated body fluid for 28 days were 41.53 ⁇ 0.60 and 53.04 ⁇ 3.42 MPa, respectively.
  • the bone cement showed 27.41 ⁇ 1.12 and 99.61 ⁇ 3.27 MPa, respectively. (P ⁇ 0.05). It was also observed that the compressive strength of the cement mortar was increased before immersion.
  • calcium phosphate-based bone cement is known to dissociate into ions and form hydroxyapatite crystals.
  • the increase in the compressive strength and Young's modulus of the bone cement after being immersed in a similar solution can be explained by the fact that the Ca 2+ , PO 4 3- , and OH - It can be concluded that the hydroxyapatite crystal layer is formed on the surface of the bone cement and the compressive strength is increased.
  • Osteogenic cells derived from human incubation at (Human osteoblast-like cells MG63, KCLB 21427, Korean Cell Line Bank, Seoul national university college of medicine, Korea) to a temperature 37 °C, humidity of 100% and of 5% CO 2 concentration of the environment Respectively.
  • DMEM Dulbeco's modified eagle's minimum essential medium
  • FBS fetal bovine serum
  • MTT assay for analyzing the toxicity of the new bone cement of the present invention was performed using a kit (Cell titer 96 non radioactive cell proliferation assay, Promega).
  • a kit Cell titer 96 non radioactive cell proliferation assay, Promega.
  • bone cement specimens 10 mm in diameter and 5 mm in height, were placed in DMEM medium for extraction for 1, 3, and 5 days.
  • 5 ⁇ 10 4 cells were seeded on a 24-micro plate and incubated for 4 hours.
  • the medium was replaced with an extraction medium and incubated for 24 hours at 37 ° C. in an atmosphere of 100% humidity and 5% CO 2 Lt; / RTI > After incubation, 150 ⁇ l of MTT solution was added to each well and allowed to react for 4 hours.
  • the culture medium was removed for a certain period of time, washed three times with PBS, and then immobilized for SEM imaging.
  • initial fixation immersed in 2 ml of modified Karnovsky's fixative, reacted at 4 ° C for two hours, and washed three times with 0.05 M sodium cacodylate buffer.
  • late fixation bone cement samples are immersed in 2 ml of 1% osium tetroxide solution and reacted at 4 ° C for 2 hours. After removing the fixing solution, the sample was washed with distilled water, and the solution was immersed in 30, 50, 70, 80, 90, and 100% ethanol for 10 minutes. Finally, 15 ml of hexamethyldisilazane (HMDS) (Zeiss, Supra 55VP) was used to observe the growth of cells on the surface of bone cement.
  • HMDS hexamethyldisilazane
  • FIG. 16 shows the results of MTT analysis of nano-bone cement, and it was confirmed that the cell viability of bone cement containing microparticle and micro-bone cement was not statistically different.
  • bone cement prepared from chitosan solution, pig bone and horse bone powder is not toxic and can minimize the damage such as necrosis of surrounding cells due to toxicity when injected into living body. It can also be concluded that porcine and horse bone cements, including nanoparticles powder, are also not toxic.
  • FIG. 17 shows the cell growth curve in the micro-bone cement, and it was observed that the cells not only maintained the initial growth but also showed an increase in the OD value. It was found that bone cement prepared with 2.0, 3.0 and 3.5% (w / v) chitosan solution was suitable for osteoblast growth (p ⁇ 0.05).
  • the growth curve of MG 63 cells according to the content of nanopowder of pig and horse bone cement is shown in FIG. It was confirmed that the OD value was increased due to the osteoblast growth even in the bone cement containing 50% and 75% of the nano powder, and the growth of the cells was not observed in both the pig and the bone cement.
  • FIG. 19 is an image of MG63 cells grown on the surface of pig and horse bone cement and observed by fluorescence staining. Live cells were stained green by calcein AM. After 1, 3, and 5 days of incubation, live cells were found to be increased after 5 days. This means that cells are not only attached to the surface of the bone cement at the initial stage of culture but also grow continuously.
  • 20 and 21 show the result of SEM observation of MG63 cells immobilized on pig and horse bone cement surface. As in the previous fluorescence image, it was confirmed that the number of cells after culturing for 1, 3, and 5 days after cell division increased. After 1 day of culture, the cells were attached to the surface of bone cement and the polygonal shape of MG63 osteoclast was maintained. After 5 days of culture, osteoblast was grown on the surface of bone cement as monolayer culture.
  • FIG. 22 shows a CT image of a rat skull, in which (R) is the site where the animal bone bone cement is inserted, and (L) is the control where the bone damage site is left empty. After 3 months of bone cement implantation, CT images showed that the bone defect site was reduced or completely disappeared, whereas the control site was empty of the original defect site.
  • Figure 23 shows the results of histological analysis through H & E staining.
  • no change was observed in the bone defect site where no bone cement was inserted, such as formation of new tissue.
  • the original bone graft is well adhered to the grafted bone cement and the traces of osteoid tissue formation on the surface of the original bone graft were found (Arrow point).
  • more dense tissue was formed in the bone tissue grafted with bone cement using nanoparticles than the bone cement using microparticles.
  • bone cement prepared by sintering animal bone has the ability to form new bone tissue, and it is confirmed that the bone formation ability of bone cement using nanoparticles is superior to that of microcrystalline bone cement .

Abstract

The present invention relates to nano ceramic bone cement containing animal bone powder and a preparation method thereof, and a porous bone support containing nano horse bone powder. The nano ceramic bone cement containing animal bone powder of the invention is a hydroxyapatite component similar to a real bone and has a strong strength, fast curing time, biocompatibility, and excellent characteristics for promoting bone tissue regeneration.

Description

동물뼈를 이용한 나노 세라믹 골시멘트 및 이의 제조 방법Nanoceramic bone cement using animal bone and its manufacturing method
조직공학은 생명과학, 의학 및 공학이 연계된 다학제적 학문분야로서 정상조직 및 병리학적 비정상조직에서 구조 및 기능의 상관관계를 이해하고 죽거나 손상된 조직, 장기 및 신체의 일부를 복구하거나 대체할 수 있는 생물학적 대용물의 개발을 목적으로 한다. 본래 수술적으로 골 결손을 치료하거나 관절 또는 골의 유합을 얻고자 할 때 가장 일반적인 이식재는 자가골과 동종골로 알려져 있다. 그러나 이를 채취함에 있어서 관련된 합병증이 때로는 본 수술보다 더 큰 문제를 일으킬 수 있고 얻을 수 있는 양이 제한되어 있다는 단점과 오염 물질, 독소 전달 또는 면역 반응을 통한 감염 등의 위험성이 있기 때문에 이를 대체할 골 이식재를 찾기 위한 조직공학적 연구가 광범위하게 이루어져 왔다.Tissue engineering is a multidisciplinary field of interdisciplinary life sciences, medicine, and engineering, in which the understanding of structure and function correlates in normal and pathologic abnormalities, and can repair or replace dead or damaged tissues, organs and parts of the body For the purpose of developing a biological substitute. The most common implant for treating bone defects or for union of joints or bones is known as autogenous bone and allogeneic bone. However, there is a risk that the associated complications sometimes lead to greater problems than the surgery, limited quantities to be obtained, and contamination, toxin transmission, or infection through the immune response. Tissue engineering studies have been performed extensively in search of implant materials.
골시멘트(bone cement)는 교통사고나 암, 염증 등으로 인해 발생할 수 있는 골절이나 뼈의 결손 부분을 채워주어 고정 및 안정화 하여 조직을 재생하는데 이용된다. 기존의 티타늄과 알루미늄 재질의 나사 또는 요철 구조를 이용하는 치료는 내구성과 강도가 우수하다는 장점을 갖고 있지만 생체에 적합하지 않은 금속 부스러기가 골용해증을 유발하기도 하고, 이미 성형되어 있는 나사나 구조물을 골에 주입하는 과정에서 손상되지 않은 골 조직까지 잃게 되는 단점이 있다. 골시멘트를 이용한 치료는 기존의 방법에 비해 생체적합성이 뛰어나고 완전히 경화되기 전까지 유동성을 유지하므로 손쉽게 원하는 형상으로 만들어 조직을 고정시켜 다른 부분의 손상 없이 골절된 뼈 조각을 고정 및 결합시킬 수 있다는 장점을 갖고 있다.Bone cement is used to fix tissues by fixing and stabilizing the fractures or bony defects that can be caused by traffic accidents, cancer, inflammation, and the like. The treatment using conventional titanium and aluminum screw or concavo-convex structure has advantages of excellent durability and strength, but metal debris that is not suitable for the living body may cause osteolysis, There is a disadvantage that the damaged bone tissue is lost. The treatment with bone cement is more biocompatible than conventional methods and maintains fluidity until it is completely cured. Therefore, it is easy to fix the tissue to the desired shape and fix the bone fragments without damaging other parts. I have.
인산칼슘계(calcium phosphate) 골시멘트는 골 조직과 유사한 생체 반응을 보여 높은 생체적합성을 갖고 있으며 우수한 골전도성을 갖고 있어 골 생성을 유도한다. 하지만 인산칼슘계 골시멘트를 반죽하였을 때 경화 시간이 60분 이상으로 길어 실제 시술에 사용하기 위해서는 경화 시간을 10분 내외로 단축해야 하는 문제점을 안고 있다. 또한 인산칼슘계 골시멘트는 실제 뼈의 기계적 강도(10 MPa이상)에 비해 기계적 강도가 1~3MPa 정도로 낮아 기계적 강도를 향상시키기 위한 다양한 방법이 연구되고 있다. 일반적으로 골시멘트의 재료로 가장 좋은 것은 자가골이지만 이차적인 수술이 필요하고 많은 양을 얻기가 힘들며, 이를 대신하여 현재 널리 사용중인 골대체 생체 재료의 다양한 인산칼슘계 화합물은 가격이 높다는 단점이 있다.Calcium phosphate bone cement exhibits a biocompatibility similar to that of bone tissue and has high biocompatibility. It has excellent bone conduction and induces bone formation. However, when the calcium phosphate-based bone cement is kneaded, the curing time is longer than 60 minutes, so that the curing time must be shortened to about 10 minutes in order to use it in actual practice. In addition, the calcium phosphate-based bone cement has low mechanical strength (1 to 3 MPa) compared to the actual bone mechanical strength (10 MPa or more), and various methods for improving the mechanical strength have been studied. Generally, the best material for bone cement is autogenous bone, but secondary surgery is necessary and it is difficult to obtain a large amount. In place of this, various calcium phosphate-based compounds of bone-substitute biomaterial currently in widespread use are disadvantageous in price.
일반적으로 골시멘트는 실제 환자에게 삽입된 후 뼈의 일부분으로 조제하기 때문에 물리적 및 기계적 특성이 실제 뼈와 유사해야 하며 적용 부위의 뼈와의 접착력이 우수하고 영구적이어야 한다. 또한 면역 혹은 염증 반응을 수반하지 않도록 생체적합성이 좋아야 한다.In general, since bone cement is prepared as a part of the bone after being inserted into the actual patient, the physical and mechanical properties should be similar to those of the actual bone, and the bonding strength with the bone at the application site should be excellent and permanent. It should also be biocompatible so that it does not involve an immune or inflammatory reaction.
이에 본 발명에서는 동물뼈를 이용한 새로운 인산칼슘계 나노 세라믹 물질을 개발하고, 키토산을 이용하여 인산칼슘계 나노 골시멘트의 기계적 강도를 향상시키고 경화 시간을 단축시키고자 하였다.Accordingly, in the present invention, a new calcium phosphate nanoceramic material using animal bone was developed, and the mechanical strength of calcium phosphate-based nano-bone cement was improved by using chitosan and the curing time was shortened.
본 발명에서는 동물뼈를 재가공하여 사람의 뼈와 유사한 수산화인회석(Hydroxyapatite)을 제조해 면역거부 반응이 없는 골시멘트용 생체 재료를 제조하였다. 특히, 말뼈는 칼슘과 인의 성분이 다른 동물에 비해 많고 동물중 유일하게 24시간 서서 자며 활동하는 동물로서, 그 뼈 분말도 골 강화를 위해 식용으로도 이용되고 있다. 이에 동물뼈 분말의 생체흡수성, 강도 등의 성능을 향상시키기 위해 이들을 나노 세라믹으로 만들어 골시멘트용 분말을 제조하였다.In the present invention, animal bone was reworked to produce hydroxyapatite similar to human bone, thereby producing a biocompatible material for bone cement free from immune rejection. Particularly, horse bone has more calcium and phosphorus than other animals. It is the only animal that stands up for 24 hours and its bone powder is also used as food for bone strengthening. In order to improve the bioabsorbability and strength of animal bone powder, they were made into nanoceramics and powder for bone cement was prepared.
또한 인산칼슘계 골시멘트의 긴 경화 시간(60분)과 낮은 기계적 강도를 보완하기 위해 천연 고분자인 키토산을 이용해 키토산 용액을 제조하였다. 키토산은 게나 새우 등 갑각류의 껍질에 존재하는 천연 다당류인 키틴을 탈아세틸화(deacetylation)하여 얻은 물질로서 생체적합성과 생체흡수성, 우수한 골전도성의 특징을 가져서 조직공학 분야에서 각광받고 있는 물질이다. 생체친화적인 젖산에 키토산을 녹인 불용성 키토산 용액을 이용하여 동물뼈 분말로 만든 인산칼슘계 골시멘트의 경화 시간을 단축시킴과 동시에 실제 뼈와 유사한 생체적합성, 기계적 강도 및 탄성력을 갖는 나노 골시멘트(Nano Bone Cement)를 제조하였다.In addition, chitosan solution was prepared by using natural polymer chitosan in order to compensate the long curing time (60 min) and low mechanical strength of calcium phosphate - based cement. Chitosan is a substance obtained by deacetylation of chitin, a natural polysaccharide present in the shell of crustaceans such as crabs and shrimp, and is a material that is featured in tissue engineering due to its biocompatibility, bioabsorbability and excellent bone conductivity. The chitosan solution was prepared by dissolving chitosan in a biocompatible lactic acid solution. The chitosan solution was used to shorten the curing time of the calcium phosphate bone cement made from animal bone powder, and the nanocomposite cement having similar biocompatibility, mechanical strength and elasticity Bone Cement).
또한 동물뼈, 특히 말뼈를 고온에서 소결하여 유기 물질을 전부 제거한 후 얻어지는 다공성의 해면골을 직접 골대체물로서 사용할 수 있는 다공성 골지지체 블록(bone scaffold block)을 제조하였다.In addition, a bone scaffold block was prepared by directly sintering the animal bone, especially the horse bone, at high temperature to remove all the organic material and to use the porous cancellous bone as a bone substitute.
본 발명의 나노 동물뼈 분말을 함유하는 나노 세라믹 골시멘트는 실제 뼈와 유사한 수산화인회석 성분으로 강한 강도, 빠른 경화 시간, 생체적합성, 뼈 조직 재생을 촉진시키는 우수한 특성을 가진다. 본 발명의 나노 세라믹 골시멘트는 조직 공학 분야에서 다양하게 응용되어 사용될 수 있을 것이다.The nanoceramic bone cement containing the nano animal bone powder of the present invention is a hydroxyapatite component similar to a real bone and has excellent properties of promoting strong strength, fast curing time, biocompatibility and bone tissue regeneration. The nanoceramic bone cement of the present invention may be used in various fields in the field of tissue engineering.
도 1은 마이크로 돼지뼈 분말(왼쪽)과 마이크로 말뼈 분말(오른쪽)의 SEM 이미지와 입도 분석 결과이다.1 shows SEM images and particle size analysis results of micro-pig bone powder (left) and micro-horse bone powder (right).
도 2는 나노 돼지뼈 분말(왼쪽)과 나노 말뼈 분말(오른쪽)의 SEM 이미지와 입도 분석 결과이다.FIG. 2 shows SEM images and particle size analysis results of nano pig bone powder (left) and nano horse bone powder (right).
도 3은 동물(돼지 및 말)뼈 및 수산화인회석의 XRD 패턴을 나타낸다[■: 수산화인회석(Ca10(PO4)6ㆍ(OH)2)의 특징적 피크].Figure 3 shows the XRD patterns of animal (pig and horse) bones and hydroxyapatite. [■: Characteristic peaks of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ].
도 4는 마이크로/나노 동물뼈 분말에 대한 FTIR 스펙트럼이다.Figure 4 is the FTIR spectrum for micro / nano animal bone powder.
도 5는 돼지/말 및 마이크로/나노 분말간의 FTIR 스펙트럼 비교를 나타낸다.Figure 5 shows a comparison of FTIR spectra between porcine / horse and micro / nano powder.
도 6은 동물뼈 분말과 수산화인회석의 화학적 조성의 EDX 분석을 나타낸다.Figure 6 shows an EDX analysis of the chemical composition of animal bone powder and hydroxyapatite.
도 7은 마이크로 동물뼈 시멘트의 경화 시간을 나타낸다(왼쪽: 돼지뼈 시멘트; 오른쪽: 말뼈 시멘트; control은 증류수를 포함한 동물뼈 시멘트를 의미하고, 에러바는 표준 편차를 나타내고, n=5이다).7 shows the curing time of micro-animal bone cement (left: pork bone cement; right: horse bone cement; control means animal bone cement including distilled water, error bars indicate standard deviation, n = 5).
도 8은 나노 동물뼈 시멘트의 경화 시간을 나타낸다(왼쪽: 돼지뼈 시멘트; 오른쪽: 말뼈 시멘트; 에러바는 표준 편차를 나타내고, n=5이다).8 shows the hardening time of the nano animal bone cement (left: pig bone cement; right: horse bone cement; error bars show standard deviation, n = 5).
도 9는 마이크로 돼지뼈 및 말뼈 시멘트의 압축 강도 및 영률을 나타낸다(control은 증류수를 포함한 동물뼈 시멘트를 의미하고, 에러바는 표준 편차를 나타내고, n=5이다).9 shows the compressive strength and Young's modulus of micro-pig bone and bone cement (control means animal bone cement including distilled water, error bars show standard deviation, n = 5).
도 10은 나노 분말 비율에 따른 나노 돼지뼈 및 말뼈 시멘트의 압축 강도 및 영률을 나타낸다(control은 증류수를 포함한 동물뼈 시멘트를 의미하고, 에러바는 표준 편차를 나타내고, n=5이다).10 shows the compressive strength and Young's modulus of nano pig bone and bone cement according to the nano powder ratio (control means animal bone cement including distilled water, error bars show standard deviation, n = 5).
도 11은 유사 체액(Simulated Body Fluid, SBF)에 28일간 담근 후 동물뼈 시멘트의 씻김 저항성을 실험한 결과를 나타낸다(왼쪽: 돼지뼈 시멘트; 오른쪽: 말뼈 시멘트).FIG. 11 shows the results of an experiment to evaluate the washing resistance of an animal bone cement after immersing in simulated body fluid (SBF) for 28 days (left: pig bone cement; right: horse bone cement).
도 12는 유사 체액(SBF)에 담근 일 수에 따른 말뼈 시멘트의 SEM 이미지이다[(A): 나노 분말 비율 0%; (B): 나노 분말 비율 50%; (C): 나노 분말 비율 75%].12 is an SEM image of the bone cement according to the number of days dipped in a simulated body fluid (SBF). [(A): Nano powder ratio 0%; (B): nano powder ratio 50%; (C): nano powder ratio 75%].
도 13은 유사 체액(SBF)에 담근 일 수에 따른 돼지뼈 시멘트의 SEM 이미지이다[(A): 나노 분말 비율 0%; (B): 나노 분말 비율 50%; (C): 나노 분말 비율 75%].FIG. 13 is an SEM image of pig bone cement according to the number of days immersed in a simulated body fluid (SBF). [(A): Nano powder ratio 0%; (B): nano powder ratio 50%; (C): nano powder ratio 75%].
도 14는 유사 체액(SBF)에 담근 시간에 따른 동물뼈 시멘트의 압축 강도와 영률을 나타낸다[(A): 돼지뼈 시멘트; (B): 말뼈 시멘트(에러바는 표준 편차를 나타내고, n=5이다)].Fig. 14 shows the compressive strength and Young's modulus of animal bone cement according to time immersed in SBF [(A): pig bone cement; (B): bone cement (error bars represent standard deviation, n = 5).
도 15는 키토산 용액 농도에 대한 마이크로 동물뼈 시멘트의 세포 생존률을 나타낸다[왼쪽: 돼지뼈 시멘트; 오른쪽: 말뼈 시멘트(에러바는 표준 편차를 나타내고, n=5이다)].Figure 15 shows cell viability of micro-animal bone cement to chitosan solution concentration [left: pig bone cement; Right: bone cement (error bars represent standard deviation, n = 5)].
도 16은 키토산 용액 농도에 대한 나노 동물뼈 시멘트의 세포 생존률을 나타낸다[왼쪽: 돼지뼈 시멘트; 오른쪽: 말뼈 시멘트(에러바는 표준 편차를 나타내고, n=5이다)].Figure 16 shows cell viability of nano animal bone cement versus chitosan solution concentration [left: pig bone cement; Right: bone cement (error bars represent standard deviation, n = 5)].
도 17은 마이크로 동물뼈 시멘트의 MG63 세포 증식을 나타낸다[왼쪽: 돼지뼈 시멘트; 오른쪽: 말뼈 시멘트(에러바는 표준 편차를 나타내고, n=5이다)].Figure 17 shows MG63 cell proliferation of micro-animal bone cement [left: pig bone cement; Right: bone cement (error bars represent standard deviation, n = 5)].
도 18은 나노 동물뼈 시멘트의 MG63 세포 증식을 나타낸다[왼쪽: 돼지뼈 시멘트; 오른쪽: 말뼈 시멘트(에러바는 표준 편차를 나타내고, n=5이다)].Figure 18 shows MG63 cell proliferation of nano animal bone cement [left: pig bone cement; Right: bone cement (error bars represent standard deviation, n = 5)].
도 19는 골시멘트의 표면에서의 MG63 세포의 형광 이미지를 나타낸다[(A): 마이크로 돼지뼈 시멘트; (B): 마이크로/나노 (50/50 (w/w)) 돼지뼈 시멘트; (C) 마이크로/나노 (25/75 (w/w)) 돼지뼈 시멘트; (D): 마이크로 말뼈 시멘트; (E): 마이크로/나노 (50/50 (w/w)) 말뼈 시멘트; (F) 마이크로/나노 (25/75 (w/w)) 말뼈 시멘트].Figure 19 shows a fluorescence image of MG63 cells on the surface of bone cement [(A): Micro-pig bone cement; (B): micro / nano (50/50 (w / w)) pig bone cement; (C) micro / nano (25/75 (w / w)) pig bone cement; (D): micro-bone cement; (E): micro / nano (50/50 (w / w)) horse bone cement; (F) micro / nano (25/75 (w / w)) horse bone cement.
도 20은 돼지뼈 시멘트에 세포를 분주(화살표)한 후의 SEM 이미지이다[(A): 마이크로 돼지뼈 시멘트; (B): 마이크로/나노 (50%/50% (w/w)) 돼지뼈 시멘트; (C) 마이크로/나노 (25%/75% (w/w)) 돼지뼈 시멘트].FIG. 20 is an SEM image after cells are divided (arrowed) into pig bone cement [(A): Micro-pig bone cement; (B): micro / nano (50% / 50% (w / w)) pig bone cement; (C) Micro / nano (25% / 75% (w / w)) pig bone cement.
도 21은 말뼈 시멘트에 세포를 분주(화살표)한 후의 SEM 이미지이다[(A): 마이크로 말뼈 시멘트; (B): 마이크로/나노 (50%/50% (w/w)) 말뼈 시멘트; (C) 마이크로/나노 (25%/75% (w/w)) 말뼈 시멘트].FIG. 21 is an SEM image after cells are divided (arrowed) into the bone cement [(A): micro-bone cement; (B): micro / nano (50% / 50% (w / w)) horse bone cement; (C) Micro / nano (25% / 75% (w / w)) horse bone cement.
도 22는 쥐 두개골 손상 부위의 CT 이미지이다[(A): 100% 마이크로 말뼈 시멘트의 이식; (B): 100% 나노 말뼈 시멘트의 이식; (C) 50% 마이크로 + 50% 나노 말뼈 시멘트(적색의 오른쪽 화살표: 말뼈 시멘트의 이식; 황색의 왼쪽 화살표: 손상 부위를 비워 놓은 대조군].Figure 22 is a CT image of a rat skull injury site [(A): Implantation of 100% microsomal bone cement; (B): 100% nasal bone cement implants; (C) 50% Micro + 50% Nano-horse bone cement (right arrow of red: transplantation of horse bone cement; left arrow of yellow:
도 23은 쥐 두개골 손상 부위에 이식 3개월 후의 말뼈 시멘트의 조직학적 비교이다[(A): 대조군; (B): 100% 마이크로 말뼈 시멘트; (C): 100% 나노 말뼈 시멘트; (D): 50% 마이크로 + 50% 나노 말뼈 시멘트(왼쪽: X12.5; 오른쪽: X100; 파선 화살표: 골조직이 형성된 부분)].Figure 23 is a histological comparison of horse bone cement 3 months after transplantation at the site of the rat skull [(A): control group; (B): 100% microbial bone cement; (C): 100% nano-horse bone cement; (D): 50% micro + 50% nano-horse bone cement (left: X12.5; right: X100;
이하, 실시예를 통하여 본 발명을 좀 더 자세히 설명한다. 그러나 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the present invention is not limited to the following examples.
[통계적 분석][Statistical analysis]
경화 시간과 압축 강도, 생물학적 실험값의 평균값 비교를 위해 던컨의 다중검정법(Duncan's multiple range test)으로 분석하였으며, 자료의 통계적 처리는 SAS 9.1.3 판을 이용하였다.Duncan's multiple range test was used to compare the cure time, compressive strength, and biological data. The statistical treatment of the data was performed using the SAS 9.1.3 version.
[실시예 1][Example 1]
나노 및 마이크로 동물뼈 분말 제조Manufacture of nano and micro animal bone powder
돼지뼈와 말뼈를 채집하여 증류수에 24시간 동안 침지시켜 핏기를 제거한 후 과산화수소(77228481, Duksan chemicals co, Korea)에 48시간 동안 담가 뼈 표면의 살점 등의 유기 물질을 제거하였다. 표면의 살점이 제거된 동물뼈를 수분이 없도록 말린 후 전기 소결로(UP350E, Yokogawa co, Japan)를 이용하여 1200℃에서 2시간 동안 소결하였다. 소결된 뼈를 분쇄기(A10, IKA-WERKE, Japan)에 넣어 분말로 만든 후 이전과 같은 방법으로 1200℃에서 2시간 동안 두 차례 더 소결한 후, 모든 소결 과정을 거친 동물뼈 분말은 체(Daihan scientific, Korea)를 이용하여 100 ㎛ 이하의 입자를 가진 동물뼈로 제작하였다. 나노 입자의 동물뼈 분말 제작을 위해 지르코니아 입자와 회전체의 마찰에 의해 동물뼈 분말의 분쇄가 이루어지는 장치인 Nano Sizer Fine Mill(Deaga Powder Systems Co., Ltd. Korea)을 이용하였다.Pigs and horses were collected and immersed in distilled water for 24 hours to remove pellicles. Then, they were immersed in hydrogen peroxide (77228481, Duksan chemicals, Korea) for 48 hours to remove organic substances such as flesh on the surface of bone. The animal bone with the flesh removed from the surface was dried to remove moisture and then sintered at 1200 ° C for 2 hours using an electric sintering furnace (UP350E, Yokogawa co, Japan). The sintered bones were put into a pulverizer (A10, IKA-WERKE, Japan) to make powder, and then sintered twice at 1200 ° C for 2 hours in the same manner as described above. The sieved animal bone powder was sieved Scientific, Korea) was used to make animal bone with particle size below 100 ㎛. Nano Sizer Fine Mill (Deaga Powder Systems Co., Ltd. Korea), which is an apparatus for crushing animal bone powder by friction between zirconia particles and rotating body, was used for making animal bone powder of nanoparticles.
[실시예 2][Example 2]
키토산 용액의 제조Preparation of chitosan solution
1-3 % (v/v) 젖산(#50215, Duksan chemicals co, Korea) 용액에 키토산(분자량: 200,000, 탈아세틸화도: >85%, Taehoon Co, Korea)을 용해시켜 각각 2.0, 3.0 그리고 3.5% (w/v)의 키토산 용액을 제조하였다.Chitosan (molecular weight: 200,000, deacetylation degree:> 85%, Taehoon Co, Korea) was dissolved in a solution of 1-3% (v / v) lactic acid (# 50215, Duksan chemicals, % (w / v) chitosan solution.
[실시예 3][Example 3]
형태학적 분석Morphological analysis
(1) 방법(1) Method
소결된 동물뼈와 골시멘트의 표면을 관찰하기 위해 주사 전자 현미경(SEM; JSM-5410LV, JEOL, Japan)을 이용하였으며, 측정 시에는 시료를 백금으로 코팅하였다. 마이크로 및 나노 입자로 제작된 동물뼈 분말의 입도 분석을 위해 입도분석기(Mastersizer, Malvern Instruments Ltd, UK)를 이용하여 분석하였다.Scanning electron microscopy (SEM; JSM-5410LV, JEOL, Japan) was used to observe the surface of sintered animal bone and bone cement. For particle size analysis of animal bone powder made of micro and nanoparticles, a particle size analyzer (Mastersizer, Malvern Instruments Ltd, UK) was used.
(2) 결과(2) Results
도 1 및 도 2는 마이크로/나노 동물뼈 분말의 SEM 이미지와 입도 분석 결과이다. 유기 물질 제거와 소결 과정을 거쳐 제작한 마이크로 입자의 동물뼈 분말은 돼지뼈의 경우 66-76 ㎛, 말뼈의 경우 56-83 ㎛의 입도 분포를 보여주었다. 나노 입자의 동물뼈 분말은 도 3에서처럼 돼지뼈의 경우 150-270 nm, 말뼈의 경우 170-310 nm의 입도 분포를 나타내었으며, SEM 이미지를 통해 입자의 크기 정도를 확인할 수 있었다.1 and 2 are SEM images and particle size analysis results of micro / nano animal bone powder. Microparticles of animal bone powder produced by removal of organic matter and sintering showed particle sizes of 66-76 ㎛ for pig bone and 56-83 ㎛ for horse bone. As shown in FIG. 3, the particle size of the animal bone powder of nanoparticles was 150-270 nm for pig bone and 170-310 nm for horse bone, and the particle size was confirmed by SEM image.
[실시예 4][Example 4]
물리화학적 특성Physicochemical properties
(1) 방법(1) Method
소결된 동물뼈 분말의 결정도를 확인하기 위하여 X-선 회절 분석기(#D5005, Bruker, Germany)를 이용하여 XRD 그래프를 얻었으며, FTIR(Nicolet 6700, Termo Scientific, USA)을 이용하여 PO4 3-와 OH- 등의 이온 유무를 확인하였다. 에너지 분산형 X-선 분광기(Field Emission Scanning Electron Microscope, SUPRA 55VP, Carl Zeiss, Germany)를 이용하여 소결된 동물뼈의 화학적 조성을 측정하였다.X- ray diffraction to determine the crystallinity of the sintered animal bone powder was obtained an XRD graph using (# D5005, Bruker, Germany) , FTIR (Nicolet 6700, Termo Scientific, USA) for PO 4 3- by using And OH - were observed. The chemical composition of sintered animal bone was measured using an energy dispersive X-ray spectroscope (Field Emission Scanning Electron Microscope, SUPRA 55VP, Carl Zeiss, Germany).
(2) 결과(2) Results
도 3은 돼지와 말뼈, 수산화인회석의 XRD 패턴을 나타내며, 돼지와 말뼈 분말의 분석을 위해 시중에서 판매되고 있는 수산화인회석(239396, Sigma Aldrich Korea, Korea)을 대조군으로 사용하였다. 돼지와 말뼈 모두 수산화인회석과 유사한 결정도를 나타내었다. 즉, 돼지와 말뼈 분말이 수산화인회석과 비슷한 인산칼슘계 화합물임을 알 수 있었다. 돼지와 말뼈 분말의 경우 수산화인회석의 것에 비해 피크의 높이는 증가했고 폭은 감소하여 더 뾰족한 모양을 나타냈다. 이는 돼지와 말뼈 분말이 시중에 판매되고 있는 수산화인회석에 비해 결정화도가 높음을 의미한다. 또한 돼지뼈 분말에 비해 말뼈 분말이 인텐스 값이 더 높고 뾰족한 피크를 나타냄을 확인할 수 있는데, 이 역시 말뼈 분말이 돼지뼈보다 높은 결정화도를 나타냄을 보여주었다.FIG. 3 shows the XRD patterns of pigs, horses and hydroxyapatite. Hydrophilic apatite (239396, Sigma Aldrich Korea, Korea) commercially available for analysis of pig and horse bone powder was used as a control. Both pig and horse bone showed similar crystallinity to hydroxyapatite. That is, the pig and horse bone powder were calcium phosphate type compounds similar to hydroxyapatite. In pigs and horse bone powder, the height of the peak increased and the width decreased, indicating a more pointed shape than that of the hydroxyapatite. This means that pig and horse bone powder have higher crystallinity than commercially available hydroxyapatite. In addition, it can be seen that the horse bone powder has a higher peak value and a sharp peak than the pig bone powder, which also shows that the horse bone powder exhibits higher crystallinity than the pig bone.
도 4 및 도 5는 돼지와 말뼈 분말의 FTIR 스펙트럼을 나타내며 FTIR 레퍼런스를 통해 확인할 결과 모든 분말의 피크가 3571-3572 cm-1, 1411-1457 cm-1, 및 959-962 cm-1로 수산화인회석과 유사한 피크를 나타냄을 알 수 있었다. 일반적으로 FTIR 스펙트라는 포스페이트(PO4 3-), 하이드록실(OH-)과 카보네이트(CO3 2-) 이온의 존재 여부를 확인할 수 있으며 스펙트럼의 962cm-1, 1026-1027 cm-1, 1090 cm-1 피크는 포스페이트 결합으로부터 나타나고 1410-1450 cm-1의 피크는 카보네이트 결합, 그리고 3571 cm-1 피크는 하이드록실 결합으로부터 생성된다고 알려져 있다. 나노 및 마이크로 동물뼈 분말의 FTIR 스펙트럼 결과, 포스페이트 결합, 하이드록실 결합과 카보네이트 결합이 존재함을 확인하였으며 1500-800 cm-1 파장을 확대하여 얻은 도 5의 결과를 통해 돼지뼈 보다는 말뼈, 마이크로 입자보다는 나노 입자 분말의 투과율이 더 낮음을 확인하였다. 즉, 말뼈 그리고 나노 입자가 해당 파장의 결합을 더 많이 보유하고 있음을 의미한다.Figs. 4 and 5 show the FTIR spectra of pig and horse bone powder. As a result of the FTIR reference, the peaks of all the powders were 3571-3572 cm -1 , 1411-1457 cm -1 , and 959-962 cm -1 , And a peak similar to that shown in FIG. Generally FTIR spectra phosphate (PO 4 3-), hydroxyl (OH -) and carbonate (CO 3 2-) to check for the presence of ions, and the spectrum of 962cm -1, 1026-1027 cm -1, 1090 cm -1 peak is derived from a phosphate bond, a peak at 1410-1450 cm- 1 is attributed to carbonate bond, and a peak at 3571 cm- 1 is derived from a hydroxyl bond. The results of FTIR spectra of nano- and micro-animal bone powder showed that phosphate bond, hydroxyl bond and carbonate bond were present. The results of FIG. 5 obtained by enlarging the wavelength of 1500-800 cm -1 showed that the bone bone, The permeability of the nanoparticle powder was lower than that of the nanoparticle powder. That is, the horseshoe and nanoparticles have more binding at the corresponding wavelengths.
도 6은 동물뼈 분말과 대조군으로 분석한 수산화인회석의 EDX 패턴을 보여준다. 돼지와 말뼈 분말 모두 칼슘과 인을 나타내는 피크를 확인할 수 있으며 EDX 패턴 역시 수산화인회석의 것과 피크의 위치가 유사함을 관찰하였다. 하지만 분석 결과, 표 1과 같이 말뼈와 돼지뼈 분말의 칼슘과 인의 비율은 1.96으로 수산화인회석의 1.55 보다 높음을 확인하였다. 칼슘과 인의 비율은 세포의 접착과 성장에 매우 중요한 요소이며 칼슘과 인의 비율이 높으면 조골세포의 접착과 성장이 좋다고 알려져 있다. 조골 세포가 골시멘트의 표면에 흡착하기 위해 관계된 비브로넥틴(vibronectin)과 같은 단백질이 칼슘 바인딩 사이트를 갖고 있기 때문에 칼슘의 존재는 초기 단백질 흡착에 영향을 주어 조골세포의 부착 및 성장에 효과적이며 또한 장기적인 골유착(osteointegration)에도 긍정적 영향을 미친다고 알려져 있다.Figure 6 shows the EDX pattern of hydroxyapatite analyzed as animal bone powder and control. Both pig and horse bone powder were found to show peaks indicating calcium and phosphorus, and the EDX pattern was also similar to that of hydroxyapatite. However, as shown in Table 1, the ratio of calcium to phosphorus in horses and pig bone powder was 1.96 and higher than 1.55 in hydroxyapatite. The ratio of calcium to phosphorus is very important for the adhesion and growth of cells, and it is known that the higher the ratio of calcium to phosphorus, the better adhesion and growth of osteoblasts. Because proteins such as vibronectin, which are related to the adsorption of osteoblasts on the surface of bone cement, have a calcium binding site, the presence of calcium affects the initial protein adsorption and is effective in adhesion and growth of osteoblasts. It is also known to have a positive effect on long-term osteointegration.
표 1
Ca/P 비율 (at%)
수산화인회석 1.55
돼지뼈 분말 1.96
말뼈 분말 1.96
Table 1
Ca / P ratio (at%)
Hydroxyapatite 1.55
Pork bone powder 1.96
Horse bone powder 1.96
[실시예 5][Example 5]
경화 시간 측정Curing time measurement
(1) 방법(1) Method
동물뼈 골시멘트의 경화 시간을 바이캣 니들(vicat needle)을 이용하여 측정하였다. 적당량의 동물뼈 분말과 키토산 용액을 반죽하여 직경 10 mm, 높이 5 mm의 테플론(Teflon) 틀에 채워 넣은 후 37℃, 습도 98% 이상의 항온항습기에 90초 동안 방치한 후 무게 300 g, 직경 1 mm의 바늘을 골시멘트의 표면에 수직으로 세워 경화 시간을 측정 하였다. 30초 간격으로 바늘을 떨어뜨렸을 때 골시멘트의 표면에 바늘 자국이 남지 않는 순간을 골시멘트의 경화 시간으로 정하고 5개의 시료를 반복 측정하여 경화 시간 결과를 얻었다.The hardening time of animal bone bone cement was measured using a vicat needle. An appropriate amount of animal bone powder and chitosan solution was kneaded and filled into a Teflon mold having a diameter of 10 mm and a height of 5 mm. The mixture was kept in a thermostatic chamber at a temperature of 37 ° C and a humidity of 98% or more for 90 seconds, mm was placed perpendicular to the surface of the bone cement to measure the curing time. Curing time results were obtained by repeating the measurement of five samples at the time when the needles were dropped at intervals of 30 seconds and the moment when needle marks were not left on the surface of bone cement as the curing time of bone cement.
(2) 결과(2) Results
도 7은 마이크로 동물뼈 골시멘트의 키토산 용액의 농도에 따른 경화 시간을 나타낸다. 각각 용액과 분말 비율(L/P ratio)을 다르게 하여 측정한 결과 마이크로 돼지뼈 시멘트의 경우 2% (w/v)의 키토산 용액에서 0.35, 0.40 그리고 0.45 ㎖/g의 용액/분말 비율로 반죽하여 만든 경우 각각의 경화 시간은 11±0.58분, 15±0.58분, 21±0.6분이었고, 말뼈 시멘트의 경우 30±0.58분, 41±1.2분, 43±0.6분으로 같은 농도의 키토산 용액으로 반죽했을 때 용액과 분말의 비율이 높아질수록 경화 시간이 증가함을 보였다. 하지만 0.35 ㎖/g의 비율로 골시멘트를 반죽했을 경우 물기가 너무 적고 0.45 ㎖/g의 비율일 경우 물기가 너무 많아 반죽할 때에 어려움이 있었다. 따라서, 이후의 시험은 0.40 ㎖/g의 비율로 반죽한 골시멘트를 사용하였다. 또한 돼지뼈 골시멘트의 경우 2.0%, 3.0%, 3.5% (w/v) 키토산 용액을 이용하여 반죽했을 때의 경화 시간은 각각 19±0.58분, 14±0.60분, 11±0.58분이었고, 말뼈 시멘트의 경우 30±0.6분, 27±0.58분, 23±0.6분으로 돼지뼈 시멘트의 경화 시간이 말뼈 시멘트보다 짧음을 알 수 있었다. 이는 앞서 분석한 XRD 결과와 마찬가지로, 말뼈 분말의 결정화도가 돼지뼈보다 높게 나타났기 때문에 인산칼슘계 골시멘트의 경화 과정 중의 하나인 이온화, 결정화 작용으로 설명할 수 있다. 즉, 인산칼슘계 물질은 물에 용해되어 Ca2+, PO4 3-, OH- 이온으로 해리되어 Ca10(PO4)6(OH)2의 구조식을 가진 수산화인회석 결정을 형성하며 경화한다. 결정화도가 낮은 돼지뼈 분말이 말뼈 분말에 비해 용해도가 높아 이온 해리 작용이 더 활발하게 일어났을 것으로 생각된다. 경화 시간 측정 결과, 두 가지 종류의 골시멘트에서 모두 키토산 용액의 농도가 증가할수록 경화 시간이 감소함을 확인하였는데 이는 중성과 알칼리 환경에서는 용해되지 않지만 pH 6 이하의 산성 환경에서는 용해되는 키토산의 용해 특성과 관련이 있다. 알칼리성을 띄고 있는 동물뼈 분말과 산성을 띄고 있는 키토산 용액이 만나면 급격한 pH의 변화로 인해 키토산 용액이 졸에서 겔 상태로 변하며 골시멘트의 경화를 촉진시키게 된다. 도 7의 결과로 인해 키토산 용액의 경화 시간 단축 효과를 확인하였으며 이후의 나노 골시멘트의 실험은 경화 시간 단축 효과가 가장 좋았던 3.5% (w/v) 키토산 용액을 이용하였다.Fig. 7 shows the curing time according to the concentration of the chitosan solution in the micro-animal bone bone cement. The microbial bone cement was kneaded at a solution / powder ratio of 0.35, 0.40 and 0.45 ㎖ / g in a 2% (w / v) chitosan solution, respectively, with different solution and powder ratios The curing time was 11 ± 0.58 min, 15 ± 0.58 min and 21 ± 0.6 min, respectively. For the bone cement, 30 ± 0.58 min, 41 ± 1.2 min and 43 ± 0.6 min were mixed with the same concentration of chitosan solution The curing time increased as the ratio of solution to powder increased. However, when the bone cement was kneaded at a ratio of 0.35 ml / g, the water content was too small and when the ratio was 0.45 ml / g, the water was too much to be kneaded. Therefore, in the subsequent test, bone cement kneaded at a ratio of 0.40 ml / g was used. The hardening times of pig bone bone cement when kneaded with 2.0%, 3.0% and 3.5% (w / v) chitosan solution were 19 ± 0.58 min, 14 ± 0.60 min and 11 ± 0.58 min, respectively, 30 ± 0.6 min, 27 ± 0.58 min and 23 ± 0.6 min for cement, respectively. The curing time of the pig bone cement was shorter than that of the horse bone cement. This is because the crystallization degree of the horse bone powder is higher than that of the pig bone, as in the XRD analysis described above, which can be explained by ionization and crystallization, which is one of the curing processes of the calcium phosphate-based bone cement. That is, the calcium phosphate-based material dissolves in water and dissociates into Ca 2+ , PO 4 3- , and OH - ions to form hydroxyapatite crystals having the structural formula Ca 10 (PO 4 ) 6 (OH) 2 . Pig bone powder with low crystallinity was more soluble than horse bone powder and ion dissociation was more active. As a result of the curing time measurement, it was confirmed that the curing time was decreased with increasing concentration of chitosan solution in both types of bone cement. It was confirmed that the dissolution characteristics of chitosan dissolved in an acidic environment which is not dissolved in neutral and alkali environments, . When an alkaline bone powder and an acidic chitosan solution meet, the chitosan solution changes from a sol to a gel state due to a rapid change in pH, thereby accelerating the hardening of the bone cement. The results of Fig. 7 confirmed the effect of shortening the curing time of the chitosan solution. In the subsequent tests of the nano-bone cement, 3.5% (w / v) chitosan solution with the shortest curing time was used.
도 8 은 나노 골시멘트의 경화 시간을 측정한 결과이다. 돼지뼈 시멘트의 경우, 나노 분말을 전혀 섞지 않은 골시멘트의 경화 시간은 15±0.96분, 25% (w/w)의 나노 분말이 포함된 경우 12±0.57분, 50% (w/w)의 경우 10±0.5분, 75% (w/w)의 경우 8±0.5분, 나노 분말만으로 제작한 돼지뼈 시멘트는 7±0.58분으로 나타났다. 말뼈 시멘트의 경우 나노 분말의 비율에 따라 각각 30±0.58분, 22±1.53분, 17±1.15분, 7±0.5분, 2±0.1분으로 나타났으며, 마이크로 골시멘트의 경화 시간 결과와 마찬가지로 나노 25, 50% 수준에서는 돼지뼈 시멘트가 말뼈 시멘트보다 빨리 경화함을 나타내었으나, 나노 75, 100% 수준에서는 말뼈 시멘트가 돼지뼈 시멘트 보다 더 빠르게 경화했다. 그리고 나노 분말의 비율이 높아질수록 경화 시간이 짧아짐을 확인하였는데, 이러한 현상은 나노 입자를 가진 동물뼈 분자가 표면적이 넓어 이온화 작용을 통해 수산화인회석 결정을 형성하는 인산칼슘계 골시멘트의 경화 작용이 더 활발히 이루어졌기 때문으로 생각된다.8 shows the result of measuring the curing time of the nano-bone cement. In case of pig bone cement, the curing time of bone cement without any nano powder was 15 ± 0.96 min, 12 ± 0.57 min with 25% (w / w) nanopowder, 50% (w / w) , 10 ± 0.5 minutes, 8 ± 0.5 minutes for 75% (w / w), and 7 ± 0.58 minutes for pig bone cement made only with nano powder. In the case of the bone cement, it was 30 ± 0.58 min, 22 ± 1.53 min, 17 ± 1.15 min, 7 ± 0.5 min and 2 ± 0.1 min, respectively, depending on the ratio of nano powder. At 25 and 50% level, pig bone cement showed faster curing than that of horse bone cement. However, at 75 and 100% level of nano, bone cement hardened faster than pig bone cement. It has been confirmed that the hardening time is shortened as the ratio of the nano powder increases. This phenomenon is due to the fact that the animal bone molecules having nanoparticles have a larger surface area and the curing action of the calcium phosphate-based bone cement which forms the hydroxyapatite crystal It is thought that it is actively done.
본 실험은 나노 및 마이크로 입자의 동물뼈 분말과 키토산의 농도에 따라 골시멘트의 경화 시간을 조절할 수 있음을 보여 주었다. 즉, 임상 적용에 있어 상황에 따라 원하는 경화 시간을 갖는 골시멘트를 제조할 수 있음을 보여 주었다. 본 실험에서 개발된 여러 조건의 골시멘트 중, 100% (w/w) 나노 분말을 사용하였을 때는 너무나 빠른 경화 시간을 보였고, 나노 분말 함유량이 50% (w/w)와 75% (w/w) 이었을 때에 적당한 경화 시간을 가지고 있음이 사료되었다. 따라서 골시멘트의 제조에 있어 나노 분말 함유량 50% (w/w)와 75% (w/w) 시료만을 선택하여 이후 실험을 진행하였다.This experiment showed that the hardening time of bone cement can be controlled by the concentration of animal bone powder and chitosan in nano and microparticles. In other words, it has been shown that bone cement with desired curing time can be manufactured according to the situation in clinical application. Among the bone cements of various conditions developed in this experiment, curing time was too fast when 100% (w / w) nano powder was used and the content of nano powder was 50% (w / w) and 75% (w / w) ), It was presumed that it has proper curing time. Therefore, only 50% (w / w) and 75% (w / w) of nanoparticles were selected for the preparation of bone cement.
[실시예 6][Example 6]
압축 강도Compressive strength
(1) 방법(1) Method
골시멘트의 압축 강도는 물성 분석기(texture analyzer; TAXT2i, Stable Microsystems Co, US)를 이용하여 측정하였으며, 크로스헤드(cross head)의 스피드는 1 mm/min 으로 설정하였다.The compressive strength of bone cement was measured using a texture analyzer (TAXT2i, Stable Microsystems Co, US) and the crosshead speed was set at 1 mm / min.
(2) 결과(2) Results
도 9는 직경 10 mm, 높이 5 mm로 제작한 동물뼈 골시멘트의 압축 강도와 영률을 나타낸 그래프이다. 돼지뼈 시멘트의 압축 강도는 물로 반죽한 대조군(control)의 경우 1.47±0.24 MPa, 2.0%, 3.0%, 3.5% (w/v), 키토산 용액으로 반죽한 골시멘트의 경우 각각 1.66±0.32, 2.33±0.28, 3.10±0.13 MPa로 나타났고, 영률은 대조군의 경우 6.89±1.27 MPa, 각 농도의 키토산 용액을 사용한 경우 8.03±1.57, 11.81±1.32, 12.60±0.66 MPa의 결과를 보였다. 말뼈 시멘트는 대조군의 압축 강도가 2.75±0.31 MPa 이며 2.0%, 3.0%, 3.5% (w/v) 키토산 용액을 사용한 골시멘트의 경우 각각 4.06±0.34, 4.21±0.18, 9.25±1.30 MPa로 나타났고, 대조군의 영률은 18.64±2.29 MPa, 키토산 용액의 농도에 따라 22.58±8.01, 29.15±6.94, 41.54±9.63 MPa의 값을 나타냈다.FIG. 9 is a graph showing compressive strength and Young's modulus of an animal bone bone cement having a diameter of 10 mm and a height of 5 mm. The compressive strength of pig bone cement was 1.47 ± 0.24 MPa, 2.0%, 3.0%, and 3.5% (w / v) for the control treated with water, and 1.66 ± 0.32 and 2.33 ± 0.28 and 3.10 ± 0.13 MPa, respectively. The Young's modulus was 6.89 ± 1.27 MPa for the control group and 8.03 ± 1.57, 11.81 ± 1.32, and 12.60 ± 0.66 MPa for the chitosan solution of each concentration, respectively. The compressive strength of the control group was 2.75 ± 0.31 MPa and 4.06 ± 0.34, 4.21 ± 0.18 and 9.25 ± 1.30 MPa, respectively, for bone cement using 2.0%, 3.0% and 3.5% (w / v) chitosan solution , The Young's modulus of the control group was 18.64 ± 2.29 MPa, and the concentration of chitosan solution was 22.58 ± 8.01, 29.15 ± 6.94, and 41.54 ± 9.63 MPa, respectively.
돼지뼈와 말뼈 두 종류의 골시멘트 모두 증류수를 이용하여 반죽한 대조군보다 압축 강도가 상승했음을 확인했으며 또한 키토산 용액의 농도가 증가할수록 압축 강도가 증가했음을 알 수 있었다(p<0.05). 키토산 용액을 이용한 골시멘트의 압축 강도가 증가한 것은 앞서 경화 작용에서 골시멘트의 경화 시간이 키토산의 용해 특성에 따라 알칼리인 동물 뼈 분말과 산성인 키토산 용액이 만나 단단한 형태를 형성하며 단축된 것과 같은 맥락으로 설명될 수 있다. 또한 말뼈 시멘트의 압축 강도가 돼지뼈 시멘트의 것보다 높음을 확인할 수 있는데 이는 XRD의 분석 결과에서 확인한 바와 같이 말뼈 분말의 결정화도가 더 높은 이유 때문이다. 일반적으로 골시멘트의 경우 뼈의 압축 강도인 10 MPa 이상의 값이 요구됨에 따라 돼지뼈 시멘트의 경우 초기에 기대치보다 부족한 값을 나타냈지만 말뼈 시멘트의 경우 3.5% (w/v) 키토산 용액으로 반죽한 골시멘트는 9.25±1.30 MPa로서, 요구값에 근접하는 압축 강도를 나타냄을 확인하였다.Both of the pig bone and the bone bone cement showed higher compressive strength than the control group treated with distilled water and the compressive strength was increased with increasing concentration of chitosan solution (p <0.05). The increase in the compressive strength of the bone cement using the chitosan solution is due to the fact that the curing time of the bone cement in the curing process is shorter than that of the alkaline bone powder and the acidic chitosan solution according to the solubility characteristics of the chitosan, . In addition, the compressive strength of the horse bone cement is higher than that of the pig bone cement. This is because the crystallinity of the horse bone powder is higher as confirmed by the XRD analysis. In general, bone cement requires a value of 10 MPa or more, which is the compressive strength of bone. Pig bone cement was initially inferior to expected value, but in case of bone cement 3.5% (w / v) chitosan solution Cement was 9.25 ± 1.30 MPa, confirming the compressive strength approaching the required value.
나노 분말을 포함한 골시멘트의 압축 강도와 영률 그래프를 도 10에 나타내었다. 돼지뼈 시멘트는 마이크로 골시멘트의 압축 강도인 4.13±1.04 MPa에 비해 나노 분말을 각각 50%, 75% (w/w)를 포함한 돼지뼈 시멘트의 압축 강도는 8.62±1.38 MPa, 16.52±1.30 MPa로 나타났다. 말뼈 시멘트는 나노 분말을 50% (w/w)포함한 경우 12.99±2.78 MPa, 75% (w/w)포함한 경우 24.88±1.97 MPa을 나타내어 나노 분말을 전혀 포함하지 않은 골시멘트의 압축 강도인 8.18±2.56 MPa 보다 나노 분말을 포함한 골시멘트의 압축 강도가 증가했음을 확인하였다(p<0.05). 이는 나노 분말이 마이크로 분말에 비해 넓은 표면적을 가지며 활발한 이온 해리 및 결정 형성 작용한 결과라고 생각된다.The graph of compressive strength and Young's modulus of bone cement including nano powder is shown in FIG. Pig bone cement showed compressive strength of 8.62 ± 1.38 MPa and 16.52 ± 1.30 MPa, respectively, compared to 4.13 ± 1.04 MPa of micro-bone cement with 50% and 75% (w / w) appear. The bone cement showed the compressive strength of 8.18 ± 2.78 MPa containing 50% (w / w) of nano powder and 24.88 ± 1.97 MPa containing 75% (w / w) It was confirmed that the compressive strength of bone cement including nano powder increased more than 2.56 MPa (p <0.05). It is thought that the nanopowder has a larger surface area than the micropowder and actively dissociates and crystallizes.
[실시예 7][Example 7]
유사 체액(Simulated Body Fluid, SBF) 실험Simulated Body Fluid (SBF) Experiment
(1) 방법(1) Method
소결된 동물뼈와 키토산 용액을 이용하여 제작한 골시멘트의 생물학적 활성을 측정하기 위해 증류수에 NaCl, NaHCO3, KCl, K2HPO4·3H2O, MgCl2·6H2O, Na2SO4를 용해시켜 제조한 유사 체액 30 ㎖에 담가 37℃에서 7, 14, 21, 28일 동안 놓아둔 후 골시멘트의 표면 변화, 압축 강도 변화 등을 측정하였다.Of distilled water to measure the biological activity of the bone cement manufactured using a sintering animal bones and chitosan solution NaCl, NaHCO 3, KCl, K 2 HPO 4 · 3H 2 O, MgCl 2 · 6H 2 O, Na 2 SO 4 . The surface of the bone cement was changed, and the compressive strength was measured at 37 ℃ for 7, 14, 21, 28 days.
(2) 결과(2) Results
키토산 용액을 이용한 돼지와 말뼈 시멘트는 씻김 현상이 증류수를 이용해 제작한 골시멘트보다 훨씬 덜 함을 확인하였다(도 11). 증류수를 이용하여 반죽한 골시멘트는 유사 체액에 넣었을 때 부서져 형태를 유지하지 못했지만, 키토산 용액을 이용하여 제작한 골시멘트는 28일 후에도 본 모양을 갖추고 있었다. 이는 pH 변화에 의해 경화 시간을 단축할 수 있었던 키토산의 용해 특성과 관련되어 있다고 알려져 있다. pH 변화에 의해 빠르게 단단한 형태로 변하며 이는 pH 7 이상의 환경에서는 용해되지 않고 처음의 형태를 유지할 수 있었다.Porcine and horse bone cements using chitosan solution were found to be much less washed out than bone cements prepared using distilled water (FIG. 11). Bone cement kneaded with distilled water did not maintain its shape when placed in a similar solution, but the bone cement prepared with chitosan solution had the shape even after 28 days. It is known that this is related to the dissolution characteristics of chitosan which can shorten the curing time by pH change. It rapidly changed into a hard form due to the pH change. It could not be dissolved in the environment of pH 7 or more and could maintain its original shape.
도 12 및 도 13은 말과 돼지뼈 시멘트를 유사 체액에 7, 14, 21, 28일 동안 담가놓았을 때 표면의 변화를 관찰한 SEM 이미지이다. 유사 체액에 담그기 전의 골시멘트 표면의 모습은 거칠고 구멍 등의 형태를 찾아볼 수 없었지만 유사 체액에 담근 후 골시멘트의 표면을 관찰한 결과 곳곳에서 구멍을 찾아볼 수 있었고 둥근 모양의 결정이 형성되어 기존의 형태와 완전히 달라졌음을 확인할 수 있었다. 고배율(X5,000)의 이미지에서 확인한 결과 이러한 결정이 형성되어 더 나아가서는 결정층이 나타났다. EDX를 이용하여 이러한 결정들(포인트 A 내지 C)의 화학적 성분을 확인한 결과 이의 칼슘과 인의 비율은 1.61-1.65로 수산화인회석의 결정임을 확인하였다(표 2). 이는 인산칼슘계 화합물인 동물뼈 분말이 Ca2+, PO4 3-, OH- 이온으로 해리되어 수산화인회석 결정을 형성하는 인산칼슘계 골시멘트의 경화 작용과 같은 맥락으로 해석할 수 있다.Figs. 12 and 13 are SEM images showing changes in surface when the horse and pig bone cements were immersed in a simulated body fluid for 7, 14, 21, and 28 days, respectively. The appearance of the surface of the bone cement before immersing it in the simulated fluid was rough and the shape of the hole could not be found, but after observing the surface of the bone cement after immersing it in the similar fluid, holes were found in various places, And the shape of the surface. These crystals were formed in the image of high magnification (X5,000), and the crystal layer appeared. The chemical composition of these crystals (points A to C) was confirmed using EDX and the ratio of calcium and phosphorus thereof was 1.61-1.65, confirming that it was a hydroxyapatite crystal (Table 2). This can be interpreted in the same context as the hardening action of calcium phosphate bone cement, which is a calcium phosphate compound, an animal bone powder dissociated into Ca 2+ , PO 4 3- , and OH - ions to form hydroxyapatite crystals.
SEM 이미지를 통해 마이크로 분말을 이용해 제작한 골시멘트의 표면이 나노 분말을 50%, 75%씩 함유하고 있는 골시멘트에 비해 더 거침을 관찰하였으나, 돼지뼈 시멘트와 말뼈 시멘트의 표면은 큰 차이를 나타내지 않았다.SEM images showed that the surface of the bone cement made with micropowder had a rougher surface compared to the bone cement containing 50% and 75% of the nano powder, but the surface of the pig bone cement and the bone cement showed a big difference I did.
표 2
포인트 A 포인트 B 포인트 C
Ca/P 비율 (at%) 1.65 1.60 1.61
Table 2
Point A Point B Point C
Ca / P ratio (at%) 1.65 1.60 1.61
도 14는 골시멘트를 유사 체액에 담가 놓은 시간에 따른 압축 강도와 영률(Young's modulus)의 변화를 나타낸다. 유사 체액에 담그기 전 마이크로 돼지뼈 시멘트의 압축 강도와 영률은 각각 4.13±1.04, 8.14±1.80 MPa이었고, 말뼈 시멘트는 각각 8.18±2.41, 33.99±2.94 MPa로 측정되었다. 28일 동안 유사 체액에 담가놓은 후 돼지뼈 시멘트의 압축 강도와 영률은 41.53±0.60, 53.04±3.42 MPa이고, 말뼈 시멘트는 각각 27.41±1.12, 99.61±3.27 MPa을 나타내어, 유사 체액에 담근 후 골시멘트의 압축 강도가 담그기 전보다 증가했음을 관찰하였다(p<0.05).FIG. 14 shows changes in compressive strength and Young's modulus with time in immersing the bone cement in a simulated body fluid. The compressive strength and Young's modulus of micro-pig bone cement were 4.13 ± 1.04, 8.14 ± 1.80 MPa and 8.18 ± 2.41 and 33.99 ± 2.94 MPa respectively. The compressive strength and Young's modulus of the pig bone cement after immersion in the simulated body fluid for 28 days were 41.53 ± 0.60 and 53.04 ± 3.42 MPa, respectively. The bone cement showed 27.41 ± 1.12 and 99.61 ± 3.27 MPa, respectively. (P <0.05). It was also observed that the compressive strength of the cement mortar was increased before immersion.
앞서 설명한 바와 같이 인산칼슘계 골시멘트는 이온으로 해리되며 수산화인회석 결정을 형성하는 것으로 알려져 있다. 유사 체액에 담가놓은 후 골시멘트의 압축 강도와 영률이 증가한 것은 유사 체액에 존재하는 Ca2+, PO4 3-, OH- 이온들이 이러한 결정 형성 작용을 가속화했기 때문으로 설명할 수 있으며 지속적인 결정 형성 작용으로 인해 골시멘트 표면에 수산화인회석 결정층이 형성되며 압축 강도가 증가했다고 결론지을 수 있다.As described above, calcium phosphate-based bone cement is known to dissociate into ions and form hydroxyapatite crystals. The increase in the compressive strength and Young's modulus of the bone cement after being immersed in a similar solution can be explained by the fact that the Ca 2+ , PO 4 3- , and OH - It can be concluded that the hydroxyapatite crystal layer is formed on the surface of the bone cement and the compressive strength is increased.
[실시예 8][Example 8]
생체 외 세포 실험 (In vitro test)In vitro test
(1) 세포 배양(1) Cell culture
사람으로부터 추출한 조골세포(Human osteoblast-like cells; MG63, KCLB 21427, Korean Cell Line Bank, Seoul national university college of medicine, Korea)를 온도 37℃, 습도 100%와 5%의 CO2 농도의 환경에서 배양하였다. 10%의 소 태아 혈청(FBS; Hyclone)과 1%의 항생제를 포함한 Dulbeco's modified eagle's minimum essential medium(DMEM; Hyclone, Atlanta, GA) 배지에서 배양하며, 2일에 한 번 씩 새로운 배지로 갈아주었다.Osteogenic cells derived from human; incubation at (Human osteoblast-like cells MG63, KCLB 21427, Korean Cell Line Bank, Seoul national university college of medicine, Korea) to a temperature 37 ℃, humidity of 100% and of 5% CO 2 concentration of the environment Respectively. Were cultured in Dulbeco's modified eagle's minimum essential medium (DMEM; Hyclone, Atlanta, GA) containing 10% fetal bovine serum (FBS) and 1% antibiotics.
(2) 독성 실험(2) Toxicity test
본 발명의 새로운 골시멘트의 세포에 대한 독성을 분석하기 위한 MTT 분석은 키트(Cell titer 96® non radioactive cell proliferation assay, Promega)를 이용하였다. 먼저 직경 10 mm, 높이 5 mm로 제작된 골시멘트 시료를 DMEM 배지에 넣어 1, 3, 5일 동안 추출하여 추출 배지를 얻었다. 24 마이크로 플레이트(micro plate)에 5 X 104 세포를 분주(seeding)하여 4시간 동안 배양한 후, 추출 배지로 교체하여 24시간 동안 온도 37℃, 습도 100%와 5%의 CO2 농도의 환경에서 배양하였다. 배양 후 150 ㎕의 MTT 용액을 각 웰(well)에 넣어 주어 4시간 동안 반응 시킨 후, solubilization solution/stop mix 1 ㎖를 첨가하여 다시 1시간 동안 반응시켰다. 반응이 끝난 후, 마이크로플레이트 분광 광도계(Sunrise,Tecan,Australia)을 이용하여 570nm 에서 흡광도를 측정하였다.MTT assay for analyzing the toxicity of the new bone cement of the present invention was performed using a kit (Cell titer 96 non radioactive cell proliferation assay, Promega). First, bone cement specimens, 10 mm in diameter and 5 mm in height, were placed in DMEM medium for extraction for 1, 3, and 5 days. 5 × 10 4 cells were seeded on a 24-micro plate and incubated for 4 hours. Then, the medium was replaced with an extraction medium and incubated for 24 hours at 37 ° C. in an atmosphere of 100% humidity and 5% CO 2 Lt; / RTI &gt; After incubation, 150 μl of MTT solution was added to each well and allowed to react for 4 hours. Then, 1 ml of solubilization solution / stop mix was added and reacted for another 1 hour. After the reaction was completed, absorbance was measured at 570 nm using a microplate spectrophotometer (Sunrise, Tecan, Australia).
(3) 세포 부착 및 증식 실험(3) Cell adhesion and proliferation experiments
세포 5 X 104 을 골시멘트에 분주하여 각각 1, 3, 5일 동안 배양한 후 세포 흡착 및 증식 확인을 위해 살아있는 세포가 칼세인 아세톡시메틸 에스테르(calcein AM)에 의해 초록색 형광으로 염색되는 원리의 Live/Dead Viability/Cytotoxicity 키트(L3224, Molecular Probes, Eugene, Ore)를 이용하였다. 정해진 기간 동안 골시멘트의 표면에서 배양시킨 후 골시멘트 시료를 4% 파라포름알데히드(PFA) 용액에서 고정 시킨 후 PBS로 세 차례 세척하였다. 200 ㎕의 염색 시료를 각 웰에 넣어 45분 동안 암실에서 반응 시킨 후 형광 현미경(Axipot microscope, Zeiss, Oberkochen, Germany)을 이용하여 세포의 흡착 모양을 관찰하였다.Cells, 5 X 10 4 to dispense the bone cement, respectively 1, 3, 5 being the incubation after live for cell adhesion and proliferation check stained cells in green fluorescence by the knife-old acetoxymethyl ester (calcein AM) principles for Live / Dead Viability / Cytotoxicity kit (L3224, Molecular Probes, Eugene, Ore) was used. After culturing on the surface of bone cement for a fixed period, bone cement samples were fixed in 4% paraformaldehyde (PFA) solution and washed three times with PBS. 200 μl of the staining sample was added to each well and allowed to react in a dark room for 45 minutes. Then, the adsorption pattern of the cells was observed using a fluorescence microscope (Axipot microscope, Zeiss, Oberkochen, Germany).
또한, 골시멘트에 접착되어 있는 세포의 형태학적 모양을 관찰하기 위해 일정 기간 동안 배양된 시료의 배지를 제거하고 PBS를 이용하여 세 차례 세척한 후 SEM 촬영을 위한 고정화 작업을 진행하였다. 초기 고정을 위해 2 ㎖의 modified karnovsky's 고정 용액에 담가 4℃에서 두 시간 동안 반응 한 후, 0.05 M 카코딜산 나트륨 완충액(sodium cacodylate buffer)을 이용하여 세 차례 세척하였다. 후기 고정을 위해 골시멘트 시료를 1% osium tetroxide 용액 2 ㎖에 담가 4℃에서 두 시간 동안 반응시킨다. 고정액을 제거한 후 증류수를 이용하여 시료를 세척하고 30, 50, 70, 80, 90, 100%의 에탄올에 각 10분 동안 담가 건조 과정을 거치고, 마지막으로 헥사메틸디실라잔(HMDS) 용액에 15분 동안 두 차례씩 담가 마지막 탈수 과정을 거쳐 FE-SEM(Zeiss, Supra 55VP)을 이용하여 골시멘트의 표면에 세포가 자라고 있는 모습을 관찰하였다.In order to observe the morphological shape of the cells adhered to the bone cement, the culture medium was removed for a certain period of time, washed three times with PBS, and then immobilized for SEM imaging. For initial fixation, immersed in 2 ml of modified Karnovsky's fixative, reacted at 4 ° C for two hours, and washed three times with 0.05 M sodium cacodylate buffer. For late fixation, bone cement samples are immersed in 2 ml of 1% osium tetroxide solution and reacted at 4 ° C for 2 hours. After removing the fixing solution, the sample was washed with distilled water, and the solution was immersed in 30, 50, 70, 80, 90, and 100% ethanol for 10 minutes. Finally, 15 ml of hexamethyldisilazane (HMDS) (Zeiss, Supra 55VP) was used to observe the growth of cells on the surface of bone cement.
(4) 결과(4) Results
도 15는 조골 세포인 MG63을 이용한 마이크로 골시멘트의 MTT 분석 결과를 나타낸다. 분석 결과, 각각 2.0, 3.0, 3.5% (w/v) 키토산 용액을 이용하여 제조한 돼지와 말뼈 시멘트의 세포 생존율은 일반 배지에서 배양한 대조군의 생존율과 비교하였을 때 통계적으로 다르지 않음을 관찰하였다(p>0.05).15 shows the results of MTT analysis of micro-bone cement using MG63, an osteoblast. As a result, the cell viability of pig and horse bone cement prepared with 2.0, 3.0 and 3.5% (w / v) chitosan solution, respectively, was not statistically different when compared with the survival rate of the control group cultured in the normal medium p > 0.05).
도 16은 나노 골시멘트의 MTT 분석 결과이며, 나노 분말을 함유한 골시멘트와 마이크로 골시멘트의 세포 생존율은 통계적으로 다르지 않음을 확인하였다. 결론적으로 키토산 용액과 돼지뼈, 말뼈 분말을 이용하여 제조한 골시멘트는 독성이 없어 생체 내에 주입하였을 때 독성으로 인한 주변 세포의 괴사 등의 피해를 최소화 할 수 있다. 또한 나노 입자의 분말을 포함한 돼지와 말뼈 시멘트 또한 독성이 없다고 결론지을 수 있다.FIG. 16 shows the results of MTT analysis of nano-bone cement, and it was confirmed that the cell viability of bone cement containing microparticle and micro-bone cement was not statistically different. In conclusion, bone cement prepared from chitosan solution, pig bone and horse bone powder is not toxic and can minimize the damage such as necrosis of surrounding cells due to toxicity when injected into living body. It can also be concluded that porcine and horse bone cements, including nanoparticles powder, are also not toxic.
도 17은 마이크로 골시멘트에서의 세포 성장 곡선을 나타내며, 이를 통해 세포가 처음의 성장을 유지할 뿐만 아니라 OD값이 증가함을 보이며 성장했음을 관찰하였다. 각 2.0, 3.0, 3.5% (w/v)의 키토산 용액을 이용하여 제조한 골시멘트가 조골 세포의 성장에 적합함을 알 수 있다(p<0.05). 또한 돼지, 말뼈 시멘트의 나노 분말 함유에 따른 MG 63 세포의 성장곡선을 도 18에 나타내었다. 이를 통해 나노 분말을 각각 50, 75% 함유한 골시멘트에서도 조골 세포의 성장으로 인해 OD 값이 증가했음을 확인하였으며, 돼지와 말뼈 시멘트 모두에서 독성을 발견하지 못했고 세포의 성장이 관찰되었다.FIG. 17 shows the cell growth curve in the micro-bone cement, and it was observed that the cells not only maintained the initial growth but also showed an increase in the OD value. It was found that bone cement prepared with 2.0, 3.0 and 3.5% (w / v) chitosan solution was suitable for osteoblast growth (p <0.05). The growth curve of MG 63 cells according to the content of nanopowder of pig and horse bone cement is shown in FIG. It was confirmed that the OD value was increased due to the osteoblast growth even in the bone cement containing 50% and 75% of the nano powder, and the growth of the cells was not observed in both the pig and the bone cement.
도 19는 돼지와 말뼈 시멘트의 표면에서 자란 MG63 세포를 형광 염색하여 관찰한 이미지이다. 살아있는 세포는 calcein AM에 의해 초록색으로 염색되는 원리를 이용하였으며, 1, 3, 5일 동안 배양하여 관찰한 결과 5일 후 처음 분주했던 세포 보다 살아있는 세포가 증가했음을 확인할 수 있었다. 이는 배양 초기에 세포가 골시멘트의 표면에 부착했을 뿐만 아니라 지속적으로 성장하고 있음을 의미한다.FIG. 19 is an image of MG63 cells grown on the surface of pig and horse bone cement and observed by fluorescence staining. Live cells were stained green by calcein AM. After 1, 3, and 5 days of incubation, live cells were found to be increased after 5 days. This means that cells are not only attached to the surface of the bone cement at the initial stage of culture but also grow continuously.
또한 도 20 및 도 21은 돼지와 말뼈 시멘트 표면에서 자란 MG63세포를 고정시켜 SEM으로 관찰한 결과이다. 앞의 형광 이미지와 마찬가지로 세포 분주 후 1, 3, 5 일 동안 배양 결과 세포의 수가 늘어났음을 확인하였다. 배양 1일 후의 이미지를 통해 세포가 골시멘트의 표면에 부착되어 있음을 관찰하였고 MG63 조골세포의 본래 형태인 다각형 형태를 유지하고 있었다. 배양 5일 후, 골시멘트의 표면에서 조골세포가 단층 배양 형태를 이루며 성장하였음을 알 수 있었다.20 and 21 show the result of SEM observation of MG63 cells immobilized on pig and horse bone cement surface. As in the previous fluorescence image, it was confirmed that the number of cells after culturing for 1, 3, and 5 days after cell division increased. After 1 day of culture, the cells were attached to the surface of bone cement and the polygonal shape of MG63 osteoclast was maintained. After 5 days of culture, osteoblast was grown on the surface of bone cement as monolayer culture.
독성 실험과 세포부착 실험 등의 in vitro 분석을 통해 키토산 용액과 돼지와 말뼈 분말을 이용하여 제조한 골시멘트는 독성을 갖고 있지 않으며, 세포의 부착과 성장에 긍정적 역할을 한다고 결론지을 수 있다.In vitro analysis such as toxicity test and cell adhesion experiment showed that bone cement prepared with chitosan solution, pig and horse bone powder had no toxicity and played a positive role in cell adhesion and growth.
[실시예 9][Example 9]
동물 실험 (In vivo test)In vivo testing
(1) 수술과정(1) Surgical procedure
무게 약 250 g의 열 여덟 마리의 건강한 쥐(Wistar)를 틸레타민-졸라제팜(10mg/Kg, Zoletil 50, Virbac Laboratory, Carros, France)을 이용하여 마취시킨 후, 쥐의 두개골 부분의 털을 깨끗이 제거하였다. 쥐의 두개골 부분의 표피를 길게 절개하여 두개골이 드러나도록 한 후, 외과용 드릴을 이용하여 두 개의 구멍을 만들어 인위적인 뼈 결손 부위를 만들어 오른쪽 부분에 골시멘트를 채워 넣고 왼쪽은 대조군으로 남겨두었다.Eighteen healthy rats (Wistar) weighing approximately 250 g were anesthetized with tiletamine-zolazepam (10 mg / kg, Zolethyl 50, Virbac Laboratory, Carros, France) It was cleanly removed. The skull of the rat's skull was lengthened to reveal the skull. Two holes were made using a surgical drill to create an artificial bone defect site, and the right side was filled with bone cement. The left side was left as a control.
(2) CT (Computed Tomography) 분석(2) Computed tomography (CT) analysis
골시멘트를 삽입하고 3개월 후, CT(64-slice multidetector CT scanner, Brillance 64, Phillips Medical Systems) 분석을 통해 쥐 두개골 결손 부위에 새로운 뼈 조직 생성을 확인하였다.Three months after insertion of the bone cement, new bone tissue formation was observed in the rat skull deficient area through analysis of CT (64-slice multidetector CT scanner, Brillance 64, Phillips Medical Systems).
(3) 조직학적 분석(3) Histological analysis
골시멘트를 삽입한 주위의 조직을 떼어 내어 4% 포르말린 용액으로 고정한 후 단계적으로 제조된 에탄올 농도를 이용하여 탈수 과정을 거쳐 메타크릴산 메틸을 이용하여 매립하였다. 매립된 시료를 동결 절개 방법을 이용하여 10 ㎛ 두께로 절단한 후 헤마톡실린 및 에오신(H&E)으로 염색하고 광학 현미경을 이용하여 새로운 골 조직의 생성 양상과 정도를 관찰하였다.After removing the surrounding tissues from the bone cement, they were fixed with 4% formalin solution, and then dehydrated using the ethanol concentration stepwise, and then filled with methyl methacrylate. Embedded specimens were cut into 10 ㎛ thick by freezing incision, stained with hematoxylin and eosin (H & E), and the appearance and extent of new bone tissue were observed using an optical microscope.
(4) 결과(4) Results
마이크로 100% 시멘트와 나노 100% 시멘트 그리고 마이크로 50%와 나노 50%를 섞은 시멘트의 3 종류의 말뼈 시멘트를 쥐의 두개골에 이식하고 3개월 후, 뼈 조직을 검출하였으며 감염이나 염증은 발견되지 않았다. 도 22는 쥐 두개골의 CT 이미지를 나타내며, (R) 쪽이 동물뼈 골시멘트가 삽입된 부분이고 (L) 부분이 골 손상 부위를 비워놓은 채로 처리한 대조군이다. CT의 이미지를 통해 골시멘트 이식 3개월 후, 골 결손 부위가 줄어들었거나 완전히 없어진 것에 반해 대조군은 새로운 조직이 생성되지 않고 처음의 결손 부위의 형태 그대로 비어있음을 관찰하였다. 마이크로 100%와 키토산 용액으로 제조된 골시멘트를 이식한 6 마리의 쥐 중 5 마리의 골 결손부위가 줄어들었거나 완전히 사라졌음을 확인하였고, 나노 100% 시멘트와 마이크로 50% + 나노 50% 혼합 골시멘트를 이식한 각각 처리군의 6마리의 쥐는 6 마리 모두의 골 결손 부위가 줄어들었거나 완전히 사라졌음을 관찰하였다. 특히 도 22의 (A)처럼 마이크로 100% 시멘트를 이식한 경우에는 결손 부위가 주위 보다 두껍게 조직이 형성되었고, (B)처럼 나노 100% 시멘트를 이식한 경우에는 결손 부위가 주위 보다 약간 덜 형성되었으나, (C)처럼 나노 50%와 마이크로 50%의 혼합 골시멘트를 이식한 경우에는 결손 부위가 주위와 똑같이 형성됨을 알 수 있어서 나노 50% + 마이크로 50%의 혼합 골시멘트가 가장 효과적임을 알 수 있었다.Three bone marrow cements of 100% micro cement, 100% nano cement and 50% micro and 50% nano were implanted into the skull of the rats and bone tissue was detected three months later. No infection or inflammation was found. FIG. 22 shows a CT image of a rat skull, in which (R) is the site where the animal bone bone cement is inserted, and (L) is the control where the bone damage site is left empty. After 3 months of bone cement implantation, CT images showed that the bone defect site was reduced or completely disappeared, whereas the control site was empty of the original defect site. It was confirmed that 5 out of the 6 mice implanted with 100% micro-chitosan and chitosan solution had decreased or completely disappeared, and 100% cement with nano and 50% + nano 50% Six cage-treated rats treated with cement were observed to have reduced or completely disappeared bone defects in all 6 rats. In particular, as shown in FIG. 22 (A), when 100% micro cement was implanted, the defect was formed to have a thicker structure than the surrounding area, and when the nano 100% cement was implanted as in (B) , And (C), 50% and 50% of micro-bone cement were implanted in the same manner, and it was found that 50% + 50% nano-mixed bone cement was most effective .
도 23은 H&E 염색을 통한 조직학적 분석 결과이다. 도 22에서와 같이 골시멘트를 삽입하지 않은 골 결손 부위는 새로운 조직의 형성 등 변화가 관찰되지 않았다. 하지만 두개골의 결손 부위에 골시멘트를 이식한 조직의 염색 이미지를 살펴보면, 본래의 뼈 조직과 이식된 골시멘트가 잘 접착되어 있음을 확인하였고, 원래 있던 뼈 조직의 표면에 골 연조직이 형성된 흔적을 발견하였다(화살표 지점). 또한 마이크로 입자를 사용한 골시멘트보다 나노 입자를 사용한 골시멘트를 이식한 뼈 조직에서 더욱 밀도가 높은 조직이 형성되었음이 관찰되었다. 결론적으로, 본 발명에서 동물뼈를 소결해 제조한 골시멘트가 새로운 뼈 조직을 형성할 수 있는 능력을 갖고 있으며 마이크로 입자의 골시멘트 보다 나노 입자를 사용한 골시멘트의 조직 생성 능력이 더 우수함을 확인하였다.Figure 23 shows the results of histological analysis through H & E staining. As shown in FIG. 22, no change was observed in the bone defect site where no bone cement was inserted, such as formation of new tissue. However, if we look at the image of the bone grafted bone tissue in the skull deficient area, it is confirmed that the original bone graft is well adhered to the grafted bone cement and the traces of osteoid tissue formation on the surface of the original bone graft were found (Arrow point). It was also observed that more dense tissue was formed in the bone tissue grafted with bone cement using nanoparticles than the bone cement using microparticles. In conclusion, in the present invention, bone cement prepared by sintering animal bone has the ability to form new bone tissue, and it is confirmed that the bone formation ability of bone cement using nanoparticles is superior to that of microcrystalline bone cement .

Claims (13)

  1. 나노 동물뼈 분말을 함유하는 것을 특징으로 하는 나노 세라믹 골시멘트.A nanoceramic bone cement characterized by containing a nano animal bone powder.
  2. 제 1 항에 있어서, 키토산 용액을 액체로 함유하는 것을 특징으로 하는 나노 세라믹 골시멘트.The nano-ceramic bone cement according to claim 1, wherein the chitosan solution is a liquid.
  3. 제 2 항에 있어서, 상기 키토산 용액이 100,000 이상 900,000 이하의 분자량을 가지는 85% 이상 99% 이하의 탈아세틸화 키토산을 용매에 용해시켜 제조한 키토산 용액인 것을 특징으로 하는 나노 세라믹 골시멘트.The nanoceramic bone cement according to claim 2, wherein the chitosan solution is a chitosan solution prepared by dissolving at least 85% and at most 99% of deacetylated chitosan having a molecular weight of 100,000 or more and 900,000 or less in a solvent.
  4. 제 3 항에 있어서, 상기 용매가 증류수와 1 내지 5 %(v/v) 의 젖산 또는 초산을 혼합하여 제조한 용액인 것을 특징으로 하는 나노 세라믹 골시멘트.4. The nanoceramic bone cement according to claim 3, wherein the solvent is a solution prepared by mixing 1 to 5% (v / v) of lactic acid or acetic acid with distilled water.
  5. 제 1 항 또는 제 2 항에 있어서, 상기 나노 동물뼈 분말이 150 nm 이상 500 nm 이하의 입도 분포를 나타내는 것을 특징으로 하는 나노 세라믹 골시멘트.The nanoceramic bone cement according to claim 1 or 2, wherein the nano animal bone powder exhibits a particle size distribution of 150 nm or more and 500 nm or less.
  6. 제 1 항 또는 제 2 항에 있어서, 상기 동물뼈가 말뼈인 것을 특징으로 하는 나노 세라믹 골시멘트.The nanoceramic bone cement according to claim 1 or 2, wherein the animal bone is a horse bone.
  7. 나노 말뼈 분말을 함유하는 것을 특징으로 하는 다공성 골지지체 및 소결한 말뼈 블록 지지체.A porous osteoporosis and a sintered bone block support comprising the nano-horse bone powder.
  8. 하기의 단계를 포함하는 것을 특징으로 하는 나노 세라믹 골시멘트의 제조 방법:A method for manufacturing a nanoceramic bone cement, comprising the steps of:
    (1) 동물뼈의 혈액 및 유기 물질을 제거하는 단계;(1) removing blood and organic matter from animal bone;
    (2) 혈액 및 유기 물질을 제거한 동물뼈를 건조하는 단계;(2) drying the animal bone from which blood and organic matter have been removed;
    (3) 건조한 동물뼈를 소결하는 단계;(3) sintering the dried animal bone;
    (4) 소결된 동물뼈를 분쇄하여 마이크로 동물뼈 분말을 제조하는 단계;(4) pulverizing the sintered animal bone to produce micro animal bone powder;
    (5) 분쇄한 동물뼈 분말을 1회 이상 5회 이하 소결하는 단계;(5) sintering the crushed animal bone powder at least once more than 5 times;
    (6) 소결된 동물뼈 분말을 분쇄하여 나노 동물뼈 분말로 제조하는 단계; 및(6) pulverizing the sintered animal bone powder to prepare nano animal bone powder; And
    (7) 나노 동물뼈 분말을 키토산 용액과 혼합하는 단계.(7) mixing nano animal bone powder with a chitosan solution.
  9. 제 8 항에 있어서, 단계 (3)에서 1200℃ 에서 2 시간 동안 소결하는 것을 특징으로 하는 나노 세라믹 골시멘트의 제조 방법.9. The method of claim 8, wherein the sintering is performed at 1200 DEG C for 2 hours in step (3).
  10. 제 8 항 또는 제 9 항에 있어서, 단계 (4)에서 제조되는 마이크로 동물뼈 분말이 100 ㎛ 이하의 입경을 가지는 것을 특징으로 하는 나노 세라믹 골시멘트의 제조 방법.The method according to claim 8 or 9, wherein the micro-animal bone powder produced in step (4) has a particle diameter of 100 μm or less.
  11. 제 8 항 또는 제 9 항에 있어서, 단계 (6)에서 제조되는 나노 동물뼈 분말이 150 nm 이상 500 nm 이하의 입도 분포를 나타내는 것을 특징으로 하는 나노 세라믹 골시멘트의 제조 방법.The method of claim 8 or 9, wherein the nano animal bone powder produced in step (6) exhibits a particle size distribution of 150 nm or more and 500 nm or less.
  12. 제 8 항 또는 제 9 항에 있어서, 단계 (7)의 키토산 용액이 100,000 이상 900,000 이하의 분자량을 가지는 85% 이상 99% 이하의 탈아세틸화 키토산을 용매에 용해시켜 제조한 키토산 용액인 것을 특징으로 하는 나노 세라믹 골시멘트의 제조 방법.The chitosan solution according to claim 8 or 9, wherein the chitosan solution of step (7) is a chitosan solution prepared by dissolving not less than 99% and not more than 99% of deacetylated chitosan having a molecular weight of not less than 100,000 and not more than 900,000 in a solvent A method for manufacturing a nanoceramic bone cement.
  13. 제 8 항 또는 제 9 항에 있어서, 상기 동물뼈가 말뼈인 것을 특징으로 하는 나노 세라믹 골시멘트의 제조 방법.[Claim 9] The method according to claim 8 or 9, wherein the animal bone is a horse bone.
PCT/KR2011/000422 2011-01-21 2011-01-21 Nano ceramic bone cement using animal bones and preparation method thereof WO2012099285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/000422 WO2012099285A1 (en) 2011-01-21 2011-01-21 Nano ceramic bone cement using animal bones and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/000422 WO2012099285A1 (en) 2011-01-21 2011-01-21 Nano ceramic bone cement using animal bones and preparation method thereof

Publications (2)

Publication Number Publication Date
WO2012099285A1 true WO2012099285A1 (en) 2012-07-26
WO2012099285A9 WO2012099285A9 (en) 2013-05-23

Family

ID=46515891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000422 WO2012099285A1 (en) 2011-01-21 2011-01-21 Nano ceramic bone cement using animal bones and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2012099285A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040029996A1 (en) * 2002-05-29 2004-02-12 Heraeus Kulzer Gmbh & Co. Kg Bone cement mixture and x-ray contrast medium as well as method for their preparation
US6696073B2 (en) * 1999-02-23 2004-02-24 Osteotech, Inc. Shaped load-bearing osteoimplant and methods of making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696073B2 (en) * 1999-02-23 2004-02-24 Osteotech, Inc. Shaped load-bearing osteoimplant and methods of making same
US20040029996A1 (en) * 2002-05-29 2004-02-12 Heraeus Kulzer Gmbh & Co. Kg Bone cement mixture and x-ray contrast medium as well as method for their preparation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.A.K. LIEBSCHNER ET AL., TOPIC IN TISSUE ENGINEERING, 2003, pages 1 - 39 *
ZHANG ET AL., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 75A, 2005, pages 275 - 282 *

Also Published As

Publication number Publication date
WO2012099285A9 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
Jang et al. In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β‐tricalcium phosphate
Che et al. A 3D printable and bioactive hydrogel scaffold to treat traumatic brain injury
Chao et al. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair
Carey et al. Premixed rapid-setting calcium phosphate composites for bone repair
Begam et al. Effect of bone morphogenetic protein on Zn-HAp and Zn-HAp/collagen composite: A systematic in vivo study
Wei et al. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration
Zhao et al. Preparation and characterization of calcium phosphate/pectin scaffolds for bone tissue engineering
Yu et al. Ag and peptide co-decorate polyetheretherketone to enhance antibacterial property and osteogenic differentiation
Li et al. A conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair
Rajesh et al. Development of functionalized multi-walled carbon nanotube-based polysaccharide–hydroxyapatite scaffolds for bone tissue engineering
Jayasuriya et al. Fabrication and characterization of novel hybrid organic/inorganic microparticles to apply in bone regeneration
Chen et al. A novel porous gelatin composite containing naringin for bone repair
CN112618791A (en) Polyether-ether-ketone three-dimensional porous and modified polydopamine/gentamicin for implant antibiosis, anti-inflammation and promotion of osseointegration
Gu et al. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites
Xie et al. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly (L-lactide) biocomposite scaffolds
EP3488876B1 (en) Novel formula for synthesizing bone replacement material, and manufacturing method and application method thereof
KR101381108B1 (en) Nano ceramic bone cement using animal bone and method for preparing the same
CN102205150A (en) Preparation method for anti-infectious nano collagen/ calcium phosphate bone repair material
Qiu et al. 3D biomimetic calcified cartilaginous callus that induces type H vessels formation and osteoclastogenesis
Xiao et al. Gadolinium-doped whitlockite/chitosan composite scaffolds with osteogenic activity for bone defect treatment: in vitro and in vivo evaluations
KR101473447B1 (en) Nano ceramic bone cement using animal bone and method for preparing the same
KR102422432B1 (en) silicate-shell hydrogel fiber scaffold and preparation method thereof
Marshall et al. Bioactive coatings on 3D printed scaffolds for bone regeneration: Translation from in vitro to in vivo models and the impact of material properties and growth factor concentration.
WO2012099285A9 (en) Nano ceramic bone cement using animal bones and preparation method thereof
Wang et al. A silk-based high impact composite for the core decompression of the femoral head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856406

Country of ref document: EP

Kind code of ref document: A1