WO2012115888A1 - Floor relief for dot improvement - Google Patents

Floor relief for dot improvement Download PDF

Info

Publication number
WO2012115888A1
WO2012115888A1 PCT/US2012/025771 US2012025771W WO2012115888A1 WO 2012115888 A1 WO2012115888 A1 WO 2012115888A1 US 2012025771 W US2012025771 W US 2012025771W WO 2012115888 A1 WO2012115888 A1 WO 2012115888A1
Authority
WO
WIPO (PCT)
Prior art keywords
relief
image
dot
feature
printing
Prior art date
Application number
PCT/US2012/025771
Other languages
French (fr)
Inventor
Lee William Tutt
Mitchell Stewart Burberry
Dennis R. PERCHAK
Kam Chuen Ng
Original Assignee
Eastman Kodak Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/031,300 external-priority patent/US8709327B2/en
Priority claimed from US13/031,301 external-priority patent/US8520041B2/en
Priority claimed from US13/031,308 external-priority patent/US20120210893A1/en
Application filed by Eastman Kodak Company filed Critical Eastman Kodak Company
Priority to EP12706986.2A priority Critical patent/EP2678159B1/en
Priority to CN201280009484.5A priority patent/CN103391846B/en
Publication of WO2012115888A1 publication Critical patent/WO2012115888A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam

Definitions

  • the present invention relates in general to flexographic printing and in particular to providing floor relief for dot improvement.
  • Flexography is a method of printing that is commonly used for high-volume relief printing runs on a variety of substrates such as paper, paper stock board, corrugated board, polymeric films, labels, foils, fabrics, and laminates. Flexographic printing has found particular application in packaging, where it has displaced rotogravure and offset lithography printing techniques in many cases.
  • Flexographic printing members are sometimes known as “relief printing members” and are provided with raised relief images onto which ink is applied for application to a receiver element of some type. The raised relief images are inked in contrast to the relief "floor” that remains free of ink.
  • Such flexographic printing members (such as flexographic printing plates) are supplied to the user as an article having one or more layers optionally on a substrate or backing material. Flexographic printing can be carried out using flexographic printing plates as well as flexographic printing cylinders or seamless sleeves having a desired relief image.
  • flexographic printing members are produced from a photosensitive resin or elastomeric rubber.
  • a photo-mask, bearing an image pattern can be placed over the photosensitive resin sheet and the resulting masked resin is exposed to light, typically UV radiation, to crosslink the exposed portions of the resin, followed by developing treatment in which the unexposed portions (non-crosslinked) of the resin are washed away with a developing liquid.
  • CTP computer-to-plate
  • a thin (generally 1-5 ⁇ in thickness) light absorption black layer is formed on the surface of the
  • photosensitive resin plate and the resulting printing plate is irradiated image wise with an infrared laser to ablate portions of the mask on the resin plate directly without separately preparing the mask.
  • an infrared laser to ablate portions of the mask on the resin plate directly without separately preparing the mask.
  • only the mask is ablated without ablating the photosensitive plate precursor.
  • photosensitive plate precursor is imagewise exposed to UV light through the ablated areas of the mask, to crosslink (or harden) the exposed portions of the photosensitive resin, followed by developing treatment in which the unexposed portions (uncrosslinked) of the resin and the remaining black mask layer are washed away with a developing liquid.
  • developing treatment involves a developing treatment that requires the use of large quantities of liquids and solvents that subsequently need to be disposed of.
  • efficiency in producing fiexographic printing plates is limited by the additional drying time of the developed plates that is required to remove the developing liquid and dry the plate. Often additional steps of post-UV exposure or other treatments are needed to harden the surface of the imaged printing plate.
  • a fiexographic printing member having a three-dimensional relief image formed in the printing surface is pressed against an inking unit (normally an Anilox roller) in order to provide ink on the topmost surface of the relief image.
  • the inked raised areas are
  • the fiexographic printing member and Anilox or substrate are adjusted or limited mechanically, the height of the topmost surface determines the amount of physical impression pressure between the fiexographic printing member and the Anilox or the fiexographic printing member and the substrate. Areas in the relief image that are raised higher than others will produce more impression than those that are lower or even recessed. Therefore, the fiexographic printing process is highly sensitive to the impression pressure that may affect the resulting image. Thus, the impression pressure must be carefully controlled. If the impression pressure is too high, some image areas can be squeezed and distorted, and if it is too low, ink transfer is insufficient. To provide the desired images, a pressman may test impression pressure settings for a given flexographic printing plate.
  • the density of the image is represented by the total area of printed dots in a halftone screen representation of a continuous tone image.
  • AM amplitude modulated
  • FM frequency modulated
  • the size of the halftone dots is generally maintained at some fixed value, and the number of randomly or pseudo-randomly placed halftone dots represent the density of the image. In both of these situations, it is necessary to print very small dot sizes to adequately represent the highlight areas.
  • Digital flexographic printing precursors usually have an integral UV-opaque mask layer coated over a photopolymer or photosensitive layer in the relief image.
  • a pre-imaging (or post-imaging) step the floor of the relief image in the printing member is set by area exposure to UV light from the back of the printing precursor. This exposure hardens the photopolymer to the relief depth required for optimal printing.
  • This step is followed by selective ablation of the mask layer with an imagewise addressable high power laser to form an image mask that is opaque to ultraviolet (UV) light in non-ablated areas.
  • UV ultraviolet
  • a solution to overcome the highlight problem noted above is to establish a minimum halftone dot size during printing. This minimum halftone dot size must be large enough to survive processing, and be able to withstand printing pressure. Once this ideal halftone dot size is determined, a "bump" curve can be created that increases the size of the lower halftone dot values to the minimum halftone dot setting. However, this results in a loss of the dynamic range and detail in the highlight and shadow areas. Overall, there is less tonality and detail in the image.
  • the minimum size of halftone dots that can be reliably represented on a flexographic printing member and subsequently printed onto a receiver element there is a limit to the minimum size of halftone dots that can be reliably represented on a flexographic printing member and subsequently printed onto a receiver element.
  • the actual minimum size will vary with a variety of factors including printing flexographic printing member type, ink used for printing, and imaging device characteristics among other factors including the particular printing press that is used. This creates a problem in the highlight areas when using conventional AM screening since once the minimum halftone dot size is reached, further size reductions will generally have unpredictable results. If, for example, the minimum size halftone dot that can be printed is a 50x50 ⁇ square dot, corresponding to a 5% tone at 114 lines per inch screen frequency, then it becomes very difficult to faithfully reproduce tones between 0% and 5%.
  • a common design around this problem is to increase the highlight values in the original file to ensure that after imaging and processing, all the tonal values in the file are reproduced as printing dots and are properly formed on the printing member.
  • a disadvantage of this practice is the resulting additional dot gain in the highlights that causes a noticeable transition between inked and non-inked areas.
  • U.S. Patent No. 7,486,420 discloses a flexographic screening technique that compensates for characteristic printing problems in highlight areas by selectively placing non-printing dots or pixels proximate to highlight dots.
  • the non-printing dots or pixels raise the printing relief floor in the highlight areas providing additional support for marginally printable image features.
  • This technique allows an image feature to be surrounded by one or more smaller nonprinting features to provide an extra base of support for the image feature. While this provides an important advance in the art, it may not always completely eliminate the grainy appearance in the image.
  • MAXTONE screening (Eastman Kodak Company) is a known hybrid AM screening solution that overcomes some highlight and shadow reproduction limitations.
  • MAXTONE screening software allows the operator to set a minimum dot size in order to prevent the formation of halftone dots that are too small for the flexographic medium.
  • MAXTONE screening software uses an FM-like screening technique in the highlights and shadows. To create lighter shades, dots are removed in a random pattern. By producing lighter colors with fewer (rather than smaller) halftone dots, improved highlight detail and a more robust flexographic printing plate are achieved.
  • U.S. Patent Nos. 5,892,588 and 6,445,465 describe an apparatus and method for producing a halftone screen having a plurality of halftone dots arrayed along a desired screen frequency by deleting a number of halftone dots per unit area to obtain gray shades below a predetermined shade of gray.
  • Direct engraved printing members can typically suffer loss of highlights due to undercutting.
  • FIG. 7 in that publication shows a progressive undercutting in the relief image as the feature size is reduced. If undercutting is small, the relief in pressure on press may be desirable but when the undercutting is too great print quality suffers.
  • U.S Publication No. 2009/0223397 (Miyagawa et al.) describes an apparatus for forming a direct engraved convex dot on a flexographic printing plate using a light power of the light beam, which engraves all or part of an adjacent region which is adjacent to a convex portion which is to be left in a convex shape on a surface of the recording medium, is equal to or less than a threshold engraving energy, and at a region in the vicinity of an outer side of the adjacent region, the light power of the light beam is increased to a level higher than the light power used in the adjacent region. This may help to reduce the severity of undercutting by limiting the exposure at the top of the feature but will not eliminate the problem for the finest engraved features desirable.
  • Inter-image defects also occur when a field of highlight dots is adjacent to an extended area of background (i.e. an area of no printable features). In this case the dots in the last, or last few rows adjacent to the boundary often print darker than the average dots in the field and exhibit more halo effect.
  • preparing a flexographic member includes providing a digital image and calculating a relief image based on the digital image. At least one stress-sensitive boundary region adjacent to at least one image feature is identified and the relief image is created on the flexographic member. The depth of at least a portion of a floor region adjacent the at least one image feature is increased to provide a modified floor region
  • a method of preparing a flexographic printing member includes the steps of forming a relief image that consists of at least coarse-featured regions but can also include fine- featured regions. A cut of increased relief is added at boundaries according to a procedure determined by the image content.
  • the present invention provides a method of preparing a
  • flexographic printing member used to transfer ink from an image area to a receiver element, the flexographic printing member comprising a relief image having an image area composed of an elastomeric composition that has an elastomeric topmost surface, and a relief image floor.
  • the method includes the steps of forming a relief image by means of direct laser engraving and an additional step of engraving cuts of increased relief image-wise. The step of adding these cuts can occur before, during or after the formation of the relief pattern. The cuts are intended to ameliorate the inter-image defects that occur due to undesirable transmission of stresses in the flexographic member on press during the printing operation. Cuts of increased relief can achieve these objectives without greatly increasing the burdens of exposure energy, material collection and material disposal associated with increasing the entire floor relief of the flexographic member.
  • FIG. la is a schematic cross-sectional diagram illustrating a comparative flexographic member or sleeve having coarse features and a floor.
  • FIG. lb is schematic cross-sectional diagram of an embodiment of the current invention showing a cut of increased relief adjacent to at least one image feature.
  • FIG. 2a is a schematic cross-sectional diagram illustrating a comparative flexographic member or sleeve showing a sloped wall adjacent the at least one coarse feature region.
  • FIG. 2b is schematic cross-sectional diagram of a flexographic member or sleeve showing of the current invention having a sloped wall adjacent to at least one coarse feature region and a cut of increased relief adjacent to said coarse feature region.
  • FIG. 3 a is a schematic cross-sectional diagram illustrating a comparative flexographic member or sleeve having fine features adjacent to coarse features.
  • FIG. 3b is schematic cross-sectional diagram of the current invention showing cuts of increased relief between coarse and fine features.
  • FIG. 4 is a schematic diagram of a laser engraving apparatus used to implement the steps of the current invention.
  • flexographic printing precursor refers to the material that is used to prepare the flexographic printing member of this invention and can be in the form of flexographic printing plate precursors, flexographic printing cylinder precursors, and flexographic printing sleeve precursors.
  • flexographic printing member or “flexographic member” refers to articles of the present invention that are imaged flexographic printing precursors and can be in the form of a printing plate having a
  • receiver element refers to any material or substrate that can be printed with ink using a flexographic printing member of this invention.
  • ablative relates to a composition or layer that can be imaged using a radiation source (such as a laser) that produces heat within the layer that causes rapid local changes in the composition or layer so that the imaged regions are physically detached from the rest of the composition or layer and ejected from the composition or layer.
  • a radiation source such as a laser
  • Ablation imaging is also known as “ablation engraving”, “laser engraving” or “direct engraving”.
  • the "elastomeric topmost surface” refers to the outermost surface of the elastomeric composition or layer in which a relief image is formed and is the first surface that is struck by imaging radiation.
  • relief image refers to all of the topographical features of the flexographic printing member provided by imaging and designed to transfer a pattern of ink to a receiver element.
  • image area refers to a predetermined area of the relief image in the elastomeric composition, which predetermined area is designed to be inked and to provide a corresponding inked image area on a receiver element.
  • the term "relief image floor” or "floor” refers to the bottom-most surface of the relief image excluding any cuts of increased relief as specified by the current invention.
  • the floor can be considered the maximum depth of the relief image from the elastomeric topmost surface and can typically range from 100 to 1000 um.
  • the relief image generally includes "valleys" that are not inked and that have a depth from the elastomeric topmost surface that is less than the maximum depth.
  • the term "dot” refers to a formed protrusion or microstructure in the relief image formed in the flexographic printing member of this invention. Some publications refer to this dot as a "halftone dot". The term “dot” does not refer to the dot-like printed image on a receiver element that is provided by the dot on the flexographic printing member. However, it is desired that the dot surface area on the flexographic printing member would correspond as closely as possible to the dot-like image printed on a receiver element. Dots in the relief image smaller than a minimum dot size usually determined by specifics of the laser beam and print engine used to produce it are typically formed with top most surfaces that are below the original un-engraved surface of the member.
  • undercutting This condition is referred to as undercutting or "natural" undercutting.
  • fine feature refers to any relief image feature intended to transfer ink to a receiver that is "naturally" undercut including such features as half-tone dots, stand-alone dots, fine lines, small point text or any other feature having its top most surface about 30 microns or more below the origin top most surface of the pre-engraved flexographic printing member due to the limitations of the engraving engine used to produce the relief image.
  • a fine feature region is defined as any contiguous area of the engraved flexographic member containing only fine features.
  • coarse feature refers to any relief image feature intended to transfer ink to a receiver that can be formed with it top most surface within about 30 microns of the original top most surface of the pre-engraved flexographic printing member.
  • a coarse feature region is defined as any contiguous area of the engraved flexographic member containing only coarse features.
  • all features intended to transfer ink to a receiver are either “coarse” or “fine” features and all of the image area of the flexographic printing member can be subdivide into “coarse” and "fine” regions. Both coarse-feature regions and fine featured regions can contain contiguous floor-regions having no printable features. The top most surface of a floor region is below the level mat will transfer ink on a flexographic printing press under normal printing conditions.
  • Fine-featured relief is defined as any relief feature that is
  • Naturally undercut means that the top most surface of the fine features is 30 microns or more below the origin top most surface of the pre-engraved flexographic printing member due to the limitations of the direct engraving engine used to produce the relief image. These are the features that cannot be formed with a given engraving engine without having their top most surface undercut 30 microns or more below the original surface of the flexographic printing member. With the current state of technology these fine-features typically have a shortest lateral linear dimension of about 30 microns or less.
  • One objective of the current invention is intended to circumvent or ameliorate the deleterious effects that occur in flexographic printing on press due to natural undercutting.
  • a fine-feature region is defined as any contiguous area of the engraved flexographic member containing only fine features.
  • coarse features are those having lateral linear dimensions large enough to ensure that the top most surface of the imaged feature can be left substantially undisturbed by the engraving process when no additional leveling procedure is employed.
  • These features are commonly solids, mid range half-tone dots and shoulder half-tone dots, wide lines and larger point text typically having a shortest lateral linear dimension on the order of 30 microns or more.
  • a coarse feature region is defined as any contiguous area of the engraved flexographic member containing only coarse features.
  • Relief features are typically engraved into the flexographic printing member by scanning a single spot or multiple laser spots of intense, modulated and focused radiation over the surface of the member in the image area and collecting the ablated debris.
  • the laser spots can be scanned over the image area of the member once or several times to control the depth of ablation. Each scan is commonly referred to as a pass.
  • all, or part, of the image relief pattern can be addressed with predetermined laser intensity image- wise to affect the depth of ablation at every position in the final relief image.
  • Boundaries that benefit from cuts typically occur between coarse featured regions and floor-regions or between coarse-featured regions and fine- featured regions. These boundaries occur where stresses on press are transmitted through the flexographic member causing distortions resulting in objectionable inter-image effects in the print. These interfaces are referred to as stress-sensitive boundaries. There are several types of stress-sensitive boundaries. When, for example, a field of highlight or mid-tone dots is adjacent to an extended floor region the outer row or rows of dots print more heavily and exhibit more halo effect than the dots away from the boundary. This is called a floor-interface stress-sensitive boundary. The extent of the floor region (or floor length) refers to the shortest distance between a stress-sensitive boundary and the next nearest printable feature and determines the severity of the defect.
  • Modeling and press data indicate that extended floor regions as short as 2 mm can be problematic for stress-sensitive boundaries and the problem becomes more severe as the distance increases.
  • "Cuts of increased relief or "cuts” refer to engraving increased depth of a portion of a floor region or inter-dot relief at a boundary adjacent to at least one image feature at a stress-sensitive boundary.
  • a fine coarse interface stress-sensitive boundary occurs between coarse feature regions and fine feature regions.
  • modeling and press data indicate that the stress-sensitive boundary causes the last row or rows of fine features closest to the interface to print less densely or not at all as compared with the fine features farther from the boundary.
  • the flexographic printing members prepared using the present invention can be flexographic printing plates having any suitable shape, flexographic printing cylinders, or seamless sleeves that are slipped onto printing cylinders.
  • Elastomeric compositions used to prepare useful flexographic printing precursors are described in numerous publications including, but not limited to, U.S. Patent Nos. 5,719,009 (Fan); 5,798,202 (Cushner et al.);
  • the elastomeric composition comprises a crosslinked elastomer or a vulcanized rubber.
  • DuPont's Cyrel ® FASTTM thermal mass transfer plates are commercially available photosensitive resin flexographic printing plate precursors that comprise an integrated ablatable mask element and require minimal chemical processing. These elements can be used as flexographic printing precursors in the practice of this invention.
  • flexographic printing precursors can include a self- supporting laser-ablatable or engraveable, relief-forming layer (defined below) containing an elastomeric composition that forms a rubber or elastomeric layer.
  • This layer does not need a separate substrate to have physical integrity and strength.
  • the laser-ablatable, relief-forming layer composed of the elastomeric composition is thick enough and laser ablation is controlled in such a manner that the relief image depth is less than the entire thickness, for example up to 80% of the entire thickness of the layer.
  • the flexographic printing precursors include a suitable dimensionally stable, non-laser engraveable substrate having an imaging side and a non-imaging side.
  • the substrate has at least one laser engraveable, relief-forming layer (formed of the elastomeric composition) disposed on the imaging side.
  • Suitable substrates include but are not limited to, dimensionally stable polymeric films, aluminum sheets or cylinders, transparent foams, ceramics, fabrics, or laminates of polymeric films (from condensation or addition polymers) and metal sheets such as a laminate of a polyester and aluminum sheet or polyester/polyamide laminates, or a laminate of a polyester film and a compliant or adhesive support.
  • Polyester, polycarbonate, vinyl polymer, and polystyrene films are typically used.
  • Useful polyesters include but are not limited to poly(ethylene terephthalate) and poly(ethylene naphthalate).
  • the substrates can have any suitable thickness, but generally they are at least 0.01 mm or more preferably from about 0.05 to about 0.3 mm thick, especially for the polymeric substrates.
  • An adhesive layer may be used to secure the elastomeric composition to the substrate.
  • non-laser ablatable backcoat on the non-imaging side of the substrate (if present) that may be composed of a soft rubber or foam, or other compliant layer. This backcoat may be present to provide adhesion between the substrate and the printing press rollers and to provide extra compliance to the resulting printing member, or to reduce or control the curl of the printing member.
  • the flexographic printing precursor contains one or more layers.
  • the laser-engraveable, relief-forming layer there may be a non- laser ablatable elastomeric rubber layer (for example, a cushioning layer) between the substrate and the topmost elastomeric composition forming the laser- engraveable relief-forming layer.
  • a non- laser ablatable elastomeric rubber layer for example, a cushioning layer
  • the laser-engraveable, relief-forming layer composed of the elastomeric composition has a thickness of at least 50 ⁇ and preferably from about 50 to about 4,000 ⁇ , or more preferably from 200 to 2,000 ⁇ .
  • the elastomeric composition includes one or more laser-ablatable polymeric binders such as crosslinked elastomers or rubbery resins such as vulcanized rubbers.
  • the elastomeric composition can include one or more thermosetting or thermoplastic urethane resins that are derived from the reaction of a polyol (such as polymeric diol or triol) with a polyisocyanate, or the reaction of a polyamine with a polyisocyanate.
  • the elastomeric composition contains a thermoplastic elastomer and a thermally initiated reaction product of a multifunctional monomer or oligomer.
  • elastomeric resins include copolymers or styrene and butadiene, copolymers of isoprene and styrene, styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene copolymers, other polybutadiene or polyisoprene elastomers, nitrile elastomers, polychloroprene, polyisobutylene and other butyl elastomers, any elastomers containing chlorosulfonated polyethylene, polysulfide, polyalkylene oxides, or polyphosphazenes, elastomeric polymers of (meth)acrylates, elastomeric polyesters, and other similar polymers known in the art.
  • Still other useful laser-engraveable resins include vulcanized rubbers, such as EPDM (ethylene-propylene diene rubber), Nitrile (Buna-N), Natural rubber, Neoprene or chloroprene rubber, silicone rubber, fluorocarbon rubber, fluorosilicone rubber, SBR (styrene-butadiene rubber), NBR
  • Still other useful laser-engraveable resins are polymeric materials that, upon heating to 300°C (generally under nitrogen) at a rate of 10°C/minute, lose at least 60% (typically at least 90%) of their mass and form identifiable low molecular weight products that usually have a molecular weight of 200 or less.
  • Specific examples of such laser engraveable materials include but are not limited to, poly(cyanoacrylate)s that include recurring units derived from at least one alkyl-2-cyanoacrylate monomer and that forms such monomer as the predominant low molecular weight product during ablation. These polymers can be
  • ethylenically unsaturated polymerizable monomers such as (meth)acrylate, (meth)acrylamides, vinyl ethers, butadienes, (meth)acrylic acid, vinyl pyridine, vinyl phosphonic acid, vinyl sulfonic acid, and styrene and styrene derivatives (such as a-
  • the monomers used to provide these polymers can be alkyl cyanoacrylates, alkoxy cyanoacrylates, and alkoxyalkyl cyanoacrylates.
  • Representative examples of poly(cyanoacrylates) include but are not limited to poly(alkyl cyanoacrylates) and poly(alkoxyalkyl cyanoacrylates) such as poly(methyl-2-cyanoacrylate), poly(ethyl-2-cyanoacrylate), poly(methoxyethyl-2-cyanoacrylate),
  • the laser-engraveable elastomeric composition can include an alkyl-substituted polycarbonate or polycarbonate block copolymer that forms a cyclic alkylene carbonate as the predominant low molecular weight product during depolymerization from engraving.
  • the polycarbonate can be amorphous or crystalline, and can be obtained from a number of commercial sources including Aldrich Chemical Company
  • the laser-engraveable polymeric binder is a polycarbonate (tBOC type) that forms a diol and diene as the predominant low molecular weight products from depolymerization during laser-engraving.
  • the laser-engraveable elastomeric composition generally comprises at least 10 weight % and up to 99 weight %, and typically from about 30 to about 80 weight %, of the laser-engraveable elastomers or vulcanized rubbers.
  • inert microcapsules are dispersed within laser-engraveable polymeric binders.
  • microcapsules can be dispersed within polymers or polymeric binders, or within the crosslinked elastomers or rubbery resins.
  • the "microcapsules” can also be known as “hollow beads”, “microspheres”, microbubbles", “micro-balloons", “porous beads”, or “porous particles”.
  • Such components generally include a thermoplastic polymeric outer shell and either core of air or a volatile liquid such as isopentane and isobutane.
  • These microcapsules can include a single center core or many interconnected or non-connected voids within the core. For example,
  • microcapsules can be designed like those described in U.S. Patent Nos. 4,060,032 (Evans) and 6,989,220 (Kanga), or as plastic micro-balloons as described for example in U.S. Patent Nos. 6,090,529 (Gelbart) and 6,159,659 (Gelbart).
  • the laser-engraveable, relief-forming layer composed of the elastomeric composition can also include one or more infrared radiation absorbing compounds that absorb IR radiation in the range of from about 750 to about 1400 nm or typically from 750 to 1250 urn, and transfer the exposing photons into thermal energy.
  • Particularly useful infrared radiation absorbing compounds are responsive to exposure from IR lasers. Mixtures of the same or different type of infrared radiation absorbing compound can be used if desired.
  • infrared radiation absorbing compounds include carbon blacks and other IR-absorbing organic or inorganic pigments (including squarylium, cyanine, merocyanine, indolizine, pyrylium, metal phthalocyanines, and metal dithiolene pigments), iron oxides and other metal oxides.
  • organic or inorganic pigments including squarylium, cyanine, merocyanine, indolizine, pyrylium, metal phthalocyanines, and metal dithiolene pigments
  • iron oxides and other metal oxides include iron oxides and other metal oxides.
  • Additional useful IR radiation absorbing compounds include carbon blacks that are surface-functionalized with solubilizing groups are well known in the art. Carbon blacks that are grafted to hydrophilic, nonionic polymers, such as FX-GE-003 (manufactured by Nippon Shokubai), or which are surface-functionalized with anionic groups, such as CAB-O-JET ® 200 or C AB-O- JET ® 300 (manufactured by the Cabot Corporation) are also useful.
  • Other useful pigments include, but are not limited to, Heliogen Green, Nigrosine Base, iron (III) oxides, transparent iron oxides, magnetic pigments, manganese oxide, Prussian Blue, and Paris Blue.
  • Other useful IR radiation absorbing compounds are carbon nanotubes, such as single- and multi-walled carbon nanotubes, graphite, graphene, and porous graphite.
  • Optional addenda in the laser-engraveable elastomeric composition can include but are not limited to, plasticizers, dyes, fillers, antioxidants, antiozonants, stabilizers, dispersing aids, surfactants, dyes or colorants for color control, and adhesion promoters, as long as they do not interfere with engraving efficiency.
  • the flexographic printing precursor can be formed from a formulation comprising a coating solvent, one or more elastomeric resins, and an infrared radiation absorbing compound, to provide an elastomeric composition.
  • This formulation can be formed as a self-supporting layer or applied to a suitable substrate. Such layers can be formed in any suitable fashion, for example by injecting, spraying, or pouring a series of formulations to the substrate.
  • the formulations can be press-molded, injection-molded, melt extruded, co-extruded, or melt calendared into an appropriate layer or ring (sleeve) and optionally adhered or laminated to a substrate and cured to form a layer, flat or curved sheet, or seamless printing sleeve.
  • the flexographic printing precursors in sheet-form can be wrapped around a printing cylinder and fused at the edges to form a seamless printing precursor.
  • Ablation or engraving energy can be applied using a suitable laser such as a C0 2j infrared radiation-emitting diode, or YAG lasers, or an array of such lasers.
  • Ablation engraving is used to provide a relief image with a minimum floor depth of at least 100 ⁇ or typically from 300 to 1000 ⁇ . However, local minimum depths between halftone dots can be less.
  • the relief image may have a maximum depth up to about 100% of the original thickness of the laser- engraveable, relief-forming layer when a substrate is present.
  • the floor of the relief image can be the substrate if the laser-engraveable, relief- forming layer is completely removed in the image area, a lower region of the laser-engraveable, relief-forming layer, or an underlayer such as an adhesive layer, compliant layer, or a non-ablative elastomeric or rubber underlayer.
  • the relief image can have a maximum depth of up to 80% of the original thickness of the laser-engraveable, relief-forming layer comprising the elastomeric composition.
  • a laser operating at a wavelength of from about 700 nm to about 11 um is generally used, and a laser operating at from 800 nm to 1250 nm is more preferable.
  • the laser must have a high enough intensity that the pulse or the effective pulse caused by relative movement is deposited approximately adiabatically during the pulse. Pulse duration is typically much less than 1 ms.
  • engraving is achieved using at least one infrared radiation laser having a minimum fluence level of at least 1 J/cm 2 at the elastomeric topmost surface and typically infrared imaging is at from about 20 to about 1000 J/cm 2 or more preferably from about 50 to about 800 J/cm 2 .
  • Engraving a relief image can occur in various contexts.
  • sheet-like precursors can be imaged and used as desired, or wrapped around a printing cylinder or cylinder form before imaging.
  • the flexographic printing precursor can also be a printing sleeve that can be imaged before or after mounting on a printing cylinder.
  • the resulting flexographic printing member can be subjected to an optional detacking step if the elastomeric topmost surface is still tacky, using methods known in the art.
  • the resulting flexographic printing member is inked using known methods and the ink is appropriately transferred to a suitable receiver element.
  • the flexographic printing member can be cleaned and reused.
  • the printing cylinder can be scraped or otherwise cleaned and reused as needed.
  • FIG. 1 a shows a comparative flexographic member 60, for example, plate or sleeve, having an original top most flexographic plate member surface 30 and floor relief level 20 with an engraved relief pattern having coarse features, 50, 51 and coarse highlight features 40, 41, 42, 43, floor region extent 10 and a stress-sensitive boundary 11.
  • the top most surface of coarse highlight features has dot size 48.
  • the side walls of features in this diagram are represented as straight sloped walls and have a lowest inter-dot relief at level 8 but it is understood that the side walls of the actual relief image can be vertical, sloped or curved or can have plateaus below the top most surface of the feature or any combination of these patterns.
  • the outer-dot coarse highlight feature 40 represents the dots closest to the stress-sensitive boundary and inner-dot coarse highlight feature 43 represents dots farthest from stress-sensitive boundaries.
  • the current invention can be understood with reference to a cross- sectional diagram of the current invention in FIG. lb showing laser radiation, 100, used to selectively modify the floor by engraving floor-interface stress-sensitive boundary increased relief 14 having a floor-interface stress-sensitive boundary increased relief width 16 at a floor-interface stress-sensitive boundary 11.
  • the coarse features have an original top most surface coincident with the top most surface 30 of the flexographic member 60 prior to engraving.
  • Laser radiation engraves down to a floor-interface stress-sensitive boundary relief level 18 at least 30 ⁇ ⁇ below the floor level 20 in the final relief image.
  • the stress- sensitive boundary 11 occurs at the boundary between the highlight features 40, 41 , 42, 43, and the floor region 10.
  • a cut of increased relief 14 has a depth of at least 30 ⁇ ⁇ ⁇ below the floor level 20 and a width 16 of at least 10 ⁇ and less than half 19 the total distance to the next closest printable feature.
  • FIG. 2a shows a comparative flexographic member 60, having an original top most flexographic plate member surface 30 and floor level 20 with an engraved relief pattern having coarse features 50, 51 and highlight features 40, 41, 42, 43, floor region 10, and boundary 11.
  • the side walls at the boundary 11 of this representative illustration have a non-printable plateau 12 and a non-printable plateau angled wall 24.
  • FIG. 2b An embodiment of the current invention is schematically represented in FIG. 2b showing laser radiation 100 used to selectively engrave cuts of increased relief 14 having a width 16 at a stress-sensitive boundary 11.
  • Laser radiation 100 engraves down to a level 18 at least 10 ⁇ below the floor relief level 20.
  • the width 16 of the cut is at least 10 ⁇ and less than half 19 the total distance to the next printable feature.
  • FIG. 3 a is a schematic cross-sectional diagram illustrating a comparative flexographic member having coarse features 50, and fine features 70, 71, 75, 77 having an inter dot spacing 27 determined by the halftone screen ruling and fine-feature top most level 6, below the critical printable level 9 for transferring ink on press.
  • the flexographic member is shown with a supporting layer 80 and a backing layer 90.
  • the fine features 70, 71, 75, 77 have coarse highlight feature dot size 48 that are small compared to size of the spot used to laser engrave the relief pattern and are therefore "naturally" undercut to a level 6 below a critical level 9 that results in features that print chaotically or not at all on press.
  • Fine coarse interface stress-sensitive boundary 13 are illustrated between the last rows of fine-feature dots and the coarse features.
  • Fine feature inner dot 77 represents the dot farthest from the stress-sensitive boundary and fine feature outer dots 70 represent the dots closest to the stress-sensitive boundary.
  • FIG. 3b shows laser radiation, 100, used to selectively engrave cuts of fine coarse interface stress-sensitive boundary increased relief 15 having a fine coarse interface stress-sensitive boundary width 17 at a boundary 13 between the last rows of fine-feature dots 70, 71, 75, 77 and the coarse features 50.
  • the cuts are engraved down to a fine coarse interface stress-sensitive boundary relief level 26 at least 30 ⁇ below the lowest inter-dot relief level 8.
  • the width 17 is at least 10 ⁇ and no wider than the inter-dot spacing 27 determined by the screen ruling of the halftone image.
  • FIG. 4 shows an apparatus for preparing a flexographic printing plate according to the present invention.
  • a flexographic printing member 60 is mounted on a drum 110 which is turned by motor 130.
  • a lead screw 150 is driven by a lead screw motor 155.
  • a printhead platform 190 is attached to lead screw 1 0 which moves the platform parallel to a surface of the drum.
  • a laser thermal printhead 170 is mounted on the platform for imaging the flexographic printing member.
  • a lens 175 directs laser radiation 100 to the flexographic printing member.
  • Electrical leads 140 connect various pieces of the apparatus with computer 160 coordinating movement of the drum 110, lead screw 150, and operation of the laser thermal printhead 170.
  • a debris collection system 180 collects detritus generated by laser thermal engraving. A relief image with coarse and fine features is created as described above.
  • a linear elastic two-dimensional model was used to simulate the press interactions between a flexographic member and a receiver and to make predictions for the dot gain and dot gain uniformity associated with the increase in lateral dimension of the top most surface of features under engagement. All materials were treated as isotropic. The model did not contain corrections for non-linearity, known to be important for real elastomers, but the linear model is expected to qualitatively capture the correct trends for phenomenon of interest here provided that the strains are not too high. Also, the model did not specifically include effects due to ink flow and therefore did not include that contribution to dot gain nor the halo effect observed in actual prints. Again, it is expected that the predicted variation in stress at different positions in the flexographic member would lead to qualitatively similar trends for ink spread. Results were found to be in good qualitative agreement with printed examples. Two types of stress-sensitive boundaries, as described above, were investigated and improvements provided by cuts were demonstrated.
  • a next-nearest-neighbor coarse feature 51 was (100 ⁇ ) at its top most surface, and was separated from the stress-sensitive boundary by the floor region with an extent 10 specified in Table 1. Infinity here refers to the limiting case without a next-nearest-neighbor coarse feature 51 (i.e. infinitely far away).
  • the model included one supporting layer representing, for example, a polyester support and another subbing layer representing, for example, a backing tape.
  • the top most surface of the 1.7 mm thick flexographic member 60 was subjected to a strain equivalent to 200 microns of engagement.
  • %NU 100 (Outer size - Inner size)/ Inner size (1) are reported in Table 1. Results showed 4% non-uniformity when no solid feature was present improving to 2% when the nearest neighbor coarse feature was about 1000 ⁇ away. As the extent of the floor region was reduced the non-uniforaiity monotonically improved. At 225 ⁇ the non-uniformity was less than half a percent. Table 1 : Dot size and non-uniformity predictions versus, floor length extent, initial dot size 50 ⁇ ; initial relief 400 ⁇
  • Table 2 shows the improvement achievable when a cut of 400 ⁇ of increased relief, 50 ⁇ wide, was engraved at the stress-sensitive boundary.
  • the original dot size 48 before engagement was 25 ⁇ and no nearest neighbor solid was present (i.e. infinite floor extent).
  • the calculated non- uniformity was improved from 4.9% to 1.6%, better than a factor of 3 when the cut was made at the stress-sensitive boundary.
  • Table 2 Dot size and non-uniformity predictions with and without a cut at a stress sensitive boundary; initial dot size 25 ⁇ , initial relief 500 ⁇
  • Table 4 compares the predictions for 1.2 mm and 1.7 mm thick fiexographic members as a function of dot size and cut depth. It was found that non-uniformity was worse for smaller dots as has been observed in real press runs and that non-uniformity was generally worse for thinner fiexographic members. Modeling showed that cuts at the stress-sensitive boundary improved non- uniformity and that deeper cuts were better.
  • ENU Inner displacement - Outer displacement (2) is also reported in the table.
  • the displacements and ENUs were calculated for combinations of subbing layer hardness.
  • the first descriptor in column 1 Table 5 refers to the relative hardness of the supporting layer 80 and the second to the backing layer 90.
  • the Young's modulus of the flexographic member 60 was 1 (dimensionless units), the soft layers were 0.1 and the hard layers were 10. Cut width 17 was 20 ⁇ and depth 26 was as indicated in Table 5. Results show monotonic improvement of engagement non-uniformity in all cases with increasing cut depth. The cuts were most effective for hard supporting and subbing layers.
  • floor-interface stress-sensitive boundary increased relief fine coarse interface stress-sensitive boundary increased relief floor-interface stress-sensitive boundary increased relief width fine coarse interface stress-sensitive boundary width floor-interface stress-sensitive boundary relief level half total distance to next closest printable feature

Abstract

Preparing a flexographic member (60) includes providing a digital image and calculating a relief image based on the digital image. At least one stress-sensitive boundary region (11) adjacent to at least one image feature is identified and me relief image is created on me flexographic member. The depth (18) of at least a portion of a floor region (10) adjacent the at least one image feature is increased to provide a modified floor region.

Description

FLOOR RELIEF FOR DOT IMPROVEMENT
FIELD OF THE INVENTION
The present invention relates in general to flexographic printing and in particular to providing floor relief for dot improvement.
BACKGROUND OF THE INVENTION
Flexography is a method of printing that is commonly used for high-volume relief printing runs on a variety of substrates such as paper, paper stock board, corrugated board, polymeric films, labels, foils, fabrics, and laminates. Flexographic printing has found particular application in packaging, where it has displaced rotogravure and offset lithography printing techniques in many cases.
Flexographic printing members are sometimes known as "relief printing members" and are provided with raised relief images onto which ink is applied for application to a receiver element of some type. The raised relief images are inked in contrast to the relief "floor" that remains free of ink. Such flexographic printing members (such as flexographic printing plates) are supplied to the user as an article having one or more layers optionally on a substrate or backing material. Flexographic printing can be carried out using flexographic printing plates as well as flexographic printing cylinders or seamless sleeves having a desired relief image.
Generally, flexographic printing members are produced from a photosensitive resin or elastomeric rubber. A photo-mask, bearing an image pattern can be placed over the photosensitive resin sheet and the resulting masked resin is exposed to light, typically UV radiation, to crosslink the exposed portions of the resin, followed by developing treatment in which the unexposed portions (non-crosslinked) of the resin are washed away with a developing liquid. Recent developments have introduced the CTP (computer-to-plate) method of creating the mask for the photosensitive resin. In this method, a thin (generally 1-5 μηι in thickness) light absorption black layer is formed on the surface of the
photosensitive resin plate and the resulting printing plate is irradiated image wise with an infrared laser to ablate portions of the mask on the resin plate directly without separately preparing the mask. In such systems, only the mask is ablated without ablating the photosensitive plate precursor. Subsequently, the
photosensitive plate precursor is imagewise exposed to UV light through the ablated areas of the mask, to crosslink (or harden) the exposed portions of the photosensitive resin, followed by developing treatment in which the unexposed portions (uncrosslinked) of the resin and the remaining black mask layer are washed away with a developing liquid. Both these methods involve a developing treatment that requires the use of large quantities of liquids and solvents that subsequently need to be disposed of. In addition, the efficiency in producing fiexographic printing plates is limited by the additional drying time of the developed plates that is required to remove the developing liquid and dry the plate. Often additional steps of post-UV exposure or other treatments are needed to harden the surface of the imaged printing plate.
While the quality of articles printed using fiexographic printing members has improved significantly as the technology has matured, physical limitations related to the process of creating a relief image in a printing member still remain.
In the fiexographic printing process, a fiexographic printing member having a three-dimensional relief image formed in the printing surface is pressed against an inking unit (normally an Anilox roller) in order to provide ink on the topmost surface of the relief image. The inked raised areas are
subsequently pressed against a suitable substrate that is mounted on an impression cylinder. As the fiexographic printing member and Anilox or substrate are adjusted or limited mechanically, the height of the topmost surface determines the amount of physical impression pressure between the fiexographic printing member and the Anilox or the fiexographic printing member and the substrate. Areas in the relief image that are raised higher than others will produce more impression than those that are lower or even recessed. Therefore, the fiexographic printing process is highly sensitive to the impression pressure that may affect the resulting image. Thus, the impression pressure must be carefully controlled. If the impression pressure is too high, some image areas can be squeezed and distorted, and if it is too low, ink transfer is insufficient. To provide the desired images, a pressman may test impression pressure settings for a given flexographic printing plate.
In particular, it is very difficult to print graphic images with fine dots, lines, and even text using flexographic printing members. In the lightest areas of the image (commonly referred to as "highlights"), the density of the image is represented by the total area of printed dots in a halftone screen representation of a continuous tone image. For amplitude modulated (AM) screening, this involves shrinking a plurality of halftone dots located on a fixed periodic grid to a very small size, the density of the highlight being represented by the area of the halftone dots. For frequency modulated (FM) screening, the size of the halftone dots is generally maintained at some fixed value, and the number of randomly or pseudo-randomly placed halftone dots represent the density of the image. In both of these situations, it is necessary to print very small dot sizes to adequately represent the highlight areas.
Maintaining small halftone dots on a flexographic printing member is very difficult due to the nature of the plate making process and the small size and lack of stability in the halftone dots. Digital flexographic printing precursors usually have an integral UV-opaque mask layer coated over a photopolymer or photosensitive layer in the relief image. In a pre-imaging (or post-imaging) step, the floor of the relief image in the printing member is set by area exposure to UV light from the back of the printing precursor. This exposure hardens the photopolymer to the relief depth required for optimal printing. This step is followed by selective ablation of the mask layer with an imagewise addressable high power laser to form an image mask that is opaque to ultraviolet (UV) light in non-ablated areas. Flood exposure to image-forming UV radiation and chemical processing are then carried out so that the areas not exposed to UV are removed in a processing apparatus using developing solvents, or by a heating and wicking process. The combination of the mask and UV exposure produces relief halftone dots that have a generally conical shape. The smallest of these halftone dots are prone to being removed during processing, which means no ink is transferred to these areas during printing (the halftone dot is not "held" or formed on the printing plate or on the printing press). Alternatively, if the small halftone dots survive processing, they are susceptible to damage on press. For example, small halftone dots often fold over or partially break off during printing, causing either excess ink, or no ink, to be transferred.
Conventional preparation of non-digital flexographic printing plates follows a similar process except that the integral mask is replaced by a separate film mask or "photo-tool" that is imaged separately and placed in contact with the flexographic printing precursor under a vacuum frame for the image- forming UV exposure.
A solution to overcome the highlight problem noted above is to establish a minimum halftone dot size during printing. This minimum halftone dot size must be large enough to survive processing, and be able to withstand printing pressure. Once this ideal halftone dot size is determined, a "bump" curve can be created that increases the size of the lower halftone dot values to the minimum halftone dot setting. However, this results in a loss of the dynamic range and detail in the highlight and shadow areas. Overall, there is less tonality and detail in the image.
Thus, it is well known that there is a limit to the minimum size of halftone dots that can be reliably represented on a flexographic printing member and subsequently printed onto a receiver element. The actual minimum size will vary with a variety of factors including printing flexographic printing member type, ink used for printing, and imaging device characteristics among other factors including the particular printing press that is used. This creates a problem in the highlight areas when using conventional AM screening since once the minimum halftone dot size is reached, further size reductions will generally have unpredictable results. If, for example, the minimum size halftone dot that can be printed is a 50x50 μιη square dot, corresponding to a 5% tone at 114 lines per inch screen frequency, then it becomes very difficult to faithfully reproduce tones between 0% and 5%. A common design around this problem is to increase the highlight values in the original file to ensure that after imaging and processing, all the tonal values in the file are reproduced as printing dots and are properly formed on the printing member. However, a disadvantage of this practice is the resulting additional dot gain in the highlights that causes a noticeable transition between inked and non-inked areas.
Another known practical way of improving highlights is through the use of "Respi" or "double dot" screening as discussed in U.S. 7,486,420 (McCrea et al.). The problem with this type of screening technique, when applied to flexographic printing, is that the size of halftone dot that may be printed in isolation is actually quite large, typically 40-50 um in diameter. Even when using this technique, the highlights are difficult to reproduce without having a grainy appearance, which occurs when halftone dots are spaced far apart to represent a very low density, and the printed halftone dot may also suffer an undesirable dot gain.
U.S. Patent No. 7,486,420 discloses a flexographic screening technique that compensates for characteristic printing problems in highlight areas by selectively placing non-printing dots or pixels proximate to highlight dots. The non-printing dots or pixels raise the printing relief floor in the highlight areas providing additional support for marginally printable image features. This technique allows an image feature to be surrounded by one or more smaller nonprinting features to provide an extra base of support for the image feature. While this provides an important advance in the art, it may not always completely eliminate the grainy appearance in the image.
MAXTONE screening (Eastman Kodak Company) is a known hybrid AM screening solution that overcomes some highlight and shadow reproduction limitations. MAXTONE screening software allows the operator to set a minimum dot size in order to prevent the formation of halftone dots that are too small for the flexographic medium. To extend the tonal range, MAXTONE screening software uses an FM-like screening technique in the highlights and shadows. To create lighter shades, dots are removed in a random pattern. By producing lighter colors with fewer (rather than smaller) halftone dots, improved highlight detail and a more robust flexographic printing plate are achieved.
However, completely removing dots from a highlight will necessarily reduce the resolution and edge fidelity of the resulting printed images. U.S. Patent Nos. 5,892,588 and 6,445,465 (both Samworth) describe an apparatus and method for producing a halftone screen having a plurality of halftone dots arrayed along a desired screen frequency by deleting a number of halftone dots per unit area to obtain gray shades below a predetermined shade of gray.
Part of the problem of reproducing highlight dots, particularly when the relief pattern is formed by laser engraving, arise from the phenomenon of undercutting, or "natural" undercutting, where the top most surfaces of the smallest features are formed well below the top most surface of the flexographic printing plate due to details of the laser engraving process. This is distinct from "intentional" undercutting where laser intensity is used to purposefully reduce the level of the top most surface of a relief image feature. The terms "natural" or "naturally" imply unavoidable undercutting and is system dependent in that as the laser spot size and resolution of the engraving engine improves the size of features "naturally" undercut will be smaller.
Direct engraved printing members can typically suffer loss of highlights due to undercutting. A February 1, 2010 publication by the Association of Japanese Flexo Printing Industry entitled "Direct Laser Plate Making
Consideration for Current Status" describes the use of undercutting in preparing flexographic printing plates to release the printing pressure in the highlight areas. FIG. 7 in that publication shows a progressive undercutting in the relief image as the feature size is reduced. If undercutting is small, the relief in pressure on press may be desirable but when the undercutting is too great print quality suffers.
U.S Publication No. 2009/0223397 (Miyagawa et al.) describes an apparatus for forming a direct engraved convex dot on a flexographic printing plate using a light power of the light beam, which engraves all or part of an adjacent region which is adjacent to a convex portion which is to be left in a convex shape on a surface of the recording medium, is equal to or less than a threshold engraving energy, and at a region in the vicinity of an outer side of the adjacent region, the light power of the light beam is increased to a level higher than the light power used in the adjacent region. This may help to reduce the severity of undercutting by limiting the exposure at the top of the feature but will not eliminate the problem for the finest engraved features desirable.
Commonly-assigned copending U.S. Patent Application Serial No. 12/868,039 proposed addressing this problem by using a combination of AM, FM, and engagement modulation, EM, screening where in a sub-area has dots each having a minimum receiver element contact area, and wherein a fraction of the dots has a topmost surface that is below the elastomeric topmost surface, but above the level that will transfer ink on press. This method can create a smoother tone scale but may be sensitive to variation of engagement for different press conditions.
In addition to these problems there are a number of inter-image effects that result from the proximity of highlight dots and other fine features that are "naturally" undercut to other image features such as solids, lines, and text. For example, in a field of highlight dots adjacent to a solid or a line or surrounded by lines, the row or rows of dots immediately proximate to the neighboring feature will lose density on the printed receiver or fail to print entirely resulting in undesirable non-uniformities.
Another inter-image effect can be observed when thin lines are proximate to solids, text or similar features. In that case a line intended to be straight will appear distorted near the neighboring feature. The line can appear curved, thicker or thinner.
Inter-image defects also occur when a field of highlight dots is adjacent to an extended area of background (i.e. an area of no printable features). In this case the dots in the last, or last few rows adjacent to the boundary often print darker than the average dots in the field and exhibit more halo effect.
Despite all of the progress made in flexographic printing to improve image quality in the highlight areas, there remains a need to improve the representation of small halftone dots and thin lines in printed flexographic images so mat image detail is improved and dot gain is reduced.
SUMMARY OF THE INVENTION
Briefly, according to one aspect of the present invention, preparing a flexographic member includes providing a digital image and calculating a relief image based on the digital image. At least one stress-sensitive boundary region adjacent to at least one image feature is identified and the relief image is created on the flexographic member. The depth of at least a portion of a floor region adjacent the at least one image feature is increased to provide a modified floor region
According to another aspect of the present invention a method of preparing a flexographic printing member includes the steps of forming a relief image that consists of at least coarse-featured regions but can also include fine- featured regions. A cut of increased relief is added at boundaries according to a procedure determined by the image content.
The present invention provides a method of preparing a
flexographic printing member used to transfer ink from an image area to a receiver element, the flexographic printing member comprising a relief image having an image area composed of an elastomeric composition that has an elastomeric topmost surface, and a relief image floor. The method includes the steps of forming a relief image by means of direct laser engraving and an additional step of engraving cuts of increased relief image-wise. The step of adding these cuts can occur before, during or after the formation of the relief pattern. The cuts are intended to ameliorate the inter-image defects that occur due to undesirable transmission of stresses in the flexographic member on press during the printing operation. Cuts of increased relief can achieve these objectives without greatly increasing the burdens of exposure energy, material collection and material disposal associated with increasing the entire floor relief of the flexographic member.
The invention and its objects and advantages will become more apparent in the detailed description of the preferred embodiment presented below.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. la is a schematic cross-sectional diagram illustrating a comparative flexographic member or sleeve having coarse features and a floor.
FIG. lb is schematic cross-sectional diagram of an embodiment of the current invention showing a cut of increased relief adjacent to at least one image feature. FIG. 2a is a schematic cross-sectional diagram illustrating a comparative flexographic member or sleeve showing a sloped wall adjacent the at least one coarse feature region.
FIG. 2b is schematic cross-sectional diagram of a flexographic member or sleeve showing of the current invention having a sloped wall adjacent to at least one coarse feature region and a cut of increased relief adjacent to said coarse feature region.
FIG. 3 a is a schematic cross-sectional diagram illustrating a comparative flexographic member or sleeve having fine features adjacent to coarse features.
FIG. 3b is schematic cross-sectional diagram of the current invention showing cuts of increased relief between coarse and fine features.
FIG. 4 is a schematic diagram of a laser engraving apparatus used to implement the steps of the current invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be directed in particular to elements forming part of, or in cooperation more directly with the apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art. Definitions
The following definitions identify various terms and phrases used in this disclosure to define the present invention. Unless otherwise noted, these definitions are meant to exclude other definitions of the terms or phrases that may be found in the prior art.
The term "flexographic printing precursor" refers to the material that is used to prepare the flexographic printing member of this invention and can be in the form of flexographic printing plate precursors, flexographic printing cylinder precursors, and flexographic printing sleeve precursors.
The term "flexographic printing member" or "flexographic member" refers to articles of the present invention that are imaged flexographic printing precursors and can be in the form of a printing plate having a
substantially planar elastomeric topmost surface, or a printing cylinder or seamless printing sleeve having a curved elastomeric topmost surface. In the case of sleeves and cylinders heights and levels are, of course, in reference to the radial direction.
The term "receiver element" refers to any material or substrate that can be printed with ink using a flexographic printing member of this invention.
The term "ablative" relates to a composition or layer that can be imaged using a radiation source (such as a laser) that produces heat within the layer that causes rapid local changes in the composition or layer so that the imaged regions are physically detached from the rest of the composition or layer and ejected from the composition or layer.
"Ablation imaging" is also known as "ablation engraving", "laser engraving" or "direct engraving".
The "elastomeric topmost surface" refers to the outermost surface of the elastomeric composition or layer in which a relief image is formed and is the first surface that is struck by imaging radiation.
The term "relief image" refers to all of the topographical features of the flexographic printing member provided by imaging and designed to transfer a pattern of ink to a receiver element.
The term "image area" refers to a predetermined area of the relief image in the elastomeric composition, which predetermined area is designed to be inked and to provide a corresponding inked image area on a receiver element.
The term "relief image floor" or "floor" refers to the bottom-most surface of the relief image excluding any cuts of increased relief as specified by the current invention. For example, the floor can be considered the maximum depth of the relief image from the elastomeric topmost surface and can typically range from 100 to 1000 um. The relief image generally includes "valleys" that are not inked and that have a depth from the elastomeric topmost surface that is less than the maximum depth.
As used herein, the term "dot" refers to a formed protrusion or microstructure in the relief image formed in the flexographic printing member of this invention. Some publications refer to this dot as a "halftone dot". The term "dot" does not refer to the dot-like printed image on a receiver element that is provided by the dot on the flexographic printing member. However, it is desired that the dot surface area on the flexographic printing member would correspond as closely as possible to the dot-like image printed on a receiver element. Dots in the relief image smaller than a minimum dot size usually determined by specifics of the laser beam and print engine used to produce it are typically formed with top most surfaces that are below the original un-engraved surface of the member. This condition is referred to as undercutting or "natural" undercutting. A current estimate for the minimum dot size, given the best engraving systems currently available, would be approximately 30 um by 30 um or 900 μιη2 but smaller features that do not suffer from natural undercutting could become feasible as system resolution improves.
The term "fine feature" refers to any relief image feature intended to transfer ink to a receiver that is "naturally" undercut including such features as half-tone dots, stand-alone dots, fine lines, small point text or any other feature having its top most surface about 30 microns or more below the origin top most surface of the pre-engraved flexographic printing member due to the limitations of the engraving engine used to produce the relief image. A fine feature region is defined as any contiguous area of the engraved flexographic member containing only fine features.
The term "coarse feature" refers to any relief image feature intended to transfer ink to a receiver that can be formed with it top most surface within about 30 microns of the original top most surface of the pre-engraved flexographic printing member. A coarse feature region is defined as any contiguous area of the engraved flexographic member containing only coarse features. Thus all features intended to transfer ink to a receiver are either "coarse" or "fine" features and all of the image area of the flexographic printing member can be subdivide into "coarse" and "fine" regions. Both coarse-feature regions and fine featured regions can contain contiguous floor-regions having no printable features. The top most surface of a floor region is below the level mat will transfer ink on a flexographic printing press under normal printing conditions.
Fine-featured relief is defined as any relief feature that is
"naturally" undercut, including such features as half-tone dots, stand-alone dots, fine lines, small point text or any other feature. Naturally undercut means that the top most surface of the fine features is 30 microns or more below the origin top most surface of the pre-engraved flexographic printing member due to the limitations of the direct engraving engine used to produce the relief image. These are the features that cannot be formed with a given engraving engine without having their top most surface undercut 30 microns or more below the original surface of the flexographic printing member. With the current state of technology these fine-features typically have a shortest lateral linear dimension of about 30 microns or less. One objective of the current invention is intended to circumvent or ameliorate the deleterious effects that occur in flexographic printing on press due to natural undercutting. A fine-feature region is defined as any contiguous area of the engraved flexographic member containing only fine features.
In contrast, coarse features are those having lateral linear dimensions large enough to ensure that the top most surface of the imaged feature can be left substantially undisturbed by the engraving process when no additional leveling procedure is employed. These features are commonly solids, mid range half-tone dots and shoulder half-tone dots, wide lines and larger point text typically having a shortest lateral linear dimension on the order of 30 microns or more. A coarse feature region is defined as any contiguous area of the engraved flexographic member containing only coarse features.
Relief features are typically engraved into the flexographic printing member by scanning a single spot or multiple laser spots of intense, modulated and focused radiation over the surface of the member in the image area and collecting the ablated debris. The laser spots can be scanned over the image area of the member once or several times to control the depth of ablation. Each scan is commonly referred to as a pass. During each pass all, or part, of the image relief pattern can be addressed with predetermined laser intensity image- wise to affect the depth of ablation at every position in the final relief image.
Boundaries that benefit from cuts typically occur between coarse featured regions and floor-regions or between coarse-featured regions and fine- featured regions. These boundaries occur where stresses on press are transmitted through the flexographic member causing distortions resulting in objectionable inter-image effects in the print. These interfaces are referred to as stress-sensitive boundaries. There are several types of stress-sensitive boundaries. When, for example, a field of highlight or mid-tone dots is adjacent to an extended floor region the outer row or rows of dots print more heavily and exhibit more halo effect than the dots away from the boundary. This is called a floor-interface stress-sensitive boundary. The extent of the floor region (or floor length) refers to the shortest distance between a stress-sensitive boundary and the next nearest printable feature and determines the severity of the defect. Modeling and press data indicate that extended floor regions as short as 2 mm can be problematic for stress-sensitive boundaries and the problem becomes more severe as the distance increases. "Cuts of increased relief or "cuts" refer to engraving increased depth of a portion of a floor region or inter-dot relief at a boundary adjacent to at least one image feature at a stress-sensitive boundary.
Another type, referred to as a fine coarse interface stress-sensitive boundary, occurs between coarse feature regions and fine feature regions. In this case modeling and press data indicate that the stress-sensitive boundary causes the last row or rows of fine features closest to the interface to print less densely or not at all as compared with the fine features farther from the boundary.
Other types of stress-sensitive boundaries can occur, leading to inter-image artifacts in prints. For example thin lines near text can appear wavy or narrowed, indicating a stress sensitive boundary between these features. Inter- image effects can appear as density non-uniformities or feature placement errors. Cuts at these stress-sensitive boundaries can reduce or eliminate the problem. Flexographic Printing Members
The flexographic printing members prepared using the present invention can be flexographic printing plates having any suitable shape, flexographic printing cylinders, or seamless sleeves that are slipped onto printing cylinders.
Elastomeric compositions used to prepare useful flexographic printing precursors are described in numerous publications including, but not limited to, U.S. Patent Nos. 5,719,009 (Fan); 5,798,202 (Cushner et al.);
5,804,353 (Cushner et al.); and WO 2005/084959 (Figov), all of which are incorporated herein by reference with respect to their teaching of laser-ablatable materials and construction of flexographic printing precursors. In general, the elastomeric composition comprises a crosslinked elastomer or a vulcanized rubber.
DuPont's Cyrel® FAST™ thermal mass transfer plates are commercially available photosensitive resin flexographic printing plate precursors that comprise an integrated ablatable mask element and require minimal chemical processing. These elements can be used as flexographic printing precursors in the practice of this invention.
For example, flexographic printing precursors can include a self- supporting laser-ablatable or engraveable, relief-forming layer (defined below) containing an elastomeric composition that forms a rubber or elastomeric layer. This layer does not need a separate substrate to have physical integrity and strength. In such embodiments, the laser-ablatable, relief-forming layer composed of the elastomeric composition is thick enough and laser ablation is controlled in such a manner that the relief image depth is less than the entire thickness, for example up to 80% of the entire thickness of the layer.
However, in other embodiments, the flexographic printing precursors include a suitable dimensionally stable, non-laser engraveable substrate having an imaging side and a non-imaging side. The substrate has at least one laser engraveable, relief-forming layer (formed of the elastomeric composition) disposed on the imaging side. Suitable substrates include but are not limited to, dimensionally stable polymeric films, aluminum sheets or cylinders, transparent foams, ceramics, fabrics, or laminates of polymeric films (from condensation or addition polymers) and metal sheets such as a laminate of a polyester and aluminum sheet or polyester/polyamide laminates, or a laminate of a polyester film and a compliant or adhesive support. Polyester, polycarbonate, vinyl polymer, and polystyrene films are typically used. Useful polyesters include but are not limited to poly(ethylene terephthalate) and poly(ethylene naphthalate). The substrates can have any suitable thickness, but generally they are at least 0.01 mm or more preferably from about 0.05 to about 0.3 mm thick, especially for the polymeric substrates. An adhesive layer may be used to secure the elastomeric composition to the substrate.
There may be a non-laser ablatable backcoat on the non-imaging side of the substrate (if present) that may be composed of a soft rubber or foam, or other compliant layer. This backcoat may be present to provide adhesion between the substrate and the printing press rollers and to provide extra compliance to the resulting printing member, or to reduce or control the curl of the printing member.
Thus, the flexographic printing precursor contains one or more layers. Besides the laser-engraveable, relief-forming layer, there may be a non- laser ablatable elastomeric rubber layer (for example, a cushioning layer) between the substrate and the topmost elastomeric composition forming the laser- engraveable relief-forming layer.
In general, the laser-engraveable, relief-forming layer composed of the elastomeric composition has a thickness of at least 50 μπι and preferably from about 50 to about 4,000 μπι, or more preferably from 200 to 2,000 μιη.
The elastomeric composition includes one or more laser-ablatable polymeric binders such as crosslinked elastomers or rubbery resins such as vulcanized rubbers. For example, the elastomeric composition can include one or more thermosetting or thermoplastic urethane resins that are derived from the reaction of a polyol (such as polymeric diol or triol) with a polyisocyanate, or the reaction of a polyamine with a polyisocyanate. In other embodiments, the elastomeric composition contains a thermoplastic elastomer and a thermally initiated reaction product of a multifunctional monomer or oligomer.
Other elastomeric resins include copolymers or styrene and butadiene, copolymers of isoprene and styrene, styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene copolymers, other polybutadiene or polyisoprene elastomers, nitrile elastomers, polychloroprene, polyisobutylene and other butyl elastomers, any elastomers containing chlorosulfonated polyethylene, polysulfide, polyalkylene oxides, or polyphosphazenes, elastomeric polymers of (meth)acrylates, elastomeric polyesters, and other similar polymers known in the art. Still other useful laser-engraveable resins include vulcanized rubbers, such as EPDM (ethylene-propylene diene rubber), Nitrile (Buna-N), Natural rubber, Neoprene or chloroprene rubber, silicone rubber, fluorocarbon rubber, fluorosilicone rubber, SBR (styrene-butadiene rubber), NBR
(acrylonitrile-butadiene rubber), ethylene-propylene rubber, and butyl rubber.
Still other useful laser-engraveable resins are polymeric materials that, upon heating to 300°C (generally under nitrogen) at a rate of 10°C/minute, lose at least 60% (typically at least 90%) of their mass and form identifiable low molecular weight products that usually have a molecular weight of 200 or less. Specific examples of such laser engraveable materials include but are not limited to, poly(cyanoacrylate)s that include recurring units derived from at least one alkyl-2-cyanoacrylate monomer and that forms such monomer as the predominant low molecular weight product during ablation. These polymers can be
homopolymers of a single cyanoacrylate monomer or copolymers derived from one or more different cyanoacrylate monomers, and optionally other ethylenically unsaturated polymerizable monomers such as (meth)acrylate, (meth)acrylamides, vinyl ethers, butadienes, (meth)acrylic acid, vinyl pyridine, vinyl phosphonic acid, vinyl sulfonic acid, and styrene and styrene derivatives (such as a-methylstyrene), as long as the non-cyanoacrylate comonomers do not inhibit the ablation process. The monomers used to provide these polymers can be alkyl cyanoacrylates, alkoxy cyanoacrylates, and alkoxyalkyl cyanoacrylates. Representative examples of poly(cyanoacrylates) include but are not limited to poly(alkyl cyanoacrylates) and poly(alkoxyalkyl cyanoacrylates) such as poly(methyl-2-cyanoacrylate), poly(ethyl-2-cyanoacrylate), poly(methoxyethyl-2-cyanoacrylate),
poly(ethoxyethyl-2-cyanoacylate), poly(methyl-2-cyanoacrylate-co-ethyl-2- cyanoacrylate), and other polymers described in U.S. Patent No. 5,998,088 (Robello et al.)
In still other embodiments, the laser-engraveable elastomeric composition can include an alkyl-substituted polycarbonate or polycarbonate block copolymer that forms a cyclic alkylene carbonate as the predominant low molecular weight product during depolymerization from engraving. The polycarbonate can be amorphous or crystalline, and can be obtained from a number of commercial sources including Aldrich Chemical Company
(Milwaukee, WI). Representative polycarbonates are described for example in U.S. Patent 5,156,938 (Foley et al.), columns 9-12, which are incorporated herein by reference. These polymers can be obtained from various commercial sources or prepared using known synthetic methods.
In still other embodiments, the laser-engraveable polymeric binder is a polycarbonate (tBOC type) that forms a diol and diene as the predominant low molecular weight products from depolymerization during laser-engraving.
The laser-engraveable elastomeric composition generally comprises at least 10 weight % and up to 99 weight %, and typically from about 30 to about 80 weight %, of the laser-engraveable elastomers or vulcanized rubbers.
In some embodiments, inert microcapsules are dispersed within laser-engraveable polymeric binders. For example, microcapsules can be dispersed within polymers or polymeric binders, or within the crosslinked elastomers or rubbery resins. The "microcapsules" can also be known as "hollow beads", "microspheres", microbubbles", "micro-balloons", "porous beads", or "porous particles". Such components generally include a thermoplastic polymeric outer shell and either core of air or a volatile liquid such as isopentane and isobutane. These microcapsules can include a single center core or many interconnected or non-connected voids within the core. For example,
microcapsules can be designed like those described in U.S. Patent Nos. 4,060,032 (Evans) and 6,989,220 (Kanga), or as plastic micro-balloons as described for example in U.S. Patent Nos. 6,090,529 (Gelbart) and 6,159,659 (Gelbart).
The laser-engraveable, relief-forming layer composed of the elastomeric composition can also include one or more infrared radiation absorbing compounds that absorb IR radiation in the range of from about 750 to about 1400 nm or typically from 750 to 1250 urn, and transfer the exposing photons into thermal energy. Particularly useful infrared radiation absorbing compounds are responsive to exposure from IR lasers. Mixtures of the same or different type of infrared radiation absorbing compound can be used if desired. A wide range of infrared radiation absorbing compounds are useful in the present invention, including carbon blacks and other IR-absorbing organic or inorganic pigments (including squarylium, cyanine, merocyanine, indolizine, pyrylium, metal phthalocyanines, and metal dithiolene pigments), iron oxides and other metal oxides.
Additional useful IR radiation absorbing compounds include carbon blacks that are surface-functionalized with solubilizing groups are well known in the art. Carbon blacks that are grafted to hydrophilic, nonionic polymers, such as FX-GE-003 (manufactured by Nippon Shokubai), or which are surface-functionalized with anionic groups, such as CAB-O-JET® 200 or C AB-O- JET® 300 (manufactured by the Cabot Corporation) are also useful. Other useful pigments include, but are not limited to, Heliogen Green, Nigrosine Base, iron (III) oxides, transparent iron oxides, magnetic pigments, manganese oxide, Prussian Blue, and Paris Blue. Other useful IR radiation absorbing compounds are carbon nanotubes, such as single- and multi-walled carbon nanotubes, graphite, graphene, and porous graphite.
Other useful infrared radiation absorbing compounds (such as IR dyes) are described in U.S. Patent Nos. 4,912,083 (Chapman et al.), 4,942,141 (DeBoer et al.), 4,948,776 (Evans et al.), 4,948,777 (Evans et al.), 4,948,778 (DeBoer), 4,950,639 (DeBoer et al.), 4,950,640 (Evans et al.), 4,952,552
(Chapman et al.), 4,973,572 (DeBoer), 5,036,040 (Chapman et al.), and 5, 166,024 (Bugner et al.).
Optional addenda in the laser-engraveable elastomeric composition can include but are not limited to, plasticizers, dyes, fillers, antioxidants, antiozonants, stabilizers, dispersing aids, surfactants, dyes or colorants for color control, and adhesion promoters, as long as they do not interfere with engraving efficiency.
The flexographic printing precursor can be formed from a formulation comprising a coating solvent, one or more elastomeric resins, and an infrared radiation absorbing compound, to provide an elastomeric composition. This formulation can be formed as a self-supporting layer or applied to a suitable substrate. Such layers can be formed in any suitable fashion, for example by injecting, spraying, or pouring a series of formulations to the substrate. Alternatively, the formulations can be press-molded, injection-molded, melt extruded, co-extruded, or melt calendared into an appropriate layer or ring (sleeve) and optionally adhered or laminated to a substrate and cured to form a layer, flat or curved sheet, or seamless printing sleeve. The flexographic printing precursors in sheet-form can be wrapped around a printing cylinder and fused at the edges to form a seamless printing precursor.
Method of Forming Flexographic Printing Member
Ablation or engraving energy can be applied using a suitable laser such as a C02j infrared radiation-emitting diode, or YAG lasers, or an array of such lasers. Ablation engraving is used to provide a relief image with a minimum floor depth of at least 100 μιη or typically from 300 to 1000 μπι. However, local minimum depths between halftone dots can be less. The relief image may have a maximum depth up to about 100% of the original thickness of the laser- engraveable, relief-forming layer when a substrate is present. In such instances, the floor of the relief image can be the substrate if the laser-engraveable, relief- forming layer is completely removed in the image area, a lower region of the laser-engraveable, relief-forming layer, or an underlayer such as an adhesive layer, compliant layer, or a non-ablative elastomeric or rubber underlayer. When a substrate is absent, the relief image can have a maximum depth of up to 80% of the original thickness of the laser-engraveable, relief-forming layer comprising the elastomeric composition. A laser operating at a wavelength of from about 700 nm to about 11 um is generally used, and a laser operating at from 800 nm to 1250 nm is more preferable. The laser must have a high enough intensity that the pulse or the effective pulse caused by relative movement is deposited approximately adiabatically during the pulse. Pulse duration is typically much less than 1 ms.
Generally, engraving is achieved using at least one infrared radiation laser having a minimum fluence level of at least 1 J/cm2 at the elastomeric topmost surface and typically infrared imaging is at from about 20 to about 1000 J/cm2 or more preferably from about 50 to about 800 J/cm2.
Engraving a relief image can occur in various contexts. For example, sheet-like precursors can be imaged and used as desired, or wrapped around a printing cylinder or cylinder form before imaging. The flexographic printing precursor can also be a printing sleeve that can be imaged before or after mounting on a printing cylinder.
During imaging, most of the removed products of engraving are gaseous or volatile and readily collected by vacuum for disposal or chemical treatment. Any solid debris can be similarly collected using vacuum or washing.
After imaging, the resulting flexographic printing member can be subjected to an optional detacking step if the elastomeric topmost surface is still tacky, using methods known in the art.
During printing, the resulting flexographic printing member is inked using known methods and the ink is appropriately transferred to a suitable receiver element.
After printing, the flexographic printing member can be cleaned and reused. The printing cylinder can be scraped or otherwise cleaned and reused as needed.
Referring now to FIG. 1 a shows a comparative flexographic member 60, for example, plate or sleeve, having an original top most flexographic plate member surface 30 and floor relief level 20 with an engraved relief pattern having coarse features, 50, 51 and coarse highlight features 40, 41, 42, 43, floor region extent 10 and a stress-sensitive boundary 11. The top most surface of coarse highlight features has dot size 48. The side walls of features in this diagram are represented as straight sloped walls and have a lowest inter-dot relief at level 8 but it is understood that the side walls of the actual relief image can be vertical, sloped or curved or can have plateaus below the top most surface of the feature or any combination of these patterns. In reference to the field of highlight features, the outer-dot coarse highlight feature 40 represents the dots closest to the stress-sensitive boundary and inner-dot coarse highlight feature 43 represents dots farthest from stress-sensitive boundaries.
The current invention can be understood with reference to a cross- sectional diagram of the current invention in FIG. lb showing laser radiation, 100, used to selectively modify the floor by engraving floor-interface stress-sensitive boundary increased relief 14 having a floor-interface stress-sensitive boundary increased relief width 16 at a floor-interface stress-sensitive boundary 11. The coarse features have an original top most surface coincident with the top most surface 30 of the flexographic member 60 prior to engraving. Laser radiation engraves down to a floor-interface stress-sensitive boundary relief level 18 at least 30 μιη below the floor level 20 in the final relief image. In this example the stress- sensitive boundary 11 occurs at the boundary between the highlight features 40, 41 , 42, 43, and the floor region 10. A cut of increased relief 14 has a depth of at least 30 μηι below the floor level 20 and a width 16 of at least 10 μηι and less than half 19 the total distance to the next closest printable feature.
FIG. 2a shows a comparative flexographic member 60, having an original top most flexographic plate member surface 30 and floor level 20 with an engraved relief pattern having coarse features 50, 51 and highlight features 40, 41, 42, 43, floor region 10, and boundary 11. The side walls at the boundary 11 of this representative illustration have a non-printable plateau 12 and a non-printable plateau angled wall 24.
An embodiment of the current invention is schematically represented in FIG. 2b showing laser radiation 100 used to selectively engrave cuts of increased relief 14 having a width 16 at a stress-sensitive boundary 11. Laser radiation 100 engraves down to a level 18 at least 10 μιη below the floor relief level 20. The width 16 of the cut is at least 10 μπι and less than half 19 the total distance to the next printable feature.
FIG. 3 a is a schematic cross-sectional diagram illustrating a comparative flexographic member having coarse features 50, and fine features 70, 71, 75, 77 having an inter dot spacing 27 determined by the halftone screen ruling and fine-feature top most level 6, below the critical printable level 9 for transferring ink on press. The flexographic member is shown with a supporting layer 80 and a backing layer 90. The fine features 70, 71, 75, 77 have coarse highlight feature dot size 48 that are small compared to size of the spot used to laser engrave the relief pattern and are therefore "naturally" undercut to a level 6 below a critical level 9 that results in features that print chaotically or not at all on press. Fine coarse interface stress-sensitive boundary 13 are illustrated between the last rows of fine-feature dots and the coarse features. Fine feature inner dot 77 represents the dot farthest from the stress-sensitive boundary and fine feature outer dots 70 represent the dots closest to the stress-sensitive boundary.
A representation of another embodiment of the current invention, FIG. 3b, shows laser radiation, 100, used to selectively engrave cuts of fine coarse interface stress-sensitive boundary increased relief 15 having a fine coarse interface stress-sensitive boundary width 17 at a boundary 13 between the last rows of fine-feature dots 70, 71, 75, 77 and the coarse features 50. The cuts are engraved down to a fine coarse interface stress-sensitive boundary relief level 26 at least 30 μπι below the lowest inter-dot relief level 8. The width 17 is at least 10 μπι and no wider than the inter-dot spacing 27 determined by the screen ruling of the halftone image.
FIG. 4 shows an apparatus for preparing a flexographic printing plate according to the present invention. A flexographic printing member 60 is mounted on a drum 110 which is turned by motor 130. A lead screw 150 is driven by a lead screw motor 155. A printhead platform 190 is attached to lead screw 1 0 which moves the platform parallel to a surface of the drum. A laser thermal printhead 170 is mounted on the platform for imaging the flexographic printing member. A lens 175 directs laser radiation 100 to the flexographic printing member. Electrical leads 140 connect various pieces of the apparatus with computer 160 coordinating movement of the drum 110, lead screw 150, and operation of the laser thermal printhead 170. A debris collection system 180 collects detritus generated by laser thermal engraving. A relief image with coarse and fine features is created as described above.
Modeling
A linear elastic two-dimensional model was used to simulate the press interactions between a flexographic member and a receiver and to make predictions for the dot gain and dot gain uniformity associated with the increase in lateral dimension of the top most surface of features under engagement. All materials were treated as isotropic. The model did not contain corrections for non-linearity, known to be important for real elastomers, but the linear model is expected to qualitatively capture the correct trends for phenomenon of interest here provided that the strains are not too high. Also, the model did not specifically include effects due to ink flow and therefore did not include that contribution to dot gain nor the halo effect observed in actual prints. Again, it is expected that the predicted variation in stress at different positions in the flexographic member would lead to qualitatively similar trends for ink spread. Results were found to be in good qualitative agreement with printed examples. Two types of stress-sensitive boundaries, as described above, were investigated and improvements provided by cuts were demonstrated.
The following descriptions of the model predictions can be understood with reference to the tables and figures herein. All distances are in microns unless specified otherwise. One problem to be solved is characterized in Table 1 and FIG. la where a floor-interface stress-sensitive boundary, 11, between a course feature region 40, 41, 42, and 43 and floor region was modeled as a function of floor extent 10. In this case a row of four dots, initially 50 μηι across at their top most surfaces dot size 48 were near a floor region having 400 μιη of relief. In Table 1 , the dot 40, closest to the stress-sensitive boundary is referred to as the outer dot and the one furthest from the boundary 43 as the inner dot. A next-nearest-neighbor coarse feature 51, was (100 μιη) at its top most surface, and was separated from the stress-sensitive boundary by the floor region with an extent 10 specified in Table 1. Infinity here refers to the limiting case without a next-nearest-neighbor coarse feature 51 (i.e. infinitely far away). The model included one supporting layer representing, for example, a polyester support and another subbing layer representing, for example, a backing tape. The top most surface of the 1.7 mm thick flexographic member 60 was subjected to a strain equivalent to 200 microns of engagement. The computed dot size under stress of the inner and outer dots and a measure of dot gain non-uniformity, NU given by
%NU = 100 (Outer size - Inner size)/ Inner size (1) are reported in Table 1. Results showed 4% non-uniformity when no solid feature was present improving to 2% when the nearest neighbor coarse feature was about 1000 μηι away. As the extent of the floor region was reduced the non-uniforaiity monotonically improved. At 225 μιη the non-uniformity was less than half a percent. Table 1 : Dot size and non-uniformity predictions versus, floor length extent, initial dot size 50 μιη; initial relief 400 μηι
Floor Inner Outer
Length Dot Dot Non-
(μηι) (μπι) (μιτι) Uniformity
I I 53.0 55.2 4.0%
1425 52.9 54.5 3.0%
1025 52.7 53.8 2.0%
425 52.4 52.8 0.9%
225 52.3 52.5 0.4%
Table 2 shows the improvement achievable when a cut of 400 μπι of increased relief, 50 μιη wide, was engraved at the stress-sensitive boundary. In this case the original dot size 48 before engagement was 25 μπι and no nearest neighbor solid was present (i.e. infinite floor extent). The calculated non- uniformity was improved from 4.9% to 1.6%, better than a factor of 3 when the cut was made at the stress-sensitive boundary.
Table 2: Dot size and non-uniformity predictions with and without a cut at a stress sensitive boundary; initial dot size 25 μπι, initial relief 500 μηι
Cut Inner Outer
Description Depth Dot Dot Non-
(μπι) (μτη) (μηι) Uniformity
No Cut 0 27.5 28.9 4.9%
Cut 400 27.6 28.1 1.6%
Predicted improvements achievable when the stress-sensitive boundary contains a non-printable plateau 12 (see FIG. 2a) are reported in Table 3. In this case initial dot size 48 was 25 μηι, the floor relief was 500 μιη and the plateau 12 was 50 μιη wide. The cuts, as illustrated in FIG. 2b, were 25 μηι wide and had depths as indicated in the Table 3. The calculated non-uniformity improved from 6.7% without cuts to 0.3% with 1550 μηι cuts. Table 3: Dot size and non-uniformity predictions with and without a cut at a stress sensitive boundary containing a plateau; initial dot size 25 μηι, initial relief 500 μηι
Cut Inner Outer
Description Depth Dot Dot Non-
(μιη) (μπι) (μπι) Uniformity
No Cut 0 27.6 29.4 6.7%
Cut 500 27.7 28.7 3.7%
Cut 1550 27.4 27.2 0.3%
Table 4 compares the predictions for 1.2 mm and 1.7 mm thick fiexographic members as a function of dot size and cut depth. It was found that non-uniformity was worse for smaller dots as has been observed in real press runs and that non-uniformity was generally worse for thinner fiexographic members. Modeling showed that cuts at the stress-sensitive boundary improved non- uniformity and that deeper cuts were better.
Table 4: Non-uniformity predictions versus cut depth, initial dot size and fiexographic plate thickness; initial relief 400 μπι
Plate Thickness = 1200 Plate Thickness = 1700
Cut
Depth Initial Dot size Initial Dot size
(μηι) 25 μηι 50 μπι 100 μηι 25 μηι 50 μηι 100 μηι
0 6.4% 4.3% 2.8% 5.0% 3.3% 2.0%
200 3.7% 2.6% 1.8% 2.8% 1.8% 1.2%
400 2.4% 1.6% 1.2% 1.6% 1.0% 0.7%
600 1.8% 1.2% 0.9% 1.0% 0.5% 0.4% The problem and solution of the current invention for fine-coarse- interface stress-sensitive boundaries are described with reference to Table 5 and FIGS. 3a and 3b. The displacement between the initial levels 6 of the fine feature inner dot 77 and fine feature outer dots 70 before and after 150 μπι of engagement on the coarse features 50 are shown Table 5. The engagement non-uniformity, ENU, as a function of cut depth 26 given by
ENU = Inner displacement - Outer displacement (2) is also reported in the table. The displacements and ENUs were calculated for combinations of subbing layer hardness. The first descriptor in column 1 Table 5 refers to the relative hardness of the supporting layer 80 and the second to the backing layer 90. The Young's modulus of the flexographic member 60 was 1 (dimensionless units), the soft layers were 0.1 and the hard layers were 10. Cut width 17 was 20 μιη and depth 26 was as indicated in Table 5. Results show monotonic improvement of engagement non-uniformity in all cases with increasing cut depth. The cuts were most effective for hard supporting and subbing layers.
Table 5: Engagement non-uniformity predictions versus cut depth, and subbing layer hardness; initial inter dot relief 250 μιη, initial fine-feature undercut 150 μπι
Engagement
Cut Outer Inner non-
Description Depth Displacement Displacement uniformity
Sub Layers Gun) (μπι) Gun) (μιη)
Soft/Soft 0 102 49 53
400 85 39 46
800 59 28 31
Hard/Soft 0 98 58 40
400 82 51 31
800 61 42 19
Hard/Hard 0 41 -7 48
400 19 -5 24
800 3 -2 5
PARTS LIST
fine-feature top most level
lowest inter-dot relief level
critical printable level
floor region extent
floor-interface stress-sensitive boundary
non-printable plateau
fine coarse interface stress-sensitive boundary
floor-interface stress-sensitive boundary increased relief fine coarse interface stress-sensitive boundary increased relief floor-interface stress-sensitive boundary increased relief width fine coarse interface stress-sensitive boundary width floor-interface stress-sensitive boundary relief level half total distance to next closest printable feature
floor relief level
non-printable plateau angled wall
fine coarse interface stress-sensitive boundary relief level inter dot spacing
top most flexographic plate member surface
outer-dot coarse highlight feature
coarse highlight feature
coarse highlight feature
inner-dot coarse highlight feature
coarse highlight feature dot size
coarse features
next-nearest-neighbor coarse feature
flexographic member
fine feature outer dots
fine feature dot
fine-feature dots
fine feature inner dot 80 supporting layer
90 backing layer
100 laser radiation
110 drum
130 motor
140 electrical leads
150 lead screw
155 lead screw motor
160 computer
170 laser thermal printhead
175 lens
180 debris collection system
190 printhead platform

Claims

CLAIMS:
1. A method of preparing a flexographic member comprising: providing a digital image;
calculating a relief image based on the digital image;
identifying at least one stress-sensitive boundary region adjacent to at least one image feature;
creating the relief image on the flexographic member; and increasing a depth of at least a portion of a floor region adjacent the at least one image feature to provide a modified floor region.
2. The method of claim 1 wherein a minimum width of the modified floor region is at least 5 μπι.
3. The method of claim 1 wherein a maximum width of the modified floor region is less than half a distance from the stress sensitive boundary to a next nearest image feature.
4. The method of claim 1 wherein a minimum depth of the increase in the floor region is at least 10 μπι.
5. The method of claim 1 wherein a maximum depth of the increase in the floor region is less than a depth of a backing layer of the flexographic member.
6. The method of claim 1 wherein the depth of the portion of the floor region is increased by laser engraving.
7. The method of claim 1 wherein the digital image is stored on a memory device.
8. The method of claim 1 wherein relief image is calculated on a computer.
PCT/US2012/025771 2011-02-21 2012-02-20 Floor relief for dot improvement WO2012115888A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12706986.2A EP2678159B1 (en) 2011-02-21 2012-02-20 Floor relief for dot improvement
CN201280009484.5A CN103391846B (en) 2011-02-21 2012-02-20 Prepare the method for flexographic features

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13/031,308 2011-02-21
US13/031,300 US8709327B2 (en) 2011-02-21 2011-02-21 Floor relief for dot improvement
US13/031,301 2011-02-21
US13/031,301 US8520041B2 (en) 2011-02-21 2011-02-21 Floor relief for dot improvement
US13/031,308 US20120210893A1 (en) 2011-02-21 2011-02-21 Floor relief for dot improvement
US13/031,300 2011-02-21

Publications (1)

Publication Number Publication Date
WO2012115888A1 true WO2012115888A1 (en) 2012-08-30

Family

ID=45787356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/025771 WO2012115888A1 (en) 2011-02-21 2012-02-20 Floor relief for dot improvement

Country Status (3)

Country Link
EP (1) EP2678159B1 (en)
CN (1) CN103391846B (en)
WO (1) WO2012115888A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104309272B (en) * 2014-10-15 2016-08-24 广东壮丽彩印股份有限公司 The manufacture method of plastic relief security pattern mother matrix
CN114193905B (en) * 2021-12-16 2023-05-02 广东上运激光科技有限公司 Novel engraving process for plate roller

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060032A (en) 1975-05-21 1977-11-29 Laser Graphic Systems Corporation Substrate for composite printing and relief plate
US4912083A (en) 1989-06-20 1990-03-27 Eastman Kodak Company Infrared absorbing ferrous complexes for dye-donor element used in laser-induced thermal dye transfer
US4942141A (en) 1989-06-16 1990-07-17 Eastman Kodak Company Infrared absorbing squarylium dyes for dye-donor element used in laser-induced thermal dye transfer
US4948777A (en) 1989-06-16 1990-08-14 Eastman Kodak Company Infrared absorbing bis(chalcogenopyrylo)polymethine dyes for dye-donor element used in laser-induced thermal dye transfer
US4948778A (en) 1989-06-20 1990-08-14 Eastman Kodak Company Infrared absorbing oxyindolizine dyes for dye-donor element used in laser-induced thermal dye transfer
US4948776A (en) 1989-06-16 1990-08-14 Eastman Kodak Company Infrared absorbing chalcogenopyrylo-arylidene dyes for dye-donor element used in laser-induced thermal dye transfer
US4950640A (en) 1989-06-16 1990-08-21 Eastman Kodak Company Infrared absorbing merocyanine dyes for dye-donor element used in laser-induced thermal dye transfer
US4950639A (en) 1989-06-16 1990-08-21 Eastman Kodak Company Infrared absorbing bis(aminoaryl)polymethine dyes for dye-donor element used in laser-induced thermal dye transfer
US4952552A (en) 1989-06-20 1990-08-28 Eastman Kodak Company Infrared absorbing quinoid dyes for dye-donor element used in laser-induced thermal dye transfer
US4973572A (en) 1987-12-21 1990-11-27 Eastman Kodak Company Infrared absorbing cyanine dyes for dye-donor element used in laser-induced thermal dye transfer
US5036040A (en) 1989-06-20 1991-07-30 Eastman Kodak Company Infrared absorbing nickel-dithiolene dye complexes for dye-donor element used in laser-induced thermal dye transfer
US5156938A (en) 1989-03-30 1992-10-20 Graphics Technology International, Inc. Ablation-transfer imaging/recording
US5166024A (en) 1990-12-21 1992-11-24 Eastman Kodak Company Photoelectrographic imaging with near-infrared sensitizing pigments
US5719009A (en) 1992-08-07 1998-02-17 E. I. Du Pont De Nemours And Company Laser ablatable photosensitive elements utilized to make flexographic printing plates
US5798202A (en) 1992-05-11 1998-08-25 E. I. Dupont De Nemours And Company Laser engravable single-layer flexographic printing element
US5804353A (en) 1992-05-11 1998-09-08 E. I. Dupont De Nemours And Company Lasers engravable multilayer flexographic printing element
US5892588A (en) 1997-10-02 1999-04-06 Professional Software Technologies Inc. Digital halftoning combining dot size modulation screen with dot frequency modulation screen within a single image
US5998088A (en) 1998-08-03 1999-12-07 Eastman Kodak Company Heterogeneous image layer for laser ablative imaging
US6090529A (en) 1999-06-23 2000-07-18 Creo Srl Method for processless flexographic printing
US6159659A (en) 1999-04-26 2000-12-12 Creo Srl Method for processless flexographic printing and flexographic printing plate
US6445465B1 (en) 1997-10-02 2002-09-03 Pcc Artwork Systems Digital halftoning combining dot size modulation screen with dot frequency modulation screen within a single image
WO2005084959A1 (en) 2004-03-03 2005-09-15 Kodak Il Ltd. Novel material for infrared laser ablated engraved flexographic printing plates
US6989220B2 (en) 2002-03-25 2006-01-24 Macdermid Printing Solutions, Llc Processless digitally imaged photopolymer elements using microspheres
US7486420B2 (en) 2003-03-11 2009-02-03 Kodak Graphic Communications Canada Company Flexographic printing
US20090214983A1 (en) * 2008-02-25 2009-08-27 Murray Figov Laser-engraveable flexographic printing plate precursors
US20090223397A1 (en) 2008-03-07 2009-09-10 Fujifilm Corporation Printing plate making apparatus and printing plate making method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095931A (en) * 2004-09-30 2006-04-13 Dainippon Screen Mfg Co Ltd Plate making method and plate making apparatus for printing plate
JP2007185917A (en) * 2006-01-16 2007-07-26 Asahi Kasei Chemicals Corp Manufacturing method for printing plate for flexography
CN100542806C (en) * 2007-03-15 2009-09-23 北京肯瑞丝汀新技术有限公司 Realize direct method of printing by prefabricating molecule net engraving
US8034540B2 (en) * 2008-07-31 2011-10-11 Eastman Kodak Company System and method employing secondary back exposure of flexographic plate

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060032A (en) 1975-05-21 1977-11-29 Laser Graphic Systems Corporation Substrate for composite printing and relief plate
US4973572A (en) 1987-12-21 1990-11-27 Eastman Kodak Company Infrared absorbing cyanine dyes for dye-donor element used in laser-induced thermal dye transfer
US5156938A (en) 1989-03-30 1992-10-20 Graphics Technology International, Inc. Ablation-transfer imaging/recording
US4942141A (en) 1989-06-16 1990-07-17 Eastman Kodak Company Infrared absorbing squarylium dyes for dye-donor element used in laser-induced thermal dye transfer
US4948777A (en) 1989-06-16 1990-08-14 Eastman Kodak Company Infrared absorbing bis(chalcogenopyrylo)polymethine dyes for dye-donor element used in laser-induced thermal dye transfer
US4948776A (en) 1989-06-16 1990-08-14 Eastman Kodak Company Infrared absorbing chalcogenopyrylo-arylidene dyes for dye-donor element used in laser-induced thermal dye transfer
US4950640A (en) 1989-06-16 1990-08-21 Eastman Kodak Company Infrared absorbing merocyanine dyes for dye-donor element used in laser-induced thermal dye transfer
US4950639A (en) 1989-06-16 1990-08-21 Eastman Kodak Company Infrared absorbing bis(aminoaryl)polymethine dyes for dye-donor element used in laser-induced thermal dye transfer
US4912083A (en) 1989-06-20 1990-03-27 Eastman Kodak Company Infrared absorbing ferrous complexes for dye-donor element used in laser-induced thermal dye transfer
US4948778A (en) 1989-06-20 1990-08-14 Eastman Kodak Company Infrared absorbing oxyindolizine dyes for dye-donor element used in laser-induced thermal dye transfer
US4952552A (en) 1989-06-20 1990-08-28 Eastman Kodak Company Infrared absorbing quinoid dyes for dye-donor element used in laser-induced thermal dye transfer
US5036040A (en) 1989-06-20 1991-07-30 Eastman Kodak Company Infrared absorbing nickel-dithiolene dye complexes for dye-donor element used in laser-induced thermal dye transfer
US5166024A (en) 1990-12-21 1992-11-24 Eastman Kodak Company Photoelectrographic imaging with near-infrared sensitizing pigments
US5798202A (en) 1992-05-11 1998-08-25 E. I. Dupont De Nemours And Company Laser engravable single-layer flexographic printing element
US5804353A (en) 1992-05-11 1998-09-08 E. I. Dupont De Nemours And Company Lasers engravable multilayer flexographic printing element
US5719009A (en) 1992-08-07 1998-02-17 E. I. Du Pont De Nemours And Company Laser ablatable photosensitive elements utilized to make flexographic printing plates
US5892588A (en) 1997-10-02 1999-04-06 Professional Software Technologies Inc. Digital halftoning combining dot size modulation screen with dot frequency modulation screen within a single image
US6445465B1 (en) 1997-10-02 2002-09-03 Pcc Artwork Systems Digital halftoning combining dot size modulation screen with dot frequency modulation screen within a single image
US5998088A (en) 1998-08-03 1999-12-07 Eastman Kodak Company Heterogeneous image layer for laser ablative imaging
US6159659A (en) 1999-04-26 2000-12-12 Creo Srl Method for processless flexographic printing and flexographic printing plate
US6090529A (en) 1999-06-23 2000-07-18 Creo Srl Method for processless flexographic printing
US6989220B2 (en) 2002-03-25 2006-01-24 Macdermid Printing Solutions, Llc Processless digitally imaged photopolymer elements using microspheres
US7486420B2 (en) 2003-03-11 2009-02-03 Kodak Graphic Communications Canada Company Flexographic printing
WO2005084959A1 (en) 2004-03-03 2005-09-15 Kodak Il Ltd. Novel material for infrared laser ablated engraved flexographic printing plates
US20090214983A1 (en) * 2008-02-25 2009-08-27 Murray Figov Laser-engraveable flexographic printing plate precursors
US20090223397A1 (en) 2008-03-07 2009-09-10 Fujifilm Corporation Printing plate making apparatus and printing plate making method

Also Published As

Publication number Publication date
EP2678159A1 (en) 2014-01-01
CN103391846A (en) 2013-11-13
EP2678159B1 (en) 2014-11-26
CN103391846B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
EP2608967B1 (en) Flexographic printing members
US8408130B2 (en) Method of making flexographic printing members
US8114572B2 (en) Laser-ablatable elements and methods of use
US8520041B2 (en) Floor relief for dot improvement
JP4271754B2 (en) Elements to reduce the impact of flexographic printing plates
EP2139681B1 (en) Ablatable elements for making flexographic printing plates
US8669039B2 (en) Flexographic printing precursors and methods of making
US20080261028A1 (en) Ablatable elements for making flexographic printing plates
US8709327B2 (en) Floor relief for dot improvement
US20130269557A1 (en) Method for direct engraving of flexographic printing members
EP2678159B1 (en) Floor relief for dot improvement
US8941028B2 (en) System for direct engraving of flexographic printing members
US8539881B2 (en) Laser leveling highlight control
US8561538B2 (en) Laser leveling highlight control
US20120210893A1 (en) Floor relief for dot improvement
WO2013158408A1 (en) Direct engraving of flexographic printing members

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12706986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012706986

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE