WO2012117872A1 - Resin substrate with built-in electronic component - Google Patents

Resin substrate with built-in electronic component Download PDF

Info

Publication number
WO2012117872A1
WO2012117872A1 PCT/JP2012/053824 JP2012053824W WO2012117872A1 WO 2012117872 A1 WO2012117872 A1 WO 2012117872A1 JP 2012053824 W JP2012053824 W JP 2012053824W WO 2012117872 A1 WO2012117872 A1 WO 2012117872A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin
via conductors
resin substrate
substrate
Prior art date
Application number
PCT/JP2012/053824
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 範夫
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201290000317.XU priority Critical patent/CN203482516U/en
Priority to JP2013502243A priority patent/JPWO2012117872A1/en
Publication of WO2012117872A1 publication Critical patent/WO2012117872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2009Reinforced areas, e.g. for a specific part of a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a component-embedded resin substrate.
  • Patent Document 1 An example of a component-embedded substrate formed by alternately laminating insulating layers and conductor patterns made of a thermoplastic resin is described in Japanese Patent Application Laid-Open No. 2007-305664 (Patent Document 1).
  • an electronic component such as a chip resistor is built in the substrate and is connected to another electronic component by wiring.
  • members called via conductors are formed so as to penetrate the insulating layer in the thickness direction.
  • the electronic component is completely covered and hidden inside the component-embedded substrate and is surrounded by a part of the plurality of insulating layers.
  • an insulating layer made of a thermoplastic resin directly surrounds the outer periphery of the electronic component so as to completely surround the outer periphery of the electronic component.
  • FIG. 23 shows an example of a resin substrate with a built-in component based on the conventional technology.
  • the resin layer 2 as an insulating layer is in direct contact with the outer periphery of the component 3 so as to completely surround the outer periphery of the component 3 as an electronic component.
  • the component built-in resin substrate 101 includes a plurality of via conductors 6 and a plurality of conductor patterns 7 therein.
  • the component 3 is a rectangular parallelepiped as shown in FIG. 24, and has electrodes 3a and 3b at both ends, respectively. As shown in FIG. 23, via conductors 6n are connected to the electrodes 3a and 3b of the component 3, respectively.
  • the above-described component-embedded resin substrate has a problem that when the substrate itself is deformed, an insulating layer made of a thermoplastic resin may be peeled around the built-in component.
  • an insulating layer made of a thermoplastic resin may be peeled around the built-in component.
  • the interface 4 where the resin layer 2 as the insulating layer and the component 3 come into contact with each other is first peeled off inside the component-embedded resin substrate 101.
  • the problem is that cracks propagate at the interface 5 between the resin layers 2.
  • an object of the present invention is to provide a component-embedded resin substrate in which the insulating layer made of a thermoplastic resin is prevented from peeling around the built-in component even when the substrate itself is deformed.
  • a component-embedded resin substrate includes a plurality of resin layers stacked on each other and two or more resin layers continuously arranged in the thickness direction included in the plurality of resin layers. Parts arranged so as to be surrounded by and in contact with each resin layer of the first group which is a group, penetrating through at least one of the resin layers belonging to the first group, and in plan view, A plurality of reinforcing via conductors, which are via conductors that are not connected to any other circuit or are grounded, are arranged along at least a part of the outer shape of the component.
  • the plurality of reinforcing via conductors are arranged along at least a part of the outline of the component by arranging a plurality of point-like ones in a plan view. .
  • this configuration it is possible to alleviate the deformation that reaches the interface of the component at least in part of the outline.
  • the plurality of reinforcing via conductors are arranged so as to extend over all of the first group in the thickness direction.
  • the reinforcing via conductor can cover the side surface of the component in a wider range, so that it is possible to more reliably prevent a large deformation from being transmitted to the side surface of the component.
  • the plurality of reinforcing via conductors are arranged so as not to be exposed to the outside.
  • the plurality of reinforcing via conductors are arranged so as to surround the outer periphery of the component in plan view.
  • the plurality of resin layers are mainly composed of a thermoplastic resin.
  • the resin layers can be bonded by heating and pressurizing after laminating the respective resin layers in order, thereby facilitating production.
  • FIG. 1 shows a cross-sectional view of the component-embedded resin substrate 1 in the present embodiment.
  • FIG. FIG. 2 shows a planar positional relationship among the component 3, the plurality of reinforcing via conductors 9, and the wiring pattern 10 in the component-embedded resin substrate 1.
  • the via conductor 6 and the conductor pattern 7 disposed inside are omitted, but the component-embedded resin substrate 1 is similar to the component-embedded resin substrate 101 shown in FIG. 6 and conductor pattern 7 may be provided as appropriate.
  • the via conductor 6 may be formed by filling a through-hole formed by laser processing with a conductive paste containing silver and hardening it.
  • the conductor pattern 7 may be a pattern formed of, for example, copper foil.
  • the component-embedded resin substrate 1 in the present embodiment is a group of a plurality of resin layers 2 stacked on each other and two or more resin layers 2 arranged continuously in the thickness direction included in the plurality of resin layers 2. And a component 3 arranged so as to be surrounded by each resin layer 2 of a certain first group 8.
  • a plurality of reinforcing via conductors 9 are arranged so as to pass through at least one of the resin layers 2 belonging to the first group 8 and along at least a part of the outer shape of the component 3 when viewed in plan.
  • the plurality of reinforcing via conductors 9 are via conductors that are not connected to any other circuit or are grounded. When the plurality of reinforcing via conductors 9 are not connected to any other circuit, the reinforcing via conductors 9 can be regarded as electrically isolated dummy conductive structures. When the plurality of reinforcing via conductors 9 are grounded, the reinforcing via conductors 9 may be connected to the ground wiring or the ground electrode.
  • the plurality of reinforcing via conductors 9 are spaced apart from the component 3. Part of the resin layer 2 enters between the reinforcing via conductor 9 and the component 3.
  • the component 3 included in the component-embedded resin substrate 1 is an example of an electronic component.
  • the component 3 has a rectangular parallelepiped outer shape as shown in FIG. 24, and includes electrodes 3a and 3b at both ends.
  • the electrodes 3a and 3b are provided so as to surround the main body of the component 3 at both ends.
  • the component 3 may be a ceramic capacitor, for example.
  • the electrodes 3a and 3b are electrically connected to the wiring pattern 10 through via conductors 6n, respectively.
  • the via conductor 6 n is drawn downward from the component 3, but this is only an example, and the drawing direction is not limited to the downward direction.
  • the member electrically connected to the component may be configured to be pulled out in another direction.
  • the via conductor 6n may be formed by the same method as the via conductor shown in FIG.
  • the plurality of reinforcing via conductors 9 are arranged in dotted lines so as to surround the component 3 in a state of being separated from the component 3.
  • a plurality of reinforcing via conductors 9 can be seen in front, and a wiring pattern 10 can be seen in the back.
  • the wiring pattern 10 is located at a different height from the plurality of reinforcing via conductors 9.
  • the wiring pattern 10 extends to the outside from the region surrounded by the reinforcing via conductor 9 when viewed in plan.
  • the reinforcing via conductor 9 may be formed by filling a through-hole formed by laser processing with a conductive paste and solidifying, but penetrates the resin layer 2 in the thickness direction. It may be a conductive block formed by other known methods arranged in the above manner.
  • the material of the reinforcing via conductor 9 copper, silver, aluminum, nickel, gold, or an alloy of two or more metals selected from these is preferable for increasing the rigidity.
  • the rigidity of the region around the component 3 is increased. Therefore, even if the component-embedded resin substrate 1 is bent, the periphery of the component 3 is difficult to bend. As a result, even when the substrate itself is deformed, it is possible to reduce the peeling of the insulating layer made of the thermoplastic resin around the built-in component 3.
  • the plurality of reinforcing via conductors 9 are not connected to any other circuit or are grounded, basically, the plurality of reinforcing via conductors 9 do not generate noise themselves, and the operation of the component 3 and other circuits is not caused. There is no adverse electrical effect.
  • the plurality of reinforcing via conductors 9 are preferably arranged so as to surround the outer periphery of the component 3 in plan view. This is because such a surrounding configuration can more reliably protect the area in the vicinity of the component 3 from the deformation occurring in the entire substrate. Therefore, it is possible to prevent a large deformation from being transmitted to the vicinity of the component 3, and as a result, it is possible to reduce the peeling of the insulating layer made of the thermoplastic resin around the component 3.
  • the reinforcing via conductor 9 does not completely surround the outer periphery of the component 3, but is arranged only along two parallel long sides of the four sides of the component 3. ing.
  • the effect is inferior, but even with the configuration shown in FIG. 3, a certain effect can be obtained with respect to protecting the component 3 from the deformation generated in the entire substrate.
  • it arranged here along a long side here as shown in FIG.
  • the component 3 when it is rectangular when viewed in plan, it is preferably arranged along the long side.
  • the plurality of reinforcing via conductors 9 are not limited to two parallel sides of the component 3, and a certain effect can be obtained by arranging them on two adjacent sides as shown in FIG. 5.
  • the plurality of reinforcing via conductors 9 are arranged along only one side of the part 3 as shown in FIG. 6 or FIG. Although it is inferior to the arrangement in the arrangement, a certain effect can be obtained.
  • the component-embedded resin substrate 1 When the component-embedded resin substrate 1 is bent and used in a specific direction, it is particularly effective to dispose the reinforcing via conductor 9 in the bent portion.
  • the reinforcing via conductor 9 In the plan view of FIG. 4 and subsequent figures, for convenience of explanation, only the component 3 and the reinforcing via conductor 9 are shown, and other components are not shown.
  • the plurality of reinforcing via conductors are arranged along at least a part of the outline of the component by arranging a plurality of dot-like conductors in a plan view. This is because, if the arrangement is made along at least a part of the outline of the component, the deformation reaching the interface of the component can be mitigated at least in a part of the outline. Further, since the plurality of reinforcing via conductors have the same shape as conventional via conductors as long as they are point-shaped as shown in FIGS. 2 to 7, conventional via conductors are manufactured by the same method. Can be convenient. In addition, if the reinforcing via conductor is a dot-like one, it can be arranged without hindering the resin flow when the plurality of resin layers 2 are pressure-bonded so that the degree of freedom in design is increased.
  • the reinforcing via conductor used in the present invention is not limited to a point-like one, and may be a linear one.
  • a somewhat long shape like the reinforcing via conductor 9j shown in FIG. 8 may be arranged in a broken line.
  • the length may be approximately equal to the length of the outer side of the component 3.
  • the reinforcing via conductor 9k does not completely surround the part 3 and has a broken portion as seen in a plan view.
  • a structure in which the conductor surrounds the part completely continuously may be adopted.
  • the structure that is interrupted at any point is more realistic because it does not hinder the resin flow when the plurality of resin layers 2 are pressure-bonded and is easy to manufacture.
  • the plurality of reinforcing via conductors are preferably arranged so as to extend over all of the first group in the thickness direction.
  • the first group 8 is composed of the three resin layers 2, but the reinforcing via conductor 9 is formed in two of them. It only straddles. Even with such a configuration, a certain effect can be obtained.
  • the reinforcing via conductors 9 are arranged so as to extend over all three layers of the first group 8. preferable.
  • the reinforcing via conductor 9 can cover the side surface of the component 3 in a wider range, so that it is possible to more reliably prevent a large deformation from being transmitted to the side surface of the component 3. As a result, peeling of the insulating layer made of the thermoplastic resin around the component 3 can be reduced.
  • the plurality of reinforcing via conductors may not only extend across all of the first group in the thickness direction, but may extend beyond the first group in the thickness direction.
  • the plurality of reinforcing via conductors 9 are preferably arranged so as not to be exposed to the outside. As shown in FIG. 12, even if the reinforcing via conductor 9 is exposed to the outside, an effect of suppressing deformation can be obtained to some extent. However, in such a configuration, moisture may enter from the exposed portion. . If the plurality of reinforcing via conductors 9 are arranged so as not to be exposed to the outside, it is preferable because moisture can be more reliably prevented from entering. In any of the examples shown in FIGS. 1, 10, and 11, the plurality of reinforcing via conductors 9 are arranged so as not to be exposed to the outside.
  • the plurality of resin layers have a thermoplastic resin as a main component.
  • the resin layers can be bonded by heating and pressurizing after laminating the respective resin layers in order, thereby facilitating production.
  • the resin sheet with conductor foil 12 is a sheet having a structure in which the conductor foil 17 is attached to one surface of the resin layer 2.
  • the resin layer 2 is made of, for example, LCP (liquid crystal polymer) that is a thermoplastic resin.
  • the material of the resin layer 2 may be PEEK (polyetheretherketone), PEI (polyetherimide), PPS (poniphenylene sulfide), PI (polyimide), etc. in addition to LCP.
  • the conductor foil 17 is a 18 ⁇ m thick foil made of Cu, for example.
  • the material of the conductor foil 17 may be Ag, Al, SUS, Ni, Au other than Cu, or may be an alloy of two or more different metals selected from these metals.
  • the conductor foil 17 has a thickness of 18 ⁇ m, but the conductor foil 17 may have a thickness of about 3 to 40 ⁇ m.
  • the conductor foil 17 may be any thickness that allows circuit formation.
  • via holes 11 are formed so as to penetrate the resin layer 2 by irradiating the surface of the resin sheet 12 with conductor foil on the resin layer 2 side with a carbon dioxide laser beam.
  • the via hole 11 penetrates the resin layer 2 but does not penetrate the conductor foil 17.
  • the smear (not shown) of the via hole 11 is removed.
  • carbon dioxide laser light is used to form the via hole 11, but other types of laser light may be used.
  • a method other than laser beam irradiation may be employed to form the via hole 11.
  • a resist pattern 13 corresponding to a desired circuit pattern is printed on the surface of the conductor foil 17 of the resin sheet 12 with the conductor foil by a method such as screen printing.
  • etching is performed using the resist pattern 13 as a mask, and the portion of the conductor foil 17 that is not covered with the resist pattern 13 is removed as shown in FIG. Thereafter, as shown in FIG. 17, the resist pattern 13 is removed. Thus, a desired conductor pattern 7 is obtained on one surface of the resin layer 2.
  • the via hole 11 is filled with a conductive paste by screen printing or the like. Screen printing is performed from the lower surface in FIG. In FIG. 18, for convenience of explanation, the via hole 11 is displayed in a posture facing downward, but in practice, screen printing may be performed by changing the posture as appropriate.
  • the conductive paste to be filled may be mainly composed of silver as described above, but may instead be composed mainly of copper, for example.
  • This conductive paste forms an alloy layer with the metal that is the material of the conductor pattern 7 at the temperature when the laminated resin layer is thermocompression bonded (hereinafter referred to as “thermocompression temperature”). It is preferable that the metal powder contains an appropriate amount.
  • this conductive paste contains copper, that is, Cu as a main component for exerting conductivity
  • this conductive paste includes at least one of Ag, Cu, and Ni in addition to the main component, and Sn, Bi, Zn. It is preferable that at least one of them is included.
  • the via conductor 6 and the reinforcing via conductor 9 are formed by filling with the conductive paste. This is merely an example, and actually, there may be a resin layer 2 in which only the via conductor 6 is formed, or there may be a resin layer 2 in which only the reinforcing via conductor 9 is formed. Since the resin layer 2 is to be laminated and assembled later, via conductors 6 and / or reinforcing via conductors 9 are formed in the plurality of resin layers 2 in accordance with the design.
  • a through hole having the same area as the projected area of the component 3 or an area larger than the projected area of the component 3 is formed as the component accommodating hole 14 by punching the resin layer 2.
  • the plurality of resin layers 2 that are to be laminated there may be a part in which the component accommodation hole 14 is formed and a part in which the part accommodation hole 14 is not formed.
  • the component accommodation holes 14 are formed only in the resin layer 2 where the component accommodation holes 14 are to be formed.
  • a plurality of resin layers 2 are stacked to form a substrate.
  • the surface of the resin layer 2 on which the conductor pattern 7 is formed is used facing downward so that the conductor pattern 7 is disposed on the lower surface of the substrate.
  • the conductor pattern 7 disposed on the lower surface of the substrate becomes the external electrode 18.
  • the resin layer 2 in which the component accommodation holes 14 are not formed is used.
  • the resin layer 2 in which the component accommodation holes 14 are not formed is arranged in one layer, or two or more layers are laminated, and then the resin layer 2 in which the component accommodation holes 14 are formed is laminated.
  • the resin layer 2 in which the component accommodation holes 14 are formed is laminated.
  • two resin layers 2 in which the component accommodation holes 14 are formed are stacked.
  • a component accommodating portion 15 is formed by combining two or more component accommodating holes 14.
  • the component accommodating portion 15 is a recess having a depth enough to accommodate the component 3.
  • the reinforcing via conductor 9 is arranged around the component housing portion 15.
  • the reinforcing via conductor 9 is disposed so as to surround the component housing portion 15 while being separated from the component housing portion 15. At this time, the upper surface of the reinforcing via conductor 9 may be exposed.
  • the component 3 is inserted into the component accommodating portion 15.
  • the resin layer 2 is disposed so as to cover the upper side of the component 3.
  • the resin layer 2 is disposed so that the conductor pattern 7 is exposed on the upper surface of the substrate.
  • the conductor pattern 7 formed on the resin layer 2 located on the uppermost surface of the substrate serves as an external electrode 19 for mounting other IC components and the like.
  • the upper surface of the reinforcing via conductor 9 is covered with the resin layer 2.
  • only one resin layer 2 is covered as compared with FIG. 21, but not limited to one layer, two or more layers may be covered.
  • thermocompression bonding means the temperature of the main compression bonding.
  • the material of the resin layer 2 is a thermoplastic resin
  • the material of the resin layer 2 softens and flows by thermocompression bonding, the gap around the component 3 is filled with the flow of the material of the peripheral resin layer 2.
  • the surface of the external electrodes 18 and 19 formed on the upper and lower surfaces of the component-embedded resin substrate is plated with Ni, Au or the like.
  • a component-embedded resin substrate 1j is obtained as shown in FIG.
  • a resin substrate with a built-in component that is essentially the same as that described in Embodiment 1 can be obtained by stacking and thermocompression-bonding resin layers that have undergone predetermined processing.
  • the example in which the final pressure bonding is performed after the temporary pressure bonding is performed once is shown.
  • the number of the temporary pressure bonding may be two times or more instead of one time. It is good also as finishing only by this pressure bonding, without performing temporary pressure bonding at all.
  • the reinforcing via conductor via conductors formed for each resin layer are connected side by side in the thickness direction and illustrated as being over multiple layers. It is not limited to such a structure, but may be formed by other methods.
  • the reinforcing via conductor is provided with a concave portion that spans a plurality of layers in the thickness direction in a region where the reinforcing via conductor is to be formed, and a conductor having a height that spans the plurality of layers in the thickness direction is provided in the concave portion. It may be formed by filling as a conductor paste or inserting as a conductor block.
  • the number of components arranged inside one substrate is 1 is shown, but a configuration in which a plurality of components are arranged inside one substrate may be used.
  • the plurality of components arranged inside one substrate are not necessarily the same structure, and may be components having different structures.
  • the material of the resin layer 2 is not limited to a thermoplastic resin but may be a thermosetting resin.
  • the material of the resin layer 2 may be other resins.
  • the present invention can be used for a component-embedded resin substrate.
  • 1, 1i, 1j Component built-in resin substrate, 2 resin layer, 3 component, 3a, 3b (component) electrode, 4 (insulating layer and component) interface, 5 (insulating layer-to-insulator) interface, 6, 6n via Conductor, 7 conductor pattern, 8 first group, 9, 9j, 9k reinforcing via conductor, 10 wiring pattern, 11 via hole, 12 resin sheet with conductive foil, 13 resist pattern, 14 component receiving hole, 15 component receiving part, 17 (Before patterning) Conductor foil, 18, 19 External electrode, 101 (Conventional) Component-embedded resin substrate.

Abstract

A substrate (1) with a built-in electronic component comprises a plurality of resin layers (2) laminated to each other and a component (3) disposed so as to be surrounded while being in contact with various resin layers (2) of a first group (8) of two or more of the resin layers (2) which are disposed continuously in the direction of thickness that includes the plurality of resin layers (2). A plurality of reinforcing via conductors (9) are disposed so as to pass through at least one of the resin layers (2) in the first group (8) and to follow at least part of the outline of the component (3) in a planar view. The plurality of reinforcing via conductors (9) is via conductors that do not come into contact with any other circuit or are ones that are grounded.

Description

部品内蔵樹脂基板Component built-in resin substrate
 本発明は、部品内蔵樹脂基板に関するものである。 The present invention relates to a component-embedded resin substrate.
 熱可塑性樹脂からなる絶縁層と導体パターンとが交互に積層されることによって形成された部品内蔵基板の一例が特開2007-305674号公報(特許文献1)に記載されている。この文献によれば、基板の内部にチップ抵抗などの電子部品が内蔵されており、配線によって他の電子部品と接続されている。この部品内蔵基板においては、異なる高さにある導体パターン同士を電気的に接続するために、絶縁層を厚み方向に貫通するようにビア導体と呼ばれる部材が形成されている。電子部品は、部品内蔵基板の内部に完全に覆い隠されており、複数ある絶縁層のうちの一部によって取り囲まれる状態となっている。電子部品が配置されている高さの層においては、熱可塑性樹脂からなる絶縁層が電子部品の外周に直接密着するようにして電子部品の外周を完全に取り囲んでいる。 An example of a component-embedded substrate formed by alternately laminating insulating layers and conductor patterns made of a thermoplastic resin is described in Japanese Patent Application Laid-Open No. 2007-305664 (Patent Document 1). According to this document, an electronic component such as a chip resistor is built in the substrate and is connected to another electronic component by wiring. In this component built-in substrate, in order to electrically connect conductor patterns at different heights, members called via conductors are formed so as to penetrate the insulating layer in the thickness direction. The electronic component is completely covered and hidden inside the component-embedded substrate and is surrounded by a part of the plurality of insulating layers. In the height layer where the electronic component is disposed, an insulating layer made of a thermoplastic resin directly surrounds the outer periphery of the electronic component so as to completely surround the outer periphery of the electronic component.
 従来技術に基づく部品内蔵樹脂基板の一例を図23に示す。この例では、部品内蔵樹脂基板101の内部で、絶縁層としての樹脂層2が部品3の外周に直接密着するようにして電子部品としての部品3の外周を完全に取り囲んでいる。部品内蔵樹脂基板101は、複数のビア導体6と、複数の導体パターン7とを内部に含んでいる。部品3は図24に示すように直方体であり、両端部にそれぞれ電極3a,3bを有する。図23に示すように部品3の電極3a,3bにはそれぞれビア導体6nが接続されている。 FIG. 23 shows an example of a resin substrate with a built-in component based on the conventional technology. In this example, inside the component-embedded resin substrate 101, the resin layer 2 as an insulating layer is in direct contact with the outer periphery of the component 3 so as to completely surround the outer periphery of the component 3 as an electronic component. The component built-in resin substrate 101 includes a plurality of via conductors 6 and a plurality of conductor patterns 7 therein. The component 3 is a rectangular parallelepiped as shown in FIG. 24, and has electrodes 3a and 3b at both ends, respectively. As shown in FIG. 23, via conductors 6n are connected to the electrodes 3a and 3b of the component 3, respectively.
特開2007-305674号公報JP 2007-305694 A
 上述の部品内蔵樹脂基板においては、基板自体を変形させると、内蔵された部品の周りにおいて熱可塑性樹脂からなる絶縁層が剥がれる場合があるという問題があった。これは、図23に示す例でいえば、部品内蔵樹脂基板101の内部で、絶縁層としての樹脂層2と部品3とが当接する界面4がまず剥がれ、この界面4の剥離部分を起点として樹脂層2同士の界面5に亀裂が進展するという問題である。 The above-described component-embedded resin substrate has a problem that when the substrate itself is deformed, an insulating layer made of a thermoplastic resin may be peeled around the built-in component. In the example shown in FIG. 23, the interface 4 where the resin layer 2 as the insulating layer and the component 3 come into contact with each other is first peeled off inside the component-embedded resin substrate 101. The problem is that cracks propagate at the interface 5 between the resin layers 2.
 そこで、本発明は、たとえ基板自体を変形させたときでも、内蔵された部品の周りにおいて熱可塑性樹脂からなる絶縁層が剥がれることを低減した部品内蔵樹脂基板を提供することを目的とする。 Accordingly, an object of the present invention is to provide a component-embedded resin substrate in which the insulating layer made of a thermoplastic resin is prevented from peeling around the built-in component even when the substrate itself is deformed.
 上記目的を達成するため、本発明に基づく部品内蔵樹脂基板は、互いに積層された複数の樹脂層と、上記複数の樹脂層に含まれる厚み方向に連続して配置される2以上の樹脂層の群である第1群の各樹脂層によって接しつつ取り囲まれるように配置された部品とを備え、上記第1群に属する少なくともいずれかの上記樹脂層を貫通し、かつ、平面的に見て上記部品の外形の少なくとも一部に沿うように、他のいずれの回路とも接続されないかまたは接地されたビア導体である複数の補強用ビア導体が配置されている。この構成を採用することにより、部品の周囲に複数の補強用ビア導体が配置されているので、部品の周囲の領域の剛性が高くなる。したがって、たとえ部品内蔵樹脂基板を曲げても部品の周辺は曲がりにくくなり、その結果、たとえ基板自体を変形させたときでも、内蔵された部品の周りにおいて熱可塑性樹脂からなる絶縁層が剥がれることを低減させることができる。 In order to achieve the above object, a component-embedded resin substrate according to the present invention includes a plurality of resin layers stacked on each other and two or more resin layers continuously arranged in the thickness direction included in the plurality of resin layers. Parts arranged so as to be surrounded by and in contact with each resin layer of the first group which is a group, penetrating through at least one of the resin layers belonging to the first group, and in plan view, A plurality of reinforcing via conductors, which are via conductors that are not connected to any other circuit or are grounded, are arranged along at least a part of the outer shape of the component. By adopting this configuration, since a plurality of reinforcing via conductors are arranged around the part, the rigidity of the area around the part is increased. Therefore, even if the resin substrate with a built-in component is bent, the periphery of the component is difficult to bend, and as a result, even when the substrate itself is deformed, the insulating layer made of thermoplastic resin is peeled around the built-in component. Can be reduced.
 上記発明において好ましくは、上記複数の補強用ビア導体は、平面的に見て点状のものが複数並んで配列されることによって上記部品の外形線の少なくとも一部に沿うように配置されている。この構成を採用することにより、少なくともその一部の外形線においては、部品の界面に到達する変形を緩和することができる。 Preferably, in the above invention, the plurality of reinforcing via conductors are arranged along at least a part of the outline of the component by arranging a plurality of point-like ones in a plan view. . By adopting this configuration, it is possible to alleviate the deformation that reaches the interface of the component at least in part of the outline.
 上記発明において好ましくは、上記複数の補強用ビア導体は、厚み方向に関して上記第1群の全てにまたがるように配置されている。この構成を採用することにより、補強用ビア導体は部品の側面をより広い範囲で覆うことができるので、部品の側面に大きな変形が伝わることをより確実に防ぐことができる。 Preferably, in the above invention, the plurality of reinforcing via conductors are arranged so as to extend over all of the first group in the thickness direction. By adopting this configuration, the reinforcing via conductor can cover the side surface of the component in a wider range, so that it is possible to more reliably prevent a large deformation from being transmitted to the side surface of the component.
 上記発明において好ましくは、上記複数の補強用ビア導体は、外部に露出しないように配置されている。この構成を採用することにより、水分が侵入することをより確実に防ぐことができる。 In the above invention, preferably, the plurality of reinforcing via conductors are arranged so as not to be exposed to the outside. By adopting this configuration, it is possible to more reliably prevent moisture from entering.
 上記発明において好ましくは、上記複数の補強用ビア導体は、平面的に見て上記部品の外周を取り囲むように配置されている。この構成を採用することにより、基板全体に生じる変形から部品近傍の領域をより確実に保護することができる。 Preferably, in the above invention, the plurality of reinforcing via conductors are arranged so as to surround the outer periphery of the component in plan view. By adopting this configuration, it is possible to more reliably protect the area in the vicinity of the component from the deformation that occurs in the entire substrate.
 上記発明において好ましくは、上記複数の樹脂層は、熱可塑性樹脂を主成分とする。この構成を採用することにより、各樹脂層を順に積層した後に加熱して加圧することによって圧着させることができるので作製が容易となる。 In the above invention, preferably, the plurality of resin layers are mainly composed of a thermoplastic resin. By adopting this configuration, the resin layers can be bonded by heating and pressurizing after laminating the respective resin layers in order, thereby facilitating production.
本発明に基づく実施の形態1における部品内蔵樹脂基板の断面図である。It is sectional drawing of the resin substrate with a built-in component in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板に含まれる部品と複数の補強用ビア導体と配線パターンとの平面的位置関係を示す透視図である。It is a perspective view which shows the planar positional relationship of the component contained in the component built-in resin substrate in Embodiment 1 based on this invention, several reinforcement via conductors, and a wiring pattern. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第1の変形例に含まれる部品と複数の補強用ビア導体と配線パターンとの平面的位置関係を示す透視図である。It is a perspective view which shows the planar positional relationship of the component contained in the 1st modification of the component-embedded resin substrate in Embodiment 1 based on this invention, several reinforcement via conductors, and a wiring pattern. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第2の変形例に関する説明図である。It is explanatory drawing regarding the 2nd modification of the component built-in resin substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第3の変形例に関する説明図である。It is explanatory drawing regarding the 3rd modification of the component built-in resin substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第4の変形例に関する説明図である。It is explanatory drawing regarding the 4th modification of the component built-in resin substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第5の変形例に関する説明図である。It is explanatory drawing regarding the 5th modification of the resin substrate with a built-in component in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第6の変形例に関する説明図である。It is explanatory drawing regarding the 6th modification of the component built-in resin substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第7の変形例に関する説明図である。It is explanatory drawing regarding the 7th modification of the resin substrate with a built-in component in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第8の変形例の部分断面図である。It is a fragmentary sectional view of the 8th modification of the component built-in resin substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第9の変形例の部分断面図である。It is a fragmentary sectional view of the 9th modification of the component built-in resin substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における部品内蔵樹脂基板の第10の変形例の部分断面図である。It is a fragmentary sectional view of the 10th modification of the component built-in resin substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第1工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第2工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第3工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the resin board with a built-in component in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第4工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第5工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第6工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第7工程の説明図である。It is explanatory drawing of the 7th process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第8工程の説明図である。It is explanatory drawing of the 8th process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第9工程の説明図である。It is explanatory drawing of the 9th process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法の第10工程の説明図である。It is explanatory drawing of the 10th process of the manufacturing method of the component built-in resin substrate in Embodiment 2 based on this invention. 従来技術に基づく部品内蔵樹脂基板の断面図である。It is sectional drawing of the component built-in resin substrate based on a prior art. 従来技術に基づく部品の斜視図である。It is a perspective view of the components based on a prior art.
 (実施の形態1)
 図1、図2を参照して、本発明に基づく実施の形態1における部品内蔵樹脂基板1について説明する。本実施の形態における部品内蔵樹脂基板1の断面図を図1に示す。部品内蔵樹脂基板1の内部における部品3と複数の補強用ビア導体9と配線パターン10との平面的位置関係を図2に示す。図1、図2では、内部に配置されるビア導体6および導体パターン7を図示省略しているが、部品内蔵樹脂基板1は、図23に示した部品内蔵樹脂基板101と同様に、ビア導体6および導体パターン7を適宜備えていてもよい。ビア導体6はたとえばレーザ加工によってあけられた貫通孔に銀を含む導電性ペーストを充填して固めたものであってよい。導体パターン7はたとえば銅箔で形成されたパターンであってよい。本実施の形態における部品内蔵樹脂基板1は、互いに積層された複数の樹脂層2と、前記複数の樹脂層2に含まれる厚み方向に連続して配置される2以上の樹脂層2の群である第1群8の各樹脂層2によって接しつつ取り囲まれるように配置された部品3とを備える。第1群8に属する少なくともいずれかの樹脂層2を貫通し、かつ、平面的に見て部品3の外形の少なくとも一部に沿うように、複数の補強用ビア導体9が配置されている。複数の補強用ビア導体9は、他のいずれの回路とも接続されないかまたは接地されたビア導体である。複数の補強用ビア導体9が他のいずれの回路とも接続されない場合、補強用ビア導体9は、電気的に孤立したダミーの導電性構造体とみなすことができる。複数の補強用ビア導体9が接地されている場合、補強用ビア導体9はグランド配線またはグランド電極に接続されていてよい。複数の補強用ビア導体9は、部品3から離隔して配置されている。補強用ビア導体9と部品3との間には樹脂層2の一部が入り込んでいる。
(Embodiment 1)
With reference to FIGS. 1 and 2, a component-embedded resin substrate 1 according to the first embodiment of the present invention will be described. A cross-sectional view of the component-embedded resin substrate 1 in the present embodiment is shown in FIG. FIG. 2 shows a planar positional relationship among the component 3, the plurality of reinforcing via conductors 9, and the wiring pattern 10 in the component-embedded resin substrate 1. In FIG. 1 and FIG. 2, the via conductor 6 and the conductor pattern 7 disposed inside are omitted, but the component-embedded resin substrate 1 is similar to the component-embedded resin substrate 101 shown in FIG. 6 and conductor pattern 7 may be provided as appropriate. For example, the via conductor 6 may be formed by filling a through-hole formed by laser processing with a conductive paste containing silver and hardening it. The conductor pattern 7 may be a pattern formed of, for example, copper foil. The component-embedded resin substrate 1 in the present embodiment is a group of a plurality of resin layers 2 stacked on each other and two or more resin layers 2 arranged continuously in the thickness direction included in the plurality of resin layers 2. And a component 3 arranged so as to be surrounded by each resin layer 2 of a certain first group 8. A plurality of reinforcing via conductors 9 are arranged so as to pass through at least one of the resin layers 2 belonging to the first group 8 and along at least a part of the outer shape of the component 3 when viewed in plan. The plurality of reinforcing via conductors 9 are via conductors that are not connected to any other circuit or are grounded. When the plurality of reinforcing via conductors 9 are not connected to any other circuit, the reinforcing via conductors 9 can be regarded as electrically isolated dummy conductive structures. When the plurality of reinforcing via conductors 9 are grounded, the reinforcing via conductors 9 may be connected to the ground wiring or the ground electrode. The plurality of reinforcing via conductors 9 are spaced apart from the component 3. Part of the resin layer 2 enters between the reinforcing via conductor 9 and the component 3.
 部品内蔵樹脂基板1に含まれる部品3は、電子部品の一例である。部品3は、図24に示したような直方体の外形を有し、両端部に電極3a,3bを備える。電極3a,3bは両端部において部品3の本体を取り囲むように設けられている。部品3はたとえばセラミック・コンデンサであってよい。電極3a,3bは、それぞれビア導体6nを介して配線パターン10に電気的に接続されている。図1ではビア導体6nは部品3から下方に引き出されているが、これはあくまで一例であって、引き出す方向は下方に限らない。部品に電気的に接続する部材は他の方向に引き出す構成であってもよい。ビア導体6nは、図23に示したビア導体と同様の方法で形成されるものであってよい。 The component 3 included in the component-embedded resin substrate 1 is an example of an electronic component. The component 3 has a rectangular parallelepiped outer shape as shown in FIG. 24, and includes electrodes 3a and 3b at both ends. The electrodes 3a and 3b are provided so as to surround the main body of the component 3 at both ends. The component 3 may be a ceramic capacitor, for example. The electrodes 3a and 3b are electrically connected to the wiring pattern 10 through via conductors 6n, respectively. In FIG. 1, the via conductor 6 n is drawn downward from the component 3, but this is only an example, and the drawing direction is not limited to the downward direction. The member electrically connected to the component may be configured to be pulled out in another direction. The via conductor 6n may be formed by the same method as the via conductor shown in FIG.
 図2に示すように、複数の補強用ビア導体9は、部品3から離隔した状態で部品3を取り囲むように点線状に配置されている。図2では、手前に複数の補強用ビア導体9が見え、奥に配線パターン10が見えている。図1に示したように、配線パターン10は複数の補強用ビア導体9とは異なる高さに位置する。図2に示すように、配線パターン10は、平面的に見て補強用ビア導体9が取り囲んでいる領域より外側にまで延在している。 As shown in FIG. 2, the plurality of reinforcing via conductors 9 are arranged in dotted lines so as to surround the component 3 in a state of being separated from the component 3. In FIG. 2, a plurality of reinforcing via conductors 9 can be seen in front, and a wiring pattern 10 can be seen in the back. As shown in FIG. 1, the wiring pattern 10 is located at a different height from the plurality of reinforcing via conductors 9. As shown in FIG. 2, the wiring pattern 10 extends to the outside from the region surrounded by the reinforcing via conductor 9 when viewed in plan.
 補強用ビア導体9は、ビア導体6,6nと同様に、レーザ加工であけられた貫通孔に導電性ペーストを充填して固めたものであってよいが、樹脂層2を厚み方向に貫通するように配置された、他の公知の方法で形成された導電性のブロックであってもよい。補強用ビア導体9の材質として、銅、銀、アルミニウム、ニッケル、金あるいはこれらの中から選択される2以上の金属の合金は、剛性を高めるに当たって好ましい。 Similarly to the via conductors 6 and 6n, the reinforcing via conductor 9 may be formed by filling a through-hole formed by laser processing with a conductive paste and solidifying, but penetrates the resin layer 2 in the thickness direction. It may be a conductive block formed by other known methods arranged in the above manner. As the material of the reinforcing via conductor 9, copper, silver, aluminum, nickel, gold, or an alloy of two or more metals selected from these is preferable for increasing the rigidity.
 本実施の形態における部品内蔵樹脂基板1では、部品3の周囲に複数の補強用ビア導体9が配置されているので、部品3の周囲の領域の剛性が高くなる。したがって、たとえ部品内蔵樹脂基板1を曲げても部品3の周辺は曲がりにくくなる。その結果、たとえ基板自体を変形させたときでも、内蔵された部品3の周りにおいて熱可塑性樹脂からなる絶縁層が剥がれることを低減させることができる。 In the component-embedded resin substrate 1 in the present embodiment, since the plurality of reinforcing via conductors 9 are disposed around the component 3, the rigidity of the region around the component 3 is increased. Therefore, even if the component-embedded resin substrate 1 is bent, the periphery of the component 3 is difficult to bend. As a result, even when the substrate itself is deformed, it is possible to reduce the peeling of the insulating layer made of the thermoplastic resin around the built-in component 3.
 複数の補強用ビア導体9は、他のいずれの回路とも接続されないかまたは接地されているので、基本的には、自らノイズを発生することはなく、部品3や他の回路の動作に対して電気的に悪影響を及ぼすことはない。 Since the plurality of reinforcing via conductors 9 are not connected to any other circuit or are grounded, basically, the plurality of reinforcing via conductors 9 do not generate noise themselves, and the operation of the component 3 and other circuits is not caused. There is no adverse electrical effect.
 なお、図2に示したように、複数の補強用ビア導体9は、平面的に見て部品3の外周を取り囲むように配置されていることが好ましい。このように取り囲む構成であれば、基板全体に生じる変形から部品3近傍の領域をより確実に保護することができるからである。したがって、部品3近傍に大きな変形が伝わることを防ぐことができ、その結果、部品3の周りにおいて熱可塑性樹脂からなる絶縁層が剥がれることを低減させることができる。 Note that, as shown in FIG. 2, the plurality of reinforcing via conductors 9 are preferably arranged so as to surround the outer periphery of the component 3 in plan view. This is because such a surrounding configuration can more reliably protect the area in the vicinity of the component 3 from the deformation occurring in the entire substrate. Therefore, it is possible to prevent a large deformation from being transmitted to the vicinity of the component 3, and as a result, it is possible to reduce the peeling of the insulating layer made of the thermoplastic resin around the component 3.
 平面的に見て部品3の外周を取り囲まない配置の例としては、たとえば図3に示す部品内蔵樹脂基板1iのようなものが考えられる。部品内蔵樹脂基板1iにおいては、補強用ビア導体9は部品3の外周を完全に取り囲んでいるわけではなく、部品3の4つの辺のうち平行な2本の長辺にのみ沿うように配列されている。図2に示した例に比べれば効果は劣るが、図3に示す構成であっても、基板全体に生じる変形から部品3を保護することに関して、一定の効果を得ることができる。なお、ここでは長辺に沿うように配列されていたが、図4に示すように、短辺のみに沿うような配置であっても一応の効果を得ることはできる。ただし、部品3が平面的に見て長方形である場合には長辺に沿うように配置されていることが好ましい。また、複数の補強用ビア導体9は、部品3の平行な2辺に限らず、図5に示すように隣接する2辺に配置することとしても一定の効果を得ることができる。あるいは、複数の補強用ビア導体9は、図6または図7に示すように部品3の1つの辺のみに沿うように配列された構成であっても、部品3の2辺以上に沿うように配列した構成に比べれば劣るが、ある程度の効果を得ることができる。部品内蔵樹脂基板1を特定の方向に曲げて用いる場合には、特にその折れ曲がる部分に補強用ビア導体9を配置すると効果的である。なお、図4以降の平面図では、説明の便宜上、部品3および補強用ビア導体9のみを表示し、他の構成は図示省略している。 As an example of the arrangement that does not surround the outer periphery of the component 3 in plan view, for example, a component-embedded resin substrate 1i shown in FIG. In the component-embedded resin substrate 1 i, the reinforcing via conductor 9 does not completely surround the outer periphery of the component 3, but is arranged only along two parallel long sides of the four sides of the component 3. ing. Compared with the example shown in FIG. 2, the effect is inferior, but even with the configuration shown in FIG. 3, a certain effect can be obtained with respect to protecting the component 3 from the deformation generated in the entire substrate. In addition, although it arranged here along a long side here, as shown in FIG. 4, even if it is arrangement | positioning along only a short side, a temporary effect can be acquired. However, when the component 3 is rectangular when viewed in plan, it is preferably arranged along the long side. In addition, the plurality of reinforcing via conductors 9 are not limited to two parallel sides of the component 3, and a certain effect can be obtained by arranging them on two adjacent sides as shown in FIG. 5. Alternatively, even if the plurality of reinforcing via conductors 9 are arranged along only one side of the part 3 as shown in FIG. 6 or FIG. Although it is inferior to the arrangement in the arrangement, a certain effect can be obtained. When the component-embedded resin substrate 1 is bent and used in a specific direction, it is particularly effective to dispose the reinforcing via conductor 9 in the bent portion. In the plan view of FIG. 4 and subsequent figures, for convenience of explanation, only the component 3 and the reinforcing via conductor 9 are shown, and other components are not shown.
 言い換えれば、複数の補強用ビア導体は、平面的に見て点状のものが複数並んで配列されることによって前記部品の外形線の少なくとも一部に沿うように配置されていることが好ましい。このように部品の外形線の少なくとも一部に沿うように配置されていれば、少なくともその一部の外形線においては、部品の界面に到達する変形を緩和することができるからである。また、複数の補強用ビア導体は、図2~図7に示したように点状のものであれば、従来のビア導体と同様の形状であるので、従来のビア導体を同様の方法で作製することができ、好都合である。また、補強用ビア導体が点状のものであれば、複数の樹脂層2を圧着する際の樹脂流れをあまり妨げずに配置することができるので、設計上も自由度が上がって好ましい。 In other words, it is preferable that the plurality of reinforcing via conductors are arranged along at least a part of the outline of the component by arranging a plurality of dot-like conductors in a plan view. This is because, if the arrangement is made along at least a part of the outline of the component, the deformation reaching the interface of the component can be mitigated at least in a part of the outline. Further, since the plurality of reinforcing via conductors have the same shape as conventional via conductors as long as they are point-shaped as shown in FIGS. 2 to 7, conventional via conductors are manufactured by the same method. Can be convenient. In addition, if the reinforcing via conductor is a dot-like one, it can be arranged without hindering the resin flow when the plurality of resin layers 2 are pressure-bonded so that the degree of freedom in design is increased.
 なお、本発明で用いられる補強用ビア導体は点状のものに限らず、線状のものであってもよい。たとえば図8に示す補強用ビア導体9jのように多少長い形状のものが破線状に配列されてもよい。また、図9に示す補強用ビア導体9kのように、部品3の外形辺の長さにほぼ等しいほどの長さのものであってもよい。図9に示した例においても、平面図で見て、補強用ビア導体9kは部品3の周囲を完全に取り囲んでいるわけではなく、途切れている箇所があるが、この代わりに、補強用ビア導体が部品の周囲を完全に連続して取り囲む構造としてもよい。しかし、いずれかの箇所で途切れている構造の方が複数の樹脂層2を圧着する際の樹脂流れを妨げず、作製が容易であるので現実的である。 The reinforcing via conductor used in the present invention is not limited to a point-like one, and may be a linear one. For example, a somewhat long shape like the reinforcing via conductor 9j shown in FIG. 8 may be arranged in a broken line. Further, like the reinforcing via conductor 9 k shown in FIG. 9, the length may be approximately equal to the length of the outer side of the component 3. In the example shown in FIG. 9 as well, the reinforcing via conductor 9k does not completely surround the part 3 and has a broken portion as seen in a plan view. A structure in which the conductor surrounds the part completely continuously may be adopted. However, the structure that is interrupted at any point is more realistic because it does not hinder the resin flow when the plurality of resin layers 2 are pressure-bonded and is easy to manufacture.
 なお、本実施の形態で図1に示したように、前記複数の補強用ビア導体は、厚み方向に関して前記第1群の全てにまたがるように配置されていることが好ましい。たとえば図10に示す例では、部品3は樹脂層2の3層分の厚みを有するので、第1群8は3層の樹脂層2からなるが、補強用ビア導体9はそのうちの2層にしかまたがっていない。このような構成であっても、一定の効果は得られるが、図11に示す例のように、補強用ビア導体9が第1群8の3層全てにまたがるように配置されている方が好ましい。このような構成であれば、補強用ビア導体9は部品3の側面をより広い範囲で覆うことができるので、部品3の側面に大きな変形が伝わることをより確実に防ぐことができる。その結果、部品3の周りにおいて熱可塑性樹脂からなる絶縁層が剥がれることを低減させることができる。 Note that, as shown in FIG. 1 in the present embodiment, the plurality of reinforcing via conductors are preferably arranged so as to extend over all of the first group in the thickness direction. For example, in the example shown in FIG. 10, since the component 3 has a thickness corresponding to three layers of the resin layer 2, the first group 8 is composed of the three resin layers 2, but the reinforcing via conductor 9 is formed in two of them. It only straddles. Even with such a configuration, a certain effect can be obtained. However, as in the example shown in FIG. 11, it is preferable that the reinforcing via conductors 9 are arranged so as to extend over all three layers of the first group 8. preferable. With such a configuration, the reinforcing via conductor 9 can cover the side surface of the component 3 in a wider range, so that it is possible to more reliably prevent a large deformation from being transmitted to the side surface of the component 3. As a result, peeling of the insulating layer made of the thermoplastic resin around the component 3 can be reduced.
 複数の補強用ビア導体は、厚み方向に関して前記第1群の全てにまたがるのみならず、さらに厚み方向に第1群を超えて延在するものであってもよい。 The plurality of reinforcing via conductors may not only extend across all of the first group in the thickness direction, but may extend beyond the first group in the thickness direction.
 複数の補強用ビア導体9は、外部に露出しないように配置されていることが好ましい。図12に示すように補強用ビア導体9が外部に露出した構成であっても変形を抑える効果はある程度得られるが、このような構成では、外部に露出する部分から水分が侵入するおそれがある。複数の補強用ビア導体9は、外部に露出しないように配置されていれば、水分が侵入することをより確実に防ぐことができるので、好ましい。図1、図10、図11に示した例ではいずれも、複数の補強用ビア導体9は外部に露出しないように配置されている。 The plurality of reinforcing via conductors 9 are preferably arranged so as not to be exposed to the outside. As shown in FIG. 12, even if the reinforcing via conductor 9 is exposed to the outside, an effect of suppressing deformation can be obtained to some extent. However, in such a configuration, moisture may enter from the exposed portion. . If the plurality of reinforcing via conductors 9 are arranged so as not to be exposed to the outside, it is preferable because moisture can be more reliably prevented from entering. In any of the examples shown in FIGS. 1, 10, and 11, the plurality of reinforcing via conductors 9 are arranged so as not to be exposed to the outside.
 前記複数の樹脂層は、熱可塑性樹脂を主成分とすることが好ましい。この構成を採用することにより、各樹脂層を順に積層した後に加熱して加圧することによって圧着させることができるので作製が容易となる。また、圧着時に流動化した樹脂に押されて部品が不所望に移動するという問題が考えられるが、補強用ビア導体が配置されていれば、流動化した樹脂の勢いを緩和することができるので、部品が不所望に移動する度合いを低減することができ、部品の配置精度を高めることができる。 It is preferable that the plurality of resin layers have a thermoplastic resin as a main component. By adopting this configuration, the resin layers can be bonded by heating and pressurizing after laminating the respective resin layers in order, thereby facilitating production. In addition, there may be a problem that parts are moved undesirably by being pressed by the fluidized resin at the time of crimping, but if the reinforcing via conductor is arranged, the momentum of the fluidized resin can be reduced. The degree to which the parts move undesirably can be reduced, and the placement accuracy of the parts can be increased.
 (実施の形態2)
 図13~図22を参照して、本発明に基づく実施の形態2における部品内蔵樹脂基板の製造方法について説明する。
(Embodiment 2)
A method for manufacturing a component-embedded resin substrate according to the second embodiment of the present invention will be described with reference to FIGS.
 まず、図13に示すような導体箔付き樹脂シート12を用意する。導体箔付き樹脂シート12は、樹脂層2の片面に導体箔17が付着した構造のシートである。樹脂層2は、たとえば熱可塑性樹脂であるLCP(液晶ポリマー)からなるものである。樹脂層2の材料としては、LCPの他に、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、PI(ポリイミド)などであってもよい。導体箔17は、たとえばCuからなる厚さ18μmの箔である。なお、導体箔17の材料はCu以外にAg、Al、SUS、Ni、Auであってもよく、これらの金属のうちから選択された2以上の異なる金属の合金であってもよい。本実施の形態では、導体箔17は厚さ18μmとしたが、導体箔17の厚みは3~40μm程度であってよい。導体箔17は、回路形成が可能な厚みであればよい。 First, a resin sheet 12 with a conductive foil as shown in FIG. 13 is prepared. The resin sheet with conductor foil 12 is a sheet having a structure in which the conductor foil 17 is attached to one surface of the resin layer 2. The resin layer 2 is made of, for example, LCP (liquid crystal polymer) that is a thermoplastic resin. The material of the resin layer 2 may be PEEK (polyetheretherketone), PEI (polyetherimide), PPS (poniphenylene sulfide), PI (polyimide), etc. in addition to LCP. The conductor foil 17 is a 18 μm thick foil made of Cu, for example. The material of the conductor foil 17 may be Ag, Al, SUS, Ni, Au other than Cu, or may be an alloy of two or more different metals selected from these metals. In this embodiment, the conductor foil 17 has a thickness of 18 μm, but the conductor foil 17 may have a thickness of about 3 to 40 μm. The conductor foil 17 may be any thickness that allows circuit formation.
 次に、図14に示すように、導体箔付き樹脂シート12の樹脂層2側の表面に炭酸ガスレーザ光を照射することによって樹脂層2を貫通するようにビア孔11を形成する。ビア孔11は、樹脂層2を貫通しているが導体箔17は貫通していない。その後、ビア孔11のスミア(図示せず)を除去する。ここではビア孔11を形成するために炭酸ガスレーザ光を用いたが、他の種類のレーザ光であってもよい。また、ビア孔11を形成するためにレーザ光照射以外の方法を採用してもよい。 Next, as shown in FIG. 14, via holes 11 are formed so as to penetrate the resin layer 2 by irradiating the surface of the resin sheet 12 with conductor foil on the resin layer 2 side with a carbon dioxide laser beam. The via hole 11 penetrates the resin layer 2 but does not penetrate the conductor foil 17. Thereafter, the smear (not shown) of the via hole 11 is removed. Here, carbon dioxide laser light is used to form the via hole 11, but other types of laser light may be used. In addition, a method other than laser beam irradiation may be employed to form the via hole 11.
 次に、図15に示すように、導体箔付き樹脂シート12の導体箔17の表面にスクリーン印刷などの方法で、所望の回路パターンに対応するレジストパターン13を印刷する。 Next, as shown in FIG. 15, a resist pattern 13 corresponding to a desired circuit pattern is printed on the surface of the conductor foil 17 of the resin sheet 12 with the conductor foil by a method such as screen printing.
 次に、レジストパターン13をマスクとしてエッチングを行ない、図16に示すように、導体箔17のうちレジストパターン13で被覆されていない部分を除去する。その後、図17に示すように、レジストパターン13を除去する。こうして樹脂層2の一方の表面に所望の導体パターン7が得られる。 Next, etching is performed using the resist pattern 13 as a mask, and the portion of the conductor foil 17 that is not covered with the resist pattern 13 is removed as shown in FIG. Thereafter, as shown in FIG. 17, the resist pattern 13 is removed. Thus, a desired conductor pattern 7 is obtained on one surface of the resin layer 2.
 次に、図18に示すように、ビア孔11に、スクリーン印刷などにより導電性ペーストを充填する。スクリーン印刷は、図18における下側の面から行なわれる。図18では説明の便宜上、ビア孔11が下方を向いた姿勢で表示しているが、実際には適宜姿勢を変えてスクリーン印刷を行なってよい。充填する導電性ペーストは上述したように銀を主成分とするものであってもよいが、その代わりにたとえば銅を主成分とするものであってもよい。この導電性ペーストは、のちに積層した樹脂層を熱圧着する際の温度(以下「熱圧着温度」という。)で、導体パターン7の材料である金属との間で合金層を形成するような金属粉を適量含むものであることが好ましい。この導電性ペーストは導電性を発揮するための主成分として銅すなわちCuを含むので、この導電性ペーストは主成分の他にAg,Cu,Niのうち少なくとも1種類と、Sn,Bi,Znのうち少なくとも1種類とを含むことが好ましい。図18では、導電性ペーストの充填により、ビア導体6および補強用ビア導体9が形成されている。これはあくまで一例であり、実際には、ビア導体6のみが形成される樹脂層2があってもよく、補強用ビア導体9のみが形成される樹脂層2があってもよい。樹脂層2はのちに積層して組み立てられるためのものであるので、複数の樹脂層2においてそれぞれ設計に従って、ビア導体6および/または補強用ビア導体9が形成される。 Next, as shown in FIG. 18, the via hole 11 is filled with a conductive paste by screen printing or the like. Screen printing is performed from the lower surface in FIG. In FIG. 18, for convenience of explanation, the via hole 11 is displayed in a posture facing downward, but in practice, screen printing may be performed by changing the posture as appropriate. The conductive paste to be filled may be mainly composed of silver as described above, but may instead be composed mainly of copper, for example. This conductive paste forms an alloy layer with the metal that is the material of the conductor pattern 7 at the temperature when the laminated resin layer is thermocompression bonded (hereinafter referred to as “thermocompression temperature”). It is preferable that the metal powder contains an appropriate amount. Since this conductive paste contains copper, that is, Cu as a main component for exerting conductivity, this conductive paste includes at least one of Ag, Cu, and Ni in addition to the main component, and Sn, Bi, Zn. It is preferable that at least one of them is included. In FIG. 18, the via conductor 6 and the reinforcing via conductor 9 are formed by filling with the conductive paste. This is merely an example, and actually, there may be a resin layer 2 in which only the via conductor 6 is formed, or there may be a resin layer 2 in which only the reinforcing via conductor 9 is formed. Since the resin layer 2 is to be laminated and assembled later, via conductors 6 and / or reinforcing via conductors 9 are formed in the plurality of resin layers 2 in accordance with the design.
 次に、図19に示すように、樹脂層2に対してパンチ加工により部品3の投影面積と同じ面積かまたは部品3の投影面積より大きい面積の貫通孔を部品収容孔14として形成する。積層される予定の複数の樹脂層2の中には、部品収容孔14が形成されるものと形成されないものとがあってよい。複数の樹脂層2においてそれぞれ設計に従い、部品収容孔14を形成すべき樹脂層2のみに部品収容孔14が形成される。 Next, as shown in FIG. 19, a through hole having the same area as the projected area of the component 3 or an area larger than the projected area of the component 3 is formed as the component accommodating hole 14 by punching the resin layer 2. Among the plurality of resin layers 2 that are to be laminated, there may be a part in which the component accommodation hole 14 is formed and a part in which the part accommodation hole 14 is not formed. In accordance with the design of each of the plurality of resin layers 2, the component accommodation holes 14 are formed only in the resin layer 2 where the component accommodation holes 14 are to be formed.
 図20に示すように、複数の樹脂層2を積層して基板を形成する。基板の最下層では、基板の下面に導体パターン7が配置されるよう、樹脂層2の導体パターン7が形成された側の面を下に向けて用いている。これにより基板の下面に配置された導体パターン7は外部電極18となる。基板の下面近傍では、部品収容孔14が形成されていない樹脂層2が用いられる。 As shown in FIG. 20, a plurality of resin layers 2 are stacked to form a substrate. In the lowermost layer of the substrate, the surface of the resin layer 2 on which the conductor pattern 7 is formed is used facing downward so that the conductor pattern 7 is disposed on the lower surface of the substrate. As a result, the conductor pattern 7 disposed on the lower surface of the substrate becomes the external electrode 18. In the vicinity of the lower surface of the substrate, the resin layer 2 in which the component accommodation holes 14 are not formed is used.
 部品収容孔14が形成されていない樹脂層2を1層配置するか、または2層以上積層した後に、部品収容孔14が形成された樹脂層2を積層する。図20に示した例では、部品収容孔14が形成されていない樹脂層2を1層配置した後に、部品収容孔14が形成された樹脂層2を2層重ねている。部品収容孔14が2層分以上組み合わさることによって、部品収容部15が形成されている。部品収容部15は部品3を収容することができるほどの深さを有する凹部である。 The resin layer 2 in which the component accommodation holes 14 are not formed is arranged in one layer, or two or more layers are laminated, and then the resin layer 2 in which the component accommodation holes 14 are formed is laminated. In the example shown in FIG. 20, after placing one resin layer 2 in which the component accommodation holes 14 are not formed, two resin layers 2 in which the component accommodation holes 14 are formed are stacked. A component accommodating portion 15 is formed by combining two or more component accommodating holes 14. The component accommodating portion 15 is a recess having a depth enough to accommodate the component 3.
 積層することによって、部品収容部15の周囲に補強用ビア導体9が配置された構造となる。補強用ビア導体9は、部品収容部15から離隔しつつ部品収容部15を取り囲むように配置されている。この時点では、補強用ビア導体9の上面は露出していてもよい。 By stacking, the reinforcing via conductor 9 is arranged around the component housing portion 15. The reinforcing via conductor 9 is disposed so as to surround the component housing portion 15 while being separated from the component housing portion 15. At this time, the upper surface of the reinforcing via conductor 9 may be exposed.
 部品収容部15が形成されるところまで樹脂層2を積層した時点で、熱圧着温度より低い温度で仮圧着する。仮圧着の温度は、たとえば150℃以上200℃以下である。仮圧着することにより、この時点までに積層した樹脂層2がつながり、部品収容部15が安定した凹部として形成される。 When the resin layer 2 is laminated until the part accommodating portion 15 is formed, temporary pressure bonding is performed at a temperature lower than the thermocompression bonding temperature. The temperature of the temporary pressure bonding is, for example, 150 ° C. or higher and 200 ° C. or lower. By temporarily press-bonding, the resin layers 2 laminated up to this point are connected, and the component housing portion 15 is formed as a stable recess.
 次に、図21に示すように、部品3を部品収容部15に挿入する。
 次に、図22に示すように、部品3の上側を覆うように、樹脂層2を配置する。この樹脂層2は、導体パターン7が基板の上面に露出するように配置する。基板の最上面に位置する樹脂層2に形成された導体パターン7は、他のIC部品などを実装するための外部電極19となる。補強用ビア導体9の上面は樹脂層2によって覆われる。図22に示した例では、図21に比べて樹脂層2を1層被せたのみとなっているが、1層に限らず2層以上被せてもよい。
Next, as shown in FIG. 21, the component 3 is inserted into the component accommodating portion 15.
Next, as shown in FIG. 22, the resin layer 2 is disposed so as to cover the upper side of the component 3. The resin layer 2 is disposed so that the conductor pattern 7 is exposed on the upper surface of the substrate. The conductor pattern 7 formed on the resin layer 2 located on the uppermost surface of the substrate serves as an external electrode 19 for mounting other IC components and the like. The upper surface of the reinforcing via conductor 9 is covered with the resin layer 2. In the example shown in FIG. 22, only one resin layer 2 is covered as compared with FIG. 21, but not limited to one layer, two or more layers may be covered.
 次に、この積層体を本圧着する。本圧着の工程では既に仮圧着された積層体および仮圧着より後から積層された樹脂層2の全体を一括して熱圧着する。本圧着の温度はたとえば250℃以上300℃以下である。上述の「熱圧着温度」は、この本圧着の温度を意味する。本圧着することにより、厚み方向に隣り合った樹脂層2同士は相互に接着されて一体的な絶縁基材が形成される。樹脂層2の材料が熱可塑性樹脂である場合、熱圧着することにより樹脂層2の材料が軟化し流動するため、部品3の周りの隙間は周辺の樹脂層2の材料の流動により埋められる。本圧着が済んだ後、部品内蔵樹脂基板の上面及び下面に形成された外部電極18,19の表面に、Ni、Auなどでめっき処理を施すことが好ましい。 Next, this laminate is subjected to main pressure bonding. In the final press-bonding process, the laminated body that has already been temporarily press-bonded and the entire resin layer 2 that has been stacked after the temporary press-bonding are collectively thermocompression bonded. The temperature of the main press bonding is, for example, 250 ° C. or more and 300 ° C. or less. The above-mentioned “thermocompression bonding temperature” means the temperature of the main compression bonding. By performing this pressure bonding, the resin layers 2 adjacent to each other in the thickness direction are bonded to each other to form an integral insulating substrate. When the material of the resin layer 2 is a thermoplastic resin, since the material of the resin layer 2 softens and flows by thermocompression bonding, the gap around the component 3 is filled with the flow of the material of the peripheral resin layer 2. After the main pressure bonding, it is preferable that the surface of the external electrodes 18 and 19 formed on the upper and lower surfaces of the component-embedded resin substrate is plated with Ni, Au or the like.
 こうして、図22に示すように、部品内蔵樹脂基板1jが得られる。
 本実施の形態では、所定の加工を施した樹脂層を積み重ねて熱圧着することにより、実施の形態1で説明したものと本質的に同様の部品内蔵樹脂基板を得ることができる。
In this way, a component-embedded resin substrate 1j is obtained as shown in FIG.
In the present embodiment, a resin substrate with a built-in component that is essentially the same as that described in Embodiment 1 can be obtained by stacking and thermocompression-bonding resin layers that have undergone predetermined processing.
 なお、本実施の形態では、仮圧着を1回した後に本圧着をする例を示したが、仮圧着の回数は1回ではなく2回以上としてもよい。仮圧着を全くせずに本圧着のみで仕上げることとしてもよい。ただし、一般的には、組立途中の適当な時点で仮圧着をすることとした方が作業中に積層済みの樹脂層がずれることを防止できるので、好ましい。 In the present embodiment, the example in which the final pressure bonding is performed after the temporary pressure bonding is performed once is shown. However, the number of the temporary pressure bonding may be two times or more instead of one time. It is good also as finishing only by this pressure bonding, without performing temporary pressure bonding at all. However, in general, it is preferable to perform the temporary pressure bonding at an appropriate time during the assembly because the laminated resin layer can be prevented from shifting during the operation.
 なお、各実施の形態では、補強用ビア導体として、各樹脂層ごとに形成されたビア導体を厚み方向に並べて接続し、複数層にまたがるものを例示しているが、補強用ビア導体はこのような構造のものに限らず、他の方法で形成されるものであってもよい。補強用ビア導体は、たとえば、補強用ビア導体を形成すべき領域に、予め厚み方向の複数層にまたがる凹部を設けておいて、この凹部に、厚み方向の複数層にまたがる高さの導体を導体ペーストとして充填または導体ブロックとして挿入することによって形成するものであってもよい。 In each embodiment, as the reinforcing via conductor, via conductors formed for each resin layer are connected side by side in the thickness direction and illustrated as being over multiple layers. It is not limited to such a structure, but may be formed by other methods. For example, the reinforcing via conductor is provided with a concave portion that spans a plurality of layers in the thickness direction in a region where the reinforcing via conductor is to be formed, and a conductor having a height that spans the plurality of layers in the thickness direction is provided in the concave portion. It may be formed by filling as a conductor paste or inserting as a conductor block.
 なお、各実施の形態では、内蔵される部品の例として図24に示したような部品3を想定し、このような部品3を内蔵することを前提に説明したが、基板に内蔵される部品はこのような構造のものに限らず、他の形態のものであってもよい。 In each embodiment, description has been made on the assumption that such a component 3 as shown in FIG. 24 is assumed as an example of a component to be incorporated. Is not limited to such a structure, but may have other forms.
 なお、各実施の形態では、1つの基板の内部に配置される部品の数が1である例のみを示したが、1つの基板の内部に複数の部品が配置される構成であってもよい。1つの基板の内部に配置される複数の部品は、同一の構造のものとは限らず、各々異なる構造の部品であってもよい。 In each embodiment, only an example in which the number of components arranged inside one substrate is 1 is shown, but a configuration in which a plurality of components are arranged inside one substrate may be used. . The plurality of components arranged inside one substrate are not necessarily the same structure, and may be components having different structures.
 樹脂層2の材料は、熱可塑性樹脂に限らず、熱硬化性樹脂であってもよい。樹脂層2の材料は、その他の樹脂であってもよい。 The material of the resin layer 2 is not limited to a thermoplastic resin but may be a thermosetting resin. The material of the resin layer 2 may be other resins.
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。 It should be noted that the above-described embodiment disclosed herein is illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、部品内蔵樹脂基板に利用することができる。 The present invention can be used for a component-embedded resin substrate.
 1,1i,1j 部品内蔵樹脂基板、2 樹脂層、3 部品、3a,3b (部品の)電極、4 (絶縁層と部品との)界面、5 (絶縁層同士の)界面、6,6n ビア導体、7 導体パターン、8 第1群、9,9j,9k 補強用ビア導体、10 配線パターン、11 ビア孔、12 導体箔付き樹脂シート、13 レジストパターン、14 部品収容孔、15 部品収容部、17 (パターニングする前の)導体箔、18,19 外部電極、101 (従来の)部品内蔵樹脂基板。 1, 1i, 1j Component built-in resin substrate, 2 resin layer, 3 component, 3a, 3b (component) electrode, 4 (insulating layer and component) interface, 5 (insulating layer-to-insulator) interface, 6, 6n via Conductor, 7 conductor pattern, 8 first group, 9, 9j, 9k reinforcing via conductor, 10 wiring pattern, 11 via hole, 12 resin sheet with conductive foil, 13 resist pattern, 14 component receiving hole, 15 component receiving part, 17 (Before patterning) Conductor foil, 18, 19 External electrode, 101 (Conventional) Component-embedded resin substrate.

Claims (6)

  1.  互いに積層された複数の樹脂層(2)と、
     前記複数の樹脂層に含まれる厚み方向に連続して配置される2以上の樹脂層の群である第1群(8)の各樹脂層によって接しつつ取り囲まれるように配置された部品(3)とを備え、
     前記第1群に属する少なくともいずれかの前記樹脂層を貫通し、かつ、平面的に見て前記部品の外形の少なくとも一部に沿うように、他のいずれの回路とも接続されないかまたは接地されたビア導体である複数の補強用ビア導体(9,9j,9k)が配置されている、部品内蔵樹脂基板。
    A plurality of resin layers (2) laminated together;
    The component (3) arranged so as to be surrounded by each resin layer of the first group (8) which is a group of two or more resin layers arranged continuously in the thickness direction included in the plurality of resin layers And
    Not connected to any other circuit or grounded so as to penetrate at least one of the resin layers belonging to the first group and along at least a part of the outer shape of the component in plan view A component-embedded resin substrate on which a plurality of reinforcing via conductors (9, 9j, 9k) which are via conductors are arranged.
  2.  前記複数の補強用ビア導体は、平面的に見て点状のものが複数並んで配列されることによって前記部品の外形線の少なくとも一部に沿うように配置されている、請求項1に記載の部品内蔵樹脂基板。 2. The plurality of reinforcing via conductors are arranged so as to be along at least a part of an outline of the component by arranging a plurality of point-like ones in a plan view. Component built-in resin board.
  3.  前記複数の補強用ビア導体は、厚み方向に関して前記第1群の全てにまたがるように配置されている、請求項1に記載の部品内蔵樹脂基板。 The component-embedded resin substrate according to claim 1, wherein the plurality of reinforcing via conductors are arranged so as to extend over all of the first group in the thickness direction.
  4.  前記複数の補強用ビア導体は、外部に露出しないように配置されている、請求項1に記載の部品内蔵樹脂基板。 The component-embedded resin substrate according to claim 1, wherein the plurality of reinforcing via conductors are arranged so as not to be exposed to the outside.
  5.  前記複数の補強用ビア導体は、平面的に見て前記部品の外周を取り囲むように配置されている、請求項1に記載の部品内蔵樹脂基板。 The component-embedded resin substrate according to claim 1, wherein the plurality of reinforcing via conductors are arranged so as to surround an outer periphery of the component in a plan view.
  6.  前記複数の樹脂層は、熱可塑性樹脂を主成分とする、請求項1に記載の部品内蔵樹脂基板。 The component-embedded resin substrate according to claim 1, wherein the plurality of resin layers are mainly composed of a thermoplastic resin.
PCT/JP2012/053824 2011-02-28 2012-02-17 Resin substrate with built-in electronic component WO2012117872A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201290000317.XU CN203482516U (en) 2011-02-28 2012-02-17 Resin substrate with built-in electronic component
JP2013502243A JPWO2012117872A1 (en) 2011-02-28 2012-02-17 Component built-in resin substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-041907 2011-02-28
JP2011041907 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117872A1 true WO2012117872A1 (en) 2012-09-07

Family

ID=46757811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053824 WO2012117872A1 (en) 2011-02-28 2012-02-17 Resin substrate with built-in electronic component

Country Status (3)

Country Link
JP (1) JPWO2012117872A1 (en)
CN (1) CN203482516U (en)
WO (1) WO2012117872A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022716A (en) * 2012-07-23 2014-02-03 Zhuhai Advanced Chip Carriers & Electronic Substrates Solutions Technologies Co Ltd Multilayer electronic support structure with integral constructional elements
CN103683684A (en) * 2012-09-19 2014-03-26 株式会社捷太格特 Control device and motor unit including the control device
JP2014075477A (en) * 2012-10-04 2014-04-24 Shinko Electric Ind Co Ltd Manufacturing method of wiring board
WO2014069107A1 (en) * 2012-10-31 2014-05-08 株式会社村田製作所 Substrate with built-in component, and communication terminal apparatus
JPWO2016047446A1 (en) * 2014-09-26 2017-04-27 株式会社村田製作所 LAMINATED MODULE AND METHOD FOR PRODUCING LAMINATED MODULE
US9681204B2 (en) 2011-04-12 2017-06-13 The Nielsen Company (Us), Llc Methods and apparatus to validate a tag for media

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086949A (en) * 2001-06-13 2003-03-20 Denso Corp Method for manufacturing printed substrate and printed substrate formed thereby
WO2007069789A1 (en) * 2005-12-16 2007-06-21 Ibiden Co., Ltd. Multilayer printed wiring plate, and method for fabricating the same
JP2012023237A (en) * 2010-07-15 2012-02-02 Nec Corp Wiring substrate with built-in function element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692217B2 (en) * 2010-03-16 2015-04-01 日本電気株式会社 Functional element built-in substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086949A (en) * 2001-06-13 2003-03-20 Denso Corp Method for manufacturing printed substrate and printed substrate formed thereby
WO2007069789A1 (en) * 2005-12-16 2007-06-21 Ibiden Co., Ltd. Multilayer printed wiring plate, and method for fabricating the same
JP2012023237A (en) * 2010-07-15 2012-02-02 Nec Corp Wiring substrate with built-in function element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9681204B2 (en) 2011-04-12 2017-06-13 The Nielsen Company (Us), Llc Methods and apparatus to validate a tag for media
JP2014022716A (en) * 2012-07-23 2014-02-03 Zhuhai Advanced Chip Carriers & Electronic Substrates Solutions Technologies Co Ltd Multilayer electronic support structure with integral constructional elements
CN103683684A (en) * 2012-09-19 2014-03-26 株式会社捷太格特 Control device and motor unit including the control device
JP2014060901A (en) * 2012-09-19 2014-04-03 Jtekt Corp Control device and motor unit having the same
EP2711268A3 (en) * 2012-09-19 2015-06-10 Jtekt Corporation Control device and motor unit including the control device
US9293970B2 (en) 2012-09-19 2016-03-22 Jtekt Corporation Control device and motor unit including the control device
JP2014075477A (en) * 2012-10-04 2014-04-24 Shinko Electric Ind Co Ltd Manufacturing method of wiring board
WO2014069107A1 (en) * 2012-10-31 2014-05-08 株式会社村田製作所 Substrate with built-in component, and communication terminal apparatus
JPWO2014069107A1 (en) * 2012-10-31 2016-09-08 株式会社村田製作所 Component built-in board and communication terminal device
US9699908B2 (en) 2012-10-31 2017-07-04 Murata Manufacturing Co., Ltd. Component-embedded board and communication terminal device
JPWO2016047446A1 (en) * 2014-09-26 2017-04-27 株式会社村田製作所 LAMINATED MODULE AND METHOD FOR PRODUCING LAMINATED MODULE

Also Published As

Publication number Publication date
JPWO2012117872A1 (en) 2014-07-07
CN203482516U (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5610064B2 (en) Component built-in resin substrate and manufacturing method thereof
US8609991B2 (en) Flex-rigid wiring board and method for manufacturing the same
WO2010007704A1 (en) Flex-rigid wiring board and electronic device
JP4756710B2 (en) Bending type rigid printed wiring board and manufacturing method thereof
WO2012117872A1 (en) Resin substrate with built-in electronic component
JP2008047917A (en) Multilayer printed circuit board with electronic components built-in and its manufacturing method
JP6139653B2 (en) Component built-in resin multilayer board
JP2013089847A (en) Printed circuit board and electronic apparatus using the same
TW201417638A (en) Rigid-flexible circuit board and method for manufacturing same
TWI472277B (en) Rigid-flexible circuit substrate, rigid-flexible circuit board and method for manufacturing same
JPWO2005004567A1 (en) Manufacturing method of component-embedded substrate
JP5509480B2 (en) Flexible printed wiring board connection structure, manufacturing method thereof, and electronic device
JP2009267149A (en) Part built-in wiring board, and method for manufacturing part built-in wiring board
JP5524315B2 (en) Display element module using multilayer flexible printed wiring board
TWI472276B (en) Rigid-flexible circuit substrate, rigid-flexible circuit board and method for manufacturing same
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5787021B2 (en) Resin multilayer board
JP5516830B2 (en) Component built-in resin substrate
JP6319447B2 (en) Resin multilayer board
JP6387226B2 (en) Composite board
JP5561683B2 (en) Component built-in board
JPWO2012133313A1 (en) Manufacturing method of resin board with built-in components
JP6735793B2 (en) Composite substrate and rigid substrate
WO2012124673A1 (en) Substrate with integrated component
JP2014222686A (en) Resin multilayer substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000317.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12751814

Country of ref document: EP

Kind code of ref document: A1